Programming with
Visual C++ 2005

Windows programming isn’t difficult. In fact, Microsoft Visual C++ 2005 makes it remarkably
easy, as you'll see throughout the course of this book. There’s just one obstacle in your path: Before
you get to the specifics of Windows programming, you have to be thoroughly familiar with the
capabilities of the C++ programming language, particularly the object-oriented aspects of the lan-
guage. Object-oriented techniques are central to the effectiveness of all the tools that are provided
by Visual C++ 2005 for Windows programming, so it’s essential that you gain a good understand-
ing of them. That’s exactly what this book provides.

This chapter gives you an overview of the essential concepts involved in programming applica-
tions in C++. You'll take a rapid tour of the Integrated Development Environment (IDE) that
comes with Visual C++ 2005. The IDE is straightforward and generally intuitive in its operation,
so you'll be able to pick up most of it as you go along. The best approach to getting familiar with
it is to work through the process of creating, compiling, and executing a simple program. By the
end of this chapter, you will have learned:

What the principal components of Visual C++ 2005 are

What the NET Framework consists of and the advantages it offers

What solutions and projects are and how you create them

About console programs

How to create and edit a program

How to compile, link, and execute C++ console programs

U 00U o0 U

How to create and execute basic Windows programs

So power up your PC, start Windows, load the mighty Visual C++ 2005, and begin your journey.

Chapter 1

The .NET Framework

The .NET Framework is a central concept in Visual C++ 2005 as well as in all the other .NET develop-
ment products from Microsoft. The .NET Framework consists of two elements: the Common Language
Runtime (CLR) in which your application executes, and a set of libraries called the .NET Framework
class libraries. The NET Framework class libraries provide the functional support your code will need
when executing with the CLR, regardless of the programming language used, so .NET programs written
in C++, C#, or any of the other languages that support the NET Framework all use the same .NET
libraries.

There are two fundamentally different kinds of C++ applications you can develop with Visual C++ 2005.
You can write applications that natively execute on your computer. These applications will be referred
to as native C++ programs. You write native C++ programs in the version of C++ that is defined by the
ISO/ANSI language standard. You can also write applications to run under the control of the CLR in an
extended version of C++ called C++/CLI These programs will be referred to as CLR programs, or
C++/CLI programs.

The .NET Framework is not strictly part of Visual C++ 2005 but rather a component of the Windows
operating system that makes it easier to build software applications and Web services. The NET
Framework offers substantial advantages in code reliability and security, as well as the ability to inte-
grate your C++ code with code written in over 20 other programming languages that target the NET
Framework. A slight disadvantage of targeting the .NET Framework is that there is a small performance
penalty, but you won't notice this in the majority of circumstances.

The Common Language Runtime (CLR)

The CLR is a standardized environment for the execution of programs written in a wide range of high-
level languages including Visual Basic, C#, and of course C++. The specification of the CLR is now
embodied in the European Computer Manufacturers (ECMA) standard for the Common Language
Infrastructure (CLI), ECMA-335, and also in the equivalent ISO standard, ISO/IEC 23271, so the CLR is
an implementation of this standard. You can see why C++ for the CLR is referred to as C++/CLI—it’s
C++ for the Common Language Infrastructure, so you are likely to see C++/CLI compilers on other
operating systems that implement the CLI.

Note that information on all ECMA standards is available from http: / /www.ecma-international.
org and ECMA-335 is currently available as a free download.

The CLI is essentially a specification for a virtual machine environment that enables applications writ-
ten in diverse high-level programming languages to be executed in different system environments
without changing or recompiling the original source code. The CLI specifies a standard intermediate
language for the virtual machine to which the high-level language source code is compiled. With the
NET Framework, this intermediate language is referred to as Microsoft Intermediate Language (MSIL).
Code in the intermediate language is ultimately mapped to machine code by a just-in-time (JIT) compiler
when you execute a program. Of course, code in the CLI intermediate language can be executed within
any other environment that has a CLI implementation.

Programming with Visual C++ 2005

The CLI also defines a common set of data types called the Common Type System (CTS) that should be
used for programs written in any programming language targeting a CLI implementation. The CTS
specifies how data types are used within the CLR and includes a set of predefined types. You may also
define your own data types, and these must be defined in a particular way to be consistent with the
CLR, as you'll see. Having a standardized type system for representing data allows components written
in different programming languages to handle data in a uniform way and makes it possible to integrate
components written in different languages to be integrated into a single application.

Data security and program reliability is greatly enhanced by the CLR, in part because dynamic memory
allocation and release for data is fully automatic but also because the MSIL code for a program is com-
prehensively checked and validated before the program executes. The CLR is just one implementation of
the CLI specification that executes under Microsoft Windows on a PC; there will undoubtedly be other
implementations of the CLI for other operating system environments and hardware platforms. You'll
sometimes find that the terms CLI and CLR used interchangeably, although it should be evident that
they are not the same things. The CLI is a standard specification; the CLR is Microsoft’s implementation
of the CLI.

Writing C++ Applications

You have tremendous flexibility in the types of applications and program components that you can
develop with Visual C++ 2005. As noted earlier in this chapter, you have two basic options for Windows
applications: you can write code that executes with the CLR, and you can also write code that compiles
directly to machine code and thus executes natively. For window-based applications targeting the CLR,
you use Windows Forms as the base for the GUI provided by the NET Framework libraries. Using
Windows Forms enables rapid GUI development because you assemble the GUI graphically from stan-
dard components and have the code generated completely automatically. You then just need to cus-
tomize the code that has been generated to provide the functionality you require.

For natively executing code, you have several ways to go. One possibility is to use the Microsoft
Foundation Classes (MFC) for programming the graphical user interface for your Windows application.
The MFC encapsulates the Windows operating system Application Programming Interface (API) for
GUI creation and control and greatly eases the process of program development. The Windows API orig-
inated long before the C++ language arrived on the scene so it has none of the object-oriented character-
istics that would be expected if it were written today; however, you are not obliged to use the MFC. If
you want the ultimate in performance, you can write your C++ code to access the Windows API directly.

C++ code that executes with the CLR is described as managed C++ because data and code is managed
by the CLR. In CLR programs, the release of memory that you have allocated dynamically for storing
data is taken care of automatically, thus eliminating a common source of error in native C++ applica-
tions. C++ code that executes outside of the CLR is sometimes described by Microsoft as unmanaged
C++ because the CLR is not involved in its execution. With unmanaged C++ you must take care of all
aspects allocating and releasing memory during execution of your program yourself, and you also
forego the enhanced security provided by the CLR. You'll also see unmanaged C++ referred to as native
C++ because it compiles directly to native machine code.

Figure 1-1 shows the basic options you have for developing C++ applications.

Chapter 1

Managed C++

ac

Native C++ Framework Classes
Native C++ MFC Common Language Runtime

ac ac ac

Operating System

ac

Hardware

Figure 1-1

Figure 1-1 is not the whole story. An application can consist partly of managed C++ and partly of native
C++, so you are not obliged to stick to one environment or the other. Of course, you do lose out somewhat
by mixing the code, so you would choose to follow this approach only when necessary, such as when you
want to convert an existing native C++ application to run with the CLR. You obviously won’t get the ben-
efits inherent in managed C++ in the native C++ code, and there can also be appreciable overhead
involved in communications between the managed and unmanaged code components. The ability to mix
managed and unmanaged code can be invaluable, however, when you need to develop or extend existing
unmanaged code but also want to obtain the advantages of using the CLR. Of course, for new applica-
tions you should decide whether you want to create it as a managed C++ application at the outset.

Learning Windows Programming

There are always two basic aspects to interactive applications executing under Windows: you need code
to create the Graphical User Interface (the GUI) with which the user interacts, and you need code to pro-
cess these interactions to provide the functionality of the application. Visual C++ 2005 provides you with
a great deal of assistance in both aspects of Windows application development. As you'll see later in this
chapter, you can create a working Windows program with a GUI without writing any code yourself at
all. All the basic code to create the GUI can be generated automatically by Visual C++ 2005; however, it’s
essential to understand how this automatically generated code works because you need to extend and
modify it to make it do what you want, and to do that you need a comprehensive understanding of C++.

Programming with Visual C++ 2005

For this reason, you'll first learn C++—both the native C++ and C++/CLI versions of the language —
without getting involved in Windows programming considerations. After you're comfortable with C++,
you'll learn how you develop fully-fledged Windows applications using native C++ and C++/CLI. This
means that while you are learning C++, you'll be working with programs that just involved command
line input and output. By sticking to this rather limited input and output capability, you'll be able to con-
centrate of the specifics of how the C++ language works and avoid the inevitable complications involved
in GUI building and control. After you become comfortable with C++, you’ll find that it’s an easy and
natural progression to applying C++ to the development of Windows application programs.

Learning C++
Visual C++ 2005 fully supports two versions of C++ defined by two separate standards:

Q The ISO/ANSI C++ standard is for implementing native applications —unmanaged C++. This
version of C++ is supported on the majority of computer platforms.

Q The C++/CLI standard is designed specifically for writing programs that target the CLR and is
an extension to the ISO/ANSI C++.

Chapters 2 through 10 of this book teach you the C++ language. Because C++/CLI is an extension of
ISO/ANSI C++, the first part of each chapter introduces elements of the ISO/ ANSI C++ language; the
second part explains the additional features that C++/CLI introduces.

Writing programs in C++/CLI allows you to take full advantage of the capabilities of the .NET
Framework, something that is not possible with programs written in ISO/ ANSI C++. Although
C++/CLlLis an extension of ANSI/ISO C++, to be able to execute your program fully with the CLR
means that it must conform to the requirements of the CLR. This implies that there are some features of
ANSI/ISO C++ that you cannot use in your CLR programs. One example of this that you might deduce
from what I have said up to now is that the dynamic memory allocation and release facilities offered by
ISO/ANSI C++ are not compatible with the CLR; you must use the CLR mechanism for memory man-
agement and this implies that you must use C++/CLI classes, not native C++ classes.

The C++ Standards

The ISO/ANSI standard is defined by the document ISO/IEC 14882 that is published by the American
National Standards Institute (ANSI). ISO/ANSI standard C++ is the well-established version of C++
that has been around since 1998 and is supported by compilers on the majority of computer hardware
platforms and operating systems. Programs that you write in ISO/ANSI C++ can be ported from one
system environment to another reasonably easily, although the library functions that a program uses —
particularly those related to building a graphical user interface — are a major determinant of how easy
or difficult it will be. ISO/ ANSI standard C++ has been the first choice of many professional program
developers because it is so widely supported, and because is one of the most powerful programming
languages available today.

The ISO/ANSI standard for C++ can be purchased from http: //www.iso.org.

C++/CLI is a version of C++ that extends the ISO/ANSI standard for C++ to better support the
Common Language Infrastructure (CLI) that is defined by the standard ECMA-355. The first draft of this
standard appeared in 2003 and was developed from an initial technical specification that was produced
by Microsoft to support the execution of C++ programs with the NET Framework. Thus both the CLI
and C++/CLI were originated by Microsoft in support of the NET Framework. Of course, standardizing

5

Chapter 1

the CLI and C++/CLI greatly increases the likelihood of implementations in environments other than
Windows. It’s important to appreciate that although C++/CLI is an extension of ISO/ANSI C++, there
are features of ISO/ANSI C++ that you must not use when you want your program to execute fully
under the control of the CLR. You'll learn what these are as you progress through the book.

The CLR offers substantial advantages over the native environment. By targeting your C++ programs at
the CLR, your programs will be more secure and not prone to the potential errors you can make when
using the full power of ISO/ANSI C++. The CLR also removes the incompatibilities introduced by vari-
ous high-level languages by standardizing the target environment to which they are compiled and thus
permit modules written in C++ to be combined with modules written in other languages such as C# or
Visual Basic.

Console Applications

As well as developing Windows applications, Visual C++ 2005 also allows you to write, compile, and
test C++ programs that have none of the baggage required for Windows programs — that is, applications
that are essentially character-based, command-line programs. These programs are called console appli-
cations in Visual C++ 2005 because you communicate with them through the keyboard and the screen in
character mode.

Writing console applications might seem as though you are being sidetracked from the main objective of
Windows programming, but when it comes to learning C++ (which you do need to do before embarking
on Windows-specific programming), it’s the best way to proceed. There’s a lot of code in even a simple
Windows program, and it’s very important not to be distracted by the complexities of Windows when
learning the ins and outs of C++. Therefore, in the early chapters of the book where you are concerned
with how C++ works, you'll spend time walking with a few lightweight console applications before you
get to run with the heavyweight sacks of code in the world of Windows.

While you're learning C++, you'll be able to concentrate on the language features without worrying
about the environment in which you're operating. With the console applications that you'll write, you
have only a text interface, but this will be quite sufficient for understanding all of C++ because there’s no
graphical capability within the definition of the language. Naturally, I will provide extensive coverage of
graphical user interface programming when you come to write programs specifically for Windows using
Microsoft Foundation Classes (MFC) in native C++ applications and Windows Forms with the CLR.

There are two distinct kinds of console applications and you'll be using both. Win32 console applica-
tions compile to native code, and you’'ll be using these to try out the capabilities of ISO/ANSI C++. CLR
console applications target the CLR so you'll be using these when you are working with the features of
C++/CLL

Windows Programming Concepts

Our approach to Windows programming is to use all the tools that Visual C++ 2005 provides. The pro-
ject creation facilities that are provided with Visual C++ 2005 can generate skeleton code for a wide vari-
ety of application programs automatically, including basic Windows programs. Creating a project is the
starting point for all applications and components that you develop with Visual C++ 2005, and to get a

Programming with Visual C++ 2005

flavor of how this works, you'll look at the mechanics of creating some examples, including an outline
Windows program, later in this chapter.

A Windows program has a different structure from that of the typical console program you execute from
the command line, and it’s more complicated. In a console program, you can get input from the keyboard
and write output back to the command line directly, whereas a Windows program can access the input and
output facilities of the computer only by way of functions supplied by the Windows operating system; no
direct access to the hardware resources is permitted. Because several programs can be active at one time
under Windows, Windows has to determine which application a given raw input such as a mouse click or
the pressing of a key on the keyboard is destined for and signal the program concerned accordingly. Thus
the Windows operating system has primary control of all communications with the user.

Also, the nature of the interface between a user and a Windows application is such that a wide range

of different inputs is usually possible at any given time. A user may select any of a number of menu
options, click a toolbar button, or click the mouse somewhere in the application window. A well-
designed Windows application has to be prepared to deal with any of the possible types of input at any
time because there is no way of knowing in advance which type of input is going to occur. These user
actions are received by the operating system in the first instance and are all regarded by Windows as
events. An event that originates with the user interface for your application will typically result in a par-
ticular piece of your program code being executed. How program execution proceeds is therefore deter-
mined by the sequence of user actions. Programs that operate in this way are referred to as event-driven
programs and are different from traditional procedural programs that have a single order of execution.
Input to a procedural program is controlled by the program code and can occur only when the program
permits it; therefore, a Windows program consists primarily of pieces of code that respond to events
caused by the action of the user, or by Windows itself. This sort of program structure is illustrated in
Figure 1-2.

Each square block in Figure 1-2 represents a piece of code written specifically to deal with a particular
event. The program may appear to be somewhat fragmented because of the number of disjointed blocks
of code, but the primary factor welding the program into a whole is the Windows operating system
itself. You can think of your program as customizing Windows to provide a particular set of capabilities.

Of course, the modules servicing various external events, such as selecting a menu or clicking the
mouse, all typically have access to a common set of application-specific data in a particular program.
This application data contains information that relates to what the program is about — for example,
blocks of text in an editor or player scoring records in a program aimed at tracking how your baseball
team is doing — as well as information about some of the events that have occurred during execution of
the program. This shared collection of data allows various parts of the program that look independent to
communicate and operate in a coordinated and integrated fashion. I will go into this in much more
detail later in the book.

Even an elementary Windows program involves several lines of code, and with Windows programs that
are generated by the application wizards that come with Visual C++ 2005, “several” turns out to be
“many.” To simplify process of understanding how C++ works, you need a context that is as uncompli-
cated as possible. Fortunately, Visual C++ 2005 comes with an environment that is ready-made for the
purpose.

Chapter 1

Events:
Press Left Press Right
Keyboard
el)r/vp(zi‘r Mouse Mouse [--------1
Button Button
A A
WINDOWS
A A,
Process
Process Process Right
Keyboard Left Mouse | | ,,° - -------1
Input Button Mouse
Button
A A
4 y 4
Program Data
Your Program
Figure 1-2

What Is the Integrated Development

Environment?

The Integrated Development Environment (IDE) that comes with Visual C++ 2005 is a completely self-
contained environment for creating, compiling, linking, and testing your C++ programs. It also happens
to be a great environment in which to learn C++ (particularly when combined with a great book).

Visual C++ 2005 incorporates a range of fully integrated tools designed to make the whole process
of writing C++ programs easy. You will see something of these in this chapter, but rather than grind
through a boring litany of features and options in the abstract, first take a look at the basics to get a view

of how the IDE works and then pick up the rest in context as you go along.

Programming with Visual C++ 2005

Components of the System

The fundamental parts of Visual C++ 2005, provided as part of the IDE, are the editor, the compiler, the
linker, and the libraries. These are the basic tools that are essential to writing and executing a C++ pro-
gram. Their functions are as follows.

The Editor

The editor provides an interactive environment for you to create and edit C++ source code. As well as
the usual facilities, such as cut and paste, which you are certainly already familiar with, the editor also
provides color cues to differentiate between various language elements. The editor automatically recog-
nizes fundamental words in the C++ language and assigns a color to them according to what they are.
This not only helps to make your code more readable but also provides a clear indicator of when you
make errors in keying such words.

The Compiler

The compiler converts your source code into object code, and detects and reports errors in the compila-
tion process. The compiler can detect a wide range of errors that are due to invalid or unrecognized pro-
gram code, as well as structural errors, where, for example, part of a program can never be executed.
The object code output from the compiler is stored in files called object files. There are two types of
object code that the compiler produces. These object codes usually have names with the extension . obj.

The Linker

The linker combines the various modules generated by the compiler from source code files, adds
required code modules from program libraries supplied as part of C++, and welds everything into an
executable whole. The linker can also detect and report errors — for example, if part of your program is
missing or a non-existent library component is referenced.

The Libraries

Alibrary is simply a collection of pre-written routines that supports and extends the C++ language by
providing standard professionally produced code units that you can incorporate into your programs to
carry out common operations. The operations that are implemented by routines in the various libraries
provided by Visual C++ 2005 greatly enhance productivity by saving you the effort of writing and test-
ing the code for such operations yourself. I have already mentioned the NET Framework library, and
there are a number of others — too many to enumerate here —but I'll mention the most important ones.

The Standard C++ Library defines a basic set of routines common to all ISO/ANSI C++ compilers. It
contains a wide range of routines including numerical functions such as calculating square roots and
evaluating trigonometrical functions, character and string processing routines such as classifying charac-
ters and comparing character strings, and many others. You'll get to know quite a number of these as
you develop your knowledge of ISO/ANSI C++. There are also libraries that support the C++/CLI
extensions to ISO/ANSI C++.

Native window-based applications are supported by a library called the Microsoft Foundation Classes
(MFC). The MFC greatly reduces the effort needed to build the graphical user interface for an applica-
tion. You'll see a lot more of the MFC when you finish exploring the nuances of the C++ language.
Another library contains a set of facilities called Windows Forms that are roughly the equivalent of the
MFC for window-based applications that executed with the NET Framework. You'll be seeing how you
make use of Windows Forms to develop applications, too.

Chapter 1

Using the IDE

All program development and execution in this book is performed from within the IDE. When you start
Visual C++ 2005, notice an application window similar to that shown in Figure 1-3.

tart Page - Mic t Visual Studio _]EE

File Edit View Tools Test Window Community Help
RSN N - AR SR K R R Y W |) M i e 2 PR |

R e T |fm|E._Jgu E?JJJ=|v _:.,i’gldexavlél,.-'}H;’_nf_l'|ac:'ra(:|f(:| - E sl ,._!
Solution Explorer > 1 x L u_li"‘
=) g
= Microsoft: i
¥+ Visual Studio 2005 B
=1
S —— g
Recent Projects MSDN: Visual C++ g
=
Pure C++: Invoking Generic or Function Templates [~ 3 8_
Mon, 19 Sep 2005 20:51:25 GMT - This month, Stan Lippman walks through §
the process of defining and invoking a generic or template function under]
C+HCLL
C++ at Work: Writing, Loading, and Accessing Plug-Ins
Mon, 19 Sep 2005 20:50:31 GMT - Paul DiLascia answers a number of
readers’ questions this month on writing, loading, and accessing plug-ing L
with C++ in JNET.
Open: P”’J_“‘t"' |web Sft"' OpenMP and C++: Reap the Benefits of Multithreading without All...
L Create: Project.. |Web Sit..) Mon, 18 Sep 2005 19:17:53 GT - If your application is not coded to teke
tage of computers with multiple processors, you may not reap the
. benefits. OpenMP helps you create multithreaded C++ applications quickly so
Ryl = that the benefits of multithreading can be realized.
What's Mew in Visual C++ See the New Technologies Announced at PDC '05
Security Best Practices for C++ L Man. 17 Sen 2005 23:019:58 GMT - See what is in store for devaloners in the M
= Creat M, Visual C.. o/
C@Snlut.. |!:$Class... %Prop... nmli Efj‘d:{j, rfnﬂgmg s v
Output .

output from: - | J]d ',ill = |Gl |

Ready

Figure 1-3

The window to the left in Figure 1-3 is the Solution Explorer window, the top-right window presently
showing the Start page is the Editor window, and the window at the bottom is the Output window. The
Solution Explorer window enables you to navigate through your program files and display their contents
in the Editor window and to add new files to your program. The Solution Explorer window has up to
three additional tabs (only two are shown in Figure 1-3) that display Class View, Resource View, and
Property Manager for your application, and you can select which tabs are to be displayed from the View
menu. The Editor window is where you enter and modify source code and other components of your
application. The Output window displays messages that result from compiling and linking your program.

Toolbar Options

You can choose which toolbars are displayed in your Visual C++ window by right-clicking in the toolbar
area. A pop-up menu with a list of toolbars (Figure 1-4) appears, and the toolbars that are currently dis-
played have check marks alongside.

Programming with Visual C++ 2005

Build
Class Designer

Data Design

Database Diagram
Debug

Debug Location

Device

Dialog Editor

Formatting

Help

HTML Source Editing

Image Editor

Layout

Query Designer

Report Borders

Report Formatting

Source Control
Standard

Style Sheet

Table Designer

Text Editor

hd

Figure 1-4

This is where you decide which toolbars are visible at any one time. You can make your set of toolbars
the same as those shown in Figure 1-3 by making sure the Build, Class Designer, Debug, Standard,
and View Designer menu items are checked. Clicking in the gray area to the left of a toolbar checks it if
it unchecked and results in it being displayed; clicking a check mark hides the corresponding toolbar.

You don’t need to clutter up the application window with all the toolbars you think you might need at
some time. Some toolbars appear automatically when required, so you’ll probably find that the default
toolbar selections are perfectly adequate most of the time. As you develop your applications, from time
to time you might think it would be more convenient to have access to toolbars that aren’t displayed.
You can change the set of toolbars that are visible whenever it suits you by right-clicking in the toolbar
area and choosing from the context menu.

11

Chapter 1

Similar to many other Windows applications, the toolbars that make up Visual C++ 2005 come com-
plete with tooltips. Just let the mouse pointer linger over a toolbar button for a second or two and a
white label displays the function of that button.

Dockable Toolbars

A dockable toolbar is one that you can drag around with the mouse to position at a convenient place in
the window. When it is placed in any of the four borders of the application, it is said to be docked and
looks similar to the toolbars you see at the top of the application window. The toolbar on the upper line
of toolbar buttons that contains the disk icons and the text box to the right of a pair of binoculars is the
Standard toolbar. You can drag this away from the toolbar by placing the cursor on it and dragging it
with the mouse while you hold down the left mouse button. It then appears as a separate window you
can position anywhere.

If you drag any dockable toolbar away from its docked position, it looks like the Standard toolbar you
see in Figure 1-5, enclosed in a little window — with a different caption. In this state, it is called a floating
toolbar. All the toolbars that you see in Figure 1-3 are dockable and can be floating, so you can experi-
ment with dragging any of them around. You can position them in docked positions where they revert to
their normal toolbar appearance. You can dock a dockable toolbar at any side of the main window.

Figure 1-5

You'll become familiar with many of the toolbar icons that Visual C++ 2005 uses from other Windows
applications, but you may not appreciate exactly what these icons do in the context of Visual C++, so I'll
describe them as we use them.

Because you'll use a new project for every program you develop, looking at what exactly a project is and
understanding how the mechanism for defining a project works is a good place to start finding out
about Visual C++ 2005.

Documentation

12

There will be plenty of occasions when you’ll want to find out more information about Visual C++ 2005.
The Microsoft Development Network (MSDN) Library provides comprehensive reference material on
all the capabilities on Visual C++ 2005 and more besides. When you install Visual C++ 2005 onto your
machine, there is an option to install part or all of the MSDN documentation. If you have the disk space
available I strongly recommend that you install the MSDN Library.

Programming with Visual C++ 2005

Press the F1 function to browse the MSDN Library. The Help menu also provides various routes into the
documentation. As well as offering reference documentation, the MSDN Library is a useful tool when
dealing with errors in your code, as you'll see later in this chapter.

Projects and Solutions

A project is a container for all the things that make up a program of some kind —it might be a console
program, a window-based program, or some other kind of program, and it usually consists of one or
more source files containing your code plus possibly other files containing auxiliary data. All the files for
a project are stored in the project folder and detailed information about the project is stored in an XML
file with the extension .vcproj that is also in the project folder. The project folder also contains other
folders that are used to store the output from compiling and linking your project.

The idea of a solution is expressed by its name, in that it is a mechanism for bringing together all the
programs and other resources that represent a solution to a particular data processing problem. For
example, a distributed order entry system for a business operation might be composed of several differ-
ent programs that could each be developed as a project within a single solution; therefore, a solution is a
folder in which all the information relating to one or more projects is stored, so one or more project fold-
ers are subfolders of the solution folder. Information about the projects in a solution is stored in two files
with the extensions . s1ln and .suo. When you create a project, a new solution is created automatically
unless you elect to add the project to an existing solution.

When you create a project along with a solution, you can add further projects to the same solution. You
can add any kind of project to an existing solution, but you would usually add only a project that was
related in some way to the existing project or projects in the solution. Generally, unless you have a good
reason to do otherwise, each of your projects should have its own solution. Each example you create
with this book will be a single project within its own solution.

Defining a Project

The first step in writing a Visual C++ 2005 program is to create a project for it using the File > New >
Project menu option from the main menu or you can press Ctrl+Shift+N. As well as containing files
that define all the code and any other data that goes to make up your program, the project XML file in
the project folder also records the Visual C++ 2005 options you're using. Although you don’t need to
concern yourself with the project file—it is entirely maintained by the IDE —you can browse it if you
want to see what the contents are, but take care not to modify it accidentally.

That’s enough introductory stuff for the moment. It’s time to get your hands dirty.
Try It Out Creating a Project for a Win32 Console Application

You'll now take a look at creating a project for a console application. First select File > New >
Project to bring up the New Project dialog box, shown in Figure 1-6.

13

Chapter 1

14

[New Project X
Froject types: Templates: ==
= Visual C++ Visual Studio installed templates
ATL
CLR Mwin32 Console Application Ewinzz Project
General
MEC My Templates

Smart Device
Test
Win32
- Other Languages
Distributed System Solutions
= Other Project Types
1 Test Projects

S search Online Templates...

A project for creating a Win32 console application

Hame: Exl_01
Location: D:\Beginning Visual C++ 2005\Examples ™ [Browse...]
Solution Name: Ex1_01 [¥] Create directory for solution
OK | I Cancel]
Figure 1-6

The left pane in the New Project dialog box displays the types of projects you can create; in this case,
click win32. This also identifies an application wizard that creates the initial contents for the project. The
right pane displays a list of templates available for the project type you have selected in the left pane.
The template you select is used by the application wizard when creating the files that make up the pro-
ject. In the next dialog box, you have an opportunity to customize the files that are created when you
click the Ok button in this dialog box. For most of the type/template options, a basic set of program
source modules are created automatically.

You can now enter a suitable name for your project by typing into the Name: edit box — for example,
you could call this one Ex1_01, or you can choose your own project name. Visual C++ 2005 supports
long file names, so you have a lot of flexibility. The name of the solution folder appears in the bottom
edit box and, by default, the solution folder has the came name as the project. You can change this if you
want. The dialog box also allows you to modify the location for the solution that contains your project—
this appears in the Location: edit box. If you simply enter a name for your project, the solution folder
is automatically set to a folder with that name, with the path shown in the Location: edit box. By default
the solution folder is created for you if it doesn’t already exist. If you want to specify a different path for
the solution folder, just enter it in the Location: edit box. Alternatively, you can use the Browse button to
select another path for your solution. Clicking the Ok button displays the Win32 Application Wizard dia-
log box shown in Figure 1-7.

This dialog box explains the settings currently in effect. If you click the Finish button, the wizard cre-
ates all the project files based on this. In this case you can click Applications Settings on the left to
display the Application Settings page of the wizard shown in Figure 1-8.

Programming with Visual C++ 2005

Win32 Application Wizard - Ex1_01
-
Welcome to the Win32 Application Wizard
Overview These are the current project settings:
Application Settings & Console application
Click Finish from any window to accept the current settings.
After you create the project, see the project’s readme. txt file for information
about the project features and files that are generated.
Next =] [Finish] [Cancel
Figure 1-7
Win32 Application Wizard - Ex1_01 23
—— Application Settings
Owverview Application type: Add common header files for:
Application Settings () Windows application Jan
(#) Console application CImFc
(@]
() Static library
Additional options:
[Empty project
Precompiled header
Finish] [Cancel
Figure 1-8

The Application Settings page allows you to choose options that you want to apply to the project.
For most of the projects you'll be creating when you are learning the C++ language, you select the Empty
project checkbox, but here you can leave things as they are and click the Finish button. The applica-
tion wizard then creates the project with all the default files.

15

Chapter 1

The project folder will have the name that you supplied as the project name and will hold all the files
making up the project definition. If you didn’t change it, the solution folder has the same name as the
project folder and contains the project folder plus the files defining the contents of the solution. If you
use Windows Explorer to inspect the contents of the solution folder, you'll see that it contains three files:

Q Afile with the extension . s1n that records information about the projects in the solution.
Q Afile with the extension . suo in which user options that apply to the solution will be recorded.

Q A file with the extension .ncb that records data about Intellisense for the solution. Intellisense
is the facility that provides auto-completion and prompting for code in the Editor window as
you enter it.

If you use Windows Explorer to look in the project folder, notice there are six files initially, including a
file with the name ReadMe. txt that contains a summary of the contents of the files that have been cre-
ated for the project. The one file that ReadMe . txt may not mention is a file with a compound name of
the form Ex1_01.vcproj.ComputerName. UserName . user used to store options you set for the project.

The project you have created will automatically open in Visual C++ 2005 with the left pane as in Figure
1-9. I have increased the width of this pane so that you can see the complete names on the tabs.

Solution Explorer - Ex1_01 * 1 X

[54 Solution 'Ex1_01' (1 project)
- EEx1_o01
= ¥ Header Files
] stdafx.h
|1 Resource Files
= ¥ Source Files
¢+ Bxd_01.cpp
¢ stdafx.cpp
[Z] ReadMe.bet

&3 Solution Explorer [Class View |[; Property Manager |[BResource View

Figure 1-9

The Solution Explorer tab presents a view of all the projects in the current solution and the files they
contains — here there is just one project of course. You can display the contents of any file as an addi-
tional tab in the Editor pane just by double-clicking in name in the Solution Explorer tab. In the edit
pane you can switch instantly between any of the files that have been displayed just by clicking on the
appropriate tab.

16

Programming with Visual C++ 2005

The Class View tab displays the classes defined in your project and also shows the contents of each
class. You don’t have any classes in this application, so the view is empty. When we discuss classes, you
will see that you can use the Class View tab to move around the code relating to the definition and
implementation of all your application classes quickly and easily.

The Property Manager tab shows the properties that have been set for the Debug and Release versions
of your project. I'll explain these versions a little later in this chapter. You can change any of the proper-
ties shown by right-clicking a property and selecting Properties from the context menu; this displays a
dialog box where you can set the project property. You can also press Alt+F7 to display the properties
dialog box at any time; I'll also discuss this in more detail when we go into the Debug and Release ver-
sions of a program.

The Resource View shows the dialog boxes, icons, menus toolbars, and other resources that are used

by the program. Because this is a console program, no resources are used; however, when you start writ-
ing Windows applications, you'll see a lot of things here. Through this tab you can edit or add to the
resources available to the project.

Like most elements of the Visual C++ 2005 IDE, the Solution Explorer and other tabs provide context-
sensitive pop-up menus when you right-click items displayed in the tab and in some cases in the empty
space in the tab, too. If you find that the Solution Explorer pane gets in your way when writing code,
you can hide it by clicking the Autohide icon. To redisplay it, click the name tab on the left of the IDE
window.

Modifying the Source Code

The Application wizard generates a complete Win32 console program that you can compile and execute.
Unfortunately, the program doesn’t do anything as it stands, so to make it a little more interesting you
need to change it. If it is not already visible in the Editor pane, double-click Ex1_01. cpp in the Solution
Explorer pane. This file is the main source file for the program that the Application wizard generated
and it looks like that shown in Figure 1-10.

Ex1_01.cpp Start Page -
(Global Scope) w || “wwmain(int argc, _TCHAR =[] argv)

EIERIES

t tmain(int arge, TCHAR* argv(])

<] . >

Figure 1-10

17

Chapter 1

If the line numbers are not displayed on your system, select Tools > Options from the main menu to dis-
play the Options dialog box. If you extend the C/C++ option in the right pane and select General from
the extended tree, you can select Line Numbers in the right pane of the dialog box. Ill first give you a
rough guide to what this code in Figure 1-10 does, and you'll see more on all of these later.

The first two lines are just comments. Anything following “//”in a line is ignored by the compiler.
When you want to add descriptive comments in a line, precede your text by “//”.

Line 4 is an #include directive that adds the contents of the file stdafx.h to this file in place of this
#include directive. This is the standard way of adding the contents of .h source files to a . cpp source
file a in a C++ program.

Line 7 is the first line of the executable code in this file and the beginning of the function _tmain (). A
function is simply a named unit of executable code in a C++ program; every C++ program consists of at
least one —and usually many more — functions.

Lines 8 and 10 contain left and right braces, respectively, that enclose all the executable code in the
function _tmain (). The executable code is, therefore, just the single line 10 and all this does is end the
program.

Now you can add the following two lines of code in the Editor window:

// Ex1_0l.cpp : Defines the entry point for the console application.
//

#include "stdafx.h"
#include <iostream>

int _tmain(int argc, _TCHAR* argv[])
{
std::cout << "Hello world!\n";
return 0;

}

The unshaded lines are the ones generated for you. The new lines you should add are shown shaded. To
introduce each new line, place the cursor at the end on the text on the preceding line and press Enter to
create an empty line in which you can type the new code. Make sure it is exactly as shown in the preced-
ing example; otherwise, the program may not compile.

The first new line is an #include directive that adds the contents of one of the standard libraries for
ISO/ANSI C++ to the source file. The <iostream> library defines facilities for basic I/O operations, and
the one you are using in the second line that you added writes output to the command line. std: : cout
is the name of the standard output stream and you write the string "Hello world!\n" to std::cout
in the second addition statement. Whatever appears between the pair of double quote characters is writ-
ten to the command line.

Building the Solution

18

To build the solution, press F7 or select the Build > Build Solution menu item. Alternatively, you
can click the toolbar button corresponding to this menu item. The toolbar buttons for the Build menu
may not display, but you can easily fix this by right-clicking in the toolbar area and selecting the Build

Programming with Visual C++ 2005

toolbar from those in the list. The program should then compile successfully. If there are errors, ensure
you didn’t make an error while entering the new code, so check the two new lines very carefully.

Files Created by Building a Console Application

After the example has been built without error, take a look in the project folder by using Windows
Explorer to see a new subfolder called Debug. This folder contains the output of the build you just per-
formed on the project. Notice that this folder contains several files.

Other than the . exe file, which is your program in executable form, you don’t need to know much
about what’s in these files. In case you're curious, however, let’s do a quick run-through of what the
more interesting ones are for.

File Extension Description

.exe This is the executable file for the program. You get this file only if both the
compile and link steps are successful.

.obj The compiler produces these object files containing machine code from your
program source files. These are used by the linker, along with files from the
libraries, to produce your . exe file.

JAlk This file is used by the linker when you rebuild your project. It enables the
linker to incrementally link the object files produced from the modified source
code into the existing . exe file. This avoids the need to re-link everything
each time you change your program.

.pch This is a pre-compiled header file. With pre-compiled headers, large tracts of
code that are not subject to modification (particularly code supplied by C++
libraries) can be processed once and stored in the . pch file. Using the .pch
file substantially reduces the time needed to rebuild your program.

.pdb This file contains debugging information that is used when you execute the
program in debug mode. In this mode, you can dynamically inspect informa-
tion that is generated during program execution.

.idb Contains information used when you rebuild the solution.

Debug and Release Versions of Your Program

You can set a range of options for a project through the Broject > Ex1_01 Properties menu item.
These options determine how your source code is processed during the compile and link stages. The set
of options that produces a particular executable version of your program is called a configuration.
When you create a new project workspace, Visual C++ 2005 automatically creates configurations for pro-
ducing two versions of your application. One version, called the Debug version, includes information
that helps you debug the program. With the Debug version of your program you can step through the
code when things go wrong, checking on the data values in the program. The other, called the Release
version, has no debug information included and has the code optimization options for the compiler
turned on to provide you with the most efficient executable module. These two configurations are suffi-
cient for your needs throughout this book, but when you need to add other configurations for an appli-
cation, you can do so through the Build > Configuration Manager menu. Note that this menu item
won’t appear if you haven’t got a project loaded. This is obviously not a problem, but might be confus-
ing if you're just browsing through the menus to see what'’s there.

19

Chapter 1

You can choose which configuration of your program to work with by selecting the configuration from

the Active solution configuration drop-down listin the Configuration Manager dialogbox, as
shown in Figure 1-11.

[Conﬁguration Manager

Active solution configuration: Active solution platform:

- 2 'I
Debug ¥ | Win32

v
DebUq .

Release pr deploy):

<New...> Flatform Build

<Edit...> r

o ~| win32 v 7

Close

Figure 1-11

Select the configuration you want to work with from the list and then click the close button. While
you're developing an application, you'll work with the debug configuration. After your application has
been tested using the debug configuration and appears to be working correctly, you typically rebuild the

program as a release version; this produces optimized code without the debug and trace capability, so
the program runs faster and occupies less memory.

Executing the Program

After you have successfully compiled the solution, you can execute your program by pressing Ctrl+F5.
You should see the window shown in Figure 1-12.

& C:\WINNT\system32\cmd.exe ﬂ ﬂ

Hello world?
Press any key to continue . . .

Figure 1-12

20

Programming with Visual C++ 2005

As you see, you get the text that was between the double quotes written to the command line. The "\n"
that appeared at the end of the text string is a special sequence called an escape sequence that denotes a
newline character. Escape sequences are used to represent characters in a text string that you cannot
enter directly from the keyboard.

Try It Out Creating an Empty Console Project

The previous project contained a certain amount of excess baggage that you don’t need when working
with simple C++ language examples. The precompiled headers option chosen by default resulted in the
stdafx.h file being created in the project. This is a mechanism for making the compilation process more
efficient when there are a lot of files in a program but this won’t be necessary for many of our examples.
In these instances you start with an empty project to which you can add your own source files. You can
see how this works by creating a new project in a new solution for a win32 console program with the
name Ex1_02. After you have entered the project name and clicked the Ok button, click on 2pplications
Settings on the right side of the dialog box that follows. You can then select Empty project from the
additional options, as Figure 1-13 shows.

Win32 Application Wizard - Ex1_02
= Application Settings
Gin_
Owerview Application type: Add common header files for:
Aoplication Setings () Windows application
() Console application
Oou
() static library
Additi i
Finish] [Cancel
Figure 1-13

When you click the Finish button, the project is created as before, but this time without any source files.
Next you add a new source file to the project. Right-click the Solution Explorer pane and then select

Add > New Item from the context menu. A dialog box displays; click Code in the right pane, and c++
File(.cpp) in the left pane. Enter the file name as Ex1_02, as shown in Figure 1-14.

21

Chapter 1

22

(Add New Item - Ex1_02 23
Categories: Templates: | LE)
= Visual C++ Visual Studio installed templates
u1
Code) C++ File (.cpp) 1] Header File (.h)
Data LA Mid| File (.idl) ‘] Module-Definition File (.def)
Resource of] Component Class] Installer Class
Web
utility My Templates
Property Sheets .| Search Online Templates...

Creates a file containing C++ source code

Name: Exl_02
Location: d:\Beginning Visual C++ 2005\Examples\Exl_02\Exd_02
Add | I Cancel]
Figure 1-14

When you click the Add button, the new file is added to the project and is displayed in the Editor win-
dow. Of course, the file is empty so nothing will be displayed; enter the following code in the Editor
window:

// Ex1_02.cpp A simple console program
#include <iostream> // Basic input and output library

int main/()

{
std::cout << "This is a simple program that outputs some text." << std::endl;
std::cout << "You can output more lines of text" << std::endl;
std::cout << "just by repeating the output statement like this." << std::endl;
return 0; // Return to the operating system

Note the automatic indenting that occurs as you type the code. C++ uses indenting to make programs
more readable, and the editor automatically indents each line of code that you enter, based on what was
in the previous line. You can also see the syntax color highlighting in action as you type. Some elements
of the program are shown in different colors as the editor automatically assigns colors to language ele-
ments depending on what they are.

The preceding code is the complete program. You probably noticed a couple of differences compared to
the code generated by the Application wizard in the previous example. There’s no #include directive
for the stdafx.h file. You don’t have this file as part of the project here because you are not using the
precompiled headers facility. The name of the function here is main; before it was _tmain. In fact all
ISO/ANSI C++ programs start execution in a function called main () . Microsoft also provides for this
function to be called wmain when Unicode characters are used and the name _tmain is defined to be

Programming with Visual C++ 2005

either main or wmain, depending on whether or not the program is going to use Unicode characters. For
the previous example, the name _tmain is defined behind the scenes to be main. You use the name main
in all the ISO/ANSI C++ examples.

The output statements are a little different. The first statement in main () is:
std::cout << "This is a simple program that outputs some text." << std::endl;

You have two occurrences of the << operator, and each one sends whatever follows to std: : cout,
which is the standard output stream. First the string between double quotes is sent to the stream and
then std: :endl where std: : endl is defined in the standard library as a newline character. Earlier you
used the escape sequence \n for a newline character within a string between double quotes. You could
have written the preceding statement as:

std::cout << "This is a simple program that outputs some text.\n";

I should explain why the line is shaded, where the previous line of code is not. Where I repeat a line of
code for explanation purposes I show it unshaded. The preceding line of code is new and does not
appear earlier so I have shown it shaded.

You can now build this project in the same way as the previous example. Note that any open source files
in the Editor pane are saved automatically if you have not already saved them. When you have com-
piled the program successfully, press Ctr1+F5 to execute it. The window shown in Figure 1-15 displays.

Thiz iz a simple program that outputs some text.
You can output more lines of text
ijust by repeating the output statement like this.
Press any key to continue . . . _

& C:\WINNT\system32\cmd.exe ﬂE| ﬂ
4]
|

Figure 1-15

Dealing with Errors

Of course, if you didn’t type the program correctly, you get errors reported. To show how this works,
you could deliberately introduce an error into the program. If you already have errors of your own, you
can use those to perform this exercise. Go back to the Editor pane and delete the semicolon at the end of
the second-to-last line between the braces (line 8); then rebuild the source file. The Output pane at the
bottom of the application window includes the error message:

C2143: syntax error : missing ';' before 'return'

Every error message during compilation has an error number that you can look up in the documenta-
tion. Here, the problem is obvious, ; however, in more obscure cases, the documentation may help you
figure out what is causing the error. To get the documentation on an error, click the line in the output
pane that contains the error number and then press F1. A new window displays containing further infor-
mation about the error. You can try it with this simple error, if you like.

23

Chapter 1

When you have corrected the error, you can then rebuild the project. The build operation works efficiently
because the project definition keeps track of the status of the files making up the project. During a normal
build, Visual C++ 2005 recompiles only the files that have changed since the program was last compiled
or built. This means that if your project has several source files and you've edited only one of the files
since the project was last built, only that file is recompiled before linking to create a new . exe file.

You'll also use CLR console programs, so the next section shows you what a CLR console project looks.

Try It Out Creating a CLR Console Project

Press ctr1+Shift+N to display the New Project dialog box; then select the project type as CLR and the
template as CLR Console Application, as shown in Figure 1-16.

[New Project l]
Froject types: Templates: |
=-Visual C++ Visual Studio installed templates
ATL
CIR 8- ASP.NET Web Service [Class Library
General ACLR Console Application EICLR Empty Project
MEC fﬁSQL Server Project .33Windnw5 Forms Application
Smart Device ;ﬂwmdows Forms Control Library ,:ﬂwmdows Service
Test
Templates
Win32 My P
- Other Languages ._Eﬂsearch Online Templates...

Distributed System Solutions
= Other Project Types
(& Test Projects

A project for creating a console application

Hame: Ex1_03|
Location: D:\Beginning Visual C++ 2005\Examples .V.
Solution: Create new Solution "| [¥] Create directory for solution
Solution Name: Ex1_03
QK | I Cancel
Figure 1-16

Enter the name as Ex1_03. When you click the Ok button, the files for the project are created. There are
no options for a CLR console project, so you always start with the same set of files in a project with this
template. If you want an empty project—something you won’t need with this book — there’s a separate
template for this.

If you look at the Solution Explorer pane shown in Figure 1-17, you see there are some extra files
compare to a Win32 console project.

There are a couple of files in the virtual Resource Files folder. The . ico file stores an icon for the

application that is displayed when the program is minimized; the . rc file records the resources
for the application —just the icon in this case.

24

Programming with Visual C++ 2005

Solution Explorer - Ex1_03
[Solution 'Ex1_03' (1 project)
= @

= | Header Files
] resource.h
] stdaf.h

=~ | Resource Files
i app.ico
i app.rc

= ¥ Source Files
¢+ AssemblyInfo.cpp
G+ Ex1_03.cpp
¢+ stdafx.cpp

£] ReadMe.bd

>~ 1 X

Sy Soluti... [FFClass ... = Prope... [[BReso...

Figure 1-17

There is also a file with the name AssemblyInfo.cpp. Every CLR program consists of one or more
assemblies where an assembly is a collection of code and resources that form a functional unit. An
assembly also contains extensive data for the CLR; there are specifications of the data types that are
being used, versioning information about the code, and information that determines if the contents of
the assembly can be accessed from another assembly. In short, an assembly is a fundamental building
block in all CLR programs.

If the source code in the Ex1_03 . cpp file is not displayed in the Editor window, double-click the file
name in the Solution Explorer pane. It should look like Figure 1-18.

Ex1_03.cpp| Start Page x
(Global Scope) hd hd
1=/ Ex1_03.cpp : main project file. 7-‘
3 finclude "stdafx.h"
5i| uging namespace System;
7iE int main{array<System::5tring "> "args)
{
Con=sole: :Writeline (L"Hello World"):
1 return 0;
11:| }
—
[«]
Figure 1-18

25

Chapter 1

26

It has the same #include directive as the default native C++ console program because CLR programs
use precompiled headers for efficiency. The next line is new:

using namespace System;

The .NET library facilities are all defined within a namespace, and all the standard sort of stuff you are
likely to use is in a namespace with the name System. This statement indicates the program code that
follows uses the System namespace, but what exactly is a namespace?

A namespace is a very simple concept. Within your program code and within the code that forms the
.NET libraries, names have to be given to lots of things —data types, variables, and blocks of code called
functions all have to have names. The problem is that if you happen to invent a name that is already
used in the library, there’s potential for confusion. A namespace provides a way of getting around this
problem. All the names in the library code that is defined within the System namespace are implicitly
prefixed with the namespace name. So, a name such as String in the library is really System: : String.
This means that if you have inadvertently used the name String for something in your code, you can
use System: : String to refer String from the .NET library.

The two colons[md]: : —are an operator called the scope resolution operator. Here the scope resolution
operator separates the namespace name System from the type name String. You have seen this in the
native C++ examples earlier in this chapter with std: : cout and std: :endl. This is the same story —
std is the namespace name for native C++ libraries, and cout and endl are the names that have been
defined within the std namespace to represent the standard output stream and the newline character,
respectively.

In fact, the using namespace statement in the example allows you to use any name from the System
namespace without having to use the namespace name as a prefix. If you did end up with a name con-
flict between a name you have defined and a name in the library, you could resolve the problem by
removing the using namespace statement and explicitly qualify the name from the library with the
namespace name. You'll learn more about namespaces in Chapter 2.

You can compile and execute the program by pressing ctr1+F5. The output is as shown in Figure 1-19.

Hello World
Prese any key to continue . . .

& C:\WINNT\system32\cmd.exe ﬂ5| ﬂ
B
1

Figure 1-19

The output is the same as from the first example. This output is produced by the line:

Console: :WriteLine(L"Hello World");

Programming with Visual C++ 2005

This uses a .NET library function to write the information between the double quotes to the command
line, so this is the CLR equivalent of the native C++ statement that you added to Ex1_01:

std::cout << "Hello world!\n";

It is more immediately apparent what the CLR statement does than the native C++ statement.

Setting Options in Visual C++ 2005

There are two sets of options you can set. You can set options that apply to the tools provided by Visual
C++ 2005, which apply in every project context. Also, you can set options that are specific to a project
and determine how the project code is to be processed when it is compiled and linked. Options are set
through the Options dialog box that’s displayed when you select Tools > Options from the main
menu. The Options dialog box is shown in Figure 1-20.

[Options 1]
3 Emvironment Visual Studio projects location:
Performance Tools D:\Beginning Visual C++ 2005\Examples D
= Projects Solutions
Visual Studio user project templates location:
Run C:\Documents and Settings\Ivor Horton\My Documents\Visual Studio 2 [_]

VE Defaults § .

VC++ Directories Visual Studio user item templates location:

VC++ Project Settings C:\Documents and Settings\Ivor Horton\My Documents\Visual Studio 2 E
+- Source Control
3 Text Editor] Always show Error List if build finishes with errors
% Database Tools [Track Active Item in Selution Explorer
% Debugging Show advanced build configurations
& :19_"“"1?0”_“'5 [] Always show solution
4 esigner
#- Microsoft gfﬁce Keyboard Settings (OIS Mo T R P T
% Test Tools [#]warn user when the project location is not trusted
= Windows Forms Designer Show Output window when build starts

[]Prompt for symbolic renaming when renaming files
oK J Cancel

Figure 1-20

Clicking the plus sign (+) for any of the items in the left pane displays a list of subtopics. Figure 1-20
shows the options for the General subtopic under Projects and Solutions. The right pane displays
the options you can set for the topic you have select in the left pane. You should concern yourself with
only a few of these at this time, but you'll find it useful to spend a little time browsing the range of
options available to you. Clicking the Help button (with the ?) at the top right of the dialog box displays
an explanation of the current options.

You probably want to choose a path to use as a default when you create a new project, and you can do
this through the first option shown in Figure 1-20. Just set the path to the location where you want your
projects and solutions stored.

You can set options that apply to every C++ project by selecting the Projects and Solutions >
VC++ Project Settings topic in the left pane. You can also set options specific to the current project
through the Project > Properties menu item in the main menu. This menu item label is tailored to
reflect the name of the current project.

27

Chapter 1

Creating and Executing Windows Applications

Just to show how easy it’s going to be, now create two working Windows applications. You'll create a
native C++ application using MFC and then you’ll create a Windows Forms application that runs with
the CLR. I'll defer discussion of the programs that you generate until I've covered the necessary ground
for you to understand it in detail. You will see, though, that the processes are straightforward.

Creating an MFC Application

28

To start with, if an existing project is active —as indicated by the project name appearing in the title bar
of the Visual C++ 2005 main window — you can select Close Solution from the File menu.
Alternatively, you can create a new project and have the current solution closed automatically.

To create the Windows program select New > Project from the File menu or press Ctrl+Shift+N; then
choose the project type as MFC and select MFC Application as the project template. You can then enter
the project name as Ex1_04 as shown in Figure 1-21.

[New Project 23
Eroject types: Templates: [3 |Gzl
= Visual C++ Visual Studio installed templates
ATL
CLR M4 MFC Activex Control 5 MFC Application
General HiMFC DLL
MFC Iates
Smart Device My Templates

Test
Win32
- Other Languages
Distributed System Solutions
= Other Project Types
(& Test Projects

Zilsearch Online Templates...

A project for creating an application that uses the Microsoft Foundation Class Library

Hame: Ex]._[M|
Location: D:\Beginning Visual C++ 2005\Examples .V.
Solution: Create new Solution :V [¥] Create directory for solution
Solution Name: Exi_04
oK | I Cancel
Figure 1-21

When you click the Ok button, the MFC Application Wizard dialogbox is displayed. The dialog box
has a range of options that let you choose which features you’d like to have included in your applica-
tion. These are identified by the items in the list on the right of the dialog box, as Figure 1-22 shows.
You'll get to use many of these in examples later on.

You can ignore all these options in this instance and just accept the default settings, so click the Finish
button to create the project with the default settings. The Solution Explorer pane in the IDE window
looks like Figure 1-23.

Programming with Visual C++ 2005

MFC Application Wizard - Ex1_04

Compound Document Support
Document Template Strings
Database Support
User Interface Features
Advanced Features

Generated Classes

M Welcome to the MFC Application Wizard
F
Owerview These are the current project settings:
Application Type » Multiple document interface

* No database support
No compound document support

Click Finish from any window to accept the current settings.

After you create the project, see the project's readme. txt file for information
about the project features and files that are generated.

Finish] [Cancel

Figure 1-22

Solution Explorer - Ex1_04 » O x

2|
[Solution 'Ex1_04' (1 project)

&3 Solution Explorer [#2 Class View (@ Resource View

& Header Files
] ChildFrm.h
] Ex1_04.h
n] Exd_04Doc.h
] Bxd_04View.h
] MainFrm.h
] Resource.h
] stdafx.h

|5 Resource Files
] Bx1_04.ico
G Exl_04.rc
il EX1_04.rc2
] Ex1_n4Doc.ico
|zl Toolbar.bmp

% Source Files
&+ ChildFrm.cpp
¢+ Ex1_04.cpp
¢+ Ex1_04Doc.cpp
G Ex1_04View.cpp
¢4 MainFrm.cpp
& stdafx.cpp

2] rReadMe.txt

Figure 1-23

29

Chapter 1

Note that I have hidden the Property Manager tab by right-clicking it and selecting Hide, so it doesn’t
appear in Figure 1-23. The list shows a large number of files that have been created. You need plenty of
space on your hard drive when writing Windows programs! The files with the extension . cpp contain
executable C++ source code, and the .h files contain C++ code consisting of definitions that are used
by the executable code. The . ico files contain icons. The files are grouped into the subfolders you can
see for ease of access. These aren’t real folders, though, and they won’t appear in the project folder on
your disk.

If you now take a look at the Ex1_04 solution folder using Windows Explorer or whatever else you may
have handy for looking at the files on your hard disk, notice that you have generated a total of 24 files.
Three of these are in the solution folder, a further 17 are in the project folder and four more are in a sub-
folder, res, to the project folder. The files in the res subfolder contain the resources used by the pro-
gram — such as the menus and icons used in the program. You get all this as a result of just entering the
name you want to assign to the project. You can see why, with so many files and file names being created
automatically, a separate directory for each project becomes more than just a good idea.

One of the files in the Ex1_04 project directory is ReadMe. txt, and this provides an explanation of the
purpose of each of the files that the MFC Application wizard has generated. You can take a look at it if
you want, using Notepad, WordPad, or even the Visual C++ 2005 editor. To view it in the Editor win-
dow, double-click it in the Solution Explorer pane.

Building and Executing the MFC Application

Before you can execute the program, you have to build the project—meaning, compile the source code
and link the program modules. You do this in exactly the same way that you did with the console
application example. To save time, press Ctr1+F5 to get the project built and then executed in a single
operation.

After the project has been built, the Output window indicates that there are no errors and the executable
starts running. The window for the program you’ve generated is shown in Figure 1-24.

Ex1_04 - Ex1_041 Q@ﬁl

File Edit View Window Help

laﬁ*n X1

Ex1_041 -Jo&s

Figure 1-24

30

Programming with Visual C++ 2005

As you see, the window is complete with menus and a toolbar. Although there is no specific functional-

ity in the program — that’s what you need to add to make it your program — all the menus work. You
can try them out. You can even create further windows by selecting New from the File menu.

I think you'll agree that creating a Windows program with the MFC Application wizard hasn’t stressed
too many brain cells. You'll need to get a few more ticking away when you come to developing the basic
program you have here into a program that does something more interesting, but it won’t be that hard.
Certainly, for many people, writing a serious Windows program the old-fashioned way, without the aid
of Visual C++ 2005, required at least a couple of months on a fish diet before making the attempt. That’s

why so many programmers used to eat sushi. That’s all gone now with Visual C++ 2005. You never

know, however, what’s around the corner in programming technology. If you like sushi, it’s best to con-

tinue with it to be on the safe side.

Creating a Windows Forms Application

This is a job for another application wizard. So create yet another new project, but this time select the
type as CLR in the left pane of the New Project dialog box and the template as Windows Forms

Application. You can then enter the project name as Ex1_05 as shown in Figure 1-25.

[New Project

Distributed System Solutions
= Other Project Types
(& Test Projects

A project for creating an application with a Windows user interface

Froject types: Templates:

= Visual C++ Visual Studio installed templates
ATL
CIR - ASP.NET Web Service [Class Library
General JACLR Consale Application EICLR Empty Project
MEC fﬂSQL Server Project 33Window5 Forms Application
Smart Device ;ﬂwmdows Forms Control Library ,:ﬂwmdows Service
Test

Templates

Win32 My P

- Other Languages ._Eﬂsearch Online Templates...

][]

Hame: Ex1_05
Location: D:\Beginning Visual C++ 2005\Examples .V.
Solution: Create new Solution V| [¥] Create directory for solution
Solution Name: Ex1_05
QK | I Cancel
Figure 1-25

There are no options to choose from in this case, so click the OK button to create the project.

The Solution Explorer pane in Figure 1-26 shows the files that have been generated for this project.

31

Chapter 1

There are considerably fewer files in this project — if you look in the directories, you’ll see there are a
total of 15 including the solution files. One reason for this is the initial GUI is much simpler than the
native C++ application using MFC. The Windows Forms application has no menus or toolbars, and there
is only one window. Of course, you can add all these things quite easily, but the wizard for a Windows

Solution Explorer - Ex1_05 + 1 X

[Soluti

= L& Header Files
= 2] Forml.h
4 Formi.resxX
n] resource.h
] stdafi.h
=1~ |.& Resource Files
& app.ico
= app.re
= L Source Files
&+ AssemblyInfo.cpp
¢+ Bx1_05.cpp
¢ stdafx.cpp
] ReadMe.bdt

'Ex1_05' (1 project)

=3 Solution Explorer [Z2 Class View [[BlResource View

Figure 1-26

Forms application does not assume you want them from the start.

The Editor window looks rather different as Figure 1-27 shows.

32

Programming with Visual C++ 2005

Forml.h [Design] Start Page - X

= Form1 Q@

Figure 1-27

The Editor window shows an image of the application window rather than code. The reason for this is
that developing the GUI for a Windows Forms is oriented towards a graphical design approach rather
than a coding approach. You add GUI components to the application window by dragging or placing
them there graphically, and Visual C++ 2005 automatically generates the code to display them. If you
press Ctrl+Alt+X or select View > Toolbox, you'll see an additional window displayed showing a
list of GUI components as in Figure 1-28.

33

Chapter 1

The Toolbox window presents a list of standard components that you can add to a Windows Forms
application. You can try adding some buttons to the window for Ex1_05. Click Button in the Toolbox
window list and then click in the client area of the Ex1_05 application window that is displayed in the
Editor window where you want the button to be placed. You can adjust the size of the button by drag-
ging its borders, and you can reposition the button by dragging it around. You can also change the cap-
tion just by typing —try entering Start on the keyboard and then press Enter. The caption changes
and along the way another window displays, showing the properties for the button. I won’t go into
these now, but essentially these are the specifications that affect the appearance of the button, and you
can change these to suit your application. Try adding another button with the caption Stop, for example.

Toolbox

+ All Windows Forms

= Common Controls
& Painter

Button
CheckBox

&. CheckedListBox
% ComboBox

T DateTimePicker
A Label

A LinkLabel

=.l ListBox

227 ListView

-| MaskedTextBox
% MonthCalendar
== NotifyIcon

- NumericUpDown
| PictureBox

0 ProgressBar
(%) RadioButton
23 RichTextBox

abll TextBox

% ToolTip

%2 TreeView

| [

7 WebBrowser
= Containers
K Pointer

-

GroupBox

{71 Panel
[T] splitContainer
TahContrnl

- = X

-~

Figure 1-28

The Editor window will look like Figure 1-29.

34

Programming with Visual C++ 2005

Forml.h [Design]®| Start Page - X
* Formf M[=X|
Start] [Stop
u
Figure 1-29

You can graphically edit any of the GUI components at any time, and the code adjusts automatically. Try
adding a few other components in the same way and then compile and execute the example by pressing
ctrl+F5. The application window displays in all its glory. Couldn’t be easier, could it?

Summary

In this chapter, you have run through the basic mechanics of using Visual C++ 2005 to create applica-
tions of various kinds. You created and executed native and CLR console programs, and with the help of
the application wizards, you created an MFC-based Windows program and a Windows Forms program
that executes with the CLR.

The points from this chapter that you should keep in mind are:

Q The Common Language Runtime (CLR) is the Microsoft implementation of the Common
Language Infrastructure (CLI) standard.

Q The NET Framework comprises the CLR plus the .NET libraries that support applications tar-
geting the CLR.

0 Native C++ applications are written the ISO/ANSI C++ language.

Q Programs written in the C++/CLI language execute with the CLR.

35

Chapter 1

36

0 Asolution is a container for one or more projects that form a solution to an information-processing
problem of some kind.

Q Aprojectis a container for the code and resource elements that make up a functional unit in a
program.

QO Anassembly is a fundamental unit in a CLR program. All CLR programs are made up of one or
more assemblies.

Starting with the next chapter, you’ll use console applications extensively throughout the first half of the
book. All the examples illustrating how C++ language elements are used are executed using either
Win32 or CLR console applications. You will return to the Application Wizard for MFC-based programs
as soon as you have finished delving into the secrets of C++.

