
Themes and Skins

When you build a Web application, it usually has a similar look and feel across all its pages.
Not too many applications are designed with each page dramatically different from the next.
Generally, for your applications you use similar fonts, colors, and server control styles across
all the pages.

You can apply these common styles individually to each and every server control or object on each
page, or you can use a new capability provided by ASP.NET 2.0 to centrally specify these styles.
All pages or parts of pages in the application can then access them.

Themes are the text-based style definitions in ASP.NET 2.0 that are the focus of this chapter.

Using ASP.NET 2.0 Packaged Themes
Themes are similar to Cascading Style Sheets (CSS) in that they enable you to define visual styles
for your Web pages. Themes go further than CSS, however, in that they allow you to apply styles,
graphics, and even CSS files themselves to the pages of your applications. You can apply ASP.NET
themes at the application, page, or server control level.

To make life easy for the developer, ASP.NET comes with free prepackaged themes that you can
use for your pages or applications. You find these themes located at C:\WINDOWS\Microsoft
.NET\Framework\v2.0.xxxxx\ASP.NETClientFiles\Themes. The available themes that
come with ASP.NET 2.0 include

❑ BasicBlue

❑ SmokeAndGlass

07_572865 ch07.qxd  7/7/04  9:53 PM  Page 203

CO
PYRIG

HTED
 M

ATERIA
L



Applying a theme to a single ASP.NET page
In order to see how to use one of these themes, create a basic page, which includes text, a text box, a button,
and a calendar. This is shown in Listing 7-1.

Listing 7-1: An ASP.NET page that does not use themes

<%@ Page Language=”VB” %>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>INETA</title>
</head>
<body>

<form id=”form1” runat=”server”>
<h1>International .NET Association (INETA)</h1><br />
<asp:Textbox ID=”TextBox1” Runat=”server” /><br />
<br />
<asp:Calendar ID=”Calendar1” Runat=”server” /><br />
<asp:Button ID=”Button1” Runat=”server” Text=”Button” />

</form>
</body>
</html>

This simple page shows some default server controls that appear just as you would expect, but that you
can change with one of the ASP.NET built-in themes. When the page is called in the browser, it should
look like Figure 7-1.

Figure 7-1

204

Chapter 7

07_572865 ch07.qxd  7/7/04  9:53 PM  Page 204



To instantly change the appearance of this page without changing the style of each server control on the
page, you simply apply one of the ASP.NET default themes from within the Page directive:

<%@ Page Language=”VB” Theme=”SmokeAndGlass” %>

Adding the Theme attribute to the Page directive changes the appearance of everything on the page that
is defined in the SmokeAndGlass theme file provided with ASP.NET 2.0. When you invoke the page in
the browser, you see the result shown in Figure 7-2.

Figure 7-2

Applying a theme to an entire application
In addition to applying an ASP.NET 2.0 predefined theme to your ASP.NET pages using the Theme
attribute within the Page directive, you can also apply it at an application level from the web.config
file. This is illustrated in Listing 7-2.

Listing 7-2: Applying a theme application-wide from the web.config file

<?xml version=”1.0” encoding=”UTF-8” ?>

<configuration>
<system.web>

<pages theme=”SmokeAndGlass” />
</system.web>

</configuration>

205

Themes and Skins

07_572865 ch07.qxd  7/7/04  9:53 PM  Page 205



If you specify the theme in the web.config file, you don’t need to define the theme again in the Page
directive of your ASP.NET pages. This theme is applied automatically to each and every page within
your application.

Applying a theme to all applications on a server
If you want to take it even one level higher, you can specify the theme that you want to use within the
machine.config file. This is illustrated in Listing 7-3.

Listing 7-3: Specifying the theme in the machine.config file

<pages buffer=”true” enableSessionState=”true” enableViewState=”true”
enableViewStateMac=”true” autoEventWireup=”true” validateRequest=”true”
enablePersonalization=”false” theme=”SmokeAndGlass” >...</pages>

The machine.config file is located at C:\WINDOWS\Microsoft.NET\Framework\v2.0.xxxxx\
CONFIG. The pages node is about one-third of the way through the file. Adding the Theme attribute to
the pages node within the machine.config file causes every Web application on that server to use the
specified theme. This is a great solution if the server has multiple applications that should all be using
the same theme.

If you set a theme in the machine.config file, you are not in any way required to use this theme for all
the applications on the server. To override the theme setting placed in the machine.config file, you
just specify another theme in the application’s web.config file or in the Web page’s Page directive.
Remember settings that are set in the web.config file override settings that are in the machine.config
file. Settings that are placed in the Page directive override both settings in the machine.config and in
the web.config files.

Removing themes from server controls
Whether themes are set on a server, at the application level, or on a page, at times you want an alterna-
tive to the theme that has been defined. For example, change the text box server control that you have
been working with (from Listing 7-1) by making its background black and using white text:

<asp:Textbox ID=”TextBox1” Runat=”server” 
BackColor=”#000000” ForeColor=”#ffffff” />

The black background color and the color of the text in the text box are specified directly in the control
itself with the use of the BackColor and ForeColor attributes. If you have applied a theme to the page
where this text box control is located, however, you won’t see this black background or white text
because these changes are overridden by the theme itself.

To apply a theme to your ASP.NET page but not to this text box control, you simply use the EnableTheming
property of the text box server control:

<asp:Textbox ID=”TextBox1” Runat=”server” 
BackColor=”#000000” ForeColor=”#ffffff” EnableTheming=”false” />

206

Chapter 7

07_572865 ch07.qxd  7/7/04  9:53 PM  Page 206



If you apply this control to the text box server control from Listing 7-1 with the SmokeAndGlass theme
applied to the entire page, the theme is applied to every control on the page except the text box. This
result is shown in Figure 7-3.

Figure 7-3

If you want to turn off theming for multiple controls within a page, consider using the Panel control to
encapsulate a collection of controls and then set the EnableTheming attribute of the Panel control to
False. This disables theming for each control contained within the Panel control.

Removing themes from Web pages
Now what if, when you set the theme for an entire application in the web.config file, you want to
exclude a single ASP.NET page? It is quite possible to remove a theme setting at the page level, just as it
is at the server control level.

The Page directive includes an EnableTheming attribute that can be used to remove theming from your
ASP.NET pages. To remove the theme that would be applied by the theme setting in the web.config or
machine.config file, you simply construct your Page directive in the following manner:

<%@ Page Language=”VB” EnableTheming=”False” %>

This construct sets the theme to nothing — thereby removing any settings that were specified in the
web.config or machine.config files.

207

Themes and Skins

07_572865 ch07.qxd  7/7/04  9:53 PM  Page 207



Removing themes from applications
Because themes can be set in the machine.config file that affect every application on the server, you
might sometimes want to remove the theme setting from the application that you are working on. To do
this, you specify no theme in the web.config file. This construct is shown in Listing 7-4.

Listing 7-4: Removing the server-set theme in the web.config file

<?xml version=”1.0” encoding=”UTF-8” ?>

<configuration>
<system.web>

<pages theme=”” />
</system.web>

</configuration>

Creating Your Own Themes
When you are applying themes to your applications, you are in no way limited just to default themes
provided with ASP.NET. You can easily create your own themes. The themes that you create can be
applied at the application level or put in the server theme repository along with the Microsoft default
themes that come with the ASP.NET 2.0 install. As you can see, themes are a great way to easily apply a
consistent look and feel across your entire application.

Creating the proper folder structure
In order to create your own themes for an application, you first need to create the proper folder structure
in your application. To do this, right-click your project and add a new folder. Name the folder Themes.
Notice when you do this that the Themes folder does not have the typical folder icon next to it, but
instead has a folder icon that includes a paint brush. This is shown in Figure 7-4.

Figure 7-4

208

Chapter 7

07_572865 ch07.qxd  7/7/04  9:53 PM  Page 208



Within the Themes folder itself, you create an additional theme folder for each and every theme that
you might use in your application. For instance, if you are going to have four themes — Summer, Fall,
Winter, and Spring — then you create four folders that are named appropriately.

You might use more than one theme in your application for many reasons — season changes, day/night
changes, category of user, or even user preferences.

Each theme folder must contain the elements of the theme, which can include

❑ A single skin file

❑ CSS files

❑ Images

Creating a skin
A skin is a definition of styles applied to server controls in your ASP.NET page. Skins can work in con-
junction with CSS files or images. To create a theme to use in your ASP.NET applications, you use just
a single skin file in the theme folder. The skin file can have any name, but it must have a .skin file
extension.

Even though you have four theme folders in your application, concentrate on the creation of the
Summer theme for the purposes of this chapter. Within the Summer folder in your project, create a text
file called Summer.skin. If you try to right-click the Summer theme folder and select Add New Item,
notice that a skin file isn’t listed among the options. Therefore, select the Text File option and name the
file Summer.skin. Then create a skin file as shown in Listing 7-5.

Listing 7-5: The Summer.skin file

<asp:Label Runat=”server” ForeColor=”#004000” Font-Names=”Verdana” 
Font-Size=”X-Small” />

<asp:Textbox Runat=”server” ForeColor=”#004000” Font-Names=”Verdana”
Font-Size=”X-Small” BorderStyle=”Solid” BorderWidth=”1px” 
BorderColor=”#004000” Font-Bold=”True” />

<asp:Button Runat=”server” ForeColor=”#004000” Font-Names=”Verdana”
Font-Size=”X-Small” BorderStyle=”Solid” BorderWidth=”1px” 
BorderColor=”#004000” Font-Bold=”True” BackColor=”#FFE0C0” />

This is just a sampling of what the Summer.skin file should be. If you are going to use it in a real appli-
cation, you actually make a definition for each and every server control option. In this case, you have a
definition in place for three different types of server controls — the Label, TextBox, and Button controls.
After saving the Summer.skin file in the Summer folder, your file structure should resemble Figure 7-5
from the Solution Explorer of Visual Studio 2005.

209

Themes and Skins

07_572865 ch07.qxd  7/7/04  9:53 PM  Page 209



Figure 7-5

Just like the regular server control definitions that you put on a typical .aspx page, these control defini-
tions must contain the Runat=”server” attribute. If you specify this attribute in the skinned version of
the control, you also include it in the server control you put on an .aspx page that uses this theme. Also
notice is that no ID attribute is specified in the skinned version of the control. If you specify an ID
attribute here, you get an error when a page tries to use this theme.

As you can see, you supply a lot of different visual definitions to these three controls and this should
give the page a summery look and feel. An ASP.NET page in this project can simply use this custom
theme as it would any global Microsoft pre-installed theme (see Listing 7-6).

Listing 7-6: Using the Summer theme in an ASP.NET page

VB
<%@ Page Language=”VB” Theme=”Summer” %>

<script runat=”server”>    
Sub Button1_Click(ByVal sender As Object, ByVal e As System.EventArgs)

Label1.Text = “Hello “ & Textbox1.Text
End Sub

</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>INETA</title>
</head>
<body>

<form id=”form1” runat=”server”>
<asp:Textbox ID=”TextBox1” Runat=”server”>
</asp:Textbox>
<br />
<br />
<asp:Button ID=”Button1” Runat=”server” Text=”Submit Your Name” 
OnClick=”Button1_Click” />

<br />

210

Chapter 7

07_572865 ch07.qxd  7/7/04  9:53 PM  Page 210



<br />
<asp:Label ID=”Label1” Runat=”server” />

</form>
</body>
</html>

C#
<%@ Page Language=”C#” Theme=”Summer” %>

<script runat=”server”>    
void Button1_Click(object sender, System.EventArgs e)
{

Label1.Text = “Hello “ + TextBox1.Text.ToString();
}

</script>

As you can see from the server controls on this .aspx page, no styles are associated with them. These
are just the default server controls that you drag and drop onto the design surface of Visual Studio 2005.
There is, however, the style that you defined in the Summer.skin file, as shown in Figure 7-6.

Figure 7-6

Including CSS files in your themes
In addition to the server control definitions that you create from within a .skin file, you can make fur-
ther definitions using Cascading Style Sheets (CSS). You might have noticed, when using a .skin file,
that you could define only the styles associated with server controls and nothing else. But developers
usually use quite a bit more than server controls in their ASP.NET pages. For instance, ASP.NET pages
are routinely made up of HTML server controls, raw HTML, or even raw text. As the Summer theme
stands at present it has only a Summer.skin file associated with it. Any of these other items would have
no style whatsoever applied to them.

For a theme that goes beyond the server controls, you must further define the theme style so that HTML
server controls, HTML, and raw text are all changed according to the theme. You achieve this with a CSS
file within your Themes folder.

211

Themes and Skins

07_572865 ch07.qxd  7/7/04  9:53 PM  Page 211



It is rather easy to create CSS files for your themes when using Visual Studio 2005. Right-click the
Summer theme folder and select Add New Item. In the list of options, select the option Style Sheet and
name it Summer.css. The Summer.css file should be sitting right next to your Summer.skin file. This
creates an empty .css file for your theme. I won’t go into the details of how to make a CSS file using
Visual Studio 2005 and the CSS creation tool. The process is the same as in previous versions. I just want
to point out that it is quite simple to do this because the dialog that comes with Visual Studio 2005
enables you to completely define your CSS page with no need to code. A sample dialog is shown in
Figure 7-7.

Figure 7-7

To create a comprehensive theme with this dialog, you define each HTML element that might appear in
the ASP.NET page. This can be a lot of work, but it’s worth it in the end. For now, create a small CSS file
that changes some of the nonserver control items on your ASP.NET page. This CSS file is shown in
Listing 7-7.

Listing 7-7: A CSS file with some definitions

body
{
font-size: x-small;

212

Chapter 7

07_572865 ch07.qxd  7/7/04  9:53 PM  Page 212



font-family: Verdana;
color: #004000;

}

A:link {
color: Blue;
text-decoration:none;

}

A:visited 
{
color: Blue;
text-decoration:none;

}

A:hover {
COLOR: Red;
text-decoration:underline overline;

}

In this CSS file, you define four things. First, you define text that is found within the <body> tag of the
page (basically all the text). Plenty of text appears in a typical ASP.NET page that is not placed inside
of an <asp:label> or <asp:literal> tag. Therefore, you define how your text should appear —
otherwise, your Web page appears quite odd at times. In this case, a definition is in place for the size, the
font family, and the color of the text. You make this definition the same as the one for the <asp:label>
server control in the Summer.skin file.

The next three definitions in this CSS file revolve around the <a> element (for hyperlinks). One cool 
feature that many Web pages use is responsive hyperlinks — or hyperlinks that change when you
hover a mouse over them. The A:link definition defines what a typical link looks like on the page.
The A:visited definition defines the look of the link if the end user has clicked on the link previously
(without this definition, it is typically purple in IE). Then the A:hover definition defines the appearance
of the hyperlink when the end user hovers the mouse over the link. You can see that not only are these
three definitions changing the color of the hyperlink, but they are also changing how the underline is
used. In fact, when the end user hovers the mouse over a hyperlink on a page using this CSS file, an
underline and an overline appear on the link itself.

In CSS files, the order in which the style definitions appear in the .css file is important. This is an inter-
preted file — the first definition that appears in the CSS file is applied first to the page, then the second
is applied, and so forth. Some styles might change previous styles, so make sure your style definitions
are in the proper order. For instance, if you put the A:hover style definition first, you would never see it.
The A:link and A:visited definitions would supersede it because they are defined after the fact.

In working with your themes that include .css files, you must understand what they can and cannot do
for you. For instance, examine an .aspx file that contains two text boxes — one text box created using a
server control and another text box created using a typical <input> HTML element:

<asp:Textbox ID=”TextBox1” Runat=”server” />&nbsp;
<input type=”text” />

213

Themes and Skins

07_572865 ch07.qxd  7/7/04  9:53 PM  Page 213



Suppose that there is a definition for the TextBox server control in the .skin file:

<asp:Textbox Runat=”server” ForeColor=”#004000” Font-Names=”Verdana” 
BackColor=”#ffffff” Font-Size=”X-Small” BorderStyle=”Solid” BorderWidth=”1px” 
BorderColor=”#004000” Font-Bold=”True” />

But, what if you also had a definition in your .css file for each <input> element in the ASP.NET page
as shown here:

INPUT
{
background-color: black;

}

When you run the .aspx page with these kinds of style conflicts, the .skin file takes precedence over
styles applied to every HTML element that is created using ASP.NET server controls regardless of what
the .css file says. In fact, this sort of scenario gives you a page in which the <input> element that is cre-
ated from the server control is white as defined in the .skin file and the second text box is black as
defined in the .css file. This is shown in Figure 7-8.

Figure 7-8

Having your themes include images
Probably one of the coolest reasons why themes, rather than CSS, are the better approach for applying a
consistent style to your Web page is that themes enable you to incorporate actual images into the style
definitions.

A lot of controls use images to create a better visual appearance. The first step in incorporating images
into your server controls that consistently use themes is to create an Images folder within the Themes
folder itself, as illustrated in Figure 7-9.

You have a couple of easy ways to use the images that you might place in this folder. The first is to incor-
porate the images directly from the .skin file itself. You can do this with the TreeView server control.
The TreeView control can contain images used to open and close nodes for navigation purposes. You can
place images in your theme for each and every TreeView control in your application. If you do that, you
can then define the TreeView server control in the .skin file, as shown in Listing 7-8.

214

Chapter 7

07_572865 ch07.qxd  7/7/04  9:53 PM  Page 214



Figure 7-9

Listing 7-8: Using images from the theme folder in a TreeView server control

<asp:TreeView runat=”server” BorderColor=”#FFFFFF” BackColor=”#FFFFFF” 
ForeColor=”#585880” Font-Size=”.9em” Font-Names=”Verdana” 
LeafNodeImageURL=”images\summer_iconlevel.gif” 
RootNodeImageURL=”images\summer_iconmain.gif” 
ParentNodeImageURL=”images\summer_iconmain.gif” NodeIndent=”30” 
CollapseImageURL=”images\summer_minus.gif” 
ExpandImageURL=”images\summer_plus.gif”>

...
</asp:TreeView>

When you run a page containing a TreeView server control, it is populated with the images held in the
Images folder of the theme.

It is easy to incorporate images into the TreeView control. It even specifically asks for an image location
as an attribute of the control. The new WebParts controls are used to build portals. Listing 7-9 is an
example of a Web Part definition from a .skin file that incorporates images from the Images folder of
the theme.

Listing 7-9: Using images from the theme folder in a WebPartZone server control

<asp:WebPartZone runat=”server”  PartFrameType=”TitleAndBorder”  
DragHighlightColor=”#6464FE”  ShowIconInPartTitle=”True” BorderStyle=”double” 
BorderColor=”#E7E5DB” BorderWidth=”2pt” BackColor=”#F8F8FC” 
cssclass=”theme_fadeblue” Font-Size=”.9em” Font-Names=”Verdana”>

<PartContentStyle     ForeColor=”#585880” BorderStyle=”double” 
BorderColor=”#585880” BorderWidth=”1pt” 
BackColor=”#FFFFFF”></PartContentStyle>

<FooterStyle          ForeColor=”#585880” BackColor=”#CCCCCC”></FooterStyle>
<WebPartHelpVerb      ImageURL=”images/SmokeAndGlass_help.gif”
checked=”False” enabled=”True”   visible=”True”></WebPartHelpVerb>

<WebPartCloseVerb     ImageURL=”images/SmokeAndGlass_close.gif”
checked=”False” enabled=”True”   visible=”True”></WebPartCloseVerb>

<WebPartRestoreVerb   ImageURL=”images/SmokeAndGlass_restore.gif”

215

Themes and Skins

07_572865 ch07.qxd  7/7/04  9:53 PM  Page 215



checked=”False” enabled=”True”   visible=”True”></WebPartRestoreVerb>
<WebPartMinimizeVerb  ImageURL=”images/SmokeAndGlass_minimize.gif” 
checked=”False” enabled=”True”   visible=”True”></WebPartMinimizeVerb>

<WebPartEditVerb      ImageURL=”images/SmokeAndGlass_edit.gif”
checked=”False” enabled=”True”  visible=”True”></WebPartEditVerb>

<TitleStyle           ForeColor=”#FFFFFF” Font-Names=”Verdana” 
BorderStyle=”double” BorderWidth=”0” Font-Bold=”true”  BorderColor=”#E7E5DB”  
BackColor=”#232377”></TitleStyle>

<PartStyle            ForeColor=”#585880” Font-Names=”Verdana” Font-Size=”.9em” 
BorderColor=”#44448A” BackColor=”#F8F7F4”></PartStyle>

<PartTitleStyle       ForeColor=”#585880” Font-Names=”Verdana” 
BorderStyle=”solid” Font-Bold=”true” BorderWidth=”1pt” Font-Size=”.9em” 
BorderColor=”#494979” BackColor=”#F8F7F4” 
cssclass=”theme_header”></PartTitleStyle>

<PartVerbStyle        ForeColor=”#FFFFFF” Font-Names=”Verdana” Font-
Underline=”False” Font-Size=”.7em” BorderColor=”#000066” BorderWidth=”1pt” 
BackColor=”#8383B6”></PartVerbStyle>

<EditWebPartStyle     ForeColor=”#6464FE” BorderColor=”#6464FE” 
BackColor=”#6464FE” Font-Size=”.9em” Font-Names=”Verdana”/>

</asp:WebPartZone>

As you can see here, this series of toolbar buttons that are in a WebPart now use images that come from
the SmokeAndGlass theme. When this WebPart is generated, the style is defined directly from the .skin
file, but the images specified in the .skin file are retrieved from the Images folder in the theme itself.

Not all server controls enable you to work with images directly from the Themes folder by giving you an
image attribute to work with. If you don’t have this capability, you must work with the .skin file and
the CSS file together. If you do, you can place your theme-based images in any element you want. The
SmokeAndGlass theme that comes with ASP.NET 2.0 is a good example of how to do this.

Place the image that you want to use in the Images folder just as you normally would. Then define the
use of the images in the .css file. The SmokeAndGlass example in Listing 7-10 demonstrates this.

Listing 7-10: Part of the CSS file from SmokeAndGlass.css

.theme_header {
background-image :url( images/smokeandglass_brownfadetop.gif);

}

.theme_highlighted {
background-image :url( images/smokeandglass_blueandwhitef.gif);

}

.theme_fadeblue {
background-image :url( images/smokeandglass_fadeblue.gif);

}

These are not styles for a specific HTML element; instead, they are CSS classes that you can put into any
HTML element that you want. In this case, each CSS class mentioned here is defining a specific back-
ground image to use for the element.

216

Chapter 7

07_572865 ch07.qxd  7/7/04  9:53 PM  Page 216



After it is defined in the CSS file, you can utilize this CSS class in the .skin file when defining your
server controls. Listing 7-11 shows you how.

Listing 7-11: Using the CSS class in one of the server controls defined in the .skin file

<asp:Calendar runat=”server” BorderStyle=”double” BorderColor=”#E7E5DB” 
BorderWidth=”2” BackColor=”#F8F7F4” Font-Size=”.9em” Font-Names=”Verdana”>

<TodayDayStyle      BackColor=”#F8F7F4” BorderWidth=”1” BorderColor=”#585880” 
ForeColor=”#585880” />

<OtherMonthDayStyle BackColor=”transparent” ForeColor=”#CCCCCC” />
<SelectedDayStyle   ForeColor=”#6464FE” BackColor=”transparent” 
cssclass=”theme_highlighted” />

<TitleStyle         Font-Bold=”True”  BackColor=”#CCCCCC” ForeColor=”#585880” 
BorderColor=”#CCCCCC” BorderWidth=”1pt” cssclass=”theme_header” />

<NextPrevStyle      Font-Bold=”True”  ForeColor=”#585880” 
BorderColor=”transparent”  BackColor=”transparent” />

<DayStyle                             ForeColor=”#000000”   
BorderColor=”transparent” BackColor=”transparent” />

<SelectorStyle      Font-Bold=”True”  ForeColor=”#696969” BackColor=”#F8F7F4” 
/>

<WeekendDayStyle    Font-Bold=”False” ForeColor=”#000000”   
BackColor=”transparent” />

<DayHeaderStyle     Font-Bold=”True”  ForeColor=”#585880” 
BackColor=”Transparent” />

</asp:Calendar>

This Calendar server control definition from a .skin file uses one of the earlier CSS classes in its defini-
tion. It actually uses an image that is specified in the CSS file in two different spots within the control
(shown in bold). It is first specified in the <SelectedDayStyle> element. Here you see the attribute and
value cssclass=”theme_highlighted”. The other spot is within the <TitleStyle> element. In this
case, it is using theme_header. When the control is rendered, these CSS classes are referenced and
finally point to the images that are defined in the CSS file.

It is interesting that the images used here for the header of the Calendar control don’t really have much
to them. For instance, the smokeandglass_brownfadetop.gif image is simply a thin, gray sliver, as
shown in Figure 7-10.

Figure 7-10

This very small image (in this case, very thin) is actually repeated as often as necessary to make it equal
the length of the header in the Calendar control. The image is lighter at the top and darkens toward the
bottom. Repeated horizontally, any control like this gives a three-dimensional effect to the control. Try it
out, and you get the result shown in Figure 7-11.

217

Themes and Skins

07_572865 ch07.qxd  7/7/04  9:53 PM  Page 217



Figure 7-11

Defining Multiple Skin Options
Using the themes technology in ASP.NET 2.0, you can have a single theme; but also, within the theme’s
.skin file, you can have specific controls that are defined in multiple ways. You can frequently take
advantage of this feature within your themes. For instance, you might have text box elements scattered
throughout your application, but you might not want each and every text box to have the same visual
appearance. In this case, you can create multiple versions of the <asp:textbox> server control within
your .skin file. In Listing 7-12 you see how to create multiple versions of the <asp:textbox> control in
the .skin file from Listing 7-5.

Listing 7-12: The Summer.skin file, which contains multiple version of the
<asp:textbox> server control

<asp:Label Runat=”server” ForeColor=”#004000” Font-Names=”Verdana” 
Font-Size=”X-Small” />

<asp:Textbox Runat=”server” ForeColor=”#004000” Font-Names=”Verdana”
Font-Size=”X-Small” BorderStyle=”Solid” BorderWidth=”1px” 
BorderColor=”#004000” Font-Bold=”True” />

<asp:Textbox Runat=”server” ForeColor=”#000000” Font-Names=”Verdana”
Font-Size=”X-Small” BorderStyle=”Dotted” BorderWidth=”5px” 
BorderColor=”#000000” Font-Bold=”False” SkinID=”TextboxDotted” />

<asp:Textbox Runat=”server” ForeColor=”#000000” Font-Names=”Arial”
Font-Size=”X-Large” BorderStyle=”Dashed” BorderWidth=”3px” 
BorderColor=”#000000” Font-Bold=”False” SkinID=”TextboxDashed” />

<asp:Button Runat=”server” ForeColor=”#004000” Font-Names=”Verdana”
Font-Size=”X-Small” BorderStyle=”Solid” BorderWidth=”1px” 
BorderColor=”#004000” Font-Bold=”True” BackColor=”#FFE0C0” />

In this .skin file, you can see three definitions in place for the TextBox server control. The first one is the
same as before. Although the second and third definitions have a different style, they also contain a new
attribute in the definition — SkinID. To create multiple definitions of a single element, you use the
SkinID attribute to differentiate among the definitions. The value used in the SkinID can be anything
you want. In this case, it is TextboxDotted and TextboxDashed.

218

Chapter 7

07_572865 ch07.qxd  7/7/04  9:53 PM  Page 218



Note that no SkinID attribute is used for the first <asp:Textbox> definition. By not using one, you
are saying that for each <asp:Textbox> control on an ASP.NET page that uses this theme but has no
pointer to a SkinID, this is the default style definition to use.

Take a look at a sample .aspx page that uses this .skin file, Listing 7-13.

Listing 7-13: A simple .aspx page that uses the Summer.skin file with 
multiple text-box style definitions

<%@ Page Language=”VB” Theme=”Summer” %>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Different SkinIDs</title>
</head>
<body>

<form id=”form1” runat=”server”>
<p>

<asp:Textbox ID=”TextBox1” Runat=”server”>Textbox1</asp:Textbox>
</p><p>

<asp:Textbox ID=”TextBox2” Runat=”server” 
SkinId=”TextboxDotted”>Textbox2</asp:Textbox>

</p><p>
<asp:Textbox ID=”TextBox3” Runat=”server” 
SkinId=”TextboxDashed”>Textbox3</asp:Textbox>

</p>
</form>

</body>
</html>

This small .aspx page shows three text boxes, each of a different style. When you run this page, you get
the results shown in Figure 7-12.

Figure 7-12

219

Themes and Skins

07_572865 ch07.qxd  7/7/04  9:53 PM  Page 219



The first text box doesn’t point to any particular SkinID in the .skin file. Therefore, the default skin is
used. As stated before, the default skin is the one in the .skin file that doesn’t have a SkinID attribute
in it. The second text box then contains skinid=”TextboxDotted” and, therefore, inherits the style def-
inition defined in the TextboxDotted skin in the Summer.skin file. The third text box takes the SkinID
TextboxDashed and is also changed appropriately.

As you can see, it is quite simple to define multiple versions of a control that can be used throughout
your entire application.

Programmatically Working with Themes
So far, you have seen examples of working with ASP.NET 2.0 themes in a declarative fashion, but you
can also work with themes programmatically.

Assigning the page’s theme programmatically
To programmatically assign the theme to the page, use the construct shown in Listing 7-14.

Listing 7-14: Assigning the theme of the page programmatically

VB
<script runat=”server” language=”vb”>

Sub Page_PreInit(ByVal sender As Object, ByVal e As System.EventArgs)
Page.Theme = Request.QueryString(“ThemeChange”)

End Sub
</script>

C#
<script runat=”server”>   

void Page_PreInit(object sender, System.EventArgs e)
{

Page.Theme = Request.QueryString[“ThemeChange”];
}    

</script>

You must set the Theme of the Page property in or before the Page_PreInit event for any static controls
that are on the page. If you are working with dynamic controls, set the Theme property before adding it
to the Controls collection.

Assigning a control’s SkinID programmatically
Another option is to assign a specific server control’s SkinID property programmatically (see Listing 7-15).

Listing 7-15: Assigning the server control’s SkinID property programmatically

VB
<script runat=”server” language=”vb”>

Sub Page_PreInit(ByVal sender As Object, ByVal e As System.EventArgs)

220

Chapter 7

07_572865 ch07.qxd  7/7/04  9:53 PM  Page 220



TextBox1.SkinID = “TextboxDashed”
End Sub

</script>

C#
<script runat=”server”>   

void Page_PreInit(object sender, System.EventArgs e)
{

TextBox1.SkinID = “TextboxDashed”;
}    

</script>

Again, you assign this property before or in the Page_PreInit event in your code.

Themes and Custom Controls
If you are building custom controls in an ASP.NET 2.0 world, understand that end users can also apply
themes to the controls that they use in their pages. By default, your custom controls are theme enabled
whether your custom control inherits from Control or WebControl. 

To disable theming for your control, you can simply use the EnableTheming attribute on your class.
This is illustrated in Listing 7-16.

Listing 7-16: Disabling theming for your custom controls

VB
Namespace Wrox.ServerControls

<EnableTheming(False)> _
Public Class SimpleHello

Inherits System.Web.UI.Control

Private _name As String

Public Property Name() As String
Get

Return _name
End Get
Set(ByVal Value As String)

_name = Value
End Set

End Property

Protected Overrides Sub RenderContents(ByVal controlOutput As _
HtmlTextWriter)

controlOutput.Write(“Hello “ + Name)
End Sub

End Class

End Namespace

(continued)

221

Themes and Skins

07_572865 ch07.qxd  7/7/04  9:53 PM  Page 221



Listing 7-16: (continued)

C#
namespace Wrox.ServerControls
{

[EnableTheming(false)]
public class SimpleHello : Control
{

private string _name;

public string Name
{

get { return _name; }
set { _name = value; }

}

protected override void RenderContents (HtmlTextWriter controlOutput)
{

controlOutput.Write (“Hello “ + Name);
}

}
}

You can also disable theming for the individual properties that might be in your custom controls. This is
done as illustrated in Listing 7-17.

Listing 7-17: Disabling theming for properties in your custom controls

VB
Namespace Wrox.ServerControls

Public Class SimpleHello
Inherits System.Web.UI.Control

Private _myValue As String

<Themeable(False)>
Public Property MyCustomProperty() As String

Get
Return _myValue

End Get
Set(ByVal Value As String)

_myValue = Value
End Set

End Property

End Class

End Namespace

222

Chapter 7

07_572865 ch07.qxd  7/7/04  9:53 PM  Page 222



C#
namespace Wrox.ServerControls
{

public class SimpleHello : Control
{

private string _myValue;

[Themeable(false)]
public string Name
{

get { return _myValue; }
set { _myValue = value; }

}
}

}

Summary
With the addition of themes and skins in ASP.NET 2.0, it has become quite easy to apply a consistent
look and feel across your entire application. Remember that themes can just contain simple server con-
trol definitions in a .skin file or elaborate style definitions, which include not only .skin files, but also
CSS style definitions and even images!

As you will see later in the book, you can use themes in conjunction with the new personalization features
that ASP.NET 2.0 provides. This can enable your end users to customize their experiences by selecting
their own themes. Your application can present a theme just for them, and it can remember their choices
through the APIs that are offered in ASP.NET 2.0.

223

Themes and Skins

07_572865 ch07.qxd  7/7/04  9:53 PM  Page 223



07_572865 ch07.qxd  7/7/04  9:53 PM  Page 224


