
Chapter 1

Where VBA Fits In
In This Chapter
� Describing Access

� Discovering VBA

� Seeing where VBA lurks

� Understanding how VBA works

This is a book about using Visual Basic for Applications (VBA), which is a
programming language that helps you program, tweak, and squeeze pro-

ductivity from Access. VBA, which is embedded in Access, is a sophisticated
set of programming tools that you can use to harness the power of a packaged
application like Access. Just like you need to know how to walk before you can
run, you need to know Access before you can start to use Access VBA.

Maybe you want to use Access to manage a large mailing list. Maybe you
need Access to manage your whole business, including customers, products,
and orders. Perhaps you need to manage enrollments in courses or events.
Whatever your reason for using Access, your first step will always be to
create the tables for storing your data. From there, you can then create
queries, forms, reports, and macros to help manage those data. All these
steps take place before you even get into VBA. So in this book, I have to
assume that you’re already an experienced Access user who needs more than
what queries, forms, reports, and macros can provide. If you’re new to
Access, this is not a good place to start. If you need to brush up further on
Access, Access 2003 For Dummies (John Kaufeld, Wiley) or Access 2003 All-in-
One Desk Reference For Dummies (Alan Simpson, Margaret Levine Young, and
Alison Barrows; Wiley) would be a good place to start.

Although Access has progressed through many versions over the years, VBA
has remained relatively unchanged. I used both Access 2002 and Access 2003
to create this book, but the code examples presented in this book should
work fine in just about any version of Access. So now, before launching into
VBA, take a moment to discuss what tables, queries, forms, and reports are
all about, and how VBA fits into the overall scheme of things.

01b_574116 ch01.qxd 7/27/04 9:04 PM Page 9

CO
PYRIG

HTED
 M

ATERIA
L

10 Part I: Introducing VBA Programming

Taking a Look at Access
Access, part of the Microsoft Office suite, is a huge database management
system that you work by using modern object-oriented methods. (The term
object-oriented stems from the fact that everything you create in Access — a
table, form, report, or whatever — is considered an object.

The Access database window, as shown in Figure 1-1, is the main container in
which you store all the main objects that make up a single database. The left
column of the database window is the Object list, and each name in the list
represents a type of object, as summarized here.

� Tables: Tables contain the raw data that all other object types display and
manage. Data in tables is stored in records (rows) and fields (columns).

� Queries: Use queries to sort and filter data as well as define relationships
among multiple related tables.

� Forms: Access forms are similar to printed fill-in-the-blank forms, but
they allow you to view and change data stored in Access tables.

� Reports: Reports are objects that define how data should be presented
on printed reports.

� Pages: Pages are similar to forms, but users can access data in tables
through a Web browser rather than directly through Access.

� Macros: Macros provide a means of automating certain aspects of
Access without programming.

The Modules container, as you’ll soon discover, is one of the places where
you store VBA code. If you’re not already familiar with modules, that’s fine.
Modules are what this book is really all about. Groups, of course, aren’t really
separate objects but rather just collections of existing objects. Sort of
Access’s version of Favorites.

Figure 1-1:
The Access

database
window.

01b_574116 ch01.qxd 7/27/04 9:04 PM Page 10

11Chapter 1: Where VBA Fits In

One of the most important things to understand is that you don’t use VBA
“instead of” other objects like tables and forms. You use VBA to enhance the
capabilities of other object types. Therefore, it makes no sense to even try
VBA until you have a firm grasp of the purpose and capabilities of those
other object types in Access.

Understanding VBA
Visual Basic is a programming language — a language for writing instructions
that a computer can read and process. VBA is a programming language that’s
specifically designed to work with the application programs in Microsoft
Office including Word, Excel, Outlook, and of course, Access.

When you write text in a programming language (as opposed to writing in
plan English), you’re writing code. Programmers use the term code to refer to
anything that’s written in a computer programming language. For example,
Figure 1-2 shows some sample VBA code. The whole trick to learning VBA is
learning what all the various words in the language mean so that you can
write code that tells Access exactly how to perform some task.

If the sample code shown in Figure 1-2 looks like meaningless gibberish to
you, don’t worry about it. People aren’t born knowing how to read and write
VBA code. Programming (writing code) is a skill you have to learn. For now,
it’s sufficient just to know what code looks like. Knowing what the code
means is one of the skills you’ll master in this book.

Because VBA code looks like a bunch of meaningless gibberish typed onto a
sheet of paper, this begs the question of why anybody would want to learn to
read and write some dreadful language like that. The answer to that question
lies in the role played by VBA in an application like an Access database.

Figure 1-2:
Some

sample VBA
code.

01b_574116 ch01.qxd 7/27/04 9:04 PM Page 11

12 Part I: Introducing VBA Programming

The ability to use the same code over and over again is key to automating
mundane tasks in Access. For example, if you used Access to print checks,
you might have to manually type the part of the check where you type the
amount in words, like Ninety-two and 99/100 Dollars for $92.99 because
Access can’t do that translation on its own. But if you could write some code
to translate a number like $92.99 into words, you wouldn’t need to type all
those dollar amounts. Access would just print the correct information as it
prints each check.

Access does indeed have a ton of tools that let you create a database without
any programming at all. You could easily spend months or years just learning
all the things you can do in Access without writing any VBA code. Yet despite
the huge number of things you can do without programming, sometimes you
will want your database to accomplish some task that’s not built into Access.
That’s where VBA comes in. When you want Access to perform a task that it
doesn’t already know how to perform, you write the steps to be performed in
the VBA programming language.

When you’re writing VBA code or just looking at some VBA code written by
someone else, Access doesn’t do anything. Access doesn’t actually perform
the steps described by that code until Access executes the code. When you
write VBA code, you’re actually writing a set of instructions that Access can
perform at any time, over and over again.

Seeing Where VBA Lurks
In an Access database, VBA code is stored in modules. Despite the fancy
name, a module is basically an electronic sheet of paper on which VBA code
is typed. The two types of modules in Access are

� Standard module: A page that contains VBA code that’s accessible to all
objects in the database.

� Class module: A page of code that’s attached to every form and report
you create. VBA code in the class module is accessible only to the form
or report to which the class module is attached.

Do, not die
Think of the term execute in the sense of to
carry out, as in execute a U-turn or execute the

procedure. Don’t think of execute in the sense
of terminate the life of.

01b_574116 ch01.qxd 7/27/04 9:04 PM Page 12

13Chapter 1: Where VBA Fits In

The main difference between a standard module and a class module is one of
scope. VBA code in a standard module has a global scope, which means that
the code can be accessed by every object in the database. A class module
has a local scope, meaning that its code is accessible only to one form or one
report in the database.

I talk about the issue of scope as it becomes relevant throughout this book.
Right now, it’s not terribly important. For now, the main thing to keep in mind
is that modules contain VBA code. Now take a look at where modules are
stored within an Access database.

Finding standard modules
A standard module contains VBA code that’s accessible to every table, query,
form, report, page, and macro within the current database. Like those other
objects, standard modules get their own button in the Object list at the left
side of the database window (refer to Figure 1-1). When you click the
Modules button, the main pane shows the names of standard modules (if
any) within the current database, as in the example shown in Figure 1-3.

Don’t be surprised if you click the Modules button in a database, and the main
pane is empty. Standard modules don’t just happen: You have to create them.

Finding class modules
Like standard modules, class modules contain VBA code that tells Access
what to do. Unlike standard modules, however, you won’t find any class mod-
ules in the database window. Class modules are hidden behind forms and
reports in your database.

Standard modules

Figure 1-3:
Standard

modules in a
database.

01b_574116 ch01.qxd 7/27/04 9:04 PM Page 13

14 Part I: Introducing VBA Programming

It might help to define the term class as a class of objects. In Access, tables
are one class of objects, queries are another class, forms are another class,
reports are another, and so forth. Or looking at it from the other direction, a
single form is an object within your database. That single form is also a
member of the class of objects known as forms.

Class modules are not global nor public like standard modules. To the con-
trary, class modules are very private beasts. They bring new meaning to the
concept of hermit. Not only are class modules invisible to you most of the
time, but they’re always invisible to each other. The VBA code in a class
module is visible (and usable) only to the form or report to which the class
module is attached.

I think that it helps to envision a class module as literally being hidden behind
its form, as in Figure 1-4. The VBA code in the class module is always hidden
from the other objects in the database. The class module might be hidden from
you as well if you don’t know how to find it.

You have several ways to get to a form or report’s class module, as you’ll dis-
cover in upcoming chapters. For now, if you just want to open a class module
and have a look, here’s one way to do it:

1. In the database window, click Forms or click Reports, depending on
which type of object you want to open.

Class module
behind form

Form

Figure 1-4:
Class

modules
hide behind

forms and
reports.

01b_574116 ch01.qxd 7/27/04 9:04 PM Page 14

15Chapter 1: Where VBA Fits In

2. Right-click the name of any form or report and choose Design View.

To see the class module for the open form or report, click the Code
button on the toolbar or choose View➪Code from the Access menu bar
(see Figure 1-5).

From VBA to Access
When you open a module, whether it’s a standard module or a class module,
your screen will change radically. That’s because the module opens in the
Visual Basic editor, which is a separate program window from Access. In fact,
if you look on the taskbar, you’ll still see a taskbar button for Access. You can
switch back and forth between Access and the editor just by clicking their
respective taskbar buttons, as shown in Figure 1-6.

If the module you open contains any VBA code, that code is visible in the
editor Code window, also shown in Figure 1-6. A class module might contain
VBA code even if you never wrote a line of VBA code in your life because some
of the control wizards in the form and report Design views automatically write
VBA code for you behind the scenes. But let’s not get ahead of ourselves.

The main thing to keep in mind here is that every time you open a module,
you will end up in that Visual Basic editor. You’ll discover how to use that
program in upcoming chapters. For now, the most important thing to know is
how to close it and get back to the more familiar Access program window.
Here are two easy ways to close the Visual Basic editor and get back to the
more familiar Access program window:

� Choose File➪Close and Return to Microsoft Office Access (see Figure 1-7).

� Press Alt+Q.

Form open in Design view

Figure 1-5:
Class

modules are
accessible
from form

and reports
Design
views.

01b_574116 ch01.qxd 7/27/04 9:04 PM Page 15

16 Part I: Introducing VBA Programming

You can press Alt+F11 to switch back and forth between Access and the VBA
editor at any time.

The Visual Basic editor closes, its taskbar button disappears, and you’re
returned to the Access program window.

Figure 1-7:
The VB

editor File
menu.

Taskbar buttons Visual Basic editor

Figure 1-6:
Move

between the
Visual Basic

editor and
Access.

01b_574116 ch01.qxd 7/27/04 9:04 PM Page 16

17Chapter 1: Where VBA Fits In

Finding Out How VBA Works
When you open a standard module or class module, there’s no telling exactly
what you’ll see inside. Some modules will be empty; others will already con-
tain some VBA code. It all depends on the life history of the module you
open. But one thing is for sure: If any VBA code is in the module, it will likely
be organized into one or more procedures.

The term procedure in everyday language usually refers to performing a
series of steps in order to achieve some goal. For example, the procedure of
getting to work every morning requires a certain series of steps. The same
definition holds true for VBA code. A procedure is a series of steps carried
out in a specific order to achieve some desired result.

Discovering VBA procedures
A VBA procedure is a series of instructions written in VBA code that tells
an application (like Access) exactly how to perform a specific task. In VBA
code, each step in the procedure is a single line of code: a statement. When
Access executes a VBA procedure, it does so step-by-step, from the top
down. Access does whatever the first statement tells it to do. Then it does
whatever the second statement tells it to do, and so forth, until it gets to the
end of the procedure.

Exactly when Access executes a procedure is entirely up to you. Typically,
you want to tie the procedure to some event that happens onscreen. For
example, you might want the procedure to do its task as soon as someone
clicks a button. Or perhaps you want your procedure to do its thing when-
ever someone types an e-mail address into a form. I talk about how that all
works in Chapter 6. For now, just realize you can tie any procedure you create
to any event you like.

Why would my database contain code?
Those of you who’ve never written any code
might be wondering how any database you’ve
created could possibly contain code. The answer
to that riddle lies in the Control Wizards button in
the forms and reports Design views.

When you use a Control Wizard to add a button
or certain other types of controls to a form, the
Control Wizard actually writes VBA code for
you. It stores that code in the class module
that’s hidden behind the form (or report) module.

01b_574116 ch01.qxd 7/27/04 9:04 PM Page 17

When the event to which you’ve tied your procedure occurs, Access calls
the procedure. What that really means is that Access does exactly what the
VBA code in the procedure tells it to do. You can envision the process as in
Figure 1-8 where

1. An event, such as clicking a button, calls a procedure.

2. Access executes the first line in the called procedure; then it executes
the second line in the procedure, and so on.

3. When Access encounters the end of the procedure (which will be
either End Sub or End Function), it just stops executing code and
returns to its normal state.

If you think of a line of VBA code as a sentence containing words, a procedure
would be a paragraph, containing more than one sentence.

Recognizing VBA procedures
VBA has two types of procedures. One type is a Sub procedure. A Sub proce-
dure is always contained within a pair of Sub...End Sub statements, as
follows:

Sub subName(...)
‘Any VBA code here

End Sub

The subName part of the example is the name of the procedure. The (...)
part after the name could be empty parentheses or a list of parameters and
data types. The ‘Any VBA code here part stands for one or more lines of
VBA code.

1) Access events calls procedure

2) Do this step
3) Do this step
4) Do this step
5) Do this step

Do no more

Figure 1-8:
Executing a
procedure.

18 Part I: Introducing VBA Programming

01b_574116 ch01.qxd 7/27/04 9:04 PM Page 18

19Chapter 1: Where VBA Fits In

When looking at code that’s already been written, you’ll see that some Sub
procedures have the word Public or Private to the left of the word Sub, as
in these examples:

Private Sub subName(...)
‘Any VBA code here

End Sub

Public Sub subName(...)
‘Any VBA code here

End Sub

Public or Private defines the scope of the procedure. Neither is particularly
important right now. All that matters right now is that you know that a Sub
procedure is a chunk of VBA code that starts with Sub or Private Sub or
Public Sub statement and ends at the End Sub statement.

For those of you who must know right now, a Public procedure has global
scope (is available to all other objects). A Private procedure is visible to
only the procedure in which it’s defined. For example, Sub procedures in a
class module are private to the form or report to which the class module is
attached.

The second type of procedure that you can create in Access is a Function
procedure. Unlike a Sub procedure, which performs a task, a Function pro-
cedure generally does some sort of calculation and then returns the result of
that calculation. The first line of a Function procedure starts with the word
Function (or perhaps Private Function or Public Function) followed
by a name. The last line of a Function procedure reads End Function, as
illustrated here:

Function functionName(...)
‘Any VBA code here

End Function

A module can contain any number of procedures. When you open a module,
you might at first think you’re looking at one huge chunk of VBA code. But in
fact, you might be looking at several smaller procedures contained within the
module, as illustrated in the example shown in Figure 1-9. Notice how each
procedure within the module is separated by a black line that’s the width of
the page.

So that’s the bird’s-eye view of Microsoft Access and VBA from 30,000 feet.
Just remember that VBA is a programming language that allows you to write
instructions that Access can execute at any time. You can write different sets
of instructions for different events. Each set of instructions is a procedure,
which is a series of steps carried out in a particular sequence to achieve a
goal. You write and edit VBA code in the VBA editor.

01b_574116 ch01.qxd 7/27/04 9:04 PM Page 19

The beauty of it all is that you can write lots of little procedures to handle
some of your more mundane tasks automatically and effortlessly. You can
also extend Access’s capabilities by writing procedures that do the tasks
Access can’t do on its own.

Procedure

Procedure

ProcedureFigure 1-9:
A module

containing
three

procedures.

20 Part I: Introducing VBA Programming

01b_574116 ch01.qxd 7/27/04 9:04 PM Page 20

