
Chapter 1

Reader, Meet Eclipse; Eclipse,
Meet the Reader

In This Chapter
� How I learned to love Eclipse

� How the Eclipse project is organized

� How Eclipse puts widgets on your screen

The little hamlet of Somerset, New Jersey, is home to an official Sun
Microsystems sales office. Once a month, that office hosts a meeting

of the world-renowned Central Jersey Java Users’ Group.

At one month’s meeting, group members were discussing their favorite Java
development environments. “I prefer JBlipper,” said one of the members. “My
favorite is Javoorta Pro,” said another. Then one fellow (Faizan was his name)
turned to the group and said, “What about Eclipse? It’s pretty sweet.”

Of course, Faizan’s remark touched off an argument. Everyone in the group
is attached to his or her favorite Java development tools. “Does Javoorta do
refactoring?” “Does JBlipper support Enterprise JavaBeans?” “Does Eclipse
run on a Mac?” “How can you say that your development environment is
better?” “And what about good old UNIX vi?”

Then someone asked Faizan to demonstrate Eclipse at the next users’ group
meeting. Faizan agreed, so I ended the discussion by suggesting that we go
out for a beer. “I don’t drink,” said one of the group members. “I don’t either,”
I said. So we went out for pizza.

At the next meeting, Faizan demonstrated the Eclipse development environ-
ment. After Faizan’s presentation, peoples’ objections to Eclipse were more
muted. “Are you sure that Eclipse runs well under Linux?” “Can you really
extend Eclipse so easily?” “How does the open source community create
such good software for free?”

05_574701 ch01.qxd 11/29/04 7:32 PM Page 9

CO
PYRIG

HTED
 M

ATERIA
L

A few months later, I ran into a group member at a local Linux conference.
“Does Javoorta Pro run under Linux?” I asked. “I don’t use Javoorta Pro any-
more. I’ve switched to Eclipse,” he said. “That’s interesting,” I said. “Hey, let’s
go out for a beer.”

An Integrated Development Environment
An integrated development environment (IDE) is an all-in-one tool for writ-
ing, editing, compiling, and running computer programs. And Eclipse is an
excellent integrated development environment. In a sense, that’s all ye need
to know.

Of course, what you absolutely need to know and what’s good for you to
know may be two different things. You can learn all kinds of things about Java
and Eclipse, and still benefit by learning more. So with that in mind, I’ve put
together this chapter full of facts. I call it my “useful things to know about
Eclipse” (my “uttkaE”) chapter.

A Little Bit of History (Not Too Much)
In November 2001, IBM released $40 million worth of software tools into the
public domain. Starting with this collection of tools, several organizations cre-
ated a consortium of IDE providers. They called this consortium the Eclipse
Foundation, Inc. Eclipse was to be “a universal tool platform — an open exten-
sible IDE for anything and nothing in particular.”* (I know, it sounds a little like
Seinfeld’s “nothing.” But don’t be lead astray. Eclipse and Seinfeld have very
little in common.)

This talk about “anything and nothing in particular” reflects Eclipse’s ingen-
ious plug-in architecture. At its heart, Eclipse isn’t really a Java development
environment. Eclipse is just a vessel — a holder for a bunch of add-ons that
form a kick-butt Java, C++, or even a COBOL development environment. Each
add-on is called a plug-in, and the Eclipse that you normally use is composed
of more than 80 useful plug-ins.

While the Eclipse Foundation was shifting into high gear, several other things
were happening in the world of integrated development environments. IBM
was building WebSphere Studio Application Developer (WSAD) — a big Java
development environment based on Eclipse. And Sun Microsystems was

10 Part I: The Eclipse Landscape

*Quoted from the eclipse.org Web site: www.eclipse.org.

05_574701 ch01.qxd 11/29/04 7:32 PM Page 10

promoting NetBeans. Like Eclipse, NetBeans is a set of building blocks for
creating Java development environments. But unlike Eclipse, NetBeans is
pure Java. So a few years ago, war broke out between Eclipse people and
NetBeans people. And the war continues to this day.

In 2004, the Eclipse Foundation turned itself from an industry consortium
to an independent not-for-profit organization. Among other things, this
meant having an Executive Director — Mike Milinkovich, formerly of Oracle
Corporation. Apparently, Milinkovich is the Eclipse Foundation’s only paid
employee. Everybody else donates his or her time to create Eclipse — the
world’s most popular Java development environment.

The Grand Scheme of Things in Eclipse
The Eclipse Foundation divides its work into projects and subprojects. The
projects you may hear about the most are the Eclipse project, the Eclipse
Tools project, and the Eclipse Technology project.

Sure, these project names can be confusing. The “Eclipse project” is only one
part of the Eclipse Foundation’s work, and the “Eclipse project” is different
from the “Eclipse Tools project.” But bear with me. This section gives you
some background on all these different projects.

And why would you ever want to know about the Eclipse Foundation’s projects?
Why should I bother you with details about the Foundation’s administrative
organization? Well, when you read about the Foundation’s projects, you get a
sense of the way the Eclipse software is organized. You have a better under-
standing of where you are and what you’re doing when you use Eclipse.

The Eclipse project
The Eclipse project is the Eclipse Foundation’s major backbone. This big
Eclipse project has three subprojects — the Platform subproject, the Java
Development Tools subproject, and the Plug-in Development subproject.

The Platform subproject
The Platform subproject deals with things that are common to all aspects of
Eclipse — things such as text editing, searching, help pages, debugging, and
versioning.

At the very center of the Platform subproject is the platform core. The core
consists of the barebones necessities — the code for starting and running
Eclipse, the creation and management of plug-ins, and the management of
other basic program resources.

11Chapter 1: Reader, Meet Eclipse; Eclipse, Meet the Reader

05_574701 ch01.qxd 11/29/04 7:32 PM Page 11

In addition, the Platform subproject defines the general look and feel of Eclipse’s
user interface. This user interface is based on two technologies — one that’s
controversial, and another that’s not so controversial. The controversial tech-
nology is called SWT — the Standard Widget Toolkit. The not-so-controversial
technology is called JFace.

� The Standard Widget Toolkit is a collection of basic graphical interface
classes and methods, including things such as buttons, menus, labels,
and events.

For more chitchat about the Standard Widget Toolkit (and to find out
why the Toolkit is so controversial), see the second half of this chapter.

� JFace is a set of higher-level graphical interface tools, including things
such as wizards, viewers, and text formatters. JFace builds on the work
that the Standard Widget Toolkit starts.

The Java Development Tools (JDT) subproject
The word “Java” appears more than 700 times in this book. (Yes, I counted.) In
many people’s minds, Eclipse is nothing more than an integrated development
environment for Java. Heck, if you start running Eclipse you see the Java per-
spective, Java projects, Java search tools, and a bunch of other Java-specific
things.

But Java is only part of the Eclipse picture. In reality, Eclipse is a language-
neutral platform that happens to house a mature Java development environ-
ment. That Java development environment is a separate subproject. It’s called
the Java Development Tools (JDT) subproject. The subproject includes things
like the Java compiler, Java editor enhancements, an integrated debugger,
and more.

When Eclipse documentation refers to the “core,” it can be referring to a
number of different things. The Platform subproject has a core, and the JDT
subproject has a core of its own. Before you jump to one core or another in
search of information, check to see what the word “core” means in context.

The Plug-in Development Environment (PDE) subproject
Eclipse is very modular. Eclipse is nothing but a bony frame on which dozens
of plug-ins have been added. Each plug-in creates a bit of functionality, and
together the plug-ins make a very rich integrated development environment.

But wait! A plug-in is a piece of code, and the people who create plug-ins use
development environments, too. For these plug-in creators, Eclipse is both
a tool and a target. These people use Eclipse in order to write plug-ins for
Eclipse.

So wouldn’t it be nice to have some specialized tools for creating Eclipse
plug-ins? That way, a programmer can seamlessly use Eclipse while writing
code for Eclipse.

12 Part I: The Eclipse Landscape

05_574701 ch01.qxd 11/29/04 7:32 PM Page 12

Well, whadaya’ know? Someone’s already thought up this specialized tools
idea. They call it PDE — the Plug-in Development Environment — and they
have an entire subproject devoted to this Plug-in Development Environment.

The Eclipse Tools project
Compared with the main Eclipse project, the Eclipse Tools project houses
subprojects that are a bit farther from Eclipse’s center. Here are some examples.

The Visual Editor subproject
If you’re familiar with products like Visual Basic, then you’ve seen some handy
drag-and-drop tools. With these tools you drag buttons, text fields, and other
goodies from a palette onto a user form. To create an application’s user inter-
face, you don’t describe the interface with cryptic code. Instead you draw the
interface with your mouse.

In Eclipse 3.0, these drag-and-drop capabilities still aren’t integrated into the
main Eclipse bundle. Instead, they’re a separate download. They’re housed in
the Visual Editor (VE) — a subproject of the Eclipse Tools Project.

The CDT and COBOL IDE subprojects
The C/C++ Development Tools (CDT) subproject develops an IDE for the C/C++
family of languages. So after downloading a plug-in, you can use Eclipse to
write C++ programs.

As if the CDT isn’t far enough from Java, the COBOL IDE subproject has its
own Eclipse-based integrated development environment. (COBOL programs
don’t look anything like Java programs. After using Eclipse for a few years to
develop Java programs, I feel really strange staring at a COBOL program in
Eclipse’s editor.)

The UML2 subproject
The Unified Modeling Language (UML) is a very popular methodology for
modeling software processes. With UML diagrams, you can plan a large pro-
gramming endeavor, and work your way thoughtfully from the plan to the
actual code. The tricks for any integrated development environment are to
help you create models, and to provide automated pathways between the
models and the code. That’s what UML2 (another subproject of the Eclipse
Tools project) is all about.

The Eclipse Technology project
The Eclipse Technology project is all about outreach — helping the rest of the
world become involved in Eclipse and its endeavors. The Technology project

13Chapter 1: Reader, Meet Eclipse; Eclipse, Meet the Reader

05_574701 ch01.qxd 11/29/04 7:32 PM Page 13

fosters research, educates the masses, and acts as a home for ideas that are
on their way to becoming major subprojects.

As of 2004, this project’s emerging technologies include Voice Tools — tools
to work effectively with speech recognition, pronunciation, and the control of
voice-driven user interfaces.

Another cool item in the Eclipse Technology project is AspectJ. The name
AspectJ comes from two terms — aspect-oriented programming and Java.
In AspectJ, you can connect similar parts of a programming project even
though the parts live in separate regions of your code. AspectJ is an up-
and-coming extension to the Java programming language.

What’s the Best Way to
Create a Window?

According to Sun Microsystems, Java is a “Write Once, Run Anywhere” pro-
gramming language. This means that a Java program written on a Macintosh
runs effortlessly on a Microsoft Windows or UNIX computer. That’s fine for
programs that deal exclusively with text, but what about windows, buttons,
text fields, and all that good stuff? When it comes to using graphical inter-
faces, the “Write Once, Run Anywhere” philosophy comes up against some
serious obstacles.

Each operating system (Windows, UNIX, or whatever) has its own idiosyncratic
way of creating graphical components. A call to select text in one operating
system’s text field may not work at all on another operating system’s text field.
And when you try to translate one operating system’s calls to another operat-
ing system’s calls, you run into trouble. There’s no good English translation for
the Yiddish word schlemiel, and there’s no good Linux translation for
Microsoft’s object linking and embedding calls.

When Java was first created, it came with only one set of graphical interface
classes. This set of classes is called the Abstract Windowing Toolkit (AWT).
With the AWT, you can create windows, buttons, text fields, and other nice
looking things. Like any of Java’s “Write Once, Run Anywhere” libraries, the
AWT runs on any operating system. But the AWT has an awkward relation-
ship with each operating system’s code.

The AWT uses something called peers. You don’t have to know exactly how
peers work. All you have to know is that a peer is an extra layer of code. It’s
an extra layer between the AWT and a particular operating system’s graphical

14 Part I: The Eclipse Landscape

05_574701 ch01.qxd 11/29/04 7:32 PM Page 14

interface code. On one computer, a peer lives between the AWT code and the
UNIX code. On another computer, the peer lives between the AWT code and
the Microsoft Windows code.

The AWT with its peer architecture has at least one big disadvantage. The
AWT can’t do anything that’s not similar across all operating systems. If two
operating systems do radically different things to display trees, then the AWT
simply cannot display trees. Each of the AWT’s capabilities belongs to the
least common denominator — the set of things that every popular operating
system can do.

Here comes Swing
Somewhere along the way, the people at Sun Microsystems agreed that the
AWT isn’t an ideal graphical interface library. So they created Swing — a newer
alternative that doesn’t rely on peers. In fact, Swing relies on almost nothing.

With the AWT, you write code that says “Microsoft Windows, please display a
button for me.” But with Swing you don’t do this. With Swing you say “draw
some lines, then fill in a rectangle, then put some text in the rectangle.”
Eventually you have all the lines and colors that make up a button. But
Microsoft Windows doesn’t know (or care) that you’ve drawn a button.

To use the official slogan, Swing is “pure Java.” Swing draws everything on
your screen from scratch. Sure, a Swing button may look like a UNIX button, a
Macintosh button, or a Microsoft Windows button. But that’s just because the
Swing developers work hard to replicate each operating system’s look and feel.

Here’s the problem with Swing: Drawing windows and buttons from scratch
can be very time consuming. In my experience, Swing applications tend to run
slowly.* That’s why people who develop Eclipse plug-ins don’t use Java’s Swing
classes. Instead, they use classes from the Standard Widget Toolkit (SWT).

The Standard Widget Toolkit
The word “widget” comes from the play “Beggar on Horseback,” written
in the early 1920s by George Kaufman and Marc Connelly. (I first heard of
widgets when I saw the 1963 James Garner movie The Wheeler Dealers.) In
ordinary usage, the word “widget” means a vaguely described gadget —

15Chapter 1: Reader, Meet Eclipse; Eclipse, Meet the Reader

*My friends at Sun Microsystems claim that Swing applications are lightning fast,
but I can’t tackle that debate in this book.

05_574701 ch01.qxd 11/29/04 7:32 PM Page 15

a hypothetical product whose use and design is unimportant compared to
its marketing potential.

In computing, the word “widget” represents a component in a graphical user
interface — a button, a text field, a window, or whatever. That’s why a group
of developers coined the phrase Standard Widget Toolkit (SWT). These devel-
opers were people from Object Technology International and IBM. At first
they created widgets for the language SmallTalk. Later they moved from
SmallTalk to Java.

In contrast to Swing, Eclipse’s SWT is very fast and efficient. When I run Eclipse
under Linux, I don’t wait and watch as my buttons appear on the screen. My
SWT buttons appear very quickly — as quickly as my plain, old Linux buttons.

To achieve this speed, the SWT ignores Java’s “Write Once, Run Anywhere”
philosophy. Like the AWT, the SWT isn’t pure Java. But unlike the AWT, the
SWT has no peer layer.

The SWT isn’t nearly as portable as Swing’s pure Java code, and this lack
of portability drives the “pure Java” advocates crazy. So the big debate is
between Swing and the SWT. Sun’s NetBeans IDE calls Swing classes to dis-
play its dialogs and editors, and Eclipse calls SWT classes. This difference
between NetBeans and Eclipse has several important consequences.

� Eclipse runs noticeably faster than NetBeans (unless you run
NetBeans on a very powerful computer).

� Eclipse’s graphical interface isn’t merely an imitation of your com-
puter’s interface.

The button on a NetBeans panel may look like a Linux button or like a
Microsoft Windows button, but it’s not really one of these buttons. A
NetBeans button is a drawing that’s made to look like a Microsoft
Windows button.

In contrast, the button on an Eclipse panel is the real McCoy. When you
run Eclipse on a Macintosh, you see real Macintosh buttons. When you
run Eclipse in Windows, you see Bill Gates’s own buttons.

Do you want real buttons or simulated buttons? Believe it or not, you
can see the difference.

� Eclipse can use tools that are specific to each operating system.

If you run Eclipse under Microsoft Windows, you can take advantage of
the functionality provided by Windows ActiveX components. But if you
run Eclipse under Linux, then you can’t use ActiveX components. That’s
why certain features of the Eclipse IDE are available in Windows, but not
in Linux.

16 Part I: The Eclipse Landscape

05_574701 ch01.qxd 11/29/04 7:32 PM Page 16

In stark contrast to the situation with Eclipse, NetBeans doesn’t use
ActiveX components. (Even on a computer that runs Microsoft Windows,
NetBeans doesn’t take advantage of any ActiveX functionality.)

� In theory, Eclipse isn’t as portable as NetBeans.

At www.eclipse.org you can download versions of Eclipse for Microsoft
Windows, Linux, Solaris, QNX, UNIX, and Mac OS X. But if someone creates
the MyNewOS operating system, then the NetBeans/Swing camp has a
slight advantage over the Eclipse/SWT people.

All in all, I prefer Eclipse to NetBeans. And I’m not saying this only because
I have a contract to write Eclipse For Dummies. For my money, the Eclipse
development environment is simply a better tool than NetBeans.

Relax and Enjoy the Ride
As an Eclipse user, you wade through lots of written material about the SWT.
That’s why you want to know about the “SWT versus Swing” issue. But “know-
ing” doesn’t mean “worrying.” The war between the SWT and Swing has the
greatest impact on people who write code for the Eclipse Foundation. The
“SWT versus Swing” controversy comes alive when you try to enhance the
Eclipse development environment. But as a plain, old Eclipse user, you can
just sit back and watch other people argue.

Using Eclipse, you can write Swing, SWT, AWT, and text-based applications.
You can just go about your business and write whatever Java code you’re
accustomed to writing. So don’t be upset by this chapter’s “SWT versus Swing”
harangue. Just remember some of the issues whenever you read other peoples’
stories about Eclipse.

17Chapter 1: Reader, Meet Eclipse; Eclipse, Meet the Reader

05_574701 ch01.qxd 11/29/04 7:32 PM Page 17

18 Part I: The Eclipse Landscape

05_574701 ch01.qxd 11/29/04 7:32 PM Page 18

