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Twenty years ago, programs could almost exist in isolation, barely having to
interface with anything other than the underlying hardware, with which they
frequently communicated directly. Needless to say, things have changed quite
a bit since then. Nowadays the average program runs on top of a humongous
operating system and communicates with dozens of libraries, often developed
by a number of different people.

This chapter deals with one of the most important applications of reversing:
reversing for achieving interoperability. The idea is that by learning reversing
techniques, software developers can more efficiently interoperate with third-
party code (which is something every software developer does every day). That’s
possible because reversing provides the ultimate insight into the third-party’s
code—it takes you beyond the documentation. 

In this chapter, I will be demonstrating the relatively extreme case where
reversing techniques are used for learning how to use undocumented system
APIs. I have chosen a relatively complex API set from the Windows native API,
and I will be dissecting the functions in that API to the point where you fully
understand what that each function does and how to use it. I consider this an
extreme case because in many cases one does have some level of documenta-
tion—it just tends to be insufficient.
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Reversing and Interoperability

For a software engineer, interoperability can be a nightmare. From the indi-
vidual engineer’s perspective, interoperability means getting the software to
cooperate with software written by someone else. This other person can be
someone else working in the same company on the same product or the devel-
oper of some entirely separate piece of software. Modern software compo-
nents frequently interact: applications with operating systems, applications
with libraries, and applications with other applications. 

Getting software to communicate with other components of the same pro-
gram, other programs, software libraries, and the operating system can be one
of the biggest challenges in large-scale software development. In many cases,
when you’re dealing with a third-party library, you have no access to the source
code of the component with which you’re interfacing. In such cases you’re
forced to rely exclusively on vendor-supplied documentation. Any seasoned
software developer knows that this rarely turns out to be a smooth and easy
process. The documentation almost always neglects to mention certain func-
tions, parameters, or entire features. 

One excellent example is the Windows operating system, which has histori-
cally contained hundreds of such undocumented APIs. These APIs were kept
undocumented for a variety of reasons, such as to maintain compatibility with
other Windows platforms. In fact, many people have claimed that Windows
APIs were kept undocumented to give Microsoft an edge over one software
vendor or another. The Microsoft product could take advantage of a special
undocumented API to provide better features, which would not be available to
a competing software vendor. 

This chapter teaches techniques for digging into any kind of third-party
code on your own. These techniques can be useful in a variety of situations, for
example when you have insufficient documentation (or no documentation at
all) or when you are experiencing problems with third-party code and you
have no choice but to try to solve these problems on your own. Sure, you
should only consider this approach of digging into other people’s code as a
last resort and at least try and get answers through the conventional channels.
Unfortunately, I’ve often found that going straight to the code is actually faster
than trying to contact some company’s customer support department when
you have a very urgent and very technical question on your hands.

Laying the Ground Rules

Before starting the first reversing session, let’s define some of the ground rules
for every reversing session in this book. First of all, the reversing sessions in
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this book are focused exclusively on offline code analysis, not on live analysis.
This means that you’ll primarily just read assembly language listings and try
to decipher them, as opposed to running programs in the debugger and step-
ping through them. Even though in many cases you’ll want to combine the
two approaches, I’ve decided to only use offline analysis (dead listing) because
it is easier to implement in the context of a written guide. 

I could have described live debugging sessions throughout this book, but
they would have been very difficult to follow, because any minor environ-
mental difference (such as a different operating system version of even a dif-
ferent service pack) could create confusing differences between what you see
on the screen on what’s printed on the page. The benefit of using dead listings
is that you will be able to follow along everything I do just by reading the code
listings from the page and analyzing them with me. 

In the next few chapters, you can expect to see quite a few longish, uncom-
mented assembly language code listings, followed by detailed explanations of
those listings. I have intentionally avoided commenting any of the code, because
that would be outright cheating. The whole point is that you will look at raw
assembly language code just as it will be presented to you in a real reversing ses-
sion, and try to extract the information you’re seeking from that code. I’ve made
these analysis sessions very detailed, so you can easily follow the comprehen-
sion process as it takes place. 

The disassembled listings in this book were produced using more than one
disassembler, which makes sense considering that reversers rarely work with
just a single tool throughout an entire project. Generally speaking, most of the
code listings were produced using OllyDbg, which is one of the best freeware
reversing tools available (it’s actually distributed as shareware, but registra-
tion is performed free of charge—it’s just a formality). Even though OllyDbg is
a debugger, I find its internal disassembler quite powerful considering that it
is 100 percent free—it provides highly accurate disassembly, and its code analy-
sis engine is able to extract a decent amount of high-level information regard-
ing the disassembled code.

Locating Undocumented APIs

As I’ve already mentioned, in this chapter you will be taking a group of undoc-
umented Windows APIs and practicing your reversing skills on them. Before
introducing the specific APIs you will be working with, let’s take a quick look
at how I found those APIs and how it is generally possible to locate such
undocumented functions or APIs, regardless of whether they are part of the
operating system or of some other third-party library.

The next section describes the first steps in dealing with undocumented
code: how to find undocumented APIs and locate code that uses them.
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What Are We Looking For?
Typically, the search for undocumented code starts with a requirement. What
functionality is missing? Which software component can be expected to offer
this functionality? This is where a general knowledge of the program in ques-
tion comes into play. You need to be aware of the key executable modules that
make up the program and to be familiar with the interfaces between those
modules. Interfaces between binary modules are easy to observe simply by
dumping the import and export directories of those modules (this is described
in detail in Chapter 3).

In this particular case, I have decided to look for an interesting Windows API
to dissect. Knowing that the majority of undocumented user-mode services in
Windows are implemented in NTDLL.DLL (because that’s where the native API
is implemented), I simply dumped the export directory of NTDLL.DLL and
visually scanned that list for groups of APIs that appear related (based on their
names). 

Of course, this is a somewhat unusual case. In most cases, you won’t just be
looking for undocumented APIs just because they’re undocumented (unless you
just find it really cool to use undocumented APIs and feel like trying it out) —
you will have a specific feature in mind. In this case, you might want to search
that export directory for relevant keywords. Suppose, for example, that you
want to look for some kind of special memory allocation API. In such a case, you
should just search the export list of NTDLL.DLL (or any DLL in which you sus-
pect your API might be implemented) for some relevant keywords such as
memory, alloc, and so on.

Once you find the name of an undocumented API and the name of the DLL
that exports it, it’s time to look for binaries that use it. Finding an executable
that calls the API will serve two purposes. First, it might shed some additional
light on what the API does. Second, it provides a live sample of how the API is
used and exactly what data it receives as input and what it returns as output.
Finding an example of how a function is used by live code can be invaluable
when trying to learn how to use it. 

There are many different approaches for locating APIs and code that uses
them. The traditional approach uses a kernel-mode debugger such as Numega
SoftICE or Microsoft WinDbg. Kernel-mode debuggers make it very easy to
look for calls to a particular function systemwide, even if the function you’re
interested in is not a kernel-mode function. The idea is that you can install sys-
temwide breakpoints that will get hit whenever any process calls some func-
tion. This greatly simplifies the process of finding code that uses a specific
function. You could theoretically do this with a user-mode debugger such as
OllyDbg but it would be far less effective because it would only show you calls
made within the process you’re currently debugging. 
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Case Study: The Generic Table API in NTDLL.DLL

Let’s dive headfirst into our very first hands-on reverse-engineering session.
In this session, I will be taking an undocumented group of Windows APIs and
analyzing them until I gather enough information to use them in my own
code. In fact, I’ve actually written a little program that uses these APIs, in order
to demonstrate that it’s really possible. Of course, the purpose of this chapter
is not to serve as a guide for this particular API, but rather to provide a live
demonstration of how reversing is performed on real-world code.

The particular API chosen for this chapter is the generic table API. This API is
considered part of the Windows native API, which was discussed in Chapter 3. 

The native API contains numerous APIs with different prefixes for different
groups of functions. For this exercise, I’ve chosen a set of functions from the
RTL group. These are the runtime library functions that typically aren’t used
for communicating with the operating system, but simply as a toolkit contain-
ing commonly required services such as string manipulation, data manage-
ment, and so on.

Once you’ve locked on to the generic table API, the next step is to look
through the list of exported symbols in NTDLL.DLL (which is where the
generic table API is implemented) for every function that might be relevant. In
this particular case any function that starts with the letters Rtl and mentions
a generic table would probably be of interest. After dumping the NTDLL.DLL
exports using DUMPBIN (see the section on DUMPBIN in Chapter 4) I searched
for any Rtl APIs that contain the term GenericTable in them. I came up
with the following function names. 

RtlNumberGenericTableElements

RtlDeleteElementGenericTable

RtlGetElementGenericTable

RtlEnumerateGenericTable

RtlEnumerateGenericTableLikeADirectory

RtlEnumerateGenericTableWithoutSplaying

RtlInitializeGenericTable

RtlIsGenericTableEmpty

RtlInsertElementGenericTable

RtlLookupElementGenericTable

If you try this by yourself and go through the NTDLL.DLL export list, you’ll
probably notice that there are also versions of most of these APIs that have the
suffix Avl. Since the generic table API is large enough as it is, I’ll just ignore
these functions for the purposes of this discussion. 
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From their names alone, you can make some educated guesses about these
APIs. It’s obvious that this is a group of APIs that manage some kind of a
generic list (generic probably meaning that the elements can contain any type
of data). There is an API for inserting, deleting, and searching for an element.
RtlNumberGenericTableElements probably returns the total number of
elements in the list, and RtlGetElementGenericTable most likely allows
direct access to an element based on its index. Before you can start using a
generic table you most likely need to call RtlInitializeGenericTable to
initialize some kind of a root data structure.

Generally speaking, reversing sessions start with data—we must figure out
the key data structures that are managed by the code. Because of this, it would
be a good idea to start with RtlInitializeGenericTable, in the hope that
it would shed some light on the generic table data structures. 

As I’ve already explained, I will be relying exclusively on offline code analy-
sis, and not on live debugging. If you want to try out the generic table code in a
debugger, you can use GenericTable.EXE, which is a little program I have
written based on my findings after reversing the generic table API. If you didn’t
have GenericTable.EXE, you’d have to either rely exclusively on a dead list-
ing, or find some other piece of code that uses the generic table. In a quick search
I conducted, I was only able to find kernel-mode components that do that (the
generic table also has a kernel-mode implementation inside the Windows ker-
nel), but no user-mode components. GenericTable.EXE is available along
with its source code on this book’s Web site at www.wiley.com/go/eeilam.

The following reversing session delves into each of the important functions in
the generic table API and demonstrates its inner workings. It should be noted
that I will be going a bit farther than I have to, just to demonstrate what can be
achieved using advanced reverse-engineering techniques. If this were a real
reversing session in which you simply needed the function prototypes in order
to make use of the generic table API, you could probably stop a lot sooner, as
soon as you had all of those function prototypes. In this session, I will proceed to
go after the exact layout of the generic table data structures, but this is only done
in order to demonstrate some of the more advanced reversing techniques.

RtlInitializeGenericTable
As I’ve said earlier, the best place to start the investigation of the generic table
API is through its data structures. Even though you don’t necessarily need to
know everything about their layout, getting a general idea regarding their con-
tents might help you figure out the purpose of the API. Having said that, let’s
start the investigation from a function that (judging from its name) is very
likely to provide a few hints regarding those data structures: RtlInitialize
GenericTable is a disassembly of RtlInitializeGenericTable, gener-
ated by OllyDbg (see Listing 5.1).
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7C921A39    MOV EDI,EDI

7C921A3B    PUSH EBP

7C921A3C    MOV EBP,ESP

7C921A3E    MOV EAX,DWORD PTR SS:[EBP+8]

7C921A41    XOR EDX,EDX

7C921A43    LEA ECX,DWORD PTR DS:[EAX+4]

7C921A46    MOV DWORD PTR DS:[EAX],EDX

7C921A48    MOV DWORD PTR DS:[ECX+4],ECX

7C921A4B    MOV DWORD PTR DS:[ECX],ECX

7C921A4D    MOV DWORD PTR DS:[EAX+C],ECX

7C921A50    MOV ECX,DWORD PTR SS:[EBP+C]

7C921A53    MOV DWORD PTR DS:[EAX+18],ECX

7C921A56    MOV ECX,DWORD PTR SS:[EBP+10]

7C921A59    MOV DWORD PTR DS:[EAX+1C],ECX

7C921A5C    MOV ECX,DWORD PTR SS:[EBP+14]

7C921A5F    MOV DWORD PTR DS:[EAX+20],ECX

7C921A62    MOV ECX,DWORD PTR SS:[EBP+18]

7C921A65    MOV DWORD PTR DS:[EAX+14],EDX

7C921A68    MOV DWORD PTR DS:[EAX+10],EDX

7C921A6B    MOV DWORD PTR DS:[EAX+24],ECX

7C921A6E    POP EBP

7C921A6F    RET 14

Listing 5.1 Disassembly of RtlInitializeGenericTable.

Before attempting to determine what this function does and how it works
let’s start with the basics: what is the function’s calling convention and how
many parameters does it take? The calling convention is the layout that is used
for passing parameters into the function and for defining who is responsible
for clearing the stack once the function completes. There are several standard
calling conventions, but Windows tends to use stdcall by default. stdcall
functions are responsible for clearing their own stack, and they take parame-
ters from the stack in their original left-to-right order (meaning that the caller
must push parameters onto the stack in the reverse order). Calling conven-
tions are discussed in depth in Appendix C. 

In order to answer the questions about the function’s calling convention, one
basic step you can take is to find the RET instruction that terminates this func-
tion. In this particular function, you will quickly notice the RET 14 instruction
at the end. This is a RET instruction with a numeric operand, and it provides two
important pieces of information. The operand passed to RET tells the processor
how many bytes of stack to unwind (in addition to the return value). The very
fact that the function is unwinding its own stack tells you that this is not a cdecl
function because cdecl functions always let the caller unwind the stack. So,
which calling convention is this? 
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Let’s continue this process of elimination in order to determine the func-
tion’s calling convention and observe that the function isn’t taking any regis-
ters from the caller because every register that is accessed is initialized within
the function itself. This shows that this isn’t a _fastcall calling convention
because _fastcall functions receive parameters through ECX and EDX, and
yet these registers are initialized at the very beginning of this function. 

The other common calling conventions are stdcall and the C++ member
function calling convention. You know that this is not a C++ member function
because you have its name from the export directory, and you know that it is
undecorated. C++ functions are always decorated with the name of their class
and the exact type of each parameter they receive. It is easy to detect decorated
C++ names because they usually include numerous nonalphanumeric charac-
ters and more than one name (class name and method name at the minimum). 

By process of elimination you’ve established that the function is an stdcall,
and you now know that the number 14 after the RET instruction tells you how
many parameters it receives. In this case, OllyDbg outputs hexadecimal num-
bers, so 14 in hexadecimal equals 20 in decimal. Because you’re working in a
32-bit environment parameters are aligned to 32 bits, which are equivalent to 
4 bytes, so you can assume that the function receives five parameters. It is possi-
ble that one of these parameters would be larger than 4 bytes, in which case the
function receives less than five parameters, but it can’t possibly be more than
five because parameters are 32-bit aligned.

In looking at the function’s prologue, you can see that it uses a standard EBP
stack frame. The current value of EBP is saved on the stack, and EBP takes the
value of ESP. This allows for convenient access to the parameters that were
passed on the stack regardless of the current value of ESP while running the
function (ESP constantly changes whenever the function pushes parameters
into the stack while calling other functions). In this very popular layout, the
first parameter is placed at [EBP + 8], the second at [ebp + c], and so on. If
you’re not sure why that is so please refer to Appendix C for a detailed expla-
nation of stack frames.

Typically, a function would also allocate room for local variables by sub-
tracting ESP with the number of bytes needed for local variable storage, but
this doesn’t happen in this function, indicating that the function doesn’t store
any local variables in the stack. 

Let us go over the function from Listing 5.1 instruction by instruction and
see what it does. As I mentioned earlier, you might want to do this using live
analysis by stepping through this code in the debugger and actually seeing
what happens during its execution using GenericTable.EXE. If you’re feel-
ing pretty comfortable with assembly language by now, you could probably
just read through the code in Listing 5.1 without using GenericTable.EXE. 

Let’s dig further into the function and determine how it works and what it
does.
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7C921A3E    MOV EAX,DWORD PTR SS:[EBP+8]

7C921A41    XOR EDX,EDX

7C921A43    LEA ECX,DWORD PTR DS:[EAX+4]

The first line loads [ebp+8] into EAX. We’ve already established that
[ebp+8] is the first parameter passed to the function. The second line per-
forms a logical XOR of EDX against itself, which effectively sets EDX to zero. The
compiler is using XOR because the machine code generated for xor edx, edx
is shorter than mov edx, 0, which would have been far more intuitive. This
gives a good idea of what reversers often have to go through—optimizing
compilers always favor small and fast code to readable code.

The stack address is preceded by ss:. This means that the address is read using
SS, the stack segment register. IA-32 processors support special memory
management constructs called segments, but these are not used in Windows
and can be safely ignored in most cases. There are several segment registers in
IA-32 processors: CS, DS, FS, ES, and SS. On Windows, any mentioning of any of
those can be safely ignored except for FS, which allows access to a small area
of thread-local memory. Memory accesses that start with FS: are usually
accessing that thread-local area. The remainder of code listings in this book
only include segment register names when they’re specifically called for.

The third instruction, LEA, might be a bit confusing when you first look at it.
LEA (load effective address) is essentially an arithmetic instruction—it doesn’t
perform any actual memory access, but is commonly used for calculating
addresses (though you can calculate general purpose integers with it). Don’t
let the DWORD PTR prefix fool you; this instruction is purely an arithmetic
operation. In our particular case, the LEA instruction is equivalent to: ECX =
EAX + 4. 

You still don’t know much about the data types you’ve encountered so far.
Most importantly, you’re not sure about the type of the first parameter you’ve
received: [ebp+8]. Proceed to the next code snippet to see what else you can
find out. 

7C921A46    MOV DWORD PTR DS:[EAX],EDX

7C921A48    MOV DWORD PTR DS:[ECX+4],ECX

7C921A4B    MOV DWORD PTR DS:[ECX],ECX

7C921A4D    MOV DWORD PTR DS:[EAX+C],ECX

This code chunk exposes one very important piece of information: The first
parameter in the function is a pointer to some data structure, and that data struc-
ture is being initialized by the function. It is very likely that this data structure is
the key or root of the generic table, so figuring out the layout of this data struc-
ture will be key to your success in learning to use these generic tables. 
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One interesting thing about the data structure is the way it is accessed—
using two different registers. Essentially, the function keeps two pointers into
the data structure, EAX and ECX. EAX holds the original value passed through
the first parameter, and ECX holds the address of EAX + 4. Some members are
accessed using EAX and others via ECX. 

Here’s what the preceding code does, step by step. 

1. Sets the first member of the structure to zero (using EDX). The structure
is accessed via EAX. 

2. Sets the third member of the structure to the address of the second
member of the structure (this is the value stored in ECX: EAX + 4). This
time the structure is accessed through ECX instead of EAX. 

3. Sets the second member to the same address (the one stored in ECX).

4. Sets the fourth member to the same address (the one stored in ECX). 

If you were to translate the snippet into C, it would look something like the
following code: 

UnknownStruct->Member1 = 0;

UnknownStruct->Member3 = &UnknownStruct->Member2;

UnkownStruct->Member2 = &UnknownStruct->Member2;

UnknownStruct->Member4 = &UnknownStruct->Member2;

At first glance this doesn’t really tell us much about our structure, except that
members 2, 3, and 4 (in offsets +4, +8, and +c) are all pointers. The last three
members are initialized in a somewhat unusual fashion: They are all being ini-
tialized to point to the address of the second member. What could that possibly
mean? Essentially it tells you that each of these members is a pointer to a group
of three pointers (because that’s what pointed to by UnknownStruct->
Member2—a group of three pointers). The slightly confusing element here is the
fact that this structure is pointing to itself, but this is most likely just a place-
holder. If I had to guess I’d say these members will later be modified to point to
other places. 

Let’s proceed to the next four lines in the disassembled function.

7C921A50    MOV ECX,DWORD PTR SS:[EBP+C]

7C921A53    MOV DWORD PTR DS:[EAX+18],ECX

7C921A56    MOV ECX,DWORD PTR SS:[EBP+10]

7C921A59    MOV DWORD PTR DS:[EAX+1C],ECX

The first two lines copy the value from the second parameter passed into the
function into offset +18 in the present structure (offset +18 is the 7th member).
The second two lines copy the third parameter into offset +1c in the structure
(offset +1c is the 8th member). Converted to C, the preceding code would look
like the following.
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UnknownStruct->Member7 = Param2;

UnknownStruct->Member8 = Param3;

Let’s proceed to the next section of RtlInitializeGenericTable.

7C921A5C    MOV ECX,DWORD PTR SS:[EBP+14]

7C921A5F    MOV DWORD PTR DS:[EAX+20],ECX

7C921A62    MOV ECX,DWORD PTR SS:[EBP+18]

7C921A65    MOV DWORD PTR DS:[EAX+14],EDX

7C921A68    MOV DWORD PTR DS:[EAX+10],EDX

7C921A6B    MOV DWORD PTR DS:[EAX+24],ECX

This is pretty much the same as before—the rest of the structure is being ini-
tialized. In this section, offset +20 is initialized to the value of the fourth
parameter, offset +14 and +10 are both initialized to zero, and offset +24 is ini-
tialized to the value of the fifth parameter. 

This concludes the structure initialization sequence in RtlInitialize
GenericTable. Unfortunately, without looking at live values passed into this
function in a debugger, you know little about the data types of the parameters
or of the structure members. What you do know is that the structure is most
likely 40 bytes long. You know this because the last offset that is accessed is
+24. This means that the structure is 28 bytes long (in hexadecimal), which is
40 bytes in decimal. If you work with the assumption that each member in the
structure is 4 bytes long, you can assume that our structure has 10 members. At
this point, you can create a vague definition of the structure, which you will
hopefully be able to improve on later.

struct TABLE

{

UNKNOWN        Member1;

UNKNOWN_PTR    Member2;

UNKNOWN_PTR    Member3;

UNKNOWN_PTR    Member4;

UNKNOWN        Member5;

UNKNOWN        Member6;

UNKNOWN        Member7;

UNKNOWN        Member8;

UNKNOWN        Member9;

UNKNOWN        Member10;

};

RtlNumberGenericTableElements
Let’s proceed to investigate what is hopefully a simple function: RtlNumber
GenericTableElements. The idea is that if the root data structure has a
member that represents the total number of elements in the table, this function
would expose it. If not, this function would iterate through all the elements
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and just count them while doing that. The following is the OllyDbg output for
RtlNumberGenericTableElements.

RtlNumberGenericTableElements:

7C923FD2    PUSH EBP

7C923FD3    MOV EBP,ESP

7C923FD5    MOV EAX,DWORD PTR [EBP+8]

7C923FD8    MOV EAX,DWORD PTR [EAX+14]

7C923FDB    POP EBP

7C923FDC    RET 4

Well, it seems that the question has been answered. This function simply
takes a pointer to what one can only assume is the same structure as before,
and returns whatever is in offset +14. Clearly, offset +14 contains the number
of elements in a generic table data structure. Let’s update the definition of the
TABLE structure.

struct TABLE

{

UNKNOWN        Member1;

UNKNOWN_PTR    Member2;

UNKNOWN_PTR    Member3;

UNKNOWN_PTR    Member4;

UNKNOWN        Member5;

ULONG          NumberOfElements;

UNKNOWN        Member7;

UNKNOWN        Member8;

UNKNOWN        Member9;

UNKNOWN        Member10;

};

RtlIsGenericTableEmpty
There is one other (hopefully) trivial function in the generic table API that
might shed some light on the data structure: RtlIsGenericTableEmpty. Of
course, it is also possible that RtlIsGenericTableEmpty uses the same
NumberOfElements member used in RtlNumberGenericTableElements.
Let’s take a look.

RtlIsGenericTableEmpty:

7C92715B    PUSH EBP

7C92715C    MOV EBP,ESP

7C92715E    MOV ECX,DWORD PTR [EBP+8]

7C927161    XOR EAX,EAX

7C927163    CMP DWORD PTR [ECX],EAX

7C927165    SETE AL

7C927168    POP EBP

7C927169    RET 4
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As hoped, RtlIsGenericTableEmpty seems to be quite simple. The
function loads ECX with the value of the first parameter (which should be the
root data structure from before), and sets EAX to 0. The function then compares
the first member (at offset +0) with EAX, and sets AL to 1 if they’re equal using
the SETE instruction (for more information on the SETE instruction refer to
Appendix A). 

Effectively what this function does is it checks whether offset +0 of the data
structure is 0, and if it is the function returns TRUE. If it’s not, the function
returns zero. So, you now know that there must be some important member at
offset +0 that is always nonzero when there are elements in the table. Again,
we add this little bit of information to our data structure definition.

struct TABLE

{

UNKNOWN_PTR    Member1; // This is nonzero when table has elements.

UNKNOWN_PTR    Member2;

UNKNOWN_PTR    Member3;

UNKNOWN_PTR    Member4;

UNKNOWN        Member5;

ULONG          NumberOfElements;

UNKNOWN        Member7;

UNKNOWN        Member8;

UNKNOWN        Member9;

UNKNOWN        Member10;

};

RtlGetElementGenericTable
There are three functions in the generic table API that seem to be made for find-
ing and retrieving elements. These are RtlGetElementGenericTable,
RtlEnumerateGenericTable, and RtlLookupElementGenericTable.
Based on their names, it’s pretty easy to make some educated guesses on what
they do. The easiest is RtlEnumerateGenericTable because it’s obvious that
it enumerates some or all of the elements in the list. The next question is what 
is the difference between RtlGetElementGenericTable and RtlLookup
ElementGenericTable? It’s really impossible to know without looking at the
code, but if I had to guess I’d say RtlGetElementGenericTable provides
some kind of direct access to an element (probably using an index), and Rtl
LookupElementGenericTable has to search for the right element.

If I’m right, RtlGetElementGenericTable will probably be the 
simpler function of the two. Listing 5.2 presents the full disassembly for 
RtlGetElementGenericTable. See if you can figure some of it out by your-
self before you proceed to the analysis that follows.
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RtlGetElementGenericTable:

7C9624E0    PUSH EBP

7C9624E1    MOV EBP,ESP

7C9624E3    MOV ECX,DWORD PTR [EBP+8]

7C9624E6    MOV EDX,DWORD PTR [ECX+14]

7C9624E9    MOV EAX,DWORD PTR [ECX+C]

7C9624EC    PUSH EBX

7C9624ED    PUSH ESI

7C9624EE    MOV ESI,DWORD PTR [ECX+10]

7C9624F1    PUSH EDI

7C9624F2    MOV EDI,DWORD PTR [EBP+C]

7C9624F5    CMP EDI,-1

7C9624F8    LEA EBX,DWORD PTR [EDI+1]

7C9624FB    JE SHORT ntdll.7C962559

7C9624FD    CMP EBX,EDX

7C9624FF    JA SHORT ntdll.7C962559

7C962501    CMP ESI,EBX

7C962503    JE SHORT ntdll.7C962554

7C962505    JBE SHORT ntdll.7C96252B

7C962507    MOV EDX,ESI

7C962509    SHR EDX,1

7C96250B    CMP EBX,EDX

7C96250D    JBE SHORT ntdll.7C96251B

7C96250F    SUB ESI,EBX

7C962511    JE SHORT ntdll.7C96254E

7C962513    DEC ESI

7C962514    MOV EAX,DWORD PTR [EAX+4]

7C962517    JNZ SHORT ntdll.7C962513

7C962519    JMP SHORT ntdll.7C96254E

7C96251B    TEST EBX,EBX

7C96251D    LEA EAX,DWORD PTR [ECX+4]

7C962520    JE SHORT ntdll.7C96254E

7C962522    MOV EDX,EBX

7C962524    DEC EDX

7C962525    MOV EAX,DWORD PTR [EAX]

7C962527    JNZ SHORT ntdll.7C962524

7C962529    JMP SHORT ntdll.7C96254E

7C96252B    MOV EDI,EBX

7C96252D    SUB EDX,EBX

7C96252F    SUB EDI,ESI

7C962531    INC EDX

7C962532    CMP EDI,EDX

7C962534    JA SHORT ntdll.7C962541

7C962536    TEST EDI,EDI

7C962538    JE SHORT ntdll.7C96254E

7C96253A    DEC EDI

7C96253B    MOV EAX,DWORD PTR [EAX]

Listing 5.2 Disassembly of RtlGetElementGenericTable.

154 Chapter 5

10_574817 ch05.qxd  3/16/05  8:44 PM  Page 154



7C96253D    JNZ SHORT ntdll.7C96253A

7C96253F    JMP SHORT ntdll.7C96254E

7C962541    TEST EDX,EDX

7C962543    LEA EAX,DWORD PTR [ECX+4]

7C962546    JE SHORT ntdll.7C96254E

7C962548    DEC EDX

7C962549    MOV EAX,DWORD PTR [EAX+4]

7C96254C    JNZ SHORT ntdll.7C962548

7C96254E    MOV DWORD PTR [ECX+C],EAX

7C962551    MOV DWORD PTR [ECX+10],EBX

7C962554    ADD EAX,0C

7C962557    JMP SHORT ntdll.7C96255B

7C962559    XOR EAX,EAX

7C96255B    POP EDI

7C96255C    POP ESI

7C96255D    POP EBX

7C96255E    POP EBP

7C96255F    RET 8

Listing 5.2 (continued)

As you can see, RtlGetElementGenericTable is a somewhat more
involved function compared to the ones you’ve looked at so far. The following
sections provide a detailed analysis of the disassembled code from Listing 5.2.

Setup and Initialization

Just like the previous APIs, RtlGetElementGenericTable starts with a
conventional stack frame setup sequence. This tells you that this function’s
parameters are going to be accessed using EBP instead of ESP. Let’s examine
the first few lines of RtlGetElementGenericTable.

7C9624E3    MOV ECX,DWORD PTR [EBP+8]

7C9624E6    MOV EDX,DWORD PTR [ECX+14]

7C9624E9    MOV EAX,DWORD PTR [ECX+C]

Generic table APIs all seem to take the root table data structure as their first
parameter, and there is no reason to assume that RtlGetElementGeneric
Table is any different. In this sequence the function loads the root table pointer
into ECX, and then loads the value stored at offset +14 into EDX. Recall that in
the dissection of RtlNumberGenericTableElements it was established
that offset +14 contains the total number of elements in the table. The next
instruction loads the third pointer at offset +0c from the three pointer group
into EAX. Let’s proceed to the next sequence.

Beyond the Documentation 155

10_574817 ch05.qxd  3/16/05  8:44 PM  Page 155



7C9624EC    PUSH EBX

7C9624ED    PUSH ESI

7C9624EE    MOV ESI,DWORD PTR [ECX+10]

7C9624F1    PUSH EDI

7C9624F2    MOV EDI,DWORD PTR [EBP+C]

7C9624F5    CMP EDI,-1

7C9624F8    LEA EBX,DWORD PTR [EDI+1]

7C9624FB    JE SHORT ntdll.7C962559

7C9624FD    CMP EBX,EDX

7C9624FF    JA SHORT ntdll.7C962559

This code starts out by pushing EBX and ESI into the stack in order to pre-
serve their original values (we know this because there are no function calls
anywhere to be seen). The code then proceeds to load the value from offset +10
of the root structure into ESI, and then pushes EDI in order to start using it. In
the following instruction, EDI is loaded with the value pointed to by EBP + C. 

You know that EBP + C points to the second parameter, just like EBP + 8
pointed to the first parameter. So, the instruction at ntdll.7C9624F2 loads
EDI with the value of the second parameter passed into the function. Immedi-
ately afterward, EDI is compared against –1 and you see a classic case of inter-
leaved code, which is a very common phenomena in code generated for modern
IA-32 processors (see the section on execution environments in Chapter 2). Inter-
leaved code means that instructions aren’t placed in the code in their natural
order, but instead pairs of interdependent instructions are interleaved so that in
runtime the CPU has time to complete the first instruction before it must execute
the second one. In this case, you can tell that the code is interleaved because the
conditional jump doesn’t immediately follow the CMP instruction. This is done
to allow the highest level of parallelism during execution.

Following the comparison is another purely arithmetical application of the
LEA instruction. This time, LEA is used simply to perform an EBX = EDI + 1.
Typically, compilers would use INC EDI, but in this case the compiler wanted
to keep both the original and the incremented value, so LEA is an excellent
choice. It increments EDI by one and stores the result in EBX—the original
value remains in EDI.

Next you can see the JE instruction that is related to the CMP instruction from
7C9624F5. As a reminder, EDI (the second parameter passed to the function)
was compared against –1. This instruction jumps to ntdll.7C962559 if EDI
== -1. If you go back to Listing 5.2 and take a quick look at the code at
ntdll.7C962559, you can quickly see that it is a failure or error condition of
some kind, because it sets EAX (the return value) to zero, pops the registers pre-
viously pushed onto the stack, and returns. So, if you were to translate the pre-
ceding conditional statement back into C, it would look like the following code:

if (Param2 == 0xffffffff)

return 0;
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The last two instructions in the current chunk perform another check on that
same parameter, except that this time the code is using EBX, which as you
might recall is the incremented version of EDI. Here EBX is compared against
EDX, and the program jumps to ntdll.7C962559 if EBX is greater. Notice that
the jump target address, ntdll.7C962559, is the same as the address of the
previous conditional jump. This is a strong indication that the two jumps are
part of what was a single compound conditional statement in the source code.
They are just two conditions tested within a single conditional statement. 

Another interesting and informative hint you find here is the fact that the
conditional jump instruction used is JA (jump if above), which uses the carry
flag (CF). This indicates that EBX and EDX are both treated as unsigned values.
If they were signed, the compiler would have used JG, which is the signed ver-
sion of the instruction. For more information on signed and unsigned condi-
tional codes refer to Appendix A.

If you try to put the pieces together, you’ll discover that this last condition
actually reveals an interesting piece of information about the second parameter
passed to this function. Recall that EDX was loaded from offset +14 in the struc-
ture, and that this is the member that stores the total number of elements in the
table. This indicates that the second parameter passed to RtlGetElement
GenericTable is an index into the table. These last two instructions simply
confirm that it is a valid index by comparing it against the total number of ele-
ments. This also sheds some light on why the index was incremented. It was
done in order to properly compare the two, because the index is probably zero-
based, and the total element count is certainly not. Now that you understand
these two conditions and know that they both originated in the same conditional
statement, you can safely assume that the validation done on the index parame-
ter was done in one line and that the source code was probably something like
the following:

ULONG AdjustedElementToGet = ElementToGet + 1;

if (ElementToGet == 0xffffffff || 

AdjustedElementToGet > Table->TotalElements)

return 0;

How can you tell whether ElementToGet + 1 was calculated within the
if statement or if it was calculated into a variable first? You don’t really know
for sure, but when you look at all the references to EBX in Listing 5.2 you can
see that the value ElementToGet + 1 is being used repeatedly throughout
the function. This suggests that the value was calculated once into a local vari-
able and that this variable was used in later references to the incremented
value. The compiler has apparently assigned EBX to store this particular local
variable rather than place it on the stack. 

On the other hand, it is also possible that the source code contained multiple
copies of the statement ElementToGet + 1, and that the compiler simply
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optimized the code by automatically declaring a temporary variable to store
the value instead of computing it each time it is needed. This is another case
where you just don’t know—this information was lost during the compilation
process. 

Let’s proceed to the next code sequence:

7C962501    CMP ESI,EBX

7C962503    JE SHORT ntdll.7C962554

7C962505    JBE SHORT ntdll.7C96252B

7C962507    MOV EDX,ESI

7C962509    SHR EDX,1

7C96250B    CMP EBX,EDX

7C96250D    JBE SHORT ntdll.7C96251B

7C96250F    SUB ESI,EBX

7C962511    JE SHORT ntdll.7C96254E

This section starts out by comparing ESI (which was taken earlier from offset
+10 at the table structure) against EBX. This exposes the fact that offset +10 also
points to some kind of an index into the table (because it is compared against
EBX, which you know is an index into the table), but you don’t know exactly
what that index is. If ESI == EBX, the code jumps to ntdll.7C962554, and if
ESI <= EBX, it goes to ntdll.7C96252B. It is not clear at this point why the
second jump uses JBE even though the operands couldn’t be equal at this point
or the first jump would have been taken. 

Let’s first explore what happens in ntdll.7C962554: 

7C962554    ADD EAX,0C

7C962557    JMP SHORT ntdll.7C96255B

This code does EAX = EAX + 12, and unconditionally jumps to ntdll.
7C96255B. If you go back to Listing 5.2, you can see that ntdll.7C96255B is
right near the end of the function, so the preceding code snippet simply returns
EAX + 12 to the caller. Recall that EAXwas loaded earlier from the table structure
at offset +C, and that while dissecting RtlInitializeGenericTable, you
were working under the assumption that offsets +4, +8, and +C are all pointers
into the same three-pointer data structure (they were all initialized to point at
offset +4). At this point one, of these pointers is incremented by 12 and returned
to the caller. This is a powerful hint about the structure of the generic tables. Let’s
examine the hints one by one:

■■ You know that there is a group of three pointers starting in offset +4 in
the root data structure.

■■ You know that each one of these pointers point into another group of
three pointers. Initially, they all point to themselves, but you can safely
assume that this changes later on when the table is filled.
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■■ You know that RtlGetElementGenericTable is returning the value
of one of these pointers to the caller, but not before it is incremented by
12. Note that 12 also happens to be the total size of those three pointers.

■■ You have established that RtlGetElementGenericTable takes two
parameters and that the first is the table data structure pointer and the
second is an index into the table. You can safely assume that it returns
the element through the return value.

All of this leads to one conclusion. RtlGetElementGenericTable is
returning a pointer to an element, and adding 12 simply skips the element’s
header and gets directly to the element’s data. It seems very likely that this
header is another three-pointer data structure just like that in offset +4 in the
root data structure. Furthermore, it would make sense that each of those point-
ers point to other items with three-pointer headers, just like this one. One other
thing you have learned here is that offset +10 is the index of the cached 
element—the same element pointed to by the third pointer, at offset +c. The
difference is that +c is a pointer to memory, and offset +10 is an index into the
table, which is equivalent to an element number.

To me, this is the thrill of reversing—one by one gathering pieces of evi-
dence and bringing them together to form partial explanations that slowly
evolve into a full understanding of the code. In this particular case, we’ve made
progress in what is undoubtedly the most important piece of the puzzle: the
generic table data structure. 

Logic and Structure

There is one key element that’s been quietly overlooked in all of this: What is
the structure of this function? Sure, you can treat all of those conditional and
unconditional jumps as a bunch of goto instructions and still get away with
understanding the flow of relatively simple code. On the other hand, what
happens when there are too many of these jumps to the point where it gets
hard to keep track of all of them? You need to start thinking the code’s logic
and structure, and the natural place to start is by trying to logically place all of
these conditional and unconditional jumps. Remember, the assembly language
code you’re reversing was generated by a compiler, and the original code was
probably written in C. In all likelihood all of this logic originated in neatly
organized if-else statements. How do you reconstruct this layout?

Let’s start with the first interesting conditional jump in Listing 5.2—the JE
that goes to ntdll.7C962554 (I’m ignoring the first two conditions that jump
to ntdll.7C962559 because we’ve already discussed those). How would
you conditionally skip over so much code in a high-level language? Simple,
the condition tested in the assembly language code is the opposite of what was
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tested in the source code. That’s because the processor needs to know whether
to skip code, and high-level languages have a different perspective—which
terms must be satisfied in order to enter a certain conditional block. In this case,
the test of whether ESI equals EBX must have been originally stated as if
(ESI != EBX), and there was a very large chunk of code within those curly
braces. The address to which JE is jumping is simply the code that comes right
after the end of that conditional block.

It is important to realize that, according to this theory, every line between
that JE and the address to which it jumps resides in a conditional block, so any
additional conditions after this can be considered nested logic. 

Let’s take this logical analysis approach a bit further. The conditional jump
that immediately follows the JE tests the same two registers, ESI and EBX, and
jumps to ntdll.7C96252B if ESI ≤ EBX. Again, we’re working under the
assumption that the condition is reversed (a detailed discussion of when condi-
tions are reversed and when they’re not can be found in Appendix A). This
means that the original condition in the source code must have been (ESI >
EBX). If it isn’t satisfied, the jump is taken, and the conditional block is skipped. 

One important thing to notice about this particular condition is the uncon-
ditional JMP that comes right before ntdll.7C96252B. This means that
ntdll.7C96252B is a chunk of code that wouldn’t be executed if the condi-
tional block is executed. This means that ntdll.7C96252B is only executed
when the high-level conditional block is skipped. Why is that? When you
think about it, this is a most popular high-level language programming con-
struct: It is simply an if-else statement. The else block starts at ntdll
.7C96252B, which is why there is an unconditional jump after the if block—
we only want one of these blocks to run, not both.

Whenever you find a conditional jump that skips a code block that ends with a
forward-pointing unconditional JMP, you’re probably looking at an if-else
block. The block being skipped is the if block, and the code after the
unconditional JMP is the else block. The end of the else block is marked by
the target address of the unconditional JMP.

For more information on compiler-generated logic please refer to Appendix A.
Let’s now proceed to investigate the code chunk we were looking at earlier

before we examined the code at ntdll.7C962554. Remember that we were
at a condition that compared ESI (which is the index from offset +10) against
EBX (which is apparently the index of the element we are trying to get). There
were two conditional jumps. The first one (which has already been examined)
is taken if the operands are equal, and the second goes to ntdll.7C96252B if
ESI ≤ EBX. We’ll go back to this conditional section later on. It’s important to
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realize that the code that follows these two jumps is only executed if ESI >
EBX, because we’ve already tested and conditionally jumped if ESI == EBX
or if ESI < EBX. 

When none of the branches are taken, the code copies ESI into EDX and
shifts it by one binary position to the right. Binary shifting is a common way to
divide or multiply numbers by powers of two. Shifting integer x to the left by
n bits is equivalent to x × 2n and shifting right by n bits is equivalent to x/2n. In
this case, right shifting EDX by one means EDX/21, or EDX/2. For more infor-
mation on how to decipher arithmetic sequences refer to Appendix B.

Let’s proceed to compare EDX (which now contains ESI/2) with EBX
(which is the incremented index of the element we’re after), and jump to
ntdll.7C96251B if EBX ≤ EDX. Again, the comparison uses JBE, which
assumes unsigned operands, so it’s pretty safe to assume that table indexes are
defined as unsigned integers. Let’s ignore the conditional branch for a moment
and proceed to the code that follows, as if the branch is not taken. 

Here EBX is subtracted from ESI and the result is stored in ESI. The fol-
lowing instruction might be a bit confusing. You can see a JE (which is jump if
equal) after the subtraction because subtraction and comparison are the same
thing, except that in a comparison the result of the subtraction is discarded,
and only the flags are kept. This JE branch will be taken if EBX == ESI before
the subtraction or if ESI == 0 after the subtraction (which are two different
ways of looking at what is essentially the same thing). Notice that this exposes
a redundancy in the code—you’ve already compared EBX against ESI earlier
and exited the function if they were equal (remember the jump to ntdll
.7C962554?), so ESI couldn’t possibly be zero here. The programmer who
wrote this code apparently had a pretty good reason to double-check that the
code that follows this check is never reached when ESI == EBX. Let’s now see
why that is so.

Search Loop 1

At this point, you have completed the analysis of the code section starting at
ntdll.7C962501 and ending at ntdll.7c962511. The next sequence
appears to be some kind of loop. Let’s take a look at the code and try and fig-
ure out what it does.

7C962513    DEC ESI

7C962514    MOV EAX,DWORD PTR [EAX+4]

7C962517    JNZ SHORT ntdll.7C962513

7C962519    JMP SHORT ntdll.7C96254E

As I’ve mentioned, the first thing to notice about these instructions is that
they form a loop. The JNZ will keep on jumping back to ntdll.7C962513
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(which is the beginning of the loop) for as long as ESI != 0. What does this
loop do? Remember that EAX is the third pointer from the three-pointer group
in the root data structure, and that you’re currently working under the
assumption that each element starts with the same three-pointer structure.
This loop really supports that assumption, because it takes offset +4 in what
we believe is some element from the list and treats it as another pointer. Not
definite proof, but substantial evidence that +4 is the second in a series of three
pointers that precede each element in a generic table.

Apparently the earlier subtraction of EBX from ESI provided the exact num-
ber of elements you need to traverse in order to get from EAX to the element you
are looking for (remember, you already know ESI is the index of the element
pointed to by EAX). The question now is, in which direction are you moving rel-
ative to EAX? Are you going toward lower-indexed elements or higher-indexed
elements? The answer is simple, because you’ve already compared ESI with
EBX and branched out for cases where ESI ≤ EBX, so you know that in this par-
ticular case ESI > EBX. This tells you that by taking each element’s offset +4
you are moving toward the lower-indexed elements in the table. 

Recall that earlier I mentioned that the programmer must have really
wanted to double-check cases where ESI < EBX? This loop clarifies that
issue. If you ever got into this loop in a case where ESI ≤ EBX, ESI would
immediately become a negative number because it is decremented at the very
beginning. This would cause the loop to run unchecked until it either ran into
an invalid pointer and crashed or (if the elements point back to each other in a
loop) until ESI went back to zero again. In a 32-bit machine this would take
4,294,967,296 iterations, which may sound like a lot, but today’s high-speed
processors might actually complete this many iterations so quickly that if it
happened rarely the programmer might actually miss it! This is why from a
programmer’s perspective crashing the program is sometimes better than let-
ting it keep on running with the problem—it simplifies the program’s stabi-
lization process.

When our loop ends the code takes an unconditional jump to ntdll
.7C96254E. Let’s see what happens there.

7C96254E    MOV DWORD PTR [ECX+C],EAX

7C962551    MOV DWORD PTR [ECX+10],EBX

Well, very interesting indeed. Here, you can get a clear view on what offsets
+C and +10 in the root data structure contain. It appears that this is some kind
of an optimization for quickly searching and traversing the table. Offset +C
receives the pointer to the element you’ve been looking for (the one you’ve
reached by going through the loop), and offset +10 receives that element’s
index. Clearly the reason this is done is so that repeated calls to this function

162 Chapter 5

10_574817 ch05.qxd  3/16/05  8:44 PM  Page 162



(and possibly to other functions that traverse the list) would require as few
iterations as possible. This code then proceeds into ntdll.7C962554, which
you’ve already looked at. ntdll.7C962554 skips the element’s header by
adding 12 and returns that pointer to the caller. 

You’ve now established the basics of how this function works, and a little bit
about how a generic table is laid out. Let’s proceed with the other major cases
that were skipped over earlier. 

Let’s start with the case where the condition ESI < EBX is satisfied (the
actual check is for ESI ≤ EBX, but you could never be here if ESI == EBX). Here
is the code that executes in this case.

7C96252B    MOV EDI,EBX

7C96252D    SUB EDX,EBX

7C96252F    SUB EDI,ESI

7C962531    INC EDX

7C962532    CMP EDI,EDX

7C962534    JA SHORT ntdll.7C962541

7C962536    TEST EDI,EDI

7C962538    JE SHORT ntdll.7C96254E

This code performs EDX = (Table->TotalElements – ElementToGet
+ 1) + 1 and EDI = ElementToGet + 1 – LastIndexFound. In plain
English, EDX now has the distance (in elements) from the element you’re look-
ing for to the end of the list, and EDI has the distance from the element you’re
looking for to the last index found. 

Search Loop 2

Having calculated the two distances above, you now reach an important junc-
tion in which you enter one of two search loops. Let’s start by looking at the
first conditional branch that jumps to ntdll.7C962541 if EDI > EDX.

7C962541    TEST EDX,EDX

7C962543    LEA EAX,DWORD PTR [ECX+4]

7C962546    JE SHORT ntdll.7C96254E

7C962548    DEC EDX

7C962549    MOV EAX,DWORD PTR [EAX+4]

7C96254C    JNZ SHORT ntdll.7C962548

This snippet checks that EDX != 0, and starts looping on elements starting
with the element pointed by offset +4 of the root table data structure. Like the
previous loop you’ve seen, this loop also traverses the elements using offset +4
in each element. The difference with this loop is the starting pointer. The pre-
vious loop you saw started with offset + c in the root data structure, which is a
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pointer to the last element found. This loop starts with offset +4. Which ele-
ment does offset +4 point to? How can you tell? There is one hint available.

Let’s see how many elements this loop traverses, and how you get to that
number. The number of iterations is stored in EDX, which you got by calculating
the distance between the last element in the table and the element that you’re
looking for. This loop takes you the distance between the end of the list and the
element you’re looking for. This means that offset +4 in the root structure points
to the last element in the list! By taking offset +4 in each element you are going
backward in the list toward the beginning. This makes sense, because in the pre-
vious loop (the one at ntdll.7C962513) you established that taking each ele-
ment’s offset +4 takes you “backward” in the list, toward the lowered-indexed
elements. This loop does the same thing, except that it starts from the very end
of the list. All RtlGetElementGenericTable is doing is it’s trying to find the
right element in the lowest possible number of iterations. 

By the time EDX gets to zero, you know that you’ve found the element. The
code then flows into ntdll.7C96254E, which you’ve examined before. This
is the code that caches the element you’ve found into offsets +c and +10 of the
root data structure. This code flows right into the area in the function that
returns the pointer to our element’s data to the caller.

What happens when (in the previous sequence) EDI == 0, and the jump to
ntdll.7C96254E is taken? This simply skips the loop and goes straight to
the caching of the found element, followed by returning it to the caller. In this
case, the function returns the previously found element—the one whose
pointer is cached in offset +c of the root data structure. 

Search Loop 3

If neither of the previous two branches is taken, you know that EDI < EDX
(because you’ve examined all other possible options). In this case, you know
that you must move forward in the list (toward higher-indexed elements) in
order to get from the cached element in offset +c to the element you are look-
ing for. Here is the forward-searching loop: 

7C962513    DEC ESI

7C962514    MOV EAX,DWORD PTR [EAX+4]

7C962517    JNZ SHORT ntdll.7C962513

7C962519    JMP SHORT ntdll.7C96254E

The most important thing to notice about this loop is that it is using a differ-
ent pointer in the element’s header. The backward-searching loops you
encountered earlier were both using offset +4 in the element’s header, and this
one is using offset +0. That’s really an easy one—this is clearly a linked list of
some sort, where offset +0 stores the NextElement pointer and offset +4
stores the PrevElement pointer. Also, this loop is using EDI as the counter,

164 Chapter 5

10_574817 ch05.qxd  3/16/05  8:44 PM  Page 164



and EDI contains the distance between the cached element and the element
that you’re looking for. 

Search Loop 4

There is one other significant search case that hasn’t been covered yet. Remem-
ber how before we got into the first backward-searching loop we tested for a
case where the index was lower than LastIndexFound / 2? Let’s see what
the function does when we get there:

7C96251B    TEST EBX,EBX

7C96251D    LEA EAX,DWORD PTR [ECX+4]

7C962520    JE SHORT ntdll.7C96254E

7C962522    MOV EDX,EBX

7C962524    DEC EDX

7C962525    MOV EAX,DWORD PTR [EAX]

7C962527    JNZ SHORT ntdll.7C962524

7C962529    JMP SHORT ntdll.7C96254E

This sequence starts with the element at offset +4 in the root data structure,
which is the one we’ve previously defined as the last element in the list. It then
starts looping on elements using offset +0 in each element’s header. Offset +0 has
just been established as the element’s NextElement pointer, so what’s going
on? How could we possibly be going forward from the last element in the list? It
seems that we must revise our definition of offset +4 in the root data structure a
little bit. It is not really the last element in the list, but it is the head of a circular
linked list. The term circular means that the NextElement pointer in the last ele-
ment of the list points back to the beginning and that the PrevElement pointer
in the first element points to the last element. 

Because in this case the index is lower than LastIndexFound / 2, it would
just be inefficient to start our search from the last element found. Instead, we
start the search from the first element in the list and move forward until 
we find the right element. 

Reconstructing the Source Code

This concludes the detailed analysis of RtlGetElementGenericTable. It is
not a trivial function, and it includes several slightly confusing control flow
constructs and some data structure manipulation. Just to demonstrate the
power of reversing and just how accurate the analysis is, I’ve attempted to
reconstruct the source code of that function, along with a tentative declaration
of what must be inside the TABLE data structure. Listing 5.3 shows what you
currently know about the TABLE data structure. Listing 5.4 contains my recon-
structed source code for RtlGetElementGenericTable.
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struct TABLE

{

PVOID Unknown1;

LIST_ENTRY *LLHead;

LIST_ENTRY *SomeEntry;

LIST_ENTRY *LastElementFound;

ULONG LastElementIndex;

ULONG NumberOfElements;

ULONG Unknown1;

ULONG Unknown2;

ULONG Unknown3;

ULONG Unknown4;

};

Listing 5.3 The contents of the TABLE data structure, based on what has been learned so
far.

PVOID stdcall MyRtlGetElementGenericTable(TABLE *Table, ULONG

ElementToGet)

{

ULONG TotalElementCount = Table->NumberOfElements;

LIST_ENTRY *ElementFound = Table->LastElementFound;

ULONG LastElementFound = Table->LastElementIndex;

ULONG AdjustedElementToGet = ElementToGet + 1;

if (ElementToGet == -1 || AdjustedElementToGet > TotalElementCount)

return 0;

// If the element is the last element found, we just return it.

if (AdjustedElementToGet != LastIndexFound)

{

// If the element isn’t LastElementFound, go search for it:

if (LastIndexFound > AdjustedElementToGet)

{

// The element is located somewhere between the first element and 

// the LastElementIndex. Let’s determine which direction would 

// get us there the fastest.

ULONG HalfWayFromLastFound = LastIndexFound / 2;

if (AdjustedElementToGet > HalfWayFromLastFound)

{

// We start at LastElementFound (because we’re closer to it) and 

// move backward toward the beginning of the list.

ULONG ElementsToGo = LastIndexFound - AdjustedElementToGet;

while(ElementsToGo--)

ElementFound = ElementFound->Blink;        

Listing 5.4 A source-code level reconstruction of RtlGetElementGenericTable.
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}

else

{

// We start at the beginning of the list and move forward:

ULONG ElementsToGo = AdjustedElementToGet;

ElementFound = (LIST_ENTRY *) &Table->LLHead;

while(ElementsToGo--)

ElementFound = ElementFound->Flink;        

}

}

else

{

// The element has a higher index than LastElementIndex. Let’s see

// if it’s closer to the end of the list or to LastElementIndex:

ULONG ElementsToLastFound = AdjustedElementToGet - LastIndexFound;

ULONG ElementsToEnd = TotalElementCount - AdjustedElementToGet+ 1;

if (ElementsToLastFound <= ElementsToEnd)

{

// The element is closer (or at the same distance) to the last

// element found than to the end of the list. We traverse the 

// list forward starting at LastElementFound.

while (ElementsToLastFound--)

ElementFound = ElementFound->Flink;          

}

else

{

// The element is closer to the end of the list than to the last 

// element found. We start at the head pointer and traverse the 

// list backward.

ElementFound = (LIST_ENTRY *) &Table->LLHead;

while (ElementsToEnd--)

ElementFound = ElementFound->Blink;

}

}

// Cache the element for next time.   

Table->LastElementFound = ElementFound;

Table->LastElementIndex = AdjustedElementToGet;

}

// Skip the header and return the element.

// Note that we don’t have a full definition for the element struct 

// yet, so I’m just incrementing by 3 ULONGs.

return (PVOID) ((PULONG) ElementFound + 3); 

}

Listing 5.4 (continued)
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It’s quite amazing to think that with a few clever deductions and a solid
understanding of assembly language you can convert those two pages of
assembly language code to the function in Listing 5.4. This function does
everything the disassembled code does at the same order and implements the
exact same logic. 

If you’re wondering just how close my approximation is to the original
source code, here’s something to consider: If compiled using the right com-
piler version and the right set of flags, the preceding source code will produce
the exact same binary code as the function we disassembled earlier from
NTDLL, byte for byte. The compiler in question is the one shipped with
Microsoft Visual C++ .NET 2003—Microsoft 32-bit C/C++ Optimizing Compiler
Version 13.10.3077 for 80x86. 

If you’d like to try this out for yourself, keep in mind that Windows is not
built using the compiler’s default settings. The following are the optimization
and code generation flags I used in order to get binary code that was identical
to the one in NTDLL. The four optimization flags are: /Ox for enabling maxi-
mum optimizations, /Og for enabling global optimizations, /Os for favoring
code size (as opposed to code speed), and /Oy- for ensuring the use of frame
pointers. I also had /GA enabled, which optimizes the code specifically for
Windows applications.

Standard reversing practices rarely require such a highly accurate recon-
struction of a function’s source code. Simply figuring out the basic data struc-
tures and the generally idea of the logic that takes place in the function is
enough for most purposes. Determining the exact compiler version and com-
piler flags in order to produce the exact same binary code as the one we started
with is a nice exercise, but it has limited practical value for most purposes.

Whew! You’ve just completed your first attempt at reversing a fairly com-
plicated and involved function. If you’ve never attempted reversing before,
don’t worry if you missed parts of this session—it’ll be easier to go back to this
function once you develop a full understanding of the data structures. In my
opinion, reading through such a long reversing session can often be much
more productive when you already know the general idea of what the code
does and how data is laid out.

RtlInsertElementGenericTable
Let’s proceed to see how an element is added to the table by looking at
RtlInsertElementGenericTable. Listing 5.5 contains the disassembly of
RtlInsertElementGenericTable.
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7C924DC0    PUSH EBP

7C924DC1    MOV EBP,ESP

7C924DC3    PUSH EDI

7C924DC4    MOV EDI,DWORD PTR [EBP+8]

7C924DC7    LEA EAX,DWORD PTR [EBP+8]

7C924DCA    PUSH EAX

7C924DCB    PUSH DWORD PTR [EBP+C]

7C924DCE    CALL ntdll.7C92147B

7C924DD3    PUSH EAX

7C924DD4    PUSH DWORD PTR [EBP+8]

7C924DD7    PUSH DWORD PTR [EBP+14]

7C924DDA    PUSH DWORD PTR [EBP+10]

7C924DDD    PUSH DWORD PTR [EBP+C]

7C924DE0    PUSH EDI

7C924DE1    CALL ntdll.7C924DF0

7C924DE6    POP EDI

7C924DE7    POP EBP

7C924DE8    RET 10

Listing 5.5 A disassembly of RtlInsertElementGenericTable, produced using OllyDbg.

We’ve already discussed the first two instructions—they create the stack
frame. The instruction that follows pushes EDI onto the stack. Generally speak-
ing, there are three common scenarios where the PUSH instruction is used in a
function:

■■ When saving the value of a register that is about to be used as a local
variable by the function. The value is then typically popped out of the
stack near the end of the function. This is easy to detect because the
value must be popped into the same register.

■■ When pushing a parameter onto the stack before making a function call. 

■■ When copying a value, a PUSH instruction is sometimes immediately
followed by a POP that loads that value into some other register. This 
is a fairly unusual sequence, but some compilers generate it from time
to time.

In the function we must try and figure out whether EDI is being pushed as
the last parameter of ntdll.7C92147B, which is called right afterward, or if
it is a register whose value is being saved. Because you can see that EDI is
overwritten with a new value immediately after the PUSH, and you can also
see that it’s popped back from the stack at the very end of the function, you
know that the compiler is just saving the value of EDI in order to be able to use
that register as a local variable within the function. 
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The next two instructions in the function are somewhat interesting.

7C924DC4    MOV EDI,DWORD PTR [EBP+8]

7C924DC7    LEA EAX,DWORD PTR [EBP+8]

The first line loads the value of the first parameter passed into the function
(we’ve already established that [ebp+8] is the address of the first parameter
in a function) into the local variable, EDI. The second loads the pointer to the
first parameter into EAX. Notice that difference between the MOV and LEA
instructions in this sequence. MOV actually goes to memory and retrieves the
value pointed to by [ebp+8] while LEA simply calculates EBP + 8 and loads
that number into EAX. 

One question that quickly arises is whether EAX is another local variable,
just like EDI. In order to answer that, let’s examine the code that immediately
follows.

7C924DCA    PUSH EAX

7C924DCB    PUSH DWORD PTR [EBP+C]

7C924DCE    CALL ntdll.7C92147B

You can see that the first parameter pushed onto the stack is the value of
EAX, which strongly suggests that EAX was not assigned for a local variable,
but was used as temporary storage by the compiler because two instructions
were needed into order to push the pointer of the first parameter onto the
stack. This is a very common limitation in assembly language: Most instruc-
tions aren’t capable of receiving complex arguments like LEA and MOV can.
Because of this, the compiler must use MOV or LEA and store their output into
a register and then use that register in the instruction that follows. 

To go back to the code, you can quickly see that there is a function, ntdll
.7C92147B, that takes two parameters. Remember that in the stdcall calling
convention (which is the convention used by most Windows code) parameters
are always pushed onto the stack in the reverse order, so the first PUSH instruc-
tion (the one that pushes EAX) is really pushing the second parameter. The first
parameter that ntdll.7C92147B receives is [ebp+C], which is the second
parameter that was passed to RtlInsertElementGenericTable. 

RtlLocateNodeGenericTable

Let’s now follow the function call made from RtlInsertElementGeneric
Table into ntdll.7C92147B and analyze that function, which I have tenta-
tively titled RtlLocateNodeGenericTable. The full disassembly of that
function is presented in Listing 5.6. 
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7C92147B    MOV EDI,EDI

7C92147D    PUSH EBP

7C92147E    MOV EBP,ESP

7C921480    PUSH ESI

7C921481    MOV ESI,DWORD PTR [EDI]

7C921483    TEST ESI,ESI

7C921485    JE ntdll.7C924E8C

7C92148B    LEA EAX,DWORD PTR [ESI+18]

7C92148E    PUSH EAX

7C92148F    PUSH DWORD PTR [EBP+8]

7C921492    PUSH EDI

7C921493    CALL DWORD PTR [EDI+18]

7C921496    TEST EAX,EAX

7C921498    JE ntdll.7C924F14

7C92149E    CMP EAX,1

7C9214A1    JNZ SHORT ntdll.7C9214BB

7C9214A3    MOV EAX,DWORD PTR [ESI+8]

7C9214A6    TEST EAX,EAX

7C9214A8    JNZ ntdll.7C924F22

7C9214AE    PUSH 3

7C9214B0    POP EAX

7C9214B1    MOV ECX,DWORD PTR [EBP+C]

7C9214B4    MOV DWORD PTR [ECX],ESI

7C9214B6    POP ESI

7C9214B7    POP EBP

7C9214B8    RET 8

7C9214BB    XOR EAX,EAX

7C9214BD    INC EAX

7C9214BE    JMP SHORT ntdll.7C9214B1

Listing 5.6 Disassembly of the internal, nonexported function at ntdll.7C92147B.

Before even beginning to reverse this function, there are a couple of slight
oddities about the very first few lines in Listing 5.6 that must be considered.
Notice the first line: MOV EDI, EDI. It does nothing! It is essentially dead code
that was put in place by the compiler as a placeholder, in case someone wanted
to trap this function. Trapping means that some external component adds a JMP
instruction that is used as a notification whenever the trapped function is called.
By placing this instruction at the beginning of every function, Microsoft essen-
tially set an infrastructure for trapping functions inside NTDLL. Note that these
placeholders are only implemented in more recent versions of Windows (in
Windows XP, they were introduced in Service Pack 2), so you may or may not
see them on your system.

The next few lines also exhibit a peculiarity. After setting up the traditional
stack frame, the function is reading a value from EDI, even though that regis-
ter has not been accessed in this function up to this point. Isn’t EDI’s value just
going to be random at this point?
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If you look at RtlInsertElementGenericTable again (in Listing 5.5), it
seems that the value of the first parameter passed to that function (which is
probably the address of the root TABLE data structure) is loaded into EDI
before the function from Listing 5.6 is called. This implies that the compiler is
simply using EDI in order to directly pass that pointer into RtlLocateNode
GenericTable, but the question is which calling convention passes parame-
ters through EDI? The answer is that no standard calling convention does that,
but the compiler has chosen to do this anyway. This indicates that the compiler
controls all points of entry into this function. 

Generally speaking, when a function is defined within an object file, the
compiler has no way of knowing what its scope is going to be. It might be
exported by the linker and called by other modules, or it might be internal to
the executable but called from other object files. In any case, the compiler must
honor the specified calling convention in order to ensure compatibility with
those unknown callers. The only exception to this rule occurs when a function
is explicitly defined as local to the current object file using the static key-
word. This informs the compiler that only functions within the current source
file may call the function, which allows the compiler to give such static func-
tions nonstandard interfaces that might be more efficient.

In this particular case, the compiler is taking advantage of the static key-
word by avoiding stack usage as much as possible and simply passing some of
the parameters through registers. This is possible because the compiler is tak-
ing advantage of having full control of register allocation in both the caller and
the callee.

Judging by the number of bytes passed on the stack (8 from looking at the
RET instruction), and by the fact that EDI is being used without ever being ini-
tialized, we can safely assume that this function takes three parameters. Their
order is unknown to us because of that register, but judging from the previous
functions we can safely assume that the root data structure is always passed as
the first parameter. As I said, RtlInsertElementGenericTable loads EDI
with the value of the first parameter passed on to it, so we pretty much know
that EDI contains our root data structure. 

Let’s now proceed to examine the first lines of the actual body of this function.

7C921481    MOV ESI,DWORD PTR [EDI]

7C921483    TEST ESI,ESI

7C921485    JE ntdll.7C924E8C

In this snippet, you can quickly see that EDI is being treated as a pointer to
something, which supports the assumption about its being the table data struc-
ture. In this case, the first member (offset +0) is being tested for zero (remem-
ber that you’re reversing the conditions), and the function jumps to ntdll
.7C924E8C if that condition is satisfied. 
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You might have noticed an interesting fact: the address ntdll.7C924E8C
is far away from the address of the current code you’re looking at! In fact, that
code was not even included in Listing 5.6—it resides in an entirely separate
region in the executable file. How can that be—why would a function be scat-
tered throughout the module like that? The reason this is done has to do with
some Windows memory management issues. 

Remember we talked about working sets in Chapter 3? While building exe-
cutable modules, one of the primary concerns is to arrange the module in a way
that would allow the module to consume as little physical memory as possible
while it is loaded into memory. Because Windows only allocates physical mem-
ory to areas that are in active use, this module (and pretty much every other
component in Windows) is arranged in a special layout where popular code
sections are placed at the beginning of the module, while more esoteric code
sequences that are rarely executed are pushed toward the end. This process is
called working-set tuning, and is discussed in detail in Appendix A. 

For now just try to think of what you can learn from the fact that this condi-
tional block has been relocated and sent to a higher memory address. It most
likely means that this conditional block is rarely executed! Granted, there are
various reasons why a certain conditional block would rarely be executed, but
there is one primary explanation that is probably true for 90 percent of such
conditional blocks: the block implements some sort of error-handling code.
Error-handling code is a typical case in which conditional statements are cre-
ated that are rarely, if ever, actually executed.

Let’s now proceed to examine the code at ntdll.7C924E8C and see if it is
indeed an error-handling statement.

7C924E8C    XOR EAX,EAX

7C924E8E    JMP ntdll.7C9214B6

As expected, all this sequence does is set EAX to zero and jump back to the
function’s epilogue. Again, this is not definite, but all evidence indicates that
this is an error condition.

At this point, you can proceed to the code that follows the conditional state-
ment at ntdll.7C92148B, which is clearly the body of the function. 

The Callback

The body of RtlLocateNodeGenericTable performs a somewhat unusual
function call that appears to be the focal point of this entire function. Let’s take
a look at that code.

7C92148B    LEA EAX,DWORD PTR [ESI+18]

7C92148E    PUSH EAX

7C92148F    PUSH DWORD PTR [EBP+8]

7C921492    PUSH EDI

7C921493    CALL DWORD PTR [EDI+18]

Beyond the Documentation 173

10_574817 ch05.qxd  3/16/05  8:44 PM  Page 173



7C921496    TEST EAX,EAX

7C921498    JE ntdll.7C924F14

7C92149E    CMP EAX,1

7C9214A1    JNZ SHORT ntdll.7C9214BB

This snippet does something interesting that you haven’t encountered so far.
It is obvious that the first five instructions are all part of the same function call
sequence, but notice the address that is being called. It is not a hard-coded
address as usual, but rather the value at offset +18 in EDI. This exposes another
member in the root table data structure at offset +18 as a callback function of
some sort. If you go back to RtlInitializeGenericTable, you’ll see that
that offset +18 was loaded from the second parameter passed to that function.
This means that offset +18 contains some kind of a user-defined callback. 

The function seems to take three parameters, the first being the table data
structure; the second, the second parameter passed to the current function;
and the third, ESI + 18. Remember that ESIwas loaded earlier with the value
at offset +0 of the root structure. This indicates that offset +0 contains some
other data structure and that the callback is getting a pointer to offset +18 at
this structure. You don’t really know what this data structure is at this point. 

Once the callback function returns, you can test its return value and jump to
ntdll.7C924F14 if it is zero. Again, that address is outside of the main body
of the function. Another error handling code? Let’s find out. The following is
the code snippet found at ntdll.7C924F14.

7C924F14    MOV EAX,DWORD PTR [ESI+4]

7C924F17    TEST EAX,EAX

7C924F19    JNZ SHORT ntdll.7C924F22

7C924F1B    PUSH 2

7C924F1D    JMP ntdll.7C9214B0

7C924F22    MOV ESI,EAX

7C924F24    JMP ntdll.7C92148B

This snippet loads offset +4 from the unknown structure in ESI and tests if
it is zero. If it is nonzero, the code jumps to ntdll.7C924F22, a two-line seg-
ment that jumps back to ntdll.7C92148B (which is back inside the main
body of our function), but not before it loads ESI with the value from offset +4
in the unknown data structure (which is currently stored in EAX). If offset +4 at
the unknown structure is zero, the code pushes the number 2 onto the stack
and jumps back into ntdll.7C9214B0, which is another address at the main
body of RtlLocateNodeGenericTable. 

It is important at this point to keep track of the various branches you’ve
encountered in the code so far. This is a bit more confusing than it could have
been because of the way the function is scattered throughout the module. Essen-
tially, the test for offset +4 at the unknown structure has one of two outcomes. If
the value is zero the function returns to the caller (ntdll.7C9214B0 is near the
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very end of the function). If there is a nonzero value at that offset, the code loads
that value into ESI and jumps back to ntdll.7C92148B, which is the callback
calling code you just examined.

It looks like you’re looking at a loop that constantly calls into the callback
and traverses some kind of linked list that starts at offset +0 of the root data
structure. Each item seems to be at least 0x1c bytes long, because offset +18 of
that structure is passed as the last parameter in the callback.

Let’s see what happens when the callback returns a nonzero value.

7C92149E    CMP EAX,1

7C9214A1    JNZ SHORT ntdll.7C9214BB

7C9214A3    MOV EAX,DWORD PTR [ESI+8]

7C9214A6    TEST EAX,EAX

7C9214A8    JNZ ntdll.7C924F22

7C9214AE    PUSH 3

7C9214B0    POP EAX

7C9214B1    MOV ECX,DWORD PTR [EBP+C]

7C9214B4    MOV DWORD PTR [ECX],ESI

7C9214B6    POP ESI

7C9214B7    POP EBP

7C9214B8    RET 8

First of all, it seems that the callback returns some kind of a number and not a
pointer. This could be a Boolean, but you don’t know for sure yet. The first check
tests for ReturnValue != 1 and loads offset +8 into EAX if that condition is
not satisfied. Offset +8 in ESI is then tested for a nonzero value, and if it is zero
the code sets EAX to 3 (using the PUSH-POP method described earlier), and pro-
ceeds to what is clearly this function’s epilogue. At this point, it becomes clear
that the reason for loading the value 3 into EAX was to return the value 3 to the
caller. Notice how the second parameter is treated as a pointer, and that this
pointer receives the current value of ESI, which is that unknown structure we
discussed. This is important because it seems that this function is traversing a
different list than the one you’ve encountered so far. Apparently, there is some
kind of a linked list that starts at offset +0 in the root table data structure.

So far you’ve seen what happens when the callback returns 0 or when it
returns 1. When the callback returns some other value, the conditional jump
you looked at earlier is taken and execution continues at ntdll.7C9214BB.
Here is the code at that address:

7C9214BB    XOR EAX,EAX

7C9214BD    INC EAX

7C9214BE    JMP SHORT ntdll.7C9214B1

This snippet sets EAX to 1 and jumps back into ntdll.7C9214B1, that
you’ve just examined. Recall that that sequence doesn’t affect EAX, so it is effec-
tively returning 1 to the caller. 
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If you go back to the code that immediately follows the invocation of the
callback, you can see that when the check for ESI offset +8 finds a nonzero
value, the code jumps to ntdll.7C924F22, which is an address you’ve
already looked at. This is the code that loads ESI from EAX and jumps back to
the beginning of the loop. 

At this point, you have gathered enough information to make some edu-
cated guesses on this function. This function loops on code that calls some call-
back and acts differently based on the return value received. The callback
function receives items in what appears to be some kind of a linked list. The
first item in that list is accessed through offset +0 in the root data structure.

The continuation of the loop and the direction in which it goes depend on
the callback’s return value. 

1. If the callback returns 0, the loop continues on offset +4 in the current
item. If offset +4 contains zero, the function returns 2.

2. If the callback returns 1, the function loads the next item from offset +8
in the current item. If offset +8 contains zero the function returns 3.
When offset +8 is non-NULL, the function continues looping on offset +4
starting with the new item. 

3. If the callback returns any other value, the loop terminates and the cur-
rent item is returned. The return value is 1. 

High-Level Theories

It is useful to take a little break from all of these bits, bytes, and branches, and
look at the big picture. What are we seeing here, what does this function do?
It’s hard to tell at this point, but the repeated callback calls and the direction
changes based on the callback return values indicate that the callback might be
used for determining the relative position of an element within the list. This is
probably defined as an element comparison callback that receives two ele-
ments and compares them. The three return values probably indicate smaller
than, larger than, or equal. 

It’s hard to tell at this point which return value means what. If we were to
draw on our previous conclusions regarding the arrangement of next and pre-
vious pointers we see that the next pointer comes first and is followed by the
previous pointer. Based on that arrangement we can make the following
guesses:

■■ A return value of 0 from the callback means that the new element is
higher valued than the current element and that we need to move for-
ward in the list. 

■■ A return value of 1 would indicate that the new element is lower valued
than the current element and that we need to move backward in the list. 
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■■ Any value other than 1 or 0 indicates that the new element is identical
to one already in the list and that it shouldn’t be added. 

You’ve made good progress, but there are several pieces that just don’t seem
to fit in. For instance, assuming that offsets +4 and +8 in the new unknown struc-
ture do indeed point to a linked list, what is the point of looping on offset +4
(which is supposedly the next pointer), and then when finding a lower-valued
element to take one element from offset +8 (supposedly the prev pointer) only
to keep looping on offset +4? If this were a linked list, this would mean that if
you found a lower-valued element you’d go back one element, and then keep
moving forward. It’s not clear how such a sequence could be useful, which sug-
gests that this just isn’t a linked list. More likely, this is a tree structure of some
sort, where offset +4 points to one side of the tree (let’s assume it’s the one with
higher-valued elements), and offset +8 points to the other side. 

The beauty of this tree theory is that it would explain why the loop would
take offset +8 from the current element and then keep looping on offset +4.
Assuming that offset +4 does indeed point to the right node and that offset +8
points to the left node, it makes total sense. The function is looping toward
higher-valued elements by constantly moving to the next node on the right
until it finds a node whose middle element is higher-valued than the element
you’re looking for (which would indicate that the element is somewhere in the
left node). Whenever that happens the function moves to the left node and
then continues to move to the right from there until the element is found. This
is the classic binary search algorithm defined in Donald E. Knuth. The Art of Com-
puter Programming - Volume 3: Sorting and Searching (Second Edition). Addison
Wesley. [Knuth3]. Of course, this function is probably not searching for an
existing element, but is rather looking for a place to fit the new element.

Callback Parameters

Let’s take another look at the parameters passed to the callback and try to
guess their meaning. We already know what the first parameter is—it is read
from EDI, which is the root data structure. We also know that the third param-
eter is the current node in what we believe is a binary search, but why is the 
callback taking offset +18 in that structure? It is likely that +18 is not exactly 
an offset into a structure, but is rather just the total size of the element’s 
headers. By adding 18 to the element pointer the function is simply skipping
these headers and is getting to the actual element data, which is of course
implementation-specific. 

The second parameter of the callback is taken from the first parameter
passed to the function. What could it possible be? Since we think that this func-
tion is some kind of an element comparison callback, we can safely assume
that the second parameter points to the new element. It would have to be
because if it isn’t, what would the comparison callback compare? This means
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that the callback takes a TABLE pointer, a pointer to the data of the element
being added, and a pointer to the data of the current element. The function is
comparing the new element with the data of the element we’re currently tra-
versing. Let’s try and define a prototype for the callback.

typedef int (stdcall * TABLE_COMPARE_ELEMENTS) (

TABLE   *pTable,

PVOID    pElement1,

PVOID    pElement2

);

Summarizing the Findings

Let’s try and summarize all that has been learned about RtlLocateNode
GenericTable. Because we have a working theory on the parameters passed
into it, let’s revisit the code in RtlInsertElementGenericTable that
called into RtlLocateNodeGenericTable, just to try and use this knowl-
edge to learn something about the parameters that RtlInsertElement
GenericTable takes. The following is the sequence that calls RtlLocate
NodeGenericTable from RtlInsertElementGenericTable.

7C924DC7    LEA EAX,DWORD PTR [EBP+8]

7C924DCA    PUSH EAX

7C924DCB    PUSH DWORD PTR [EBP+C]

7C924DCE    CALL ntdll.7C92147B

It looks like the second parameter passed to RtlInsertElementGeneric
Table at [ebp+C] is the new element currently being inserted. Because you
now know that ntdll.7C92147B (RtlLocateNodeGenericTable) locates
a node in the generic table, you can now give it an estimated prototype.

int RtlLocateNodeGenericTable (

TABLE  *pTable,

PVOID   ElementToLocate,

NODE  **NodeFound;

);    

There are still many open questions regarding the data layout of the generic
table. For example, what was that linked list we encountered in RtlGet
ElementGenericTable and how is it related to the binary tree structure
we’ve found?

RtlRealInsertElementWorker 

After ntdll.7C92147B returns, RtlInsertElementGenericTable pro-
ceeds by calling ntdll.7C924DF0, which is presented in Listing 5.7. You don’t
have to think much to know that since the previous function only searched for
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the right node where to insert the element, surely this function must do the
actual insertion into the table.

Before looking at the implementation of the function, let’s go back and look
at how it’s called from RtlInsertElementGenericTable. Since you now
have some information on some of the data that RtlInsertElementGeneric
Table deals with, you might be able to learn a bit about this function before
you even start actually disassembling it. Here’s the sequence in RtlInsert
ElementGenericTable that calls the function.

7C924DD3    PUSH EAX

7C924DD4    PUSH DWORD PTR [EBP+8]

7C924DD7    PUSH DWORD PTR [EBP+14]

7C924DDA    PUSH DWORD PTR [EBP+10]

7C924DDD    PUSH DWORD PTR [EBP+C]

7C924DE0    PUSH EDI

7C924DE1    CALL ntdll.7C924DF0

It appears that ntdll.7C924DF0 takes six parameters. Let’s go over each
one and see if we can figure out what it contains.

Argument 6 This snippet starts right after the call to position the new 
element, so the sixth argument is essentially the return value from
ntdll.7C92147B, which could either be 1, 2, or 3. 

Argument 5 This is the address of the first parameter passed to 
RtlInsertElementGenericTable. However, it no longer contains
the value passed to RtlInsertElementGenericTable from the
caller. It has been used for receiving a binary tree node pointer from the
search function. This is essentially the pointer to the node to which the
new element will be added.

Argument 4 This is the fourth parameter passed to RtlInsert
ElementGenericTable. You don’t currently know what it contains.

Argument 3 This is the third parameter passed to RtlInsertElement
GenericTable. You don’t currently know what it contains.

Argument 2 Based on our previous assessment, the second parameter
passed to RtlInsertElementGenericTable is the actual element
we’ll be adding.

Argument 1 EDI contains the root table data structure.

Let’s try to take all of this information and use it to make a temporary pro-
totype for this function.

UNKNOWN RtlRealInsertElementWorker(

TABLE *pTable, 

PVOID ElementData, 

UNKNOWN Unknown1, 

UNKNOWN Unknown2, 
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NODE *pNode, 

ULONG SearchResult

);

You now have some basic information on RtlRealInsertElement
Worker. At this point, you’re ready to take on the complete listing and try to
figure out exactly how it works. The full disassembly of RtlRealInsert
ElementWorker is presented in Listing 5.7.

7C924DF0    MOV EDI,EDI

7C924DF2    PUSH EBP

7C924DF3    MOV EBP,ESP

7C924DF5    CMP DWORD PTR [EBP+1C],1

7C924DF9    PUSH EBX

7C924DFA    PUSH ESI

7C924DFB    PUSH EDI

7C924DFC    JE ntdll.7C935D5D

7C924E02    MOV EDI,DWORD PTR [EBP+10]

7C924E05    MOV ESI,DWORD PTR [EBP+8]

7C924E08    LEA EAX,DWORD PTR [EDI+18]

7C924E0B    PUSH EAX

7C924E0C    PUSH ESI

7C924E0D    CALL DWORD PTR [ESI+1C]

7C924E10    MOV EBX,EAX

7C924E12    TEST EBX,EBX

7C924E14    JE ntdll.7C94D4BE

7C924E1A    AND DWORD PTR [EBX+4],0

7C924E1E    AND DWORD PTR [EBX+8],0

7C924E22    MOV DWORD PTR [EBX],EBX

7C924E24    LEA ECX,DWORD PTR [ESI+4]

7C924E27    MOV EDX,DWORD PTR [ECX+4]

7C924E2A    LEA EAX,DWORD PTR [EBX+C]

7C924E2D    MOV DWORD PTR [EAX],ECX

7C924E2F    MOV DWORD PTR [EAX+4],EDX

7C924E32    MOV DWORD PTR [EDX],EAX

7C924E34    MOV DWORD PTR [ECX+4],EAX

7C924E37    INC DWORD PTR [ESI+14]

7C924E3A    CMP DWORD PTR [EBP+1C],0

7C924E3E    JE SHORT ntdll.7C924E88

7C924E40    CMP DWORD PTR [EBP+1C],2

7C924E44    MOV EAX,DWORD PTR [EBP+18]

7C924E47    JE ntdll.7C924F0C

7C924E4D    MOV DWORD PTR [EAX+8],EBX

7C924E50    MOV DWORD PTR [EBX],EAX

7C924E52    MOV ESI,DWORD PTR [EBP+C]

7C924E55    MOV ECX,EDI

7C924E57    MOV EAX,ECX

Listing 5.7 Disassembly of function at ntdll.7C924DF0.
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7C924E59    SHR ECX,2

7C924E5C    LEA EDI,DWORD PTR [EBX+18]

7C924E5F    REP MOVS DWORD PTR ES:[EDI],DWORD PTR [ESI]

7C924E61    MOV ECX,EAX

7C924E63    AND ECX,3

7C924E66    REP MOVS BYTE PTR ES:[EDI],BYTE PTR [ESI]

7C924E68    PUSH EBX

7C924E69    CALL ntdll.RtlSplay

7C924E6E    MOV ECX,DWORD PTR [EBP+8]

7C924E71    MOV DWORD PTR [ECX],EAX

7C924E73    MOV EAX,DWORD PTR [EBP+14]

7C924E76    TEST EAX,EAX

7C924E78    JNZ ntdll.7C935D4F

7C924E7E    LEA EAX,DWORD PTR [EBX+18]

7C924E81    POP EDI

7C924E82    POP ESI

7C924E83    POP EBX

7C924E84    POP EBP

7C924E85    RET 18

7C924E88    MOV DWORD PTR [ESI],EBX

7C924E8A    JMP SHORT ntdll.7C924E52

7C924E8C    XOR EAX,EAX

7C924E8E    JMP ntdll.7C9214B6

Listing 5.7 (continued)

Like the function at Listing 5.6, this one also starts with that dummy MOV
EDI, EDI instruction. However, unlike the previous function, this one doesn’t
seem to receive any parameters through registers, indicating that it was proba-
bly not defined using the static keyword. This function starts out by checking
the value of the SearchResult parameter (the last parameter it takes), and
making one of those remote, out of function jumps if SearchResult == 1.
We’ll deal with this condition later.

For now, here’s the code that gets executed when that condition isn’t satisfied.

7C924E02    MOV EDI,DWORD PTR [EBP+10]

7C924E05    MOV ESI,DWORD PTR [EBP+8]

7C924E08    LEA EAX,DWORD PTR [EDI+18]

7C924E0B    PUSH EAX

7C924E0C    PUSH ESI

7C924E0D    CALL DWORD PTR [ESI+1C]

It seems that the TABLE data structure contains another callback pointer. Off-
set +1c appears to be another callback function that takes two parameters. Let’s
examine those parameters and try to figure out what the callback does. The first
parameter comes from ESI and is quite clearly the TABLE pointer. What does
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the second parameter contain? Essentially, it is the value of the third parameter
passed to RtlRealInsertElementWorker plus 18 bytes (hex). When you
looked earlier at the parameters that RtlRealInsertElementWorker takes,
you had no idea what the third parameter was, but the number 0x18 sounds
somehow familiar. Remember how RtlLocateNodeGenericTable added
0x18 (24 in decimal) to the pointer of the current element before it passed it to
the TABLE_COMPARE_ELEMENTS callback? I suspected that adding 24 bytes
was a way of skipping the element’s header and getting to the actual data. This
corroborates that assumption—it looks like elements in a generic table are each
stored with 24-byte headers that are followed by the element’s data.

Let’s dig further into this function to try and figure out how it works and
what the callback does. Here’s what happens after the callback returns.

7C924E10    MOV EBX,EAX

7C924E12    TEST EBX,EBX

7C924E14    JE ntdll.7C94D4BE

7C924E1A    AND DWORD PTR [EBX+4],0

7C924E1E    AND DWORD PTR [EBX+8],0

7C924E22    MOV DWORD PTR [EBX],EBX

7C924E24    LEA ECX,DWORD PTR [ESI+4]

7C924E27    MOV EDX,DWORD PTR [ECX+4]

7C924E2A    LEA EAX,DWORD PTR [EBX+C]

7C924E2D    MOV DWORD PTR [EAX],ECX

7C924E2F    MOV DWORD PTR [EAX+4],EDX

7C924E32    MOV DWORD PTR [EDX],EAX

7C924E34    MOV DWORD PTR [ECX+4],EAX

7C924E37    INC DWORD PTR [ESI+14]

7C924E3A    CMP DWORD PTR [EBP+1C],0

7C924E3E    JE SHORT ntdll.7C924E88

7C924E40    CMP DWORD PTR [EBP+1C],2

7C924E44    MOV EAX,DWORD PTR [EBP+18]

7C924E47    JE ntdll.7C924F0C

7C924E4D    MOV DWORD PTR [EAX+8],EBX

7C924E50    MOV DWORD PTR [EBX],EAX

This code tests the return value from the callback. If it’s zero, the function
jumps into a remote block. Let’s take a quick look at that block.

7C94D4BE    MOV EAX,DWORD PTR [EBP+14]

7C94D4C1    TEST EAX,EAX

7C94D4C3    JE SHORT ntdll.7C94D4C7

7C94D4C5    MOV BYTE PTR [EAX],BL

7C94D4C7    XOR EAX,EAX

7C94D4C9    JMP ntdll.7C924E81

This appears to be some kind of failure mode that essentially returns 0 to the
caller. Notice how this sequence checks whether the fourth parameter at
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[ebp+14] is nonzero. If it is, the function is treating it as a pointer, writing a
single byte containing 0 (because we know EBX is going to be zero at this point)
into the address pointed by it. It would appear that the fourth parameter is a
pointer to some Boolean that’s used for notifying the caller of the function’s
success or failure.

Let’s proceed to look at what happens when the callback returns a non-
NULL value. It’s not difficult to see that this code is initializing the header of
the newly allocated element, using the callback’s return value as the address.
Before we try to figure out the details of this initialization, let’s pause for a sec-
ond and try to realize what this tells us about the callback function we just
observed. It looks as if the purpose of the callback function was to allocate
memory for the newly created element. We know this because EBX now con-
tains the return value from the callback, and it’s definitely being used as a
pointer to a new element that’s currently being initialized. With this informa-
tion, let’s try to define this callback.

typedef NODE * ( _stdcall * TABLE_ALLOCATE_ELEMENT) (

TABLE  *pTable,

ULONG   ElementSize

);

How did I know that the second parameter is the element’s size? It’s simple.
This is a value that was passed along from the caller of RtlInsertElement
GenericTable into RtlRealInsertElementWorker, was incremented by
24, and was finally fed into TABLE_ALLOCATE_ELEMENT. Clearly the applica-
tion calling RtlInsertElementGenericTable is supplying the size of this
element, and the function is adding 24 because that’s the length of the node’s
header. Because of this we now also know that the third parameter passed into
RtlRealInsertElementWorker is the user-supplied element length. We’ve
also found out that the fourth parameter is an optional pointer into some
Boolean that contains the outcome of this function. Let’s correct the original
prototype.

UNKNOWN RtlRealInsertElementWorker(

TABLE *pTable, 

PVOID ElementData, 

ULONG ElementSize, 

BOOLEAN *pResult OPTIONAL, 

NODE *pNode, 

ULONG SearchResult

);

You may notice that we’ve been accumulating quite a bit of information on the
parameters that RtlInsertElementGenericTable takes. We’re now ready
to start looking at the prototype for RtlInsertElementGenericTable.
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UNKNOWN NTAPI RtlInsertElementGenericTable(

TABLE   *pTable,

PVOID    ElementData,

ULONG    DataLength,

BOOLEAN *pResult OPTIONAL,

);

At this point in the game, you’ve gained quite a bit of knowledge on this API
and associated data structures. There’s probably no real need to even try and
figure out each and every member in a node’s header, but let’s look at that
code sequence and try and figure out how the new element is linked into the
existing data structure.

Linking the Element

First of all, you can see that the function is accessing the element header
through EBX, and then it loads EAX with EBX + c, and accesses members
through EAX. This indicates that there is some kind of a data structure at offset
+c of the element’s header. Why else would the compiler access these members
through another register? Why not just use EBX for accessing all the members?

Also, you’re now seeing distinct proof that the generic table maintains both
a linked list and a tree. EAX is loaded with the starting address of the linked list
header (LIST_ENTRY *), and EBX is used for accessing the binary tree mem-
bers. The function checks the SearchResult parameter before the tree node
gets attached to the rest of the tree. If it is 0, the code jumps to ntdll
.7C924E88, which is right after the end of the function’s main body. Here is
the code for that condition.

7C924E88    MOV DWORD PTR [ESI],EBX

7C924E8A    JMP SHORT ntdll.7C924E52

In this case, the node is attached as the root of the tree. If SearchResult is
nonzero, the code proceeds into what is clearly an if-else block that is
entered when SearchResult != 2. If that conditional block is entered
(when SearchResult != 2), the code takes the pNode parameter (which is
the node that was found in RtlLocateNodeGenericTable), and attaches
the newly created node as the left child (offset +8). If SearchResult == 2,
the code jumps to the following sequence.

7C924F0C    MOV DWORD PTR [EAX+4],EBX

7C924F0F    JMP ntdll.7C924E50

Here the newly created element is attached as the right child of pNode (offset
+4). Clearly, the search result indicates whether the new element is smaller or
larger than the value represented by pNode. Immediately after the ‘if-else’
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block a pointer to pNode is stored in offset +0 at the new entry. This indicates
that offset +0 in the node header contains a pointer to the parent element. You
can now properly define the node header data structure.

struct NODE

{

NODE        *ParentNode;  

NODE        *RightChild;

NODE        *LeftChild;

LIST_ENTRY  LLEntry;

ULONG       Unknown;

};

Copying the Element

After allocating the new node and attaching it to pNode, you reach an inter-
esting sequence that is actually quite common and is one that you’re probably
going to see quite often while reversing IA-32 assembly language code. Let’s
take a look.

7C924E52    MOV ESI,DWORD PTR [EBP+C]

7C924E55    MOV ECX,EDI

7C924E57    MOV EAX,ECX

7C924E59    SHR ECX,2

7C924E5C    LEA EDI,DWORD PTR [EBX+18]

7C924E5F    REP MOVS DWORD PTR ES:[EDI],DWORD PTR [ESI]

7C924E61    MOV ECX,EAX

7C924E63    AND ECX,3

7C924E66    REP MOVS BYTE PTR ES:[EDI],BYTE PTR [ESI]

This code loads ESI with ElementData, EDI with the end of the new
node’s header, ECX with ElementSize * 4, and starts copying the element
data, 4 bytes at a time. Notice that there are two copying sequences. The first is
for 4-byte chunks, and the second checks whether there are any bytes left to be
copied, and copies those (notice how the first MOVS takes DWORD PTR argu-
ments and the second takes BYTE PTR operands). 

I say that this is a common sequence because this is a classic memcpy imple-
mentation. In fact, it is very likely that the source code contained a memcpy call
and that the compiler simply implemented it as an intrinsic function (intrinsic
functions are briefly discussed in Chapter 7). 

Splaying the Table

Let’s proceed to the next code sequence. Notice that there are two different
paths that could have gotten us to this point. One is through the path I have
just covered in which the callback is called and the structure is initialized, and
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the other is taken when SearchResult == 1 at that first branch in the begin-
ning of the function (at ntdll.7C924DFC). Notice that this branch doesn’t go
straight to where we are now—it goes through a relocated block at ntdll
.7C935D5D. Regardless of how we got here, let’s look at where we are now.

7C924E68    PUSH EBX

7C924E69    CALL ntdll.RtlSplay

7C924E6E    MOV ECX,DWORD PTR [EBP+8]

7C924E71    MOV DWORD PTR [ECX],EAX

7C924E73    MOV EAX,DWORD PTR [EBP+14]

7C924E76    TEST EAX,EAX

7C924E78    JNZ ntdll.7C935D4F

7C924E7E    LEA EAX,DWORD PTR [EBX+18]

This sequence calls a function called RtlSplay (whose name you have
because it is exported—remember, I’m not using the Windows debug symbol
files!). RtlSplay takes one parameter. If SearchResult == 1 that parame-
ter is the pNode parameter passed to RtlRealInsertElementWorker. If
it’s anything else, RtlSplay takes a pointer to the new element that was just
inserted. Afterward the tree root pointer at pTable is set to the return value of
RtlSplay, which indicates that RtlSplay returns a tree node, but you don’t
really know what that node is at the moment. 

The code that follows checks for the optional Boolean pointer and if it exists
it is set to TRUE if SearchResult != 1. The function then loads the return
value into EAX. It turns out that RtlRealInsertElementWorker simply
returns the pointer to the data of the newly allocated element. Here’s a cor-
rected prototype for RtlRealInsertElementWorker.

PVOID RtlRealInsertElementWorker(

TABLE *pTable, 

PVOID ElementData, 

ULONG ElementSize, 

BOOLEAN *pResult OPTIONAL, 

NODE *pNode, 

ULONG SearchResult

);

Also, because RtlInsertElementGenericTable returns the return
value of RtlRealInsertElementWorker, you can also update the proto-
type for RtlInsertElementGenericTable. 

PVOID NTAPI RtlInsertElementGenericTable(

TABLE   *pTable,

PVOID    ElementData,

ULONG    DataLength,

BOOLEAN *pResult OPTIONAL,

);
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Splay Trees

At this point, one thing you’re still not sure about is that RtlSplay function.
I will not include it here because it is quite long and convoluted, and on top of
that it appears to be distributed throughout the module, which makes it even
more difficult to read. The fact is that you can pretty much start using the
generic table without understanding RtlSplay, but you should probably still
take a quick look at what it does, just to make sure you fully understand the
generic table data structure.

The algorithm implemented in RtlSplay is quite involved, but a quick
examination of what it does shows that it has something to do with the rebal-
ancing of the tree structure. In binary trees, rebalancing is the process of
restructuring the tree so that the elements are divided as evenly as possible
under each side of each node. Normally, rebalancing means that an algorithm
must check that the root node actually represents the median value repre-
sented by the tree. However, because elements in the generic table are user-
defined, RtlSplay would have to make a callback into the user’s code in
order to compare elements, and there is no such callback in this function. 

A more careful inspection of RtlSplay reveals that it’s basically taking 
the specified node and moving it upward in the tree (you might want to run
RtlSplay in a debugger in order to get a clear view of this process). Eventu-
ally, the function returns the pointer to the same node it originally starts with,
except that now this node is the root of the entire tree, and the rest of the ele-
ments are distributed between the current element’s left and right child nodes.

Once I realized that this is what RtlSplay does the picture became a bit
clearer. It turns out that the generic table is implemented using a splay tree [Tar-
jan] Robert Endre Tarjan, Daniel Dominic Sleator. Self-adjusting binary search
trees. Journal of the ACM (JACM). Volume 32 , Issue 3, July 1985, which is essen-
tially a binary tree with a unique organization scheme. The problem of properly
organizing a binary tree has been heavily researched and there are quite a few
techniques that deal with it (If you’re patient, Knuth provides an in-depth exam-
ination of most of them in [Knuth3] Donald E. Knuth. The Art of Computer Pro-
gramming—Volume 3: Sorting and Searching (Second Edition). Addison Wesley. The
primary goal is, of course, to be able to reach elements using the lowest possible
number of iterations.

A splay tree (also known as a self-adjusting binary search tree) is an interesting
solution to this problem, where every node that is touched (in any operation) is
immediately brought to the top of the tree. This makes the tree act like a cache of
sorts, whereby the most recently used items are always readily available, and
the least used items are tucked at the bottom of the tree. By definition, splay trees
always rotate the most recently used item to the top of the tree. This is why
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you’re seeing a call to RtlSplay immediately after adding a new element (the
new element becomes the root of the tree), and you should also see a call to the
same function after deleting and even just searching for an element.

Figures 5.1 through 5.5 demonstrate how RtlSplay progressively raises
the newly added item in the tree’s hierarchy until it becomes the root node.

RtlLookupElementGenericTable
Remember how before you started digging into the generic table I mentioned
two functions (RtlGetElementGenericTable and RtlLookupElement
GenericTable) that appeared to be responsible for retrieving elements?
Because you know that RtlGetElementGenericTable searches for an ele-
ment by its index, RtlLookupElementGenericTable must be the one that
provides some sort of search capabilities for a generic table. Let’s have a look
at RtlLookupElementGenericTable (see Listing 5.8).

Figure 5.1 Binary tree after adding a new item. New item is connected to the tree at the
most appropriate position, but no other items are moved.
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Figure 5.2 Binary tree after first splaying step. The new item has been moved up by one
level, toward the root of the tree. The previous parent of our new item is now its child.

Figure 5.3 Binary tree after second splaying step. The new item has been moved up by
another level.
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Figure 5.4 Binary tree after third splaying step. The new item has been moved up by yet
another level. 

7C9215BB    PUSH EBP

7C9215BC    MOV EBP,ESP

7C9215BE    LEA EAX,DWORD PTR [EBP+C]

7C9215C1    PUSH EAX                              

7C9215C2    LEA EAX,DWORD PTR [EBP+8]             

7C9215C5    PUSH EAX                              

7C9215C6    PUSH DWORD PTR [EBP+C]                

7C9215C9    PUSH DWORD PTR [EBP+8]                

7C9215CC    CALL ntdll.7C9215DA                   

7C9215D1    POP EBP

7C9215D2    RET 8

Listing 5.8 Disassembly of RtlLookupElementGenericTable.
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Figure 5.5 Binary after splaying process. The new item is now the root node, and the rest
of the tree is centered on it. 

From its name, you can guess that RtlLookupElementGenericTable per-
forms a binary tree search on the generic table, and that it probably takes the
TABLE structure and an element data pointer for its parameters. It appears that
the actual implementation resides in ntdll.7C9215DA, so let’s take a look at
that function. Notice the clever stack use in the call to this function. The first
two parameters are the same parameters that were passed to RtlLookup
ElementGenericTable. The second two parameters are apparently point-
ers to some kind of output values that ntdll.7C9215DA returns. They’re
apparently not used, but instead of allocating local variables that would con-
tain them, the compiler is simply using the stack area that was used for pass-
ing parameters into the function. Those stack slots are no longer needed after
they are read and passed on to ntdll.7C9215DA. Listing 5.9 shows the dis-
assembly for ntdll.7C9215DA.
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7C9215DA    MOV EDI,EDI

7C9215DC    PUSH EBP

7C9215DD    MOV EBP,ESP

7C9215DF    PUSH ESI

7C9215E0    MOV ESI,DWORD PTR [EBP+10]

7C9215E3    PUSH EDI

7C9215E4    MOV EDI,DWORD PTR [EBP+8]

7C9215E7    PUSH ESI

7C9215E8    PUSH DWORD PTR [EBP+C]

7C9215EB    CALL ntdll.7C92147B

7C9215F0    TEST EAX,EAX

7C9215F2    MOV ECX,DWORD PTR [EBP+14]

7C9215F5    MOV DWORD PTR [ECX],EAX

7C9215F7    JE SHORT ntdll.7C9215FE

7C9215F9    CMP EAX,1

7C9215FC    JE SHORT ntdll.7C921606

7C9215FE    XOR EAX,EAX

7C921600    POP EDI

7C921601    POP ESI

7C921602    POP EBP

7C921603    RET 10

7C921606    PUSH DWORD PTR [ESI]

7C921608    CALL ntdll.RtlSplay

7C92160D    MOV DWORD PTR [EDI],EAX

7C92160F    MOV EAX,DWORD PTR [ESI]

7C921611    ADD EAX,18

7C921614    JMP SHORT ntdll.7C921600

Listing 5.9 Disassembly of ntdll.7C9215DA, tentatively titled RtlLookupElementGeneric
TableWorker.

At this point, you’re familiar enough with the generic table that you hardly
need to investigate much about this function—we’ve discussed the two 
core functions that this API uses: RtlLocateNodeGenericTable (ntdll
.7C92147B) and RtlSplay. RtlLocateNodeGenericTable is used for the
actual locating of the element in question, just as it was used in RtlInsert
ElementGenericTable. After RtlLocateNodeGenericTable returns,
RtlSplay is called because, as mentioned earlier, splay trees are always splayed
after adding, removing, or searching for an element. Of course, RtlSplay is
only actually called if RtlLocateNodeGenericTable locates the element
sought.

Based on the parameters passed into RtlLocateNodeGenericTable,
you can immediately see that RtlLookupElementGenericTable takes the
TABLE pointer and the Element pointer as its two parameters. As for the
return value, the add eax, 18 shows that the function takes the located node
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and skips its header to get to the return value. As you would expect, this func-
tion returns the pointer to the found element’s data.

RtlDeleteElementGenericTable
So we’ve covered the basic usage cases of adding, retrieving, and searching for
elements in the generic table. One case that hasn’t been covered yet is deletion.
How are elements deleted from the generic table? Let’s take a quick look at
RtlDeleteElementGenericTable.

7C924FFF    MOV EDI,EDI

7C925001    PUSH EBP

7C925002    MOV EBP,ESP

7C925004    PUSH EDI

7C925005    MOV EDI,DWORD PTR [EBP+8]

7C925008    LEA EAX,DWORD PTR [EBP+C]

7C92500B    PUSH EAX

7C92500C    PUSH DWORD PTR [EBP+C]

7C92500F    CALL ntdll.7C92147B

7C925014    TEST EAX,EAX

7C925016    JE SHORT ntdll.7C92504E

7C925018    CMP EAX,1

7C92501B    JNZ SHORT ntdll.7C92504E

7C92501D    PUSH ESI

7C92501E    MOV ESI,DWORD PTR [EBP+C]

7C925021    PUSH ESI

7C925022    CALL ntdll.RtlDelete

7C925027    MOV DWORD PTR [EDI],EAX

7C925029    MOV EAX,DWORD PTR [ESI+C]

7C92502C    MOV ECX,DWORD PTR [ESI+10]

7C92502F    MOV DWORD PTR [ECX],EAX

7C925031    MOV DWORD PTR [EAX+4],ECX

7C925034    DEC DWORD PTR [EDI+14]

7C925037    AND DWORD PTR [EDI+10],0

7C92503B    PUSH ESI

7C92503C    LEA EAX,DWORD PTR [EDI+4]

7C92503F    PUSH EDI

7C925040    MOV DWORD PTR [EDI+C],EAX

7C925043    CALL DWORD PTR [EDI+20]

7C925046    MOV AL,1

7C925048    POP ESI

7C925049    POP EDI

7C92504A    POP EBP

7C92504B    RET 8

7C92504E    XOR AL,AL

7C925050    JMP SHORT ntdll.7C925049

Listing 5.10 Disassembly of RtlDeleteElementGenericTable.
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RtlDeleteElementGenericTable has three primary steps. First of all it
uses the famous RtlLocateNodeGenericTable (ntdll.7C92147B) for
locating the element to be removed. It then calls the (exported) RtlDelete to
actually remove the element. I will not go into the actual algorithm that
RtlDelete implements in order to remove elements from the tree, but one
thing that’s important about it is that after performing the actual removal it
also calls RtlSplay in order to restructure the table.

The last function call made by RtlDeleteElementGenericTable is
actually quite interesting. It appears to be a callback into user code, where the
callback function pointer is accessed from offset +20 in the TABLE structure. It
is pretty easy to guess that this is the element-free callback that frees the mem-
ory allocated in the TABLE_ALLOCATE_ELEMENT callback earlier. Here is a
prototype for TABLE_FREE_ELEMENT:

typedef void ( _stdcall * TABLE_FREE_ELEMENT) (

TABLE  *pTable,

PVOID   Element

);

There are two things to note here. First of all, TABLE_FREE_ELEMENT clearly
doesn’t have a return value, and if it does RtlDeleteElementGenericTable
certainly ignores it (see how right after the callback returns AL is set to 1). Sec-
ond, keep in mind that the Element pointer is going to be a pointer to the begin-
ning of the NODE data structure, and not to the beginning of the element’s data,
as you’ve been seeing all along. That’s because the caller allocated this entire
memory block, including the header, so it’s now up to the caller to free this entire
memory block.
RtlDeleteElementGenericTable returns a Boolean that is set to TRUE

if an element is found by RtlLocateNodeGenericTable, and FALSE if
RtlLocateNodeGenericTable returns NULL.

Putting the Pieces Together
Whenever a reversing session of this magnitude is completed, it is advisable to
prepare a little document that describes your findings. It is an elegant way to
summarize the information obtained while reversing, not to mention that
most of us tend to forget this stuff as soon as we get up to get a cup of coffee or
a glass of chocolate milk (my personal favorite). 

The following listings can be seen as a formal definition of the generic table
API, which is based on the conclusions from our reversing sessions. Listing
5.11 presents the internal data structures, Listing 5.12 presents the callbacks
prototypes, and Listing 5.13 presents the function prototypes for the APIs.
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struct NODE

{

NODE                     *ParentNode;  

NODE                     *RightChild;

NODE                     *LeftChild;

LIST_ENTRY               LLEntry;

ULONG                    Unknown;

};

struct TABLE

{

NODE                     *TopNode;

LIST_ENTRY               LLHead;

LIST_ENTRY               *LastElementFound;

ULONG                    LastElementIndex;

ULONG                    NumberOfElements;

TABLE_COMPARE_ELEMENTS   CompareElements;

TABLE_ALLOCATE_ELEMENT   AllocateElement;

TABLE_FREE_ELEMENT       FreeElement;

ULONG                    Unknown;

};

Listing 5.11 Definitions of internal generic table data structures discovered in this chapter.

typedf int (NTAPI * TABLE_COMPARE_ELEMENTS) (

TABLE   *pTable,

PVOID    pElement1,

PVOID    pElement2

);

typedef NODE * (NTAPI * TABLE_ALLOCATE_ELEMENT) (

TABLE    *pTable, 

ULONG    TotalElementSize

);

typedef void (NTAPI * TABLE_FREE_ELEMENT) (

TABLE    *pTable, 

PVOID    Element

);

Listing 5.12 Prototypes of generic table callback functions that must be implemented by
the caller.

Beyond the Documentation 195

10_574817 ch05.qxd  3/16/05  8:44 PM  Page 195



void NTAPI RtlInitializeGenericTable(

TABLE *pGenericTable, 

TABLE_COMPARE_ELEMENTS CompareElements, 

TABLE_ALLOCATE_ELEMENT AllocateElement, 

TABLE_FREE_ELEMENT FreeElement, 

ULONG Unknown

);

ULONG NTAPI RtlNumberGenericTableElements(

TABLE *pGenericTable

);

BOOLEAN NTAPI RtlIsGenericTableEmpty(

TABLE *pGenericTable

);

PVOID NTAPI RtlGetElementGenericTable(

TABLE *pGenericTable, 

ULONG ElementNumber

);

PVOID NTAPI RtlInsertElementGenericTable(

TABLE *pGenericTable, 

PVOID ElementData, 

ULONG DataLength, 

OUT BOOLEAN *IsNewElement

);

PVOID NTAPI RtlLookupElementGenericTable(

TABLE *pGenericTable, 

PVOID ElementToFind

);

BOOLEAN NTAPI RtlDeleteElementGenericTable(

TABLE *pGenericTable, 

PVOID ElementToFind

);

Listing 5.13 Prototypes of the basic generic table APIs.

Conclusion

In this chapter, I demonstrated how to investigate, use, and document a rea-
sonably complicated set of functions. If there is one important moral to this
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story, it is that reversing is always about meeting the low-level with the high-
level. If you just keep tracing through registers and bytes, you’ll never really
get anywhere. The secret is to always keep your eye on the big picture that’s
slowly materializing in front of you while you’re reversing. I’ve tried to
demonstrate this process as clearly as possible in this chapter. If you feel as if
you’ve missed some of the steps we took in order to get to this point, fear not.
I highly recommend that you go over this chapter more than once, and per-
haps use a live debugger to step through this code while reading the text. 
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