
Chapter 1

A Cannonball Dive into
the Scripting Pool

In This Chapter
� Writing a simple script

� Writing a more complex script

� Running a script

In this chapter, you find out how easy scripting is. The scripting basics set
the stage and provide a context for the detailed techniques you master in

the rest of the book.

Writing Your First Script
Lots of things that seem tough aren’t. Nonetheless, many people tend to
worry about how hard something is until doing it for the first time. In this
section, I banish any scripting worries you may have and show you how to
write your first script. After you see how easy writing a script is, you can
easily put the rest of the book in perspective. Remember: Writing a script is
just telling the computer what to do in writing rather than by using a mouse.

1. Find and open the AppleScript folder on your hard drive.

The AppleScript folder is usually stored inside your Applications
folder — that’s your hard drive:Applications:Applescript:,
shown in Figure 1-1.

2. From within the AppleScript folder, launch the Script Editor by
double-clicking its icon.

The Script Editor application opens on-screen.

05_574949 ch01.qxd 7/29/04 10:45 PM Page 11

CO
PYRIG

HTED
 M

ATERIA
L

3. Type the following line into the script window.

display dialog “Hello AppleScript Genius!”

The text appears just like in a word processor, as shown in Figure 1-2.

Even though you may have never used AppleScript before, I bet you have a
good idea what this script does, don’t you? That’s because AppleScript reads
a lot like English. So when you run into some complex script, just take a deep
breath and say, “It’s like English. It’s like English.” If you want to see how the
script works in detail, just keep reading. By the way, if the fonts and sizes
look different in your version, don’t panic. You can customize them, which I
discuss in Chapter 3.

Figure 1-2:
Typing a

simple
script.

Figure 1-1:
The Script
Editor icon
inside the

AppleScript
folder.

12 Part I: Getting Started

05_574949 ch01.qxd 7/29/04 10:45 PM Page 12

While AppleScript looks like English you’ll find that sometimes the syntax
(grammar) doesn’t sound right. Because computers aren’t particularly smart,
scripts often require what civilized societies call atrociously bad grammar.

The first, and in this case only, script line
Take a closer look at your first attempt at AppleScript writing:

display dialog “Hello AppleScript Genius!”

The display dialog part is an AppleScript command that tells AppleScript
to put up a fairly standard — albeit highly customizable, as you see in the
next example — dialog. The quote — called a string in AppleScript — that
follows the display dialog command is the message that appears in the
dialog. Figure 1-3 shows the dialog that results from AppleScript running this
script line.

After you type the script, click the Compile button in the Script Editor, which
compiles your script — compiling is converting the AppleScript you write into
a language the Mac understands. When you click the Compile button — it looks
like a handy little claw hammer — AppleScript reads what you typed and
checks to make sure the script is understandable. If you made a mistake — not
that you, the customer, ever does, mind you — you get a little dialog telling
you there was a problem. If you get such a message, just retype the script
from scratch.

When you get more experienced, you can figure out what part of a line may
be causing a problem, so you don’t have to retype a whole line.

If AppleScript understands what you type, it reformats the script slightly,
changing the styles of some words — display dialog is purple before
compiling and blue afterwards, for example. You can find out how to select
these styles in Chapter 3.

Figure 1-3:
Welcome to
the world of

scripting!

13Chapter 1: A Cannonball Dive into the Scripting Pool

05_574949 ch01.qxd 7/29/04 10:45 PM Page 13

Just because AppleScript understands a script doesn’t mean the script does
what you want it to. If you mistakenly tell the script to delete all your files, but
you enter the script correctly so that AppleScript understands it, AppleScript
acknowledges that it understands your script even though you told it the
wrong thing to do. AppleScript doesn’t know what you want; only what you
type.

compile: This term doesn’t refer to building an evidentiary base so that you
can sue your neighbor for letting his dog eat your geraniums. When you click
the Compile button, AppleScript compiles your script into something that
the Mac can understand. Computers are nice, friendly creatures, but they’re
pretty deficient in the language arts. They understand 0s and 1s. In the early
days of computers, people had to speak the computer’s language in order
for the computer to understand what the heck they wanted. That’s why old
programmers — those over 30 — like to speak in terms of hex numbers —
base 16, not witchcraft — or binary numbers such as 0 or 1. The closest
most people get to that these days is Windows. (Just kidding.) Anyway, when
AppleScript compiles your script, it makes a version of it, which you don’t
see, in a language your friendly but linguistically challenged Mac can handle.
Unfortunately, AppleScript can’t make the Mac understand what you mean
when you type something incorrectly just by raising the speaker volume.

All you have to do to run your script is to click the Run button. AppleScript
displays the dialog (refer to Figure 1-3).

You can display different messages by changing the text in your script that
appears between the two quotation marks. Pretty straightforward stuff, isn’t it?

Writing a Second (And
Even Better) Script

After you accomplished a basic script, you’re ready to take on a fairly complex
script. You soon see that, because scripts look a lot like English, you can under-
stand what they do. You may spend some time — and read the next part of this
book — before you can write your own scripts, but you’ll find that you don’t
need to be intimidated by scripts. With a little effort, you can understand what
the script is doing even if you can’t write the script yourself.

One of the best ways to increase productivity is to start with a script someone
else has written and modify it. You can find various Web sites — see Chapter 29
for a list of resources — that have example scripts online. In addition, OS X
comes with a bunch of scripts installed in the same folder as the Script Editor
(Applications:Applescript:Example Scripts). Even if you’re not 100 per-
cent sure of why a script works in a certain way, you can understand enough

14 Part I: Getting Started

05_574949 ch01.qxd 7/29/04 10:45 PM Page 14

to modify it to do what you want. This method of scripting saves you time
and effort.

This next script is a slightly more sophisticated version of the first “Hello
AppleScript” script.

One thing to watch out for in this sample script is the funny ¬ character —
called a soft return in the trade — which tells AppleScript to treat the stuff on
the next line as though it’s part of the current line. It’s a carriage return for
you but a nothing for AppleScript when it reads the line. You don’t need to
use the ¬ symbol; you can just use wide windows or the scroll bar. I’m using it
in this book so that long script lines don’t require a 15-inch page. You get the
¬ by pressing Option+Return. You only need to use Option+Return in Script
Editors for versions of OS prior to 10.3.

set user_stuff to display dialog ¬
“My name is AppleScript. What’s yours?” default answer ¬
“Who Knows” buttons {“Buzz off”, “Hi”} default button “Hi”

set button_name to button returned of user_stuff
if button_name is “Hi” then

set your_name to text returned of user_stuff
display dialog “Welcome to AppleScript, soon to be Dr. “ &

your_name & ¬
“, expert AppleScript genius.” buttons {“Howdy”}

default button “Howdy”
else

display dialog “Sorry you don’t want to be friends.”
buttons {“For sure”} ¬

default button “For sure”
end if

Enter the script into the Script Editor window, making sure you either press
the Return key at the end of each script line or place a ¬ character (Option
Return) where you want the line to break before its “real” end. (Turn to the
“Writing Your First Script” section if you need a refresher on entering scripts.)
When you’re done, it looks like Figure 1-4 after you click the Compile button.
If you get an error message telling you that AppleScript doesn’t understand
something, compare what you typed with the preceding script. One common
mistake is to press Return rather than Option Return inside a script line. You
can check for that mistake by making sure that the funny ¬ characters in your
script are in the same places as in the sample script.

If you put an ¬ inside a quote — a string for you technical types — everything
works, but the ¬ shows up when the text displays, which probably isn’t what
you want. So avoid putting an ¬ inside a quote for aesthetic reasons.

I bet by just reading through this script, you have a fairly good idea of what
it does. If you’re not 100 percent sure, take a stroll through the following
sections.

15Chapter 1: A Cannonball Dive into the Scripting Pool

05_574949 ch01.qxd 7/29/04 10:45 PM Page 15

Line 1: Displaying a dialog
set user_stuff to display dialog

“My name is AppleScript. What’s yours?” default answer
“Who Knows” buttons {“Buzz off”, “Hi”} default button “Hi”

The first thing to remember is that this command is all one line as far as
AppleScript is concerned because even though it is on three lines, the Script
Editor autowraps the line. This line is just a slightly more complicated ver-
sion of the display dialog command. Ignore the set user_stuff to for a
moment. The first item after the display dialog is a quote — “My name is
AppleScript. What’s yours?” — which displays in the dialog just as the
“Hello AppleScript Genius!” line displays in the display dialog script
(from the “Writing Your First Script” section earlier in this chapter).

The default answer phrase tells AppleScript that you want the user to
enter a response of some sort. The “Who Knows” quote that follows default
answer displays to the user as the default value is used if the user doesn’t
enter anything.

The buttons word tells AppleScript to put two buttons in the dialog: one
labeled “Buzz off” and the other labeled “Hi.” Just as default answer uses a
quote as input, buttons uses a list — which I discuss in Chapter 4 — that is
just two curly brackets with some items in the middle separated by commas.
If you want to be creative, you can have three buttons by just adding another
item to the list. The default button phrase tells AppleScript to make the Hi
button the default button. In the Mac OS X world, the default button is the
one filled with blue. A default button acts as though it’s clicked if you press
the Return or Enter key. If you want to see what the dialog looks like, jump
ahead to Figure 1-6.

Figure 1-4:
Your second

script after
it’s compiled.

16 Part I: Getting Started

05_574949 ch01.qxd 7/29/04 10:45 PM Page 16

Bet you didn’t forget about the set user_stuff to part, did you? Bet you
thought I did, though. First thing to realize is that when AppleScript sees
something like

set x to y

it sets the value of x to whatever the value of y is. So the line

set x to 2

sets the value of the variable x to 2. (See Chapter 5 for more information on
variables.) Variables in AppleScript are just named places to store stuff such
as numbers and words that you want to use later on in a script.

Okay, so the script is trying to set the value of the variable user_stuff. But
how do you stuff a dialog into a variable? The answer is that many AppleScript
commands return a value. Here’s the way it works after you click the Run
button:

1. AppleScript displays the dialog shown later in Figure 1-6.

2. The user enters a value and clicks one of the buttons.

3. The display dialog command builds a value (or result) that it returns.

4. AppleScript puts that value into the script where the display dialog
is, so the line looks like

set user_stuff to the_result

5. AppleScript sets the value of user_stuff to whatever display dialog
returned.

The next question that’s probably running, uncontrolled, through your mind is
what in the heck does that display dialog command return? Well, stay tuned
for the next thrilling episode . . . oops, wrong medium. The answer is that
display dialog returns a list of things that have to do with what the user did.

Actually, display dialog returns a record. The difference between “list” and
“record” is that the items in a record have names while those in a list don’t.
For more on the differences, take a gander at Chapter 4 or just read it if you
don’t have a goose.

If the user clicks the Hi button the record looks like this:

{text returned:”Who Knows”, button returned:”Hi”}

A record — which I discuss in detail in Chapter 4 — is defined by those weird
curly brackets. Each item in this record is separated from the other by a
comma. A record item is made up of two pieces separated by a colon. The first
piece is a name by which you can access the value, and the second piece is
the value. The next line shows you how to access items in a record by name.

17Chapter 1: A Cannonball Dive into the Scripting Pool

05_574949 ch01.qxd 7/29/04 10:45 PM Page 17

Line 2: Accessing the user’s choice
set button_name to button returned of user_stuff

This line sets the value of the local button_name variable to the value associ-
ated with the name button returned in the variable user_stuff. Remember
that the value of user_stuff looks like this:

{text returned:”Who Knows”, button returned:”Hi”}

So if the user clicks the Hi button, AppleScript does the following:

1. Figures out what value in user_stuff is associated with the button
returned.

2. Sets the value of the button_name variable to that value.

If there is no button returned, or if you misspell it when typing it in, you
get an error message and AppleScript tells you there is a problem.

Line 3: Responding to the user’s choice
if button_name is “Hi” then

This line introduces a couple of concepts. The first is fairly clear. The script
is checking to see if the value of the button_name variable is Hi. If it is, what
then? Well, the script does something. But what? Figuring out what the script
does requires you to know the full form of an if statement. A full-blown, ultra
spiffy if looks like this:

if something then
some script lines (A)

else
some other script lines (B)

end if

Before trying to go through this statement in detail, its English equivalent is
something like this:

if something is true then execute the script lines labeled A.
if something is false then execute the script lines labeled

B.

What is truth? While some confused people think that’s a toughie in real life,
in AppleScript, the truth is fairly easy. Things like 2 < 5 — 2 is less than 5 —
are true while things like “Missing” is the same as “Hi” are false.

18 Part I: Getting Started

05_574949 ch01.qxd 7/29/04 10:45 PM Page 18

An if statement checks some value or expression and sees if it’s true. If it is,
then the if statement executes the script lines you associated with that con-
dition. If there’s an else clause and the value or expression being tested is
false, the script lines associated with the else clause execute. You use the if
statements in your scripts to make decisions based on user actions or other
events that you can’t predict when you write the script.

If the item right after the if statement evaluates to true, the script lines
between the if line and the else line execute by AppleScript. If the item right
after the if statement evaluates to false and there is an else statement, the
lines between the else statement and the end if statement execute. (By the
way, if you read Chapter 10, then you’re sure to become a master if scripter.)

Line 4: Filling a variable
set your_name to text returned of user_stuff

This line only executes if the value of the button_name variable is Hi. If the
user clicks the Hi button, the script assumes that he or she entered a name in
the edit field replacing the default answer of Who Knows. Not surprisingly, the
text returned element of the record stores the value in that edit field — as
in “the text returned by this dialog.” Line 4 just takes the value of the text that
the user enters and puts it into the variable called user_stuff.

Give variables names you understand. Even though you may do a little bit
more typing, you’ll find that you save time if you give variables names that
reflect their contents. Check out Chapter 5 for tons of info on naming vari-
ables, but trust me, I know what I’m doing when I say that variable names
that mean something save you time — time that you can use to earn money
to buy my next book!

Line 5: Greeting the user
display dialog “Welcome to AppleScript, soon to be Dr. “ &

your_name &
“, expert AppleScript genius.” buttons {“Howdy”} default

button “Howdy”

Like the fourth line, this line only executes if the user clicks the Hi button
because that’s the only time that the button_name variable has the value
of Hi. By now you’re probably an expert on the display dialog command
(see the “Writing Your First Scrip” section if you’re not), so I don’t go over the

19Chapter 1: A Cannonball Dive into the Scripting Pool

05_574949 ch01.qxd 7/29/04 10:45 PM Page 19

obvious things; however, you may be wondering about that funny & character.
Is it a typo? Is it a printing error? Is it an alien being spying on you? The actual
explanation is much more mundane. The & just appends — joins together —
one quote to another. For example, when AppleScript executes this line

set a_sentence to “This is the first “ & “ sentence here.”

the value of the a_sentence variable is set to

“This is the first sentence here.”

If either or both of the values on either side of the & are variables, AppleScript
replaces the variable with its value and then appends it. So this script

set part_1 to “To be or not to be “
set part_2 to “that is the question.”
set line_1 to part_1 & part_2

sets the value of line_1 to “To be or not to be that is the question.”

Using this character allows you to show the user a dialog personalized with
his or her own name. Feel free to skip ahead for a second to look at Figure 1-6.

Line 6: Examining alternatives
else

This line just serves to separate the script lines that execute if the value of
button_name is Hi from the script lines that only execute if the value of the
variable button_name isn’t Hi.

Line 7: Macs do have feelings!
display dialog “Sorry you don’t want to be friends.” buttons

{“For sure”}
default button “For sure”

Another fun-filled display dialog command. Nothing exciting here, but
note that even if you have only one button, it doesn’t automatically become
the default button. You have to use the default button option to make one
of the dialog buttons the default if you use the buttons option. If you don’t
do that, the dialog doesn’t have any default button.

20 Part I: Getting Started

05_574949 ch01.qxd 7/29/04 10:45 PM Page 20

Line 8: Ending the if
end if

This line just marks the end of the if statement and the end of the script
lines that execute if the user doesn’t click the Hi button.

Now that you understand what the script does, you need to save the script.
By some freakish coincidence, how to save a script is the next topic.

Saving Your Work
AppleScript is a pretty stable tool. You have to work pretty hard to come up
with a script that can crash your Mac, especially in OS X. However, crashes
can happen, usually when you’re working with other applications, so you
need to save your scripts once in a while. It turns out that you have several
options for saving a script, all of which I discuss in Chapter 3, but for right
now, you can just choose File➪Save from the Script Editor main menu. You
get a fairly standard Mac Save dialog, as shown in Figure 1-5.

You can just ignore the File Format pop-up menu at the bottom because the
default selection (Script) is what you want. If your script has a problem, though
(you get an error message when you click the Compile button), AppleScript
can’t save your script as anything other than Text. To find out what to do
when that happens, see Chapter 18. For right now, though, if you get an error,
compare what you typed to what’s in Figure 1-4 and correct any differences,
no matter how insignificant they may seem.

After you save your script, you’re ready to run it.

Figure 1-5:
The

standard
AppleScript
Save dialog.

21Chapter 1: A Cannonball Dive into the Scripting Pool

05_574949 ch01.qxd 7/29/04 10:45 PM Page 21

Running Your Script
Running or executing a script just means that AppleScript follows the instruc-
tions you wrote down.

After AppleScript says your script is A-okay, you can run the script by clicking
the Run button on the left side of the Script Editor. So go ahead and click the
Run button for the script you wrote in the previous section. The first thing
you see is the window in Figure 1-6.

Because two buttons are in this dialog, the script has to deal with two possible
user responses. That’s why the if statement is in the script. Of course, if you
want the script to respond the same way to the user pushing either button, you
can, but I’m hard pressed to figure out a response equally appropriate for both
“Hi” and “Buzz off.” Because the script checks what button the user clicks,
when the user clicks the Hi button the user sees the dialog in Figure 1-7, while
if the user clicks the Buzz Off button, the dialog in Figure 1-8 appears.

Figure 1-6:
Starting

a conver-
sation.

22 Part I: Getting Started

Just because AppleScript understands
doesn’t mean the script is right

Never forget that computers don’t think. They just
follow instructions. So just because AppleScript
can understand what you type doesn’t mean that
a script does what you want. If you have a script
that’s supposed to delete all files containing the
word “old” but you accidentally type the string
“new” into the script, AppleScript understands
what you typed and cheerfully deletes all files
containing the word “new,” even though that
script deletes ten years of work.

In addition, some types of errors don’t show up
until you actually try to run a script. Suppose your

script is supposed to move files from one place
to another, and you put in a nice way to pick the
files to move. AppleScript has no way of deter-
mining that the files you pick in the future, when
you run the script, are available. As a result, you
could run the script and get an error even though
AppleScript “understood” what you said.

The bottom line is that just because you don’t get
an error message when you click the Compile
button doesn’t mean your script does what you
want it to do.

05_574949 ch01.qxd 7/29/04 10:45 PM Page 22

I originally arranged it so that if you hit the Buzz Off button, your Mac automat-
ically transferred your life savings to my Swiss bank account, but Wiley told
me that would raise its insurance rates. I told them that the book told you
that they weren’t liable for anything the scripts do, but for some reason, the
folks at Wiley still weren’t enthused. So my attempt to impoverish unfriendly
people was temporarily stymied.

While this script doesn’t do very much, it does illustrate how easy you can
build a script whose behavior is tailored to user inputs. Much more complex
user input is implemented by just asking the user more questions. But most
of all, if you enter the script, you now are halfway to being a proficient scripter
because you know the basic mechanics of how to use the Script Editor. You
find a lot more detail in Chapter 3, but right now, you know enough to enter,
save, and run scripts. All that’s left is to familiarize yourself with a bit of the
AppleScript language, which is a lot like English, and you’re all set.

Oh yeah, one other thing: While I ran these scripts from inside the Script
Editor, you can save scripts as applications that you can run by double-clicking
their icons, just like any other application. You see how to do that in Chapter 3.

Figure 1-8:
You’ve hurt
its feelings,

you wretch!

Figure 1-7:
The script is

friendly if
you are.

23Chapter 1: A Cannonball Dive into the Scripting Pool

05_574949 ch01.qxd 7/29/04 10:45 PM Page 23

24 Part I: Getting Started

05_574949 ch01.qxd 7/29/04 10:45 PM Page 24

