
Hello ASP.NET 2.0!

The evolution of ASP.NET continues! The progression from Active Server Pages 3.0 to ASP.NET 1.0
was revolutionary, to say the least; and we are here to tell you that the evolution from ASP.NET
1.0/1.1 to ASP.NET 2.0 is just as exciting and dramatic.

The introduction of ASP.NET 1.0/1.1 changed the Web programming model; but ASP.NET 2.0 is
just as revolutionary in the way it increases productivity. The primary goal of ASP.NET 2.0 is to
enable you to build powerful, secure, and dynamic applications using the least possible amount of
code. Although this book covers the new features provided by ASP.NET 2.0, it also covers most of
what the ASP.NET technology offers.

A Little Bit of History
Before organizations were even thinking about developing applications for the Internet, much of
the application development focused on thick desktop applications. These thick-client applications
were used for everything from home computing and gaming to office productivity and more. No
end was in sight for the popularity of this application model.

During that time, Microsoft developed its thick-client applications using mainly Visual Basic (VB).
Visual Basic was not only a programming language; it was tied to an IDE that allowed for easy
thick-client application development. In the Visual Basic model, developers could drop controls
onto a form, set properties for these controls, and provide code behind them to manipulate the
events of the control. For example, when an end user clicked a button on one of the Visual Basic
forms, the code behind the form handled the event.

Then, in the mid-1990s, the Internet arrived on the scene. Microsoft was unable to move the Visual
Basic model to the development of Internet-based applications. The Internet definitely had a lot of
power, and right away the problems facing the thick-client application model were revealed.
Internet-based applications created a single instance of the application that everyone could access.
Having one instance of an application meant that when the application was upgraded or patched,

04_576100 ch01.qxd 10/6/05 9:10 PM Page 1

CO
PYRIG

HTED
 M

ATERIA
L

the changes made to this single instance were immediately available to each and every user visiting the
application through a browser.

To participate in the Web application world, Microsoft developed Active Server Pages (ASP). ASP was a
quick and easy way to develop Web pages. ASP pages consisted of a single page that contained a mix of
markup and languages. The power of ASP was that you could include VBScript or JScript code instruc-
tions in the page executed on the Web server before the page was sent to the end user’s Web browser.
This was an easy way to create dynamic Web pages customized based on parameters dictated by the
developer.

ASP used script between brackets and percentage signs —<% %>— to control server-side behaviors. A
developer could then build an ASP page by starting with a set of static HTML. Any dynamic element
needed by the page was defined using a scripting language (such as VBScript or JScript). When a user
requested the page from the server by using a browser, the asp.dll (an ISAPI application that provided
a bridge between the scripting language and the Web server) would take hold of the page and define all
the dynamic aspects of the page on-the-fly based on the programming logic specified in the script. After
all the dynamic aspects of the page were defined, the result was an HTML page output to the browser of
the requesting client.

As the Web application model developed, more and more languages mixed in with the static HTML to
help manipulate the behavior and look of the output page. Over time, such a large number of languages,
scripts, and plain text could be placed in a typical ASP page that developers began to refer to pages that
utilized these features as spaghetti code. For example, it was quite possible to have a page that used HTML,
VBScript, JavaScript, Cascading Style Sheets, T-SQL, and more. In certain instances, it became a manage-
ability nightmare.

ASP evolved and new versions were released. ASP 2.0 and 3.0 were popular because the technology
made it relatively straightforward and easy to create Web pages. Their popularity was enhanced because
they appeared in the late ’90s, just as the dotcom era was born. During this time, a mountain of new Web
pages and portals were developed, and ASP was one of the leading technologies individuals and compa-
nies used to build them. Even today, you can still find a lot of .asp pages on the Internet — including
some of Microsoft’s own Web pages.

But even at the time of the final release of Active Server Pages in late 1998, Microsoft employees Marc
Anders and Scott Guthrie had other ideas. Their ideas generated what they called XSP (an abbreviation
with no meaning) — a new way of creating Web applications in an object-oriented manner instead of the
procedural manner of ASP 3.0. They showed their idea to many different groups within Microsoft, and
were well received. In the summer of 2000, the beta of what was then called ASP+ was released at
Microsoft’s Professional Developers Conference. The attendees eagerly started working with it. When
the technology became available (with the final release of the .NET Framework 1.0), it was renamed
ASP.NET — receiving the .NET moniker that most of Microsoft’s new products were receiving at that
time.

Before the introduction of .NET, the model that classic ASP provided and what developed in Visual Basic
were so different that few VB developers also developed Web applications — and few Web application
developers also developed the thick-client applications of the VB world. There was a great divide.
ASP.NET bridged this gap. ASP.NET brought a Visual Basic–style eventing model to Web application
development, providing much-needed state management techniques over stateless HTTP. Its model is
much like the earlier Visual Basic model in that a developer can drag and drop a control onto a design

2

Chapter 1

04_576100 ch01.qxd 10/6/05 9:10 PM Page 2

surface or form, manipulate the control’s properties, and even work with the code behind these controls
to act on certain events that occur during their lifecycles. What ASP.NET created is really the best of both
models, as you will see throughout this book.

I know you’ll enjoy working with this latest release of ASP.NET — 2.0. Nothing is better than getting
your hands on a new technology and seeing what’s possible. The following section discusses the goals of
ASP.NET 2.0 so you can find out what to expect from this new offering!

The Goals of ASP.NET 2.0
ASP.NET 2.0 is a major release of the product and is an integral part of the .NET Framework 2.0. This
release of the Framework was code-named Whidbey internally at Microsoft. You might hear others refer-
ring to this release of ASP.NET as ASP.NET Whidbey. ASP.NET 2.0 heralds a new wave of development
that should eliminate any of the remaining barriers to adopting this new way of coding Web applications.

When the ASP.NET team started working on ASP.NET 2.0, it had specific goals to achieve. These goals
focused around developer productivity, administration and management, as well as performance and
scalability. These goals are achieved with this milestone product release. The next sections look at each of
these goals.

Developer Productivity
Much of the focus of ASP.NET 2.0 is on productivity. Huge productivity gains were made with the
release of ASP.NET 1.x — could it be possible to expand further on those gains?

One goal the development team had for ASP.NET 2.0 was to eliminate much of the tedious coding that
ASP.NET originally required and to make common ASP.NET tasks easier. The ASP.NET team developing
ASP.NET 2.0 had the goal of reducing by two-thirds the number of lines of code required for an ASP.NET
application! It succeeded in this release; you will be amazed at how quickly you can create your applica-
tions in ASP.NET 2.0.

The new developer productivity capabilities are presented throughout this book. First, take a look at the
older ASP.NET technology. Listing 1-1 provides an example of using ASP.NET 1.0 to build a table in a
Web page that includes the capability to perform simple paging of the data provided.

Listing 1-1: Showing data in a DataGrid server control with paging enabled (VB only)

<%@ Page Language=”VB” AutoEventWireup=”True” %>
<%@ Import Namespace=”System.Data” %>
<%@ Import Namespace=”System.Data.SqlClient” %>

<script runat=”server”>

Private Sub Page_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs)

If Not Page.IsPostBack Then
BindData()

End If

(continued)

3

Hello ASP.NET 2.0!

04_576100 ch01.qxd 10/6/05 9:10 PM Page 3

Listing 1-1: (continued)

End Sub

Private Sub BindData()
Dim conn As SqlConnection = New SqlConnection(“server=’localhost’;

trusted_connection=true; Database=’Northwind’”)
Dim cmd As SqlCommand = New SqlCommand(“Select * From Customers”, conn)
conn.Open()

Dim da As SqlDataAdapter = New SqlDataAdapter(cmd)
Dim ds As New DataSet

da.Fill(ds, “Customers”)

DataGrid1.DataSource = ds
DataGrid1.DataBind()

End Sub

Private Sub DataGrid1_PageIndexChanged(ByVal source As Object, _
ByVal e As System.Web.UI.WebControls.DataGridPageChangedEventArgs)

DataGrid1.CurrentPageIndex = e.NewPageIndex
BindData()

End Sub

</script>
<html>
<head>
</head>
<body>

<form runat=”server”>
<asp:DataGrid id=”DataGrid1” runat=”server” AllowPaging=”True”
OnPageIndexChanged=”DataGrid1_PageIndexChanged”></asp:DataGrid>

</form>
</body>
</html>

Although quite a bit of code is used here, this is a dramatic improvement over the amount of code
required to accomplish this task using classic Active Server Pages 3.0. We won’t go into the details of this
older code; we just want to demonstrate that in order to add any additional common functionality (such
as paging) for the data shown in a table, the developer had to create custom code.

This is one area where the new developer productivity gains are most evident. ASP.NET 2.0 now pro-
vides a new control called the GridView server control. This control is much like the DataGrid server
control that you may already know and love, but the GridView server control (besides offering many
other new features) contains the built-in capability to apply paging, sorting, and editing of data with
relatively little work on your part. Listing 1-2 shows you an example of the GridView server control.
This example builds a table of data from the Customers table in the Northwind database that includes
paging.

4

Chapter 1

04_576100 ch01.qxd 10/6/05 9:10 PM Page 4

Listing 1-2: Viewing a paged dataset with the new GridView server control

<%@ Page Language=”VB” %>

<script runat=”server”>

</script>

<html xmlns=http://www.w3.org/1999/xhtml>
<head runat=”server”>

<title>GridView Demo</title>
</head>
<body>

<form runat=”server”>
<asp:GridView ID=”GridView1” Runat=”server” AllowPaging=”True”
DataSourceId=”Sqldatasource1” />

<asp:SqlDataSource ID=”SqlDataSource1” Runat=”server”
SelectCommand=”Select * From Customers”
ProviderName=”System.Data.OleDb”
ConnectionString=”Provider=SQLOLEDB;Server=localhost;uid=sa;
pwd=password;database=Northwind” />

</form>
</body>
</html>

That’s it! You can apply paging by using a couple of new server controls. You turn on this capability
using a server control attribute, the AllowPaging attribute of the GridView control:

<asp:GridView ID=”GridView1” Runat=”server” AllowPaging=”True”
DataSourceId=”SqlDataSource1” />

The other interesting event occurs in the code section of the document:

<script runat=”server”>

</script>

These two lines of code aren’t actually needed to run the file. They are included here to make a point —
you don’t need to write any server-side code to make this all work! You have to include only some server con-
trols: one control to get the data and one control to display the data. Then the controls are wired
together. Running this page produces the results shown in Figure 1-1.

This is just one of thousands of possible examples, so at this point you likely can’t grasp how much more
productive you can be with ASP.NET 2.0. As you work through the book, however, you will see plenty
of examples that demonstrate this new level of productivity.

5

Hello ASP.NET 2.0!

04_576100 ch01.qxd 10/6/05 9:10 PM Page 5

Figure 1-1

Administration and Management
The initial release of ASP.NET focused on the developer, and little thought was given to the people who
had to administer and manage all the ASP.NET applications that were built and deployed. Instead of
working with consoles and wizards as they did in the past, administrators and managers of these new
applications now had to work with unfamiliar XML configuration files such as machine.config and
web.config.

To remedy this situation, ASP.NET 2.0 now includes a Microsoft Management Console (MMC) snap-in
that enables Web application administrators to edit configuration settings easily on the fly. Figure 1-2
shows the ASP.NET Configuration Settings dialog open on one of the available tabs.

This dialog allows system administrators to edit the contents of the machine.config and the web.
config files directly from the dialog instead of having them examine the contents of an XML file.

In addition to this dialog, Web or system administrators have a web-based way to administer their
ASP.NET 2.0 applications — using the new Web Administration Tool shown in Figure 1-3.

6

Chapter 1

04_576100 ch01.qxd 10/6/05 9:10 PM Page 6

Figure 1-2

Figure 1-3

7

Hello ASP.NET 2.0!

04_576100 ch01.qxd 10/6/05 9:10 PM Page 7

You might be asking yourself how you can access these new tools programmatically. Well, that’s the
exciting part. These tools build off new APIs that are now part of the .NET Framework 2.0 and that are
open to developers. These new APIs give you programmatic access to many of the configurations of
your Web applications such as reading and writing to .config files. They enable you to create similar
tools or even deployment and management scripts.

In addition to these new capabilities, you can now easily encrypt sections of your configuration files. In
the past, many programmers stored vital details — such as usernames, passwords, or even their SQL
connection strings — directly in the web.config file. With the capability to easily encrypt sections of
these files, you can now store these items in a more secure manner. As an example, suppose you have a
<connectionStrings> section in your web.config file, like this:

<connectionStrings>
<add name=”Northwind”
connectionString=”Server=localhost;Integrated Security=True;Database=Northwind”
providerName=”System.Data.SqlClient” />

</connectionStrings>

You could then use the new Configuration class to encrypt this portion of the web.config file. Doing
this causes the <connectionStrings> section of the web.config file to be changed to something simi-
lar to the following:

<protectedData>
<protectedDataSections>

<add name=”connectionStrings”
provider=”DataProtectionConfigurationProvider” />

</protectedDataSections>
</protectedData>
<connectionStrings>

<EncryptedData>
<CipherData>

<CipherValue>
AQAAANCMnd8BFdERjHoAwE/Cl+sBAAAzIdfS2PzIdfS
8JLaXDcYEOCilNp5tSAvgQAAAACAAAAAAADZgAAqAAA
ABAAAACm8OcYwzIdfS2PZsFtKLfwAAAAAASAAACgAAA
AEAAAAHkRqsmwUgN8zAWQ9GZ/QYmAAQAAm91T+uDJXA
czcH+qalaaBpw0QBQggDfH3qpF+nXhaQuqLJio/1Cp2
Sx7a7N3K9i+gnMTKO1O1fxIMwSBKva11qX+iFdurku7
Y5KhdAQAAANCMnd8BFdERjHoAwE/Cl+sBAAAAx8JLaX
DcYEOCilNp5tSAvgQAAAACAAAAAAADZgAAqAAAABAAA
ACm8OcYwzIdfS2PZsFtKLfwAAAAAASAAACgAAAAEAAA
AHkRqsmwUgN8zAWQ9GZ/QYmAAQAAm91T+uDJXAczcH+
qalaaBpw0QBQggDfH3qpF+nXhaQuqLJio/1Cp2Sx7a7
N3K9i+gnMTKO1O1fxIMwSBKva11qX+iFdurku7Y5Khd
AQAAANCMnd8BFdERjHoAwE/Cl+sBAAAAx8JLaXDcYEO
smwUgN8zAWQ9GZ/QYmAAQAAm91T+uDJXAczcH+qalaa
Bpw0QBQggDfH3qpF+nXhaQuqLJio/1Cp2Sx7a7N3K9i
+gnMTKO1O1fxIMwSBKva11qX+iFdurku7Y5Khd

</CipherValue>
</CipherData>

</EncryptedData>
</connectionStrings>

8

Chapter 1

04_576100 ch01.qxd 10/6/05 9:10 PM Page 8

Now if some malicious user illegally gets into your machine and gets his hands on your application’s
web.config file, you could prevent him from getting much of value — such as the connection string of
your database.

Performance and Scalability
One of the goals for ASP.NET 2.0 set by the Microsoft team was to provide the world’s fastest Web appli-
cation server. This book also addresses a number of performance enhancements available in ASP.NET 2.0.

One of the most exciting performance enhancements is the new caching capability aimed at exploiting
Microsoft’s SQL Server. ASP.NET 2.0 now includes a feature called SQL cache invalidation. Before
ASP.NET 2.0, it was possible to cache the results that came from SQL Server and to update the cache
based on a time interval — for example, every 15 seconds or so. This meant that the end user might see
stale data if the result set changed sometime during that 15-second period.

In some cases, this time interval result set is unacceptable. In an ideal situation, the result set stored
in the cache is destroyed if any underlying change occurs in the source from which the result set is
retrieved — in this case, SQL Server. With ASP.NET 2.0, you can make this happen with the use of SQL
cache invalidation. This means that when the result set from SQL Server changes, the output cache is
triggered to change, and the end user always sees the latest result set. The data presented is never stale.

Another big area of change in ASP.NET is in the area of performance and scalability. ASP.NET 2.0 now
provides 64-bit support. This means that you can now run your ASP.NET applications on 64-bit Intel or
AMD processors.

Because ASP.NET 2.0 is fully backward compatible with ASP.NET 1.0 and 1.1, you can now take any for-
mer ASP.NET application, recompile the application on the .NET Framework 2.0, and run it on a 64-bit
processor.

Additional New Features of ASP.NET 2.0
You just learned some of the main goals of the ASP.NET team that built ASP.NET 2.0. To achieve these
goals, the team built a mountain of new features into ASP.NET. A few of them are described in the fol-
lowing sections.

New Developer Infrastructures
An exciting advancement in ASP.NET 2.0 is that new infrastructures are in place for you to use in your
applications. The ASP.NET team selected some of the most common programming operations performed
with ASP.NET 1.0 to be built directly into ASP.NET. This saves you considerable time and coding.

Membership and Role Management
In earlier versions, if you were developing a portal that required users to log in to the application to gain
privileged access, invariably you had to create it yourself. It can be tricky to create applications with
areas that are accessible only to select individuals.

9

Hello ASP.NET 2.0!

04_576100 ch01.qxd 10/6/05 9:10 PM Page 9

With ASP.NET 2.0, this capability is now built in. You can now validate users as shown in Listing 1-3.

Listing 1-3: Validating a user in code

VB
If (Membership.ValidateUser (Username.Text, Password.Text)) Then

‘ Allow access code here
End If

C#
if (Membership.ValidateUser (Username.Text, Password.Text)) {

// Allow access code here
}

A new series of APIs, controls, and providers in ASP.NET 2.0 enable you to control an application’s user
membership and role management. Using these APIs, you can easily manage users and their complex
roles — creating, deleting, and editing them. You get all this capability by using the APIs or a built-in
Web tool called the Web Site Administration Tool.

As far as storing users and their roles, ASP.NET 2.0 uses an .mdb file (the file type for the new SQL Server
Express Edition, not to be confused with Microsoft Access) for storing all users and roles. You are in no
way limited to just this data store, however. You can expand everything offered to you by ASP.NET and
build your own providers using whatever you fancy as a data store. For example, if you want to build
your user store in LDAP or within an Oracle database, you can do so quite easily.

Personalization
One advanced feature that portals love to offer their membership base is the capability to personalize
their offerings so that end users can make the site look and function however they want. The capability
to personalize an application and store the personalization settings is now completely built into the
ASP.NET framework.

Because personalization usually revolves around a user and possibly a role that this user participates in,
the personalization architecture can be closely tied to the membership and role infrastructures. You have
a couple of options for storing the created personalization settings. The capability to store these settings
in either Microsoft Access or in SQL Server is built into ASP.NET 2.0. As with the capabilities of the
membership and role APIs, you can use the flexible provider model, and then either change how the
built-in provider uses the available data store or build your own custom data provider to work with a
completely new data store. The personalization API also supports a union of data stores, meaning that
you can use more than one data store if you want.

Because it is so easy to create a site for customization using these new APIs, this feature is quite a value-
add for any application you build.

The ASP.NET Portal Framework
During the days of ASP.NET 1.0, developers could go to the ASP.NET team’s site (found at http://
www.asp.net) and download some Web application demos called IBuySpy., These demos were known
as Developer Solution Kits and are used as the basis for many of the Web sites on the Internet today.
Some were even extended into Open Source frameworks such as DotNetNuke.

10

Chapter 1

04_576100 ch01.qxd 10/6/05 9:10 PM Page 10

The nice thing about IBuySpy was that you could use the code it provided as a basis to build either a
Web store or a portal. You simply took the base code as a starting point and extended it. For example,
you could change the look and feel of the presentation part of the code or introduce advanced function-
ality into its modular architecture. Developer Solution Kits were quite popular because they made per-
forming these types of operations so easy. Figure 1-4 shows the INETA (International .NET Association)
Web site, which builds on the IBuySpy portal framework.

Because of the popularity of frameworks such as IBuySpy, ASP.NET 2.0 offers built-in capability for
using Web Parts to easily build portals. The possibilities for what you can build using the new Portal
Framework is astounding. The power of building using Web Parts is that it easily enables end users to
completely customize the portal for their own preferences. Figure 1-5 shows an example application
built using Web Parts.

Figure 1-4

11

Hello ASP.NET 2.0!

04_576100 ch01.qxd 10/6/05 9:10 PM Page 11

Figure 1-5

Site Navigation
The ASP.NET team members realize that end users want to navigate through applications with ease. The
mechanics to make this work in a logical manner is sometimes hard to code. The team solved the prob-
lem in ASP.NET 2.0 with a series of navigation-based server controls.

First, you can build a site map for your application in an XML file that specific controls can inherently
work from. Listing 1-4 shows a sample site map file.

Listing 1-4: An example of a site map file

<?xml version=”1.0” encoding=”utf-8” ?>

<siteMap xmlns=”http://schemas.microsoft.com/AspNet/SiteMap-File-1.0”>
<siteMapNode title=”Home” description=”Home Page” url=”default.aspx”>

<siteMapNode title=”News” description=”The Latest News” url=”News.aspx”>
<siteMapNode title=”U.S.” description=”U.S. News”
url=”News.aspx?cat=us” />

<siteMapNode title=”World” description=”World News”
url=”News.aspx?cat=world” />

12

Chapter 1

04_576100 ch01.qxd 10/6/05 9:10 PM Page 12

<siteMapNode title=”Technology” description=”Technology News”
url=”News.aspx?cat=tech” />

<siteMapNode title=”Sports” description=”Sports News”
url=”News.aspx?cat=sport” />

</siteMapNode>
<siteMapNode title=”Finance” description=”The Latest Financial Information”

url=”Finance.aspx”>
<siteMapNode title=”Quotes” description=”Get the Latest Quotes”
url=”Quotes.aspx” />

<siteMapNode title=”Markets” description=”The Latest Market Information”
url=”Markets.aspx”>

<siteMapNode title=”U.S. Market Report”
description=”Looking at the U.S. Market” url=”MarketsUS.aspx” />

<siteMapNode title=”NYSE”
description=”The New York Stock Exchange” url=”NYSE.aspx” />

</siteMapNode>
<siteMapNode title=”Funds” description=”Mutual Funds”
url=”Funds.aspx” />

</siteMapNode>
<siteMapNode title=”Weather” description=”The Latest Weather”
url=”Weather.aspx” />

</siteMapNode>
</siteMap>

After you have a site map in place, you can use this file as the data source behind a couple of new site
navigation server controls, such as the TreeView and the SiteMapPath server controls. The TreeView
server control enables you to place an expandable site navigation system in your application. Figure 1-6
shows you an example of one of the many looks you can give the TreeView server control.

Figure 1-6

The SiteMapPath is a control that provides the capability to place what some call navigation bread-
crumbs in your application so that the end user can see the path that he has taken in the application and
can easily navigate to higher levels in the tree. Figure 1-7 shows you an example of the SiteMapPath
server control at work.

13

Hello ASP.NET 2.0!

04_576100 ch01.qxd 10/6/05 9:10 PM Page 13

Figure 1-7

These new site navigation capabilities provide a great way to get programmatic access to the site layout
and even to take into account things like end-user roles to determine which parts of the site to show.

New Compilation System
In ASP.NET 2.0, the code is constructed and compiled in a new way. Compilation in ASP.NET 1.0 was
always a tricky scenario. With ASP.NET 1.0, you could build an application’s code-behind files using
ASP.NET and Visual Studio, deploy it, and then watch as the .aspx files were compiled page by page as
each was requested. If you made any changes to the code-behind file in ASP.NET 1.0, it was not reflected
in your application until the entire application was rebuilt. That meant that the same page-by-page
request had to be done again before the entire application was recompiled.

Everything about how ASP.NET 1.0 worked with classes and compilation changed with the release of
ASP.NET 2.0. The mechanics of the new compilation system actually begin with how a page is struc-
tured in ASP.NET 2.0. In ASP.NET 1.0, you either constructed your pages using the code-behind model
or by placing all the server code inline between <script> tags on your .aspx page. Most pages were
constructed using the code-behind model because this was the default when using Visual Studio .NET
2002 or 2003. It was quite difficult to create your page using the inline style in these IDEs. If you did, you
were deprived of the use of IntelliSense, which can be quite the lifesaver when working with the tremen-
dously large collection of classes that the .NET Framework offers.

ASP.NET 2.0 offers a new code-behind model because the .NET Framework 2.0 offers the capability to
work with partial classes (also called partial types). Upon compilation, the separate files are combined
into a single offering. This gives you much cleaner code-behind pages. The code that was part of the Web
Form Designer Generated section of your classes is separated from the code-behind classes that you
create yourself. Contrast this with the ASP.NET 1.0 .aspx file’s need to derive from its own code-behind
file to represent a single logical page.

ASP.NET 2.0 applications can include an \App_Code directory where you place your class’s source. Any
class placed here is dynamically compiled and reflected in the application. You do not use a separate
build process when you make changes as you did with ASP.NET 1.0. This is a just save and hit deploy-
ment model like the one in classic ASP 3.0. Visual Studio Web Developer also automatically provides
IntelliSense for any objects that are placed in the \App_Code directory, whether you are working with
the code-behind model or are coding inline.

ASP.NET 2.0 also provides you with tools that enable you to precompile your ASP.NET applications,
both .aspx pages and code behind so that no page within your application has latency when it is
retrieved for the first time. It is also a great way to figure out if you have made any errors in the pages
without invoking every page yourself.

Precompiling your ASP.NET 2.0 applications is as simple as calling the precompile.axd imaginary file
in the application root of your application after it has been deployed. This one call causes your entire
application to be precompiled. You receive an error notification if any errors are found anywhere within
your application. It is also possible to precompile your application and deliver only the created assembly

14

Chapter 1

04_576100 ch01.qxd 10/6/05 9:10 PM Page 14

to the deployment server, thereby protecting your code from snooping, change, and tampering after
deployment. You see examples of both of these scenarios later in this book.

Additions to the Page Framework
The ASP.NET page framework has some dramatic new additions that you can include in your applica-
tions. One of the most striking ones is the capability to build ASP.NET pages based upon visual inheri-
tance. This was possible in the Windows Forms world, but it was harder to achieve with ASP.NET. You
also gain the capability to easily apply a consistent look and feel to the pages of your application by
using themes. Many of the difficulties in working with ADO.NET in the past have now been removed
with the addition of a new series of data source controls that take care of accessing and retrieving data
from a large collection of data stores. Although these are not the only new controls, the many new server
controls create a larger ASP.NET page framework.

Master Pages
With the introduction of master pages in ASP.NET 2.0, you can now use visual inheritance within your
ASP.NET applications. Because many ASP.NET applications have a similar structure throughout their
pages, it is logical to build a page template once and use that same template throughout the application.

In ASP.NET 2.0, you do this by creating a .master page, as shown in Figure 1-8.

Figure 1-8

15

Hello ASP.NET 2.0!

04_576100 ch01.qxd 10/6/05 9:10 PM Page 15

An example master page might include a header, footer, and any other elements that all the pages can
share. Besides these core elements, which you might want on every page that inherits and uses this tem-
plate, you can place <asp:ContentPlaceHolder> server controls within the master page itself for the
subpages (or content pages) to use in order to change specific regions of the master page template. The
editing of the subpage is shown in Figure 1-9.

When an end user invokes one of the subpages, he is actually looking at a single page compiled from
both the subpage and the master page that the particular subpage inherited from. This also means that
the server and client code from both pages are enabled on the new single page.

The nice thing about master pages is that you now have a single place to make any changes that affect
the entire site. This eliminates making changes to each and every page within an application.

Themes
The introduction of themes in ASP.NET 2.0 has made it quite simple to provide a consistent look and feel
across your entire site. Themes are simple text files where you define the appearance of server controls
that can be applied across the site, to a single page, or to a specific server control. You can also easily
incorporate graphics and Cascading Style Sheets, in addition to server control definitions.

Figure 1-9

16

Chapter 1

04_576100 ch01.qxd 10/6/05 9:10 PM Page 16

Themes are stored in the /App_Theme directory within the application root for use within that particular
application. One cool capability of themes is that you can dynamically apply them based on settings that
use the new personalization service provided by ASP.NET 2.0. Each unique user of your portal or appli-
cation can have her own personalized look and feel that she has chosen from your offerings.

New Objects for Accessing Data
One of the more code-intensive tasks in ASP.NET 1.0 was the retrieval of data. In many cases, this meant
working with a number of objects. If you have been working with ASP.NET for a while, you know that it
was an involved process to display data from a Microsoft SQL Server table within a DataGrid server
control. For instance, you first had to create a number of new objects. They included a SqlConnection
object followed by a SqlCommand object. When those objects were in place, you then created a
SqlDataReader to populate your DataGrid by binding the result to the DataGrid. In the end, a table
appeared containing the contents of the data you were retrieving (such as the Customers table from the
Northwind database).

ASP.NET 2.0 eliminates this intensive procedure with the introduction of a new set of objects that work
specifically with data access and retrieval. These new data controls are so easy to use that you access and
retrieve data to populate your ASP.NET server controls without writing any code. You saw an example
of this in Listing 1-2, where an <asp:SqlDataSource> server control retrieved rows of data from the
Customers table in the Northwind database from SQL Server. This SqlDataSource server control was
then bound to the new GridView server control via the use of simple attributes within the GridView con-
trol itself. It really couldn’t be any easier!

The great news about this new functionality is that it is not limited to just Microsoft’s SQL Server. In
fact, several data source server controls are at your disposal. You also have the capability to create your
own. In addition to the SqlDataSource server control, ASP.NET 2.0 introduces the AccessDataSource,
XmlDataSource, ObjectDataSource, and SiteMapDataSource server controls. You use all these new data
controls later in this book.

New Server Controls
So far, you have seen a number of new server controls that you can use when building your ASP.NET 2.0
pages. For example, the preceding section talked about all the new data source server controls that you
can use to access different kinds of data stores. You also saw the use of the new GridView server control,
which is an enhanced version of the previous DataGrid control that you used in ASP.NET 1.0.

Besides the controls presented thus far in this chapter, ASP.NET 2.0 provides more than 50 additional
new server controls! In fact, so many new server controls have been introduced that the next IDE for
building ASP.NET applications, Visual Studio 2005, had to reorganize the Toolbox where all the server
controls are stored. They are now separated into categories instead of being displayed in a straight list-
ing as they were in Visual Studio .NET or the ASP.NET Web Matrix. The new Visual Studio 2005 Toolbox
is shown in Figure 1-10.

17

Hello ASP.NET 2.0!

04_576100 ch01.qxd 10/6/05 9:10 PM Page 17

Figure 1-10

A New IDE for Building ASP.NET 2.0 Pages
With ASP.NET 1.0/1.1, you can build your ASP.NET application using Notepad, Visual Studio .NET
2002 and 2003, as well as the hobbyist-focused ASP.NET Web Matrix. ASP.NET 2.0 comes with another
IDE to the Visual Studio family — Visual Studio 2005.

Visual Studio 2005 offers some dramatic enhancements that completely change the way in which you
build your ASP.NET applications. Figure 1-11 shows you a screen shot of the new Visual Studio 2005.

The most exciting change to the IDE is that Visual Studio 2005 builds applications using a file-based sys-
tem, not the project-based system used by Visual Studio .NET. When using Visual Studio .NET, you had
to create new projects (for example, an ASP.NET Web Application project). This process created a num-
ber of project files in your application. Because everything was based on a singular project, it became
very difficult to develop applications in a team environment.

Web projects in Visual Studio 2005, on the other hand, are based on a file system approach. No project
files are included in your project, and this makes it very easy for multiple developers to work on a single
application together without bumping into each other. Other changes are those to the compilation sys-
tem discussed earlier. You can now build your ASP.NET pages using the inline model or the new code-
behind model. Whether you build pages inline or with the new code-behind model, you have full
IntelliSense capabilities. This, in itself, is powerful and innovative. Figure 1-12 shows IntelliSense run-
ning from an ASP.NET page that is being built using the inline model.

18

Chapter 1

04_576100 ch01.qxd 10/6/05 9:10 PM Page 18

Figure 1-11

Figure 1-12

19

Hello ASP.NET 2.0!

04_576100 ch01.qxd 10/6/05 9:10 PM Page 19

Another feature of Visual Studio 2005 that has come over from the ASP.NET Web Matrix is that you
don’t need IIS on your development machine. Visual Studio 2005 has a built-in Web server that enables
you to launch pages from any folder in your system with relative ease. Chapter 2 discusses the new
Visual Studio 2005 in detail.

Summary
This whirlwind tour briefly introduced some of the new features in ASP.NET 2.0. This release offers so
much that we can’t come close to covering it all in this chapter. The new ways of working with data and
presentation and the new infrastructure provide effective means to create powerful and secure applica-
tions. But this book also gets down and dirty in the underlying architecture and features that have been
included in ASP.NET since it was initially released.

ASP.NET 2.0 is so powerful and has so much capability built in that its tremendous benefits to produc-
tivity really shine through. Pull up your keyboard and have some fun as you take the journey through
this book and this powerful technology.

20

Chapter 1

04_576100 ch01.qxd 10/6/05 9:10 PM Page 20

