Why Care About
Database Security?

In the introduction, we discussed the reasons why we consider database secu-
rity to be important. In this chapter, we provide a brief overview of several
broad categories of security issues, with a few specific details and some dis-
cussion of general defenses. We also briefly discuss how to go about finding
security flaws in database systems. Before we do so, we should discuss some
emerging trends in database security.

In recent years, with the explosion in web-based commerce and information
systems, databases have been drawing ever closer to the network perimeter.
This is a necessary consequence of doing business on the Web — you need
your customers to have access to your information via your web servers, so
your web servers need to have access to your databases. Databases that were
previously accessible only via several insulating layers of complex business
logic are now directly accessible from the much more fluid — and much less
secure — web application environment. The result of this is that the databases
are closer to the attackers. With the constant march toward a paperless busi-
ness environment, database systems are increasingly being used to hold more
and more sensitive information, so they present an increasingly valuable tar-
get. In recent years, database vendors have been competing with each other to
provide the most feature-rich environment they can, with most major systems
supporting XML, web services, distributed replication, operating system inte-
gration, and a host of other useful features. To cap all of this, the legislative
burden in terms of corporate security is increasing, with HIPAA, SOX, GLBA,



Chapter 1

and California Senate Bill No. 1386 imposing an ever-increasing pressure on
companies to ensure that their networks are compliant.

So why care about database security? Because your databases are closer to
the attacker, present a more valuable target, have more features to configure,
and are more closely regulated than they have ever been before.

Which Database Is the Most Secure?

All of the databases we cover in this volume have had serious security flaws
at some point. Oracle has published 69 security alerts on its “critical patch
updates and security alerts” page — though some of these alerts relate to a
large number of vulnerabilities, with patch 68 alone accounting for some-
where between 50 and 100 individual bugs. Depending on which repository
you search, Microsoft SQL Server and its associated components have been
subject to something like 36 serious security issues — though again, some of
these patches relate to multiple bugs. According to the ICAT metabase, DB2
has had around 20 published security issues — although the authors of this
book have recently worked with IBM to fix a further 13 issues. MySQL has had
around 25 issues; Sybase ASE is something of a dark horse with a mere 2 pub-
lished vulnerabilities. PostgreSQL has had about a dozen. Informix has had
about half a dozen, depending on whose count you use.

The problem is that comparing these figures is almost entirely pointless. Dif-
ferent databases receive different levels of scrutiny from security researchers.
To date, Microsoft SQL Server and Oracle have probably received the most,
which accounts for the large number of issues documented for each of those
databases. Some databases have been around for many years, and others are
relatively recent. Different databases have different kinds of flaws; some data-
bases are not vulnerable to whole classes of problems that might plague
others. Even defining “database” is problematic. Oracle bundles an entire
application environment with its database server, with many samples and pre-
built applications. Should these applications be considered a part of the data-
base? Is Microsoft’'s MSDE a different database than SQL Server? They are
certainly used in different ways and have a number of differing components,
but they were both subject to the UDP Resolution Service bug that was the
basis for the “Slammer” worm.

Even if we were able to determine some weighted metric that accounted for
age, stability, scrutiny, scope, and severity of published vulnerabilities, we
would still be considering only “patchable” issues, rather than the inherent
security features provided by the database. Is it fair to directly compare the
comprehensive audit capabilities of Oracle with the rather more limited capa-
bilities of MySQL, for instance? Should a database that supports securable



Why Care About Database Security?

views be considered “more secure” than a database that doesn’t implement
that abstraction? By default, PostgreSQL is possibly the most security-aware
database available — but you can’t connect to it over the network unless you
explicitly enable that functionality. Should we take default configurations into
account? The list of criteria is almost endless, and drawing any firm conclu-
sions from it is extremely dangerous.

Ultimately, the more you know about a system, the better you will be able to
secure it — up to a limit imposed by the features of that system. It isn’t true to
say, however, that the system with the most features is the most secure because
the more functionality a system has, the more target surface there is for an
attacker to abuse. The point of this book is to demonstrate the strengths and
weaknesses of the various database systems we’re discussing, not — most
emphatically not — to determine which is the “most secure.”

In the end, the most secure database is the one that you know the most about.

The State of Database Security Research

Before we can discuss the state of database security research, we should first
define what we mean by the term. In general, when we use the phrase “data-
base security research” we tend to mean research into specific, practical flaws
in the security of database systems. We do not mean research into individual
security incidents or discussions of marketing-led accreditation or certification
efforts. We don’t even mean academic research into the underlying abstrac-
tions of database security, such as field-, row-, and object-level security, or
encryption, or formal protocol security analysis — though the research we are
talking about may certainly touch on those subjects. We mean research relating
to discoveries of real flaws in real systems.

So with that definition in mind, we will take a brief tour of recent — and not
so recent — discoveries, and attempt to classify them appropriately.

Classes of Database Security Flaws

If you read about specific security flaws for any length of time, you begin to
see patterns emerge, with very similar bugs being found in entirely different
products. In this section, we attempt to classify the majority of known data-

base security issues into the following categories:
m Unauthenticated Flaws in Network Protocols
m Authenticated Flaws in Network Protocols
m Flaws in Authentication Protocols
|

Unauthenticated Access to Functionality



Chapter 1

m Arbitrary Code Execution in Intrinsic SQL Elements
m Arbitrary Code Execution in Securable SQL Elements
m Privilege Elevation via SQL Injection
-

Local Privilege Elevation Issues

So we begin with arguably the most dangerous class of all — unauthenti-
cated flaws in network protocols. By this we mean buffer overflows, format
string bugs, and so on, in the underlying network protocols used by database
systems.

Unauthenticated Flaws in Network Protocols

Arguably the most famous bug in this class is the bug exploited by the SQL
Server “Slammer” worm. The SQL Server Resolution Service operates over a
UDP protocol, by default on port 1434. It exposes a number of functions, two
of which were vulnerable to buffer overflow issues (CAN-2002-0649). These
bugs were discovered by David Litchfield of NGS. Another SQL Server prob-
lem in the same category was the “hello” bug (CAN-2002-1123) discovered by
Dave Aitel of Immunity, Inc., which exploited a flaw in the initial session setup
code on TCP port 1433.

Oracle has not been immune to this category — most recently, David Litch-
field found an issue with environment variable expansion in Oracle’s
“extproc” mechanism that can be exploited without a username or password
(CAN-2004-1363). Chris Anley of NGS discovered an earlier flaw in Oracle’s
extproc mechanism (CAN-2003-0634) that allowed for a remote, unauthenti-
cated buffer overflow. Mark Litchfield of NGS discovered a flaw in Oracle’s
authentication handling code whereby an overly long username would trigger
an exploitable stack overflow (CAN-2003-0095).

David Litchfield also found a flaw in DB2’s JDBC Applet Server (no CVE,
but bugtraq id 11401) that allows a remote, unauthenticated user to trigger a
buffer overflow.

In general, the best way to defend yourself against this class of problem is
tirst, to patch. Second, you should attempt to ensure that only trusted hosts
can connect to your database servers, possibly enforcing that trust through
some other authentication mechanism such as SSH or IPSec. Depending on the
role that your database server is fulfilling, this may be tricky.

Another possibility for defense is to implement an Intrusion Detection Sys-
tem (IDS) or an Intrusion Prevention System (IPS). These kinds of systems
have been widely discussed in security literature, and are of debatable value.
Although an IDS can (sometimes) tell you that you have been compromised, it
won’t normally prevent that compromise from happening. Signature-based



Why Care About Database Security?

IDS systems are only as strong as their signature databases and in most cases
signatures aren’t written by people who are capable of writing exploits, so
many loopholes in the signatures get missed.

“True anomaly” IDS systems are harder to bypass, but as long as you stick
to a protocol that’s already in use, and keep the exploit small, you can usually
slip by. Although some IDS systems are better than others, in general you need
an IDS like you need someone telling you you've got a hole in the head. IDS
systems will certainly stop dumber attackers, or brighter attackers who were
unlucky, so they may be worthwhile provided they complement — and don’t
replace — skilled staff, good lockdown, and good procedures.

IPS systems, on the other hand, do prevent some classes of exploit from
working but again, every IPS system the authors have examined can be
bypassed with a little work, so your security largely depends on the attacker
not knowing which commercial IPS you’re using. Someone may bring out an
IPS that prevents all arbitrary code execution attacks at some point, which
would be a truly wonderful thing. Don’t hold your breath waiting for it,
though.

Authenticated Flaws in Network Protocols

There are substantially fewer bugs in this category. This may reflect a reduced
focus on remote, authenticated bugs versus remote, unauthenticated bugs
among the security research community, or it may be sheer coincidence.

David Litchfield found a flaw in DB2 for Windows (CAN-2004-0795)
whereby a remote user could connect to the DB2REMOTECMD named pipe
(subject to Windows authentication) and would then be able to execute arbi-
trary commands with the privilege of the db2admin user, which is normally an
“Administrator” account.

David discovered another flaw in DB2 in this category recently, relating to
an attacker specifying an overly long locale LC_TYPE. The database applies
this after the user authenticates, triggering the overflow.

There are several other bugs that debatably fall into this category, normally
relating to web application server components; because we’re focusing on the
databases themselves we’ll gloss over them.

In general the best way to protect yourself against this category of bugs is to
carefully control the users that have access to your databases; a strong pass-
word policy will help — as long as you're not using plaintext authentication
protocols (we discuss this more later). Auditing authenticated users is also a
good idea for a number of reasons; it might give you a heads-up if someone is
trying to guess or brute-force a password, and if you do have an incident, at
least you have somewhere to start looking.



Chapter 1

Flaws in Authentication Protocols

Several database systems have plaintext authentication protocols, by which
we mean authentication protocols in which the password is passed “on the
wire” in a plaintext or easily decrypted format. In a default configuration (that
Sybase warns against, but which we have still seen in use) Sybase passes pass-
words in plaintext. By default, Microsoft SQL Server obfuscates passwords by
swapping the nibbles (4-bit halves of a byte) and XORing with 0xA5. In both of
these cases, the vendors warn against using the plaintext versions of their
authentication protocols and provide strong, encrypted mechanisms that are
relatively easy to deploy — but the defaults are still there, and still dangerous.

MySQL has historically had a number of serious problems with its authen-
tication protocol. Although the protocol isn’t plaintext, the mathematical basis
of the authentication algorithm prior to version 4.1 was called into question by
Ariel Waissbein, Emiliano Kargieman, Carlos Sarraute, Gerardo Richarte, and
Agustin Azubel of CORE SDI (CVE-2000-0981). Their paper describes an attack
in which an attacker that can observe multiple authentications is quickly able
to determine the password hash.

A turther conceptual problem with the authentication protocol in MySQL
prior to version 4.1 is that the protocol only tests knowledge of the password
hash, not the password itself. This leads to serious problems if a user is able to
somehow determine another user’s password hash — and MySQL has been
subject to a number of issues in which that was possible.

Robert van der Meulen found an issue (CVE-2000-0148) in MySQL versions
prior to 3.23.11 whereby an attacker could authenticate using only a single
byte of the expected response to the server’s challenge, leading to a situation
whereby if you knew a user’s username, you could authenticate as that user in
around 32 attempts.

Chris Anley recently found a very similar problem in MySQL (CAN-
2004-0627) whereby a user could authenticate using an empty response to the
server’s challenge, provided he or she passed certain flags to the remote server.

This category of bugs is almost as dangerous as the “unauthenticated flaws
in network protocols” category, because in many cases the traffic simply looks
like a normal authentication. Attackers don’t need to exploit an overflow or do
anything clever, they simply authenticate without necessarily needing the
password — or if they’ve been able to sniff the password, they just authenticate.

The best defense against this kind of bug is to ensure that your database
patches are up-to-date, and that you don’t have any plaintext authentication
mechanisms exposed on your databases. If your DBMS cannot support
encrypted authentication in your environment, you could use IPSec or SSH to
provide an encrypted tunnel. MySQL provides explicit guidelines on how to
do this in its documentation, though recent versions of MySQL allow authen-
tication to take place over an SSL-encrypted channel.



Why Care About Database Security?

Unauthenticated Access to Functionality

Some components associated with databases permit unauthenticated access to
functionality that should really be authenticated. As an example of this, David
Litchfield found a problem with the Oracle 8 and 9i TNS Listener, whereby a
remote, unauthenticated user could load and execute an arbitrary function via
the “extproc” mechanism (CVE-2002-0567). The function can have any proto-
type, so the obvious mode of attack is to load the libc or msvcrt library
(depending upon the target platform) and execute the “system” function that
allows an attacker to execute an arbitrary command line. The command will be
executed with the privileges of the user that the database is running as —
“oracle” on UNIX systems, or the local system user on Windows.

Recently, David Litchfield disclosed an issue that allows any local user to
execute commands in the security context of the user that Oracle is running as
(CAN-2004-1365). This bug works in exactly the same way as the bug listed
earlier (CVE-2002-0567), except that it takes advantage of the implicit trust that
extproc places in the local host. Oracle does not consider this to be a security
issue (!) but we would caution you not to allow users to have shells on Oracle
servers without seriously considering the security ramifications. Clearly,
allowing a user to have a shell on a database server is dangerous anyway, but
in this particular case there is a known, documented vector for attack that the
vendor will not fix.

There is a whole class of attacks that can be carried out on unsecured Oracle
TNS Listeners, including writing arbitrary data to files, that we cover later in
the Oracle chapters of this book — Oracle recommends that a Listener pass-
word be set, but it is not unusual to find servers where it hasn’t been.

Arbitrary Code Execution in Intrinsic SQL Elements

This class of buffer overflow applies to buffer overflow and format string bugs
in elements of the database’s SQL grammar that are not subject to the usual
access control mechanisms (GRANT and REVOKE). This class is rather more
of a threat than it might initially appear, since these bugs can normally be trig-
gered via SQL injection problems in Internet-facing web applications. A well-
written exploit for a bug in this class could take a user from the Internet into
administrative control of your database server in a single step.

A good example of this kind of thing in Microsoft SQL Server was the
pwdencrypt overflow discovered by Martin Rakhmanoff (CAN-2002-0624).
This was a classic stack overflow in a function used by SQL Server to encrypt
passwords.

An example of a format string bug in this category was the RAISERROR for-
mat string bug discovered in SQL Server 7 and 200 by Chris Anley (CAN-
2001-0542).



Chapter 1

Oracle has been subject to several bugs in this category — although it is nor-
mally possible to revoke access to Oracle functions, it can be somewhat prob-
lematic. Mark Litchfield discovered that the TIME_ZONE session parameter,
and NUMTOYMINTERVAL, NUMTODSINTERVAL, FROM_TZ functions are
all subject to buffer overflows that allow an attacker to execute arbitrary code.

David Litchfield discovered that the DB2 “call” mechanism was vulnerable
to a buffer overflow that can be triggered by any user (no CVE-ID, but bugtraq
ID 11399).

Declaring a variable with an overly long data type name in Sybase ASE ver-
sions prior to 12.5.3 will trigger an overflow.

Most databases have flaws in this category, simply because parsing SQL is a
hard problem. Developers are likely to make mistakes, and since parsing code
can be so convoluted, it can be hard to tell whether or not code is secure.

The best defense against this category of bugs is to patch. Allowing untrusted
users to influence SQL queries on the database server can also be a bad idea;
most organizations are aware of the threat posed by SQL injection but it is still
present in a sizeable proportion of the web applications that we audit. This
category of bugs, perhaps more so than any other, is a great argument for
ensuring that your patch testing and deployment procedures are as slick as
they can be.

Arbitrary Code Execution in Securable SQL Elements

In a slightly less severe category than the intrinsic function overflows, we have
the set of overflow and format string bugs that exist in functions that can be
subject to access controls. The interesting thing about this category is that,
although the risk from these problems can be mitigated by revoking permis-
sions to the objects in question, they are normally accessible by default.

Several bugs in this category have affected Microsoft SQL Server —
Chris Anley discovered buffer overflows in the extended stored procedures
xp_setsqlsecurity (CAN-2000-1088), xp_proxiedmetadata (CAN-2000-1087),
xp_printstatements (CAN-2000-1086), and xp_peekqueue (CAN-2000-1085).
David Litchfield discovered buffer overflows in the xp_updatecolvbm (CAN-
2000-1084), xp_showcolv (CAN-2000-1083), xp_enumresultset (CAN-2000-
1082), and xp_displayparamstmt (CAN-2000-1081) extended stored procedures.

Mark Litchfield discovered a buffer overflow in the BULK INSERT state-
ment in SQL Server (CAN-2002-0641); by default the owner of a database can
execute this statement but a successful exploit will normally confer adminis-
trative privileges on the target host.

David Litchfield discovered an overflow in Oracle’s CREATE DATABASE
LINK statement (CAN-2003-0222); by default CREATE DATABASE LINK
privilege is assigned to the CONNECT role — though low-privileged accounts
such as SCOTT and ADAMS can normally create database links.



Why Care About Database Security?

Patching is the best defense against this category of bugs, though a good
solid lockdown will eliminate a fair portion of them. The difficulty with remov-
ing “default” privileges is that often there are implicit dependencies — system
components might depend on the ability to execute the stored procedure in
question, or some replication mechanism might fail if a given role has its per-
missions revoked. Debugging these issues can sometimes be tricky. It is defi-
nitely worth investing some time and effort in determining which “optional”
components are in use in your environment and removing the ones that aren’t.

Privilege Elevation via SQL Injection

Most organizations are familiar with the risk posed by SQL injection in web
applications, but fewer are aware of the implications of SQL injection in stored
procedures. Any component that dynamically creates and executes a SQL
query could in theory be subject to SQL injection. In those databases where
mechanisms exist to dynamically compose and execute strings, SQL injection
in stored procedures can pose a risk.

In Oracle, for example, stored procedures can execute with either the privi-
lege of the invoker of the procedure, or the definer of the procedure. If the
definer was a high-privileged account, and the procedure contains a SQL injec-
tion flaw, attackers can use the flaw to execute statements at a higher level of
privilege than they should be able to. Recently David Litchfield discovered a
number of Oracle system—stored procedures that were vulnerable to this flaw
(CAN-2004-1370) — the following procedures all allow privilege elevation in
one form or another:

DBMS_EXPORT_EXTENSION
WK_ACL.GET_ACL

WK_ACL.STORE_ACL
WK_ADM.COMPLETE_ACL_SNAPSHOT
WK_ACL.DELETE_ACLS_WITH_STATEMENT

DRILOAD.VALIDATE_STMT (independently discovered by Alexander
Kornbrust)

The DRILOAD.VALIDATE_STMT procedure is especially interesting since
no “SQL injection” is really necessary; the procedure simply executes the spec-
ified statement with DBA privileges, and the procedure can be called by any-
one, for example the default user “SCOTT” can execute the following:

exec CTXSYS.DRILOAD.VALIDATE_STMT ('GRANT DBA TO PUBLIC');

This will grant the “public” role DBA privileges.



12

Chapter 1

In most other databases the effect of SQL injection in stored procedures
is less dramatic — in Sybase, for example, “definer rights” immediately back
down to “invoker rights” as soon as a stored procedure attempts to execute a
dynamically created SQL statement. The same is true of Microsoft SQL Server.

It isn’t true to say that SQL injection in stored procedures has no effect in
SQL Server, however — if an attacker can inject SQL into a stored procedure,
he can directly modify the system catalog — but only if he already had per-
missions that would enable him to do so. The additional risk posed by this is
slight, since the attacker would already have to be an administrator in order to
take advantage of any SQL injection flaw in this way — and if he is a database
administrator, there are many other, far more serious things he can do to the
system.

One privilege elevation issue in SQL Server is related to the mechanism
used to add jobs to be executed by the SQL Server Agent (#NISR15002002B).
Essentially, all users were permitted to add jobs, and those jobs would then be
executed with the privileges of the SQL Agent itself (by getting the SQL Agent
to re-authenticate after it had dropped its privileges).

In general, patching is the answer to this class of problem. In the specific
case of Oracle, it might be worth investigating which sets of default stored
procedures you actually need in your environment and revoking access to
“public” —but as we previously noted, this can cause permission problems
that are hard to debug.

Local Privilege Elevation Issues

It could be argued that the “unauthenticated access to functionality” class is a
subset of this category, though there are some differences. This category is
comprised of bugs that allow some level of privilege elevation at the operating
system level. Most of the Oracle “extproc” vulnerabilities arguably also fall
into this class.

The entire class of privilege elevations from database to operating system
users also falls into this class; SQL Server and Sybase’s extended stored proce-
dure mechanism (for example, xp_cmdshell, xp_regread), MySQL’s UDF
mechanism (the subject of the January 2005 Windows MySQL worm), and a
recent bug discovered by John Heasman in PostgreSQL (CAN-2005-0227) that
allows non-privileged users to load arbitrary libraries (and thereby execute
initialization functions in those libraries) with the privileges of the PostgreSQL
server.

Other examples of bugs in this category are the SQL Server arbitrary file
creation/overwrite (#NISR19002002A), and the SQL Server sp_MScopyscript
arbitrary command execution (CAN-2002-0982) issues discovered by David
Litchfield.



Why Care About Database Security?

13

MySQL had an interesting issue (CAN-2003-0150) in versions prior to 3.23.56,
whereby a user could overwrite a configuration file (my.cnf) to change the user
that MySQL runs as, thereby elevating MySQL’s context to “root.” If the user
had privileges to read files from within MySQL (file_priv), he would then be
able to read any file on the system — and, via the UDF mechanism we discuss
later in this volume, execute arbitrary code as “root.”

We discuss some recent issues in this category in Informix and DB2 later in
this book.

In general, the best defense against this class of bug is to always run your
database as a low-privileged user — preferably in a chroot jail, but certainly
within a “segregated” part of the file system that only the database can read
and write to.

So What Does It All Mean?

The brief summary in the preceding sections has outlined a number of bugs in
a small collection of interesting categories, mostly discovered by a small set of
people — of which the authors of this volume form a significant (and highly
prolific) part. The security research community is growing all the time, but it
seems there is still only a small set of individuals routinely discovering secu-
rity flaws in databases.

What are we to make of this? Does it mean database security is some kind of
black art, or that those who are able to discover security bugs in databases are
especially skilled? Hardly. We believe that the only reason people haven't dis-
covered more security flaws in databases is simply that people aren’t looking.

In terms of the future of database security, this has some interesting implica-
tions. If we were being forced to make predictions, our guess would be that an
increasing proportion of the security research community will begin to focus on
databases in the next couple of years, resulting in a lot more patches — and a lot
better knowledge of the real level of security of the systems we all depend on so
utterly. We're in for an interesting couple of years; if you want to find out more
about the security of the systems you deploy in your own network, the next sec-
tion is for you.

Finding Flaws in Your Database Server

Hopefully the long catalog of issues described in the previous section has you
wondering what security problems still lurk undiscovered in your database
system. Researching bugs in databases is a fairly convoluted process, mainly
because databases themselves are complex systems.



14 Chapter 1

If you want to find security bugs in your database system, there are a few
basic principles and techniques that might help:

Don’t believe the documentation

Implement your own client

Debug the system to understand how it works
Identify communication protocols

Understand arbitrary code execution bugs

Write your own “fuzzers”

Don’t Believe the Documentation

Just because the vendor says that a feature works a particular way doesn’t
mean it actually does. Investigating the precise mechanism that implements
some interesting component of a database will often lead you into areas that
are relevant to security. If a security-sensitive component doesn’t function as
advertised, that’s an interesting issue in itself.

Implement Your Own Client

If you restrict yourself to the clients provided by the vendor, you will be sub-
ject to the vendor’s client-side sanitization of your requests. As a concrete
example of this, the overly long username overflow that Mark Litchfield found
in Oracle (CAN-2003-0095) was found after using multiple clients, including
custom-written ones. The majority of the Oracle-supplied clients would trun-
cate long usernames, or return an error before sending the username to the
server. Mark managed to hit on a client that didn’t truncate the username, and
discovered the bug.

In general, most servers will implement older versions of their network pro-
tocols for backward compatibility. Experience tells us that legacy code tends to
be less secure than modern code, simply because secure coding has only
recently become a serious concern. Older protocol code might pre-date whole
classes of security bugs, such as signedness-error-based overflows and format
string bugs. Modern clients are unlikely to let you expose these older protocol
elements, so (if you have the time) writing your own client is an excellent way
of giving these older protocol components a good going-over.

Debug the System to Understand How It Works

The fastest way of getting to know a large, complex application is to “instru-
ment” it — monitor its file system interactions, the network traffic it sends and



Why Care About Database Security?

15

receives (especially local traffic), take a good look at the shared memory sec-
tions that it uses, understand how the various components of the system com-
municate, and how those communication channels are secured. The Oracle
“extproc” library loading issue is an excellent example of a bug that was found
simply by observing in detail how the system works.

Identify Communication Protocols

The various components of a database will communicate with each other in a
number of different ways — we have already discussed the virtues of imple-
menting your own client. Each network protocol is worth examining, but there
are other communication protocols that may not be related to the network that
are just as interesting. For instance, the database might implement a file-based
protocol between a monitoring component and some log files, or it might store
outstanding jobs in some world-writeable directory. Temporary files are
another interesting area to examine — several local privilege elevation issues
in Oracle and MySQL have related to scripts that made insecure use of tempo-
rary files. Broadly speaking, a communication protocol is anything that lets
two components of the system communicate. If either of those components
can be impersonated, you have a security issue.

Understand Arbitrary Code Execution Bugs

You won't get very far without understanding how arbitrary code execution
issues work. Almost everyone is aware of the mechanics of stack overflows,
but when you break down arbitrary code execution issues into subcategories,
you get interesting families of problems — format string bugs, FormatMessage
bugs, sprintf(“%s”) issues, stack overflows, stack overflows into app data,
heap overflows, off-by-one errors, signedness errors, malloc(0) errors — there
are a lot of different ways that an attacker can end up running code on the
machine, and some of them can be hard to spot if you don’t know what you're
looking for.

A tull description of all of these classes of issues is beyond the scope of this
book, however if you're interested, another Wiley publication, The Shellcoder’s
Handbook, might be a useful resource.

Write Your Own “Fuzzers”

Different people have different definitions of the word “fuzzer.” Generally, a
fuzzer is a program that provides semi-random inputs to some other program
and (possibly) monitors the subject program for errors. You could write a
fuzzer that created well-formed SQL queries with overly long parameters to



Chapter 1

standard functions, for example. Or you could write a fuzzer for Oracle TNS
commands, or the SQL Server TDS protocol.

When you write a fuzzer, you're effectively automating a whole class of test-
ing. Some would argue that placing your faith in fuzzers is foolish because you
lose most of the “feeling” that you get by doing your testing manually.
Although a human might notice a slight difference in behavior from one input
to the next — say, a brief pause — a fuzzer won't, unless it’s been programmed
to. Knowledge, understanding, and hard work can’t be easily automated —
but brute force and ignorance can, and it’s often worth doing.

Conclusion

We believe that the best way to secure a system is to understand how to attack
it. This concept, while controversial at first sight, has a long history in the field
of cryptography and in the broader network security field. Cryptographic sys-
tems are generally not considered “secure” until they have been subjected to
some degree of public scrutiny over an extended period of time. We see no rea-
son why software in general should not be subject to the same level of scrutiny.
Dan Farmer and Wietse Venema’s influential 1994 paper “Improving the Secu-
rity of Your Site by Breaking into It” neatly makes the argument in favor of
understanding attack techniques to better defend your network.

This book is largely composed of a lot of very specific details about the secu-
rity features and flaws in a number of databases, but you should notice com-
mon threads running through the text. We hope that by the end of the book
you will have a much better understanding of how to attack the seven data-
bases we address directly here, but also a deeper understanding of how to
attack databases in general. With luck, this will translate into databases that
are configured, maintained, and audited by people who are far more skilled
than the people who attack them.



