
What Is
Assembly Language?

One of the first hurdles to learning assembly language programming is understanding just what
assembly language is. Unlike other programming languages, there is no one standard format that
all assemblers use. Different assemblers use different syntax for writing program statements.
Many beginning assembly language programmers get caught up in trying to figure out the myriad
of different possibilities in assembly language programming.

The first step in learning assembly language programming is defining just what type of assembly
language programming you want to (or need to) use in your environment. Once you define your
flavor of assembly language, it is easy to get started learning and using assembly language in both
standalone and high-level language programs.

This chapter begins the journey by showing where assembly language comes from, and defining
why assembly language programming is used. To understand assembly language programming,
you must first understand the basics of its underlying purpose — programming in processor
instruction code. Next, the chapter shows how high-level languages are converted to raw instruc-
tion code by compilers and linkers. After having that information, it will be easier for you to
understand how assembly language programs and high-level language programs differ, and how
they can both be used to complement one another.

Processor Instructions
At the lowest layer of operation, all computer processors (microcomputers, minicomputers, and
mainframe computers) manipulate data based on binary codes defined internally in the processor
chip by the manufacturer. These codes define what functions the processor should perform, utiliz-
ing the data provided by the programmer. These preset codes are referred to as instruction codes.
Different types of processors contain different types of instruction codes. Processor chips are often
categorized by the quantity and type of instruction codes they support.

04_579010 ch01.qxd 1/7/05 10:41 AM Page 1

CO
PYRIG

HTED
 M

ATERIA
L

While the different types of processors can contain different types of instruction codes, they all handle
instruction code programs similarly. This section describes how processors handle instructions and what
the instruction codes look like for a sample processor chip.

Instruction code handling
As a computer processor chip runs, it reads instruction codes that are stored in memory. Each instruction
code set can contain one or more bytes of information that instruct the processor to perform a specific
task. As each instruction code is read from memory, any data required for the instruction code is also
stored and read in memory. The memory bytes that contain the instruction codes are no different than
the bytes that contain the data used by the processor.

To differentiate between data and instruction codes, special pointers are used to help the processor keep
track of where in memory the data and instruction codes are stored. This is shown in Figure 1-1.

Figure 1-1

The instruction pointer is used to help the processor keep track of which instruction codes have already
been processed and what code is next in line to be processed. Of course, there are special instruction
codes that can change the location of the instruction pointer, such as jumping to a specific location in the
program.

Similarly, a data pointer is used to help the processor keep track of where the data area in memory starts.
This area is called the stack. As new data elements are placed in the stack, the pointer moves “down” in
memory. As data is read from the stack, the pointer moves “up” in memory.

68

54

40

49

OF

DO Data Pointer

instructions move
upwards in memory

08

EC

83

ES

89

55 Instruction Pointer

2

Chapter 1

04_579010 ch01.qxd 1/7/05 10:41 AM Page 2

Each instruction code can contain one or more bytes of information for the processor to handle. For
example, the instruction code bytes (in hexadecimal format)

C7 45 FC 01 00 00 00

tell an Intel IA-32 series processor to load the decimal value 1 into a memory offset location defined by
a processor register. The instruction code contains several pieces of information (defined later in the
“Opcode” section) that clearly define what function is to be performed by the processor. After the pro-
cessor completes processing one instruction code set, it reads the next one in memory (as pointed to by
the instruction pointer). The instructions must be placed in memory in the proper format and order for
the processor to properly step through the program code.

Every instruction must contain at least 1 byte called the operation code (or opcode for short). The opcode
defines what function the processor should perform. Each processor family has its own predefined
opcodes that define all of the functions available. The next section shows how the opcodes used in the
Intel IA-32 family of microprocessors are structured. These are the types of processor opcodes that are
used in all of the examples in this book.

Instruction code format
The Intel IA-32 family of microprocessors includes all of the current types of microprocessors used in
modern IBM-platform microcomputers (see Chapter 2, “The IA-32 Platform”), including the popular
Pentium line of microprocessors. A specific format for instruction codes is used in the IA-32 family of
microprocessors, and understanding the format of these instructions will help you in your assembly lan-
guage programming. The IA-32 instruction code format consists of four main parts:

❑ Optional instruction prefix

❑ Operational code (opcode)

❑ Optional modifier

❑ Optional data element

Figure 1-2 shows the layout of the IA-32 instruction code format.

Figure 1-2

Instruction
Prefixes

Data
Elements

Opcode ModR/M SIB

Modifiers

Displacement

0 – 4
bytes

0 – 4
bytes

1 – 3
bytes

0 – 1
bytes

0 – 1
bytes

0 – 4
bytes

3

What Is Assembly Language?

04_579010 ch01.qxd 1/7/05 10:41 AM Page 3

Each of the parts is used to completely define a specific instruction for the processor to perform. The fol-
lowing sections describe each of the four parts of the instruction code and how they define the instruc-
tion performed by the processor.

The Intel Pentium processor family is not the only set of processor chips to utilize the IA-32 instruction
code format. The AMD corporation also produces a line of chips that are fully compatible with the Intel
IA-32 instruction code format.

Opcode
As shown in Figure 1-2, the only required part of the IA-32 instruction code format is the opcode. Each
instruction code must include an opcode that defines the basic function or task to be performed by the
processor.

The opcode is between 1 and 3 bytes in length, and uniquely defines the function that is performed. For
example, the 2-byte opcode OF A2 defines the IA-32 CPUID instruction. When the processor executes
this instruction code, it returns specific information about the microprocessor in different registers. The
programmer can then use additional instruction codes to extract the information from the processor reg-
isters to determine the type and model of microprocessor on which the program is running.

Registers are components within the processor chip that are used to temporarily store data while being
handled by the processor. They are covered in more detail in Chapter 2, “The IA-32 Platform.”

Instruction prefix
The instruction prefix can contain between one and four 1-byte prefixes that modify the opcode behav-
ior. These prefixes are categorized into four different groups, based on the prefix function. Only one pre-
fix from each group can be used at one time to modify the opcode (thus the maximum of four prefix
bytes). The four prefix groups are as follows:

❑ Lock and repeat prefixes

❑ Segment override and branch hint prefixes

❑ Operand size override prefix

❑ Address size override prefix

The lock prefix indicates that any shared memory areas will be used exclusively by the instruction. This
is important for multiprocessor and hyperthreaded systems. The repeat prefixes are used to indicate a
repeating function (usually used when handling strings).

The segment override prefixes define instructions that can override the defined segment register value
(described in more detail in Chapter 2). The branch hint prefixes attempt to give the processor a clue as
to the most likely path the program will take in a conditional jump statement (this is used with predic-
tive branching hardware).

The operand size override prefix informs the processor that the program will switch between 16-bit and
32-bit operand sizes within the instruction code. This enables the program to warn the processor when it
uses larger-sized operands, helping to speed up the assignment of data to registers.

4

Chapter 1

04_579010 ch01.qxd 1/7/05 10:41 AM Page 4

The address size override prefix informs the processor that the program will switch between 16-bit and
32-bit memory addresses. Either size can be declared as the default size for the program, and this prefix
informs the processor that the program is switching to the other.

Modifiers
Some opcodes require additional modifiers to define what registers or memory locations are involved in
the function. The modifiers are contained in three separate values:

❑ addressing-form specifier (ModR/M) byte

❑ Scale-Index-Base (SIB) byte

❑ One, two, or four address displacement bytes

The ModR/M byte
The ModR/M byte consists of three fields of information, as shown in Figure 1-3.

Figure 1-3

The mod field is used with the r/m field to define the register or addressing mode used in the instruc-
tion. There are 24 possible addressing modes, along with eight possible general-purpose registers that
can be used in the instruction, making 32 possible values.

The reg/opcode field is used to enable three more bits to further define the opcode function (such as
opcode subfunctions), or it can be used to define a register value.

The r/m field is used to define another register to use as the operand of the function, or it can be com-
bined with the mod field to define the addressing mode for the instruction.

The SIB byte
The SIB byte also consists of three fields of information, as shown in Figure 1-4.

Figure 1-4

scale index base

2 bits

7 56 23 0

3 bits 3 bits

Mod reg/opcode r/m

2 bits

7 56 23 0

3 bits 3 bits

5

What Is Assembly Language?

04_579010 ch01.qxd 1/7/05 10:41 AM Page 5

The scale field specifies the scale factor for the operation. The index field specifies the register that is
used as the index register for memory access. The base field specifies the register that is used as the base
register for memory access.

The combination of the ModR/M and SIB bytes creates a table that can define many possible combina-
tions of registers and memory modes for accessing data. The Intel specification sheets for the Pentium
processor define all of the possible combinations that are used with the ModR/M and SIB bytes.

The address displacement byte
The address displacement byte is used to indicate an offset to the memory location defined in the
ModR/M and SIB bytes. This can be used as an index to a base memory location to either store or access
data within memory.

Data element
The final part of the instruction code is the data element that is used by the function. While some instruc-
tion codes read data from memory locations or processor registers, some include data within the instruc-
tion code itself. Often this value is used to represent a static numeric value, such as a number to be added,
or a memory location. This value can contain 1, 2, or 4 bytes of information, depending on the data size.

For example, the following sample instruction code shown earlier:

C7 45 FC 01 00 00 00

defines the opcode C7, which is the instruction to move a value to a memory location. The memory loca-
tion is defined by the 45 FC modifier (which defines –4 bytes (the FC value) from the memory location
pointed to by the value in the EBP register (the 45 value). The final 4 bytes define the integer value that is
placed in that memory location (in this case, the value 1).

As you can see from this example, the value 1 was written as the 4-byte hexadecimal value 01 00 00 00.
The order of the bytes in the data stream depends on the type of processor used. The IA-32 platform pro-
cessors use “little-endian” notation, whereby the lower-value bytes appear first in order (when reading
left to right). Other processors use “big-endian” order, whereby the higher-value bytes appear first in
order. This concept is extremely important when specifying data and memory location values in your
assembly language programs.

High-Level Languages
If it looks like programming in pure processor instruction code is difficult, it is. Even the simplest of pro-
grams require the programmer to specify a lot of opcodes and data bytes. Trying to manage a huge pro-
gram full of just instruction codes would be a daunting task. To help save the sanity of programmers,
high-level languages (HLLs) were created.

HLLs enable programmers to create functions using simpler terms, rather than raw processor instruction
codes. Special reserved keywords are used to define variables (memory locations for data), create
loops (jump over instruction codes), and handle input and output from the program. However, the pro-
cessor does not have any knowledge about how to handle the HLL code. The code must be converted by
some mechanism to simple instruction code format for the processor to handle. This section defines the

6

Chapter 1

04_579010 ch01.qxd 1/7/05 10:41 AM Page 6

different types of HLLs and then shows how the HLL code is converted to the instruction code for the
processor to execute.

Types of high-level languages
While programmers can choose from many different HLLs available, they all can be classified into two
different categories, based on how they are run on the computer:

❑ Compiled languages

❑ Interpreted languages

While it is possible for different implementations of the same programming language to be either com-
piled or interpreted, these categories are used to show how a particular HLL implementation defines
how the programs are run on the processor. The following sections describe the methods used to run
programs and show how they affect how the processor operates with them.

Compiled languages
Most production applications are created using compiled HLLs. The programmer creates a program
using common statements for the language which carry out the logic of the application. The text pro-
gram statements are then converted into a set of instruction codes that can be run on the processor.
Usually, what is commonly called compiling a program is actually a two-step process:

❑ Compiling the HLL statements into raw instruction codes

❑ Linking the raw instruction codes to produce an executable program

Figure 1-5 demonstrates this process.

Figure 1-5

Compiler

source code
file

object code
file

other
object code
files

executable
file

object code
libraries

Linker

7

What Is Assembly Language?

04_579010 ch01.qxd 1/7/05 10:41 AM Page 7

The compiling step converts the text programming language statements into the instruction codes
required to carry out the application function. Each of the HLL lines of code are matched up with one or
more instruction codes pertaining to the specific processor on which the application will run. For exam-
ple, the simple HLL code

int main()
{

int i = 1;
exit(0);

}

is compiled into the following IA-32 instruction codes:

55
89 E5
83 EC 08
C7 45 FC 01 00 00 00
83 EC 0C
6A 00
E8 D1 FE FF FF

This step produces an intermediate file, called an object code file. The object code file contains the instruc-
tion codes that represent the core of the application functions, as shown above. The object code file itself
cannot be run by the operating system. Often the host operating system requires special file formats for
executable files (program files that can be run on the system), and the HLL program may require pro-
gram functions from other object files. Another step is required to add these components.

After the code is compiled into an object file, a linker is used to link the application object code file with
any additional object files required by the application and to create the final executable output file. The
output of the linker is an executable file that can only be run on the operating system for which the pro-
gram is written. Unfortunately, each operating system uses a different format for executable files, so an
application compiled on a Microsoft Windows workstation will not work as is on a Linux workstation,
and vice versa.

Object files that contain commonly used functions can be combined into a single file, called a library
file. The library file can then be linked into multiple applications either at compile time (called static
libraries), or at the time the application is run on the system (called dynamic libraries).

Interpreted languages
As opposed to compiled programs, which run by themselves on a processor, an interpreted language
program is read and run by a separate program. The separate program is a host for the application pro-
gram, reading and interpreting the program as it is processed. It is the job of the host program to convert
the interpreted program code into the proper instruction codes for the processor as the program is
running.

Obviously, the downside to using interpreted languages is speed. Instead of the program being com-
piled directly to instruction codes that are run on the processor, an intermediary program reads each line
of program code and processes the required functions. The amount of time the host program takes to
read the code and execute it adds additional delays to the execution of the application.

8

Chapter 1

04_579010 ch01.qxd 1/7/05 10:41 AM Page 8

With the resulting reduction in speed when using interpreted languages, you may be wondering why
anyone still uses them. One answer is convenience. With compiled programs, every time a change is
made to the program, the program must be recompiled and relinked with the proper code libraries. With
interpreted programs, changes can be quickly made to the source code file and the program rerun to
check for errors. In addition, with interpreted languages, the interpreter application automatically deter-
mines what functions need to be included with the core code to support functions.

Today’s programming language environment muddies the waters between compiled and interpreted lan-
guages. No one specific language can be classified in either category. Instead, individual implementa-
tions of different HLLs are categorized. For example, while many BASIC programming
implementations require interpreters to interpret the BASIC code into an executable program, there are
many BASIC implementations that enable the programmer to compile the BASIC programs into exe-
cutable instruction code.

Hybrid languages
Hybrid languages are a recent trend in programming that combine the features of a compiled program
with the versatility and ease of an interpreted program. A perfect example is the popular Java program-
ming language.

The Java programming language is compiled into what is called byte code. The byte code is similar to
the instruction code you would see on a processor, but is itself not compatible with any current proces-
sor family (although there have been plans to create a processor that can run Java byte code as instruc-
tion sets).

Instead, the Java byte code must be interpreted by a Java Virtual Machine (JVM), running separately on
the host computer. The Java byte code is portable, in that it can be run by any JVM on any type of host
computer. The advantage is that different platforms can have their own specific JVMs, which are used to
interpret the same Java byte code without it having to be recompiled from the original source code.

High-level language features
If you are a professional programmer, most likely you do most (if not all) of your coding using a high-
level language. You may or may not have had the luxury of choosing which HLL you use for your pro-
jects, but either way, there is no doubt that it makes your job easier. This section describes two of the
most useful features of HLLs, portability and standardization, which help set HLLs apart from assembly
language programming.

Portability
As described earlier in the “Processor Instructions” section, instruction code programming is highly
dependent on the processor used in the computer. Each of the different families of processors utilize
different instruction code formats, as well as different methods for storing data (big endian vs. little
endian). Instruction codes written for an IA-32 platform will not work on a MIPS processor platform.

Imagine writing a 10,000-line instruction code program for your new application, which runs on a Sun
Sparc workstation, and then being asked to port it to a Linux workstation running on a Pentium com-
puter. Because the microprocessor used for the Sun Sparc workstation does not use the same instruction
codes as the Pentium, all of your code would need to be redone for the new instruction codes — ouch.

9

What Is Assembly Language?

04_579010 ch01.qxd 1/7/05 10:41 AM Page 9

HLLs have the capability to be ported to other operating systems and other processor platforms by sim-
ply recompiling the program on the new platform. When the program is recompiled, it is automatically
rewritten using the instruction codes for the destination processor.

However, in practice, nontrivial programs use operating system APIs that make it difficult to simply
recompile the source code for another platform. For example, a program directly using the MS Windows
API will not compile under Linux.

Standardization
Another useful feature of HLLs is the abundance of standards available for the languages. Both the
Institute of Electrical and Electronics Engineers (IEEE) and the American National Standards Institute
(ANSI) have created standard specifications for many different HLLs.

This means that you are guaranteed to obtain the same results from source code compiled with a stan-
dard compiler on one type of operating system and processor as you would compiling on a different
type of operating system and processor. Each compiler is created to interpret the standard language con-
structs into instruction code for the destination processor to produce the same functionality across the
processor platforms.

Assembly Language
While creating large applications using an HLL is often simpler than using raw instruction codes, it
doesn’t necessarily mean that the resulting program will be efficient. Unfortunately, in order to increase
portability and comply with standards, many compilers code to the “least common denominator.” This
means that compilers creating instruction codes for advanced processor chips may not utilize special
instruction codes unique to those processors to help create faster applications.

One feature that many of the new processors on the market offer is advanced mathematics handling
instruction codes. These instruction codes help speed up complex mathematical expression processing
by using larger-than-normal byte sizes to represent numbers (either 64 or 128 bits). Unfortunately, many
compilers don’t take advantage of these advanced instruction codes. Fortunately, there is a simple solu-
tion for the programmer. In environments where execution speed is critical, assembly language pro-
gramming can come to the rescue. Of course, the first step to improving execution speed is to ensure that
the best algorithm is used in the first place. Optimizing a poor algorithm does not compensate for using
a fast algorithm in the first place.

Assembly language enables programmers to directly create instruction code programs without having to
worry about the many different instruction code set combinations on the processor. Instead, an assembly
language program uses mnemonics to represent instruction codes. The mnemonics enables the program-
mer to use English-style words to represent individual instruction codes. The assembly language
mnemonics are easily converted to the raw instruction codes by an assembler.

This section describes the assembly language mnemonic system, and how it is used to create raw
instruction code programs that can be run on the processor.

10

Chapter 1

04_579010 ch01.qxd 1/7/05 10:41 AM Page 10

An assembly language program consists of three components that are used to define the program
operations:

❑ Opcode mnemonics

❑ Data sections

❑ Directives

The following sections describe each of these components and show how they are used within the
assembly language program to create the resulting instruction code program.

Opcode mnemonics
The core of an assembly language program is the instruction codes used to create the program. To help
facilitate writing the instruction codes, assemblers equate mnemonic words with instruction code func-
tions, such as moving or adding data elements. For example, the instruction code sample

55
89 E5
83 EC 08
C7 45 FC 01 00 00 00
83 EC 0C
6A 00
E8 D1 FE FF FF

can be written in assembly language as follows:

push %ebp
mov %esp, %ebp
sub $0x8, %esp
movl $0x1, -4(%ebp)
sub $0xc, %esp
push $0x0
call 8048348

Instead of having to know what each byte of instruction code represents, the assembly language pro-
grammer can use easier-to-remember mnemonic codes, such as push, mov, sub, and call, to represent
the instruction codes.

Different assemblers use different mnemonics to represent instruction codes. While trends have
emerged to standardize assembler mnemonics, there is still quite a vast variety of mnemonic codes, not
only between processor families but even between assemblers used for the same processor instruction
code sets.

Each processor manufacturer publishes developer manuals detailing all of the instruction codes imple-
mented by a specific chip set. The Intel IA-32 developer manuals are freely available at the Intel Web
site (www.intel.com). These developer manuals take over 1,000 pages just to enumerate and describe all
of the instruction codes for the Pentium family of processors.

11

What Is Assembly Language?

04_579010 ch01.qxd 1/7/05 10:41 AM Page 11

Defining data
Besides the instruction codes, most programs also require data elements to be used to hold variable and
constant data values that are used throughout the program. HLLs use variables to define sections of
memory to hold data. For example, it is not uncommon to see the following in an HLL program:

long testvalue = 150;
char message[22] = {“This is a test message”};
float pi = 3.14159;

Each of these statements is interpreted by the HLL compiler to reserve memory locations of a specific
number of bytes to store values that may or may not change during the course of the program. Each time
the program references the variable name (such as testvalue), the compiler knows to access the speci-
fied location in memory to read or change the byte values.

Assembly language also enables the programmer to define data items that will be stored in memory.
One of the advantages of programming in assembly language is that it provides you with greater control
over where and how your data is stored in memory. The following sections describe two methods used
to store and retrieve data in assembly language.

Using memory locations
Similar to the HLL method of defining data, assembly language enables you to declare a variable that
points to a specific location in memory. Defining variables in assembly language consists of two parts:

1. A label that points to a memory location

2. A data type and default value for the memory bytes

The data type determines how many bytes are reserved for the variable. In an assembly language pro-
gram, this would look like the following:

testvalue:
.long 150

message:
.ascii “This is a test message”

pi:
.float 3.14159

As you can see from the data types, assembly language allows you to declare the type of data stored in
the memory location, along with the default values placed in the memory location, similar to most HLL
methods. Each data type occupies a specific number of bytes, starting at the memory location reserved
for the label. This is shown in Figure 1-6.

12

Chapter 1

04_579010 ch01.qxd 1/7/05 10:41 AM Page 12

Figure 1-6

The first data element declared, testvalue, is placed in memory as a 4-byte hexadecimal value in little-
endian order (96 00 00 00). The next data element, message, is placed immediately after the last byte of
the testvalue data element. Because the message data element is a text value, it is placed in memory
in the order the text characters appear in the string. Finally, the last data element, pi, is placed in mem-
ory immediately after the last byte of the message data element (the floating point is discussed in great
detail in Chapter 7, “Using Numbers.”

The memory locations are referenced within the assembly language program based on the label used to
define the starting location. A sample assembly language program would look like the following:

movl testvalue, %ebx
addl $10, %ebx
movl %ebx, testvalue

The first instruction loads the EBX register with the 4-byte value located at the memory location pointed
to by the testvalue label (which was defined with a value of 150). The next instruction adds 10 (in deci-
mal) to the value stored in the EBX register and puts the result back in the EBX register. Finally, the reg-
ister value is stored in the memory location referenced by the testvalue label. This new value can then
be referenced again in the program using the testvalue label, and it will have the value of 160 (this
process is explained in detail in Chapter 5, “Moving Data,” and Chapter 8, “Basic Math Functions”).

40

49

OF

DO pi

61

54 message

00

00

00

96 testvalue

73

69

68

13

What Is Assembly Language?

04_579010 ch01.qxd 1/7/05 10:41 AM Page 13

Using the stack
Another method used to store and retrieve data in assembly language is called the stack. The stack is a
special memory area usually reserved for passing data elements between functions in the program. It
can also be used for temporarily storing and retrieving data elements.

The stack is a region of memory reserved at the end of the memory range that the computer reserves for
the application. A pointer (called the stack pointer) is used to point to the next memory location in the
stack to put or take data. Much like a stack of papers, when a data element is placed in the stack, it
becomes the first item that can be removed from the stack (assuming you can only take papers off of the
top of the paper stack).

When calling functions in an assembly language program, you usually place any data elements that you
want passed to the function on the top of the stack. When the function is called, it can retrieve the data
elements from the stack.

The different methods of storing and retrieving data are discussed in greater detail in Chapter 5,
“Moving Data.”

Directives
Instructions and data are not the only elements that make up an assembly language program.
Assemblers reserve special keywords for instructing the assembler how to perform special functions as
the mnemonics are converted to instruction codes.

You saw an example of directives in the previous section when the data elements were defined. The data
types were declared using assembler directives used in the GNU assembler. The .long, .ascii, and
.float directives are used to alert the assembler that a specific type of data is being declared. As shown
in the example, directives are preceded by a period to set them apart from labels.

Directives are another area in which the different assemblers vary. Many different directives are used to
help make the programmer’s job of creating instruction codes easier. Some modern assemblers have lists
of directives that can rival many HLL features, such as while loops, and if-then statements! The older,
more traditional assemblers, however, keep the directives to a minimum, forcing the assembly language
programmer to use the mnemonic codes to create the program logic.

One of the most important directives used in the assembly language program is the .section directive.
This directive defines the section of memory in which the assembly language program is defining ele-
ments. All assembly language programs have at least three sections that must be declared:

❑ A data section

❑ A bss section

❑ A text section

The data section is used to declare the memory region where data elements are stored for the program.
This section cannot be expanded after the data elements are declared, and it remains static throughout
the program.

14

Chapter 1

04_579010 ch01.qxd 1/7/05 10:41 AM Page 14

The bss section is also a static memory section. It contains buffers for data to be declared later in the pro-
gram. What makes this section special is that the buffer memory area is zero-filled.

The text section is the area in memory where the instruction code is stored. Again, this area is fixed, in
that it contains only the instruction codes that are declared in the assembly language program.

These directives used in an assembly language program are demonstrated in Chapter 4, “A Sample
Assembly Language Program.”

Summary
While assembly language programming is often referred to as a single programming language category,
in reality there are a wide variety of different types of assembly language assemblers. Each assembler
uses slightly different formats to represent instruction codes, data, and special directives for assembling
the final program. The first step to programming in assembly language is deciding which assembler you
need to use, and what format it uses.

The purpose of using assembly language is to code as closely to raw processor code as possible. The
code recognized by the processor is called instruction code. Each processor family has its own set of
instruction codes that define the functions the processor can perform. Each processor family also uses
specific formats for the instruction code. The Intel IA-32 family of processors uses a format that consists
of four parts. An opcode is used to define which processor instruction should be used. An optional pre-
fix may be used to modify the behavior of the instruction. An optional modifier may also be used to
define what registers or memory locations are used in the instruction. Finally, an optional data element
may be included, which defines specific data values used in the instruction.

Trying to create large-scale programs using raw instruction codes is not an easy task. Each instruction
code must be programmed byte by byte in the proper order for the application to run. Instead of forcing
programmers to learn all of the instruction codes, developers have created high-level languages, which
enable programmers to create programs in a shorthand method, which is then converted into the proper
instruction codes by a compiler. High-level languages use simple keywords and terms to define one or
more instruction codes. This enables programmers to concentrate on the logic of the application pro-
gram, rather than worry about the details of the underlying processor instruction codes.

The downside of using high-level languages is that the programmer is dependant on the compiler cre-
ator to convert programming logic to the instruction code run by the processor. There is no guarantee
that the created instruction codes will be the most efficient method of programming the logic. For pro-
grammers who want maximum efficiency, or the capability to have greater control over how the pro-
gram is handled by the processor, assembly language programming offers an alternative.

Assembly language programming enables the programmer to program with instruction codes, but by
using simple mnemonic terms to refer to those instruction codes. This provides programmers with both
the ease of a high-level language and the control offered by using instruction codes.

Unfortunately, assembly language assemblers are not standardized, and there are many different forms
of assembly language. All assemblers contain three elements: opcode mnemonics, data elements, and

15

What Is Assembly Language?

04_579010 ch01.qxd 1/7/05 10:41 AM Page 15

directives. The opcode mnemonics are used to code the programming logic, and data elements are used
to define memory locations to hold both constant and variable data elements. Directives are one of the
most controversial elements of assemblers. Directives help the programmer define specific functions,
such as declaring data types, and define memory regions within the program. Some assemblers take
directives to a higher level, providing directives that support many high-level language functions, such
as advanced data management and logic programming.

The next chapter discusses the specific layout of the Intel IA-32 processor family. Before you can start
programming for the Pentium family of processors, it is important to understand how the hardware is
laid out. Knowing how the processor handles data will enable you to program more efficiently, increas-
ing the speed of your applications.

16

Chapter 1

04_579010 ch01.qxd 1/7/05 10:41 AM Page 16

