Introducing Transact-SQL
and Data Management
Systems

Welcome to the world of Transact-Structured Query Language programming. Transact-SQL, or
T-SQL, is Microsoft Corporation’s implementation of the Structured Query Language, which
was designed to retrieve, manipulate, and add data to Relational Database Management Systems
(RDBMS). Hopefully, you already have a basic idea of what SQL is used for because you pur-
chased this book, but you may not have a good understanding of the concepts behind relational
databases and the purpose of SQL. This first chapter introduces you to some of the fundamentals
of the design and architecture of relational databases and presents a brief description of SQL as

a language. If you are brand new to SOL and database technologies, this chapter will provide a
foundation to help ensure the rest of the book is as effective as possible. If you are already comfort-
able with the concepts of relational databases and Microsoft’s implementation, specifically, you
may want to skip on ahead to Chapter 2, “SQL Server Fundamentals,” or Chapter 3, “Tools for
Accessing SQL Server.” Both of these chapters introduce some of the features and tools in SQL
Server 2000 as well as the new features and tools coming with SQL Server 2005.

Another great, more in-depth source for SQL 2000 and SQL 2005 programming from the appli-
cation developer’s perspective are the Wrox Press books authored by Rob Viera: Professional
SQL Server 2000 Programming, Beginning SQL Server 2005 Programming, and
Professional SQL Server 2005 Programming. Throughout the chapters ahead, I will refer back
to both the basic concepts introduced in this chapter and to areas in the books mentioned here for
further clarification in the use or nature of the Transact-SQL language.

Transact-Structured Query Language

T-SQL is Microsoft’s implementation of a standard established by the American National
Standards Institute (ANSI) for the Structured Query Language (SQL). SQL was first developed by
researchers at IBM. They called their first pre-release version of SQL “SEQUEL,” which stood for
Structured English QUEry Language. The first release version was renamed to SQL, dropping the

Chapter 1

English part but retaining the pronunciation to identify it with its predecessor. Today, several implemen-
tations of SQL by different stakeholders are in the database marketplace, and as you sojourn through the
sometimes-mystifying lands of database technology you will undoubtedly encounter these different
varieties of SQL. What makes them all similar is the ANSI standard to which IBM, more than any other
vendor, adheres to with tenacious rigidity. However, what differentiate the many implementations of
SQL are the customized programming objects and extensions to the language that make it unique to that
particular platform. Microsoft SQL Server 2000 implements ANSI-92, or the 1992 standard as set by
ANSI. SQL Server 2005 implements ANSI-99. The term “implements” is of significance. T-SQL is not
fully compliant with ANSI standards in its 2000 or 2005 implementation; neither is Oracle’s P/L SQL,
Sybase’s SQLAnywhere, or the open-source MySQL. Each implementation has custom extensions and
variations that deviate from the established standard. ANSI has three levels of compliance: Entry,
Intermediate, and Full. T-SQL is certified at the entry level of ANSI compliance. If you strictly adhere to
the features that are ANSI-compliant, the same code you write for Microsoft SQL Server should work on
any ANSI-compliant platform; that’s the theory, anyway. If you find that you are writing cross-platform
queries, you will most certainly need to take extra care to ensure that the syntax is perfectly suited for all
the platforms it affects. Really, the simple reality of this issue is that very few people will need to write
queries to work on multiple database platforms. These standards serve as a guideline to help keep query
languages focused on working with data, rather than other forms of programming, perhaps slowing the
evolution of relational databases just enough to keep us sane.

T-SQL: Programming Language or Query Language?

T-SQL was not really developed to be a full-fledged programming language. Over the years the ANSI
standard has been expanded to incorporate more and more procedural language elements, but it still
lacks the power and flexibility of a true programming language. Antoine, a talented programmer and
friend of mine, refers to SQL as “Visual Basic on Quaaludes.” I share this bit of information not because 1
agree with it, but because I think it is funny. I also think it is indicative of many application developers’
view of this versatile language.

The Structured Query Language was designed with the exclusive purpose of data retrieval and data
manipulation. Microsoft’s T-SQL implementation of SQL was specifically designed for use in Microsoft’s
Relational Database Management System (RDBMS), SQL Server. Although T-SQL, like its ANSI sibling,
can be used for many programming-like operations, its effectiveness at these tasks varies from excellent
to abysmal. That being said, I am still more than happy to call T-SQL a programming language if only to
avoid someone calling me a SQL “Queryer” instead of a SQL Programmer. However, the undeniable fact
still remains; as a programming language, T-SQL falls short. The good news is that as a data retrieval
and set manipulation language it is exceptional. When T-SQL programmers try to use T-SQL like a pro-
gramming language they invariably run afoul of the best practices that ensure the efficient processing
and execution of the code. Because T-SQL is at its best when manipulating sets of data, try to keep that
fact foremost in your thoughts during the process of developing T-SQL code.

Performing multiple recursive row operations or complex mathematical computations is quite possible
with T-SQL, but so is writing a .NET application with Notepad. Antoine was fond of responding to these
discussions with, “Yes, you can do that. You can also crawl around the Pentagon on your hands and
knees if you want to.” His sentiments were the same as my father’s when I was growing up; he used to
make a point of telling me that “Just because you can do something doesn’t mean you should.” The
point here is that oftentimes SQL programmers will resort to creating custom objects in their code that

Introducing Transact-SQL and Data Management Systems

are inefficient as far as memory and CPU consumption are concerned. They do this because it is the easi-
est and quickest way to finish the code. I agree that there are times when a quick solution is the best, but
future performance must always be taken into account. This book tries to show you the best way to write

T-SQL so that you can avoid writing code that will bring your server to its knees, begging for mercy.

What’s New in SQL Server 2005

Several books and hundreds of web sites have already been published that are devoted to the topic of
“What’s New in SQL Server 2005,” so I won’t spend a great deal of time describing all the changes that
come with this new release. Instead, throughout the book I will identify those changes that are applica-
ble to the subject being described. However, in this introductory chapter I want to spend a little time dis-
cussing one of the most significant changes and how it will impact the SQL programmer. This change is
the incorporation of the .NET Framework with SQL Server.

T-SQL and the .NET Framework

The integration of SQL Server with Microsoft’s NET Framework is an awesome leap forward in
database programming possibilities. It is also a significant source of misunderstanding and trepidation,
especially by traditional infrastructure database administrators.

This new feature, among other things, allows developers to use programming languages to write stored
procedures and functions that access and manipulate data with object-oriented code, rather than SQL
statements.

Kiss T-SQL Goodbye?

Any reports of T-SQL’s demise are premature and highly exaggerated. The ability to create database pro-
gramming objects in managed code instead of SQL does not mean that T-SQL is in danger of becoming
extinct. A marketing-minded executive at one of Microsoft’s partner companies came up with a cool
tagline about SQL Server 2005 and the .NET Framework that said “SQL Server 2005 and .NET; Kiss SQL
Good-bye.” He was quickly dissuaded by his team when presented with the facts. However, the execu-
tive wasn’t completely wrong. What his catchy tagline could say and be accurate is “SQL Server 2005
and .NET; Kiss SQL Cursors Good-bye.” It could also have said the same thing about complex T-SQL
aggregations or a number of T-SQL solutions presently used that will quickly become obsolete with the
release of SQL Server 2005.

Transact-SQL cursors are covered in detail in Chapter 10, so for the time being, suffice it to say that they
are generally a bad thing and should be avoided. Cursors are all about recursive operations with single
or row values. They consume a disproportionate amount of memory and CPU resources compared to set
operations.

With the integration of the .NET Framework and SQL Server, expensive cursor operations can be replaced
by efficient, compiled assemblies, but that is just the beginning. A whole book could be written about

the possibilities created with SQL Server’s direct access to the .NET Framework. Complex data types,
custom aggregations, powerful functions, and even managed code triggers can be added to a database to
exponentially increase the flexibility and power of the database application. Among other things, one of
the chief advantages of the NET Framework’s integration is the ability of T-SQL developers to have
complete access to the entire .NET object model and operating system application programming interface
(APT) library without the use of custom extended stored procedures. Extended stored procedures and

Chapter 1

especially custom extended stored procedures, which are almost always implemented through
unmanaged code, have typically been the source of a majority of the security and reliability issues
involving SQL Server. By replacing extended stored procedures, which can only exist at the server level,
with managed assemblies that exist at the database level, all kinds of security and scalability issues
virtually disappear.

Database Management System (DBMS)

A DBMS is a set of programs that are designed to store and maintain data. The role of the DBMS is to
manage the data so that the consistency and integrity of the data is maintained above all else. Quite a
few types and implementations of Database Management Systems exist:

Q

Hierarchical Database Management Systems (HDBMS) — Hierarchical databases have been
around for a long time and are perhaps the oldest of all databases. It was (and in some cases still
is) used to manage hierarchical data. It has several limitations such as only being able to man-
age single trees of hierarchical data and the inability to efficiently prevent erroneous and dupli-
cate data. HDBMS implementations are getting increasingly rare and are constrained to
specialized, and typically, non-commercial applications.

Network Database Management System (NDBMS) — The NDBMS has been largely aban-
doned. In the past, large organizational database systems were implemented as network or hier-
archical systems. The network systems did not suffer from the data inconsistencies of the
hierarchical model but they did suffer from a very complex and rigid structure that made
changes to the database or its hosted applications very difficult.

Relational Database Management System (RDBMS) — An RDBMS is a software application
used to store data in multiple related tables using SQL as the tool for creating, managing, and
modifying both the data and the data structures. An RDBMS maintains data by storing it in
tables that represent single entities and storing information about the relationship of these tables
to each other in yet more tables. The concept of a relational database was first described by E.F.
Codd, an IBM scientist who defined the relational model in 1970. Relational databases are opti-
mized for recording transactions and the resultant transactional data. Most commercial software
applications use an RDBMS as their data store. Because SQL was designed specifically for use
with an RDBMS, I will spend a little extra time covering the basic structures of an RDBMS later
in this chapter.

Object-Oriented Database Management System (ODBMS) — The ODBMS emerged a few
years ago as a system where data was stored as objects in a database. ODBMS supports multiple
classes of objects and inheritance of classes along with other aspects of object orientation.
Currently, no international standard exists that specifies exactly what an ODBMS is and what it
isn’t. Because ODBMS applications store objects instead of related entities, it makes the system
very efficient when dealing with complex data objects and object-oriented programming (OOP)
languages such as the new .NET languages from Microsoft as well as C and Java. When ODBMS
solutions were first released they were quickly touted as the ultimate database system and pre-
dicted to make all other database systems obsolete. However, they never achieved the wide
acceptance that was predicted. They do have a very valid position in the database market, but it
is a niche market held mostly within the Computer-Aided Design (CAD) and telecommunica-
tions industries.

Object-Relational Database Management System (ORDBMS) — The ORDBMS emerged from
existing RDBMS solutions when the vendors who produced the relational systems realized that

Introducing Transact-SQL and Data Management Systems

the ability to store objects was becoming more important. They incorporated mechanisms to be
able to store classes and objects in the relational model. ORDBMS implementations have, for the
most part, usurped the market that the ODBMS vendors were targeting for a variety of reasons
that I won’t expound on here. However, Microsoft’s SQL Server 2005, with its XML data type
and incorporation of the NET Framework, could arguably be labeled an ORDBMS.

SQL Server as a Relational Database
Management System

This section introduces you to the concepts behind relational databases and how they are implemented
from a Microsoft viewpoint. This will, by necessity, skirt the edges of database object creation, which is
covered in great detail in Chapter 11, so for the purpose of this discussion I will avoid the exact mechan-
ics and focus on the final results.

As I mentioned earlier, a relational database stores all of its data inside tables. Ideally, each table will rep-
resent a single entity or object. You would not want to create one table that contained data about both
dogs and cars. That isn’t to say you couldn’t do this, but it wouldn’t be very efficient or easy to maintain

if you did.

Tables

Tables are divided up into rows and columns. Each row must be able to stand on its own, without a
dependency to other rows in the table. The row must represent a single, complete instance of the entity
the table was created to represent. Each column in the row contains specific attributes that help define
the instance. This may sound a bit complex, but it is actually very simple. To help illustrate, consider a
real-world entity, an employee. If you want to store data about an employee you would need to create a
table that has the properties you need to record data about your employee. For simplicity’s sake, call
your table Employee.

For more information on naming objects, check out the “Naming Conventions” section in Chapter 4.

When you create your employee table you also need to decide on what attributes of the employee you
want to store. For the purposes of this example you have decided to store the employee’s last name, first
name, social security number, department, extension, and hire date. The resulting table would look
something like that shown in Figure 1-1.

Employee
LastMame
Firsthame
S5M

Dept
Extension
HireDate

Figure 1-1

The data in the table would look something like that shown in Figure 1-2.

Chapter 1

Lasthame [Firstilame [55N [Dept [Extension [HireDate
| [Flintstone Fred 123456789 Operations 9876 11/12/2000
| |Slate George 987554321 Management 3458 4/141593
Figure 1-2

Primary Keys

To efficiently manage the data in your table you need to be able to uniquely identify each individual row
in the table. It is much more difficult to retrieve, update, or delete a single row if there is not a single
attribute that identifies each row individually. In many cases, this identifier is not a descriptive attribute
of the entity. For example, the logical choice to uniquely identify your employee is the social security
number attribute. However, there are a couple of reasons why you would not want to use the social
security number as the primary mechanism for identifying each instance of an employee. So instead of
using the social security number you will assign a non-descriptive key to each row. The key value used
to uniquely identify individual rows in a table is called a primary key.

The reasons you choose not to use the social security number as your primary key column boil down to
two different areas: security and efficiency.

When it comes to security, what you want to avoid is the necessity of securing the employee’s social secu-
rity number in multiple tables. Because you will most likely be using the key column in multiple tables to
form your relationships (more on that in a moment), it makes sense to substitute a non-descriptive key. In
this way you avoid the issue of duplicating private or sensitive data in multiple locations to provide the
mechanism to form relationships between tables.

As far as efficiency is concerned, you can often substitute a non-data key that has a more efficient or
smaller data type associated with it. For example, in your design you might have created the social secu-
rity number with either a character data type or an integer. If you have fewer than 32,767 employees,
you can use a double byte integer instead of a 4-byte integer or 10-byte character type; besides, integers
process faster than characters.

You will still want to ensure that every social security number in your table is unique and not NULL, but
you will use a different method to guarantee this behavior without making it a primary key.

Keys and enforcement of uniqueness are detailed in Chapter 11.

A non-descriptive key doesn’t represent anything else with the exception of being a value that uniquely
identifies each row or individual instance of the entity in a table. This will simplify the joining of this
table to other tables and provide the basis for a “Relation.” In this example you will simply alter the
table by adding an EmployeeKey column that will uniquely identify every row in the table, as shown in
Figure 1-3.

Employee
7 |Employeekey

LastName
FirstMame
55N
Dept
Extension
HireDate

Figure 1-3

Introducing Transact-SQL and Data Management Systems

With the EmployeeKey column, you have an efficient, easy-to-manage primary key.

Each table can have only one primary key, which means that this key column is the primary method for
uniquely identifying individual rows. It doesn’t have to be the only mechanism for uniquely identifying
individual rows; it is just the “primary” mechanism for doing so. Primary keys can never be NULL and
they must be unique. I am a firm believer that primary keys should almost always be single-column
keys, but this is not a requirement. Primary keys can also be combinations of columns. If you have a
table where two columns in combination are unique, while either single column is not, you can combine
the two columns as a single primary key, as illustrated in Figure 1-4.

LibraryBook
& [1s8M

| 2| copyMumber
| |onLoan

| |status

Figure 1-4

In this example the LibraryBook table is used to maintain a record of every book in the library. Because
multiple copies of each book can exist, the ISBN column is not useful for uniquely identifying each book.
To enable the identification of each individual book the table designer decided to combine the ISBN col-
umn with the copy number of each book. I personally avoid the practice of using multiple column keys.
I prefer to create a separate column that can uniquely identify the row. This makes it much easier to
write JOIN queries (covered in great detail in Chapter 5). The resulting code is cleaner and the queries
are generally more efficient. For the library book example, a more efficient mechanism might be to
assign each book its own number. The resulting table would look like that shown in Figure 1-5.

LibraryBook

T | Bookkey
ISEM
CopyMumber
OnLoan
Status

Figure 1-5

A table is a set of rows and columns used to represent an entity. Each row represents an instance of the
entity. Each column in the row will contain at most one value that represents an attribute, or property, of
the entity. Take the employee table; each row represents a single instance of the employee entity. Each
employee can have one and only one first name, last name, SSN, extension, or hire date according to
your design specifications. In addition to deciding what attributes you want to maintain, you must also
decide how to store those attributes. When you define columns for your tables you must, at a minimum,
define three things:

Q The name of the column
Q The data type of the column
Q Whether or not the column can support NULL

Chapter 1

Column Names

Keep the names simple and intuitive. For more information see Chapter 11.

Data Types

The general rule on data types is to use the smallest one you can. This conserves memory usage and disk
space. Also keep in mind that SQL Server processes numbers much more efficiently than characters, so
use numbers whenever practical. I have heard the argument that numbers should only be used if you
plan on performing mathematical operations on the columns that contain them, but that just doesn’t
wash. Numbers are preferred over string data for sorting and comparison as well as mathematical com-
putations. The exception to this rule is if the string of numbers you want to use starts with a zero. Take
the social security number, for example. Other than the unfortunate fact that some social security num-
bers (like my daughter’s) begin with a zero, the social security number would be a perfect candidate for
using an integer instead of a character string. However, if you tried to store the integer 012345678 you
would end up with 12345678. These two values may be numeric equivalents but the government doesn’t
see it that way. They are strings of numerical characters and therefore must be stored as characters rather
than numbers.

When designing tables and choosing a data type for each column, try to be conservative and use the
smallest, most efficient type possible. But, at the same time, carefully consider the exception, however

rare, and make sure that the chosen type will always meet these requirements.

The data types available for columns in SQL Server 2000 and 2005 are specified in the following table.

Data Type Storage Description

Bigint 8 bytes An 8-byte signed integer. Valid values are
-9223372036854775808 through
+9223372036854775807.

Int 4 bytes A 4-byte signed integer. Valid values are
-2,147,483,648 through +2,147,483,647.

SmallInt 2 bytes A double-byte signed integer. Valid values are
-32,768 through +32,767.

TinyInt 1 byte A single-byte unsigned integer. Valid values are
from 0 through 255.

Bit 1 bit Integer data with either a 1 or 0 value.

Introducing Transact-SQL and Data Management Systems

Data Type

Decimal

Numeric

Money

SmallMoney

Float

Real

Storage

5 - 17 bytes

5—17 bytes

8 bytes

4 bytes

4 or 8 bytes

4 bytes

Description

A predefined, fixed, signed decimal number
ranging from
-100000000000000000000000000000000000001
(-10%8+1) to
99999999999999999999999999999999999999
(-10%1).

A decimal is declared with a precision and scale
value that determines how many decimal places to
the left and right are supported. This is expressed as
decimal[(precision,[scale])]. The precision setting
determines how many total digits to the left and
right of the decimal point are supported. The scale
setting determines how many digits to the right of
the decimal point are supported. For example,

to support the number 3.141592653589793 the
decimal data type would have to be specified

as decimal(16,15). If the data type was specified as
decimal(3,2), only 3.14 would be stored. The

scale defaults to zero and must be between 0 and
the precision. The precision defaults to 18 and can
be a maximum of 38.

Numeric is identical to decimal so use decimal
instead. Numeric is much less descriptive because
most people think of integers as being numeric.

The money data type can be used to store
-922,337,203,685,477.5808 to +922,337,203,685,477
.5807 of a monetary unit. The advantage of the
money data type over a decimal data type is that
developers can take advantage of automatic cur-
rency formatting for specific locales. Notice that
the money data type supports figures to the fourth
decimal place. Accountants like that. A few million
of those ten thousandths of a penny add up after a
while!

Bill Gates needs the money data type to track his
portfolio, but most of us can get by with the small-
money data type. It consumes 4 bytes of storage
and can be used to store -214,748.3648 to
+214,748.3647 of a monetary unit.

A float is an approximate value (SQL Server per-
forms rounding) that supports real numbers
between -1.79 x 10°% and 1.79 x 10°% sdff.

Real is a synonym for a float.

Table continued on following page

Chapter 1

10

Data Type

DateTime

SmallDatetime

Char

VarChar

Text

Storage

8 bytes

4 bytes

1 byte per character.
Maximum 8000
characters

1 byte per character.
Maximum 8000
characters

1 byte per character.
Maximum 2,147,483,648
characters (2GB)

Description

Datetime is used to store dates from January 1,
1753 through December 31, 9999 (which could
cause a huge Y10K disaster). The accuracy of the
datetime data type is 3.33 milliseconds.

Smalldatetime stores dates from January 1, 1900
through June 6, 2079 with an accuracy of 1 minute.

The char data type is a fixed-length data type used
to store character data. The number of possible
characters is between 1 and 8000. The possible
combinations of characters in a char data type are
256. The characters that are represented depend on
what language, or collation, is defined. English, for
example, is actually defined with a Latin collation.
The Latin collation provides support for all English
and western European characters.

The varchar data type is identical to the char data
type with the exception of it being a variable
length type. If a column is defined as char(8) it will
consume 8 bytes of storage even if only three char-
acters are placed in it. A varchar column only con-
sumes the space it needs. Typically, char data types
are more efficient when it comes to processing and
varchar data types are more efficient for storage.
The rule of thumb is: use char if the data will
always be close to the defined length. Use varchar
if it will vary widely. For example, a city name
would be stored with varchar(167) if you wanted
to allow for the longest city name in the world,
which is Krung thep mahanakhon bovorn
ratanakosin mahintharayutthaya mahadilok pop
noparatratchathani burirom udomratchanivetma-
hasathan amornpiman avatarnsathit sakkathat-
tiyavisnukarmprasit (the poetic name of Bangkok,
Thailand). Use char for data that is always the
same. For example, you could use char(12) to store
a domestic phone number in the United States:
(123)456-7890.

The text data type is similar to the varchar data
type in that it is a variable-length character data
type. The significant difference is the maximum
length of about 2 billion characters (including
spaces) and where the data is physically stored.
With a varchar data type on a table column, the
data is stored physically in the row with the rest of
the data. With a text data type, the data is stored
separately from the actual row and a pointer is
stored in the row so SQL Server can find the text.

Introducing Transact-SQL and Data Management Systems

Data Type

nChar

nVarChar

nText

Binary

VarBinary

Image

Storage

2 bytes per character.
Maximum 4000
characters (8000 bytes).

2 bytes per character.
Maximum 4000
characters (8000 bytes).

2 bytes per character.
Maximum 1,073,741,823
characters

1-8000 bytes

1-8000 bytes

Up to 2,147,483,647
bytes

Description

The nchar data type is a fixed-length type identical
to the char data type with the exception of the
amount of characters supported. Char data is rep-
resented by a single byte and thus only 256 differ-
ent characters can be supported. Nchar is a
double-byte data type and can support 65,536 dif-
ferent characters. The cost of the extra character
support is the double-byte length, so the maximum
nchar length is 4000 characters or 8000 bytes.

The nvarchar data type is a variable length identi-
cal to the varchar data type with the exception of
the amount of characters supported. Varchar data
is represented by a single byte and only 256 differ-
ent characters can be supported. Nvarchar is a
double-byte data type and can support 65,536 dif-
ferent characters. The cost of the extra character
support is the double-byte length, so the maximum
nchar length is 4000 characters or 8000 bytes.

The ntext data type is identical to the text data type
with the exception of the amount of characters
supported. Text data is represented by a single byte
and only 256 different characters can be supported.
Ntext is a double-byte data type and can support
65,536 different characters. The cost of the extra
character support is the double-byte length, so the
maximum ntext length is 1,073,741,823 characters
or 2GB.

Fixed-length binary data. Length is fixed when cre-
ated between 1 and 8000 bytes.

Variable-length binary data type identical to the
binary data type with the exception of only con-
suming the amount of storage that is necessary to
hold the data.

The image data type is similar to the varbinary
data type in that it is a variable-length binary data
type. The significant difference is the maximum
length of about 2GB and where the data is physi-
cally stored. With a varbinary data type on a table
column, the data is stored physically in the row
with the rest of the data. With an image data type,
the data is stored separately from the actual row
and a pointer is stored in the row so SQL Server
can find the data. Image data types are typically
used to store actual images, binary documents, or
binary objects.

Table continued on following page

11

Chapter 1

Data Type Storage Description

TimeStamp 8 bytes The timestamp data type has nothing to do with
time. It is more accurately described as a row ver-
sion data type and is, in fact, being replaced by a
data type called rowversion. In SQL Server 2000,
rowversion is provided as a synonym for the
timestamp data type and should be used instead
of timestamp. What timestamp actually provides
is a database unique identifier to identify a version

of a row.

Uniqueldentifier ~ 32 bytes A data type used to store a Globally Unique Identi-
fier (GUID).

Sql_Variant Up to 8016 bytes The sql_variant is used when the exact data type

is unknown. It can be used to hold any data type
with the exception of text, ntext, image, and
timestamp.

SQL Server supports additional data types that can be used in queries and programming objects, but
they are not used to define columns. These data types are listed in the following table.

Data Type Description
Cursor The cursor data is used to point to an instance of a cursor.
Table The table data type is used to store an in-memory rowset for process-

ing. It was developed primarily for use with the new table-valued
functions introduced in SQL Server 2000.

SQL Server 2005 Data Types

SQL Server 2005 brings a significant new data type and changes to existing variable data types. New to
SQL Server 2005 is the XML data type. The XML data type is a major change to SQL Server. The XML
data type allows you to store complete XML documents or well-formed XML fragments in the database.
Support for the XML data type includes the ability to create and register an XML schema and then bind
the schema to an XML column in a table. This ensures that any XML data stored in that column will
adhere to the schema. The XML data type essentially allows the storage and management of objects, as
described by XML, to be stored in the database. The argument can then be made that SQL Server 2005 is
really an Object-Relational Database Management System (ORDBMS).

LOBs, BLOBs, and CLOBs!

12

SQL Server 2005 also introduces changes to three variable data types in the form of the new (max) option
that can be used with the varchar, nvarchar, and varbinary data types. The (max) option allows for the
storage of character or variable-length binary data in excess of the previous 8000-byte limitation. At first
glance, this seems like a redundant option because the image data type is already available to store
binary data up to 2GB and the text and ntext types can be used to store character data. The difference is

Introducing Transact-SQL and Data Management Systems

in how the data is treated. The classic text, ntext, and image data types are Large Object (LOB) data types
and can’t typically be used with parameters. The new variable data types with the (max) option are
Large Value Types (LVT) and can be used with parameters just like the smaller sized types. This brings

a myriad of opportunities to the developer. Large Value Types can be updated or inserted without the
need of special handling through STREAM operations. STREAM operations are implemented through
an application programming interface (API) such as OLE DB or ODBC and are used to handle data in
the form of a Binary Large Object (BLOB). T-SQL cannot natively handle BLOBs, so it doesn’t support
the use of BLOBs as T-SQL parameters. SQL Server 2005’s new Large Value Types are implemented as a
Character Large Object (CLOB) and can be interpreted by the SQL engine.

Nullability

All rows from the same table have the same set of columns. However, not all columns will necessarily
have values in them. For example, a new employee is hired, but he has not been assigned an extension
yet. In this case, the extension column may not have any data in it. Instead, it may contain NULL, which
means the value for that column was not initialized. Note that a NULL value for a string column is dif-
ferent from an empty string. An empty string is defined; a NULL is not. You should always consider a
NULL as an unknown value. When you design your tables you need to decide whether or not to allow a
NULL condition to exist in your columns. NULLs can be allowed or disallowed on a column-by-column
basis, so your employee table design could look like that shown in Figure 1-6.

Employee
Colurmn Name | Data Type | Nullable d
Employeekey |int moTmuLL ||

LastMame varchar MOT MULL
Firstiame varchar MNOT NULL

K

55N char MOT MULL
Extension smallint MULL
HireDate datetime MNOT MULL J
-
Figure 1-6

Relationships

Relational databases are all about relations. To manage these relations you use common keys. For exam-
ple, your employees sell products to customers. This process involves multiple entities:

Q The employee
Q The product

d The customer

d Thesale

To identify which employee sold which product to a customer you need some way to link all the entities
together. These links are typically managed through the use of keys, primary keys in the parent table
and foreign keys in the child table.

As a practical example you can revisit the employee example. When your employee sells a product, his
or her identifying information is added to the Sale table to record who the responsible employee was,
as illustrated in Figure 1-7. In this case the Employee table is the parent table and the Sale table is the

child table.
13

Chapter 1

L Employee Sale

5 | Employeekey | Salekey
Lastiame Employeskey
Firstiame Customerkey
55N Productkey
Dept SaleDate
Extension
HireDate

Figure 1-7

Because the same employee could sell products to many customers, the relationship between the
Employee table and the Sale table is called a one-to-many relationship. The fact that the employee is the
unique participant in the relationship makes it the parent table. Relationships are very often parent-child
relationships, which means that the record in the parent table must exist before the child record can

be added. In the example, because every employee is not required to make a sale, the relationship is
more accurately described as a one-to-zero-or-more relationship. In Figure 1-7 this relationship is
represented by a key and infinity symbol, which doesn’t adequately model the true relationship because
you don’t know if the EmployeeKey field is nullable. In Figure 1-8, the more traditional and informative
“Crows Feet” symbols are used. The relationship symbol in this figure represents a one-to-zero-or-more
relationship. Figure 1-9 shows the two tables with a one-to-one-or-more relationship symbol.

Employee Sale
PK |EmployeeKey PK | SaleKey
LastName FH-=======-==- ~-O<FK1 |Em ployeeKey
FirstName CustomerKey
SSN ProductKey
Dept SaleDate
Extension
HireDate
Figure 1-8
Employee Sale
PK | EmployeeKey PK | SaleKey
LastName rH---FSFK1 |Em ployeeKey
FirstName FK2 | CustomerKey
SSN FK3 | ProductKey
Dept SaleDate
Extension
HireDate
Figure 1-9

Relationships can be defined as follows:

QO One-to-zero or many

0 One-to-one or many

14

Introducing Transact-SQL and Data Management Systems

Q One-to-exactly-one

0 Many-to-many

The many-to-many relationship requires three tables because a many-to-many constraint would be
unenforceable. An example of a many-to-many relationship is illustrated in Figure 1-10. The necessity
for this relationship is created by the relationships between your entities: In a single sale many products
can be sold, but one product can be in many sales. This creates the many-to-many relationship between
the Sale table and the Product table. To uniquely identify every product and sale combination, you need
to create what is called a linking table. The Order table manages your many-to-many relationship by
uniquely tracking every combination of sale and product.

Product Order Sale
PK |ProductKey | H-- Od PK | OrderKey PK | SaleKey
i H -
ProductName FK2 | SaleKey FK1 | EmployeeKey
FK1 | ProductKey CustomerKey
Quantity ProductKey
SaleDate
Figure 1-10

These figures are an example of a tool called an Entity Relationship Diagram (ERD). The ERD allows the
database designer to conceptualize the database design during planning. Microsoft and several other ven-
dors provide design tools that will automatically build the database and component objects from an ERD.

As an example of a one-to-one relationship, suppose that you want to record more detailed data about a
sale, but you do not want to alter the current table. In this case, you could build a table called SaleDetail to
store the data. To ensure that the sale can be linked to the detailed data, you create a relationship between
the two tables. Because each sale should appear in both the Sale table and the SaleDetail table, you would
create a one-to-one relationship instead of a one-to-many, as illustrated in Figures 1-11 and 1-12.

Sale SaleDetail
PK |SaleKey PK,FK1 | SaleKey
1l 1l
FK1 | EmployeeKey " " ShippedDate
FK2 | CustomerKey PurchaseDate

SaleAmount

FK3 | ProductKey
SaleDate

Figure 1-11

Sale SaleDetail
0~ 2[5aleKey ==&~ | 5aleKey
ShippedDate
PurchaseDate
SaleAmount

Employeekey
Customerkey
Productkey
SaleDate

Figure 1-12

15

Chapter 1

RDBMS and Data Integrity

The RDBMS is designed to maintain data integrity in a transactional environment. This is accomplished
through several mechanisms implemented through database objects. The most prominent of these
objects are as follows:

Q Locks

O Constraints
O Keys

Q Indexes

Before I describe these objects in more detail two other important pieces of the SQL architecture need to
be understood: connections and transactions.

Connections

A connection is created anytime a process attaches to SQL Server. The connection is established with
defined security and connection properties. These security and connection properties determine what
data you have access to and, to a certain degree, how SQL Server will behave during the duration of the
query in the context of the query. For example, a connection can specify which database to connect to on
the server and how to manage memory resident objects.

Transactions

Lo

16

Transactions are explored in detail in Chapter 8, so for the purposes of this introduction I will keep the
explanation brief. In a nutshell, a SQL Server transaction is a collection of dependent data modifications
that is controlled so that it completes entirely or not at all. For example, you go to the bank and transfer
$100.00 from your savings account to your checking account. This transaction involves two modifica-
tions, one to the checking account and the other to the savings account. Each update is dependent on the
other. It is very important to you and the bank that the funds are transferred correctly so the modifica-
tions are placed together in a transaction. If the update to the checking account fails but the update to
the savings account succeeds, you most definitely want the entire transaction to fail. The bank feels the
same way if the opposite occurs.

With a basic idea about these two objects, let’s proceed to the four mechanisms that ensure integrity and
consistency in your data.

cks

SQL Server uses locks to ensure that multiple users can access data at the same time with the assurance
that the data will not be altered while they are reading it. At the same time, the locks are used to ensure
that modifications to data can be accomplished without impacting other modifications or reads in
progress. SQL Server manages locks on a connection basis, which simply means that locks cannot be
held mutually by multiple connections. SQL Server also manages locks on a transaction basis. In the
same way that multiple connections cannot share the same lock, neither can transactions. For example, if
an application opens a connection to SQL Server and is granted a shared lock on a table, that same appli-
cation cannot open an additional connection and modify that data. The same is true for transactions. If
an application begins a transaction that modifies specific data, that data cannot be modified in any other
transaction until the first has completed its work. This is true even if the multiple transactions share the
same connection.

Introducing Transact-SQL and Data Management Systems

SQL Server utilizes six lock types, or more accurately, six resource lock modes:

Shared
Update
Exclusive
Intent
Schema

Bulk Update

U 00U oo

Shared, Update, Exclusive, and Intent locks can be applied to rows of tables or indexes, pages (8-kilobyte
storage page of an index or table), extents (64-kilobyte collection of 8contiguous index or table pages),
tables, or databases. Schema and Bulk Update locks apply to tables.

Shared Locks

Shared locks allow multiple connections and transactions to read the resources they are assigned to. No
other connection or transaction is allowed to modify the data as long as the Shared lock is granted. Once
an application successfully reads the data the Shared locks are typically released, but this behavior can
be modified for special circumstances. Shared locks are compatible with other Shared locks so that many
transactions and connections can read the same data without conflict.

Update Locks

Update locks are used by SQL Server to help prevent an event known as a deadlock. Deadlocks are bad.
They are mostly caused by poor programming techniques. A deadlock occurs when two processes get
into a stand-off over shared resources. Let’s return to the banking example: In this hypothetical banking
transaction both my wife and I go online to transfer funds from our savings account to our checking
account. We somehow manage to execute the transfer operation simultaneously and two separate pro-
cesses are launched to execute the transfer. When my process accesses the two accounts it is issued
Shared locks on the resources. When my wife’s process accesses the accounts, it is also granted a Shared
lock to the resources. So far, so good, but when our processes try to modify the resources pandemonium
ensues. First my wife’s process attempts to escalate its lock to Exclusive to make the modifications. At
about the same time my process attempts the same escalation. However, our mutual Shared locks pre-
vent either of our processes from escalating to an Exclusive lock. Because neither process is willing to
release its Shared lock, a deadlock occurs. SQL Server doesn’t particularly care for deadlocks. If one
occurs SQL Server will automatically select one of the processes as a victim and kill it. SQL Server selects
the process with the least cost associated with it, kills it, rolls back the associated transaction, and noti-
fies the responsible application of the termination by returning error number 1205. If properly captured,
this error informs the user that “Transaction ## was deadlocked on x resources with another process and
has been chosen as the deadlock victim. Rerun the transaction.” To avoid the deadlock from ever occur-
ring SQL Server will typically use Update locks in place of Shared locks. Only one process can obtain an
Update lock, preventing the opposing process from escalating its lock. The bottom line is that if a read is
executed for the sole purpose of an update, SQL Server may issue an Update lock instead of a Shared
lock to avoid a potential deadlock. This can all be avoided through careful planning and implementation
of SQL logic that prevents the deadlock from ever occurring.

17

Chapter 1

Exclusive Locks

SQL Server typically issues Exclusive locks when a modification is executed. To change the value of a
field in a row SQL Server grants exclusive access of that row to the calling process. This exclusive access
prevents a process from any concurrent transaction or connection from reading, updating, or deleting
the data being modified. Exclusive locks are not compatible with any other lock types.

Intent Locks

SQL Server issues Intent locks to prevent a process from any concurrent transaction or connection from
placing a more exclusive lock on a resource that contains a locked resource from a separate process. For
example, if you execute a transaction that updates a single row in a table, SQL Server grants the transac-
tion an Exclusive lock on the row, but also grants an Intent lock on the table containing the row. This pre-
vents another process from placing an Exclusive lock on the table.

Here is an analogy I often use to explain the Intent lock behavior in SQL programming classes: You
check in to room 404 at the SQL Hotel. You now have exclusive use of Room 4 on the fourth floor. No
other hotel patron will be allowed access to this room. In addition, no other patron will be allowed to
buy out every room in the hotel because you have already been given exclusive control to one of the
rooms. You have what amounts to an Intent Exclusive lock on the hotel and an Exclusive lock on Room
404. Intent locks are compatible with any less-exclusive lock, as illustrated in the following table on lock
compatibility.

Existing Granted Lock
Requested Lock Type IS S U IX X
Intent Shared (IS) Yes Yes Yes Yes No
Shared (S) Yes Yes Yes No No
Update(U) Yes Yes No No No
Intent Exclusive (IX) Yes No No Yes No
Exclusive (X) No No No No No

SQL Server and Other Products

Microsoft has plenty of competition in the client/server database world and SQL Server is a relatively
young product by comparison. However, it has enjoyed wide acceptance in the industry due to its ease
of use and attractive pricing. If our friends at Microsoft know how to do anything exceptionally well, it’s
taking a product to market so it becomes very mainstream and widely accepted.

Microsoft SQL Server

Here is a short history lesson on Microsoft’s SQL Server. SQL Server was originally a Sybase product cre-
ated for IBM’s OS/2 platform. Microsoft Engineers worked with Sybase and IBM but eventually with-
drew from the project. Microsoft licensed the Sybase SQL Server code and ported the product to work

18

Introducing Transact-SQL and Data Management Systems

with Windows NT. It took a couple of years before SQL Server really became a viable product. The SQL
Server team went to work to create a brand new database engine using the Sybase code as a model. They
eventually rewrote the product from scratch.

When SQL Server 7.0 was released in late 1998, it was a major departure from the previous version,
SQL Server 6.5. SQL Server 7.0 contained very little Sybase code with the exception of the core database
engine technology, which was still under license from Sybase. SQL Server 2000 was released in 2000
with many useful new features, but was essentially just an incremental upgrade of the 7.0 product. SQL
Server 2005, however, is a major upgrade and, some say, the very first completely Microsoft product.
Any vestiges of Sybase are long gone. The storage and retrieval engine has been completely rewritten,
the NET Framework has been incorporated, and the product has significantly risen in both power and
scalability.

Oracle

Oracle is probably the most recognizable enterprise-class database product in the industry. After IBM’s
E.F. Codd published his original papers on the fundamental principles of relational data storage and
design in 1970, Larry Ellison, founder of Oracle, went to work to build a product to apply those princi-
ples. Oracle has had a dominant place in the database market for quite some time with a comprehensive
suite of database tools and related solutions. Versions of Oracle run on UNIX, Linux, and Windows
Servers.

The query language of Oracle is known as Procedure Language/Structured Query Language (PL/SQL).
Indeed, many aspects of PL/SQL resemble a C-like procedural programming language. This is evidenced
by syntax such as command-line termination using semicolons. Unlike Transact-SQL, statements are not
actually executed until an explicit run command is issued (preceded with a single line containing a
period.) PL/SQL is particular about using data types and includes expressions for assigning values to
compatible column types.

IBM DB2

This is really where it all began. Relational databases and the SQL language were first conceptualized
and then implemented in IBM’s research department. Although IBM’s database products have been
around for a very long time, Oracle (then Relational Software) actually beat them to market. DB2
database professionals perceive the form of SQL used in this product to be purely ANSI SQL and other
dialects such as Microsoft’s T-SQL and Oracle’s PL-SQL to be more proprietary. Although DB2 has a long
history of running on System 390 mainframes and the AS/400, it is not just a legacy product. IBM has
effectively continued to breathe life into DB2 and it remains a viable database for modern business solu-
tions. DB2 runs on a variety of operating systems today including Windows, UNIX, and Linux.

Informix

This product had been a relatively strong force in the client/server database community, but its popular-
ity waned in the late 1990s. Originally designed for the UNIX platform, Informix is a serious enterprise
database. Popularity slipped over the past few years, as many applications built on Informix had to be
upgraded to contend with year 2000 compatibility issues. Some organizations moving to other platforms
(such as Linux and Windows) have also switched products. The 2001 acquisition of Informix nudged

19

Chapter 1

IBM to the top spot over Oracle as they brought existing Informix customers with them. Today, Informix
runs on Linux and integrates with other IBM products.

Sybase SQLAnywhere

M

Sybase has deep roots in the client/server database industry and has a strong product offering. At the
enterprise level, Sybase products are deployed on UNIX and Linux platforms and have strong support
in Java programming circles. At the mid-scale level, SQLAnywhere runs on several platforms including
UNIX, Linux, Mac OS, Netware, and Windows. Sybase has carved a niche for itself in the industry for
mobile device applications and related databases.

icrosoft Access

Access was partially created from the ground up but also leverages some of the query technology
gleaned from Microsoft’s acquisition of FoxPro. As a part of Microsoft’s Office Suite, Access is a
very convenient tool for creating simple business applications. Although Access SQL is ANSI 92
SQL-compliant, it is quite a bit different from Transact-SQL. For this reason, I have made it a point
to identify some of the differences between Access and Transact-SQL throughout the book.

Access has become the non-programmer’s application development tool. Many people get started in
database design using Access and then move on to SQL Server as their needs become more sophisti-
cated. Access is a powerful tool for the right kinds of applications, and some commercial products have
actually been developed using Access. Unfortunately, because Access is designed (and documented) to
be an end-user’s tool rather than a software developer’s tool, many Access databases are often poorly
designed and power users learn through painful trial and error about how not to create database
applications.

Access was developed right around 1992 and is based on the JET Database Engine. JET is a simple and
efficient storage system for small to moderate volumes of data and for relatively few concurrent users,
but falls short of the stability and fault-tolerance of SQL Server. For this reason, a desktop version of the
SQL Server engine has shipped with Access since Office 2000. The Microsoft SQL Server Desktop Engine
(MSDE) is an alternative to using JET and really should be used in place of JET for any serious database.
Starting smaller-scale projects with the MSDE provides an easier path for migrating them to full-blown
SQL Server later on.

MySQL

20

MySQL is a developer’s tool embraced by the open-source community. Like Linux and Java, it can be
obtained free of charge and includes source code. Compilers and components of the database engine can
be modified and compiled to run on most any computer platform. Although MySQL supports ANSI
SQL, it promotes the use of an application programming interface (API) that wraps SQL statements. As
a database product, MySQL is a widely accepted and capable product. However, it appeals more to the
open source developer than to the business user.

Many other database products on the market may share some characteristics of the products discussed
here. The preceding list represents the most popular database products that use ANSI SQL.

Introducing Transact-SQL and Data Management Systems

Summary

Microsoft SQL Server 2000 remains a very capable and powerful database management server, but I am
more than just a little excited about the upcoming release of SQL Server 2005. SQL Server 2005 takes
T-SQL and database management a huge step forward. Having worked with “Yukon” since its first
beta release, I have witnessed the emergence of a world-class database management system that will
undoubtedly strike fear in the heart of its competitors.

The coming chapters explore all the longstanding features and capabilities of T-SQL and preview some
of the awesome new capabilities that SQL Server 2005 brings to the field of T-SQL programming. So sit
back and hold on; it’s going to be an exciting ride.

If the whole idea of writing T-SQL code and working with databases doesn’t thrill you like it does me, I
apologize for my overt enthusiasm. My wife has reminded me on many occasions that no matter how I
may look, I really am a geek. I freely confess it. I also eagerly confess that I love working with databases.
Working with databases puts you in the middle of everything in information technology. There is abso-
lutely no better place to be. Can you name an enterprise application that doesn’t somehow interface with
a database? You see? Databases are the sun of the IT solar system.

In the coming months and years you will most likely find more and more applications storing their data
in a SQL Server database, especially if that application is carrying a Microsoft logo. Microsoft Exchange
Server doesn’t presently store its data in SQL, but it will. Active Directory will also reportedly move its
data store to SQL Server. The Windows file system itself is likely to be moved to a SQL-type store in a
future release of the Windows operating system. For the T-SQL programmer and Microsoft SQL Server
professional the future is indeed bright.

21

