
1
Unix Fundamentals

The Unix operating system was created more than 30 years ago by a group of researchers at
AT&T’s Bell Laboratories. During the three decades of constant development that have followed,
Unix has found a home in many places, from the ubiquitous mainframe to home computers to the
smallest of embedded devices. This chapter provides a brief overview of the history of Unix, dis-
cusses some of the differences among the many Unix systems in use today, and covers the funda-
mental concepts of the basic Unix operating system.

Brief History
In terms of computers, Unix has a long history. Unix was developed at AT&T’s Bell Laboratories
after Bell Labs withdrew from a long-term collaboration with General Electric (G.E.) and MIT to
create an operating system called MULTICS (Multiplexed Operating and Computing System) for
G.E.’s mainframe. In 1969, Bell Labs researchers created the first version of Unix (then called
UNICS, or Uniplexed Operating and Computing System), which has evolved into the common
Unix systems of today.

Unix was gradually ported to different machine architectures from the original PDP-7 minicomputer
and was used by universities. The source code was made available at a small fee to encourage its
further adoption. As Unix gained acceptance by universities, students who used it began graduat-
ing and moving into positions where they were responsible for purchasing systems and software.
When those people began purchasing systems for their companies, they considered Unix because
they were familiar with it, spreading adoption further. Since the first days of Unix, the operating
system has grown significantly, so that it now forms the backbone of many major corporations’
computer systems.

Unix no longer is an acronym for anything, but it is derived from the UNICS acronym. Unix
developers and users use a lot of acronyms to identify things in the system and for commands.

04_579940 ch01.qxd  3/21/05  5:55 PM  Page 1

CO
PYRIG

HTED
 M

ATERIA
L



Unix Versions
In the early days Unix was made available as source code rather than in the typical binary form. This
made it easier for others to modify the code to meet their needs, and it resulted in forks in the code,
meaning that there are now many disparate versions (also known as flavors).

Source code represents the internal workings of a program, specifying line by line how a program or
application operates. Access to source code makes it easier to understand what is occurring in the pro-
gram and allows for easier modification of the program. Most commercial programs are distributed in
binary form, meaning they are ready to be run, but the internal lines of code are not readable by people. 

There are primarily two base versions of Unix available: AT&T System V and Berkley Software
Distribution (BSD). The vast majority of all Unix flavors are built on one of these two versions. The pri-
mary differences between the two are the utilities available and the implementations of the file structure.
Most of the Unix flavors incorporate features from each base version; some include the System V version
utilities in /usr/bin and the BSD version in /usr/ucb/bin, for example, so that you have the choice
of using a utility with which you are comfortable. This arrangement is indicative of the Unix way of 
providing the flexibility to do things in different ways.

The various versions of Unix systems provide the user the power of choice: you can select the flavor that
best matches your needs or system requirements. This ability to choose is considered by many as a
strength, although some see it as a weakness in that these slightly differing versions and flavors create
some incompatibilities (in the implementation, commands, communications, or methods, for example).
There is no “true” version of Unix or one that is more official than others; there are just different imple-
mentations. Linux, for example, is a variant of Unix that was built from the ground up as a free Unix-like
alternative to the expensive commercial Unix versions available when Linux was first created in 1991.
Here are some of the more popular flavors of Unix available:

2

Chapter 1

Sun Microsystem’s Solaris Unix

IBM AIX

Hewlett Packard HP-UX

Red Hat Enterprise Linux

Fedora Core

SUSE Linux

Debian GNU/Linux

Mac OS X 

KNOPPIX

Yellow Dog Linux (for Apple systems)

Santa Cruz Operations SCO OpenServer

SGI IRIX

FreeBSD

OpenBSD

NetBSD

OS/390 Unix

Plan 9

Each of these flavors implements its version of Unix in a slightly different way, but even though the
implementation of a command may vary on some systems, the core command and its functionality follow
the principles of one of the two major variations. Most versions of Unix utilize SVR4 (System V) and add
the BSD components as an option to allow for maximum interoperability. This is especially true with com-
mands; for example, there are two versions of the ps command (for showing processes) available on most
systems. One version of ps might reside in /usr/bin/ps (the System V version) while the other might
exist in /usr/ucb/bin (BSD version); the commands operate similarly, but provide output or accept
optional components in a different manner.

04_579940 ch01.qxd  3/21/05  5:55 PM  Page 2



Many vendors have attempted to standardize the Unix operating system. The most successful attempt, a
product of the noncommercial Institute for Electrical and Electronics Engineers, is standard 1003 (IEEE
1003), also known as the POSIX (Portable Operating Systems Interface) standard. That standard is also reg-
istered with the International Organization for Standardization under ISO/IEC 9945-1, which you can find
at http://iso.org/iso/en/CombinedQueryResult.CombinedQueryResult?queryString=9945.
The POSIX standard merged with the Single Unix Specification (SUS) standard to become one integrated
standard for all Unix flavors. It retained the name POSIX standard. Not all Unix versions follow the POSIX
standard to the letter, but most do adhere to the major principles outlined in the standard.

Early Unix systems were mainly commercial commodities like most software for sale; to run the operat-
ing system, you generally had to pay for that right. In 1984 an engineer named Richard Stallman began
work on the GNU Project, which was an effort to create an operating system that was like Unix and that
could be distributed and used freely by anyone. He currently runs the Free Software Foundation
(http://gnu.org/fsf/fsf.html), and many of the programs he and his supporters have created
are used in both commercial and open-source versions of Unix.

GNU stands for GNU’s Not Unix, which is a recursive acronym. The GNU Project wanted to create a
Unix-like operating system, not a Unix derivative (which would imply that it was a source-code copy
of Unix).

In 1991 Linus Torvalds, a Finnish graduate student, began work on a Unix-like system called Linux.
Linux is actually the kernel (kernels are discussed later in this chapter), while the parts with which most
people are familiar — the tools, shell, and file system — are the creations of others (usually the GNU
organization). As the Linux project gained momentum, it grew into a major contender in the Unix mar-
ket. Many people are first introduced to Unix through Linux, which makes available to desktop
machines the functionality of a Unix machine that used to costs thousands of dollars. The strength of
Linux lies in its progressive licensing, which allows for the software to be freely distributable with no
royalty requirements. The only requirement for the end user is that any changes made to the software be
made available to others in the community, thus permitting the software to mature at an incredibly fast
rate. The license under which Linux is distributed is called the GNU Public License (GPL), available at
http://gnu.org/licenses/licenses.html.

Another free variant of Unix that has gained popularity is the BSD family of software, which uses the
very lenient BSD License (http://opensource.org/licenses/bsd-license.php). This license
allows for free modification without the requirement of providing the software source code to others.
After a landmark 1994 lawsuit settlement, BSD Unix became freely distributable and has evolved into
the NetBSD, FreeBSD, and OpenBSD projects, and it also forms the underlying technology for Darwin
(upon which Mac OS X is based).

These freely available Unix derivatives have given new life to the Unix operating system, which had
been experiencing a decline as the Microsoft Windows juggernaut advanced. Additionally, Apple has
become the highest-volume supplier of Unix systems. Now Unix is moving forward in the corporate
environment as well as in the end-user desktop market.

Operating System Components
An operating system is the software interface between the user and the hardware of a system. Whether
your operating system is Unix, DOS, Windows, or OS/2, everything you do as a user or programmer
interacts with the hardware in some way. In the very early days of computers, text output or a series of

3

Unix Fundamentals

04_579940 ch01.qxd  3/21/05  5:55 PM  Page 3



lights indicated the results of a system request. Unix started as a command-line interface (CLI) system —
there was no graphical user interface (GUI) to make the system easier to use or more aesthetically pleas-
ing. Now Unix has some of the most customizable user interfaces available, in the forms of the Mac OS X
Aqua and Linux’s KDE and GNOME interfaces among others, making the Unix system truly ready for
the average user’s desktop.

Let’s take a brief look at the components that make up the Unix operating system: the kernel, the shell,
the file system, and the utilities (applications).

Unix Kernel
The kernel is the lowest layer of the Unix system. It provides the core capabilities of the system and
allows processes (programs) to access the hardware in an orderly manner. Basically, the kernel controls
processes, input/output devices, file system operations, and any other critical functions required by the
operating system. It also manages memory. These are all called autonomous functions, in that they are
run without instructions by a user process. It is the kernel that allows the system to run in multiuser
(more than one user accessing the system at the same time), multitasking (more than one program run-
ning at a time) mode.

A kernel is built for the specific hardware on which it is operating, so a kernel built for a Sun Sparc
machine can’t be run on an Intel processor machine without modifications. Because the kernel deals
with very low-level tasks, such as accessing the hard drive or managing multitasking, and is not user
friendly, it is generally not accessed by the user.

One of the most important functions of the kernel is to facilitate the creation and management of pro-
cesses. Processes are executed programs (called jobs or tasks in some operating systems) that have owners —
human or systems — who initiate their calling or execution. The management of these can be very com-
plicated because one process often calls another (referred to as forking in Unix). Frequently processes also
need to communicate with one another, sending and receiving information that allows other actions to
be performed. The kernel manages all of this outside of the user’s awareness.

The kernel also manages memory, a key element of any system. It must provide all processes with ade-
quate amounts of memory, and some processes require a lot of it. Sometimes a process requires more
memory than is available (too many other processes running, for example). This is where virtual mem-
ory comes in. When there isn’t enough physical memory, the system tries to accommodate the process
by moving portions of it to the hard disk. When the portion of the process that was moved to hard disk
is needed again, it is returned to physical memory. This procedure, called paging, allows the system to
provide multitasking capabilities, even with limited physical memory.

Another aspect of virtual memory is called swap, whereby the kernel identifies the least-busy process or a
process that does not require immediate execution. The kernel then moves the entire process out of RAM
to the hard drive until it is needed again, at which point it can be run from the hard drive or from physical
RAM. The difference between the two is that paging moves only part of the process to the hard drive,
while swapping moves the entire process to hard drive space. The segment of the hard drive used for vir-
tual memory is called the swap space in Unix, a term you will want to remember as you move through this
book. Running out of swap space can cause significant problems, up to and including system failure, so
always be sure you have sufficient swap space. Whenever swapping occurs, you pay a heavy price in sig-
nificantly decreased performance, because disks are appreciably slower than physical RAM. You can
avoid swapping by ensuring that you have an adequate amount of physical RAM for the system.

4

Chapter 1

04_579940 ch01.qxd  3/21/05  5:55 PM  Page 4



Shells
The shell is a command line interpreter that enables the user to interact with the operating system. A shell
provides the next layer of functionality for the system; it is what you use directly to administer and run
the system. The shell you use will greatly affect the way you work. The original Unix shells have been
heavily modified into many different types of shells over the years, all with some unique feature that the
creator(s) felt was lacking in other shells. There are three major shells available on most systems: the
Bourne shell (also called sh), the C shell (csh), and the Korn shell (ksh). The shell is used almost exclu-
sively via the command line, a text-based mechanism by which the user interacts with the system.

The Bourne shell (also simply called Shell) was the first shell for Unix. It is still the most widely available
shell on Unix systems, providing a language with which to script programs and basic user functionality
to call other programs. Shell is good for everyday use and is especially good for shell scripting because
its scripts are very portable (they work in other Unix versions’ Bourne shells). The only problem with the
Bourne shell is that it has fewer features for user interaction than some of the more modern shells.

The C shell is another popular shell commonly available on Unix systems. This shell, from the
University of California at Berkeley, was created to address some of the shortcomings of the Bourne
shell and to resemble the C language (which is what Unix is built on). Job control features and the capa-
bility to alias commands (discussed in Chapter 5) make this shell much easier for user interaction. The
C shell had some early quirks when dealing with scripting and is often regarded as less robust than the
Bourne shell for creating shell scripts. The quirks were eventually fixed, but the C shell still has slight
variations, resulting from different implementations based on which entity (commercial provider or
other resource) is providing the shell.

The Korn shell was created by David Korn to address the Bourne shell’s user-interaction issues and to
deal with the shortcomings of the C shell’s scripting quirks. The Korn shell adds some functionality that
neither the Bourne or C shell has while incorporating the strong points of each shell. The only drawback
to the Korn shell is that it requires a license, so its adoption is not as widespread as that of the other two.

These are by no means the only shells available. Here’s a list of some of the many shells available for the
different Unix systems:

❑ sh (also known as the Bourne shell)[

❑ PDKSH (Public Domain Korn shell)

❑ bash (Bourne Again Shell — a revamped version of Bourne shell)

❑ Z shell

❑ TCSH (TENEX C shell)

As with everything Unix, there are many different implementations, and you are free to choose the shell
that best suits your needs based on the features provided. Chapter 5 examines several shells in detail.

The Other Components
The other Unix components are the file system and the utilities. The file system enables the user to view,
organize, secure, and interact with, in a consistent manner, files and directories located on storage
devices. The file system is discussed in depth in Chapter 4.

5

Unix Fundamentals

04_579940 ch01.qxd  3/21/05  5:55 PM  Page 5



Utilities are the applications that enable you to work on the system (not to be confused with the shell).
These utilities include the Web browser for navigating the Internet, word processing utilities, e-mail 
programs, and other commands that will be discussed throughout this book.

Try It Out Run Unix from a CD-ROM
The best way to learn Unix is to follow along with the book and try some of the exercises while you
are reading. If you don’t have a current install of a Unix operating system, and you do have an Intel/
AMD-based system (a PC that is Windows compatible), you can use KNOPPIX, a bootable Linux distri-
bution. KNOPPIX enables you to try Unix right from a CD, without installing or modifying any other
operating system on your computer. It provides a full-featured Linux environment and is a great way to
see what Linux and Unix is about.

1. Use the copy of Knoppix included on this book’s CD or download the KNOPPIX ISO image
from one of the mirrors listed at http://knopper.net/knoppix-mirrors/index-en.html.
There are usually two versions of the software, one in German and one in English; choose
the image with the extension -EN.iso. 

2. If you downloaded a copy of Knoppix, use your favorite CD-burning software to burn a copy of
the ISO onto a CD-R.

3. Insert the CD-ROM included with this book or the CD-R you created into your CD-ROM drive
and boot (load) from it. By default, most systems let you boot from a CD-ROM simply by putting
the disk in the drive. (If the CD-ROM doesn’t start automatically, you may need to contact your
computer manufacturer’s manual for instructions.) You’ll see the opening KNOPPIX screen,
which should be similar to the one in Figure 1-1.

Figure 1-1

6

Chapter 1

04_579940 ch01.qxd  3/21/05  5:55 PM  Page 6



4. Press Enter (or Return) to continue the boot process. You’ll see a screen similar to the one shown
in Figure 1-2.

Figure 1-2

5. The boot sequence continues through a few more screens.

Because KNOPPIX is bootable and can be transported from system to system, you do not enter a pass-
word as you would with most Unix distributions.

Figure 1-3 shows the desktop loading.

6. When you are done, exit the system by rebooting (restarting) or shutting down your computer.
You can do this by pressing Ctrl+Alt+Del. A dialog box provides you with options to Turn Off
Computer or Restart Computer. If you select Restart Computer, take out the CD-ROM during
the reboot to return to your regular operating system.

7

Unix Fundamentals

04_579940 ch01.qxd  3/21/05  5:55 PM  Page 7



Figure 1-3

How It Works
The KNOPPIX distribution has been optimized to run within RAM from the CD-ROM. It does not need
to modify the hard drive or install itself anywhere. It can be run without fear of damaging the current
contents of your hard drive.

Summary
This chapter briefly discussed the history of Unix and introduced some of the versions of Unix. The Unix
core components — the kernel, shells, file system, and utilities — were introduced.

In the past, Unix was considered a system geared to the most computer-savvy users and those who wanted
a system for core functionality, with no regard to aesthetics or user friendliness. Unix has evolved to fit the
needs of many different types of users, from the no-nonsense corporate environment to the novice com-
puter user’s desktop. There are rich desktop environments available for many flavors of Unix, for example,
and every currently selling Macintosh computer is running a version of Unix right out of the box.

In Chapter 2, you begin using a Unix system from initial login to logout.

8

Chapter 1

04_579940 ch01.qxd  3/21/05  5:55 PM  Page 8


