Language Basics

Overview

This chapter describes the basic elements of Rexx. It discusses the simple components that make
up the language. These include script structure, elements of the language, operators, variables,
and the like. As a starting point, we explore a simple sample script. We’ll walk through this script
and explain what each statement means. Then we’ll describe the language components individu-
ally, each in its own section. We’ll discuss Rexx variables, character strings, numbers, operators,
and comparisons.

By the end of this chapter, you'll know about the basic components of the Rexx language. You'll be
fully capable of writing simple scripts and will be ready to learn about the language features
explored more fully in subsequent chapters. The chapters that follow present other aspects of the
language, based on sample programs that show its additional features. For example, topics cov-
ered in subsequent chapters include directing the logical flow of a script, arrays and tables, input
and output, string manipulation, subroutines and functions, and the like. But now, let’s dive into
our first sample script.

A First Program

Had enough of your job? Maybe it’s time to join the lucky developers who create computer games
for a living! The complete Rexx program that follows is called the Number Game. It generates a
random number between 1 and 10 and asks the user to guess it (well, okay, the playability is a bit
weak. . ..) The program reads the number the user guesses and states whether the guess is correct.

/* The NUMBER GAME - User tries to guess a number between 1 and 10 */
/* Generate a random number between 1 and 10 */
the_number = random(1,10)

say "I'm thinking of number between 1 and 10. What is it?"

Chapter 2

22

pull the_guess

if the_number = the_guess then
say 'You guessed it!'
else
say 'Sorry, my number was: ' the_number

say 'Bye!'’
Here are two sample runs of the program:

C:\Regina\pgms>number_game.rexx

I'm thinking of number between 1 and 10. What is it?
4

Sorry, my number was: 6

Bye!

C:\Regina\pgms>number_game.rexx

I'm thinking of number between 1 and 10. What is it?
8

You guessed it!

Bye!

This program illustrates several Rexx features. It shows that you document scripts by writing whatever
description you like between the symbols /* and */. Rexx ignores whatever appears between these
comment delimiters. Comments can be isolated on their own lines, as in the sample program, or they can
appear as trailing comments after the statement on a line:

the_number = random(1l,10) /* Generate a random number between 1 and 10 */

Comments can even stretch across multiple lines in box style, as long as they start with /* and end
with */:

/**~k***~k***~k********************************~k***~k************************

* The NUMBER GAME - User tries to guess a number between 1 and 10 *

* Generate a random number between 1 and 10 *
**/

Rexx is case-insensitive. Code can be entered in lowercase, uppercase, or mixed case; Rexx doesn’t care.
The if statement could have been written like this if we felt it were clearer:

IF the_number = the_guess THEN
SAY 'You guessed it!'
ELSE
SAY 'Sorry, my number was: ' the_number

The variable named the_number could have been coded as THE_NUMBER or The_Number. Since Rexx
ignores case it considers all these as references to the same variable. The one place where case does mat-

ter is within literals or hardcoded character strings:

say 'Byel!! outputs: Bye!

Language Basics

while
say 'BYE!' displays: BYE!

Character strings are any set of characters occurring between a matched set of either single quotation
marks (') or double quotation marks ().

What if you want to encode a quote within a literal? In other words, what do you do when you need to
encode a single or double quote as part of the character string itself? To put a single quotation mark
within the literal, enclose the literal with double quotation marks:

say "I'm thinking of number between 1 and 10. What is it?"
To encode double quotation marks within the string, enclose the literal with single quotation marks:
say 'I am "thinking" of number between 1 and 10. What is it?'

Rexx is a free-format language. The spacing is up to you. Insert (or delete) blank lines for readability, and
leave as much or as little space between instructions and their operands as you like. Rexx leaves the cod-
ing style up to you as much as a programming language possibly can.

For example, here’s yet another way to encode the i f statement:

IF the_number = the_guess THEN SAY 'You guessed it!'
ELSE SAY 'Sorry, my number was: ' the_number

About the only situation in which spacing is not the programmer’s option is when encoding a Rexx furnc-
tion. A function is a built-in routine Rexx provides as part of the language; you also may write your own
functions. This program invokes the built-in function random to generate a random number between 1
and 10 (inclusive). The parenthesis containing the function argument(s) must immediately follow the
function name without any intervening space. If the function has no arguments, code it like this:

the_number = random()

Rexx requires that the parentheses occur immediately after the function name to recognize the function
properly.

The sample script shows that one does not need to declare or predefine variables in Rexx. This differs
from languages like C++, Java, COBOL, or Pascal. Rexx variables are established at the time of their first
use. The variable the_number is defined during the assignment statement in the example. Space for the
variable the_guess is allocated when the program executes the pull instruction to read the user’s
input:

pull the_guess
In this example, the pull instruction reads the characters that the user types on the keyboard, until he

or she presses the <ENTER> key, into one or more variables and automatically translates them to upper-
case. Here the item the user enters is assigned to the newly created variable the_guess.

23

Chapter 2

All variables in Rexx are variable-length character strings. Rexx automatically handles string length
adjustments. It also manages numeric or data type conversions. For example, even though the variables
the_number and the_guess are character strings, if we assume that both contain strings that represent
numbers, one could perform arithmetic or other numeric operations on them:

their_sum = the_number + the_guess

Rexx automatically handles all the issues surrounding variable declarations, data types, data conver-
sions, and variable length character strings that programmers must manually manage in traditional
compiled languages. These features are among those that make it such a productive, high-level
language.

Language Elements

24

Rexx consists of only two dozen instructions, augmented by the power of some 70 built-in functions.
Figure 2-1 below pictorially represents the key components of Rexx. It shows that the instructions and
functions together compose the core of the language, which is then surrounded and augmented by other
features. A lot of what the first section of this book is about is introducing the various Rexx instructions
and functions.

Elements of Rexx

Operators
Arithmetic
Comparison
Logical
String

2 dozen Instructions

70 Built-in
Functions

Other language components & features
Figure 2-1

Of course, this book also provides a language reference section in the appendices, covering these and
other aspects of the language. For example, Appendix B is a reference to all standard Rexx instructions,
while Appendix C provides the reference to standard functions.

Language Basics

The first sample program illustrated the use of the instructions say, pull, and if. Rexx instructions are
typically followed by one or more operands, or elements upon which they operate. For example, say is
followed by one or more elements it writes to the display screen. The pull instruction is followed by a
list of the data elements it reads.

The sample script illustrated one function, random. Functions are always immediately followed by
parentheses, usually containing function arguments, or inputs to the function. If there are no arguments,
the function must be immediately followed by empty parentheses () . Rexx functions always return a
single result, which is then substituted into the expression directly in place of the function call. For
example, the random number returned by the random function is actually substituted into the statement
that follows, on the right-hand side of the equals sign, then assigned to the variable the_number:

the_number = random(1,10)

Variables are named storage locations that can contain values. They do not need to be declared or defined
in advance, but are rather created when they are first referenced. You can declare or define all variables
used in a program at the beginning of the script, but Rexx does not require this. Some programmers like
to declare all variables at the top of their programs, for clarity, but Rexx leaves the decision whether or
not to do this up to you.

All variables in Rexx are internally stored as variable-length strings. The interpreter manages their
lengths and data types. Rexx variables are “typeless” in that their contents define their usage. If strings
contain digits, you can apply numeric operations to them. If they do not contain strings representing
numeric values, numeric operations don’t make sense and will fail if attempted. Rexx is simpler than
other programming languages in that developers do not have to concern themselves with data types.

Variable names are sometimes referred to as symbols. They may be composed of letters, digits, and charac-
terssuchas . ! ? _.Avariable name you create must not begin with a digit or period. A simple variable
name does not include a period. A variable name that includes a period is called a compound variable and
represents an array or table. Arrays will be covered in Chapter 4. They consist of groups of similar data
elements, typically processed as a group.

If all Rexx variables are typeless, how does one create a numeric value? Just place a string representing a
valid number into a Rexx variable. Here are assignment statements that achieve this:

whole_number_example = 15
decimal_example = 14.2
negative_number = -21.2

exponential_notation_example 14E+12

A number in Rexx is simply a string of one or more digits with one optional decimal point anywhere in
the string. Numbers may optionally be preceded by their sign, indicating a postive or a negative num-
ber. Numbers may be represented very flexibly by almost any common notation. Exponential numbers
may be represented in either engineering or scientific notation (the default is scientific). The following

table shows examples of numbers in Rexx.

25

Chapter 2

26

Number Type Also Known As Examples

Whole Integer ‘3 ‘+6” “9835297590239032’

Decimal Fixed point ‘0.3" “17.36425

Exponential Real --or-- “1.235E+11" (scientific, one digit left of decimal point)
Floating point 171.123E+11" (engineering, 1 to 3 digits left of decimal)

Variables are assigned values through either assignment statements or input instructions. The assign-
ment statement uses the equals sign (=) to assign a value to a variable, as shown earlier. The input
instructions are the pull or parse instructions, which read input values, and the arg and parse arg
instructions, which read command line parameters or input arguments to a script.

If a variable has not yet been assigned a value, it is referred to as uninitialized. The value of an uninitial-
ized variable is the name of the variable itself in uppercase letters. This i f statement uses this fact to
determine if the variable no_value_yet is uninitialized:

if no_value_yet = 'NO_VALUE_YET' then
say 'The variable is not yet initialized.'

Character strings or literals are any set of characters enclosed in single or double quotation marks (' or ").

If you need to include either the single or double quote within the literal, simply enclose that literal with
the other string delimiter. Or you can encode two single or double quotation marks back to back, and
Rexx understands that this means that one quote is to be contained within the literal (it knows the dou-
bled quote does not terminate the literal). Here are a few examples:

literal= 'Literals contain whatever characters you like: !@#S$"&*()-=+~.<>?/_"
need_a_quote_mark_in_the_string = "Here's my statement."
same_as_the_previous_example = 'Here''s my statement.'
this_is_the_null_string = '' /*two quotes back to back are a "null string" */

In addition to supporting any typical numeric or string representation, Rexx also supports hexadecimal or
base 16 numbers. Hex strings contain the upper- or lowercase letters A through F and the digits 0 through
9, and are followed by an upper- or lowercase X:

twenty_six_in_hexidecimal = 'la'x /* 1A is the number 26 in base sixteen */
hex_string = "3E 11 4A"X /* Assigns a hex string value to hex_ string */

Rexx also supports binary, or base two strings. Binary strings consist only of 0s and 1s. They are denoted
by their following upper- or lowercase B:

example_binary string = '10001011'b
another_binary_string = '1011'B

Rexx has a full complement of functions to convert between regular character strings and hex and binary
strings. Do not be concerned if you are not familiar with the uses of these kinds of strings in program-
ming languages. We mention them only for programmers who require them. Future chapters will
explain their use more fully and provide illustrative examples.

Language Basics

Operators

Every programming language has operators, symbols that indicate arithmetic operations or dictate that
comparisons must be performed. Operators are used in calculations and in assigning values to variables,
for example. Rexx supports a full set of operators for the following.

Q

a
a
a

Arithmetic

Comparison

Logical operators

Character string concatenation

The arithmetic operators are listed in the following table:

Arithmetic Operator Use

+ Addition

- Subtraction

* Multiplication

/ Division

Y% Integer division —returns the integer part of the result from division

// Remainder division — returns the remainder from division

* Raise to a whole number power
+ (as a prefix) Indicates a positive number
- (asaprefix) Indicates a negative number

All arithmetic operators work as one would assume from basic high-school algebra, or from program-
ming in most other common programming languages. Here are a few examples using the less obvious

operators:
say (5
say (5
say (5

% 2) /* Returns the integer part of division result. Displays: 2 */
// 2) /* Returns the remainder from division. Displays: 1 */
% 2) /* Raises the number to the whole power. Displays: 25 */

Remember that because all Rexx variables are strings, arithmetic operators should only be applied to
variables that evaluate to valid numbers. Apply them only to strings containing digits, with their
optional decimal points and leading signs, or to numbers in exponential forms.

Numeric operations are a major topic in Rexx (as in any programming language). The underlying princi-
ple is this — the Rexx standard ensures that the same calculation will yield the same results even when run under
different Rexx implementations or on different computers. Rexx provides an exceptional level of machine- and
implementation-independence compared with many other programming languages.

27

Chapter 2

28

If you are familiar with other programming languages, you might wonder how Rexx achieves this bene-
fit. Internally, Rexx employs decimal arithmetic. It does suffer from the approximations caused by lan-
guages that rely on floating point calculations or binary arithmetic.

The only arithmetic errors Rexx gives are overflow (or underflow). These result from insufficient storage to
hold exceptionally large results.

To control the number of significant digits in arithmetic results, use the numeric instruction. Sometimes
the number of significant digits is referred to as the precision of the result. Numeric precision defaults to
nine digits. This sample statement illustrates the default precision because it displays nine digits to the
right of the decimal place in its result:

say 2 / 3 /* displays 0.666666667 by default */

This example shows how to change the precision in a calculation. Set the numeric precision to 12 digits
by the numeric instruction, and you get this result:

numeric digits 12 /* set numeric precision to 12 digits */
say 2 / 3 /* displays: 0.666666666667 */

Rexx preserves trailing zeroes coming out of arithmetic operations:
say 8.80 - 8 /* displays: 0.80 */

If a result is zero, Rexx always displays a single-digit 0:
say 8.80 - 8.80 /* displays: 0 */

Chapter 7 explores computation further. It tells you everything you need to know about how to express
numbers in Rexx, conversion between numeric and other formats, and how to obtain and display
numeric results. We'll defer further discussion on numbers and calculations to Chapter 7.

Comparison operators provide for numeric and string comparisons. These are the operators you use to
determine the equality or inequality of data elements. Use them to determine if one data item is greater
than another or if two variables contain equal values.

Since every Rexx variable contains a character string, you might wonder how Rexx decides to perform a
character or numeric comparison. The key rule is: if both terms involved in a comparison are numeric, then
the comparison is numeric. For a numeric comparison, any leading zeroes are ignored and the numeric val-
ues are compared. This is just as one would expect.

If either term in a comparison is other than numeric, then a string comparison occurs. The rule for string
comparison is that leading and trailing blanks are ignored, and if one string is shorter than the other, it is
padded with trailing blanks. Then a character-by-character comparison occurs. String comparison is
case-sensitive. The character string ABC is not equal to the string Abc. Again, this is what one would nor-
mally assume.

Rexx features a typical set of comparison operators, as shown in the following table:

Language Basics

Comparison Operator Meaning
= Equal
\= -= Not equal
> Greater than
< Less than
>= \< < Greater than or equal to, not less than
<= \> > Less than or equal to, not greater than
>< <> Greater than or less than (same as not equal)

The “not” symbol for operators is typically written as a backslash, as in “not equal:” \= But some-
times you'll see it written as - as in “not equal:” == Both codings are equivalent in Rexx. The first repre-
sentation is very common, while the second is almost exclusively associated with mainframe scripting.
Since most keyboards outside of mainframe environments do not include the symbol - we recommend always
using the backslash. This is universal and your code will run on any platform. The backslash is the ANSI-
standard Rexx symbol. You can also code “not equal to” as: <> or ><.

In Rexx comparisons, if a comparison evaluates to TRUE, it returns 1. A FALSE comparison evaluates to 0.
Here are some sample numeric and character string comparisons and their results:

37" = '37" /* TRUE - a numeric comparison */
'0037'= '37" /* TRUE - numeric comparisons disregard leading zeroes */
37 = '37 ' /* TRUE - blanks disregarded */
'"ABC' = 'Abc' /* FALSE - string comparisons are case-sensitive */
'ABC' = ' ABC ' /* TRUE- preceding & trailing blanks are irrelevant */

v = ! /* TRUE- null string is blank-padded for comparison */

Rexx also provides for strict comparisons of character strings. In strict comparisons, two strings must be iden-
tical to be considered equal —leading and trailing blanks count and no padding occurs to the shorter
string. Strict comparisons only make sense in string comparisons, not numeric comparisons. Strict com-
parison operators are easily identified because they contain doubled operators, as shown in the follow-
ing chart:

Strict Comparison Operator Meaning
== Strictly equal
\== -== Strictly not equal
>> Strictly greater than
<< Strictly less than
>>= \<< ~<< Strictly greater than or equal to, strictly not less than
<<= \>> o>> Strictly less than or equal to, strictly not greater than

29

Chapter 2

Here are sample strict string comparisons:

370 == '37
'ABC' >> 'AB'
'ABC' == "' ABC

/* TFALSE - strict comparisons include blanks */
/* TRUE - also TRUE as a nonstrict comparison */
' /* FALSE - blanks count in strict comparison x/

/* FALSE - blanks count in strict comparison */

Logical operators are sometimes called Boolean operators because they apply Boolean logic to the operands.
Rexx’s logical operators are the same as the logical operators of many other programming languages.
This table lists the logical operators:

Logical Operator

&

&&

- or \ (as a prefix)

Meaning Use

Logical AND TRUE if both terms are true

Logical OR TRUE if either term is true

Logical EXCLUSIVE OR TRUE if either (but not both)
terms are true

Logical NOT Changes TRUE to FALSE and

vice versa

Boolean logic is useful in i f statements with multiple comparisons. These are also referred to as com-
pound comparisons. Here are some examples:

if ('A' = varl)
say 'Displays
if ('A' = varl)
say 'Displays
if ('A' = varl)
say 'Displays
if \('A' = varl)

& ('B' = var2) then
only if BOTH comparisons are TRUE'

| ('B' = var2) then
if EITHER comparison is TRUE'

&& ('B' = var2) then
if EXACTLY ONE comparison is TRUE'

then say 'Displays if A is NOT equal to varl'

Concatenation is the process of pasting two or more character strings together. Strings are appended one
to the end of the other. Explicitly concatenate strings by coding the concatenation operator | | . Rexx also
automatically concatenates strings when they appear together in the same statement. Look at these
instructions executed in sequence:

my_var =
say 'Hi there, "

say 'Hi there, 'my_var

say 'Hi there, '

'Yogi Bear'

[l " || my_var /* displays: 'Hi there, Yogi Bear' */
/* displays: 'Hi there,Yogi Bear'

no space after the comma */
my_var /* displays: 'Hi there, Yogi Bear'

one space after the comma */

The second say instruction shows concatenation through abuttal. Aliteral string and a variable appear
immediately adjacent to one another, so Rexx concatenates them without any intervening blank.

30

Language Basics

Contrast this to the last say instruction, where Rexx concatenates the literal and variable contents, but
with one blank between them. If there are one or more spaces between the two elements listed as
operands to the say instruction, Rexx places exactly one blank between them after concatenation.

Given these three methods of concatenating strings, individual programmers have their own prefer-
ences. Using the concatenation operator makes the process more explicit, but it also results in longer
statements to build the result string.

Rexx has four kinds of operators: arithmetic, comparison, logical, and concatenation. And there are sev-
eral operators in each group. If you build a statement with multiple operators, how does Rexx decide
which operations to execute first? The order can be important. For example:

4 times 3, then subtract 2 from the result is 10
Perform those same operations with the same numbers in a different order, and you get a different result:

3 subtract 2, then multiple that times 4 yields the result of 4

Both these computations involve the same two operations with the same three numbers but the opera-
tions occur in different orders. They yield different results.

Clearly, programmers need to know in what order a series of operations will be executed. This issue is
often referred to as the operator order of precedence. The order of precedence is a rule that defines which
operations are executed in what order.

Some programming languages have intricate or odd orders of precedence. Rexx makes it easy. Its order
of precedence is the same as in conventional algebra and the majority of programming languages. (The
only minor exception is that the prefix minus operator always has higher priority than the exponential
operator).

From highest precedence on down, this lists Rexx’s order of precedence:

Q Prefix operators + - N\

QO Power operator *x

Q Addition and subtraction + -

Q Concatenation by intervening blanks || by abuttal

QO Comparison operators = == > < >= <= ..and the others
QO Logical AND &

QO Logical OR

Q EXCLUSIVE OR &&

If the order of precedence is important to some logic in your program, an easy way to ensure that opera-
tions occur in the manner in which you expect is to simply enclose the operations to perform first in
parentheses. When Rexx encounters parentheses, it evaluates the entire expression when that term is
required. So, you can use parentheses to guarantee any order of evaluation you require. The more
deeply nested a set of parentheses is, the higher its order of precedence. The basic rule is this: when Rexx
encounters expressions nested within parentheses, it works from the innermost to the outermost.

31

Chapter 2

To return to the earlier example, one can easily ensure the proper order of operations by enclosing the
highest order operations in parentheses:

say (4 * 3) -2 /* displays: 10 */
To alter the order in which operations occur, just reposition the parentheses:

say 4 * (3 - 2) /* displays: 4 */

Summary

This chapter briefly summarizes the basic elements of Rexx. We’ve kept the discussion high level and
have avoided strict “textbook definitions.” We discussed variable names and how to form them, and the
difference between simple variable names and the compound variable names that are used to represent
tables or arrays. We discussed the difference between strings and numbers and how to assign both to
variables.

We also listed and discussed the operators used to represent arithmetic, comparison, logical, and string
operations. We gave a few simple examples of how the operators are used; you’'ll see many more, real-
world examples in the sample scripts in the upcoming chapters.

The upcoming chapters round out your knowledge of the language and focus in more detail on its capa-
bilities. They also provide many more programming examples. Their sample scripts use the language
elements this chapter introduces in many different contexts, so you'll get a much better feel for how they
are used in actual programming.

Test Your Understanding

32

1. How are comments encoded in Rexx? Can they span more than one line?
2. How does Rexx recognize a function call in your code?

3. Must variables be declared in Rexx as in languages like C++, Pascal, or Java? How are variables
established, and how can they be tested to see if they have been defined?

4. What are the two instructions for basic screen input and output?

5. What is the difference between a comparison and strict comparison? When do you use one versus
the other? Does one apply strict comparisons to numeric values?

6. How do you define a numeric variable in Rexx?

