
“Hello, World!”Version
48,345,093.1

In This Chapter

You Have Installed Xcode, Haven’t You? • The Project Assistant Has a Nice Bow Tie!

Getting in Your Face • Hooking Up • A Little Typecasting

Do You Feel Lucky? Well Do You? • The Lessons of Hello, World!

Greetings, programmer!

In this chapter, you will take your first steps on the long, event-filled journey into the world of
Macintosh OS X software development — unless, of course, you’ve already done some Macintosh
OS X software development, in which case these won’t be your first steps now, will they? If so,
think of this chapter as an encore telecast. (Yes, we’re mixing metaphors; we can do that because
we have recently renewed our poetic licenses.)

The Mac has had a long and often deserved reputation for being a difficult platform for which to
develop. At different times, the difficulties have been due to different things. For instance, the first
Macs were difficult to program simply because the Mac didn’t have any tools that let programmers
program for it: You needed an Apple Lisa (raise your hands if you remember those... okay, put
them down; it’s not like we can see you out there) wired up to a Mac and running a Macintosh
development kit. Then, of course, there was the matter of the Macintosh toolbox, those sets of spe-
cialized routines and functions built into the early Mac ROMs, which programmers had to learn to
understand and use, and which were documented in a heap of very heavy and continually updated
loose-leaf binders. Wrapping one’s head around those was not a project for a rainy afternoon.

06_584111 ch01.qxd 5/13/05 1:39 PM Page 3

CO
PYRIG

HTED
 M

ATERIA
L

2. Click Continue to see the Software License Agree-
ment. Click Continue again and agree to the license
agreement (after reading every last clause and condi-
tion and consulting with the friendly legal adviser that
you have on retainer for just such occasions... or not),
and then click Continue yet another time.

3. Choose a destination volume, which must be a
Tiger start-up volume.

4. Click Continue, click Install, and then type an
Administrator password as shown in Figure 1-2.
(If you’re not running from an Administrator account,
you’ll need to enter an Administrator account’s user
name in the Name field.)

Figure 1-1
Xcode’s installer looks very familiar

Part I: The IDE of the Tiger

But, some 20 years into the Macintosh era, things have
gotten better... not that you don’t need to learn a bunch of
stuff (hey, if programming were easy, everyone would be
doing it), but the programming environment is cheap
(free, in fact, which is at the lower limit of cheap), and the
documentation, instead of bowing your bookshelves, is
now at your fingertips as you code. And, of course, the
tools are a lot — and we mean, a whole lot — better.

Apple collectively calls these tools Xcode. And with them,
we’re going to write yet another version of that staple of
introductory programming classes, the “Hello, World!”
application. In the process, you’ll get a quick preview of the
power and, dare we say it, utter coolness of twenty-first-
century Mac programming. So let’s get ready to rumble...

YOU HAVE INSTALLED XCODE,
HAVEN’T YOU?

Yes, Apple really does provide this wonderful Xcode tool
chest free of charge (well, free if you don’t count the fact
that you have to have Tiger to make use of it and Tiger
isn’t exactly free). Unlike most of the other really cool toys
Apple includes with Tiger, such as iTunes and iChat,
Xcode doesn’t get installed automatically — you have to
do that yourself. So, slip your Tiger DVD back into your
Mac and look for a folder named Xcode — you’ll probably
have to scroll down to find it.

1. Open the Xcode folder and double-click the
Xcode.mpkg file to present the very familiar
Installer dialog (shown in Figure 1-1).

4

06_584111 ch01.qxd 5/13/05 1:39 PM Page 4

Chapter 1:“Hello, World!”Version 48,345,093.1

Figure 1-2
You need Administrator access to install Xcode

Then, sit back, listen to your iPod, and wait while the
Installer creates a Developer folder at the root level of your
start-up volume and fills it with all the bright and shiny
Xcode goodies. When the Installer finishes its tasks, click
the Close button. In the Finder, you’ll see a Developer
directory such as the one shown in Figure 1-3.

Figure 1-3
When all is said and done...

Now that you have Xcode installed, your creative urges are
welling, but when you double-click Xcode (it’s in Devel-
oper ➜ Applications), you’ll find that you still need to
configure Xcode, and the Xcode Assistant (see Figure 1-4)
will hold your hand through the setup process (which is
really quite a trick, when you stop to consider that the
assistant has no hands). In other words, there are a few
more steps on this meandering path.

Figure 1-4
We’re installed; let’s get set up

5. Click Next. The Assistant, as shown in Figure 1-5,
asks you a couple of questions about how you want to
build your projects. First, you can have Xcode place
your builds’ results in the project directory or in
another directory you specify. Second, if your product
is complex enough to build intermediate elements
(subprojects, if you will), you can decide whether they
should be stored where the final build goes or in
another location that you specify. Of course, the
explanation at the bottom of the Assistant’s window
told you all of this already — and if you didn’t follow
all of what we and the window just told you, you
should probably accept the default settings; Apple
(usually) chooses defaults that make sense.

5

06_584111 ch01.qxd 5/13/05 1:39 PM Page 5

7. Click Finish.

If you want to see what’s new in this version of Xcode,
choose Help ➜ Show Release Notes, and Xcode opens a
documentation window, as shown in Figure 1-7, display-
ing the Release Notes for your Xcode version.

THE PROJECT ASSISTANT HAS A
NICE BOW TIE!

All righty. Xcode is installed, and you’ve fired it up once
just to make sure that it works. So let’s actually do some-
thing with it. Like, say, create a new project...

� Note
Right now we’re just going to blast through this
whole building-a-program business step by step
without (much) in-depth explanation. In later parts
of the book we’ll tell you more — much more —
about what’s going on when you perform actions
like those that follow. For example, you’ll see figures
suspiciously similar to the ones that follow in the
next chapter when we give you a slo-mo replay of
the New Project Assistant. Here, however, we focus
just on getting something done.

1. Choose New Project from the File menu. It’s easy to
find this command because it’s right at the top of the
File menu (see Figure 1-8). When you choose New
Project, you get the New Project Assistant (see Figure
1-9), which, like most Mac OS X assistants, is repre-
sented by a headless torso wearing a bow tie. You’ll see
this dude a lot; even though he doesn’t have a head (or
other extremities), he can be quite helpful.

Part I: The IDE of the Tiger

Figure 1-5
Tell Xcode where you want to store the things
you build

6. Click Next. The Assistant now inquires whether
Xcode should keep track of all your open windows
when you close a project or quit from Xcode so that
reopening the project will reopen all your windows
just as they were when you closed the project. You
can see this really simple step in Figure 1-6.

Figure 1-6
Do you like to pick up where you left off when you
reopen a project?

6

06_584111 ch01.qxd 5/13/05 1:39 PM Page 6

Chapter 1:“Hello, World!”Version 48,345,093.1

7

Figure 1-7
The 411 on what’s new in this version of Xcode

06_584111 ch01.qxd 5/13/05 1:39 PM Page 7

Figure 1-9
...just let the New Project Assistant do its stuff

Figure 1-10
Give the new project a name and place to live

Part I: The IDE of the Tiger

Figure 1-8
It’s easy to start a new Xcode project...

2. Click Cocoa Application and then click Next. The
Project Assistant dude is not done with you; he wants
to know what you want to call the project and where
you want to save it (see Figure 1-10).

8

06_584111 ch01.qxd 5/13/05 1:39 PM Page 8

Chapter 1:“Hello, World!”Version 48,345,093.1

3. Type a project name in the Project Name field. As
you type, the Assistant dude fills out the second field,
which is going to be the complete Unix-style path
(that is, the same way you type paths in the Finder’s
Go to Folder dialog) to where your project is stored.
If you don’t mess with the second field, your project
ends up in your Home directory in a folder that has
the project name you typed.

4. Click Finish.

And lo! There’s your new project, in a project window (see
Figure 1-11) that’s chock-full (what is a chock and how full

can you get one, anyway?) of all sorts of things you don’t
understand... yet. But you will; oh, you will! (Cue the evil
laughter sound effect.)

At this very instant, you have a complete application ready
to build and run if you like. Now, we’re not saying you
should build your project, but if you did (say, for example,
by clicking that inviting Build and Go icon at the top of
the project window), Xcode would compile, link, and then
launch your new, utterly useless-but-very-cool-nonetheless
application — which is already sophisticated enough to
show you a (blank) window and a set of standard menus.

9

Figure 1-11
A new project, untouched by human hands

06_584111 ch01.qxd 5/13/05 1:39 PM Page 9

clicking it opens Interface Builder, the Xcode applica-
tion that lets you assemble the standard elements of
Mac OS X’s graphical user interface by using palettes
and drag-and-drop techniques. (Chapter 9 covers this
mind bogglingly cool tool in greater depth.)

When Interface Builder finishes launching, you see some-
thing like Figure 1-12: a window named Window, a
window named Cocoa-Menus, and a window named
MainMenu.nib, all floating over your project window.
The Window window is your application’s main window.
The Cocoa-Menus window is a palette that contains user
interface elements you can add to your project; its name
changes depending on the types of user interface elements
displayed in it. The MainMenu.nib window shows the
interface elements contained in your project; currently,
it shows that your project contains a window element, a
menu element, and a couple of other necessary things.

� Note
The user interface elements shown in Interface
Builder are, technically, instances of classes that are
predefined as part of Mac OS X’s Cocoa framework. If
you know something about object-oriented pro-
gramming, you’ll know what we’re talking about; if
not, you should bone up on the basic concepts a
little: Mac OS X is very object-oriented.

2. Click the Controls icon in the palette. This icon,
shown here, appears at the top of the interface elements
palette, second from the left. When you click the icon,
the palette’s name changes to Cocoa-Controls, and the
palette displays a set of control widgets that you can
click and drag into the interface you are building.

� Tip
When you point at an element in Interface Builder’s
Cocoa interface elements palette, a tool tip appears

Part I: The IDE of the Tiger

� Tip
The standard menus in your application include a
program menu with a Quit command — you’ll prob-
ably want to use this command if you disregarded
our half-hearted advice and built your project in
order to see what would happen.

GETTING IN YOUR FACE

If you’re like just about every other programmer we ever
met, you are probably itching to write some code. We sug-
gest, however, that you soothe your itchy patches with
some Benadryl or hydrocortisone cream, because we’re not
going to be typing any code yet. There’s a lot to get out of
the way, first — for example, it wouldn’t be a bad idea to
decide just what it is that our program is going to do.

Because our program is the traditional Hello, World! pro-
gram, it should, as all such programs do, display the mes-
sage, “Hello, world!” Because it’s a Mac program, it should
display this message in a window, and, because Mac pro-
grams are user friendly, it should let the user click some-
thing to produce the message. In short, we need a window,
a button, and a text display area.

If you build and run the project we just created, you’ll dis-
cover that the default Cocoa application already provides
a window. So that’s one down. Next, we need to add the
button and the text display area to our project’s window.

You may be thinking: Aha! Now we’re going to write some
code. Nope. Still not yet. Instead, we’re going to build our
program’s interface graphically with Xcode’s Interface
Builder application and let it do most of the coding for us.
But don’t worry: Eventually you’ll get to type some code
yourself. Honest. Maybe even a whole line of it...

1. Double-click the MainMenu.nib file shown in the
project window. This file appears in the right pane of
your project window (see Figure 1-11); it was generated
automatically when you created the project. Double-

10

06_584111 ch01.qxd 5/13/05 1:39 PM Page 10

Chapter 1:“Hello, World!”Version 48,345,093.1

that identifies the Cocoa class to which the element
belongs.You may notice, for example, that many of
the different-looking buttons appearing in the
Cocoa-Controls palette actually belong to the NSBut-
ton class, a class that is defined in the Cocoa frame-
works. Chapter 7 describes how you can consult
documentation describing the frameworks and their
classes at any time as you work. (Okay, that’s really
two tips here — we’re generous.)

3. Click and drag the button labeled Button from the
top left of the Cocoa-Controls palette to the appli-
cation’s window and release the mouse. This is how
you add interface elements to your application (see
Figure 1-13). If, at this moment, you were to save
your work (and guess what? Ô+S will do that very
thing) and then build your application again, the but-
ton would appear in the application’s main window
exactly where you put it in Interface Builder.

11

Figure 1-12
The program’s user interface as seen in Interface Builder

06_584111 ch01.qxd 5/13/05 1:39 PM Page 11

6. Click the text icon in the palette. This icon, shown
here, appears at the top of the interface elements palette,
third from the left. When you click the icon, the
palette’s name changes to Cocoa-Text, and the palette
displays a set of text widgets, which, just like the con-
trols, you can drag into the interface you are building.

Part I: The IDE of the Tiger

4. Click and drag one of the button’s handles on its
left or right side to make it wider.

5. Double-click the button’s label to select it, and then
type a new label for the button. Figure 1-14 shows
you how we adjusted the button’s size and location and
the label we gave it; feel free to modify your button to
suit your own aesthetic sensibilities — it’s easy to do
and fun for the whole family.

12

Figure 1-13
Adding an interface element to the application’s main window

06_584111 ch01.qxd 5/13/05 1:39 PM Page 12

Chapter 1:“Hello, World!”Version 48,345,093.1

Figure 1-14
A resized and relabeled button now adorns the
interface

7. Click and drag a blank NSTextField object from the
Cocoa-Text palette to the application’s window and
release the mouse. This field, like the button you pre-
viously added, is now part of the application’s main
window (see Figure 1-15), and it is where your app is
going to display its Hello, World message. (If you can’t
find it, the NSTextField object is the recessed-looking
blank text field on the left side of the Cocoa-Text
palette as shown in Figure 1-15.)

8. Click and drag one of the field’s handles on its left
or right side to make it wider. You want to make the
field wide enough to display the Hello, World mes-
sage. You can also click the field and drag it where you
think it looks best in the window.

13

A SMALL PACKAGE OF VALUE WILL COME TO YOU, SHORTLY

All of the button’s characteristics that you have (and will) set in this tutorial are saved in the MainMenu.nib file that
belongs to your project, and that file becomes part of the application’s resources when you build your project. For you
Mac old-timers, this arrangement is conceptually somewhat like the old resource fork of days gone by, but architecturally
it’s quite different. Modern Mac applications (like the one that we are making here) are usually stored in special directo-
ries, called packages, that just happen to look like files. Inside of packages live various directories and files, including the
.nib files containing the application’s interface elements.

You can easily see inside of packages in the Finder: Simply Control + click the file (or right-click for you multibutton
mousers out there) and select Show Package Contents from the contextual menu. Like magic, a new Finder window
opens and you can go traipsing through the package to your heart’s content. If you find a .nib file, you can double-click it
and it will open in Interface Builder — which we really must tell you is both an exceedingly exciting and a dangerously
foolhardy thing to do with any application that you care about in any way. Using this trick, you can walk on the wild side,
destroying various applications’ interfaces with Interface Builder, just like Mac old-timers could do with ResEdit.The Old
and True Rules apply: Only mess around with copies, and hack responsibly.

06_584111 ch01.qxd 5/13/05 1:39 PM Page 13

10. Save your work using either Ô+S or Save from the
File menu.

You now have all the elements of the app’s user interface in
place. Were you to build and run the app right now, you’d
have a fully functional nonfunctional program; that is, the
button, field, and window would appear, but they wouldn’t
do anything very interesting. Wiring them up is our next
mission.

Part I: The IDE of the Tiger

9. (Optional) Double-click the field to put an inser-
tion point into it, and then type some text for the
field to display. The field in your application’s main
window initially will contain this text when the appli-
cation runs. If you like, you can also use the Font and
Text submenus in Interface Builder’s Format menu to
style the field’s text however you want. You can see
our version of the field in Figure 1-16.

14

Figure 1-15
Toss in a text field to display the Hello, World message

06_584111 ch01.qxd 5/13/05 1:39 PM Page 14

Chapter 1:“Hello, World!”Version 48,345,093.1

Figure 1-16
The Hello, World! app’s text display field gets some
style and content

HOOKING UP

Right out of the wrapper, Cocoa buttons and text fields are
pretty smart: A Cocoa button “knows” when it has been
clicked and can even tell another object, “Hey, I’ve been
clicked!” and a Cocoa text field can easily be told to dis-
play any given piece of text. So here’s what we have to fig-
ure out next: how to translate our button’s “Hey, I’ve been
clicked!” message into a message that tells our text field
what to display. There are lots of possible answers (that’s
what makes programming the enjoyable, creative time-sink
that it is); the approach we will take is the Model-View-
Controller approach that all the best authorities in the
field consider to be The Right Approach to object-oriented
programming (and we’re not about to argue with all the
best authorities in the field without a really good reason,
such as a cash payment or a free week on Maui).

This is what you need to do: Create a new type of object
to control the interaction between our button and our
field. This controller object will listen to the button, and,
when the button tells the controller object that it’s been
clicked, the controller object will tell the text field what to
display. Setting this sort of thing up with Interface Builder
is pretty easy.

And, no, we’re still not going to be writing any code yet,
but we’re getting closer.

1. Click the Classes tab in the MainMenu.nib win-
dow. Scroll all the way to the left, and click NSOb-
ject (see Figure 1-17). NSObject is the Cocoa class
from which all other Cocoa classes descend. We want
our new controller class to be a Cocoa class, so this is
the perfect place to start.

� Note
The NSObject class, like other Cocoa classes, appears
in gray in the MainMenu.nib window in order to indi-
cate that it is a standard class and not one that you

15

THE N WORDS

So far, you’ve seen a couple of interface elements
that represent certain Cocoa framework classes:The
button you dragged into your window, for example,
is an NSButton, and the text field you dragged is an
NSTextField. So, what’s up with this “NS” stuff?

Those letters are a historical holdover.The classes in
the Cocoa framework were originally developed at
Steve Job’s previous computer company, NeXT, which
Apple bought in the late 1990s.These classes, as well
as much of the Cocoa framework, were part of the
NeXTStep class libraries, and the NS, in case you
haven’t guessed by now, stands for “NeXTStep.” Inter-
face Builder itself, in fact, is a direct descendent of the
interface-building tool from the NeXTStep system.
One might be tempted to think that Cocoa is simply
NeXTStep with a candy coating. One might be right.

06_584111 ch01.qxd 5/13/05 1:39 PM Page 15

2. Select Subclass NSObject from the Classes menu
(see Figure 1-18). A new entry appears in the column
to the right of NSObject in the MainMenu.nib win-
dow: MyObject. Its name is selected, ready for you to
change it to something more appropriate to its func-
tion (see Figure 1-19).

Figure 1-18
... subclass it...

Part I: The IDE of the Tiger

have created and can modify.This color also makes
the class name hard to see when you select it, as we
have in Figure 1-17. Nice one, Apple.

Figure 1-17
Select a base class...

16

THE ABCS OF MVC IN OOP

The Model-View-Controller (MVC) way of thinking about object-oriented programming (OOP) is just a way to reduce the
brain-cramp that can occur when you design large, complicated programs that have a whole slew of interrelated func-
tions and data.The idea is pretty simple: Conceptually divide the object classes between those that the user sees and
touches (the view), the underlying structure (including data structures and the routines to manipulate them) that the
view represents (the model), and the code that manages interactions between the view and the model (the controller).

Clear as mud, right? In our Hello, World! application, it breaks down this way.The View is the window, text field, button,
and menus that the user sees and can manipulate.The Model is the underlying idea that a textual message is displayed
in response to some action by the user — the particular appearance of the text field that displays the message or of the
button that the user clicks (or even if it is a button-click that triggers the message) is irrelevent (in fact, our Hello, World!
application’s model is pretty barren, lacking any data structures or data manipulating routines).The Controller is the pro-
gram logic that monitors the trigger condition and then changes the text message when the condition is met.

By separating things out this way, we can change the controller’s capabilities (for example, what it tells the field to dis-
play) without touching the button or the field.We can change where the button and field appear in the window, as well
as their sizes, shapes, and so on, without touching the controller logic.We can devise additional ways of creating the text-
changing trigger conditions (that is, changing the model) without touching the view or the controller logic. And we can
reduce brain-cramp in the process. Everybody wins.

06_584111 ch01.qxd 5/13/05 1:39 PM Page 16

Chapter 1:“Hello, World!”Version 48,345,093.1

Figure 1-19
... and give it a name

3. Type a new name for the class. We called ours Hel-
loController; by convention, class names begin with
an uppercase letter.

4. Control-click (or right-click) the new class and
select Add Outlet to HelloController (or whatever
it was that you named your class) from the contex-
tual menu. A Class Info window opens showing you
the attributes of your new class, with a new outlet
selected so you can change its name (see Figure 1-20).

� Note
An outlet in Cocoa/Interface Builder parlance is really
nothing more than an instance variable that gets
added to a class. Interface Builder uses outlets to
establish connections between an application’s
interface objects so they can exchange messages.
The outlet we’re creating here eventually will be con-
nected to the text field in our app’s main window so
the controller object can tell the text field to change
the text that it’s showing.

5. Give the outlet a name. We called ours helloSayer. We
could have called it Fred. We didn’t. Also note that, by
convention, outlet names begin with a lowercase letter.

Figure 1-20
Like so many of us, our controller needs an outlet

6. Click the small pop-up widget beside the outlet’s
type and select NSTextField from the pop-up
scrolling list (see Figure 1-21). Why? Because the
app’s text field is an NSTextField, and we want our
controller to be able to communicate with it.

Figure 1-21
Picking an outlet type

17

06_584111 ch01.qxd 5/13/05 1:39 PM Page 17

out there).When a user does something to an inter-
face object, such as clicking it, the object can
respond by sending an action message to another
object; this message becomes, through the magic of
the Cocoa runtime environment, a method call with
a single parameter (specifically, the ID of the sender).
The action we have created here is the action mes-
sage that our HelloController will receive from the
app’s button when the button is clicked... once, that
is, we establish a connection between the button
and the HelloController with Interface Builder.We’ll
do that shortly. In step 15, in fact.

10. Select Create Files for HelloController from the
Classes menu (the name of the class in the com-
mand will match the name you gave yours; see
Figure 1-23). A sheet descends from your Main-
Menu.nib window (see Figure 1-24).

Figure 1-23
Free code...

11. Make sure that the checkboxes for both the class’s
header file (ending with .h) and the implementa-
tion file (ending with .m) in the bottom-left pane
of the sheet are checked, and that the files are
being inserted into the right target (that is, your
project), as shown in the bottom-right pane of the
sheet, and then click Choose. Interface Builder mag-
ically creates the two source files that define your class
and adds them into the Other Sources folder in your
Xcode project window (see Figure 1-25).

Part I: The IDE of the Tiger

7. Click the 0 Actions tab in the HelloController
Class Inspector window. You see a list of actions that
your controller class can take... actually, you don’t see a
list of actions, because your controller class doesn’t
have any yet. But you can see where the list would be
if there were any items in it.

8. Click the Add button at the bottom of the Hello-
Controller Class Inspector window. A new action
appears with its name selected so you can change it.
Also note that the 0 Actions tab in the Inspector win-
dow changes to say 1 Action. That’s right, Interface
Builder knows how to count.

9. Give your action a suitable name. We named ours
sayTheThang: (see Figure 1-22). Note that action
names, by convention, begin with a lowercase letter.
They also must end with a colon... but if you don’t
supply one, Interface Builder will. It knows the rules.

Figure 1-22
An action hero is born

� Note
An action is nothing more than the name of a
method (or of a member function for you C++ fans

18

06_584111 ch01.qxd 5/13/05 1:39 PM Page 18

Chapter 1:“Hello, World!”Version 48,345,093.1

Figure 1-24
... is just a click or two away

Figure 1-25
This source is a new source, of course, of course

12. Choose Classes ➜ Instantiate HelloController (you
may need to select the class first in the Classes tab
of the MainMenu.nib window). This creates an
actual instance of the class in your nib. You’ll need this.

13. Click the Instances tab of the MainMenu.nib win-
dow. The window displays your controller object
amid its collection of interface objects (see Figure
1-26). A small white exclamation mark in a yellow
disk appears beside the object, which is Interface
Builder’s polite way of saying that the object has some
yet-to-be-connected outlets.

Figure 1-26
The controller, ready to be wired up

� Tip
Hover your mouse over the exclamation mark to see
a tool tip that tells you exactly what Interface Builder
thinks is the “problem” with your interface object.

14. While holding down the Control key, click and drag
from the controller object in the MainMenu.nib
window to the text field in the Window window,
and then release the mouse. A line stretches from the
controller to the field (see Figure 1-27), indicating that
you’ve established a connection between the two
objects, and the Inspector window shows the controller
object’s outlet list.

19

06_584111 ch01.qxd 5/13/05 1:39 PM Page 19

Figure 1-28
Destination confirmed; enjoy your trip

16. While holding down the Control key, click and
drag from the button in the Window window to the
controller object in the MainMenu.nib window,
and then release the mouse. A line now stretches
from the button to the controller object (see Figure
1-29), and the Inspector window shows the button’s
Target/Action list, which contains the controller
object’s only available Target/Action, sayTheThang.

17. Click the action listed in the Inspector window
and then click the window’s Connect button to
complete the connection.

18. Save your work using either Ô+S or Save from the
File menu.

And that’s it for the Interface Builder portion of our day’s
entertainment. You’ve wired up all of your app’s interface
objects, generated source files to play with, and now,
finally, at long last, you can get ready to scratch your cod-
ing itch. We hope it was worth the wait.

Part I: The IDE of the Tiger

Figure 1-27
The controller is connected to the text field

15. In the Inspector window, click to select the outlet
you created in steps 4 through 6 (if it’s not already
selected), and then click the window’s Connect but-
ton. A gray button appears to the outlet’s left and the
outlet’s destination appears to its right (see Figure
1-28). In other words, the instance variable that corre-
sponds to your controller object’s outlet now contains a
reference to the text field (or, rather, it will when the
application is launched and the Cocoa runtime envi-
ronment rifles through the .nib file looking for things
to hook up).

20

06_584111 ch01.qxd 5/13/05 1:39 PM Page 20

Chapter 1:“Hello, World!”Version 48,345,093.1

21

A LITTLE TYPECASTING

Back when we generated source files from our Main-
Menu.nib file, Interface Builder produced two files, which
you saw in Figure 1-25. If you named your controller class
HelloController like we did, you now have a header file,
HelloController.h, and an implementation file, HelloCon-
troller.m. Because our project is a Cocoa application,

Interface Builder produced these files in Objective-C, an
object-oriented version of the C programming language,
which is Cocoa’s preferred language (although you can use
the Cocoa framework from Java, C++, and even a weird
and wacky language blend called Objective-C++). Let’s
take a look at these two files, see what needs changing, and
make the changes.

Figure 1-29
The button is connected to the controller

06_584111 ch01.qxd 5/13/05 1:39 PM Page 21

The header file is pretty short and sweet, containing

a comment that identifies the source;

an #import compiler directive to bring in all the
Cocoa stuff (which is much like a #include directive
that avoids some recursion issues);

an @interface statement that lets you, the compiler,
and the rest of the known universe know that the Hel-
loController is a subclass of NSObject;

a sole instance variable, helloSayer, which is the
NSTextField outlet you created in Interface Builder
(the IBOutlet type qualifier lets Interface Builder and
Xcode coordinate with each other as you develop your
app) — note that Objective-C instance variables are
included between curly braces; and

a method declaration, sayTheThang, which corre-
sponds to the action you added to your controller
class in Interface Builder

There’s nothing you need to change here. All is as it should
be. You can close the editing window.

Now let’s look at the class’s implementation source file.
Here’s where you are going to write some code (Quick!
Alert the media!).

1. Double-click the class’s implementation file (for
example, HelloController.m) in the project win-
dow. Like the header file, it should appear in the big
right-hand pane of your project window and in the
Other Sources folder in the project window’s left-hand
pane. An editing window opens (see Figure 1-31).

Part I: The IDE of the Tiger

� Note
Objective-C is a very simple superset of standard C;
it’s easy to pick up the basics in just a few hours,
especially if you are familiar with other object-
oriented programming languages. Xcode’s extensive
built-in documentation includes the guide, The
Objective-C Programming Language, which can get
you up to speed with the language rather quickly.To
find out how to use Xcode’s documentation
resources, you can flip to Chapter 7.

First, we check out the header file:

1. Switch back over to the Xcode application if you
haven’t already.

2. Double-click your controller class’s header file (for
example, HelloController.h) in the project win-
dow. It should appear in the big right-hand pane of
your project window; it can also be found in the
Other Sources folder in the project window’s left-hand
pane, as shown in Figure 1-25. An Xcode editing win-
dow opens (see Figure 1-30).

Figure 1-30
Go to the header of the class

22

06_584111 ch01.qxd 5/13/05 1:39 PM Page 22

Chapter 1:“Hello, World!”Version 48,345,093.1

Figure 1-31
A class method, ready to edit

2. Following the open brace, type the following line
of code exactly. (Well, almost exactly — if you called
your outlet something other than helloSayer, you
should type the name you used instead.) The result
should look like Figure 1-32:

[helloSayer setStringValue:@"Hello,
world!!!"];

Figure 1-32
A class method, finished and ready to compile

3. Save your changes (choose Save from the File
menu, or press Ô+S).

And that’s it. That’s all the code you have to write to make
your application say “Hello, world!!!” when you click the
button. Now wasn’t that worth waiting for?

DO YOU FEEL LUCKY? WELL DO YOU?

Finally, you need to build the program and run it.

If you come from old-school Unix programming, you may
be wondering about things like build files, targets, com-
piler options, and stuff like that there. Don’t worry: All
that stuff is still around, and if you have a burning desire
to get at it, you’ll find out how to do so later in this book
(say, for example, Chapters 11 and 12). But you don’t have
to if you don’t want to because Xcode tries to handle all of
it for you, and it does a pretty good job, too. The only
thing you have to do is push a button.

23

IN CASE YOU ARE WONDERING...

The code you typed is an Objective-C message, which
is sent to the object represented by the helloSayer
instance variable.The message is setStringValue.
This message (a “message”is Objective-C terminology
for what other object-oriented languages might refer
to as a “method call”or “member function call”) takes
a single parameter: the literal string,“Hello, world!!!”
(its literalness is indicated by the @ in front of it). In
Objective-C, messages are enclosed in brackets to dif-
ferentiate them from plain, ordinary, C function calls,
which Objective-C supports as well (it is, after all, a
superset of C).

06_584111 ch01.qxd 5/13/05 1:39 PM Page 23

Figure 1-34
You don’t have to shout

Woo, as they say, hoo! You’ve written a Macintosh OS X
application. Have a cookie. Oh, and don’t forget to quit
the application when you’re finished admiring what a fine
job you’ve done (use the free Cocoa-supplied Quit com-
mand on the application’s menu).

THE LESSONS OF HELLO, WORLD!

And what have we learned today, kids? That a copy of
Xcode comes free inside each colorfully wrapped container
of Mac OS X Tiger. That Xcode provides project templates
that make it very easy for you to get started creating a pro-
gram. That Xcode’s Interface Builder application lets you do
a lot of your user interface design work using simple drag-
and-drop techniques instead of requiring you to create care-
fully handcrafted code. That the Xcode code editor lets you
compile the code that you do have to write without switch-
ing to another mode or application. And, finally, that crank-
ing out a sophisticated application with a fully functional,
Aqua-fresh graphical user interface is pretty easy to do.

At least, we thought it was.

Part I: The IDE of the Tiger

Oh, yes, you do need to know which button, don’t you?
Okay, um, let’s see. Right. It’s that Build and Go button at
the top of your editing window (we may have mentioned
it before... well, we’re mentioning it again). Click it.

As Xcode indexes, compiles, builds, and links your applica-
tion, you should see something similar to Figure 1-33 —
note the progress indicator and status messages that appear
at the bottom of the window. The build process may take a
few seconds the first time you build your project, because
Xcode has to bring together all the pieces that make up
your application (which includes things like the Cocoa
framework, which is no small thing), but subsequent
builds (say, if you need — or want — to make any minor
changes) won’t take quite as long.

Figure 1-33
Once I built a Mac app, made it run...

Assuming you have typed everything correctly in the one
line of code that you had to type, the application launches,
its menu bar appears, and the window you designed with
Interface Builder shows up. Click the window’s button (see
Figure 1-34) and see the “Hello, world!!!” message.

24

06_584111 ch01.qxd 5/13/05 1:39 PM Page 24

