
Anatomy of a Web API

In this chapter, you will learn the basic concepts of Web APIs that I use throughout the rest of the
book. Web APIs are application programming interfaces that can be called over standard Internet
protocols. Many companies are using Web APIs to expose functionality in their existing systems
in a platform-neutral manner. Other companies are building applications from the ground up as
Web APIs. Web APIs generally allow remote computers on different platforms to talk to each
other using methods that were previously very difficult. This chapter will specifically cover the
following:

❑ What a Web API is and how it differs from a Web service

❑ The current status of Web APIs in the industry

❑ Calling a Web API using REST (HTTP-GET)

❑ Calling a Web API using HTTP-POST

❑ Calling a Web API using HTTP and SOAP

Web APIs versus Web Services
Web APIs are application programming interfaces that are available over the Internet. They are
also sometimes referred to as Web services. It is helpful to think of a Web API as a series of Web
services, each of which has one or more procedures that can be called using the Internet. An exam-
ple of a Web API includes the Google API, which makes various search functions available over
the Internet for use in third-party applications. Although Web APIs and Web services are separate
concepts, it is common and acceptable to refer to the two concepts interchangeably because they
are so closely related.

04_584456 ch01.qxd 3/8/05 10:37 AM Page 1

CO
PYRIG

HTED
 M

ATERIA
L

In the most generic sense, a Web service is merely a function or procedure that can be called over the
Internet. This generic definition includes Web services that can be called only from specific platforms,
such as Windows, and only after installation of certain software on the client. However, in the context of
this book, the term Web service refers to services that are platform-neutral and so can be called from any
platform capable of communicating using standard Internet protocols. These platform-neutral Web serv-
ices are sometimes referred to as XML Web services because XML is typically the data transfer format
used for them. XML is a text-based syntax that can be understood by various platforms, as I discuss in a
later section. Despite common misconceptions, XML Web services can be called from applications that
are not browser-based, such as traditional Windows applications. As long as the application can commu-
nicate using Internet protocols, non-Web–based applications can make use of the same functionality.

Despite the great value of Web services, their adoption industry-wide has been slow in coming. The
great news is that, as of this writing, Web APIs and Web services have finally been adopted by big play-
ers in the industry. Industry leaders such as Google, Amazon, and eBay have embraced the Web services
concept and have created Web APIs that enable you to implement their core features in your own appli-
cations. This recent movement toward Web APIs is my primary reason for writing this book. In it, you
will, of course, explore several leading Web APIs to learn how you can use them in your applications.

As you will see in the following chapters, most of these leading Web APIs require you to obtain a devel-
oper token that must be included in each request. Vendors require a developer token in order to control
how much you use (and thus not abuse) the service and/or how much they should charge you. Most
Web APIs have a free limited-use license or trial period, and some of them require payment for the
service.

Web APIs as XML Web Services
As I mentioned previously, Web APIs are typically a related collection of Web services. Most of the Web
services available today are based on XML and can, therefore, be called from various platforms. The
focus of this book is primarily on XML Web services. Therefore, a brief explanation on XML is appropri-
ate before you learn the basics of calling XML Web services in your programs.

What Is XML?
XML stands for eXtensible Markup Language, which is a text-based markup language. XML is similar to
HTML in many ways, such as how it describes data by using tags. A very simple example of an XML
document is shown here.

<?xml version=”1.0” encoding=”UTF-8”?>
<contact>
<name ContactType=”Business”>

<first>John</first>
<last>Doe</last>

</name>
<name ContactType=”Personal”>
<first>Jane</first>
<last>Doe</last>

</name>
</contact>

2

Chapter 1

04_584456 ch01.qxd 3/8/05 10:37 AM Page 2

As you can see from the previous code example, this is a contact record with two contacts, John Doe and
Jane Doe. For each contact, a contact type and a first and last name are specified. This XML document
can be sent to a mainframe, a Windows computer, a UNIX computer, and a Linux computer. All these
computers can read it because it is a text file.

Invoking an XML Web Service
A very important aspect of communicating with a Web service is how you can physically execute a spec-
ified function. XML Web services are based on standard Internet protocols and allow you to invoke Web
services through communication mechanisms such as HTTP-GET, HTTP-POST, or SOAP over HTTP, as I
describe in more detail in the following sections. Some Web APIs covered in this book, such as Amazon’s
Web API, support both the HTTP-GET and SOAP options, although others support only one method.
Web service providers can enable all three methods, but they typically disable one or more that they
decide are not appropriate or desirable for various reasons. The fact that vendors support different
methods is the subject of much debate. You should, however, understand how to use each method so
you can work with the various Web APIs that are available. The methods are introduced here, but I will
cover them in greater detail in the chapters that follow.

Invoking a Web Service Using REST (HTTP-GET)
REST stands for Representational State Transfer. It refers to invoking a Web service using parameters
included in a URL. REST uses HTTP-GET to retrieve data and is not typically used for data updates.
After a request is processed, REST returns an XML document.

Let’s look at an example of calling an Amazon Web service using REST. Suppose you have the
following URL:

http://aws-
beta.amazon.com/onca/xml?Service=AWSProductData&SubscriptionId=YOUR_ID_GOES_HERE&Op
eration=ItemSearch&SearchIndex=Books&Keywords=Denise%20Gosnell

Notice how the first part of the URL contains the traditional domain information. Next, you see the vari-
ous parameters being passed. These parameters are being passed to an Amazon API (currently version
4.0 beta). The URL includes a parameter for the service being called (AWSProductData), the subscription
ID (your developer token), the operation to perform (a search), the search index to use (books), and the
keywords to search on (Denise Gosnell). Parameters are separated by ampersands (&), and spaces are
indicated by %20.

As you can see, it is really quite easy to call a Web service using REST, if the Web service supports REST.
You can then use your programming language of choice to execute the HTTP-GET command containing
the URL and process the XML file that is returned. You will see examples of this in action throughout
the book.

It is very easy to test a REST Web service from your Web browser. Pasting the URL listed previously into
a Web browser returns results similar to those shown in Figure 1-1.

3

Anatomy of a Web API

04_584456 ch01.qxd 3/8/05 10:37 AM Page 3

Figure 1-1

The steps for calling a Web service using REST are summarized as follows:

1. Identify the Web service you would like to call and the parameters it accepts.

2. Formulate the URL containing the parameters.

3. Test the URL from a Web browser to ensure it works correctly.

4. Use your programming language of choice to call the HTTP-GET command with the URL.

5. Receive the results in an XML document and parse the document using an XML parsing method
of choice.

Despite the advantages of REST, it also has limitations. For example, you do not want to use REST when
you need to transmit sensitive data because you do not want to include sensitive data in a text URL.
Also, the URL has a size limit, so REST does not work for all Web APIs. Because REST is performing a
HTTP-GET (data retrieval only) operation, it cannot be used to post data. It can still be used to update
data as long as the values in the URL do not exceed the maximum allowed length. Let’s now look at
another way of invoking a Web service — using HTTP-POST.

4

Chapter 1

04_584456 ch01.qxd 3/8/05 10:37 AM Page 4

Invoking a Web Service Using HTTP-POST
HTTP-POST is very similar to HTTP-GET, but also introduces additional complexities and advantages.
When you call a Web service using HTTP-POST, you actually post an XML document that contains
the required information for calling the Web service. HTTP-POST then returns an XML document in
response. HTTP-POST can be used for data retrieval as well as updates, and it is better for transmitting
sensitive information than REST, which sends the information in clear text in a URL.

The steps for calling a Web service using HTTP-POST are summarized as follows:

1. Identify the Web service you would like to call and the parameters it accepts.

2. Formulate an XML document containing the parameters.

3. Use your programming language of choice to call the HTTP-POST command to POST the XML
document to the desired Web service.

4. Receive the results in an XML document and parse the document using an XML parsing method
of choice.

The following code segment illustrates an example of using HTTP-POST to interact with a Web API.

Dim web As New System.Net.WebClient

Dim strXML As String

strXML = “Your XML Document Here”

‘add the xml string to the byte array
Dim d As Byte() = System.Text.Encoding.ASCII.GetBytes(strXML)

‘call the api and pass the byte array containing the XML string
Dim res As Byte() = web.UploadData(“URLForAPI”, “POST”, d)

‘display the results in a message box
MsgBox(System.Text.Encoding.ASCII.GetString(res))

As you will see later in this book, eBay supports the HTTP-POST method as well as SOAP, which is
described next.

Invoking a Web Service Using SOAP
Another way to call an XML Web service is using SOAP. SOAP stands for Simple Object Access Protocol
and is an XML-based protocol for exchanging structured and type information over the Internet. SOAP,
unlike HTTP-GET and HTTP-POST, supports both simple and complex types. Thus, complex types such
as datasets, structs, and classes can be used in SOAP communications. SOAP is the primary message for-
mat used by the .NET Framework for communicating with XML Web services.

The following is an example of a SOAP document that calls a function named getUserInfo on a Web
service located on arcweb.esri.com to retrieve user info for the specified token.

5

Anatomy of a Web API

04_584456 ch01.qxd 3/8/05 10:37 AM Page 5

<SOAP-ENV:Envelope xmlns:SOAP-ENV=”http://schemas.xmlsoap.org/soap/envelope/”
xmlns:SOAP-ENC=”http://schemas.xmlsoap.org/soap/encoding/”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema” SOAP-
ENV:encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”>

<SOAP-ENV:Body>
<m:getUserInfo xmlns:m=”http://arcweb.esri.com/v2”>

<token xsi:type=”xsd:string”>MyToken</token>
</m:getUserInfo>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

As you can see, SOAP documents are a little more difficult to understand than XML documents. But
there is good news. Visual Studio .NET and the .NET Framework can handle the SOAP creation for you
simply by adding a reference to your project in Visual Studio .NET or by using a compiler tool if you are
using just the .NET Framework. Then, all you have to do is declare and call the Web service from your
code just as you call other objects. We’ll walk through an example later in this chapter so you can see
how this works.

Another important concept to understand when working with Web services using SOAP is Web Services
Description Language (WSDL). WSDL is an XML-based language that was started as a joint effort by
Microsoft and IBM as a way to document what messages the Web service accepts and generates in order
to document what procedures you can call and what type of values they will return.

Following are excerpts of a WSDL file that describes the Amazon Web API (version 4.0 beta), which can
currently be found at http://aws-
beta.amazon.com/AWSSchemas/AWSProductData/beta/US.wsdl.

<definitions xmlns=”http://schemas.xmlsoap.org/wsdl/”
xmlns:soap=”http://schemas.xmlsoap.org/wsdl/soap/”
xmlns:xs=”http://www.w3.org/2001/XMLSchema”
xmlns:tns=”http://xml.amazon.com/AWSProductData/2004-08-01”
targetNamespace=”http://xml.amazon.com/AWSProductData/2004-08-01”>
<types>
<xs:schema targetNamespace=”http://xml.amazon.com/AWSProductData/2004-08-01”
elementFormDefault=”qualified”>

...[portions omitted]...

<xs:element name=”ItemSearch”>
<xs:complexType>
<xs:sequence>

<xs:element name=”SubscriptionId” type=”xs:string” minOccurs=”0” />
<xs:element name=”AssociateTag” type=”xs:string” minOccurs=”0” />
<xs:element name=”Validate” type=”xs:string” minOccurs=”0” />
<xs:element name=”XMLEscaping” type=”xs:string” minOccurs=”0” />
<xs:element name=”Shared” type=”tns:ItemSearchRequest” minOccurs=”0” />
<xs:element name=”Request” type=”tns:ItemSearchRequest” minOccurs=”0”

maxOccurs=”unbounded” />
</xs:sequence>
</xs:complexType>
</xs:element>

6

Chapter 1

04_584456 ch01.qxd 3/8/05 10:37 AM Page 6

<xs:complexType name=”ItemSearchRequest”>
<xs:sequence>

<xs:element name=”Actor” type=”xs:string” minOccurs=”0” />
<xs:element name=”Artist” type=”xs:string” minOccurs=”0” />
<xs:element ref=”tns:AudienceRating” minOccurs=”0” maxOccurs=”unbounded” />
<xs:element name=”Author” type=”xs:string” minOccurs=”0” />
<xs:element name=”Brand” type=”xs:string” minOccurs=”0” />
<xs:element name=”BrowseNode” type=”xs:string” minOccurs=”0” />
<xs:element name=”City” type=”xs:string” minOccurs=”0” />
<xs:element name=”Composer” type=”xs:string” minOccurs=”0” />
<xs:element ref=”tns:Condition” minOccurs=”0” />
<xs:element name=”Conductor” type=”xs:string” minOccurs=”0” />
<xs:element name=”Cuisine” type=”xs:string” minOccurs=”0” />
<xs:element ref=”tns:DeliveryMethod” minOccurs=”0” />
<xs:element name=”Director” type=”xs:string” minOccurs=”0” />
<xs:element name=”ISPUPostalCode” type=”xs:string” minOccurs=”0” />
<xs:element name=”ItemPage” type=”xs:positiveInteger” minOccurs=”0” />
<xs:element name=”Keywords” type=”xs:string” minOccurs=”0” />
<xs:element name=”Manufacturer” type=”xs:string” minOccurs=”0” />
<xs:element name=”MaximumPrice” type=”xs:nonNegativeInteger” minOccurs=”0” />
<xs:element name=”MerchantId” type=”xs:string” minOccurs=”0” />
<xs:element name=”MinimumPrice” type=”xs:nonNegativeInteger” minOccurs=”0” />
<xs:element name=”MusicLabel” type=”xs:string” minOccurs=”0” />
<xs:element name=”Neighborhood” type=”xs:string” minOccurs=”0” />
<xs:element name=”Orchestra” type=”xs:string” minOccurs=”0” />
<xs:element name=”PostalCode” type=”xs:string” minOccurs=”0” />
<xs:element name=”Power” type=”xs:string” minOccurs=”0” />
<xs:element name=”Publisher” type=”xs:string” minOccurs=”0” />
<xs:element name=”ResponseGroup” type=”xs:string” minOccurs=”0”

maxOccurs=”unbounded” />
<xs:element name=”SearchIndex” type=”xs:string” minOccurs=”0” />
<xs:element name=”Sort” type=”xs:string” minOccurs=”0” />
<xs:element name=”State” type=”xs:string” minOccurs=”0” />
<xs:element name=”TextStream” type=”xs:string” minOccurs=”0” />
<xs:element name=”Title” type=”xs:string” minOccurs=”0” />
</xs:sequence>
</xs:complexType>

...[portions omitted]...

<service name=”AWSProductData”>
<port name=”AWSProductDataPort” binding=”tns:AWSProductDataBinding”>

<soap:address location=”http://aws-
beta.amazon.com/onca/soap?Service=AWSProductData” />

</port>
</service>
</definitions>

Notice that details about the ItemSearch and ItemSearchRequest elements are described. These are
functions that can be called in the AWSProductData Web service of the Amazon API. The elements that
you see for these functions are the parameters that the functions can accept.

7

Anatomy of a Web API

04_584456 ch01.qxd 3/8/05 10:37 AM Page 7

The general steps for calling a Web service using SOAP from the .NET Framework (without using Visual
Studio .NET) include the following:

1. Using a text editor (such as Notepad), create all or part of the .NET program where you want to
use the Web service.

2. Create a Web Service Proxy Class DLL manually using the WSDL.EXE command line tool.

3. Revise the .NET program to import the namespace of the Web Service Proxy Class DLL created
in Step 2.

4. Revise the .NET program to include the lines of code that call one or more functions of the Web
service.

The general steps for calling a Web service using SOAP from Visual Studio .NET include the following:

1. Create a new project in Visual Studio .NET.

2. Add a Web Reference to point to the Web service you wish to call.

3. Add code in your program to create an instance of the class representing the Web service, and
then call the appropriate methods in the Web service.

Walkthrough Example — Calling a Web Service Using SOAP from Visual Studio .NET
Now that you have been introduced to some basic concepts, let’s walk through a step-by-step example
of using SOAP and WSDL to call a Web service from Visual Studio .NET. In this example, you call the
same Amazon Web service with the same search criteria that you saw in the REST examples earlier in
this chapter. Because this example uses SOAP and Visual Studio.Net, the steps are quite different to call
that same Web service.

Note that you need to obtain your own Amazon Web API Associate ID/Developer ID if you want to
run the following example yourself. You can find more details about how to obtain an Amazon
Associate ID in Chapter 4.

1. Open Visual Studio .NET.

2. Select File ➪ New ➪ Project, and select Windows Application as the type of project.

3. Specify TestAmazonWebService or another suitable name for the Name and change the project
location if desired. Then click OK.

4. Select Project ➪ Add Web Reference, as shown in Figure 1-2.

5. A screen like the one shown in Figure 1-3 is then displayed to allow you to specify the Web
service to which you want to add a reference.

8

Chapter 1

04_584456 ch01.qxd 3/8/05 10:37 AM Page 8

Figure 1-2

6. In the URL field, type or paste the URL where the WSDL file of the API you want to work with
is located. Alternatively, you can search for Web services using the links indicated. In this exam-
ple, specify the location of the Amazon API (version 4.0 or higher), which is currently located at:
http://webservices.amazon.com/AWSECommerceService/AWSECommerceService.wsdl

7. After specifying the URL for the location of the WSDL file, click Go. A list of the methods avail-
able for that Web service is then displayed, as shown in Figure 1-4.

8. Change the Web reference name to Amazon and click the Add Reference button indicated on
Figure 1-4.

9. You will notice that multiple references are added to the project, as shown in Figure 1-5, along
with a Web reference called Amazon. This name is the Web reference name that was specified on
the Add Reference dialog box.

9

Anatomy of a Web API

04_584456 ch01.qxd 3/8/05 10:37 AM Page 9

Figure 1-3

Figure 1-4

10

Chapter 1

04_584456 ch01.qxd 3/8/05 10:37 AM Page 10

Figure 1-5

10. Add the following code to the Form1_Load event of Form1.

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As _
System.EventArgs) Handles MyBase.Load

Dim AmazonProductData As New _
TestAmazonWebService.Amazon.AWSECommerceService

Dim AmazonSearch As New TestAmazonWebService.Amazon.ItemSearch
Dim AmazonResponse As New _

TestAmazonWebService.Amazon.ItemSearchResponse
Dim AmazonRequest(1) As _

TestAmazonWebService.Amazon.ItemSearchRequest

‘Developer/Subscription Code
AmazonSearch.SubscriptionId = “YOUR ID GOES HERE”

‘We are only making one request, not batching multiple requests
‘Thus element 0 of the array is all we need to assign and work with
AmazonRequest(0) = New _

TestAmazonWebService.Amazon.ItemSearchRequest
AmazonRequest(0).SearchIndex = “Books”
AmazonRequest(0).Keywords = “Denise Gosnell”

‘assign the search object to request object with the assigned parameters
AmazonSearch.Request = AmazonRequest

‘run the search and populate the response
AmazonResponse = AmazonProductData.ItemSearch(AmazonSearch)

Dim item As New TestAmazonWebService.Amazon.Item
Dim strOutput As String

strOutput = “Search results for keyword(s): “ & AmazonRequest(0).Keywords &
“ in “ & AmazonRequest(0).SearchIndex & “:” & vbCrLf & vbCrLf

11

Anatomy of a Web API

04_584456 ch01.qxd 3/8/05 10:37 AM Page 11

‘loop through the results
For Each item In AmazonResponse.Items(0).Item

strOutput = strOutput & item.ItemAttributes.Title & vbCrLf & vbCrLf
Next

‘display the results in a message box
MsgBox(strOutput)

End Sub

Note that you must specify your own Associate ID for the Associate ID value in the previous code or
the example will not run for you.

11. Run the program by pressing F5 or by selecting Debug ➪ Start. You should see results similar to
those shown in Figure 1-6.

Figure 1-6

Also note that if you receive an error message when running the program stating that CustomerReviews1
cannot be reflected, please consult Chapter 4 for specific instructions on how to resolve the error.

Let’s briefly review what just happened. You added a Web reference to the Amazon Web service (you
pointed to the Amazon WSDL file). Visual Studio .NET used the WSDL file to create the objects that
enable you to use the IntelliSense feature as you type and to refer to the Web services in your code just
as you do other objects.

You then added code to the Form_Load event of Form1 to call one of the available Amazon Web services
and to display a message box illustrating part of the search results. Review the VB code in more detail to
see exactly how that works.

12

Chapter 1

04_584456 ch01.qxd 3/8/05 10:37 AM Page 12

First, you declared various Amazon Web service objects that are required in order to execute an item
search.

Dim AmazonProductData As New TestAmazonWebService.Amazon.
AWSECommerceService

Dim AmazonSearch As New TestAmazonWebService.Amazon.ItemSearch
Dim AmazonResponse As New TestAmazonWebService.Amazon.ItemSearchResponse
Dim AmazonRequest(1) As TestAmazonWebService.Amazon.ItemSearchRequest

You then supplied an Amazon Subscription ID.

‘Developer/Subscription Code
AmazonSearch.SubscriptionId = “YOUR ID GOES HERE”

Because only one request is being made to the Web service, as opposed to a batch with multiple requests,
element 0 of the array is used and assigned the search parameter values.

‘We are only making one request, not batching multiple requests
‘Thus element 0 of the array is all we need to assign and work with
AmazonRequest(0) = New TestAmazonWebService.Amazon.ItemSearchRequest
AmazonRequest(0).SearchIndex = “Books”
AmazonRequest(0).Keywords = “Denise Gosnell”

You then assign the search object to the request object so that the search object will have the required
parameters.

‘assign the search object to the request object with the assigned
parameters

AmazonSearch.Request = AmazonRequest

Next, you called the ItemSearch method and assigned the results to the AmazonResponse variable.

‘run the search and populate the response
AmazonResponse = AmazonProductData.ItemSearch(AmazonSearch)

Finally, you looped through the items in the response to build an output string for display to the user.

Dim item As New TestAmazonWebService.Amazon.Item
Dim strOutput As String

strOutput = “Search results for keyword(s): “ & AmazonRequest(0).Keywords &
“ in “ & AmazonRequest(0).SearchIndex & “:” & vbCrLf & vbCrLf

‘loop through the results
For Each item In AmazonResponse.Items(0).Item

strOutput = strOutput & item.ItemAttributes.Title & vbCrLf & vbCrLf
Next

‘display the results in a message box
MsgBox(strOutput)

End Sub

13

Anatomy of a Web API

04_584456 ch01.qxd 3/8/05 10:37 AM Page 13

This is just one example of the many ways you can use the Amazon Web service. For more information
on the Amazon Web API, consult Chapter 4, which is dedicated exclusively to the Amazon Web API.

Summary
In this chapter, you explored the world of Web APIs and Web services. You learned about the various
ways to call a Web service, such as using HTTP-GET, HTTP-POST, and SOAP.

Web services are growing in popularity every day. Now that major players such as Google, Amazon,
eBay, and others have released Web APIs, Web services will pick up even more steam. By using the
Web service APIs of these leading vendors, you can enhance your own applications tremendously. The
remaining chapters are dedicated to illustrating several different Web service APIs in detail and to pro-
viding you with some real-world examples of using those APIs alone and in combination from mobile
devices, Microsoft Office, and in various other ways.

Let’s turn to the next chapter, which focuses on the Google API.

14

Chapter 1

04_584456 ch01.qxd 3/8/05 10:37 AM Page 14

