Chapter 1
Getting to Know XML

In This Chapter
Introducing XML
Examining the many uses of XML
Deciphering what XML is and what XML isn’t
Building an XML document

Have you ever needed a document format that you could use to exchange
data — either across the Internet or across an intranet? Well, eXtensible
Markup Language (XML) may be just the solution. In fact, many different indus-
tries have discovered the wonders of XML — and use it extensively to help
organize and classify their data.

XML is a markup language — it uses tags to label, categorize, and organize
information in a specific way. Markup describes document or data structure
and organization. Content, such as text, images, and data, is that part of the
code that the markup tags contain; it’s also what’s of greatest interest to
most everyday humans who read or interact with data or documents. XML
isn’t limited to a particular set of markup — you create your own markup to
suit your data and document needs. The flexibility of XML has led to its wide-
spread use for exchanging data in a multitude of forms.

And that’s not all! With XML, you can send the same information to various
locations — say, to a person using a mobile phone and a person using a Web
browser — at the same time. In addition, you can customize the information
sent out so it’s displayed appropriately on the various devices.

Getting started with XML isn’t difficult. Just check out this chapter, and you’ll
get the skinny on what markup languages are, what XML is, and what you can
use XML to do.

12

Part I: XML Basics

XML (eXtreMely cool)

If you take a close look at the use of XML in today’s business world, you soon
recognize that pinning down a single, definitive use for XML is nearly impossi-
ble. In fact, it is precisely the open-ended nature of XML that makes it so
useful for many different things — and so difficult to put into a single, small
box. Read on to see what we mean.

Mocking up your own markup

You may be familiar with Hypertext Markup Language (HTML), the markup
language used to display information on Web pages. Both XML and HTML are
derived from the “mother of all markup languages,” Standard Generalized
Markup Language (SGML) — but any similarity ends there.

HTML includes a set of predefined tags that format information for display on
the Web. XML has no predefined tags — instead, you can create your own XML
tags to structure your XML document so its content is in a form that meets
your needs. Basically, you design your own custom markup language (actually
an XML application) to do data exchange in a way that works for you.

Although XML doesn’t include predefined tags, it does include very specific
rules about the syntax of an XML document. You'll get a chance to explore
those rules (and use said rules to create your own XML document) in
Chapter 5.

XHTML is yet another markup language — designed as a transition language
between HTML and XML. In a nutshell, XHTML is a version of HTML that fol-
lows the strict syntax rules of XML. After you've used it for a while, you're well
prepared to use XML. (We uncover the mysteries of XHTML in Chapter 4 —
where you also get a chance to create an XHTML file to view on the Web.)

Separating data and context

Among the many benefits of using XML is that it automatically separates data
from context (presentation). An XML document by itself includes no instruc-
tions about how to display the content contained in the document — it only
defines the structure of the document. You can then add styles — formatting
instructions for displaying the content — in a separate document called a
stylesheet. This separation is actually pretty handy; you can change the dis-
play instructions without having to make any changes to your XML docu-
ment. If the same style sheet is used with more than one document, you can
make uniform style changes in all those documents simply by making
changes in the stylesheet. All the associated XML documents follow the
stylesheet’s orders.

Chapter 1: Getting to Know XML ’3

XML can be combined with both two different types of stylesheets — Cascad-
ing Style Sheets (CSS) and/or Extensible Stylesheet Language Transformations
(XSLT) — for extra versatility. This makes it possible to view XML documents
on the Web as more than just raw document markup — and you can change
this display easily to accommodate different output devices. For example,
you can use one stylesheet for display on a PDA and a separate one for print-
out.

We’ll have more to tell about the world of CSS formatting in Chapter 7, where
(lucky you) we even show you how to create and link a CSS stylesheet to an
XML document. XSLT gets the same treatment in Chapter 12, where you get a
chance to explore the power of XSLT stylesheets for formatting the display of
an XML document.

Making information portable

XML is all about managing your data — using the best possible format avail-
able to you. To talk about how XML can handle your data as discrete bits of
information, what better format is there to use than a bulleted list? Check out
the following items:

v XML enables you to collect information once and reuse it in a variety
of ways.

v XML data is not limited to one application format. You can design an
XML document that allows you to collect data online for use in other
documents, databases, and spreadsheets.

For example, suppose your business collects sales information on a
group of products by using an XML document to contain the data. The
same XML data could be used to create customer purchase records,
commission reports, and product-sales graphs.

v Making information portable does require planning and design before
the information is collected. (You get a chance to explore the art of
developing strategies for data collection in Chapter 3.)

XML means business

XML provides an easy way for businesses to manage and share information.
Although XML was originally created by the World Wide Web Consortium
(W3C) as a way to disseminate complex, structured data and documents over
the Web, its use has expanded. Now no longer a Web-only format, XML is
right at home on the business desktop.

14

Part I: XML Basics

Microsoft Office 2003 is one notable application package that includes XML
tools for office applications. Using Office 2003, office documents can be cre-
ated in XML format and information tagged and collected for re-use in other
office applications as well as on the Web. We highlight some uses of XML in
Office 2003 throughout this book.

Figuring Out What XML Is Good For

Case studies of XML never fail to mention new and exciting possibilities
where XML adds value to existing environments — or solves previously
intractable problems. That’s probably why XML applications are widely used
for everything from displaying chemical formulas to setting up a family tree.
So how can you use the power of XML?

Classifying information

One of the most useful functions of XML involves classifying information. To
see how this would work, imagine yourself in the business of selling books.

Books can be classified in many ways, but we kind of like the following classi-
fication scheme:

v Title

v Author

v+ Publisher

v Price

v Content Type (Fiction, Nonfiction)
v Format (Paperback, Hardback)

v~ ISBN

Using XML, you can create tags to classify this information. The following
code shows a possible XML format for one book:

<book>
<title>Night Fall</title>
<author>Demille, Nelson</author>
<publisher>Warner</publisher>
<price>$26.95</price>
<contentType>Fiction</contentType>
<format>Hardback</format>
<isbn>0446576638</isbn>

</book>

Chapter 1: Getting to Know XML 15

3

SMBER
&

Giving your tags meaningful names that actually reflect the content makes it
easier to work with the information.

Classifying the information as shown here makes it possible for you to search
for — and retrieve — any item with ease. For example, after the information
on all the books for your imaginary book business is collected and tucked
away in XML format, you can create a list of all the authors — or authors and
titles, or titles and ISBNs, whatever information you want to access. (Talk
about power at your fingertips!)

We go over all the gory details of classifying information in Chapter 3, but do
keep this imaginary book business in mind as you make your way through the
other chapters of this book: For the sake of illustration, you get to become the
next giant (imaginary) bookstore chain. We expand the book-business exam-
ple in later chapters to demonstrate how you can use XML to collect and use
information about inventory, customers, stores, and sales, however massive a
success you become.

Enforcing rules on your data

XML excels at allowing you to create rules for the format of your data. Using
either Document Type Definitions (DTDs) or XML Schemas to validate your
data gives you two immediate advantages:
v It helps ensure the accuracy of the information you collect.
v It helps ensure that the information gathered is in the most usable
format for your business needs.

Not sure what a DTD is? Check out the “Getting to know markup-language
lingo” sidebar, later in this chapter.

Taking another look at the XML we came up with in the previous section for
your imaginary book business, you can see several items for which you might
want to include rules to govern how the data is formatted, such as

v A currency format for the price

v A number format for the ISBN

v A restricted selection for content type (Fiction or Nonfiction)

1 A restricted selection for format (Paperback or Hardback)

You get a detailed look at creating and using DTDs and XML Schemas in Part
III of this book.

16 Parti: xmLBasics

Getting to know markup-language lingo

You don't have to be a markup pro to read this 1~ Metalanguage: A language used to com-
book or to use XML. If you're new to the markup municate information about a language
world (or if you need to brush up on your vocab- itself, many experts consider both SGML
ulary), the following list should help you out. and XML to be metalanguages because
they can be used to define other markup

These terms are the most common ones you run
languages.

into in the XML world. As you get to know them,
you also get a handle on markup languages in »* Nesting: An ordering of elements that
general (including XML): opens and closes a child element before its
parent element is closed. (Child elements

v~ Attribute: In XML, a property associated nestwithin parent elements)

with an XML element that's also a named
characteristic of the element. An attribute
also provides additional data about an ele-
ment, independent of element content. For
example:

<book Tocation="GatewayMall">Whiteout
</book>

In this case, the element (book) content is
Whiteout, but the attribute (Tocation)
provides additional data (GatewayMal1).

Document Type Definition (DTD): This is a
statement of rules for an XML document —
based on SGML (the ancestor of XML) —
that specifies which elements (markup
tags) and attributes (names and values
associated with specific elements) are
allowed in your documents. A DTD also
governs the order in which the elements
and attributes may appear — or (if you want
to get strict) must appear.

Element: A section of a document defined
by start and end tags (or an empty tag),
including any associated content.

Schema: An XML-based statement of rules
that represents how an XML document
models its data and defines its elements (or
objects), their attributes (or properties), and
relationships between elements.

Syntax: The rules that govern the correct
construction of intelligible statements in a
markup language.

Tag; empty tag: The markup used to enclose
an element’s content. An empty element
employs a single tag; a regular element
(which isn't empty) has an opening and a
closing tag.

Valid: Said of a document if it adheres to the
rules outlined in an associated DTD or
schema document.

Well formed: Said of a markup-language
document that adheres to the syntax rules
for XML — which are explicitly designed to
make documents easy for a computer to
interpret.

Outputting information

in a variety of ways

Outputting your data means releasing it from its storage locker — presumably
somewhere inside the guts of your computer — and getting it to some other
place where it can be a bit more useful. The great thing about XML documents

Chapter 1: Getting to Know XML

is that they’re not limited to any particular form of output; they can end up in
a variety of different places, in whatever form is appropriate — for example, in
a database, a computer monitor, a printer, or a PDA.

XML documents are at home in a wide range of processes. The phrase post-
processing was practically tailor-made for XML; it means taking information
from a document and using it in some other process or program. For exam-
ple, suppose you receive a purchase order in the form of an XML document.
An application that understands XML purchase orders can use that data to
determine which items (and in what quantities) have been ordered — and
can even send instructions to another piece of software to generate a pick list
so the order can be picked, packed, and shipped from the warehouse. (Now,
that’s our kind of post-processing!)

In many cases, XML documents are used with stylesheets to provide high-
quality output on-screen. You can use the same data, however, to send infor-
mation to a speech-synthesis program that reads the text to a person who is
vision impaired. Alternatively, that same data might also create output on a
Braille reader. The same document with a layout program and a stylesheet
also might be used for high-quality printouts. (Figure 1-1 gives you an idea of
the infinite variety of output choices that XML makes available to you.)

The beauty of this concept is that you never need to fuss and fidget with the
XML data to create output for different devices. You need only use different
pieces of software that can read XML and can provide the output for a partic-
ular format or output device.

Using the same data across platforms

The good news looks, at first, like no news: XML documents are not specific
to any particular platform or programming language. Okay, why is that some-
thing to e-mail home about? Think versatility. Suppose you want to exchange
database information across the Web — say, use a Web browser to send infor-
mation from a user questionnaire back to a Web server. To accomplish this
task (and many others), you need a document format that is

1 Extensible: An extensible format is one that can be tailored or customized
for specific applications.

v Open: It’s well documented and widely available.

+* Nonproprietary: It’s expressed in an accepted or standard form of nota-
tion that isn’t the exclusive property of some individual, company, or
organization.

These characteristics enable the document to adapt to changing conditions,
to take best advantage of the work of others, and to avoid incurring extra
expense or legal liability.

17

18

Part I: XML Basics

Sound document

HOA]

Database document

XML

XML processor
document
|
U:;g)l(ll:/‘lesf-:; — ..A-E[Display document
different —
outputs. Printed document
|

Guess what? XML meets all three requirements for a document format for
exchanging data — it’s open, extensible, and nonproprietary. No surprise,
then, that XML is the best choice for data exchange; those three magic char-
acteristics make it a handy, consistent way to hand data around among multi-
ple applications and multiple platforms with the most efficiency and least
hassle.

Check out Chapter 2 for additional information and examples of the many
uses of XML, as well as an introduction to the world of XML technologies.

Beyond the Hype: What XML Isn’t

The previous section spells out what XML is — an extensible markup lan-
guage that allows you to create your own tags to develop XML applications.
Now it’s time to clarify what XML is not.

|
Figure 1-2:
An XML file
as it looks

in Internet
Explorer.

|
|
Figure 1-3:
An XML file
asitlooksin
Netscape

Navigator.
|

Chapter 1: Getting to Know XML

It’s not just for Web pages anymore

Although the World Wide Web Consortium (W3C) developed XML, it’s not
specifically designed only for Web pages. In fact, if you display an XML docu-
ment on the Web in its raw form (without adding styles to format the dis-
play), all you'll see is the XML markup itself. Figure 1-2 shows an XML file in
Internet Explorer — not much to look at! And there’s even less to see when
this same file is displayed in Netscape Navigator, as shown in Figure 1-3.

So banish this Web-only idea from your thoughts. XML is a markup language
that allows you to organize information by creating tags to construct a spe-
cific document structure. XML documents can be viewed on the Web, but
unlike HTML documents, they’re not limited to the Web.

) C:MLFD_4'bookstore.xm| - Microsoft Internat Explorer ...

| Eile Edit View Favorites Tools Help |
|©Back - Ii_l IE_I _:‘_ p) Search ':;/_"\:"Favmilm »|
=

<?uml version="1.0" encoding="UTF-8" 7=
- <book=

<title=Night Fall=/title>
<author=Demille, Nelson</author=
<publisher=Warner</publishers
=price=$26.95</prices
<contentTypexFiction</contentTypex
<format=Hardback</format>
<ishn>0446576638 </isbn:

</book>

|&]Done ||| |4 my Computer

£

) Netscape M=

. File Edit View Go Bookmarks Tools Window Help
./ B [Mail 48 Home J2 Radio [Metscape C, Search & Shop [EJBookmarks
Might Fall Dermille, Melson Warner $26.95 Fiction Hardback 0446576638

@ & & S0 Document: Done (1.342 secs) 3= =] |

Browser support for XML is limited and variable. Hopefully this will change in
the next generation of browsers, but for now XML works well in Web pages
only when combined with another language (CSS) or XML technology (XSLT)
to format the display of the XML information. Figure 1-4 shows our XML file
when it’s combined with simple CSS style instructions — now, that’s more
like it!

19

20

Part I: XML Basics

|
Figure 1-4:
An XML file
with an
attached
CSS
stylesheet,
shown in
Internet
Explorer.
|

|@Back >R i .EL- ; » ! Search »i
=
Hight Fall
Demille, Nelson
Warner
£26.95
Fiction
Hardback
0446576638
=
|-€£|I]u||e | | | |j|'||yCompl|1er 4

It’s not a database

Whether XML “is” a database depends on your definition of database. If
you'’re defining a database as a collection of data, then yes, XML qualifies as
a database. If you're defining a database as a Database Management System
(DBMS) program, such as Microsoft Access, XML has some DBMS features
(storage, queries, programming interfaces) but doesn’t have others (queries
across multiple documents, security, indexes). So, okay, you could use XML
as a database for a small amount of data — but it wouldn’t be efficient to use
XML as a database for large amounts of data. (Why would you want to, when
DBMS programs are designed to do exactly that?)

That’s not to say XML is in any way database unfriendly. XML documents work
well for both input and output, going to and from a database — and you can
also use them to display database information in print or on the Web. (You get
a closer look at how to use XML effectively with databases in Chapter 17.)

It’s not a programming language

One of the most common misconceptions about XML is that it’s a program-
ming language. Although XML can be used with programming languages for
certain types of application development, it’s a markup language, not a pro-
gramming language. A markup language is essentially descriptive; a program-
ming language is for issuing logical commands. Programming languages
include (for example) variables, datatypes, operators, loops, functions, and
conditional statements. XML doesn’t include any of these features, so it’s no
programming language.

Chapter 1: Getting to Know XML 2 ’

Part of the confusion here is that some XML document types do include some
features found in programming languages. For example, XML Schemas (which
are themselves XML documents) include several built-in datatypes and also
allow user-defined datatypes. But wait a minute: Although XML Schema docu-
ments can include datatypes — one feature of programming languages —
that doesn’t make them full-fledged programming languages with all the fea-
tures just listed here. They remain XML documents — with an XML document
structure, created with a markup language (XML). You can get XML to
describe how a document will look; you can’t get it to dim your house lights
or start your car — at least, not without some help from an actual program-
ming language.

Building XML Documents

A\

When it comes to actually getting your XML tags in a row, regular old-fashioned
text editors (such as Notepad) can do the job if you're just getting your feet
wet with XML. If you're using Windows, you can access Notepad by choosing
Start>Programsr>Accessories>Notepad. A new Notepad window opens. You
can save the files just as you would in a word processor — and do simple
functions such as copy and paste. Aside from that, though, Notepad is a
pretty bare-bones program — you must insert all the markup yourself when
you use a text editor such as Notepad.

Avoid using the WordPad text editor to create an XML document; it won'’t let
you save a file with the . xm1 extension.

If the bare-bones approach just isn’t good enough, you may want to check
out text editors that are built specifically for XML. (We think they are defi-
nitely the way to go if you plan on using XML regularly.) These editors often
look like a blend of traditional word processors and HTML editors. In fact,
most XML editors work so much like word processors that you could easily
forget you’re working with XML.

XML editors can make your job easier and help keep those creative juices
flowing! (Tracking tags and cleaning up structures can interrupt — even
completely destroy — the creative train of thought.) XML editors have two
distinct features that are essential for creating good XML documents:

v Ease of markup: XML editors, such as XMLSpy, Turbo XML, and XML
Pro, can add markup to text as simply as you can turn text bold in
today’s word processors. All XML editors provide the capability to
select text with a cursor and choose which markup you want to apply
from a menu of selections. (See Chapter 19 for more on XMLSpy, Turbo
XML, XML Pro, and other XML-authoring tools.)

22 Partl:XMLBasics

v Automatic enforcement of XML document rules: For many applications,
XML editors can determine which element types can appear in certain
contexts. In this way, the editor helps you avoid making syntax or struc-
ture mistakes. For example, if you specify that the ChapterTitle element
is valid only at the beginning of a chapter and never within an ordinary
paragraph, the editor can make sure that your rule is enforced if you acci-
dentally break it.

XML is a subset of SGML, so many authoring tools and editors previously
used for SGML have been recast and are now ready to take on XML.

