
1
An Introduction to ASP.NET

2.0 and the Wrox United
Application

At the end of the twentieth century something unprecedented happened to computers. Previously
relegated to the realm of the bedroom and dedicated hobbyists who never saw the light of day, the
explosion of the Internet lead to computers acquiring a glamour, an aura of excitement that had
never been associated with them before. Prior to the 1990s it was almost embarrassing to admit
you worked with computers, and then suddenly everyone wanted one. Every business had to be
attached to the Internet, and many families wanted their own web site. If you had to name one
piece of technology that became synonymous with the explosion, it was undoubtedly the web
browser. However, without anything to view on a web browser, it becomes virtually useless. You
need information, and like mushrooms sprouting up in a woodland, hundreds of web sites on
every imaginable subject were born.

The late ‘90s were a time of vast upheaval. Business empires were founded on the simplest
ideas — a search engine (Google) or an online store for buying books (Amazon). Everyone wanted
to know how to build a web site for themselves. HTML (HyperText Markup Language) enabled
them to do that, but it was soon obvious that it only went so far. You could display pictures and
text, but what happened if you wanted more than that? What happened if you wanted a site that
was reactive, that received information from your users and was automatically updated without
someone having to beaver away writing new web pages every time? What if you wanted to attach
a database to the Internet, or you wanted to display a stock catalogue, or you wanted to personal-
ize your site to everyone who visited it, or you just wanted it to look good for your family and
friends who visited it?

The race was on and several competing technologies were created for doing this, including
CGI, PHP, and Java. Microsoft’s own entry into the race was ASP and what made it particularly
attractive was that it was simpler to pick up and learn than most of its rivals, but it also had some
exciting features — the ability to store details of users as they moved through pages on a web site,
and controls such as calendars and ad rotators that you could just stick into your pages like HTML
tags. ASP was a huge success. Microsoft went one further; it created the .NET Framework, and

04_588508 ch01.qxd 10/10/05 6:31 PM Page 1

CO
PYRIG

HTED
 M

ATERIA
L

ASP.NET became a “grown up” version of its ASP technology, using its mature programming languages
VB.NET and C#. The leap forward in power was amazing, but Microsoft lost partial sight of one critical
aim — simplicity. Web sites suddenly became things you needed expensive consultants to build and
cutting-edge designers to visualize. It was out of the hands of those who so empowered the boom.

ASP.NET 2.0 is the big step back in this right direction. Microsoft recognized that one thing people who
build web sites don’t want to do is have to code. Code is dull; code is geeky. However, Microsoft also
recognized that some people still have to code for a living. And more than that, these coders have to
build the same things, over and over again. A login mechanism, a menu system, a shopping cart, a funky
theme for your site’s backdrop applied to every page — something every web site requires. Two guiding
principles seem to be at work here: make it easier for the novice to use and reduce the amount of repeti-
tive work the developer has to do. Claims for ASP.NET 2.0 boast “70% less code” is needed; ASP.NET 2.0
also comes with a multitude of controls to enable the developer to create login systems and menus in
minutes.

Late in 2003 we saw the previews of the new version of Active Server Pages named ASP.NET 2.0.
Everyone knew that these claims weren’t just hyperbole and that the way developers create web applica-
tions was going to change fundamentally. Microsoft expanded the powerful features of earlier ASP ver-
sions while greatly reducing the effort to implement those features. The ease of implementation meant a
reduction in the cost of developing complex sites. Or, put another way, there would now be a large
expansion of the number of people that have the capability to build a complex site.

In addition to ASP.NET 2.0 comes a new, affordable tool for creating these web sites: Visual Web
Developer Express. Microsoft’s previous attempts at tools for helping create web sites have been clunky
(Front Page) or have never really taken off (Visual Interdev), but this time they’ve got it right. Visual
Web Developer will be part of the Visual Studio.NET suite, but a limited version named Visual Web
Developer Express will be sold inexpensively (or given away). It’ll allow you to drag and drop a site
together within minutes, but it’ll also be instantly recognizable to developers, and allows easy creation
and management of your web pages.

This book leads you step-by-step through creating dynamic, data-driven, complex web sites using
ASP.NET 2.0. To those ends this chapter explains the basic ideas and examines the completed sample
site. You then spend time learning how to use Visual Web Developer Express (VWD) to build ASP.NET
2.0 sites.

Specifically, this chapter covers five topics:

❑ An introduction to ASP.NET 2.0

❑ Review of the Internet programming problems that ASP.NET 2.0 solves

❑ An explanation of how ASP.NET 2.0 fits in with other technologies

❑ A tour of the dynamic features of a site built with ASP.NET 2.0

❑ Understanding the tool you will use to build ASP.NET 2.0 (ASPX) pages — Visual Web
Developer Express (VWD)

In previous books we’ve been pleased if our readers can create a single page by the end of the chapter,
but ASP.NET 2.0 inspires much greater ambitions, and you will have the structure and outline of a work-
ing web site up by the end of the second chapter. Your Web site will be focused around a hapless soccer

2

Chapter 1

04_588508 ch01.qxd 10/10/05 6:31 PM Page 2

(football) team named Wrox United and will be able to display their news and results, sell their mer-
chandise, screen their footage, and will offer different views of the site depending on whether you are a
customer or an administrator. And, as always, a list of gotchas and some exercises are included to help
you review the concepts covered in this chapter.

The Site You Will Build
Go to www.wroxunited.net and have a good look at the site (the main page is shown in Figure 1-1).
This site is built entirely in ASP.NET 2.0 and is the site you will build in the book. Likewise, it is the site
that you will learn how to create a working miniature of in just two chapters.

Figure 1-1

On the home page alone you can see a menu system, a login control, and some news items — these are
all things that would have taken considerable time and code to create in any previous version of ASP or
ASP.NET. If you take the example of a login mechanism, you’d have to think of accepting a user ID and
password, checking that against an existing set of users and passwords, making sure the password
wasn’t corrupted in any way, and making sure that password was transmitted securely. So just to do
something relatively trivial, you’d be talking an hour or two of your time at least and not much to show
for it. Now this could take seconds.

Click the View Page Source link — it doesn’t matter if you don’t understand what you see yet — there are
fewer than 10 lines of ASP.NET 2.0 code:

3

An Introduction to ASP.NET 2.0 and the Wrox United Application

04_588508 ch01.qxd 10/10/05 6:31 PM Page 3

<%@ Page Language=”VB” Trace=”false” MasterPageFile=”~/site.master”
AutoEventWireup=”false” codefile=”Default.aspx.vb” Inherits=”_Default” %>
<%@ Register TagPrefix=”wu” TagName=”News” Src=”News.ascx” %>

<asp:Content ID=”Content1” ContentPlaceHolderID=”mainContent” Runat=”server”>

<h2>Welcome to the Wrox United Web site.</h2>
<p>We’re a great football team. No really, we are. Don’t take any notice
of our past performance. We’re just unlucky.</p>

<wu:news id=”News1” runat=”server” ItemsToShow=”5”></wu:news>

</asp:Content>

Step through the different links in the menu and see how league tables and fixture lists work, and see
how few lines of code there are. Notice how the theme and style of the site remains consistent through-
out, yet there is no evidence of how this is done. Welcome to ASP.NET 2.0. This is about to revolutionize
how you build web sites from now on. You’re going to look at some of the features behind the Wrox
United site in more detail shortly, but first let’s talk about what ASP.NET 2.0 offers.

ASP.NET 2.0 — A Powerful Tool to Build
Dynamic Web Sites

The World Wide Web (WWW) on the Internet provides a wide expanse of connectivity. Virtually every-
one that uses computers has access to the Net. But this pervasive reach was achieved by establishing
very minimal standards. Information is transmitted in ASCII characters, without a built-in capability for
machine-level code. The client requirements are very minimal — in fact the Internet itself does not have
any standards for how a browser works, and thus multiple browsers for multiple operating systems
(OS) and platforms exist. It is easy for us, in 2005, to forget that the Internet was designed to send simple
static pages of text with images and links.

The story of the past fifteen years of Internet programming is an effort to provide sophistication and
complexity to the user experience while not violating the WWW rules that demand extreme simplicity in
page design. Users expect an experience that comes close to desktop applications such as word process-
ing and database access. But such a level of complexity has not been easy to implement in the Web given
its minimal configuration.

ASP.NET 2.0 fundamentally reduces the barriers for development of complex web sites. The ASP.NET
development team at Microsoft looked at thousands of pages, sites, and scenarios to create a list of com-
mon objectives of site owners. The list included about twenty goals, including reading data, a unified
login and authentication procedure, consistency in site appearance, and customization of pages for dif-
ferent browser platforms. The team then set to work to create bundles of code that would achieve each
objective in the right way, with a minimum of developer effort and with Microsoft performing extensive
tests of that code. This set of capabilities is available as classes (encapsulated and ready-to-use batches of
code) in ASP.NET 2.0. The end result is simple — developers can very quickly put together (and easily
maintain) a complex site by merely assembling the building blocks Microsoft has developed in ASP.NET
2.0. Instead of writing 50 or so lines of code (as in earlier versions of ASP), the designer can now simply

4

Chapter 1

04_588508 ch01.qxd 10/10/05 6:31 PM Page 4

drag and drop a control to the page and answer some questions in a wizard. This control generates a
small amount of code for your page and the server uses that code to build pages in HTML that are then
sent to the browser. Because HTML is sent to the browser, there is no requirement for special capability
on the browser beyond display of HTML and the execution of a single simple JavaScript script. Any
browser that can display HTML can display ASP.NET 2.0 pages. This includes not only desktop
browsers, but also PDAs, cell phones, and other devices.

Because all the code for these controls is run on the server before a web browser ever gets a hold of a
page, these controls are known as server-side controls. The next section looks at what some of these server-
side controls can do.

Simple Solutions for Common
Web Site Tasks

Microsoft’s survey of sites in earlier versions of ASP created a list of common objectives that site pro-
grammers were implementing. Some objectives were easy to achieve but time-consuming, whereas oth-
ers were too complex for all but the most sophisticated developers. Overall, the programmers’ solutions
varied from brilliant to dysfunctional. Not only were the observed solutions sometimes poor, but they
also represented a tremendous waste of time, because thousands of programmers spent time planning,
writing, and testing code that had the same purpose. This section goes through eleven of the objectives
for which ASP.NET 2.0 offers built-in solutions. As you will see in Chapter 3 and beyond, these solutions
are in the form of ASP.NET 2.0 server-side controls that contain code to execute settings and behaviors.
By simply placing one of these controls on a page, the designer gets all of the behavior that would have
been hand-coded in the past.

Consistency and Personalization
Web designers tend to desire two conflicting design features. On the one hand they want a consistent
look to the entire site. But conversely, they desire the capability of users to customize the site to the
user’s taste in colors, font size, and other features. ASP.NET 2.0 offers a MasterPage control that allows
a site to be consistent in the layout of its headers, menus, and links. Within that consistent layout a
designer can add a control that allows users to pick one of several themes to apply to all pages.

Navigation
Every site requires tools for navigation, generally in three forms. Users need a menu. They also need to
be able to see where they are currently located in a site. And last, they want to be able to easily navigate
up or down a level. ASP.NET 2.0 supports an XML file called a SiteMap. ASP.NET 2.0 controls can then
render menus and other navigation aids based on the site map and the name of the current page.

Login, Security, and Roles
Many sites need a login system that can check a potential user’s ID and password against a list and then
authorize or deny entry. Although basic implementations are not difficult, only a small percentage of
programmers are successful in creating a system that conforms to best security practices. ASP.NET 2.0

5

An Introduction to ASP.NET 2.0 and the Wrox United Application

04_588508 ch01.qxd 10/10/05 6:31 PM Page 5

offers a few controls that create and implement a logon better than most of us can program by hand.
Beyond simple site entry, the system offers password reminders and a system to create new users. A user
can also be assigned a role that determines what pages and features will be available for that user to
view. For example, all users can view the employee phonebook, but only users with the role of Manager
can view pages to change information about employees.

Connection to Data
Although most dynamic web sites are connected to data, few designers are successful in implementing
the full suite of features that users desire. In sites built with older ASP versions Microsoft observed many
problems in efficiency and security. Furthermore, even modest objectives required scores of lines of code.
ASP.NET 2.0 provides a rich suite of data features through two groups of controls for working with data.
Data source controls offer the behavior of connecting to sources of data. Data-bound controls take that
information and render it into HTML. The several data source controls can connect to almost any source
of data, and the data-bound controls offer the user tables, lists, trees, and other presentations. Working
together, these controls offer the user the capability to page through data, as well as to sort and edit data.

Code
Almost every web site requires customized code because it is impossible for ASP or any other web site
technology to anticipate the needs of all businesses. ASP.NET 2.0 supports more than 20 different lan-
guages. Regardless of the language the programmer uses, the code is translated into a single intermedi-
ate language prior to execution. ASP.NET 2.0 controls are executed on the server, but the programmer
also has the option of writing code (for example Java or other client-side script) in a block to go out for
execution on the client.

Componentization
Web sites are easier to develop and maintain if various parts can be created independently of each other.
Traditional ASP relied on large pages containing content, HTML, ASP controls, and scripts of code.
ASP.NET 2.0 provides more efficient models and structures to divide the site into logical parts. For
example, code is normally kept in separate files from the presentation layer (the text and HTML tags).
Furthermore, Visual Web Developer offers wizards to easily create objects to provide data resources.

Web Services
Enterprises offer information and services on their own sites. For example, from its worldwide head-
quarters, www.Ford.com can give you a list of colors and price quotes. But in the past few years we have
seen a demand for those services to be available to other sites. For example, a local Ford dealer may
want to offer the list of colors and prices at www.YourLocalFordDealer.com. Web Services allow a
consumer site (the local dealer) to obtain information from a provider site (Ford headquarters). The local
Ford dealer can display real-time data using Web Services provided by the Ford corporate site, but keep
the user on the page of the local site. ASP.NET 2.0 offers a complete Web Services solution that conforms
to the specifications of SOAP (Simple Object Access Protocol, a way to ask for data from a Web Service)
and XML (Extensible Markup Language, a format for data).

6

Chapter 1

04_588508 ch01.qxd 10/10/05 6:31 PM Page 6

Performance and Caching
After the designer writes a page on the development machine it is compiled into the single uniform lan-
guage of .NET 2.0 called the Microsoft Intermediate Language (MSIL). Then it is copied to the deploy-
ment machine. The first time it is requested the page undergoes a further compilation into the Common
Language Runtime (CLR), which optimizes the page for the hardware that will serve it. This two-step
process achieves the dual aims of consistency for software and optimization for hardware. Both steps
have undergone intensive performance analysis from the .NET 2.0 team. The great aspect for beginners
is that all of this compilation occurs automatically.

ASP.NET 2.0 easily enables caching of pages so that subsequent requests are served faster. When cached,
the final version of a page is stored in the server’s RAM so that it can be immediately sent on the next
request rather than having the server rebuild the page. Furthermore, the designer can specify that only
parts of pages can be cached, a process known as fragment caching. Fragment caching accelerates the ser-
vice of non-changing portions of a page while still allowing the dynamic fragments to be custom gener-
ated. If you are using Microsoft SQL Server 7 or higher you also have the option of data invalidation
caching for portions of the page that are data-dependent but less variable (perhaps a list of employees or
your retail outlets). Data invalidation caching will keep a page in cache until it gets a message from SQL
Server that the underlying data has changed. You cache a set of data with a designation to receive a SQL
data changed notice. SQL Server will notify .NET when the data has changed, which triggers ASP.NET
2.0 to perform a reread.

Errors and Exception Handling
Any web site, indeed any system, needs to respond to errors. ASP.NET 2.0 provides a system to respond
to errors. The response can be in code or it can be a redirect to an error page. The error page can be
unique to the error or it can be a single error page for the entire site. The .NET 2.0 Framework also
allows multiple levels error handling. If an error occurs in a data read it can be handled at the level of
the data source. If it is not handled, the error bubbles up to the next level and can be handled there.
Unhandled errors continue to bubble up through layers with the designer having the option to resolve
the problem at the most effective level.

Deployment
In the past, sites deployed to Windows or Linux required a series of setup steps that registered and con-
figured the site on the host machine. The ASP.NET 2.0 team set a goal of XCOPY deployment, naming it
after an old DOS command that performed a simple copy of a folder and all of its subfolders. A simple
XCOPY deploys your site from the development machine to the deployment host. All registrations and
machine-level customizations occur automatically when the first request hits the site.

Development Tools
Although not part of ASP.NET 2.0, Microsoft has spent considerable effort improving tools for building
ASP pages, namely the Visual Studio, Visual Web Developer, and Visual Web Developer Express prod-
ucts. These IDEs (Integrated Development Environments) allow drag-and-drop building of pages. Most
common actions are either automatic or guided with wizards. In cases where typing is required, the IDE
provides intelligent completion of most phrases. This book uses the freely downloadable VWD Express.

7

An Introduction to ASP.NET 2.0 and the Wrox United Application

04_588508 ch01.qxd 10/10/05 6:31 PM Page 7

Where Does ASP.NET 2.0 Fit with Other
Technology?

Many people have questions about how ASP.NET 2.0 fits in with all of the other web-related terms
(most of them acronyms). We will clarify this now — where does ASP.NET 2.0 fit with other software
that is running on the server? What is its role, and what are the roles of the other pieces of technology?
ASP.NET 2.0 is part of the .NET 2.0 Framework. The .NET Framework is a brand of Microsoft that sets
software standards for Internet connectivity using Web Services and XML. Many Microsoft products
conform to the .NET standard, including various server software, data management systems, and desk-
top applications. ASP.NET 2.0 is the subset of .NET 2.0 that offers software for generating dynamic web
sites. The software is published in a set of classes holding various controls that execute their behavior on
the web server. In our day-to-day designing of pages we work with these server-side controls. Because
ASP.NET 2.0 is a subset of the .NET 2.0 Framework, in this book we sometimes uses features of ASP.NET
2.0 and sometimes uses features of the .NET 2.0 Framework. Use of these various features will be essen-
tially seamless.

As a Microsoft product, ASP.NET 2.0 runs on Windows. For development, it will work on the desktop
with Windows 2000 or later (including both XP Home and XP Pro). At deployment the normal OS is
Windows Server 2003 or another Windows OS version designed for higher loads. Within Windows,
ASP.NET 2.0 works with the Internet Information Server to read pages from disk and send them to
requestors. Alternatively, on the development desktop, ASP.NET 2.0 can be tested with a lightweight
web server named Cassini that is distributed with development tools such as VWD.

When a designer uses the ASP.NET 2.0 controls to connect with data, two more levels of interaction are
introduced. The data controls use a technology named ActiveX Data Objects (ADO.NET), but fortu-
nately the use of ADO.NET is behind the scenes for us. Those ADO.NET objects, in turn, interact with
the source of data. The source of data can be Microsoft SQL Server (as used in this book) or almost any
other source of data including relational databases such as Oracle or MySQL, and non-relational sources
such as XML or text files.

Microsoft offers tools for several levels of developers to build ASP.NET 2.0 web sites. The most compre-
hensive product is Visual Studio 2005, aimed at professional developers. A low-cost, and only slightly
less function version, is Visual Web Developer Express. Front Page can work, but it focuses more on
static HTML pages and thus lacks the set of tools that makes designing the dynamic, data-intensive
ASP.NET 2.0 pages such a pleasure. Creating pages in Notepad was long the preferred method of ASP
developers and is still theoretically possible; however, the necessary management of web sites and web
pages make this impractical, laborious, and far more prone to errors.

Enough of the theory; let’s see ASP.NET 2.0 in action. During the course of this book you will build a
complete web site for a hapless football (soccer) team named Wrox United. A completed example is
hosted at www.wroxunited.net, which you explore in the next section to observe the range of features
ASP.NET 2.0 supports. Then in the remainder of the book you will build the same site on your desktop.
For this exercise you do not have to install software on your machine. The remainder of the book, how-
ever, relies on your completion of the setup outlined in Appendix B.

8

Chapter 1

04_588508 ch01.qxd 10/10/05 6:31 PM Page 8

Exploring the Wrox United Application
This section explores the site as built by the authors and that you will build, and which is hosted at
www.wroxunited.net. Open your browser and direct it to that address.

❑ MasterPages and Site map (discussed in Chapter 2): Click through several pages to observe the
uniform layout across the top and left side of the page. This design consistency derives from an
easy-to-implement feature called MasterPages. Second, note the maroon box in the lower-right
of each page that indicates your current page and its relationship to parent pages back to the
home page. This feature was created with the ASP.NET 2.0 Site Map and Navigation controls.

❑ Server-Side controls (discussed in Chapter 3): Go to the Players page. All of the data comes
from two server-side controls — a data source control to connect to the database and a data-
bound control to display the information. Most of the behavior of ASP.NET 2.0 pages is encap-
sulated in server-side controls. These include links like the shopping cart at the bottom-left,
images such as the logo at top-left, and text boxes such as the logon section at the lower-left.

❑ Login and Security system (discussed in Chapter 4): On the home page, log in as User Name
Lou and Password lou@123. Then log out. Authentication systems can require a tremendous
amount of work to create and even then frequently contain security holes. ASP.NET 2.0 offers a
very simple system based on several server-side controls including the login and password veri-
fication schemes, and a system to e-mail a clue for forgotten passwords.

❑ Events (discussed in Chapter 6): Browse to the Shop page, click an item and add it to your cart
(of course, this is not a real shopping site, just a demo). An event occurred as you clicked the
Add to Cart button and that event was handled by custom code that created an order and
added the item to the order.

❑ Data Reads (discussed in Chapter 7): Browse to the Players page where the names and joining
dates are read from a SQL Server Express database. Many kinds of information on the site are
held in data stores that are read by ASP.NET 2.0 server-side controls on the page. Browse back to
the home page and observe the menu. Even these menu choices are read from an XML file that
holds a map of the site.

❑ Data Writes (discussed in Chapter 8): Browse to Shop, click car sticker and click Add to Cart.
You have just written a value to a database. The behavior of writing your order to the database
was implemented by two ASP.NET 2.0 server-side controls. The designer of the site did not have
to do any custom code.

❑ Code behind the controls (discussed in Chapter 9): From the home page click Shopping Cart at
the lower-left of the page. We have written custom code that executes when the page is loaded
that checks if there are currently any items in the shopping cart and renders a page appropriate
for the cart contents: either empty or a list of contents. Although the capabilities of the ASP.NET
2.0 server-side controls are impressive, they cannot cover every possible case. An ASP.NET 2.0
site offers numerous places that a designer can add custom code.

❑ Components (discussed in Chapter 10): Browse to the Fixtures page. Although the data is
stored in a SQL Server database, the ASP.NET 2.0 page does not read it directly. There is a com-
ponent that reads that data and then sends it on to the ASP.NET 2.0 page. That component can
be reused by other web sites or by Windows applications that run on a local network without
the Internet.

9

An Introduction to ASP.NET 2.0 and the Wrox United Application

04_588508 ch01.qxd 10/10/05 6:31 PM Page 9

❑ Roles (discussed in Chapter 11): If you had administrative rights you could log in and see dif-
ferent screens. Once you have installed the site on your local machine you will experiment with
this feature in Chapter 4. ASP.NET 2.0 goes beyond just logging in visitors. They can be autho-
rized to have sets of privileges called roles. The public site does not allow non-authors to log in
as administrators, so no need to take action at this point.

❑ E-Commerce (discussed in Chapter 13): From the menu go to Shop, and click a few items to
add to your cart. Now on the bottom of the menu click Shopping Cart and view its contents.
The most complex part of the site is the shopping cart. ASP.NET 2.0 does not have a pre-built e-
commerce solution, but because so much behavior is built into the ASP.NET 2.0 controls, design-
ers can develop features such as e-commerce much more quickly than in the past.

❑ Performance (discussed in Chapter 14)

❑ Errors and exception handling (discussed in Chapter 15)

❑ Deployment (discussed in Chapter 16): At this point we will not walk through a deployment.
However, keep in mind that for ASP.NET 2.0 the transfer for a site from a development machine
to a deployment machine is generally only a few steps that copy the databases to the data server
and then do a simple file copy of the site folder and its subfolders to the new server.

This walk-through gave you a taste of what you will learn to create in this book. Most of the features
explored were implemented with very little code that we wrote. The behavior was performed by code
that Microsoft baked into a set of server-side controls that are the components of ASP.NET 2.0. We
merely placed these controls on pages and set various properties.

Getting Star ted with Your Wrox United Site
Having observed the finished site as publicly hosted, now is the time to begin creating the same site on
your desktop. If you have not installed Visual Web Developer Express, SQL Express, the sample
database, and the sample site (outlined in Appendix B) then do so now. Start by reading the overview at
the beginning of the appendix and then work your way through each step. You can be sure of your
installation by performing the check at the end of each section.

This chapter and the next chapter set up the basic framework of the site as you learn how to use VWD
and establish some design parameters for the site. Because VWD offers drag-and-drop solutions to most
tasks, you will be able to create the entire site with a minimum of typing. In the cases where some typing
is necessary you can cut and paste from text files in this book’s download at www.wrox.com. All pages
are in the download in their final form, but we strongly believe that creating ASPX pages yourself is a
better way to learn ASP than merely copying completed pages from our reference set.

VWD Express — A Development Environment
A fundamental difference between most animals and humans is the ability to use tools. In the early days
of programming the tools to write programs were very primitive. Today we enjoy the benefits of very
sophisticated tools for software development. Engineers have taken almost every area of human weak-
ness (primarily related to the capacity of memory and the brain’s interface to the world) and created

10

Chapter 1

04_588508 ch01.qxd 10/10/05 6:31 PM Page 10

compensating tools. These tools are pulled together into a type of software called an Integrated
Development Environment (IDE). The IDE used in this text is Visual Web Developer Express (VWD).

VWD contains a number of development tools. First is an editor in which you can build a web page.
This editor is enhanced with IntelliSense, a tool that finishes typing commands and offers appropriate
choices for the developer. In addition, a toolbar contains icons that can be dragged to the editor and will
automatically type a block of code into the editor. Another way to automatically get code into a page is
with the many wizards that pop up when attempting a more complex task. VWD also contains a mini
File Manager to organize ASPX and associated files and folders. Similarly, there is a Data Explorer that
offers navigation through the data sources of the web site. A suite of troubleshooting tools is also
included. Finally, VWD ships from Microsoft with a web server for testing named Cassini, which is cov-
ered in the next section. If you go beyond the scope of this book you can discover tools for more complex
scenarios including the management of code versions among a team of developers.

Introducing Cassini
Earlier, Cassini was mentioned as the lightweight web server that comes with VWD. Both Cassini and
IIS (included with the .NET Framework) can serve all ASPX and associated pages, so at deployment
there is no need to make changes to your site. But a number of differences exist between the servers.

The two servers use different security models. IIS is a service and every service in Windows requires a
user. The special user for IIS is named ASPNET. Cassini runs as an application that uses the currently
logged-in Windows user. That makes Cassini easier to install because there is no need to create a specific
ASPNET account in Windows. In fact, the installation of Cassini is transparent when VWD is installed.

Cassini has three downsides. First, it is a tool for designers to test pages on their development machine
and thus it does not scale to more than one user. Second, because of the simplifications to the user
model, Cassini cannot support a robust security scheme. Cassini should only run in a closed environ-
ment or behind a robust firewall. Third, when you run a page in Cassini it locks the page back in VWD.
In order to unlock the page you must close the browser, which can be inconvenient when making and
testing many changes to a site. Therefore, many developers use IIS even on their development machines
so they do not have to close a page in the browser before working on it in VWD. The downside is that
you have to configure your development machine to provide IIS, set up the appropriate authorizations,
establish security controls, and create a virtual root. You learn how to set this up in Appendix B. If you
don’t want to go through the IIS setup you can still use Cassini and just close the browser between
modifications.

VWD’s Solution Explorer
An ASP.NET 2.0 web site is stored as a family of files. You need to be able to organize these files, includ-
ing the tasks of viewing their names and relationships, copying, creating, and deleting. They can be
viewed and manipulated in Windows Explorer. But it is inconvenient to switch between VWD and
Windows Explorer, so VWD includes an explorer-like tool called the Solution Explorer, shown in Figure
1-2. The Solution Explorer is displayed by default on the right of the screen, or you can redisplay it by
pressing Ctrl+Alt+L. Think of it as a Windows Explorer that considers your web root to be the highest
level and does not require you to switch out of VWD. Note that the Toolbox may be placed behind the
Solution Explorer, as in the case of Figure 1-2.

11

An Introduction to ASP.NET 2.0 and the Wrox United Application

04_588508 ch01.qxd 10/10/05 6:31 PM Page 11

Figure 1-2

The layout of Solution Explorer is instantly familiar to anyone who uses Windows Explorer. Click the
plus and minus icons to expand or contract folders. The icons in the toolbar start from the left with a tool
that switches from the Solution Explorer to a view of properties (more on that later in this chapter). The
double horizontal arrows perform a refresh. The double file icon automatically hides or expands nested
sub-files. The next two icons open the selected files to display either their user interface (design) or their
code. The double browser icon is used to copy the entire site to the deployment machine. The right-most
icon, with the hammer, opens a Web Administrator tool to manage features of the site.

At the bottom of the Solution Explorer may be a small task bar that shows tabs for the Solution Explorer,
Toolbox, Data Explorer, and/or Properties windows. To conserve monitor real estate these four tools are
frequently stacked and the tabs offer quick switching. For example, in Figure 1-2, the Toolbox is also
open (albeit hidden behind the Solution Explorer) and clicking the Toolbox tab would hide the Solution
Explorer behind it. They are not strictly part of the Solution Explorer, but rather the pane that holds the
four stacked tools.

In the main pane of the Solution Explorer is the list of files that make up your site. At the top is the
root, generally in C:\websites\MyWebSiteName. In the case of WroxUnited we have used C:\
BegASPNET2\WroxUnited. The files are displayed in their subfolders. Using the same techniques as
Windows Explorer, you can expand, collapse, cut, copy, and paste files among folders. Solution Explorer
recognizes the implied link between an .ASPX file and its .ASPX.VB or .ASPX.CS file (more on these in
Chapters 6 and 9). If you copy the .ASPX file the code file will move with it.

You can also right-click a folder and select Add Existing Item. The resulting dialog box allows you to
navigate anywhere on your computer and network (including FTP sites) to bring in files. For example,

12

Chapter 1

04_588508 ch01.qxd 10/10/05 6:31 PM Page 12

when you begin to build your project there are times you will be asked to use an image or text file from
this book’s download at www.wrox.com. You can use Solution Explorer to add the item to your web site
from your download folder.

ASP.NET 2.0 sites do not contain, during development, a special system of file registration. The files,
including ASPX pages, code files, data files, and images are all contained in a normal Windows folder
and subfolder structure. If you do not have VWD open, you can cut, copy, and paste your site files
directly from Windows Explorer.

The Solution Explorer, like the Toolbar, Data Explorer, and Properties window discussed in the next sec-
tion, can be placed on the page in one of two modes: floating or dockable. Floating allows the window to
be placed anywhere on the screen, similar to a normal window of a base size (not maximized). Dockable
will automatically place the window in one of five locations: top, bottom, left, right, or stacked on
another window. Change the mode by selecting one of the windows, and click through Window ➪

Floating or dockable in the menu. In dockable mode you will see, when you drag the window’s title bar,
some translucent positioners (see Figure 1-3). Drag the title bar onto one of these positioners, and the
window will automatically size and place itself in the correct dock.

Figure 1-3

13

An Introduction to ASP.NET 2.0 and the Wrox United Application

04_588508 ch01.qxd 10/10/05 6:31 PM Page 13

Having learned to modify the VWD Express IDE, you can now move on to the techniques of creating
web sites and pages within those sites.

Creating, Opening, and Using Web Sites and
Pages with VWD

To create a new site you only have to open VWD and click Menu ➪ File ➪ New Site. From the wizard,
select an ASP.NET Web Site. Assuming you will create a local copy for development, set the location to
File System and browse to the path. Normally this would be C:\Websites\MyWebsiteName (our prac-
tice site allows backward compatibility with earlier books by using C:\BegASPNET2\WroxUnited). You
can pick either Visual Basic or C# as your language. Visual Basic is the default for VWD and the samples
in the book. VWD will automatically create for you a folder, a default page, and a subfolder for data.

ASP.NET 2.0 introduces a very simple model for file organization and code registration for a web site.
All files for the site are stored in a folder and its subfolder. At the time of deployment, that entire group
is copied from the development machine to the host. Therefore, you are not required to create a virtual
root as in former versions of ASP. Deployment is further simplified by VWD: If you select Menu ➪

Website ➪ Copy Website, VWD opens an FTP screen that you can use to send new or updated files to
your host.

To edit an existing site, choose Menu ➪ File ➪ Open Web Site. If you are working locally you can browse
to the folder. On the left side of the screen, VWD presents a menu with options to work directly on pages
via FTP or through a local IIS installation.

Once the web site is created pages can be added. We usually start by adding some folders to organize
the pages. Right-click an existing folder and click the option to add a folder. Special ASP.NET folders,
such as those for Code, Themes, and Web References, have their own menu option.

To add a page, right-click a folder and click Add New Item. A wizard presents many choices. For now,
you simply need to create a Web Form, but take a look at the other options to get a feel for the capability
of VWD and ASP.NET 2.0. Give your new page a name and set its language. Later chapters discuss the
two checkboxes. Having introduced you to creating web sites and pages, the following Try It Out puts
that knowledge to use, asking you to create the Wrox United site and a couple of practice pages.

The Sample Code Directories
To make things easy, each chapter has its own code, and there are two directories for each chapter, held
under one of two higher-level directories. There is a Begin directory, which contains the samples ready
for you to work through – it’s the samples without any changes. The End directory contains the samples
with the Try It Outs completed, so you can use these as a reference as you are working through the
examples, or to cut and paste code if the example directs you to do this.

These Begin and End directories appear under a Chapters directory, with each chapter having its own
directory. So the starting set of samples for this chapter is under Chapters\Begin\Chapter01, while the
finished code for this chapter is under Chapters\End\Chapter01. Some chapters work on the main
WroxUnited application, and will therefore contain a copy of the WroxUnited directory, while others
have non-WroxUnited samples. The reasons for this is that for some techniques it is easier to see them in
smaller, easier to digest samples, than in a fully working application. All of the techniques however, are
used in the main application.

14

Chapter 1

04_588508 ch01.qxd 10/10/05 6:31 PM Page 14

Having separate directories, some with complete copies of WroxUited, does mean that the samples are
quite large, but the advantage is that each chapter is kept separate from the others, and allows you to
work through chapters without mixing up which code came from which chapter.

As well as the code for the chapters, there is a WroxUnited application that contains the final application.
This may differ slightly from the samples, but only in that the data may be more complete, and some of
the pages look a little nicer.

Try It Out Creating the Wrox United Site and Two Practice Pages
1. Open VWD. Choose Menu ➪ File ➪ New Web Site. Select ASP.NET Web Site located in the File

System at C:\BegASPNET2\Chapters\Begin\; you can use the Browse button to navigate to
this directory, and when you have, type Chapter01 on the end, so that the new Web site is
located at C:\BegASPNET2\Chapters\Begin\Chapter01. Make sure the Language list is set
to Visual Basic. Click OK. You should see your folder on the right side of the screen in the
Solution Explorer. If not, choose View ➪ Solution Explorer. Note that VWD automatically builds
three items: a folder named App_Data, a page named Default.aspx, and (if you expand
Default.aspx) a file named Default.aspx.vb, which will hold code for the default page.

2. In the center of VWD you will see a space for editing pages with the Default.aspx page
opened. Note in the bottom-left a choice of Design and Source. Click each in turn to observe the
code and the results of the code. When in Design View, click the page and type the simple text
Home Page. Press Ctrl+S to save.

3. Create a folder for images by going to your Solution Explorer and right-clicking the root of your
site (this will probably show as C:\...\Chapter01, as the Solution Explorer hides part of the
path) and then clicking Add Folder of the regular type. Name the nascent folder Images.

4. You can manipulate your site’s files and folders outside of VWD. Open Windows Explorer and
navigate to C:\BegASPNET2\Chapters\Begin\Chapter01 to see the same set of folders and
files as you see in VWD’s Solution Explorer.

5. Returning to VWD, right-click the nascent Images folder and click Add an Existing Item.
Browse to the folder where you stored the download for this book, probably named
C:\ BegASPNET2\WroxUnited. Open the Images folder and select all the images. Click
Add to actually copy those images from the download folder to your site’s image folder.

6. Staying in VWD, now create your first page, the history of Wrox United. Right-click the site’s
root (C...\Chapter01at the top of the Solution Explorer) and select Add New Item from the
menu. Select the Web Form template and give it the name History. Accept the other default set-
tings. Click Add, and switch to Design View. Rather than typing text on the page you can copy a
short history of the team from a file included in the download. Switch to Windows Explorer and
navigate to your C:\BegASPNET2\Chapters\End\Chapter01 folder. Look for the file named
History.txt, open it, and select the paragraphs. Switch back to VWD and paste the text into
the page. Click the diskette icon of the toolbar to save.

7. Repeat Step 6 for a Mishaps page, whose contents come from Mishaps.txt.

How It Works
In this exercise you created your site and the first few pages. By using the menu choices in VWD to cre-
ate a site, you automatically get some standard folders and files. You could have followed the Microsoft
recommendation of storing the site in the C:\Websites directory, but you can also put your site in an

15

An Introduction to ASP.NET 2.0 and the Wrox United Application

04_588508 ch01.qxd 10/10/05 6:31 PM Page 15

alternate folder as we have done at C:\BegASPNET2\ – we did this to keep the book samples separate
from any other Web sites you create. As you saw with the Images folder, it is easy to add subfolders to
the root to organize your files.

When you created a page in VWD you were offered a few dozen templates. You selected Web Form as
the standard plain ASP.NET 2.0 web page. By using cut and paste you have no problems bringing in text
from other files.

You also learned that there is no requirement for a special file indexing or storage mechanism in VWD.
The files sit in the folders organized by Windows on the hard drive. However, it is better to create and
add files in VWD when possible to keep the Solution Explorer view and other VWD features immedi-
ately up to date with your changes.

Running a Page
Once a page is created it can be served to a user. Because the server actually executes code in the server-
side controls to create the final HTML page, this serving of the page is also called running the page, as if
you were running a program. VWD has a green triangle tool icon to initiate a run or you can press F5 or
choose Menu ➪ Debug ➪ Run. VWD then performs several steps:

1. All pages in the site are compiled to the Microsoft Intermediate Language (MSIL) that is then
stored with supporting files in an assembly. At this point development language differences (for
example VB and C#) disappear because the result is in MSIL. However, there is no optimization
for the hardware that will serve the page.

2. The assembly is Just In Time (JIT)–compiled from MSIL to Native Code that is optimized for the
serving machine.

3. A lock is placed on the page that prevents changes in VWD Design View while the page is
opened by Cassini.

4. VWD starts Cassini and your browser is opened with a request to Cassini for the page.

As your site gets larger, you’ll find that the compilations take longer. You can press Ctrl+F5 to run a page
with a compilation of only that page. In the following Try It Out, you practice running the History and
Mishaps pages created in the previous Try It Out.

Try It Out Running a Page
1. In VWD’s Solution Explorer, double-click the History.aspx file to open it (if it is not already

open).

2. Click the Run icon (green arrow) on the toolbar. If there is a message to add a Web.config with
a Debug, accept the suggestion. Note that your Browser opens and displays the History page.

A common mistake for beginners is to attempt to change a page in VWD’s Design
View while it is still open in a browser served by Cassini.

16

Chapter 1

04_588508 ch01.qxd 10/10/05 6:31 PM Page 16

3. In the Windows tray, the icon of a yellow page with a gear indicates that Cassini is running.
Double-click it and you will see that it is pointing to your web site. Close your browser so
Cassini unlocks the page.

4. Return to VWD and open the Mishaps page. This time, watch the lower-left corner of VWD as
you start to run the page. You will see a message that the build has started and a brief display of
an error list box. After seeing the Mishaps page in your browser, switch back to VWD. Note that
the page (in Design View) is locked while it is served.

How It Works
This section focuses on running pages from VWD. You can start the run by clicking the green arrow. This
action starts Cassini. It also opens your browser and sends a request to Cassini for the page. Once run-
ning, you can see the icon for the server in the Windows system tray.

Design Surface
The center of the VWD interface is occupied by the large Design Surface. This is the area where you will
do most of your work of adding content to ASP.NET 2.0 pages. You can switch between Design View,
which displays a simile of the final page in a browser-like display, or you can switch to Source View,
which displays code in a text screen (see Figure 1-4). In general, the Design View is easier and faster for
most work because it supports more drag-and-drop features. You can switch to Source View when you
need to make those minor changes that are beyond the capability of the VWD drag-and-drop interface.

Figure 1-4

When you add a control to a page in Design View, a Common Tasks Menu may pop up. This mini menu
contains the most frequently used setup features for the control. Not all controls have smart task panels,
but if it is available it can be opened and closed using the small black triangle at the top corner (shown
in Figure 1-5) of a control that is selected.

Figure 1-5

17

An Introduction to ASP.NET 2.0 and the Wrox United Application

04_588508 ch01.qxd 10/10/05 6:31 PM Page 17

Several default settings can be changed in the Design Surface by opening the Tools menu and selecting
Options. These options change the way the pages appear to you, as the programmer, when they are
opened for editing in VWD. These are not the settings for the appearance of the page to the web site visi-
tor. You can select to start pages in Design View or Source View, as well as the automatic opening of the
smart task panel. Being able to revise the number of spaces for tabs and indents helps your projects con-
form to your company’s specifications for web page code.

At the bottom edge of the Design Surface is a navigation tool that is useful in large and complex docu-
ments. You can read the navigation tags to find out where the insertion bar (cursor) is currently placed.
The current setting will appear to be highlighted, as depicted in Figure 1-6. You can also click a tag and
the entire tag will be selected in the Design Surface.

Figure 1-6

The designer is, in many ways, like your word processor. But VWD also offers the two alternatives to
viewing a page (Design and Source) as well as enhancements for navigating through the page. The next
section discusses how VWD helps you to add features to the page.

Toolbox
VWD offers the set of ASP.NET server-side controls in a Toolbox for easy drag and drop onto the page.
Chapter 3 discusses in detail the various server-side controls and how they are used; here you will just
get a feel for how to use the Toolbox in general. The Toolbox can be displayed by choosing Menu ➪

View ➪ Toolbox or by pressing Ctrl+Alt+X. Once displayed, the Toolbox can be moved to a new location
on the screen by dragging its title bar. As you drag the Toolbox to different areas it will render a compass
icon that allows you to drop the toolbar toward the top, bottom, left, or right, as well as on top of other
windows. If you are trying to maximize the size of your design surface, you can stack your Solution
Explorer and Toolbox on top of each other at one location on the screen.

The Toolbox is organized into several panels that group similar controls. The panels can be expanded to
show their tools or collapsed to save space. There is some variation among installations, but a typical set
of panels includes the following:

❑ Standard for the majority of ASP.NET 2.0 server-side controls.

❑ Data for data source and data-bound controls.

❑ Validation for controls that reject user input that does not meet your range of acceptable values.

❑ Navigation for menus and breadcrumbs.

❑ Login for the authentication controls.

❑ WebParts for larger components in sites that the user can rearrange or hide.

❑ HTML for generic (non-ASP) tags.

❑ General can be customized.

18

Chapter 1

04_588508 ch01.qxd 10/10/05 6:31 PM Page 18

Figure 1-7 depicts the Toolbox as it will appear on your screen.

Figure 1-7

Clicking the plus icon expands a panel to show its list of available controls. Figure 1-8 shows the Login
and Standard panels expanded.

Figure 1-8

19

An Introduction to ASP.NET 2.0 and the Wrox United Application

04_588508 ch01.qxd 10/10/05 6:31 PM Page 19

The General panel starts out empty. After you have created part of a page, you can select that page and
drag it into the General panel to create your own reusable tool. This is useful if you want to duplicate a
set of a couple controls with formatting onto several pages.

On the right side of the Toolbox title bar there is a pushpin icon, shown in Figure 1-9. When clicked, the
pushpin turns horizontal, meaning that the Toolbox will automatically hide when not in use, leaving
only its title bar exposed.

Figure 1-9

When your mouse moves over the Toolbox title bar, the Toolbox will expand out for your employment,
as shown in Figure 1-10.

Figure 1-10

In this Try It Out you practice using the Design and Source Views and Toolbox features of VWD.

Try It Out Using the Views and Toolbox
1. Continue working in VWD with your Mishaps page.

2. Switch to Design View. In the Toolbox, expand the HTML panel and scroll down to the bottom
of the panel. Drag a Horizontal Rule from the Toolbox onto the page (anywhere between
paragraphs).

3. Your next objective is to add a calendar to the bottom of the History page. Open the Standard
panel of the Toolbox and find the ASP.NET calendar control. Drag it to the page. (Double-
clicking performs the same operation.) Select the calendar with a single click and notice the
small right-facing arrow in the top-right corner. Click it to expose the smart task panel. Click
Auto Format, select a format, and click Apply. Observe how easy it is to modify many rendering
criteria at once using VWD’s dialog interface.

4. Open your History page in VWD. View it in DesignView. Move your insertion bar up to the first
line to the tag that begins with <%@ Page...>. Note that the navigation guide (at the bottom of

The appearance of the Toolbox changes as it is used. For example, the titles of each
panel will change as they are selected.

20

Chapter 1

04_588508 ch01.qxd 10/10/05 6:31 PM Page 20

the design panel) shows you that you are in the <Page> tag. Click the <Page> tag. You will see
that the entire tag is selected in the design panel.

How It Works
As you saw, by adding a simple HTML Horizontal Rule, the Toolbox offers the ability to drag and drop
elements to the page rather than typing out their tags. Even complex constructs like a calendar are
added with just a drag and drop. Once on the page, you can modify an element by using the smart task
panel.

Properties Window
An object, such as a web page, a ListBox server-side control, or a connection to a data source, has prop-
erties. Properties are settings that determine how the object appears and behaves. In earlier versions of
ASP, many goals were achieved by writing lengthy and complex code. In ASP.NET 2.0, however, most of
that code has been pre-written by Microsoft and encapsulated within the server-side controls. Properties
determine how that behavior will be exercised. Properties can be very simple, such as BackColor, or very
complex, such as EnablePaging. Likewise, the values assigned to a property can be as simple as BLUE or
as complex as a multiple-line SQL statement. Properties values can be set by typing them directly into
the Code View or by using the Properties window, which is shown in Figure 1-11.

Figure 1-11

21

An Introduction to ASP.NET 2.0 and the Wrox United Application

04_588508 ch01.qxd 10/10/05 6:31 PM Page 21

Display the Properties window by pressing F4 or by choosing Menu ➪ View ➪ Properties. The properties
are organized into panels that can be collapsed or expanded (similar to the Toolbox). For example, in
Figure 1-11 the top three panels are collapsed. At the top of the Properties window is a drop-down list
containing the names of all of the controls on the page currently open. Below that are icons to arrange
the list of properties categorically or alphabetically. The lightning icon will change the Properties win-
dow so that it displays events (a topic covered in Chapter 6) rather than properties. The body of the win-
dow displays property names on the left and their current values on the right. At the bottom sits a box
that gives some help on the currently selected property.

The fundamental technique used to change properties is to select an object, usually a control, and then
find the property of interest and set it. You can select the object with a single click on the object in Design
View or by locating the insertion bar in the object in Source View. Alternatively, you can select an object
from a drop-down list at the top of the Properties window. One common mistake arises when you
attempt to change the properties but have not first actually selected the object you want to change. You
end up changing an object that was still selected from earlier work.

You have several options for setting the value of a property. If the property has a limited number of
allowed values (such as true and false), you can double-click the property name to toggle through the
values. If there are more than a few options, but still a finite amount, the values will be in a drop-down
list. Some properties have many options, and their value box offers an ellipses button that takes you to a
dialog box. Last, some properties can accept strings, so their values are set in text boxes. It is always bet-
ter to select or to toggle a value rather than type it. Once a value has been changed, you must press Enter
or Tab or click another property in order to set the value. At that time the Design View will render the
change.

You can also set property values by typing into the Source View. Locate the insertion bar within a tag
and press the space bar to display an IntelliSense list of all the properties that can be inserted at the loca-
tion of the insertion bar. Type the first letter or two then an equals sign. IntelliSense will then display all
of the legal values (if the list is finite), and again type the first letter or two of the value you desire. Finish
by typing a space. Note that there will be no value list if the range of possible property values is not
finite. For example, if the value is a SQL statement you will have to type the statement without
IntelliSense.

Error List Window
When problems arise you have two major paths for obtaining clues about the problem. First is an error
report on the page delivered to the browser, and second is the Error List window within VWD.

ASP.NET 2.0 will give an error report (shown in Figure 1-12) on the page sent to the browser if the fol-
lowing shaded line is in your Web.config file:

<system.web>
<compilation debug=”true”>
</compilation>

Note that the first time you run (F5) a page you will get a default of <compilation debug=”true”
strict=”false” explicit=”true”/>.

22

Chapter 1

04_588508 ch01.qxd 10/10/05 6:31 PM Page 22

Because the default is true, you will have debug turned on if there is no specific attribute. So debug=
true for the following case as well where there are no changes to the default. Of course, having it liter-
ally set to true helps other programmers on your team that may be looking through your settings:

<system.web>
<compilation></compilation>

Figure 1-12

A fatal error on the page produces a characteristic white and yellow page on your browser with an error
message. Just below the yellow block is the name of the offending file and the line containing the failure.
As with all errors, the error may actually be related to the line number displayed, but this should give
you a good clue. Note that when you deploy a site the debug command in Web.config should be set to
false to improve performance and to reduce information given to hackers. Error handling is covered in
greater depth in Chapter 15.

The second way to identify errors comes from within VWD itself via the Error List window, depicted in
Figure 1-13. By default, the window is hidden until you run a page. You can force it to be displayed by
choosing Menu ➪ View ➪ Error List. The window displays all of the errors encountered during the con-
version of the page into the MSIL.

23

An Introduction to ASP.NET 2.0 and the Wrox United Application

04_588508 ch01.qxd 10/10/05 6:31 PM Page 23

Figure 1-13

Note that the top of the Error List window has three clickable icons: Errors, Warnings, and Messages,
which display different lists of items created when the page was built. Hiding a type of item does not
remove it from the list; rather, doing so only hides the item so the list is shorter. The second column from
the left identifies the order in which the errors occurred.

Errors cause the page as a whole, or some portion of it, to fail. This includes, for example, references to
objects that do not exist.

Warnings are problems that could be solved by VWD while building the page (for example, the lack of a
closing tag).

Messages are sets of texts that the programmer can include in the code to appear when IIS is building
the page.

When viewing the list of items you can sort by clicking a column heading. If you hold Shift you can click
a second column for tiebreakers (to determine the order for records with the same value in the primary
column). You can also resize the columns by dragging their dividers, or re-order them by dragging the
column name left or right. Double-clicking an item allows you to open the offending file and jump the
cursor to the offending line.

In this Try It Out you practice changing properties of an image control on the History page. Then you
create some errors and observe the results.

Try It Out Using the Properties and Error Lists Windows
1. Open the History page in Design View. In the Solutions window, open the Images folder and

drag the jpeg named logo-yellow to the top of the History page. VWD will automatically create
an image with its source set to the jpeg.

2. Click the image once to select it, and then switch to the Properties window (or open it with F4).
Change the height from 447 to 100 and press Enter to set the value. As you can see, changes are
immediately visible in the design panel.

3. Now modify properties from Source View. Find the control and within it the property
(attribute) for height. Change it from 100 to 300. Click the green arrow (or press F5) to run the
page to see the result.

24

Chapter 1

04_588508 ch01.qxd 10/10/05 6:31 PM Page 24

4. Close your browser and return to Source View. Locate your insertion bar in the tag
immediately after the closing quote of height=”300” and press the space bar. This opens the
IntelliSense list with all of the properties that are suitable at this point in your page. Press the t
key and then the i key to move down the list to the Title property. Press the equal (=) key to
close the IntelliSense and type in “Wrox Logo In Yellow” including the start and end quotes.
Run the page, and in your browser note that when you mouse over the image you see the title
you created. Close the browser.

5. Next, introduce a non-fatal error. Open the History page in Source View and find the <h1> tag
near the top of the page. Change the <h1> tag to <H1xx> and run the page. The browser opens
and you can see that the text “Wrox United — a potted history” fails to render in heading-one
style. Close the browser and switch back to VWD to observe the Errors List window. If not
already visible, choose Menu ➪ View ➪ Error List to view the Errors List window. Note that two
errors were entered in the list. First was a note that “h1xx” on line 3 is not supported. Second,
the closing tag of </h1> on line 4 no longer matches an opening tag.

6. Your last experiment is to introduce a fatal error. In Source View go to the top of the page and
change the first line from Language = “VB” to Language=”Esperanto” and run the page.

7. You will deal with solving many kinds of errors in each chapter of this book. For now, return
your page to its original form by deleting the tag, restoring the goofy <h1xx> to the
proper <h1>, and changing the language back to VB.

8. Save the page.

How It Works
You experimented with three ways to change a property. First you worked in Design View and changed
a property by typing its new value into the Properties window. Next you made a change by hand-typing
a new value into the source code. Last, you used IntelliSense to guide you through adding a property to
an existing control.

You observed the results of two types of errors: fatal and non-fatal. In the first case, ASP.NET 2.0 could
still render the page even though the faulty tag of <h1xx> left your text as default, not heading one.
Although the page rendered, back in VWD an error message was logged on to the Error List window.
You introduced a more serious error when you changed the language value to a non-supported lan-
guage. ASP.NET 2.0 could not overcome this error and so you see two results: In the browser you got the
error page with troubleshooting information, and back in VWD you got entries to the error list.

VWD’s Database Explorer
When you begin to work with data (in Chapter 7 and following) you can use tools in VWD to gain
knowledge about your data sources. This information includes the exact names of tables and columns.
In fact, as you see later in this book, you can drag columns to the designer and VWD will do all the work
of setting up the proper controls to display data from those columns. For now, understand that in the
Solution Explorer you can double-click the name of an Access MDB to open that file in Access (assuming
Access is installed). For SQL Server databases (as used in this book) you can use a tool named the
Database Explorer to do even more exploration of a database and change its data and properties. These
features are discussed in detail in Appendix D.

25

An Introduction to ASP.NET 2.0 and the Wrox United Application

04_588508 ch01.qxd 10/10/05 6:31 PM Page 25

Summary
Microsoft has revised large parts of ASP.NET in version 2.0. The overall biggest benefit is that tasks,
which formerly required custom coding, can now be implemented by dragging pre-built controls to the
page. These pre-built controls include tools for logging on users, navigation, connecting to stores of data,
displaying data, creating a consistent look to the site, and offering customization options to the user. The
result is both faster and more robust development of dynamic web pages. On top of this Microsoft has
made version 2.0 easier to deploy and faster in performance. As with earlier versions of ASP, the execu-
tion of code (that is, the building of dynamic pages) occurs on the server and only standard HTML is
sent to the browser. Thus, ASP.NET 2.0 is compatible with all browsers.

Three tools are available from Microsoft for creating ASP.NET 2.0 pages. The one used in this book,
Visual Web Developer Express (VWD). VWD displays the organization of pages on your site, and helps
you to build new pages or modify existing pages. VWD also comes with a lightweight web server
named Cassini for testing your pages. After building a page you can click Run and VWD will start
Cassini, start your browser, build the page, and serve it to the browser. This chapter also covered the fol-
lowing topics:

❑ VWD offers many options for the way that you view and work with pages during their devel-
opment. Tabs allow switching between Design View (which displays a good facsimile of how
the browser will render the page) and Source View (which shows the tags and code that gener-
ate the page).

❑ When creating a new site or adding pages, VWD offers wizards and templates that walk you
through the most common setups. In this chapter you looked at how to create a new page based
on one of several dozen templates, followed by working with the Toolbox. This source of pre-
built objects is a focus of building pages in all the exercises of this book. To organize the large
Toolbox, the tools are divided into groups.

❑ Another window displays properties of whichever object is currently selected. You can, for
example, select a text box and see its size, background color, and dozens of other properties.
The remainder of this book goes into the details of many properties of objects that ASP.NET 2.0
supports on a page.

❑ When a page is built as a result of the VWD Run command, you get some feedback on how the
process fared. Fatal errors are listed, as well as warnings about potential problems with the
page. Double-clicking any of those errors will lead you to the offending line in the site.

This first chapter focused on an introduction to ASP.NET 2.0 and how to build your first pages using
VWD. Chapter 2 moves on to understanding some of the ASP.NET 2.0 features that govern the look and
feel of all the pages on a site.

Exercises
1. Explain the differences among the .NET 2.0 Framework, ASP.NET 2.0, VWD, and IIS.

2. List some differences between Cassini and IIS.

3. When you drag the title bar of the toolbar it will only go to certain locations and certain sizes.
How can you put the title bar where you want it?

26

Chapter 1

04_588508 ch01.qxd 10/10/05 6:31 PM Page 26

4. How can you copy a .jpg file in C:\MyPhotos into your site for display on a page?

5. You want to add a subfolder to your site, but Folder is not one of the items listed in Add
Items. Why?

6. Microsoft has written extensive code to make it easier for programmers to create Web pages.
How does a programmer actually use that code?

7. Why are there no tools in the General panel of the Toolbox?

27

An Introduction to ASP.NET 2.0 and the Wrox United Application

04_588508 ch01.qxd 10/10/05 6:31 PM Page 27

04_588508 ch01.qxd 10/10/05 6:31 PM Page 28

