
Chapter 1

Getting Started
In This Chapter
� What computer programming is all about

� Understanding the software that enables you write programs

� Revving up to use an integrated development environment

Computer programming? What’s that? Is it technical? Does it hurt? Is it
politically correct? Does Bill Gates control it? Why would anyone want

to do it? And what about me? Can I learn to do it?

What’s It All About?
You’ve probably used a computer to do word processing. Type a letter, print it
out, and then send the printout to someone you love. If you have easy access
to a computer, then you’ve probably surfed the Web. Visit a page, click a link,
and see another page. It’s easy, right?

Well, it’s easy only because someone told the computer exactly what to do. If
you take a computer right from the factory and give no instructions to this
computer, the computer can’t do word processing, the computer can’t surf
the Web, it can’t do anything. All a computer can do is follow the instructions
that people give to it.

Now imagine that you’re using Microsoft Word to write the great American
novel, and you come to the end of a line. (You’re not at the end of a sentence,
just the end of a line.) As you type the next word, the computer’s cursor jumps
automatically to the next line of type. What’s going on here?

05_588745 ch01.qxd 3/16/05 9:18 PM Page 9

CO
PYRIG

HTED
 M

ATERIA
L

Well, someone wrote a computer program — a set of instructions telling the
computer what to do. Another name for a program (or part of a program) is
code. Listing 1-1 shows you what some of Microsoft Word’s code may look like.

Listing 1-1: A Few Lines in a Computer Program

if (columnNumber > 60) {
wrapToNextLine();

}
else {

continueSameLine();
}

If you translate Listing 1-1 into plain English, you get something like this:

If the column number is greater than 60,
then go to the next line.

Otherwise (if the column number isn’t greater than 60),
then stay on the same line.

Somebody has to write code of the kind shown in Listing 1-1. This code,
along with millions of other lines of code, makes up the program called
Microsoft Word.

And what about Web surfing? You click a link that’s supposed to take you
directly to Yahoo.com. Behind the scenes, someone has written code of the
following kind:

Go to Yahoo.

One way or another, someone has to write a program. That someone is called
a programmer.

Telling a computer what to do
Everything you do with a computer involves gobs and gobs of code. Take a
CD-ROM with a computer game on it. It’s really a CD-ROM full of code. At
some point, someone had to write the game program:

if (person.touches(goldenRing)) {
person.getPoints(10);

}

Without a doubt, the people who write programs have valuable skills. These
people have two important qualities:

10 Part I: Revving Up

05_588745 ch01.qxd 3/16/05 9:18 PM Page 10

� They know how to break big problems into smaller step-by-step
procedures.

� They can express these steps in a very precise language.

A language for writing steps is called a programming language, and Java is just
one of several thousand useful programming languages. The stuff in Listing 1-1
is written in the Java programming language.

Pick your poison
This book isn’t about the differences among programming languages, but you
should see code in some other languages so you understand the bigger picture.
For example, there’s another language, Visual Basic, whose code looks a bit
different from code written in Java. An excerpt from a Visual Basic program
may look like this:

If columnNumber > 60 Then
Call wrapToNextLine

Else
Call continueSameLine

End If

The Visual Basic code looks more like ordinary English than the Java code in
Listing 1-1. But, if you think that Visual Basic is like English, then just look at
some code written in COBOL:

IF COLUMN-NUMBER IS GREATER THAN 60 THEN
PERFORM WRAP-TO-NEXT-LINE

ELSE
PERFORM CONTINUE-SAME-LINE

END-IF.

At the other end of the spectrum, you find languages like ISETL. Here’s a
short ISETL program, along with the program’s output:

{x | x in {0..100} | (exists y in {0..10} | y**2=x)};
{81, 64, 100, 16, 25, 36, 49, 4, 9, 0, 1};

Computer languages can be very different from one another but, in some
ways, they’re all the same. When you get used to writing IF COLUMN-NUMBER
IS GREATER THAN 60, then you can also become comfortable writing if
(columnNumber > 60). It’s just a mental substitution of one set of symbols
for another.

11Chapter 1: Getting Started

05_588745 ch01.qxd 3/16/05 9:18 PM Page 11

From Your Mind to the
Computer’s Processor

When you create a new computer program, you go through a multistep
process. The process involves three important tools:

� Compiler: A compiler translates your code into computer-friendly
(human-unfriendly) instructions.

� Virtual machine: A virtual machine steps through the computer-friendly
instructions.

� Application programming interface: An application programming inter-
face contains useful prewritten code.

The next three sections describe each of the three tools.

Translating your code
You may have heard that computers deal with zeros and ones. That’s cer-
tainly true, but what does it mean? Well, for starters, computer circuits don’t
deal directly with letters of the alphabet. When you see the word Start on
your computer screen, the computer stores the word internally as 01010011
01110100 01100001 01110010 01110100. That feeling you get of seeing a
friendly looking five-letter word is your interpretation of the computer screen’s
pixels, and nothing more. Computers break everything down into very low-level,
unfriendly sequences of zeros and ones, and then put things back together so
that humans can deal with the results.

So what happens when you write a computer program? Well, the program
has to get translated into zeros and ones. The official name for the transla-
tion process is compilation. Without compilation, the computer can’t run
your program.

I compiled the code in Listing 1-1. Then I did some harmless hacking to help me
see the resulting zeros and ones. What I saw was the mishmash in Figure 1-1.

The compiled mumbo jumbo in Figure 1-1 goes by many different names:

� Most Java programmers call it bytecode.

� I often call it a .class file. That’s because, in Java, the bytecode gets
stored in files named SomethingOrOther.class.

� To emphasize the difference, Java programmers call Listing 1-1 the
source code, and refer to the zeros and ones in Figure 1-1 as object code.

12 Part I: Revving Up

05_588745 ch01.qxd 3/16/05 9:18 PM Page 12

To visualize the relationship between source code and object code, see
Figure 1-2. You can write source code, and then get the computer to create
object code from your source code. To create object code, the computer uses
a special software tool called a compiler.

Your computer’s hard drive may have a file named javac or javac.exe.
This file contains that special software tool — the compiler. (Hey, how about
that? The word javac stands for “Java compiler!”) As a Java programmer,
you often tell your computer to build some new object code. Your computer
fulfills this wish by going behind the scenes and running the instructions in
the javac file.

Running code
Several years ago, I spent a week in Copenhagen. I hung out with a friend who
spoke both Danish and English fluently. As we chatted in the public park, I
vaguely noticed some kids orbiting around us. I don’t speak a word of Danish,
so I assumed that the kids were talking about ordinary kid stuff.

Figure 1-2:
The

computer
compiles

source code
to create

object code.

Figure 1-1:
My

computer
understands
these zeros

and ones,
but I don’t.

13Chapter 1: Getting Started

05_588745 ch01.qxd 3/16/05 9:18 PM Page 13

Then my friend told me that the kids weren’t speaking Danish. “What lan-
guage are they speaking?” I asked.

“They’re talking gibberish,” she said. “It’s just nonsense syllables. They don’t
understand English, so they’re imitating you.”

Now to return to present day matters. I look at the stuff in Figure 1-1, and I’m
tempted to make fun of the way my computer talks. But then I’d be just like
the kids in Copenhagen. What’s meaningless to me can make perfect sense to
my computer. When the zeros and ones in Figure 1-1 percolate through my
computer’s circuits, the computer “thinks” the thoughts in Figure 1-3.

Everyone knows that computers don’t think, but a computer can carry out
the instructions depicted in Figure 1-3. With many programming languages
(languages like C++ and COBOL, for example), a computer does exactly what
I’m describing. A computer gobbles up some object code, and does whatever
the object code says to do.

Figure 1-3:
What the
computer

gleans from
a bytecode

file.

14 Part I: Revving Up

05_588745 ch01.qxd 3/16/05 9:18 PM Page 14

15Chapter 1: Getting Started

What is bytecode, anyway?
Look at Listing 1-1, and at the listing’s translation
into bytecode in Figure 1-1. You may be tempted
to think that a bytecode file is just a cryptogram —
substituting zeros and ones for the letters in
words like if and else. But it doesn’t work that
way at all. In fact, the most important part of a
bytecode file is the encoding of a program’s logic.

The zeros and ones in Figure 1-1 describe the flow
of data from one part of your computer to another.
I’ve illustrated this flow in the following figure. But
remember, this figure is just an illustration. Your
computer doesn’t look at this particular figure, or
at anything like it. Instead, your computer reads a
bunch of zeros and ones to decide what to do next.

Don’t bother to absorb the details in my attempt
at graphical representation in the figure. It’s not
worth your time. The thing you should glean from
my mix of text, boxes, and arrows is that bytecode
(the stuff in a .class file) contains a complete
description of the operations that the computer is
to perform. When you write a computer program,
your source code describes an overall strategy —
a big picture. The compiled bytecode turns the
overall strategy into hundreds of tiny, step-by-step
details. When the computer “runs your program,”
the computer examines this bytecode and carries
out each of the little step-by-step details.

05_588745 ch01.qxd 3/16/05 9:18 PM Page 15

That’s how it works in many programming languages, but that’s not how it
works in Java. With Java, the computer executes a different set of instruc-
tions. The computer executes instructions like the ones in Figure 1-4.

The instructions in Figure 1-4 tell the computer how to follow other instructions.
Instead of starting with Get columnNumber from memory, the computer’s
first instruction is, “Do what it says to do in the bytecode file.” (Of course,
in the bytecode file, the first instruction happens to be Get columnNumber
from memory.)

There’s a special piece of software that carries out the instructions in Figure 1-4.
That special piece of software is called the Java virtual machine (JVM). The
JVM walks your computer through the execution of some bytecode instruc-
tions. When you run a Java program, your computer is really running the Java
virtual machine. That JVM examines your bytecode, zero by zero, one by one,
and carries out the instructions described in the bytecode.

Many good metaphors can describe the Java virtual machine. Think of the
JVM as a proxy, an errand boy, a go-between. One way or another, you have
the situation shown in Figure 1-5. On the (a) side is the story you get with
most programming languages — the computer runs some object code. On
the (b) side is the story with Java — the computer runs the JVM, and the
JVM follows the bytecode’s instructions.

Carry out the first instruction in Figure 1-3.
Carry out the second instruction in Figure 1-3.
Carry out the third instruction in Figure 1-3.
Keep going until you encounter an "If."

When you encounter an "If," then decide which of
the two alternative paths you should follow.

Carry out the instructions in the path that you choose.

Figure 1-4:
How a

computer
runs a Java

program.

16 Part I: Revving Up

05_588745 ch01.qxd 3/16/05 9:18 PM Page 16

Your computer’s hard drive may have a file named java or java.exe. This file
contains the instructions illustrated previously in Figure 1-4 — the instruc-
tions in the Java virtual machine. As a Java programmer, you often tell your
computer to run a Java program. Your computer fulfills this wish by going
behind the scenes and running the instructions in the java file.

Code you can use
During the early 1980s, my cousin-in-law Chris worked for a computer soft-
ware firm. The firm wrote code for word processing machines. (At the time,
if you wanted to compose documents without a typewriter, you bought a
“computer” that did nothing but word processing.) Chris complained about
being asked to write the same old code over and over again. “First, I write a
search-and-replace program. Then I write a spell checker. Then I write another
search-and-replace program. Then, a different kind of spell checker. And then,
a better search-and-replace.”

How did Chris manage to stay interested in his work? And how did Chris’s
employer manage to stay in business? Every few months, Chris had to rein-
vent the wheel. Toss out the old search-and-replace program, and write a new
program from scratch. That’s inefficient. What’s worse, it’s boring.

For years, computer professionals were seeking the Holy Grail — a way to write
software so that it’s easy to reuse. Don’t write and rewrite your search-and-
replace code. Just break the task into tiny pieces. One piece searches for a
single character, another piece looks for blank spaces, a third piece substitutes
one letter for another. When you have all the pieces, just assemble these pieces

Your
computer

(a)

Your
computer

Java bytecode

(b)

object code

Ja
va

Virtual Machine
Figure 1-5:
Two ways

to run a
computer
program.

17Chapter 1: Getting Started

05_588745 ch01.qxd 3/16/05 9:18 PM Page 17

to form a search-and-replace program. Later on, when you think of a new fea-
ture for your word processing software, you reassemble the pieces in a slightly
different way. It’s sensible, it’s cost efficient, and it’s much more fun.

The late 1980s saw several advances in software development, and by the early
1990s, many large programming projects were being written from prefab com-
ponents. Java came along in 1995, so it was natural for the language’s founders
to create a library of reusable code. The library included about 250 programs,
including code for dealing with disk files, code for creating windows, and code
for passing information over the Internet. Since 1995, this library has grown
to include more than 3,000 programs. This library is called the API — the
Application Programming Interface.

Every Java program, even the simplest one, calls on code in the Java API.
This Java API is both useful and formidable. It’s useful because of all the
things you can do with the API’s programs. It’s formidable because the API
is so extensive. No one memorizes all the features made available by the Java
API. Programmers remember the features that they use often, and look up the
features that they need in a pinch. They look up these features in an online
document called the API Specification (known affectionately to most Java pro-
grammers as the API documentation, or the Javadocs).

The API documentation describes the thousands of features in the Java API.
As a Java programmer, you consult this API documentation on a daily basis.
You can bookmark the documentation at the Sun Microsystems Web site and
revisit the site whenever you need to look up something. But in the long run
(and in the not-so-long run), you can save time by downloading your own
copy of the API docs. (For details, see Chapter 2.)

18 Part I: Revving Up

Write Once, Run AnywhereTM

When Java first hit the tech scene in 1995, the lan-
guage became popular almost immediately. This
happened in part because of the Java virtual
machine. The JVM is like a foreign language inter-
preter, turning Java bytecode into whatever native
language a particular computer understands. So
if you hand my Windows computer a Java byte-
code file, then the computer’s JVM interprets the
file for the Windows environment. If you hand
the same Java bytecode file to my colleague’s
Macintosh, then the Macintosh JVM interprets
that same bytecode for the Mac environment.

Look again at Figure 1-5. Without a virtual
machine, you need a different kind of object code

for each operating system. But with the JVM,
just one piece of bytecode works on Windows
machines, Unix boxes, Macs, or whatever. This
is called portability, and in the computer pro-
gramming world, portability is a very precious
commodity. Think about all the people using
computers to browse the Internet. These people
don’t all run Microsoft Windows, but each
person’s computer can have its own bytecode
interpreter — its own Java virtual machine.

The marketing folks at Sun Microsystems call it
the Write Once, Run AnywhereTM model of com-
puting. I call it a great way to create software.

05_588745 ch01.qxd 3/16/05 9:18 PM Page 18

Your Java Programming Toolset
To write Java programs, you need the tools described previously in this
chapter:

� You need a Java compiler. (See the section entitled, “Translating
your code.”)

� You need a Java virtual machine. (See the section entitled,
“Running code.”)

� You need the Java API. (See the section entitled, “Code you can use.”)

� You need the Java API documentation. (Again, see the “Code you can
use” section.)

You also need some less exotic tools:

� You need an editor to compose your Java programs.

Listing 1-1 contains part of a computer program. When you come right
down to it, a computer program is a big bunch of text. So to write a com-
puter program, you need an editor — a tool for creating text documents.

An editor is a lot like Microsoft Word, or like any other word processing
program. The big difference is that an editor adds no formatting to your
text — no bold, no italic, no distinctions among fonts. Computer programs
have no formatting whatsoever. They have nothing except plain old let-
ters, numbers, and other familiar keyboard characters.

� You need a way to issue commands.

You need a way to say things like “compile this program” and “run the
Java virtual machine.”

Every computer provides ways of issuing commands. (You can double-
click icons or type verbose commands in a Run dialog box.) But when you
use your computer’s facilities, you jump from one window to another.
You open one window to read Java documentation, another window to
edit a Java program, and a third window to start up the Java compiler.
The process can be very tedious.

In the best of all possible worlds, you do all your program editing, documenta-
tion reading, and command issuing through one nice interface. This interface
is called an integrated development environment (IDE).

A typical IDE divides your screen’s work area into several panes — one pane
for editing programs, another pane for listing the names of programs, a third
pane for issuing commands, and other panes to help you compose and test
programs. You can arrange the panes for quick access. Better yet, if you change
the information in one pane, the IDE automatically updates the information in
all the other panes.

19Chapter 1: Getting Started

05_588745 ch01.qxd 3/16/05 9:18 PM Page 19

Some fancy environments give you point-and-click, drag-and-drop, plug-and-
play, hop-skip-and-jump access to your Java programs. If you want your
program to display a text box, then you click a text box icon and drag it to
the workspace on your screen.

Figure 1-6 illustrates the use of a drag-and-drop IDE. In Figure 1-6, I create a
program that displays two images, two text fields, and two buttons. To help
me create the program, I use the Eclipse IDE with the Jigloo graphical plug-in.
(For a taste of Eclipse, visit www.eclipse.org. For more info on the neato
Jigloo graphical user interface builder, check out www.cloudgarden.com.)

An IDE helps you move seamlessly from one part of the programming endeavor
to another. With an IDE, you don’t have to worry about the mechanics of edit-
ing, compiling, and running a Java virtual machine. Instead, you can worry
about the logic of writing programs. (Wouldn’t you know it? One way or another,
you always have something to worry about!)

What’s already on your hard drive?
You may already have some of the tools you need for creating Java programs.
Here are some examples:

Figure 1-6:
Using the

Eclipse IDE
with the

Jigloo
graphical

user inter-
face builder.

20 Part I: Revving Up

05_588745 ch01.qxd 3/16/05 9:18 PM Page 20

� Most versions of Windows come with a Java virtual machine. Look for
a file named java.exe in your \windows\system32 directory.

� Most computers running Mac OS X come with a Java compiler, a Java
virtual machine, and a Java API.

� Some IDEs come with their own Java tools. For example, when you buy
the Borland JBuilder IDE you get a compiler, a Java virtual machine, and
a copy of the Java API. When you download the free Eclipse IDE you get
a Java compiler, but no Java virtual machine and no Java API.

You may already have some Java tools, but your tools may be obsolete. This
book’s examples use a relatively new version of Java — a version released in
September 2004. Even computers and software sold in 2005 may not be up to
date with the latest Java features. So if you use the tools that come with your
computer, or if you use a commercial product’s software tools, some of this
book’s examples may not run.

The safest bet is to download tools afresh from the Sun Microsystems Web
site. To get detailed instructions on doing the download, see Chapter 2.

Many of this book’s examples don’t run on “older” versions of Java, and by
“older” I mean versions created before the fall of 2004. If you have trouble
running the programs in this book, check to make sure that your version of
Java is numbered 5.0, 5.1, or something like that. Older versions (with version
numbers like 1.4 or 1.4.2) just don’t cut the muster.

JCreator
The programs in this book work with any IDE that can run Java 5.0. You can
even run the programs without an IDE. But to illustrate the examples in this
book, I use JCreator LE (Lite Edition). I chose JCreator LE over other IDEs for
several reasons:

� JCreator LE is free.

� Among all the Java IDEs, JCreator represents a nice compromise
between power and simplicity.

� Unlike some other Java IDEs, JCreator works with almost any version
of Java, from the ancient version 1.0.2 to the new-and-revolutionary ver-
sion 5.0.

� JCreator LE is free. (It’s worth mentioning twice.)

21Chapter 1: Getting Started

05_588745 ch01.qxd 3/16/05 9:18 PM Page 21

This book’s Web site has a special edition of JCreator LE — a version that’s
customized especially for Beginning Programming with Java For Dummies, 2nd
Edition readers! For details on downloading and installing the special edition
of JCreator, see Chapter 2.

JCreator runs only on Microsoft Windows. If you’re a Unix, Linux, or Macintosh
user, please don’t be offended. All the material in this book applies to you, too.
You just have to use a different IDE. My personal recommendations include
Eclipse and Netbeans. For details, visit this book’s Web site at http://www.
dummies.com/go/bpjavafd.

22 Part I: Revving Up

05_588745 ch01.qxd 3/16/05 9:18 PM Page 22

