
CHAPTER 1

Introduction

Ll Combinatorial Optimization

Combinatorial optimization constitutes one specific class of problems. The word
combinatorial is derived from the word combinatorics, which is a branch of math-
ematics concerned with the study of arrangement and selection of discrete objects.
In combinatorics one is usually concerned with finding answers to questions such
as "does a particular arrangement exist?" or "how many arrangements of some
set of discrete objects exist?" Finding the number of orderings of some set of
discrete objects usualty consists of deriving a mathematical formula or relation
which, when evaluated for the parameters of the problem leads to the answer. On
the other hand, combinatorial optimization is not concerned with whether a partic-
ular arrangement or ordering exists but rather, concerned with the determination
of an optimal arrangement or order [Law76].

In most general terms, a problem is a question whose answer is a function of
several parameters. Usually the problem is stated by articulating the properties
that must be satisfied by its solution. A particular instance of the problem is
obtained by fixing the values of all its parameters. Let's take a simple example.

Example 1.1 The shortest path problem.
Problem: Given a connected graph1 G = (V, E), where V is a set of n

vertices and E is a set of edges. Let D ~ [dij] be a distance matrix,
where dij is the distance between vertices Vj and Vj (weight or length
of the edge (vi, VJ) € E). For convenience, we assume dij = djti > 0,
djj = 0, Vv», Vj G V, and dij = oo if there is no edge between v\
and Vj.

'For definition of terms from graph theory the reader is referred to the text Algorithmic Graph
Theory by Alan Gibbons, Cambridge University Press, 1985.
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Objective: Find the shortest path from some source node v,- to some target
node VJ. A path 7r(t>2, Vj) from V{ to Vj is a sequence of the form [t;,-,
ViltVi29 .. .,vinvj], such that (vi^i^ e E, (vifc, v,-fc+1) £ E9 1 < k <
I — 1, and (v^, Vj) G £\ The length of the path is the sum of the length
of its constituent edges. That is,

lengthinivitVj)) = diM + ^ d w f c + 1 + *i,i

•

A particular instance of the above problem is defined when one fixes the graph,
the distance measure, and decides the source and target vertices. For example,
Figure 1.1 is one instance of the shortest path problem.
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Figure 1.1: An instance of the shortest path problem: The shortest a-to-d path is
n(a>d) = [aiejt<jqimdlength(n(a,d))=zdate+detf+ dfld = 10 + 20+10 = 40.

A solution (optimal or not) to a combinatorial optimization problem usually
requires that one comes up with a suitable algorithm, which when applied to an
instance of the problem produces the desired solution.

An algorithm is a finite step-by-step procedure for solving a problem or to
achieve a required result. The word algorithm is named after the ninth-century
scholar Abu-Jaafar Muhammad Ibn Musa Al-Khowarizmi who authored among
other things a book on mathematics.

Combinatorial optimization problems are encountered everywhere, in science,
engineering, operation research, economics, and so forth. The general area of
combinatorial optimization came to the fore with the advent of the digital com-
puter. Algorithmic solutions to typical combinatorial optimization problems in-
volve an extremely large number of computational steps and are impossible to
execute by hand. The last 30 years have witnessed the development of numerous
algorithms for almost any imaginable combinatorial optimization problem. Such
algorithmic solutions were unthinkable before the advent of the era of modern
computing.
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Let us consider three examples of combinatorial problems.

Example 1.2 Sorting.
Problem: Given an array of n real numbers A[l \n\.

Objective: Sort the elements of A in ascending order of their values.

There are n! possible arrangements of the elements of A. In case all elements
are distinct only one such arrangement is the answer to the problem. Several
algorithms have been designed to sort n elements. One such algorithm is the
Bubble-Sort algorithm.

Algorithm BubbleSort (A[ 1 :rc]);
Begin /* Sort array A[l :n] in ascending order */
var integer i, j ;

For i• = 1 To n - 1 Do
For j = « + l To n Do

If A[i] > A[j] Then
swap (A[i],A[ j]);

EndFor;
EndFor;

End Algorithm;

Example 1.3 Maximum set bipartitioning.

Problem: Given a set of n positive integers #i, # 2 , . . . , xn (n even).

Objective: Partition the set X into two subsets Y and Z such that

1. |Y| = | Z | = a f

2. Y U Z = X, and
3. the difference between the sums of the two subsets is maximized.

There are ( n ) possible bipartitions of the set X. To find the required
\ 2/

bipartition, we can follow the steps of the following algorithm.

Algorithm MaxBipartition (X[ 1 :n]);
Begin

BubbleSort(X[l :n]) /* Sort array X[l :n] in ascending order */
Put the ~ smaller integers in Y;
Put the f larger integers in Z;
Return (Y, Z)

End Algorithm;
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Example 1.4 Minimum set bipartitioning.

Problem: Given a set of n positive integers xi, #2, • • •» #n (w even).

Objective: Partition the set X into two subsets Y and Z such that

1. |Y| = |Z| = af

2. Y U Z = X, and

3. the difference between the sums of the two subsets is minimized.

The two problems of set bipartitioning appear to be similar; only one word has
changed (maximized became minimized). However the minimum set bipartition
problem is much more difficult to solve. Actually, the two problems belong to two
different classes of problems: maximum set bipartitioning belongs to the class of
easy problems for which there are several efficient algorithms, whereas minimum
set bipartitioning belongs to the class of hard problems with no known efficient
algorithm (typically only full enumeration will guarantee finding an optimal solu-
tion).

Before we clarify the distinction between easy and hard problems, we first
need to define the notions of time and space complexity of algorithms and how we
measure them.

1.1.1 Complexity of Algorithms

Two important ways to characterize the effectiveness of an algorithm are its space
complexity and time complexity. Time complexity of an algorithm concerns deter-
mining an expression of the number of steps needed as a function of the problem
size. Since the step count measure is somewhat coarse, one does not aim at ob-
taining an exact step count. Instead, one attempts only to get asymptotic bounds
on the step count [SB80]. Asymptotic analysis makes use of the Big-Oh notation.

Big-Oh Notation

We say that f(n) = O(g(n)) if there exist positive constants no and c such that
for all n > no» we have f(n) < c • g(n). Alternately, we say that f(n) is upper
bounded by g(n). The Big-Oh notation is used to describe the space and time
complexity of algorithms.

Example 1.5 Consider the "BubbleSort" algorithm to sort n real numbers
(page 3). The procedure "BubbleSort" requires O(n) storage (for the array A)
and O(n2) running time (two nested for loops). The above statement should
be taken to mean that the BubbleSort procedure requires no more than linear
amount of storage and no more than a quadratic number of steps to solve the
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sorting problem. In this sense, the following statement is also equally true:
the procedure BubbleSort takes O(n2) storage and O(n3) running time! This
is because the Big-Oh notation only captures the concept of "upper bound."
However, in order to be informative, it is customary to choose g(n) to be as
small a function of n as one can come up with, such that f(n) = O(g(n)).
Hence, if /(n) = a • n -f 6, we will state that f(n) = O(n) and not O(nk),
k> 1.

Big-fi and Big-0 Notation

The Big-Oh notation is one of several convenient notations used by computer sci-
entists in the analysis of algorithms. Two other notational constructs are frequently
used: Big-Q (Big-Omega) and Big-© (Big-Theta) notation.

The Big-Oh notation is easier to derive. Typically, we prove that an algorithm
is O(f(n)) and try to see whether it is also Q(/(n)).

Definition 1 Big-Omega Notation*
We say that f(n) = Q(g(n)) if there exist positive constants no and c such
that for all n > no, we have f(n) > c • g(n). Alternately, we say that / (n) is
lower bounded by g(n).

Definition 2 Big-Theta Notation.
We say that f(n) — 0(</(n)) if there exist positive constants c\t C2, and no
such that for all n > n0, we have c\ • g(n) < f(n) < c2 • g(n).

The 0 notation is used to state an exact bound on the time complexity of
a given algorithm. For example, the time complexity of BubbleSort is O(n2),
Q(n2) ,aswellas0(n2) .

How useful are these complexity functions? For example, can we use them
to find out how much time the algorithm would run? Asymptotic analysis does
not tell us the execution time of an algorithm on a particular problem instance, it
barely characterizes the growth rate of the algorithm runtime as a function of the
problem size. For example, if the sorting of 1,000 real numbers with the Bub-
bleSort algorithm takes 1 millisecond on a particular computer, then we expect
the sorting of 5,000 numbers by the same algorithm will require 25 milliseconds
on the same computer. The complexity functions are also used to compare algo-
rithms. For example, if algorithm A\ has time complexity O(n log n) and algo-
rithm A% has time complexity 0(n2) , then Ai is a better algorithm (more efficient
or superior to A2).

In many situations, the runtime of the algorithm is data dependent. In that
case, one talks of the best case, the worst case, and average time complexity.
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1.1.2 Hard Problems versus Easy Problems

An algorithm is said to be a polynomial-time algorithm if its time complexity is
O(p(n))t where n is the problem size and p(n) is a polynomial function of n.
The BubbleSort algorithm of Example 1.2 is a polynomial-time algorithm. The
function p(n) is a polynomial of degree k if p(n) can be expressed as follows:

p(n) = a u n k + ••• + a i n 1 + ••• + a \ n + « o

where a& > 0 and a,- > 0, 1 < i < fc — 1. In that case, the time complexity
function of the corresponding algorithm is said to be O(nk).

In contrast, algorithms whose time complexity cannot be bounded by polyno-
mial functions are called exponential time algorithms. To be more accurate, an
exponential-time algorithm is one whose time complexity is O(ctl), where c is a
real constant larger than 1. A problem is said to be tractable (or easy) if there ex-
ists a polynomial-time algorithm to solve the problem. From Example 1.2 above,
we may conclude that the sorting of real numbers is tractable, since the Bubble-
Sort algorithm given on page 3 solves it in O(n2) time. Similarly, maximum set
bipartitioning is tractable since the algorithm given on page 3 solves it in O(n2)
time.

Unfortunately, there are problems of great practical importance that are not
computationally easy. In other words, polynomial-time algorithms have not been
discovered to solve these problems. The bad news is that it is unlikely that a
polynomial-time algorithm will ever be discovered to solve any of these problems.
Such problems are also known as "hard problems" or "intractable problems." For
example, the minimum set bipartitioning introduced on page 4 is intractable since
finding an optimum partition requires the exploration of (£) bipartitions, which

is a function that grows as an exponential function of n?
Below, we recall several representative hard problems which find numerous

applications in various areas of science and engineering. We shall be using these
and other problems throughout the book. Readers interested in a thorough discus-
sion of the subject of NP-completeness are referred to the classic work of Garey
and Johnson [GJ79].

Example 1.6 The traveling salesman problem (TSP).
Problem: Given a complete graph G(V, E) with n vertices. Let dU}V be the

length of the edge (u> v) G E and du>v = dV)U. A path starting at some
vertex v £ V, visiting every other vertex exactly once, and returning to
vertex v is called a tour.

2By Stirling's formula we can show that (^) ~ 2n- The proof is left as an exercise (see
Exercise 1.1).
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Objective: Find a tour of minimum length, where the length of a tour is
equal to the sum of lengths of its defining edges.

Example 1.7 Hamiltonian cycle problem (HCP).
Problem: Given a graph G(V, E) with n vertices.

A Hamiltonian cycle is a simple cycle which includes all the n vertices
in V. A graph containing at least one Hamiltonian cycle is called a
Hamiltonian graph. A complete graph on n vertices contains n\ Hamil-
tonian cycles.

Objective: Find a Hamiltonian cycle on the n vertices of the graph.

Example 1.8 The vehicle routing problem (VRP).
Problem: Given an unspecified number of identical vehicles, having a fixed

carrying capacity Q, we have to deliver from a single depot quantities
qi (« = 1, ..., n) of goods to n cities. A distance matrix D = [dij] is
given, where dij is the distance between cities i and j (i, j = 1, . . . , n,
and city 0 is the depot).

Objective: Find tours for the vehicles (a vehicle tour starts and terminates at
the depot) such that

1. the total distance traveled by the vehicles is minimized,
2. every city is serviced by a unique vehicle, and
3. the quantity carried by any vehicle during any single delivery does

not exceed Q.

There are several other variations of the VRP problem. For example, the
distances may be Euclidean or non-Euclidean, there may be several depots,
the vehicles may be different, and the goods may be delivered as well as
picked up. Furthermore, there may be timing constraints for each delivery,
that is, each customer at a particular (city) has a time window for service. A
delivery outside its time window may be acceptable but incurs a penalty, or it
may be unacceptable altogether [BGAB83, DLSS88, GPR94, Tai93].

Example 1.9 The graph bisection problem (GBP).
Problem: Given a graph G(V,E) where, V is the set of vertices, E the

set of edges, and \V\ = 2n. Partition the graph into two sub-
graphs Gi(VuEx) and G2(V2tE2) such that, (1) \Vi\ = \V2\ = n,
(2) Vi O V2 = 0, and (3) \\ U V2 = V.
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Objective: Minimize the number of edges with vertices in both V\ and V2.

Example 1.10 Quadratic assignment problem (QAP).
Problem: Given a set M of | M | modules and a set L of | L | locations,

I L \>\ M |. Let Cij be the number of connections between elements i
and j , and dk,i be the distance between locations k and /.

Objective: Assign each module to a distinct location so as to minimize the
wire-length needed to interconnect the modules.

Example 1.11 Minimum set partitioning problem.
Problem: Given a set of n positive integers X = {#1, #2* • •., %n}-

Objective: Partition the set into two subsets Y of size k and Z of size n — k
0^ < ^ < %) such that the difference between the sums of the two
subsets is minimized.

Example 1.12 Vertex cover problem.
Problem: Given a graph G(V, E).

A vertex cover of a graph G(V, E) is a subset Vc C V such that, for
each edge (i, j) € E, at least one of i or j £ Vc.

Objective: Find a vertex cover of minimum cardinality.

All of the above problems are NP-hard [GJ79]. The only way to deal with
NP-hard problems is to be satisfied with an approximate solution to the problem.
Such an approximate solution must satisfy the constraints, but may not necessarily
possess the best cost.

1.2 Optimization Methods

There are two general categories of combinatorial optimization algorithms: (1) ex-
act algorithms* and (2) approximation algorithms. Most well known among the
first category are linear programming, dynamic programming, branch-and-bound,
backtracking, and so forth [HS84].

3 Several exact algorithms tend to be enumerative.
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The linear programming approach formulates the problem as the minimization
of a linear function subject to a set of linear constraints. The linear constraints
define a convex polytope. The vertices of the polytope correspond to feasible
solutions of the original problem. The number of vertices in the polytope is ex-
tremely large. For example, an n x n assignment problem would require 2n linear
inequalities, together with non-negativity constraints on n2 variables, which de-
scribe a convex polytope with n\ vertices, corresponding to the extreme points of
the feasible region of the assignment problem [Law76].

Dynamic programming is a stage-wise search method suitable for optimiza-
tion problems whose solutions may be viewed as the result of a sequence of de-
cisions. During the search for a solution, dynamic programming avoids full enu-
meration by pruning early partial decision sequences that cannot possibly lead to
optimal sequences. In many practical situations, dynamic programming hits the
optimal sequence in a polynomial sequence of decision steps. However, in the
worst case, such a strategy may end up performing full enumeration.

Branch-and-bound search methods explore the state space search tree in ei-
ther a depth-first or breadth-first manner. Bounding functions are used to prune
subtrees that do not contain the required optimal state.

Many of the significant optimization problems encountered in practice are NP-
hard. For relatively large instances of such problems, it is not possible to resort to
optimal enumerative techniques; instead, we must resort to approximation algo-
rithms. Approximation algorithms are also known as heuristic methods. Insight
into the problem through some observations, when properly exploited, usually
enables the development of a reasonable heuristic that will quickly find an "ac-
ceptable" solution. A heuristic algorithm will only search inside a subspace of the
total search space for a "good" rather than the best solution which satisfies design
constraints. Therefore, the time requirement of a heuristic is small compared to
that of full enumerative algorithms. A number of heuristics have been developed
for various problems. Examples of approximation algorithms are the constructive
greedy method, local search, and the modern general iterative algorithms such as
simulated annealing, genetic algorithms, tabu search, simulated evolution, and
stochastic evolution.

The greedy method constructs a good feasible solution in stages. It starts from
a seed input. Then other inputs are selected in succeeding steps and added to the
partial solution until a complete solution is obtained. The selection procedure is
based on some optimization measure strongly correlated with the objective func-
tion. At each stage, the inputs that optimize the selection measure are added to the
partial solution, hence the term greedy.

A common feature of all of the aforementioned search algorithms (whether
exact or approximate) is that they constitute general solution methods for combi-
natorial optimization.
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This book is concerned with iterative approximation algorithms. Solution
techniques such as linear programming, dynamic programming, and branch-and-
bound have been the subject of several other books (see, for example, [Fou84,
HS84, Hu82, PS82]).

One of the oldest iterative approximation algorithms is the local search heuris-
tic. All other more modern iterative heuristics such as simulated annealing, tabu
search, or genetic algorithms are generalizations of local search. Before we de-
scribe local search, we need to explain several important concepts that are cus-
tomarily encountered in combinatorial optimization.

L3 States, Moves, and Optimality

In most general terms, combinatorial optimization is concerned with finding the
best solution to a given problem. The class of problems we are concerned with in
this book are those with finite discrete state space and which can be stated in an
unambiguous mathematical notation.

Combinatorial optimization algorithms seek to find the extremum of a given
objective function Cost. Without any loss of generality we shall assume that we
are dealing with a minimization problem.

Definition 3 An instance of a combinatorial optimization problem is a pair
(ft, Cost), where ft is the finite set of feasible solutions to the problem and
Cost is a cost function, which is a mapping of the form,

Cost : ft —> 3fj

The cost function is also referred to as an objective or utility function. The
function Cost assigns to every solution S G ft a (real) number Cost(S)
indicating its worth.

Definition 4 A feasible solution S of an instance of a combinatorial opti-
mization problem (ft, Cost) is also called a state (S € ft). The set of feasible
solutions ft is called the state space.

The function Cost allows us to establish an ordering relation. Let S\ and 52
be two solutions to the problem. S\ is judged better than or of equal value to S2
if Cost(Si) <Cost(S2).

Solution configurations in the neighborhood of a solution S € ft can always
be generated by performing small perturbations to S. Such local perturbations are
called moves. For example, for the quadratic assignment problem (Example 1.10
on page 8), a move may consist of the swapping of the locations of two modules.
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Definition 5 A neighborhood K(5) of solution S is the set of solutions ob-
tained by performing a simple move m £ M, where M is the set of simple
moves that are allowed on solution 5.

A property of most combinatorial optimization problems is that they possess
noisy objective functions, that is, the function Cost has several minima over the
the state space O.

Definition 6 5 E 0 is a local minimum with respect to N(S') if S has a lower
cost than any of its neighboring solutions, that is,

Cost{S) < Co8t(Sm), V5 m €»(S) , VmGM

Definition 7 5* € Q is a #/<?&a/ minimum iff

cw(s*) < Cost{S), \/sen

The objective of combinatorial search algorithms is to identify such a global
optimum state 5*.

1.4 Local Search

The local search heuristic is one of the oldest and easiest optimization methods.
Although the algorithm is simple, it has been successful with a variety of hard
combinatorial optimization problems. The algorithm starts at some initial feasible
solution So £ Q and uses a subroutine Improve to search for a better solution in
the neighborhood of So. If a better solution S E ft(S'o) ' s found, then the search
continues in the neighborhood N(5) of the new solution. The algorithm stops
when it hits a local optimum. The subroutine Improve behaves as follows:

, - . f anyT E N(S) s.t.CostlT) < Cost(S)
^ v } \ nil otherwise

An outline of the general local search algorithm is given below.

Algorithm LocalSearch(So);
Begin

52 = So;
Repeat

51 = 52;
52 = Improve(S\)

Until 52 = nil;
Return (Si)

End/*ofLocalSearch */
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To use the local search heuristic one has to address several issues, namely,
(1) how to construct the initial solution, (2) how to choose a good neighbor-
hood for the problem at hand, and (3) the manner in which the neighborhood
is searched, that is, the Improve subroutine.

(a) Initial solution.

Should one start from a good solution obtained by a constructive algorithm or from
a randomly generated solution? Another possibility is to make several runs of lo-
cal search starting from different initial solutions and to select the best among the
obtained final solutions. These alternatives have varying computational require-
ments and would usually result in final solutions of varying quality.

(b) Choice of neighborhood.

Here one has to select the appropriate perturbation function to explore a good
neighborhood around current solution. Elaborate perturbations (moves) are more
complex to implement, require more time to execute, and usually result in large
neighborhoods. In contrast, simple perturbation functions are easier to implement,
require less time to execute, and would result in smaller neighborhoods. Hence,
one can see a clear trade-off here: a larger neighborhood would require more time
to search but holds the promise of reaching a good local minimum while a smaller
neighborhood can be quickly explored but would lead to a premature convergence
to a poor local minima. This issue can best be resolved through experimentation.

We should note here that if one decides to work with a small neighborhood
then one has to start from a good initial solution; otherwise the search will end in
a poor-quality local minima. In contrast, if one opts for a large neighborhood, then
the initial solution would not have as much effect on the quality of final solution.
In that case, starting from a quickly generated random solution or from a good
initial solution would result in final solutions of similar quality.

(c) The subroutine "Improve."

The Improve subroutine can follow one of the following two strategies: (I) first-
improvement strategy, where the first favorable cost change is accepted, or (2) the
steepest descent strategy, where the entire neighborhood is searched, and then a
solution with lowest cost is selected. The first strategy may converge sooner to a
poorer local minima. However, the decision as to which strategy to use may best
be made empirically.
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1.4.1 Deterministic and Stochastic Algorithms

Combinatorial optimization algorithms can be broadly classified into determin-
istic and stochastic algorithms. A deterministic algorithm progresses toward the
solution by making deterministic decisions. For example, local search is a de-
terministic algorithm. On the other hand, stochastic algorithms make random
decisions in their search for a solution. Therefore deterministic algorithms pro-
duce the same solution for a given problem instance while this is not the case for
stochastic algorithms.

Heuristic algorithms can also be classified as constructive and iterative algo-
rithms. A constructive heuristic starts from a seed component (or several seeds).
Then, other components are selected and added to the partial solution until a com-
plete solution is obtained. Once a component is selected, it is never moved during
future steps of the procedure. Constructive algorithms are also known as succes-
sive augmentation algorithms.

An iterative heuristic such as local search receives two things as inputs, one,
the description of the problem instance, and two, an initial solution to the problem.
The iterative heuristic attempts to modify the given solution so as to improve the
cost function; if improvement cannot be attained by the algorithm, it returns a
"NO," otherwise it returns an improved solution. It is customary to apply the
iterative procedure repeatedly until no cost improvement is possible. Frequently,
one applies an iterative improvement algorithm to refine a solution generated by a
reasonable constructive heuristic. To come up with the best constructive algorithm
requires far more insight into the problem and much more effort than to set up
an iterative improvement scheme of the aforementioned type. Nevertheless, one
may argue that it is always certain that if any iterative technique fares well on
a problem, then a good constructive/deterministic heuristic has been overlooked.
However, the elaboration of such good heuristics is not always possible for many
practical problems.

Alternately, one could generate an initial solution randomly and pass it as input
to the iterative heuristic. Random solutions are of course generated quickly; but
the iterative algorithm may take a large number of iterations to converge to either
a local or global optimum solution. On the other hand, a constructive heuristic
takes up time; nevertheless the iterative improvement phase converges rapidly if
started off with a constructive solution.

Figure 1.2 gives the flowchart of a constructive heuristic followed by an itera-
tive heuristic. The "stopping criteria met" varies depending on the type of heuristic
applied. In case of deterministic heuristics, the stopping criterion could be the first
failure in improving the present solution. While in the case of nondeterministic
heuristics the stopping criterion could be the runtime available, or, k consecutive
failures in improving the present solution.

Typically, constructive algorithms are deterministic while iterative algorithms
may be deterministic or stochastic.



Figure 1.2: General structure combining constructive and iterative heuristics.
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Justification of Iterative Improvement Approach

Constructive procedures have the advantage of being faster than iterative proce-
dures such as those described in this book. However, at each decision step, due to
its greedy nature, a constructive procedure has only a local view. Therefore, the
procedure might reach the point where design constraints are not met. This will
require several iterations to attempt various modifications to the solution to bring
it to a feasible state. For practical problems, it is unthinkable to manually perform
these modifications.

Automatic iterative improvement procedures which combine quality of con-
structive algorithms and iterative improvement procedures constitute effective ap-
proaches to produce feasible solutions with the desired performance. However, in
order to speed up the search, care must be taken so that the iterative procedure is
tuned to quickly converge to a solution satisfying all design constraints.

L5 Optimal versus Final Solution

When is a problem solved? A key requirement of a combinatorial optimization
algorithm is that it should produce a solution in a reasonably small number of
computational steps. The approximation algorithms described in this book are
recommended for hard combinatorial optimization problems. It will be unwise
to use any of these iterative heuristics to solve problems with known efficient
algorithms. For example, one should not use local search or simulated annealing
(Chapter 2) to find the shortest path in a graph; we must instead use one of the
known polynomial time algorithms such as Dijkstra's algorithm [Dij59].

Exact algorithms for hard problems require in the worst case an exponential
(and sometimes a factorial) number of steps to find the optimal solution. For
example, suppose that for a given hard problem, a computer is programmed to
perform a brute force search for an optimal solution and that the computer is ca-
pable of examining one billion solutions per second. Assume that the search space
consists of 2n solutions. Then for n = 20 the optimal solution will be found in
about 1 millisecond. For n = 100, the computer will need over 40,000 centuries!
The situation would be much worse if we had a problem whose search space con-
sisted of n\ solutions. Obviously, a combinatorial optimization problem will not
be considered solved if one does not live to see the answer! Hence, a fundamental
requirement of any reasonable optimization algorithm is that it should produce an
answer to the problem (not necessarily the best) in a reasonably small amount of
time. The words reasonable and small are fuzzy and usually are interpreted differ-
ently by different people (depending on the problem, what the answer is needed
for, and how soon).

The approximation algorithms described in this book are all iterative, nonde-
terministic, and keep on searching the solution space until some stopping criteria
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are met. Examples of stopping criteria are: (1) the last k iterations did not identify
a better solution, (2) a runtime limit has been exceeded, (3) some parameter of the
iterative algorithm has reached a threshold limit; and so forth. Once the algorithm
stops, it outputs the best solution found. For most practical applications, the run-
time of such algorithms may be a few hours. Furthermore, none of these iterative
algorithms guarantee finding the optimal solution (if such a solution exists) in a
finite amount of time.

1.6 Single versus Multicriteria Constrained
Optimization

Constrained optimization consists of finding a solution which satisfies a speci-
fied set of constraints and optimizes an analytically defined objective function. A
solution which satisfies the problem constraints is a feasible solution. If it also op-
timizes the stated objective function then it is an optimal solution. The objective
function is to be computed for each combination of the input variables. Values of
the input variables change as the search moves from one solution to another. The
solution with an optimal value of the objective function is an optimal solution.

A single objective constrained optimization problem consists of the minimiza-
tion/maximization of a utility function Cost over the set of feasible solutions H.
For example, for a minimization problem we have something of the following
form:

m'mCost(S) (1.1)

If Cost is linear and Q is defined by linear constraints, the problem is a single
objective linear programming problem. If in addition the problem variables are
restricted to be integers, then the problem becomes an integer programming prob-
lem. In case either the utility function or any of the constraints are nonlinear the
problem becomes a single objective nonlinear optimization problem.

In most practical cases, optimization problems are multiple objective prob-
lems. In such situations, one is typically confronted with several conflicting utility
functions Cost\,..., Costi,..., Costn, that is,

min Cost AS) Ki<n (1.2)
sen v - -

Unlike single-objective optimization problems, no concept of optimal solution
is universally accepted for multiobjective optimization. In practical cases, the
rating of individual objectives reflects the preference of the decision-maker. At
best, a compromise between competing objectives can be expected.

A commonly used approach to transform a multiobjective optimization prob-
lem into a single objective optimization problem is to define another utility
function as a weighted sum of the individual criteria, that is,
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The Wi's are positive weights that reflect the relative importance of criteria or
goals in the eyes of the decision maker. More important criteria are assigned
higher weights. Usually, the weight coefficients sum to one. Furthermore, prior to
computing the weighted utility function, the individual criteria are normalized to
fall in the same range.

Another approach to tackle multicriteria optimization problems is to rely on
the ranking of the individual objectives. In this approach one does not attempt
to seek a solution that is minimum with respect to all objectives, since anyhow,
in most cases such a solution does not exist; rather the objective function is seen
as a vector function. Without loss of generality let us assume that Costi is more
important than Costi+i, 1 < i' < n — 1. Then & preference relation -< is defined
over the solution space ft as follows:

VS <E ft, VS" G ft : S < S" if and only if
3 t, 1 < i < n, such that CosU(S) < CosU(Sf), and
V j < *, Costj{S) = Costj(S')

The above preference relation defines a partial order on the elements of the state
space of feasible solutions ft.

In many cases, it is not clear how one can balance different objectives by
a weight function especially when the various objectives are defined over dif-
ferent domains. Also, it is not always possible to have a crisp ranking of
the individual objectives. Another difficulty is that the outcome of such rank-
ing is not always predictable especially when some of the criteria are corre-
lated. Fuzzy logic provides a convenient framework for solving this prob-
lem [Zad65, Zad73, Zad75, Zim91]. It allows one to map values of different
criteria into linguistic values, which characterize the level of satisfaction of the
designer with the numerical values of objectives. Each linguistic value is then
defined by a membership function which maps numerical values of the correspon-
ding objective criterion into the interval [0,1]. The desires of the decision maker
are conveniently expressed in terms of fuzzy logic rules and fuzzy preference
rules. The execution/firing of such rules produces numerical values that are used
to decide a solution goodness. In practice, this approach has been proven pow-
erful for finding compromise solutions in different areas of science and engineer-
ing [KLS94, LS92, Ped89, RG90, TS85, Wan94, Zim87, Zim91]. We shall ad-
dress in more detail the subject of using fuzzy logic for multicriteria optimization
in Chapter 7.

The algorithms described in this book are general optimization techniques
suitable for single as well as multiple objective problems. However, for the sake of
simplicity, we shall confine ourselves to single-objective optimization problems.

n

C0St{S) = J2WiC0Sti
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Interested readers in the general subject of multi-criteria optimization may consult
the book by Steuer [Ste86].

1.7 Convergence Analysis of Iterative Algorithms

Unlike constructive algorithms, which produce a solution only at the end of the
design process, iterative algorithms operate with design solutions defined at each
iteration. A value of the objective function is used to compare results of consec-
utive iterations and to select a solution based on the maximal (minimal) value of
the objective function.

1.7.1 Configuration Graph

The state space being searched can be represented as a directed graph called the
configuration graph. Let Q be the set of feasible configurations (states) for some
instance of a discrete minimization problem. Q can be considered as the set of
vertices of a directed configuration graph CG [Len90].

Definition8 A directed graph C G = ( ^ , E) is called a configuration graph
where Sett, and N(S) = {T e 0 | (5,T) G E}\ tt is the set of legal
configurations and E={(S,T)\S G fi,T <E fiandT € N(S)}. An edge
between two states indicates that they are neighbors. A state 5 is called a
"local minimum" if Cost(S) < Cost(T) for all T e N(S). In addition, if 5
is an optimal solution then it is called a "global minimum."

Example 1.13 An example of a configuration graph with eight states is
given in Figure 1.3. For the moment we will concentrate only on the structure
and the values in the circles and ignore the labels on the edges. The numbers
in the circles indicate the cost of the configurations. For example, the circle
with label 3 represents a state with cost equal to 3. State 3 is a local minimum
because it has no neighbors with a lower cost. State 1 is a global minimum
because it is a local minimum with the lowest cost, and is the optimal solu-
tion. It is not possible to go from state 3 to state 1 without going through
states with cost greater than 3, that is, through states with costs 4 and 7, or
through 5 (climbing the hill). On the other hand, starting in state 8 we can
apply a greedy heuristic that will take us to state 1 (that is, through states 5
and 2, or through state 6).
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Figure 1.3: An example of a configuration graph.

A "search" from configuration S £ Q is a directed path in Co that starts at 5
and ends in the solution the search has found. The search is said to be "greedy" if
the costs of successive vertices along the search path are decreasing.

The goal of the search is to find a solution that is as close as possible to the
optimum. As illustrated in Figure 1.3, greedy heuristics such as local search usu-
ally lead to local optima and not global optima. The reason is that they provide no
mechanism for the search to escape from a local optimum. Two possibilities exist
that can help one avoid getting trapped in a local optimum.

1. Accommodate nongreedy search moves, that is, moves in which the cost
increases

2. Increase the number of edges in the configuration graph

As for the first possibility, care must be taken to see that such moves are not
too frequent. There are probabilistic and deterministic ways of doing so.

In the second possibility, for a configuration graph with many edges and a
large neighborhood there are less chances to hit a local optimum. In addition, for
a given initial configuration, shorter search paths to the "global optimum" may
exist. An extreme case is when CG is a fully connected directed graph. In that
case, every local optimum is also a global optimum and a single step is enough to
go from any state to the global optimum. However, the denser the configuration
graph is, the more inefficient the search step will be. This is because in each

3/4 1/8

1/8 / ^N***>**^^ ^^

i/3( ĵĵ x / ^sc V2

1/4 1/8
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search step we optimize over the neighborhood of the current configuration, and
the larger the neighborhood is, the more time we need to find a good configuration
to move to, from where the search can proceed. Therefore, it is important to keep
the neighborhood small and not add too many edges to Co- Researchers have
been looking at such issues with mathematical rigor. The mathematical framework
used to study the convergence properties of iterative approximation algorithms is
the theory of Markov chains.

1*8 Markov Chains

A randomized local search technique operates on a state space. As mentioned
above, the search proceeds step by step, by moving from a certain configuration
(state) Si to its neighbor Sj, with a certain probability Prob(S^, Sj) denoted by
Pij. At the end of each step the new state reached represents a new configuration.
The states in K(S«) = {Sj e O|(Si, Sj) G E) are said to be connected to S,- by a
single move. We can assume that choices of all neighbors out of Si are indepen-
dent. The corresponding mathematical structure is a labeled configuration graph
with edge labels corresponding to transition probabilities. Such a configuration
graph is a Markov chain (see Figure 1.3).

1.8.1 Time-Homogeneous Markov Chains

Let CG~ (^, E) be a directed graph with O = {Si, 5 2 ) . . . , 5,*,..., Sn} the set
of all possible states, and Cost : Q -> % be a function which assigns a real
number CW* to each state Si 6 fi, and p : J51 ~> [0,1] be an edge-weighting
function such that

]T w = i ysien (i.3)

(CG>P) is a finite time-homogeneous Markov chain. In our case Costi denotes the
cost of configuration Si, and pij represents the transition probability from state Si
to Sj. The restriction on p, the edge-weighting function, is that the sum of tran-
sition probabilities of edges leaving a vertex add up to unity (p is a probability
distribution). Also, in a time-homogeneous Markov chain the transition proba-
bilities are constant and independent of past transitions. The configuration graph
CG given in Figure 1.3 represents a time-homogeneous Markov chain.

Two numbers are associated with each pair of states. One is called the selec-
tion probability or the perturbation probability, denoted by pij, and the other is
the acceptance probability Aij.
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1.8.2 Perturbation Probability

The number associated with each pair of states (edge label denoted by pij) is
called the perturbation probability\ This number actually gives the probability of
generating a configuration Sj from Si.

Let H(Si) be the configuration subspace for state Si which is defined as the
space of all configurations that can be reached from Si by a single perturbation.
For pairs of states connected by at least a single move the perturbation probability
Pij is never zero. The probability pij depends on the structure of the configuration
graph, and in the simplest case it is defined as follows:

Pij={ (1.4)
1 0 if S:} gN(SV)

This is a uniform probability distribution for all configurations in the sub-
space. The probabilities p7j can also be represented using a matrix P known as the
generation matrix or perturbation matrix. Matrix P is a stochastic matrix.4

1.8.3 Ergodic Markov Chains

A Markov chain is called ergodic if and only if it is

1. irreducible, that is, all states are reachable from all other states;

2. aperiodic, that is, for each state, the probability of returning to that state is
positive for all steps;

3. recurrent, that is, for each state of the chain, the probability of returning to
that state at some time in the future is equal to one; and

4. non-null, that is, the expected number of steps to return to a state is finite.

Let n(t) = (7T[(t), 7T2(/),..., 7Tj(t),..., 7rn(t)) be the probability state vector,
where 7Ti(t) is the probability of being in state Si at time / (iteration /).

The probability transition matrix P is used to describe how the process evolves
from state to state. If at step t, the probability state vector is Tc(t), then the probabi-
lity state vector one step later is given by

7r(*-f L) = TT(*)-P (1.5)

Hence, the probability ni(t -f 1) of being in state 5,- at step / -f- 1, is given by
n

7Ci{t + l) = Ylnj(1)-Pji (1-6)

4 A square matrix whose entries are non-negalive. and whose row sums are equal to unity, is called
a stochastic matrix. Sometimes an additional condition is that the column sums are also not zero.
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For an ergodic Markov chain, the state probability vector changes at each step
and is guaranteed to converge to a limit probability vector TT = (TTI , . . . , 7T*,...),
that is, lim^oo ft(t) = fl". The probability state vector TT, which no longer de-
pends on the time step, is the steady-state distribution of the search process.

A fundamental theorem on Markov chains states that an ergodic Markov chain
has a unique stationary distribution n which is a solution to the following equa-
tion [Kle75].

7T-7T'? (1.7)

The stationary distribution can also be obtained by finding the stationary ma-
trix Ps given by

P s = lim P* (1.8)
k —)-co

where Pk is the &-fold matrix product of P with itself. If the Markov chain is
ergodic, then Ps will have the characteristic that all its rows are identical. We say
that the Markov chain has converged to its stationary distribution.

If we start the Markov chain in any state Si, it will converge to the distribution
given by lim/f_>oo /,• • P*, where /,• is the ith unit vector (1 in the ith position and 0
elsewhere). Since /,• Ps is equal to /j Ps for all z, j , at steady state, the probability
of being in any state is independent of the initial state. We will now illustrate the
above concepts with examples.

Example 1.14 Figure 1.3 is an example of an ergodic Markov chain. The
labels on the edges connecting two states 5,- and Sj indicate the transition
probability from state Si to state Sj. The corresponding transition matrix is
given below.

f I s ° ° o I ° o ]
§ 1 o o i o i o
O O i i f O O O

P = J o o 1 I o i i o
0 i J o i o o i
1 o o i o i o I
o ± o | o o ± o

{ 0 0 0 0 i i 0 i J
Let us raise the matrix P to a large power, say 100. Using Mathemat-
ica [Wol91], this can be achieved by the command

Q=MatrixPower[P,100];
Print[MatrixForm[N[Q]]]
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which produces the following output.

/ 0.5334 0.1106 0.0385 0.0562 0.0786 0.1028 0.0313 0.0488 \

0.5334 0.1106 0.0385 0.0562 0.0786 0.1028 0.0313 0.0488

0.5334 0.1106 0.0385 0.0562 0.0786 0.1028 0.0313 0.0488

plOO _ J 0.5334 0.1106 0.0385 0.0562 0.0786 0.1028 0.0313 0.0488
r — \ 0.5334 0.1106 0.0385 0.0562 0.0786 0.1028 0.0313 0.0488 '

0.5334 0.1106 0.0385 0.0562 0.0786 0.1028 0.0313 0.0488

0.5334 0.1106 0.0385 0.0562 0.0786 0.1028 0.0313 0.0488
V 0.5334 0.1106 0.0385 0.0562 0.0786 0.1028 0.0313 0.0488 ,

•

From the above example we note that starting from any initial state, say state
3, denoted by the unit vector 73 = [0,0,1,0, 0,0,0,0], the probability of being
in any state after 100 state transitions (or moves) is given by 73 • P100, that is, the
third row of the matrix P100. The probability of being in state 1 after 100 moves
is 0.5334, of being in state 2 is 0.1106, and so on. Note that in this case the value
100 can be defined as large. Sometimes the matrix will have to be raised to a
larger power to get the stationary distribution.

Observe that since all rows are identical, irrespective of which row we start
our search, we will always get the same probability of being in any state. We can
also verify Equation 1.6. For example, when i = 4,

8

7T4 = ^2 ^3 ' PJ4 ~ ns ' P34 + 7T'4 ' p44 + 7I"6 " P64 ~*~ 7T'7 ' Pl4

J = l

_ 0.0385 0.0562 0.1028 0.0313 __
7T4 — - I - ( - I - — O.OODZ

o A o 6

which is the same as column 4 of our matrix P100 which gives the value of n4, the
steady-state probability of being in state 54.

Example 1.15 For the same ergodic Markov chain of the previous example,
the stationary distribution can be accurately obtained by solving the set of
linear equations TT = n • P, and the equation ^ " = 1 7r? — 1. Again, using
Mathematica, this can be obtained as follows.

Solution: solve
[{

P [ [ 1 , 1 ] ] p l + P [ [ 2 , l ] ] p 2 + P [ [ 3 , 1 ] ] p 3 + P [ [ 4 , 1 ] ] p 4 + P [ [ 5 , 1 ] ] p 5
+ P [ [ 6 , 1 ] ] p 6 + P [ [ 7 , l ] ] p 7 + P [ [ 8 , 1 ] ] p 8 = = p l ,

P [ [ 1 , 2 ] ] p l + P [ [ 2 f 2 ] ] p 2 + P [ [ 3 , 2 ] ] p 3 + P [ [ 4 , 2 ] ] p 4 + P [ [ 5 , 2 ] ] p 5
+ P [ [ 6 , 2 ] ] p 6 + P [ [ 7 , 2 ] ] p 7 + p [ [ 8 , 2 ] ] p 8 = = = p 2 ,

P [ [ 1 , 3 ] ] p l + P [ [ 2 , 3 ] ] p 2 + P [ [ 3 f 3 ] ] p 3 + P [ [ 4 , 3 ] ] p 4 + P [ [ 5 , 3 ] ] p 5
+ P [ [ 6 / 3 ] ] p 6 + P [ [ 7 , 3 ] ] p 7 + P [ [ 8 , 3 ] ] p 8 = - p 3 ,

P [ [ 1 , 4 ] ] p l + P [ [ 2 , 4 ] ] p 2 + P [ [ 3 , 4 ] ] p 3 + P [ [ 4 , 4 ] ] p 4 + P [ [ 5 , 4 ] ] p 5
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+ P [ [ 6 , 4 ] ] p 6 + P [ [ 7 f 4 ] ] p 7 + P [ [ 8 / 4 ] ] p 8 = = p 4 /

P [ [ l , 5 ] ] p l + P [ [ 2 , 5 ] ] p 2 + P [ [ 3 , 5 ] ] p 3 + P [ [ 4 , 5 ] ] P 4 + P [ [ 5 , 5 ] ] p 5
+ P [ [ 6 , 5 ] ] p 6 + P [ [ 7 , 5 ] ] p 7 + P [ [ 8 , 5 ] ] p 8 = = p 5 ,

P [ [ l , 6 ] ] p l + P [ [ 2 f 6 ] ] p 2 + P [ [ 3 , 6 ] ] p 3 + P [ [ 4 , 6 ] ] p 4 + P [ [ 5 , 6 ] ] p 5
+ P [ [ 6 , 6 ] ] p 6 + P [ [ 7 , 6 ] 3 p 7 + P [ [ 8 , 6 ] 3 p 8 = = p 6 ,

P [ [ l , 7 ] ] p l + P [ [ 2 , 7 ] ] p 2 + P [ [ 3 , 7 ] ] p 3 + P [ [ 4 , 7 ] ] p 4 + P [ [ 5 , 7 ] ] p 5
+ P [ [ 6 , 7 ] ] p 6 + P [ [ 7 , 7 ] ] p 7 + P [ [ 8 / 7 ] ] p 8 = = p 7 ,

P [ [ l , 8 ] J p l + P [ [ 2 , 8 ] ] p 2 + P [ [ 3 , 8 ] ] p 3 + P [ [ 4 , 8 ] ] p 4 + P [ [ 5 , 8 ] ] p 5
+ P [ [ 6 , 8 ] ] p 6 + P [ [ 7 , 8 ] ] p 7 + P [ [ 8 , 8 ] ] p 8 = = p 8 ,

p l + p 2 + p 3 + p 4 + p 5 + p 6 + p 7 + p 8 = = l } , { p l , p 2 , p 3 , p 4 ; p 5 , p 6 , p 7 , p 8 } ] ;
S i m p l i f y [ % ]

Here P [ [ i , j ] ] represents pij the elements of matrix P, and pi
represents nt (i=l,2,... ,8). The distribution thus obtained is

nr — ( 3020 626 218 318 445 582 177 276 \
n — \ 5662 5662 5662 5662 5662 5662 5662 5662 /

That is,
7T = ( 0.5334 0.1106 0.0385 0.0562 0.0786 0.1028 0.0313 0.0488)

Note that this is identical to one of the rows of our matrix P100.

1.8.4 Acceptance Probability

In many cases, the transition probabilities of a random process depend on a control
parameter T which is a function of time. The probabilities now take the form
f(Costi, Costj, T), where T is a parameter that depends on the step number of
the Markov chain, and Costi and Costj are the costs of the current and next states,
respectively. The corresponding Markov chains are called time-inhomogeneom
Markov chains. Let ACostij = Costj — Costi. Then the acceptance probability
Aij may be defined as

{ f {CosU, Costj, T) if ACostij > 0
(1.9)

1 if ACostij < 0

Thus the probability that the generated new state will be the next state depends
on its cost, the cost of the previous state, and the value of the control parameter
T. We always accept cost-improving moves. A move that deteriorates the cost
will be accepted with a probability f (Costi, Costj,T). The sequence of states
thus generated corresponds to a time-inhomogeneous Markov chain. We have a
Markov chain because of the important property that the next state depends only
on where we are now and does not depend on the states that have preceded the
current state. Therefore, for this time-inhomogeneous Markov chain, given Si as
the current state, the probability &ij (T) to transit to state Sj is defined as follows:
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®ij(T) ={ (1.10)

where pij is the perturbation probability, that is, the probability of generating a
configuration Sj from configuration Si (usually independent of T); A,-j(T) is the
acceptance probability, (see Equation 1.9), i.e., the probability of accepting con-
figuration Sj if the system is in configuration 5,-; and T is the control parameter.

The transition probabilities for a certain value of T can be conveniently rep-
resented by a matrix 0(T), called the transition matrix. The probabilities Aa'7-(T)
can also be represented using a matrix A(T) (acceptance matrix). Like the pertur-
bation matrix P, the transition matrix 0 is also stochastic. The acceptance matrix
A(T) however, is not stochastic.

1.8,5 Transition Probability

Let ©ij(T) be the transition probability from state Si to state Sj for a particular
value of the control parameter T, that is, ®ij(T) = pij • A(j(T). At a partic-
ular value of the parameter 7\ the transition matrix Q(T) is constant and thus
corresponds to a homogeneous Markov chain.

Under the assumption that all states of current neighborhood N(Si) are equally
likely, pij is equal to the following:

_ 1
Pij " ¥<M

Therefore, in summary, we have the following expressions for the probabilities

0y (T) :

' pfey if ACosttj < 0 Sj G K(5i)

^^/(Costi^ostj^) if ACosta > 0 Sj e N(5,-)
ey(T) = ^ ' ' (i.ii)

l-Zk,k?iPikAik(T) if i = j Sj£K(Si)

. 0 Sj <£HSi)

As we shall see, in the following chapter in the case of the simulated annealing
algorithm, a steady-state distribution n(T) exists for each value of the parameter
T, provided T is maintained constant for a large enough number of iterations. The
steady-state probability vector n(T) satisfies the following equation:

n(T) - *(T) • e(T)
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Furthermore, following an adequate updating schedule of the parameter T, the
process will converge to the steady state whose stationary distribution w (also
called optimizing distribution) satisfies the following equality:

7 T ~ T T ' O

1.9 Parallel Processing

In this section, we introduce the necessary terminology that will be used in the
discussion of the parallel implementations of the various iterative algorithms that
are described in this book.

Need for Parallel Processing

Exact as well as approximate iterative algorithms for hard problems have large
runtime requirements. There is ever increasing interest in the use of parallel pro-
cessing to obtain greater execution speed. Parallel computation offers a great
opportunity for sizable improvement in the solution of large and hard problems
that would otherwise have been impractical to tackle on a sequential computer. A
general problem with parallel computers is that they are harder to program. Every
computer scientist knows how to design and implement algorithms that run on
sequential computers. In contrast, only relatively few have the skill of designing
and implementing parallel algorithmic solutions.

A parallel computer is one that consists of a collection of processors, which
can be programmed to cooperate together to solve a particular problem. In order
to achieve any improvement in performance, the processors must be programmed
so that they work concurrently on the problem. The goal, of course, is usually to
reach, in much less time, a solution of similar quality to that obtained from running
a sequential algorithm. Actually, the ratio of the sequential runtime to parallel
runtime is an important performance measure called the speed-up. Sometimes,
parallel search is used to find a better solution in the same time required by the
sequential algorithm rather than to reach a similar quality solution in shorter time.

Parallel Algorithm Evaluation Measures

Let Ai and Ap9 respectively, be a sequential algorithm and a parallel algorithm for
p processors to solve the same problem. The goodness of the parallel algorithm is
usually characterized by several measures, such as

1. The time tp taken to run Ap.

2. The space sp required to run Ap.
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Level 0

e

Element we are looking for

- N-1 Leaves -

Figure 1.4: Imbalanced tree. Sequential depth first for element e would require N -f 1
operations. If the search is split among two processors, each looking in a subtree, then
element e will be returned in two steps.

3. Speed-up: how much did we gain in speed by using p processors. If ti is
the runtime of the sequential algorithm, then the speed-up Sr is defined as
follows:

sP = 7- d . i2)

Normally, 0 < Sp < p. However, this is not always the case. For instance,
assume that we would like to look for a particular node in a tree using the
depth-first search algorithm. Assume that the tree has /V nodes. Then the
maximum time that will be taken by the sequential depth-first algorithm
will be t] — N -f- 1. This happens in case the tree is imbalanced with all
the N - 1 nodes in the left subtree and being at the second level (root at
level 0), and the node we are looking for is the only node in the right subtree
(Figure 1.4). Suppose we have two processors and that each processor takes
a subtree and expands it. In that case t^ — 2. Therefore the speed-up is
Sp = ^ ^ , which is greater than 2, the number of processors. One might
wonder why this is happening? The answer is simply because in the first
place one should not have used depth-first search to locate a particular node
in a tree, that is, one must use the best possible sequential algorithm for the
problem at hand. The parallel algorithm should not mimic the sequential
algorithm nor should the sequential algorithm be a simple serialization of
the parallel algorithm.

The above definition of speed-up applies to deterministic algorithms only.
For a nondeterministic iterative algorithm such as simulated annealing,
speed-up is defined in a different manner. It is equal to the number of paral-
lel tasks into which each move is divided [RK86]. Sometimes, the number
of processors that are concurrently working is taken as a measure of the
speed-up achieved.

Another suggested definition [DRKN87] bears closer resemblance to the
definition of speed-up for deterministic algorithms. Speed-up is defined as
the ratio of the execution time of the serial algorithm to that of the parallel
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implementation of the algorithm, averaged over several runs and various
final values of the cost function.

4. Efficiency Ep\ this performance measure indicates how well we are using
the p processors,

Ep = ^ (1.13)
p

Under normal conditions, 0 < Ep < 1.

5. hoefficiency iep: this measure is an estimate of the efficiency of the algo-
rithm as we change the number of processors, while maintaining the prob-
lem instance fixed. It is desirable to have parallel algorithms with iep close
to p (linear in p). Hence, we guarantee no processor starvation as we in-
crease the number of processors.

Amdahl's Law

Amdahl's law was introduced to convince the computing community that paral-
lelism is not good after all.

Let / be the fraction parallelized in the algorithm. Then, with p processors,
the best possible parallel algorithm would require the following runtime given by

t = ( 1 - / ) / ! + ~*i (1.14)
P

Therefore, the maximum speed-up in this case would be

Sp = —j j_ (1.15)

For example, for / = 0.5, according to Amdahl's law, the speed-up cannot exceed
2 even if an infinite number of processors are made available! This is indeed a
disturbing conclusion both to the manufacturers of parallel machines, as well as to
researchers in parallel algorithms. Fortunately, a closer examination of Amdahl's
law uncovers a major flaw. The main problem with Amdahl's law is that it does
not capture how much time the algorithm spends in the parallelized fraction of the
code. If, for example, 90 percent of the time is spent in the parallelized piece of
code, then the speed-up can be as high as 0.9p. Hence, parallelism can indeed be
extremely good!

Parallel Computer Models and Properties

There are several ways one can classify computers. A possible classification is that
of multiprocessor versus multicomputer. A multiprocessor machine is a computer
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with several processors that are tightly coupled, that is, they either have a shared
memory or a shared memory address space. When programming a multiprocessor
machine one does not have to explicitly indicate from which processor he or she
wants the data. An example of such a machine is the Butterfly [Lei92].

A multicomputer also consists of several processors; however, the processors
have no shared memory or shared address space. When programming a multi-
computer, one has to explicitly request/send data from/to a given processor. An
example of a multicomputer machine is the NCUBE [Lei92]. In practice, we may
find combinations that fit in both categories. Both classes of parallel computer
models are illustrated in Figure 1.5.

A classification of parallel machine models based on the work of
Flynn [Fly66] distinguishes between the parallel machine models on the basis of
the number of instructions and data streams concurrently accepted by the machine.
Flynn identified four classes of parallel machine models.

1. SISD—Single Instruction, Single Data Stream
Here one instruction at a time is executed on one data set at a time. The
classic sequential Von Neumann machines fall into this class.

2. SIMD—Single Instruction, Multiple Data Stream
For this class, one instruction at a time is executed concurrently on several
data sets. Examples of machines that fall into this class are vector computers
and array processors.

3. MISD—Multiple Instructions, Single Data Stream
These machines are capable of executing concurrently several instructions
at a time on one data set.

4. MIMD—Multiple Instructions, Multiple Data Stream
Multiple instructions at a time are concurrently executed on multiple data
sets. MIMD machines can be either synchronous or asynchronous. The
processors of a synchronous MIMD machine are synchronized on a global
clock, thus forcing the execution of each successive group of instructions
simultaneously. For asynchronous MIMD machines the processors execute
the instructions independently of each other. Typical examples of MIMD
machines are hypercube computers (such as the NCUBE) [Lei92].

The four machine models are illustrated in Figure 1.6. The reader should note,
however, that machines that perform some lower level of parallelism, such as
pipelining, do not fit into Flynn's classification.

1.10 Summary and Organization of the Book



Figure 1.5: Models of parallel computers: (a) tightly coupled multiprocessor; (b) loosely
coupled multicomputer.
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Figure 1.6: Classification of parallel machine models; (a) SISD—Single Instruction,
Single Data Stream; (b) SIMD—Single Instruction, Multiple Data Stream; (c) MISD—
Multiple Instructions, Single Data Stream; (d) MIMD—Multiple Instructions, Multiple
Data Stream.

This chapter has introduced basic concepts of combinatorial optimization and al-
gorithm complexity. There are two general categories of algorithms for combi-
natorial optimization: (1) exact or full-enumeration algorithms, and (2) approxi-
mation algorithms, also known as heuristics. In this book, we are concerned with
hard problems. For such class of problems, exact algorithms are impractical as
they have prohibitive runtime requirements. Approximation algorithms constitute
the only practical alternative solution method.

Approximation algorithms can further be classified into problem-specific
heuristics and general heuristics. As their names indicate, problem-specific al-
gorithms are tailored to one particular problem. A heuristic designed for one
particular problem would not work for a different problem. General heuristics on
the other hand can be easily tailored to solve (reasonably well) any combinatorial
optimization problem. There has been increasing interest in such heuristic search
algorithms.

In the following chapters the reader will find detailed descriptions of five
well-thought-out general iterative approximation algorithms, namely, simulated
annealing, genetic algorithms, tabu search, simulated evolution, and stochastic
evolution. Simulated annealing mimics the thermodynamic process of annealing.
Genetic algorithms, simulated evolution, and stochastic evolution simulate bio-
logical processes according to the Darwinian theory of evolution. Tabu search
attempts to imitate intelligent search processes through the use of a memory com-
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ponent in order to learn from its (long- or short-term) past, thus making better
search decisions.

This is the only book that describes these five heuristics in a single volume.
Two of these heuristics have been the subject of several books [AK89, Aze92,
Dav91, Gol89, OvG89]. The tabu search algorithm has been widely used in the
literature [GL97, Ree95]. However, the remaining two heuristics, simulated evo-
lution and stochastic evolution, have not witnessed yet similar success. We believe
that simulated evolution and stochastic evolution are extremely effective general
combinatorial optimization techniques that deserve much more attention than they
have received. The objective of this book is to provide a uniform treatment of all
these techniques.

The book has seven chapters organized around these five iterative heuristics.
The purpose of this introductory chapter has been to motivate the student to study
and use the general iterative approximate algorithms. The chapter also introduced
the basic terminology needed in the remaining chapters.

The following five chapters are dedicated to the five selected heuristics. For
each search heuristic, we start by providing a historical account of the search
method. We then describe the basic algorithm and its parameters and operators.
This will be followed by addressing the convergence aspects of the algorithm. Ex-
amples are included to illustrate the operation of the heuristic on a number of prac-
tical problems. Parallelization strategies of the algorithm will also be presented.
In each chapter, the final section, "Conclusions and Recent Work," discusses sev-
eral other relevant variations of the described techniques (recent or otherwise).

Finally, in Chapter 7, we shall touch upon some work that has been reported
in the area of hybridization. This area concerns combining key features of vari-
ous heuristics to design new effective search techniques. In this chapter we also
discuss multiobjective optimization, and give a brief overview of how fuzzy logic
is used to represent multiobjective cost functions. Optimization using neural net-
works, and other relevant issues such as solution quality, measure of performance,
and so forth are also covered.

The body of available literature on some of the techniques, namely, simulated
annealing and genetic algorithms, is enormous. Therefore, it is impossible to
describe and discuss every single reported work. Rather, we concentrate on de-
scribing those works we are most familiar with and which we feel are the most
significant.
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Exercises

Exercise 1.1
Stirling approximation of the factorial function is as follows [Sah81]:

Using the above approximation, show that for large n,

Exercise 1.2
Given a set of n distinct positive integers X = {x\, #2 , . . . , xn}. The objec-
tive is to partition the set into two subsets Y of size k and Z of size n — k
(1 < & < §) s u c h ^ a t ^ e difference between the sums of the two subsets is
minimized. This problem is known as the set partitioning problem.

1. For a fixed k, how many partitions exist?

2. How many partitions are there for all possible values of k.

3. Assume that k = | . One possible heuristic algorithm for this problem
is the following.

Algorithm SetPartition(X, Y, Z)\
Begin

Sort Array X[l :n] in descending order;
For z = 1 To rc Do
Begin

Assign X[i] to the set which has currently the smaller sum;
EndFor;
Return (Y, Z)

End Algorithm;

(a) Find the time complexity of the above algorithm.
(b) Implement the above heuristic and experiment with it on several

randomly generated problem instances.
(c) Generalize the above heuristic to partition the set X for any value

offe< f.

Exercise 1.3
1. Experiment with the local search heuristic (page 11) on a number of

randomly generated instances of the set partitioning problem. Compare
quality of solutions obtained with those of the greedy heuristic outlined
in Exercise 1.2.
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2. The Improve subroutine can follow one of two strategies: (a) first-
improvement strategy where the first favorable cost change is accepted,
or (b) the steepest descent strategy where the entire neighborhood is
searched, and then a solution with lowest cost is selected. Discuss the
merits and demerits of both strategies.

3. Experiment with both strategies and report the effect of each strategy on
quality of solution, runtime, and so forth.

Exercise 1.4
Given a graph G{V, E) with n nodes and m edges. Show that there are at
most:

1. 2m subsets of E that might be edge coverings.

2. 2m possible cuts.

3. 2m possible paths.

4. (2m)! possible tours.

5. nn~2 possible spanning trees.

Exercise 1.5
For an n x n quadratic assignment problem (QAP), show that there are at
most n! feasible solutions.

Exercise 1.6
Write a program to generate a random connected graph. The inputs to the
program are the number of nodes, (an even number) and, the range of degree
of the nodes (for example, between 2 and 5). In a graph G(V, E), the degree
di of a node i £ V is defined as the number of (other) nodes i is connected
to.

Exercise 1.7

1. Given a graph of 2 • n elements, show that the number of balanced two-
way partitions is P(2n) = ^;n?.nf.

2. Use Stirling's approximation for n\ to simplify the expression for
P(2n). Express P{2n) using the Big-Oh notation.

3. A brute force algorithm for the two-way partition problem enumerates
all the P(2n) solutions and selects the best. Write a computer program
which implements such a brute force algorithm . What is the time com-
plexity of your program?
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4. Plot the running time of the brute force partition program for n =
1 , . . . , 10. If the maximum permitted execution time for the program
is 24 hours, what is the maximum value of n for which your program
can run to completion?

Exercise 1.8
Suppose we are given a graph with 2n nodes, and a matrix C that specifies the
connectivity information between nodes; for example, c,j gives the number
of connections between elements i and j . Let A and B represent a balanced
partition of the graph, that is, \A\ = \B\ — n. Use the local search algorithm
to divide the graph into a balanced partition such that the cost of edges cut is
minimum. Experiment with the following neighbor functions.

1. Pairwise exchange. Here two elements, one from each partition are
swapped to disturb the current solution.

2. Swap a subset of elements selected from each partition.

3. Select for swap those elements whose contribution to the external cost
is high, or those that are internally connected to the least number of
vertices.

Exercise 1.9

1. Repeat Exercise 1.8 using instead the random-walk search heuristic
given below.

Algorithm RandomWalk(50);
Begin

S = So; Bests = S;
BestCost = Cost (So);
Repeat

5 = Perturb(S); /* Generate another random feasible solution */
CostS = Cost(S)
If CostS < BestCost Then

BestCost — CostS;
BestS = S

Endlf
Until time-to-stop;
Return (BestS)

End Algorithm;

2. Compare the local-search and random-walk heuristics.

Exercise 1.10
A variation of the random-walk heuristic is to adapt a steepest descent strat-
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egy. That is, a new feasible solution is accepted only if it improves the cost.
A random search of this type is known as random-sampling.

Algorithm RandomSampling(So);
Begin

S = Sol BestS = S;
CostS = Cost (So);
BestCost = Cost(So);
Repeat

NeivS — Perturb(S); /* Generate another random feasible solution */
NewCost = Cost(NewS);
If NewCost < CostS Then

BestCost = NewCost;
CostS = NewCost;
S- NewS

Endlf
Until time-to-stop;
Return (BestS)

End Algorithm;

Using the problem instances and perturbation functions suggested in Exer-
cise 1.8, do the following:

1. Experiment with random-sampling and compare it with random-walk.

2. Compare random-sampling with local-search.

Exercise 1.11
Another iterative search heuristic is known as sequence-heuristic [NSS89].
In this heuristic a new solution with a higher cost (uphill move) is accepted if
the last k perturbations on current solution S failed to generate a NewS with
Cost(NewS) < Cost(S). The sequence-heuristic algorithm is given below.

Algorithm SequenceHeuristic(5o, Lo);
/* So is initial solution and Lo is initial sequence length. */
Begin

S = So; BestS = 5;
CostS = Cost(So);
BestCost = CW(So);
L = Lo; /* initial sequence length */
Repeat

length ~ 0; /* current length of bad perturbations */
Repeat
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NewS = Perturb(S);
NewCost = Cost(NewS);
If NewCost < CostS Then

CostS = NewCost;
S = NewS;
If NewCost < BestCost Then

BestCost = NewCost;
BestS = NewS

Endlf
Else length = length -f 1

Endlf
Until/enjtfb > L;
Z, = Update Length(L)

Until time-to-stop;
Return (BestS)

End Algorithm;

The function UpdateLength could perform an additive increase (£ = L -f/?
for some /? > 0) or geometric increase (X = /? x L for some /? > 1).

Experiment with sequence-heuristic and compare it with random-walk,
local-search, and random-sampling heuristics. Use the problem instances
and perturbation functions suggested in Exercise 1.8.

Exercise 1.12
Construct an example of a graph with 10 nodes, such that the nodes have a
large degree, say 5-10.

1. Assume that all the nodes have unit sizes. Apply the local-search algo-
rithm to obtain a two-way balanced partition of the graph.

2. Randomly assign weights to nodes say between 1 and 10 and generate
an almost balanced partition with a minimum weighted cut-set using
local-search. Since nodes have different sizes, a pairwise swap may not
be the best move to generate the neighbor function. One possibility is
to select a random partition (A or B), and to move the node to the other
partition. Use the following cost function:

Cost(A, B) = Wcx Cut - set Weight{A, B) + W3 x Imbalance(A, B)

where,

Imbalance(A, B) = Size of A- Size of B
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s(v) is the size of vertex (or node) v. Ws and Wc are constants in the
range of [0,1] which indicate the relative importance of balance and
minimization of cut-set, respectively.

3. Experiment with different values of Wc and Ws. Does increasing the
value of Wc (Ws) necessarily reduce the value of cut-set (imbalance)?

Exercise 1.13

1. Repeat Exercise 1.12 using the random-walk search heuristic.

2. Repeat Exercise 1.12 using the random-sampling search heuristic.

3. Compare the three heuristics with respect to runtime, quality of solution,
and quality of solution subspace explored.

Exercise 1.14

1. Construct a connected graph with 10 nodes and 25 edges. Starting from
a random partition, apply both the greedy pairwise exchange and the lo-
cal search algorithm to this graph and generate balanced two-way par-
titions.

2. Starting from the solution obtained from the greedy pairwise technique,
apply the local search algorithm. Comment on any noticeable improve-
ment in quality of solution and runtime.

Exercise 1.15
Given n modules to be placed in a row, show that there are ^ unique linear
placements of n modules. When n is large, show that the number of place-
ments is exponential in n.

Exercise 1.16
Write a procedure CALC-LEN to evaluate the total connection length of a
given assignment. The inputs to the procedure are,

1. The number of modules n,

2. the connectivity matrix C\ C is an n x n matrix of non-negative integers,
where Cij indicates the number of connections between modules i and

h
3. The assignment surface is a uniform grid of dimensions M x N. The

array P [ l . . . M, 1 N] is used to represent the placement information.
P[i, j] contains the number of the module placed in row i and column j .

You may assume that M • N = n. What is the complexity of your procedure?
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Figure 1.7: 210-cell mesh for Exercise 1.18.

Exercise 1.17
Suppose that n modules are placed in a row. The placement information is
represented by array p[l)..., n], where p[i] indicates the module placed in
the ith location. If the modules are numbered 1 , . . . , n, then p is simply a
permutation of 1 , . . . , n.

Write a procedure DELTA-LEN to compute the change in total wire-length
when two modules in p are swapped. Assume that the connectivity informa-
tion is represented by a connectivity matrix C as in Exercise 1.16.

Exercise 1.18
Implement a placement algorithm based on local-search. Assume that there
are 210 modules to be placed on a 15 x 14 mesh. There are two types of
modules, functional blocks and input/output (I/O) pads. The I/O pads must
be placed only on the periphery of the mesh, whereas a functional block may
be placed in any empty slot. Assume 28 I/O pads and 182 functional blocks.

Generate a random initial placement which satisfies the pad position con-
straint. Experiment with various perturbation functions. The perturb func-
tion must respect the pad position constraint. Use the DELTA-LEN procedure
of Exercise 1.17 to evaluate the change in cost function Ac.

1. Test your program for the sample circuit shown in Figure 1.7. In other
words, synthesize the connectivity matrix for the circuit and give it as
input to your program.
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2. Run your program for several random initial placements. Does the
initial solution influence the final solution?

Figure 1.8: Configuration graph for Exercise 1.19.

Exercise 1.19
Consider the configuration graph of Figure 1.8 labeled with probabilities that
are composed of uniform probabilities over each neighborhood and the ac-
ceptance function given by [Len90].

f
g2£ii . rpCostj-Cost, if &C08tij > 0

(1.16)
1 if ACostijKO

The transition matrix B(T) is given on the following page.
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1. Show that the stationary distribution at T is,

/2520 1680T 840T2 840213 672T4 560T5 360 T6 315T7\

where

N = 2520+1680r+840T2-f 840T34-672T4-f560T5+360T6-f315T7

2. Verify that the generating chain is time reversible. For a reversible
Markov chain, the transition probabilities of the forward and reversed
chains are identical ($ij = 6ji). That is, a time reversible Markov chain
is identical to itself when viewed in reverse time.

3. Show that the stationary distribution converges to an optimizing distri-
bution given by

\imn(T) = (1,0,0,0,0,0,0,0)

Exercise 1.20
Consider the configuration graph of Figure 1.9 labeled with probabilities, and
the acceptance function of Exercise 1.19. The corresponding transition matrix
is given below. Answer the following questions.

( l _ Z _ 2 l Z 0 0 £ 0 I
6 15 6 15
I 1 _ ri 0 0 n III
3 3 T^ , , ^

o o f l -^f- o H~
4 Y 4 y 2 i 24 ¥

V U 4 U 4 4 4 /

(a) Verify the transition matrix representing the configuration graph in Fig-
ure 1.9.

(b) What is the stationary distribution (TT(T)) and the optimizing distribu-
tion (TT = limT~>oK(T))?

(c) To the configuration graph of Figure 1.9 add an additional edge between
states 2 and 3, rewrite the transition matrix, and find the stationary dis-
tribution. Should the distribution be different from the one obtained in
part (b) of this question. Justify your answer.

(d) In the configuration graph obtained in part (c) above, delete edges be-
tween nodes 5 and 6 and between nodes 2 and 3, and add edges between
nodes 2 and 5 and between nodes 3 and 6 and compute the stationary
distribution. Is the stationary distribution obtained the same as in part
(b) of this question? Why?
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Figure 1.9: Configuration graph for Exercise 1.20.
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Figure 1.10: Configuration graph for Exercise 1.21.

Exercise 1.22
For the Markov chain given in Exercise 1.21, find the optimizing distribution.

Exercise 1.21
Consider the configuration graph given in Figure 1.10. The cost of the five

states is as follows: Cost\ = 1, Cost2 = 2, Costs = 3, Cost4 = 4,

Costs = 1. C W n represents the cost of state 5 n . If the acceptance criterion

used is as given in Equation 1.17 below,

e T- if ACo$Uj > 0

(1.17)

1 if ACostij<0

determine the transition matrix and find the stationary distribution.

3 3 ^ ^
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