
Chapter 1.
Introduction to IEEE Std. 1517—

Software Reuse Processes

1.1 Reuse is Boring!
Software reuse is the process of building or assembling software applications and systems from

previously developed software parts designed for reuse. Software reuse is practiced to save time
and money, and to improve quality.

Although a potentially powerful technology, reuse has never been counted among the most in-
teresting software topics. In truth, most software professionals consider reuse downright boring.
After all, who would find a worn-out subject as old as programming itself interesting? For years,
we have been hearing about the benefits reuse offers, but have yet to see them realized in practice.
Even when the popularity of object-oriented development (OOD) brought the notion of reuse to
the forefront, the software community was disappointed because less object reuse was achieved
than expected. Reuse, it seems, is not an automatic byproduct of OOD.

1.2 The Next Form of Reuse
In the future, however, reuse is likely to elicit a very different reaction. The next form of reuse

will be the key enabler of the world trade of software via the World Wide Web. Reuse via the Web
has already captured the imagination of the software industry and business community at large.
After all, who would not be interested in the primary enabler of an emerging multi-billion dollar
industry that promises to turn the traditional software development approach upside down?

The next form of reuse centers on components and component-based development. Figure 1-1
shows the projected growth for the component industry over the next few years.1 Components are
expected to be the primary driver of the dramatic changes about to take place in software devel-
opment.

Components lie at the very heart of the future vision of computing. Corporations expect that
they soon will be running their businesses using Web-enabled, enterprise business applications
composed from predefined, reusable, and replaceable components distributed over networks. Al-
though part of the application may run on a client, part on the middle-tier, and another part on a
backend database server, its comprising components—written in different languages and supplied
from multiple sources—will work together to perform the application's services.

In t roduct ion to IEEE Std. 1517—Software Reuse Processes

Component Industry

Services

Sales

m
• • • ••-JT

Growth Projections

^ $5.5 billion

$2.4 billion
•

2001

Figure 1-1. Between 1998 and 2001, component sales are
predicted to increase from $1.1 billion to $2.4 billion, and

related services from $2.2 billion to $5.5 billion.

Component-based applications offer the advantages of being both easily customized to meet
current business needs and easily modified to meet changing business needs over time. Also, they
leverage a corporation's investment in its legacy systems by containing valuable existing function-
ality wrapped into reusable components. Thus, component-based applications are likely to be
composed of an interacting mixture of pre-developed components that preserve the business' core
functionality and new components that take advantage of the newest technologies, such as the
Internet. Today, examples of components include objects written in languages such as Smalltalk,
C++, and Java, and other software parts such as Active X controls and design frameworks.

1.3 Components
A component may be thought of as an independent module that provides information about

what it does and how to use it through a public interface, while hiding its inner workings. The in-
terface identifies the component, its behaviors, and interaction mechanisms.

The idea of components is not new. Fundamental to the component concept are the predecessor
software engineering concepts of program modularization, structured programming, and informa-
tion hiding, which were introduced in the 1960s by Edgar Dijkstra, David Parnes, and others.

Although as of yet there is no industry consensus on the definition of a component, there is
some agreement on the properties that a component is expected to have. For instance, a component
should provide a set of common functionality that may be used as a self-contained building block
in the construction of software applications. In addition, a component should have a well-defined
interface, hide implementation details, fit into an architecture, be easily replaced, and have the

Software Reuse: A Standards-Based Guide

ability to inter-operate with other components. Finally, a component should be reusable in many
different software applications and systems.

Szyperski's definition of a component emphasizes the importance of the interface and context
specification of a component as well as its independent nature:

A software component is a unit of composition with contractually specified
interfaces and explicit context dependencies only. A software component can
be deployed independently and is subject to composition by third parties.2

Table 1-1 is a list of components compiled from several recent software publication articles on
the topic. The components listed include examples of small-grained, desktop-bound visual compo-
nents (e.g., GUI widgets), as well as large-grained components that capture a complete business
function (e.g., a shipping component that includes order entry and shipment functionality).

The list of components illustrates how the industry's notion of components has evolved over
the last decade. At first, the term component typically was used to refer to compound documents
(e.g., OpenDoc components and Microsoft's Object Linking and Embedding (OLE) components),
and then also to refer to binary and source code components (e.g., Active X Controls and CORBA
components). Later, due to the market's drive to expand component technology beyond the desk-
top to the server, the concept of components was enlarged to include more abstract and larger-
grained components, such as design templates, frameworks, and even application packages. In con-
trast to earlier components, most of which were visual and client-based, these types of components
(e.g., Enterprise JavaBeans, SAP AG's R/3 Package, IBM's San Francisco Project, VISIX Soft-
ware's Galaxy, Template Software's SNAP) are often non-visual, backend, and server-based. They
implement infrastructure services such as event notification, backend services such as transaction
processing, and business functions such as shipping.

1.3.1 Beyond Objects
Today, components are seen as a step beyond objects. Like objects, components use contractu-

ally specified interfaces to implement the requirement of plug-compatibility with other compo-
nents. But they go beyond objects by better addressing the requirement for replaceability and by
enabling the reuse of software parts that are larger-grained and at higher levels of abstraction.

A noted shortcoming of objects is that they do not scale up well when used to build large, com-
plex application systems because they are too fine-grained and at too low an abstraction level. An-
other shortcoming is that system modification, maintenance, and testing can be difficult because of
inheritance and behavior overriding. Replacement of an object with a new object that implements
changes to the business may impact all other objects that inherit properties of the replaced object
and thus may lead to extensive re-testing.

In contrast to objects, components can be large-grained as well as small-grained software parts.
Large-grained components (enterprise components) encapsulate major chunks of an application's
functionality in an independent, reusable, and easily replaceable unit. Because of their size, fewer
enterprise components are needed to construct an application than objects. This solves the scaling
problem with fine-grained components where integration and assembly become very tedious be-
cause of the number of parts needed to construct a large application.

In t roduct ion to IEEE Std. 1517—Software Reuse Processes

Enterprise components maximize the potential benefits that reuse can deliver by making reuse
practical in large-scale system projects. Also, because they are independent units that encapsulate a
complete function, enterprise components also solve the replaceability problem. When changes in
the business occur, the old component can be easily pulled out and replaced with a new component
that satisfies the new business requirements with little or no impact on other parts of the system.

Table 1 -1 . Examples of Components

Calendars: On screen widget
Button for a user screen: List Box, Dialog Box
Order entry process (full application)
CICS transaction call
Customer service screen
Customer management component
Validation component that interacts with multiple DB2 tables
Customer management component
Workflow component
Shipping component (order entry and shipment specification)
Charge amount
Business Associates
Container type
Unit of measure
Event notification (infrastructure service)
User interface controls
Inter-application communication protocols
Customer component
Invoice component
Order component
Security
General ledger
Asset depreciation component
Letter-of-credit
Manufacturing work-in-process module
Inventory tracking application

Software Reuse: A Standards-Based Guide

1.4 Component-Based Development
So strong is the software community's belief in components, that it may be simply a matter of

time before component-based development becomes the dominant software development ap-
proach. Component industry projections are that 61 percent of all new applications will be devel-
oped using components by the year 2001.3

Component-based development (CBD) is the latest embodiment of reuse. It is an assembly ap-
proach to software development in which software applications are constructed by means of as-
sembling components. Some of these components may be predefined components housed in
libraries or supplied by other sources such as external vendors, some may be harvested from exist-
ing systems and applications, and others may be developed anew for the project at hand. CBD may
also be described as an architecture-driven software development approach, where an architecture
is a generic structure or high-level design that is intended to be used to build a set of related soft-
ware products or systems. The architecture provides a framework for assembling the components
into a software application.

The strategy underlying CBD is to use predefined software components and architectures to
eliminate redesigning and rebuilding the same software structures over and over again. Because of
this underlying strategy, not only does the CBD approach imply reuse, it demands reuse to deliver
any significant gains in software productivity, quality, and development speed. Since reuse lies at
the very heart of the CBD approach, this development method must be guided by the principles of
reuse.

1.4.1 Benefits of Component-Based Development

It has long been recognized that reuse is a powerful technology that potentially can deliver tre-
mendous benefits. Exploiting component-based development can provide very significant software
productivity, quality, and cost improvements to an organization. Table 1-2 lists the benefits of
component-based development, which are really just a repeat of the benefits that have always been
promised by reuse.

1.4.2 Delivering Quality
One of the most important benefits that reuse delivers is quality. Among all the powerful soft-

ware technologies available today, software reuse is the best way to accelerate the production of
high quality software. What sets reuse apart is its ability to provide the benefits of faster, better,
and cheaper without compromise. With the exception of reuse, all other software technologies re-
quire a trade-off of possible benefits (e.g., faster software development at the expense of software
quality). According to the Gartner Group's findings, reuse is the only technology that allows a
company to simultaneously address software cost, time-to-market, flexibility, and quality.6 Reuse
enables a company to achieve both higher quality systems and lower costs, hence gaining a com-
petitive advantage in the marketplace.

In t roduct ion to IEEE Std. 1517—Software Reuse Processes

Table 1-2. Benefits of Component-Based Development45

• Deploy critical software applications more quickly
• Simplify large-scale software development
• Encapsulate business services into reusable application logic
• Shorten software development cycles
• Reduce the amount of new code to write
• Allow software applications to share functionality
• Make software applications more adaptable; easier to change
• Decrease software complexity
• Increase software reliability and overall quality
• Increase software productivity by reducing costs

1.4.3 Exploiting Reuse Benefits

Not only are there tremendous benefits to be gained from reuse, but also there are tremendous
opportunities to employ reuse in software projects. Analysis of software applications and systems
has shown that they are composed of similar parts. In general, it is reasonable to expect that 60 to
70 percent of a software application's functionality is similar to the functionality in other software
applications, that 40 to 60 percent of its code is reusable in other software applications, and that 60
percent of its design is reusable in other software applications.7 Therefore, the majority of almost
any software application can be assembled from predefined components, provided those compo-
nents were designed to be "plug compatible."

Components are the software industry's latest attempt to capitalize on this similarity. Backed
by advances in technologies and tools, components offer the best chance yet to achieve a signifi-
cant level of reuse in industrial-strength application development projects.

1.5 Components and Standards
However, there is one catch. Standards. The success of the components industry is totally de-

pendent on standards. For example, it is obvious that interoperability standards are a basic neces-
sity. Interoperability standards are necessary to be able to assemble components from different
sources into working applications and systems.

Components are expected to communicate with one another and to use each other to provide
their services or functionality. A standard component interoperability model assures components
written in different languages, located in different places, and running on different platforms and
on different machines or address spaces can be used together, sharing data and capabilities.

There currently are three de facto standards for component specification, interoperability, and
distributed computing:

1. Object Management Group's Common Object Request Broker Architecture/Internet
Interoperability Protocol (OMG's CORBA/IIOP): for CORBA components that are
written in different languages such as C++, Visual Basic, and Java and run on multi-

Software Reuse: A Standards-Based Guide

pie distributed platforms

2. Microsoft's Component Object Model/Distributed Component Object Model
(COM/DCOM): for ActiveX controls that can be built in different languages such as
C++, Smalltalk and Java, and run on a Windows environment

3. Java/JavaBeans/Enterprise JavaBeans: for JavaBeans that are built in Java and run
on all environments that support the Java virtual machine

HOP is the CORBA message protocol used to provide component communication over the
Internet or an Intranet. Remote Method Invocation (RMI) is used to enable distributed Java com-
ponents to communicate with one another.

The fact that there are three such interoperability models rather than one is not considered a
problem by companies attempting to implement component technology because the three models
are quite similar and are bridged by tools.8

1.6 Process Standards
Although interoperability standards ensure that components will fit together, they are not

enough to ensure the success of a global components industry. Software developers also need
process standards that detail how to identify, analyze, design, implement, test, deploy, maintain,
and evolve high-quality components and component-based applications.

Process standards serve two important functions to enable the world trade of software compo-
nents:

1. Establishment of a common understanding of the software process between software
producers and software consumers

2. Assurance of the quality of software components and component-based applications

1.6.1 Improving Communication

First, consider the issue of understanding between software producers and software consumers.
In this context, a software producer refers to a software developer or vendor who provides soft-
ware products (e.g., software systems, applications, or components) to a software consumer (e.g.,
user or software developer who uses the software product to build a new software product). Soft-
ware producers and software consumers often do not speak the same language. When they enter
into a relationship where one agrees to provide software to the other, it is very difficult to commu-
nicate product and project requirements unless the process to be used is well understood by all
parties involved. The world trade of software complicates this problem because software producers
and software consumers may not know of one another. Also, they may be members of different
organizations and can be located in different places around the world.

A standard can foster an improved understanding between software consumers, software pro-
ducers, and everyone else involved in the life cycle of software products, regardless of these com-
plications. As an example, consider the user (or manager) who wants a CBD approach employed to
develop a software product. Having a standard that specifies what is required in a software life

10 Introduct ion to IEEE Std. 1517—Software Reuse Processes

cycle model to enable CBD can clarify for the user (or manager) and the developer what is entailed
in such an approach. The standard specification of what is required in the life cycle model can
even be used as the basis for an informal or legally binding contractual agreement between the
parties.

1.6.2 Assuring Quality

Second, quality has always been an important software issue. The world trade of software
makes quality an even more important software issue. The business of global reuse of components
via the World Wide Web cannot succeed unless the quality of components can be assured. Com-
ponent consumers will demand quality assurance from component producers. Interface standards
are not enough to guarantee component quality.

Historically, the software industry has followed the Deming school of total quality management
which espouses using a better quality process to produce a better quality product. Empirical evi-
dence has shown that the quality of the software life cycle process used directly affects the quality
of the software it produces.9'10 In other words, software quality follows from software process qual-
ity. Process standards that capture the best-known software practices are considered the best means
available to assure the quality of the software life cycle process and, hence, the quality of the soft-
ware product. Like any software user, component consumers will demand that component produc-
ers use software processes and practices that result in high quality software components and
component-based applications. The components industry must rely on process standards and prod-
uct quality standards as important means to assure the quality of components and component-based
applications.

1.7 IEEE Std. 1517—Reuse Processes
IEEE Std. 1517—Standard for Information Technology—Software Life Cycle Processes—

Reuse Processes is the process standard for reuse and for CBD.1' It is a requirements specification
for practicing reuse and CBD on an enterprise-wide basis. IEEE Std. 1517 identifies the processes
involved in practicing software reuse and describes, at a high level, how the processes operate and
interact during the software life cycle. Also, it defines reuse terminology. Because IEEE Std. 1517
addresses both the development and maintenance of software with the use of predefined reusable
software parts and the development and maintenance of reusable software parts, it is applicable to
CBD. In this standard, reusable software parts are called assets.l2

1.7.1 Purpose of IEEE Std. 1517

In general, the purpose of IEEE Std. 1517 is to provide the basis for the incorporation of reuse
into the software life cycle. More specifically, its purposes are to:

• Establish a framework for practicing reuse within the software life cycle

• Specify the minimum set of processes, activities, and tasks to enable the practice of
reuse when developing or maintaining software applications and systems

Software Reuse: A Standards-Based Guide 11

• Define the input and output deliverables required and produced by these reuse proc-
esses

• Explain how to integrate reuse processes, activities, and tasks into the ISO/IEC &
IEEE/EIA 12207 Standard software life cycle framework

• Improve and clarify communication between software producers and software con-
sumers regarding reuse processes and reuse terminology

• Promote and control the practice of software reuse to develop and maintain software
products

It is important to emphasize that this standard does not define one specific, rigid software life
cycle that must be adhered to. Instead, IEEE Std. 1517 is more correctly viewed as simply a speci-
fication of the minimum requirements that a software life cycle must meet to include reuse. In
other words, it provides the software community with a clear and explicit specification as to what
is required in a software life cycle to accomplish the practice of reuse and to enable CBD.

Software developers will shy away from a standard that dictates one specific process and
rightly so, because this is not a one-size-fits-all situation. It is a well-known fact that different
software projects and different organizations have very different software life cycle requirements
and preferences. However, going to the other extreme where there is no reuse process standard
whatsoever leaves the software industry without any guidance as to what is needed to practice re-
use or any means to evaluate and choose among software products and service providers that claim
to enable and support reuse. The result of having no clear idea of what is needed to practice reuse
is a history of little reuse.

Because this standard is a requirements specification rather than an implementation of reuse
processes, IEEE Std. 1517 is open and can be used with virtually any software life cycle offered by
a vendor or developed in-house by an organization. Organizations and developers who do not want
a specific set of reuse processes forced upon them have nothing to fear and much to gain from
IEEE Std. 1517.

1.7,2 Uses of IEEE Std. 1517
Like all IEEE standards, the use of this standard is voluntary. An individual organization may

choose to adopt IEEE Std. 1517 as a means of improving its software processes. For example, an
organization that desires to use the software reuse practices that have been deemed by consensus to
represent the "best of breed" may choose to adopt this standard.

Alternatively, an organization may decide to adopt this standard as a way to assert that its soft-
ware development process conforms to the best-known software reuse practices. Some reasons to
conform to this standard include:

• Improve the software life cycle processes used to develop and maintain software ap-
plications and systems

• Adopt the best software reuse practices

• Adopt a CBD approach

• Improve the quality of software applications and systems developed

12 In t roduct ion to IEEE Std. 1517—Software Reuse Processes

• Decrease the costs of developing and maintaining software applications and systems

• Decrease the time required to develop and maintain software applications and sys-
tems

• Understand software reuse terminology

• Increase competitive advantage of software applications and systems

• Extend a software life cycle model to include reuse processes, activities, and tasks

1.7.3 Application of IEEE Std. 1517

IEEE Std. 1517 is written for both managers and technical personnel that are involved in ac-
quiring, supplying, or developing software applications and systems or reusable assets. IEEE Std.
1517 applies to:

1. the acquisition of software and software services

2. the acquisition of assets

3. the supply, development, operation, and maintenance of software applications and
systems using a CBD approach

4. the supply, development, management, and maintenance of assets

5. the establishment of a systematic reuse program and components strategy at the
organization or enterprise level

1.8 Placement of IEEE Std. 1517 in the IEEE
Software Engineering Standards Collection

As Table 1-3 shows, software engineering standards have been produced by several organiza-
tions.13 At the time of writing, IEEE Std. 1517 is one of more than 300 software engineering stan-
dards that have been developed and maintained by more than 50 different standards organizations.
The IEEE Computer Society is responsible for the creation and maintenance of approximately 50
standards. IEEE Std. 1517 is a member of the IEEE Computer Society Software Engineering Stan-
dards Committee (SESC) collection of standards. IEEE Std. 1517 has been designed to fit into the
SESC standards collection as a practice standard; i.e., a description of the best software reuse prac-
tices. It provides the reuse processes requirements to be met by a software life cycle model that
claims reuse support.

1.8.1 SESC

The IEEE Software Engineering Standards Committee (SESC) was formed in 1976.14 Its mis-
sion is to plan, improve, and coordinate a collection of software engineering standards whose func-
tion is to prescribe the norms of software engineering practice.

Software Reuse: A Standards-Based Guide 13

Software engineering is: (1) The application of a systematic, disciplined,
quantifiable approach to the development, operation, and maintenance of
software; that is, the application of engineering to software. (2) The study of
approaches as in (J)."15

Since its formation, the number of SESC software engineering standards has grown from one to
nearly 50.16 Software engineering standards cover the various software life cycle processes such as
design, testing, and maintenance; the various aspects of software quality such as quality assurance,
performance monitoring, and reliability; and supporting functions such as training, project man-
agement, and configuration management.

To better manage and make standards easier to use, the SESC is reorganizing its standards col-
lection. The reorganization is based on an architecture comprised of five classes of objects: cus-
tomer, process, agent, resource, and product.17 This object-oriented view represents software
engineering as being performed by a project that consists of a set of agents. The agent interacts
with the customer and uses resources to perform a process that produces a product.

Table 1-3. Examples of Organizations that Produce
Software Engineering Standards

ORGANIZATION ORGANIZATION'S NAME

US National Standards

ASTM

EIA

ANS

IEEE

American Society for Testing and Materials

Electronic Industries Association

American National Standard

Institute of Electrical and Electronics Engineers

US Government Standards

NIST

DoD

NASA

National Institute of Standards and Technology

Department of Defense

National Aeronautics and Space Administration

International Standards

ISO

I EC

International Organization for Standardization

International Electrotechnical Commission

14 In t roduct ion to IEEE Std. 1517—Software Reuse Processes

Level 1

Level 2

4. Techniques StandardsLevel 4

Figure 1-2. The SESC Standards Architecture

1.8.2 SESC Standards Architecture

The SESC Standards Architecture is depicted in Figure 1-2.18 The first level of the SESC stan-
dards architecture contains software engineering terminology standards and the taxonomy of the
standards.

The second level contains an overall guide to the SESC collection of standards. It describes the
relationships among the SESC standards.

The third level consists of four three-layer stacks (or the program elements). The four stacks
contain standards regarding the customer, process, product, and resource objects of software engi-
neering. Each stack is divided into three layers representing three types of standards:

• Layer 1: Principles—Principle or policy standards describe objectives for standards
that belong to a stack

• Layer 2: Elements—Element standards provide high-level guidelines of software
engineering activities that belong to a stack

• Layer 3: Application Guides and Supplements—Guides provide guidance on how to
apply Element Standards that belong to a stack

The fourth level of the standards architecture contains the Techniques Standards. These stan-
dards describe software-engineering techniques that are broadly applicable (e.g., can be used by
several life cycle processes or activities).

IEEE Std. 1517 is classified as & process elements standard. As shown in Figure 1-2, it belongs
at Level 3 and in Layer 2 of the Process Stack in the SESC Standards Architecture.

Level 3
Program
Elements

1. Terminology

2. Overall Guide

IEEE Std. 1517
Guides Guides Guides

ElementsElementsElementsElements

Principles Principles Principles Principles

MiBiMM

Software Reuse: A Standards-Based Guide 15

1.9 Supplement to ISO 12207
IEEE Std. 1517 is a supplement to the ISO and IEEE 12207 Standard for Information Tech-

nology—Software Life Cycle Processes.19 IEEE Std. 1517 identifies the reuse processes and ex-
plains how they are integrated into the ISO 12207 life cycle process framework. (Note that the ISO
12207 framework and the IEEE 12207 framework are the same. Therefore, when reference is
made to the ISO 12207 framework, it refers to both versions of the standard.)

A 24 September 1997 meeting letter of the IEEE Software Engineering Standards Committee
states: "The ISO 12207 framework is considered the strategic definition of the software life cycle
model." (See Chapter 2, Figure 2-2 for the 12207 Life Cycle Framework.) However, the ISO
12207 Standard is not sufficient by itself to enable and support the practice of reuse because it
does not explicitly define reuse process requirements for the software life cycle. IEEE Std. 1517
was created to make reuse an explicit part of the software life cycle. (See Chapter 3, Figure 3-1 for
the 1517 Life Cycle Process Framework.)

The writers of IEEE Std. 1517 designed it as a supplement that is integrated into the ISO 12207
specification. Desiring to practice what they preached, the writers of IEEE Std. 1517 reused the
life cycle framework and process descriptions from the ISO 12207 Standard, rather than recreate a
new framework to show how to augment the software life cycle with reuse processes. (See Chapter
8, Figure 8-1 for the 1517 Framework and Processes.) This means that compliance with IEEE Std.
1517 also results in compliance with the ISO (and IEEE) 12207 Standard. This also means that it
is impossible to understand or apply the IEEE Std. 1517 without also understanding the ISO 12207
Standard—both its framework and its contents. For this reason, Chapter 2 is devoted to a detailed
explanation of the ISO 12207 Standard.

1.10 References
1. D. Kara, "Build vs. Buy: Maximizing the Potential of Components," Component Strategies,

July 1998, pp. 22-35.

2. Szyperski, Component Software: Beyond Object-Oriented Programming, Addison Wesley
Longman, 1998, P. 34.

3. B. Ambler and S. Venkat, "Large-Grained Components & Standards: Perfect Together,"
Component Strategies, Oct. 1998, pp. 32-46.

4. R. Levin, "Components on Track," Information Week, 5 Junel998, pp. 93-98.

5. M. Buchheit and B. Hollunder, "Building and Assemblying Components," Object Magazine,
Nov. 1997, pp. 62-64.

6. Software Reuse Report, Gartner Group, Stanford, Conn., 1995, p.7.

7. W. Tracz, Tutorial: Software Reuse: Emerging Technology, IEEE Computer Society Press,
Los Alamitos, Calif, 1988.

8. N. Ward-Dutton, "Componentware Turns the Corner," Application Development Trends, July
1998, pp. 18-19.

16 Int roduct ion to IEEE Std. 1517—Software Reuse Processes

9. P. Lawlis et al., "A Correlation Study of the CMM and Software Development Processes,"
CrossTalk, Sept. 1995, pp. 21-25.

10. CMM Summary, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, Pa.,
SEI Web page: sei.cmu.edu.

11. IEEE 1517, Standard for Information Technology—Software Life Cycle Processes—Reuse
Processes, IEEE, Piscataway, N.J., 1999.

12. Ibid.

13. J. Moore, Software Engineering Standards, IEEE Computer Society, 1998, pp. 267-276.

14. Ibid., 1998, pp. 34-57.

15. IEEE Std. 610.12, Standard Glossary of Software Engineering Terminology, IEEE, Piscata-
way, N.J., 1990.

16. J. Moore, Software Engineering Standards, pp.34-57.

17. Ibid., p. 23.

18. Ibid., p. 23.

19. ISO/IEC 12207—1996 Standard for Information Technology—Software Life Cycle Processes,
International Organization for Standardization and International Electrotechnical Commission,
Geneva, Switzerland, 1996.

