
Chapter 1

Software Engineering Life Cycle Processes

1. Introduction to IEEE/EIA Standard 12207.0-1996

IEEE/EIA Standard 12207.0-1996 establishes a common framework for software life cycle
processes. This standard contains processes, activities, and tasks that are to be applied during the
acquisition of a system that contains software, a stand-alone software product, and software
service during the supply, development, operation, and maintenance phases of software products.

The International Organization for Standardization (ISO) and the International Electrotechnical
Commission (EEC) published ISO/IEC 12207, Information Technology -- Software Life Cycle
Processes, in August 1995. IEEE/EIA Standard 12207.0 is an American version of the
international standard. IEEE/EIA Standard 12207.0 consists of the clarifications, additions, and
changes accepted by the Institute of Electrical and Electronics Engineers (IEEE) and the
Electronic Industries Association (EIA) during a joint project by the two organizations.
IEEE/EIA Standard 12207.0 contains concepts and guidelines to foster better understanding and
application of the standard. Thus, this standard provides industry a basis for software practices
that is usable for both national and international businesses.

IEEE/EIA Standard 12207.0 may be used to:

• Acquire, supply, develop, operate, and maintain software.

• Support the above functions in the form of quality assurance, configuration management,
joint reviews, audits, verification, validation, problem resolution, and documentation.

• Manage and improve the organization's processes and personnel.

• Establish software management and engineering environments based upon the life cycle
processes as adapted and tailored to serve business needs.

• Foster improved understanding between customers and vendors and among the parties
involved in the life cycle of a software product.

• Facilitate world trade in software.

IEEE/EIA Standard 12207-1996 is partitioned into three parts:

• IEEE/EIA Standard 12207.0-1996, Standard for Information Technology - Software Life
Cycle Processes: Contains ISO/EEC 12207 in its original form and six additional annexes
(E through J): Basic concepts; Compliance; Life cycle process objectives; Life cycle data
objectives; Relationships; and Errata. A unique IEEE/EIA foreword is included.

• IEEE/EIA Standard 12207.1~ 1997, Guide for ISO/IEC 12207, Standard for Information
Technology — Software Lifecycle Processes -- Life Cycle Data: Provides additional
guidance on recording life cycle data.



• IEEE/EIA P12207.2-1997, Guide for ISO/IEC 12207-1997, Standard for Information
Technology — Software Life Cycle Processes — Implementation Considerations: Provides
additions, alternatives, and clarifications to ISO/EEC 12207's life cycle processes as
derived from U.S. practices.

2. Application of IEEE/EIA Standard 12207-1996

This section lists the software life cycle processes that can be employed to acquire, supply,
develop, operate, and maintain software products. IEEE/EIA Standard 12207 groups the
activities that may be performed during the life cycle of software into five primary processes,
eight supporting processes and four organizational processes. One of the primary processes,
development, is emphasized in this tutorial set.

2.1 Development process

The development process contains the activities and tasks of the developer. The process contains
the activities for requirements analysis, design, coding, integration, testing, and installation and
acceptance related to software products. It may contain system related activities if stipulated in
the contract. The developer performs or supports the activities in this process in accordance with
the contract. The developer manages the development process at the project level following the
management process, which is instantiated in this process. The developer also establishes an
infrastructure under the process following the infrastructure process, tailors the process for the
project, and manages the process at the organizational level following the improvement process
and the training process.

This process consists of the following 12 activities:

1. Process implementation

2. System requirements analysis

3. System architectural design

4. Software requirements analysis

5. Software architectural design

6. Software detailed design

7. Software coding and testing

8. Software integration

9. Software qualification testing

10. System integration

11. System qualification testing

12. Software installation

13. Software acceptance support.

This tutorial only covers seven of the above activities: system requirements analysis and design,
software requirements, software architecture and detailed design, implementation (coding),
testing and the maintenance process.8 are listed below



1. System requirements analysis. Describes the functions and capabilities of the system;
business, organizational and user requirements; safety, security, human-factors
engineering (ergonomics), interface, operations, and maintenance requirements; also
includes design constraints and system measurements.

2. System architectural design. Identifies items of hardware, software, and manual-
operations. It shall be ensured that all system requirements are allocated among the items.
Hardware configuration items, software configuration items, and manual operations are
subsequently identified from these items.

3. Software requirements analysis. Establishes and documents software requirements
including functional, performance, external interfaces, design constraints, and quality
characteristics.

4. Software architectural design. Transforms the requirements for the software item into an
architecture that describes its top-level structure and identifies the software components.
All requirements for the software item are to be allocated to their software components
and further refined to facilitate detailed design.

5. Software detailed design. Develops a detailed design for each software component of the
software item. The software components are refined into lower levels containing software
units that can be coded, compiled, and tested. All software requirements are allocated
from the software components to software units.

6. Software coding and unit testing. Coding and unit testing of each software configuration
item.

7. Software integration and testing. Integration of software units and software components
into the software system. Perform qualification testing to ensure that the final system
meets the software requirements.

8. Software maintenance. Modification of a software product to correct faults, to improve
performance or other attributes, or to adapt the product to a changing environment.

2.2 Supporting life cycle processes

The supporting life cycle processes consist of eight processes. A supporting process supports
another process as an integral part with a distinct purpose and contributes to the success and
quality of the software project. A supporting process is employed and executed as needed, by
another process. The supporting processes are:

1. Documentation process. Defines the activities for recording the information produced by
a life cycle process.

2. Configuration management process. Defines the configuration management activities.

3. Quality assurance process. Defines the activities for objectively assuring that the
software products and processes are in conformance with their specified requirements
and adhere to their established plans. Joint reviews, audits, verification, and validation
may be used as techniques of quality assurance.



4. Verification process. Defines the activities (for the acquirer, the supplier, or an
independent party) for verifying the software products and services in varying depth,
depending on the software project.

5. Validation process. Defines the activities (for the acquirer, the supplier, or an
independent party) for validating the software products of the software project.

6. Joint review process. Defines the activities for evaluating the status and products of an
activity. This process may be employed by any two parties, where one party (reviewing
party) reviews another party (reviewed party) in a joint forum.

7. Audit process. Defines the activities for determining compliance with the requirements,
plans, and contract. This process may be employed by any two parties, where one party
(auditing party) audits the software products or activities of another party (audited party).

8. Problem resolution process. Defines a process for analyzing and removing the problems
(including non-conformances), regardless of nature or source, that are discovered during
the execution of development, operation, maintenance, or other processes.

2.3 Organizational life cycle processes

The organizational life cycle processes consist of four processes. They are employed by an
organization to establish and implement an underlying structure made up of associated life cycle
processes and personnel, and continuously improve the structure and processes. They are
typically employed outside the realm of specific projects and contracts; however, lessons from
such projects and contracts contribute to the improvement of the organization. The organizational
processes are:

1. Management process. Defines the basic activities of the management, including project
management related to the execution of a life cycle process.

2. Infrastructure process. Defines the basic activities for establishing the underlying
structure of a life cycle process.

3. Improvement process. Defines the basic activities that an organization (that is, acquirer,
supplier, developer, operator, maintainer, or the manager of another process) performs for
establishing, measuring, controlling, and improving its life cycle process.

4. Training process. Defines the activities for providing adequately trained personnel.

3. Introduction to Tutorial

This tutorial (Volume 1 of the set) has been partitioned into chapters to support the IEEE
Certificate for Software Development Professionals (CSDP) examination and as a software
engineering textbook and reference guide. Chapter 1 provides an overview of the history and
current state of software engineering. Chapter 2 to covers several subject areas from the CSDP
exam specifications, including professionalism and software law. Chapters 3 through 5 and
Chapters 7 through 8 discuss the major development processes. Chapter 6 surveys software
development strategies and methods. Chapter 9 discusses maintenance (again in support of the
CSDP exam).



Each chapter begins with an introduction to the subject and the supporting papers and standards.
Each introduction incorporates the appropriate clauses from EEEE/EIA Standard 12207-1997.
The appropriate IEEE Software Engineering Standards are contained within every chapter. Two
additional Computer Society Press Tutorials contain appropriate standards.

• The standards for the management process can be found in a separate Computer Society
Press tutorial, Software Engineering Project Management, 2nd edition. Be sure to obtain
the latest printing from 2001. The three standards included in the Project Management
tutorial are:

> IEEE Standard 1058-1998, IEEE Standard for Software Project Management Plans
(draft)

> IEEE Standard 1062-1998, IEEE Recommended Practice for Software Acquisition

> IEEE Standard 1540-2001, IEEE Standard for Software Life Cycle Processes —
Risk Management

• The requirements standards are included in a separate Computer Society Press tutorial,
Software Requirements Engineering, 2nd edition. The three standards included in the
Requirements tutorial are:

> IEEE wStandard 830-1998, Recommended Practice for Software Requirement
Specifications

> IEEE Standard 1233-1998, Guide to Preparing System Requirements Specifications

> IEEE Standard 1362-1998, Standard for Information Technology - System
Definition - Concept of Operations

4. Articles

The first paper (letter) credits Professor Friedrich L. Bauer with coining the phrase "software
engineering." In 1967, the NATO Science Committee organized a conference to discuss the
problems of building large-scale software systems. The conference was to be held in Garmisch,
Germany, in 1968. At a pre-conference meeting, Professor Bauer of Munich Technical
University, proposed that the conference be called "Software Engineering" as a means of
attracting attention to the conference. This short paper (letter), written by Professor Bauer of
Munich and edited by Professor Andrew D. McGettrick of University of Strathclyde, Glasgow,
Scotland, was the foreword from an earlier IEEE Tutorial, Software Engineering — A European
Perspective [1], explaining the history behind the term. It is therefore included in this tutorial to
give full credit to Professor Bauer.

The centerpiece of this chapter is an original paper from an earlier Software Engineering tutorial
[2], written by the well-known author and consultant, Roger Pressman. As indicated in the
Preface, one of the problems of software engineering is the shortage of basic papers. Once
something is described, practitioners and academics apparently move onto research or to the finer
points of argument, abandoning the need to occasionally update the fundamentals. Dr. Pressman
undertook the task of updating the basic papers on software engineering to the current state of
practice. Pressman discusses technical and management aspects of software engineering. He
surveys existing high-level models of the software development process (linear sequential,



prototyping, incremental, evolutionary and formal) and discusses management of people, the
software project, and the software process. He discusses quality assurance and configuration
management as being equally as important as technical and management issues. He reviews
some of the principles and methods that form the foundation of the current practice of software
engineering, and concludes with a prediction that three issues — reuse, re-engineering, and a new
generation of tools — will dominate software engineering for the next ten years.

Pressman's latest book is Software Engineering: A Practitioner's Approach, 5th edition
(McGraw-Hill, 2000).

The last paper in this chapter was written by Buxton, entitled "Software Engineering — 20 Years
On and 20 Years Back." This paper provides another historical perspective of the origin and use
of the term "software engineering." Professor Buxton is in a unique position to define the past
history of software engineering, as he was one of the main reporters and documenters of the
second NATO software engineering conference in Rome in 1969.

1. Thayer, R. H., and A. D. McGettrick, (eds.), Software Engineering — A European
Perspective, IEEE Computer Society Press, Los Alamitos, CA, 1993.

2. Dorfman, ML, and R.H. Thayer (eds.), Software Engineering, IEEE Computer Society Press,
Los Alamitos, CA, 1997.



The Origin of Software Engineering

Dear Dr. Richard Thayer:

In reply to your question about the origin of the term "Software Engineering/1 I
submit the following story.

In the mid-1960s, there was increasing concern in scientific quarters of the
Western world that the tempestuous development of computer hardware was not
matched by appropriate progress in software. The software situation looked
more to be turbulent. Operating systems had just been the latest rage, but they
showed unexpected weaknesses. The uneasiness had been lined out in the
NATO Science Committee by its US representative, Dr. I.I. Rabi, the Nobel
laureate and famous, as well as influential, physicist. In 1967, the Science
Committee set up the Study Group on Computer Science, with members from
several countries, to analyze the situation. The German authorities nominated
me for this team. The study group was given the task of "assessing the entire
field of computer science," with particular elaboration on the Science
Committee's consideration of "organizing a conference and, perhaps, at a later
date,... setting up ... an International Institute of Computer Science."

The study group, concentrating its deliberations on actions that would merit an
international rather than a national effort, discussed all sorts of promising scien-
tific projects. However, it was rather inconclusive on the relation of these themes
to the critical observations mentioned above, which had guided the Science
Committee. Perhaps not all members of the study group had been properly
informed about the rationale of its existence. In a sudden mood of anger, I made
the remark, "The whole trouble comes from the fact that there is so much
tinkering with software. It is not made in a clean fabrication process," and when I
found out that this remark was shocking to some of my scientific colleagues, I
elaborated the idea with the provocative saying, "What we need is software
engineering."

This remark had the effect that the expression "software engineering," which
seemed to some to be a contradiction in terms, stuck in the minds of the
members of the group. In the end, the study group recommended in late 1967
the holding of a Working Conference on Software Engineering, and I was made
chairman. I had not only the task of organizing the meeting (which was held from
October 7 to October 10, 1968, in Garmisch, Germany), but I had to set up a
scientific program for a subject that was suddenly defined by my provocative
remark. I enjoyed the help of my cochairmen, L. Bolliet from France, and HJ.
Helms from Denmark, and in particular the invaluable support of the program
committee members, AJ. Perlis and B. Randall in the section on design, P. Naur
and J.N. Buxton in the section on production, and K. Samuelson, B. Galler, and
D. Gries in the section on service. Among the 50 or so participants, E.W. Dijkstra
was dominant. He actually made not only cynical remarks like "the dissemination
of error-loaded software is frightening" and "it is not clear that the people who



manufacture software are to be blamed. I think manufacturers deserve better,
more understanding users." He also said already at this early date, "Whether
the, correctness of a piece of software can be guaranteed or not depends greatly
on the structure of the thing made," and he had very fittingly named his paper
"Complexity Controlled by Hierarchical Ordering of Function and Variability,11

introducing a theme that followed his life the next 20 years. Some of his words
have become proverbs in computing, like "testing is a vory inefficient way of
convincing oneself of the correctness of a program."

With the wide distribution of the reports on the Garmisch conference and on a
follow-up conference in Rome, from October 27 to 31,1969, it emerged that not
only the phrase software engineering, but also the idea behind this, became
fashionable. Chairs were created, institutes were established (although the one
which the NATO Science Committee had proposed did not come about because
of reluctance on the part of Great Britain to have it organized1 on the European
continent), and a great number of conferences were held. The present volume
shows clearly how much progress has been made in the intervening years.

The editors deserve particular thanks for paying so much attention to a tutorial.
In choosing the material, they have tried to highlight a number of software engi-
neering initiatives whose origin is European. In particular, the more formal
approach to software engineering is evident, and they leave included some
material that is not readily available, elsewhere. The tutorial nature of the papers
is intended to offer readers an easy introduction to the topics and indeed to the
attempts that have been made in recent years to provide them with the tools,
both in a handcraft and intellectual sense, that allow them now to call themselves
honestly software engineers.

O. Prof. Dr. Friedrich L. Bauer,
Professor Emeritus
Institut fur Informatik der Technischen Universitat Munchen,
Postfach 20 24 20,
D-8000 Munchen 2, Germany



Software Engineering

Roger S. Pressman, Ph.D.

As software engineering approaches its fourth
decade, it suffers from many of the strengths and some
of the frailties that are experienced by humans of the
same age. The innocence and enthusiasm of its early
years have been replaced by more reasonable expec-
tations (and even a healthy cynicism) fostered by
years of experience. Software engineering approaches
its mid-life with many accomplishments already
achieved, but with significant work yet to do.

The intent of this paper is to provide a survey of
the current state of software engineering and to sug-
gest the likely course of the aging process. Key soft-
ware engineering activities are identified, issues are
presented, and future directions are considered. There
will be no attempt to present an in-depth discussion of
specific software engineering topics. That is the job of
other papers presented in this book

1.0 Software Engineering—Layered
Technology1

Although hundreds of authors have developed per-
sonal definitions of software engineering, a definition
proposed by Fritz Bauer [1] at the seminal conference
on the subject still serves as a basis for discussion:

[Software engineering is] the establishment
and use of sound engineering principles in or-
der to obtain economically software that is re-
liable and works efficiently on real machines.

Almost every reader will be tempted to add to this
definition. It says little about the technical aspects of
software quality; it does not directly address the need
for customer satisfaction or timely product delivery; it
omits mention of the importance of measurement and
metrics; it does not state the importance of a mature
process. And yet, Bauer's definition provides us with
a baseline. What are the "sound engineering princi-
ples" that can be applied to computer software devel-
opment? How to "economically" build software so
that it is "reliable"? What is required to create com-

1 Portions of this paper have been adapted from A Manager's
Guide to Software Engineering [19] and Software Engineering: A
Practitioner's Approach (McGraw-Hill, fourth edition, 1997) and
are used with permission.

puter programs that work "efficiently" on not one but
many different "real machines"? These are the ques-
tions that continue to challenge software engineers.

Software engineering is a layered technology.
Referring to Figure 1, any engineering approach
(including software engineering) must resic on an
organizational commitment to quality. Total quality
management and similar philosophies foster a con-
tinuous process improvement culture, and it is this
culture that ultimately leads to the development of
increasingly more mature approaches to software
engineering. The bedrock that supports software engi-
neering is a quality focus.

The foundation for software engineering is the
process layer. Software engineering process is the
glue that holds the technology layers together and
enables rational and timely development of computer
software. Process defines a framework for a set of key
process areas [2] that must be established for effec-
tive delivery of software engineering technology. The
key process areas form the basis for management
control of software projects, and establish the context
in which technical methods are applied, deliiverables
(models, documents, data reports, forms, and so on)
are produced, milestones are established, quality is
ensured, and change is properly managed.

Software engineering methods provide the techni-
cal "how to's" for building software. Methods encom-
pass a broad array of tasks that include: requirements
analysis, design, program construction, testing, and
maintenance. Software engineering methods rely on a
set of basic principles that govern each area of the
technology and include modeling activities, and other
descriptive techniques.

Software engineering tools provide automated or
semiautomated support for the process and the meth-
ods. When tools are integrated so that information
created by one tool can be used by another, a system
for the support of software development, called com-
puter-aided software engineering (CASE), is estab-
lished. CASE combines software, hardware, and a
software engineering database (a repository contain-
ing important information about analysis, design, pro-
gram construction, and testing) to create a software
engineering environment that is analogous to
CAD/CAE (computer-aided design/engineering) for
hardware.



Figure 1. Software engineering layers

2.0 Software Engineering Process Models

Software engineering incorporates a development
strategy that encompasses the process, methods, and
tools layers described above. This strategy is often
referred to as a process model or a software engi-
neering paradigm. A process model for software
engineering is chosen based on the nature of the proj-
ect and application, the methods and tools to be used,
and the controls and deliverables that are required.
Four classes of process models have been widely dis-
cussed (and debated). A brief overview of each is pre-
sented in the sections that follow.

2.1 Linear, Sequential Models

Figure 2 illustrates the linear sequential model for
software engineering. Sometimes called the "classic
life cycle" or the "waterfall model," the linear sequen-
tial model demands a systematic, sequential approach
to software development that begins at the system
level and progresses through analysis, design, coding,
testing, and maintenance. The linear sequential model

is the oldest and the most widely used paradigm for
software engineering. However, criticism of the para-
digm has caused even active supporters to question its
efficacy. Among the problems that are sometimes en-
countered when the linear sequential model is applied
are:

1. Real projects rarely follow the sequential
flow that the model proposes. Although the
linear model can accommodate iteration, it
does so indirectly. As a result, changes can
cause confusion as the project team proceeds.

2. It is often difficult for the customer to state
all requirements explicitly. The linear se-
quential model requires this and has difficulty
accommodating the natural uncertainty that
exists at the beginning of many projects.

3. The customer must have patience. A working
version of the program(s) will not be avail-
able until late in the project time span. A
major blunder, if undetected until the work-
ing program is reviewed, can be disastrous.

Figure 2. The linear, sequential paradigm

10



2.2 Prototyping

Often, a customer defines a set of general objec-
tives for software, but does not identify detailed input,
processing, or output requirements. In other cases, the
developer may be unsure of the efficiency of an algo-
rithm, the adaptability of an operating system, or the
form that human-machine interaction should take. In
these, and many other situations, a prototyping para-
digm may offer the best approach.

The prototyping paradigm (Figure 3) begins with
requirements gathering. Developer and customer meet
and define the overall objectives for the software,
identify whatever requirements are known, and outline
areas where further definition is mandatory. A "quick
design" then occurs. The quick design focuses on a
representation of those aspects of the software that will
be visible to the customer/user (for example, input
approaches and output formats). The quick design
leads to the construction of a prototype. The prototype
is evaluated by the customer/user and is used to refine
requirements for the software to be developed. Iteration
occurs as the prototype is tuned to satisfy the needs of
the customer, while at the same time enabling the devel-
oper to better understand what needs to be done.

Ideally, the prototype serves as a mechanism for
identifying software requirements. If a working proto-
type is built, the developer attempts to make use of
existing program fragments or applies tools (report
generators, and window managers, for instance) that
enable working programs to be generated quickly.

listen
to

customer

Both customers and developers like the prototyp-
ing paradigm. Users get a feel for the actual system
and developers get to build something immediately.
Yet, prototyping can also be problematic for the fol-
lowing reasons:

1. The customer sees what appears to be a
working version of the software, unaware
that the prototype is held together "with
chewing gum and baling wire" or that in the
rush to get it working we haven't considered
overall software quality or long-term main-
tainability. When informed that the product
must be rebuilt, the customer cries foul and
demands that "a few fixes" be applied to make
the prototype a working product. Too often,
software development management relents.

2. The developer often makes implementation
compromises in order to get a prototype
working quickly. An inappropriate operating
system or programming language may be
used simply because it is available and
known; an inefficient algorithm may be im-
plemented simply to demonstrate capability.
After a time, the developer may become fa-
miliar with these choices and forget all the
reasons why they were inappropriate. The
less-than-ideal choice has now become an
integral part of the system.

build
mock-up

customer
test-drives
mock-up

Figure 3. The prototyping paradigm

11



2.3 Incremental Model

Although problems can occur, prototyping is an ef-
fective paradigm for software engineering. The key is
to define the rules of the game at the beginning; that is,
the customer and developer must both agree that the
prototype is built to serve as a mechanism for defining
requirements. It is then discarded (at least in part) and
the actual software is engineered with an eye toward
quality and maintainability.

When an incremental model is used, the first
increment is often a core product. That is, basic
requirements are addressed, but many supplementary
features (some known, others unknown) remain unde-
livered. The core product is used by the customer (or
undergoes detailed review). As a result of use and/or
evaluation, a plan is developed for the next increment.
The plan addresses the modification of the core prod-
uct to better meet the needs of the customer and the
delivery of additional features and functionality. This
process is repeated following the delivery of each
increment, until the complete product is produced.

The incremental process model, like prototyping
(Section 2.2) and evolutionary approaches (Section
2.4), is iterative in nature. However, the incremental
model focuses on the delivery of an operational prod-
uct with each increment. Early increments are
"stripped down" versions of the final product, but they
do provide capability that serves the user and also
provide a platform for evaluation by the user.

Incremental development is particularly useful
when staffing is unavailable for a complete imple-
mentation by the business deadline that has been
established for the project. Early increments can be
implemented with fewer people. If the core product is
well received, then additional staff (if required) can be
added to implement the next increment. In addition,
increments can be planned to manage technical risks.
For example, a major system might require the avail-
ability of new hardware that is under development and
whose delivery date is uncertain. It might be possible
to plan early increments in a way that avoids the use of
this hardware, thereby enabling partial functionality to
be delivered to end users without inordinate delay.

2.4 Evolutionary Models

The evolutionary paradigm, also called the spiral
model [3] couples the iterative nature of prototyping
with the controlled and systematic aspects of the linear
model. Using the evolutionary paradigm, software is
developed in a series of incremental releases. During
early iterations, the incremental release might be a pro-
totype. During later iterations, increasingly more com-
plete versions of the engineered system are produced.

Figure 4 depicts a typical evolutionary model.

Each pass around the spiral moves through six task
regions:

• customer communication—tasks required to
establish effective communication between
developer and customer

• planning—tasks required to define re-
sources, time lines and other project-related
information

• risk assessment—tasks required to assess
both technical and management risks

• engineering—tasks required to build one or
more representations of the application

• construction and release—tasks required to
construct, test, install, and provide user support
(for example, documentation and training)

• customer evaluation—tasks required to
obtain customer feedback based on evalua-
tion of the software representations created
during the engineering stage and imple-
mented during the installation stage.

Each region is populated by a series of tasks
adapted to the characteristics of the project to be
undertaken.

The spiral model is a realistic approach to the
development of large scale systems and software. It
uses an "evolutionary" approach [4] to software engi-
neering, enabling the developer and customer to
understand and react to risks at each evolutionary
level. It uses prototyping as a risk reduction mecha-
nism, but more importantly, it enables the developer to
apply the prototyping approach at any stage in the
evolution of the product. It maintains the systematic
stepwise approach suggested by the classic life cycle
but incorporates it into an iterative framework that
more realistically reflects the real world. The spiral
model demands a direct consideration of technical
risks at all stages of the project, and if properly
applied, should reduce risks before they become
problematic.

But like other paradigms, the spiral model is not a
panacea. It may be difficult to convince customers
(particularly in contract situations) that the evolution-
ary approach is controllable. It demands considerable
risk assessment expertise, and relies on this expertise
for success. If a major risk is not discovered, problems
will undoubtedly occur. Finally, the model itself is rela-
tively new and has not been used as widely as the linear
sequential or prototyping paradigms. It will take a num-
ber of years before efficacy of this important new
paradigm can be determined with absolute certainty.

12



Planning Risk Assessment

go-no-go axis

Customer
Communication

project entry point Engineering

Customer
Evaluation Construction and Release

Figure 4. The evolutionary model

2.5 The Formal Methods Model

The formal methods paradigm encompasses a set
of activities that leads to formal mathematical specifi-
cation of computer software. Formal methods enable a
software engineer to specify, develop, and verify a
computer-based system by applying a rigorous,
mathematical notation. A variation on this approach,
called cleanroom software engineering [5, 6], is cur-
rently applied by a limited number of companies.

When formal methods are used during develop-
ment, they provide a mechanism for eliminating many
of the problems that are difficult to overcome using
other software engineering paradigms. Ambiguity,
incompleteness, and inconsistency can be discovered
and corrected more easily—not through ad hoc review,
but through the application of mathematical analysis.
When formal methods are used during design, they
serve as a basis for program verification and there-
fore enable the software engineer to discover and
correct errors that might otherwise go undetected.

Although not yet a mainstream approach, the for-
mal methods model offers the promise of defect-free
software. Yet, concern about its applicability in a
business environment has been voiced:

1. The development of formal models is cur-
rently quite time-consuming and expensive.

2. Because few software developers have the
necessary background to apply formal meth-
ods, extensive training is required.

3. It is difficult to use the models as a communi-
cation mechanism for technically unsophisti-
cated customers.

These concerns notwithstanding, it is likely that the
formal methods approach will gain adherents among
software developers who must build safety-critical
software (such as aircraft avionics and medical de-
vices) and among developers that would suffer severe
economic hardship should software errors occur.

3.0 The Management Spectrum

Effective software project management focuses on
the three P's: people, problem, and process. The order
is not arbitrary. The manager who forgets that software
engineering work is an intensely human endeavor will
never have success in project management. A manager

13



who fails to encourage comprehensive customer com-
munication early in the evolution of a project risks
building an elegant solution for the wrong problem.
Finally, the manager who pays little attention to the
process runs the risk of inserting competent technical
methods and tools into a vacuum.

3.1 People

The cultivation of motivated, highly skilled soft-
ware people has been discussed since the 1960s [see 7,
8, 9]. The Software Engineering Institute has spon-
sored a people-management maturity model "to
enhance the readiness of software organizations to
undertake increasingly complex applications by help-
ing to attract, grow, motivate, deploy, and retain the
talent needed to improve their software development
capability." [10]

The people-management maturity model defines
the following key practice areas for software people:
recruiting, selection, performance management, train-
ing, compensation, career development, organization,
and team and culture development. Organizations that
achieve high levels of maturity in the people-
management area have a higher likelihood of imple-
menting effective software engineering practices.

3.2 The Problem

Before a project can be planned, objectives and
scope should be established, alternative solutions
should be considered, and technical and management
constraints should be identified. Without this informa-
tion, it is impossible to develop reasonable cost esti-
mates, a realistic breakdown of project tasks, or a
manageable project schedule that is a meaningful indi-
cator of progress.

The software developer and customer must meet to
define project objectives and scope. In many cases,
this activity occurs as part of structured customer
communication process such as joint application
design [11, 12]. Joint application design (IAD) is an
activity that occurs in five phases: project definition,
research, preparation, the JAD meeting, and document
preparation. The intent of each phase is to develop
information that helps better define the problem to be
solved or the product to be built.

3.3 The Process

A software process (see discussion of process
models in Section 2.0) can be characterized as shown
in Figure 5. A few framework activities apply to all
software projects, regardless of their size or complex-
ity. A number of task sets—tasks, milestones, deliver-

ables, and quality assurance points—enable the
framework activities to be adapted to the characteris-
tics of the software project and the requirements of the
project team. Finally, umbrella activities—such as
software quality assurance, software configuration
management, and measurement—overlay the process
model. Umbrella activities are independent of any one
framework activity and occur throughout the process.

In recent years, there has been a significant empha-
sis on process "maturity." [2] The Software Engineer-
ing Institute (SEI) has developed a comprehensive
assessment model predicated on a set of software en-
gineering capabilities that should be present as organi-
zations reach different levels of process maturity. To
determine an organization's current state of process
maturity, the SEI uses an assessment questionnaire and
a five-point grading scheme. The grading scheme de-
termines compliance with a capability maturity model
[2] that defines key activities required at different lev-
els of process maturity. The SEI approach provides a
measure of the global effectiveness of a company's
software engineering practices and establishes five
process maturity levels that are defined in the follow-
ing manner:

Level 1: Initial—The software process is character-
ized as ad hoc, and occasionally even chaotic.
Few processes are defined, and success depends
on individual effort.

Level 2: Repeatable—Basic project management
processes are established to track cost, schedule,
and functionality. The necessary process disci-
pline is in place to repeat earlier successes on
projects with similar applications.

Level 3: Defined—The software process for both
management and engineering activities is docu-
mented, standardized, and integrated into an or-
ganization-wide software process. All projects use
a documented and approved version of the or-
ganization's process for developing and main-
taining software. This level includes all charac-
teristics defined for level 2.

Level 4: Managed—Detailed measures of the soft-
ware process and product quality are collected.
Both the software process and products are quan-
titatively understood and controlled using detailed
measures. This level includes all characteristics
defined for level 3.

Level 5: Optimizing—Continuous process improve-
ment is enabled by quantitative feedback from the
process and from testing innovative ideas and
technologies. This level includes all characteris-
tics defined for level 4.

14



Figure 5. A common process framework

The five levels defined by the SEI are derived as a
consequence of evaluating responses to the SEI
assessment questionnaire that is based on the CMM.
The results of the questionnaire are distilled to a single
numerical grade that helps indicate an organization's
process maturity.

The SEI has associated key process areas (KPAs)
with each maturity level. The KPAs describe those
software engineering functions (for example, software
project planning and requirements management) that
must be present to satisfy good practice at a particular
level. Each KPA is described by identifying the fol-
lowing characteristics:

• goals—the overall objectives that the KPA
must achieve

• commitments—requirements (imposed on the
organization) that must be met to achieve the
goals, provide proof of intent to comply with
the goals

• abilities—those things that must be in place
(organizationally and technically) that will en-
able the organization to meet the commitments

• activities—the specific tasks that are required
to achieve the KPA function

• methods for monitoring implementation—the
manner in which the activities are monitored
as they are put into place

• methods for verifying implementation—the
manner in which proper practice for the KPA
can be verified.

Eighteen KPAs (each defined using the structure
noted above) are defined across the maturity model
and are mapped into different levels of process
maturity.

Each KPA is defined by a set of key practices that
contribute to satisfying its goals. The key practices are
policies, procedures, and activities that must occur
before a key process area has been fully instituted. The
SEI defines key indicators as "those key practices or
components of key practices that offer the greatest
insight into whether the goals of a key process area
have been achieved." Assessment questions are
designed to probe for the existence (or lack thereof) of
a key indicator.

15



4.0 Software Project Management

Software project management encompasses the
following activities: measurement, project estimating,
risk analysis, scheduling, tracking, and control. A
comprehensive discussion of these topics is beyond
the scope of this paper, but a brief overview of each
topic will enable die reader to understand the breadth
of management activities required for a mature soft-
ware engineering organizations.

4.1 Measurement and Metrics

To be most effective, software metrics should be
collected for both the process and the product. Proc-
ess-oriented metrics [14, 15] can be collected during
the process and after it has been completed. Process
metrics collected during the project focus on the effi-
cacy of quality assurance activities, change manage-
ment, and project management. Process metrics col-
lected after a project has been completed examine
quality and productivity. Process measures are nor-
malized using either lines of code or function points
[13], so that data collected from many different proj-
ects can be compared and analyzed in a consistent
manner. Product metrics measure technical character-
istics of the software that provide an indication of
software quality [15, 16, 17, 18]. Measures can be
applied to models created during analysis and design
activities, the source code, and testing data. The
mechanics of measurement and the specific measures
to be collected are beyond the scope of this paper.

4.2 Project Estimating

Scheduling and budgets are often dictated by busi-
ness issues. The role of estimating within the software
process often serves as a "sanity check" on the prede-
fined deadlines and budgets that have been established
by management. (Ideally, the software engineering
organization should be intimately involved in estab-
lishing deadlines and budgets, but this is not a perfect
or fair world.)

AH software project estimation techniques require
that the project have a bounded scope, and all rely on
a high level functional decomposition of the project
and an assessment of project difficulty and complex-
ity. There are three broad classes of estimation tech-
niques [19] for software projects:

• Effort estimation techniques. The project
manager creates a matrix in which the left-
hand column contains a list of major system
functions derived using functional decompo-
sition applied to project scope. The top row

contains a list of major software engineering
tasks derived from the common process
framework. The manager (with the assistance
of technical staff) estimates the effort
required to accomplish each task for each
function.

• Size-Oriented Estimation. A list of major
system functions is derived using functional
decomposition applied to project scope. The
"size" of each function is estimated using ei-
ther lines of code (LOG) or function points
(FP). Average productivity data (for instance,
function points per person month) for similar
functions or projects are used to generate an
estimate of effort required for each function.

• Empirical Models. Using the results of a
large population of past projects, an empirical
model that relates product size (in LOG or
FP) to effort is developed using a statistical
technique such as regression analysis. The
product size for the work to be done is esti-
mated and the empirical model is used to
generate projected effort (for example, [20]).

In addition to the above techniques, a software
project manager can develop estimates by analogy.
This is done by examining similar past projects then
projecting effort and duration recorded for these proj-
ects to the current situation.

4.3 Risk Analysis

Almost five centuries have passed since Machiav-
elli said: "I think it may be true that fortune is the ruler
of half our actions, but that she allows the other half to
be governed by us... [fortune] is like an impetuous
river... but men can make provision against it by
dykes and banks." Fortune (we call it risk) is in the
back of every software project manager's mind, and
that is often where it stays. And as a result, risk is
never adequately addressed. When bad things happen,
the manager and the project team are unprepared.

In order to "make provision against it," a software
project team must conduct risk analysis explicitly.
Risk analysis [21, 22, 23] is actually a series of steps
that enable the software team to perform risk identifi-
cation, risk assessment, risk prioritization, and risk
management. The goals of these activities are: (1) to
identify those risks that have a high likelihood of
occurrence, (2) to assess the consequence (impact) of
each risk should it occur, and (3) to develop a plan for
mitigating the risks when possible, monitoring factors
that may indicate their arrival, and developing a set of
contingency plans should they occur.

16



4.4 Scheduling

The process definition and project management
activities that have been discussed above feed the
scheduling activity. The common process framework
provides a work breakdown structure for scheduling.
Available human resources, coupled with effort esti-
mates and risk analysis, provide the task interdepend-
encies, parallelism, and time lines that are used in con-
structing a project schedule.

4.5 Tracking and Control

Project tracking and control is most effective when
it becomes an integral part of software engineering
work. A well-defined process framework should pro-
vide a set of milestones that can be used for project
tracking. Control focuses on two major issues: quality
and change.

To control quality, a software project team must
establish effective techniques for software quality as-
surance, and to control change, the team should estab-
lish a software configuration management framework.

S.O Software Quality Assurance

In his landmark book on quality, Philip Crosby
[24] states:

The problem of quality management is not
what people don't know about it. The problem
is what they think they do know...

In this regard, quality has much in common
with sex. Everybody is for it. (Under certain
conditions, of course.) Everyone feels they un-
derstand it. (Even though they wouldn't want to
explain it.) Everyone thinks execution is only a
matter of following natural inclinations. (After
all, we do get along somehow.) And, of course,
most people feel that problems in these areas
are caused by other people. (If only they would
take the time to do things right.)

There have been many definitions of software
quality proposed in the literature. For our purposes,
software quality is defined as: Conformance to explic-
itly stated functional and performance requirements,
explicitly documented development standards, and
implicit characteristics that are expected of all profes-
sionally developed software.

There is little question that the above definition
could be modified or extended. In fact, the precise
definition of software quality could be debated end-
lessly. But the definition stated above does serve to
emphasize three important points:

L Software requirements are the foundation
from which quality is assessed. Lack of con-
formance to requirements is lack of quality.

2. A mature software process model defines a
set of development criteria that guide the
manner in which software is engineered. If
the criteria are not followed, lack of quality
will almost surely result.

3. There is a set of implicit requirements that
often go unmentioned (for example, the de-
sire for good maintainability). If software
conforms to its explicit requirements but fails
to meet implicit requirements, software qual-
ity is suspect.

Almost two decades ago, McCall and Cavano [25,
26] defined a set of quality factors that were a first
step toward the development of metrics for software
quality. These factors assessed software from three
distinct points of view: (1) product operation (using
it); (2) product revision (changing it), and (3) product
transition (modifying it to work in a different envi-
ronment, that is., "porting" it). These factors include:

• Correctness. The extent to which a program
satisfies its specification and fulfills the cus-
tomer's mission objectives.

• Reliability. The extent to which a program
can be expected to perform its intended func-
tion with required precision.

• Efficiency. The amount of computing re-
sources and code required by a program to
perform its function.

• Integrity. Extent to which access to software
or data by unauthorized persons can be con-
trolled.

• Usability. Effort require to learn, operate,
prepare input, and interpret output of a pro-
gram.

• Maintainability. Effort require to locate and
fix an error in a program. [Might be better
termed "correctability"].

• Flexibility. Effort required to modify an op-
erational program.

• Testability. Effort required to test a program to
insure that it performs its intended function.

• Portability. Effort required to transfer the
program from one hardware and/or software
system environment to another.

• Reusability. Extent to which a program [or
parts of a program] can be reused in other

17



applications—related to the packaging and
scope of the functions that the program per-
forms,

• Interoperability. Effort required to couple
one system to another.

The intriguing thing about these factors is how lit-
tle they have changed in almost 20 years. Computing
technology and program architectures have undergone
a sea change, but the characteristics that define high-
quality software appear to be invariant. The implica-
tion: An organization that adopts factors such as those
described above will build software today that will
exhibit high quality well into the first few decades of
the twenty-first century. More importantly, this will
occur regardless of the massive changes in computing
technologies that are sure to come over that period of
time.

Software quality is designed into a product or sys-
tem. It is not imposed after the fact. For this reason,
software quality assurance (SQA) actually begins with
the set of technical methods and tools that help the
analyst to achieve a high-quality specification and the
designer to develop a high-quality design.

Once a specification (or prototype) and design
have been created, each must be assessed for quality.
The central activity that accomplishes quality assess-
ment is the formal technical review. The formal tech-
nical review (FTR)—conducted as a walk-through or
an inspection [27]—is a stylized meeting conducted by
technical staff with the sole purpose of uncovering
quality problems. In many situations, formal technical
reviews have been found to be as effective as testing in
uncovering defects in software [28].

Software testing combines a multistep strategy
with a series of test case design methods that help
ensure effective error detection. Many software devel-
opers use software testing as a quality assurance
"safety net.'* That is, developers assume that thorough
testing will uncover most errors, thereby mitigating the
need for other SQA activities. Unfortunately, testing,
even when performed well, is not as effective as we
might like for all classes of errors. A much better
strategy is to find and correct errors (using FTRs)
before getting to testing.

The degree to which formal standards and proce-
dures are applied to the software engineering process
varies from company to company. In many cases,
standards are dictated by customers or regulatory
mandate. In other situations standards are self-
imposed. An assessment of compliance to standards
may be conducted by software developers as part of a
formal technical review, or in situations where inde-
pendent verification of compliance is required, the
SQA group may conduct its own audit.

A major threat to software quality comes from a
seemingly benign source: changes. Every change to
software has the potential for introducing error or cre-
ating side effects that propagate errors. The change
control process contributes directly to software quality
by formalizing requests for change, evaluating the
nature of change, and controlling the impact of
change. Change control is applied during software
development and later, during the software mainte-
nance phase.

Measurement is an activity that is integral to any
engineering discipline. An important objective of SQA
is to track software quality and assess the impact of
methodological and procedural changes on improved
software quality. To accomplish this, software metrics
must be collected.

Record keeping and recording for software quality
assurance provide procedures for the collection and
dissemination of SQA information. The results of
reviews, audits, change control, testing, and other
SQA activities must become part of the historical rec-
ord for a project and should be disseminated to devel-
opment staff on a need-to-know basis. For example,
the results of each formal technical review for a pro-
cedural design are recorded and can be placed in a
"folder" that contains all technical and SQA informa-
tion about a module.

6.0 Software Configuration Management

Change is inevitable when computer software is
built. And change increases the level of confusion
among software engineers who are working on a proj-
ect. Confusion arises when changes are not analyzed
before they are made, recorded before they are
implemented, reported to those who should be aware
that they have occurred, or controlled in a manner that
will improve quality and reduce error. Babich [29]
discusses this when he states:

The art of coordinating software development
to minimize... confusion is called config-
uration management. Configuration manage-
ment is the art of identifying, organizing, and
controlling modifications to the software being
built by a programming team. The goal is to
maximize productivity by minimizing mistakes.

Software configuration management (SCM) is an
umbrella activity that is applied throughout the soft-
ware engineering process. Because change can occur
at any time, SCM activities are developed to (1) iden-
tify change, (2) control change, (3) ensure that change
is being properly implemented and (4) report change
to others who may have an interest.

18



A primary goal of software engineering is to
improve the ease with which changes can be accom-
modated and reduce the amount of effort expended
when changes must be made.

7.0 The Technical Spectrum

There was a time—some people still call it "the
good old days"—when a skilled programmer created a
program like an artist creates a painting: she just sat
down and started. Pressman and Herron [30] draw
other parallels when they write:

At one time or another, almost everyone la-
ments the passing of the good old days. We
miss the simplicity, the personal touch, the em-
phasis on quality that were the trademarks of a
craft. Carpenters reminisce about the days
when houses were built with mahogany and
oak, and beams were set without nails. Engi-
neers still talk about an earlier era when one
person did all the design (and did it right) and
then went down to the shop floor and built the
thing. In those days, people did good work and
stood behind it.

How far back do we have to travel to reach the
good old days? Both carpentry and engineering
have a history that is well over 2,000 years old.
The disciplined way in which work is con-
ducted, the standards that guide each task, the
step by step approach that is applied, have all
evolved through centuries of experience. Soft-
ware engineering has a much shorter history.

During its short history, the creation of computer
programs has evolved from an art form, to a craft, to
an engineering discipline. As the evolution took place,
the free-form style of the artist was replaced by the
disciplined methods of an engineer. To be honest, we
lose something when a transition like this is made.
There's a certain freedom in art that can't be repli-
cated in engineering. But we gain much, much more
than we lose.

As the journey from art to engineering occurred,
basic principles that guided our approach to software
problem analysis, design and testing slowly evolved.
And at the same time, methods were developed that
embodied these principles and made software engi-
neering tasks more systematic. Some of these "hot,
new" methods flashed to the surface for a few years,
only to disappear into oblivion, but others have stood
the test of time to become part of the technology of
software development.

In this section we discuss the basic principles that
support the software engineering methods and provide
an overview of some of the methods that have already
"stood the test of time" and others that are likely to do
so.

7.1 Software Engineering Methods-—Hie Landscape

All engineering disciplines encompass four major
activities: (1) the definition of the problem to be
solved, (2) the design of a solution that will meet the
customer's needs; (2) the construction of the solution,
and (4) the testing of the implemented solution to
uncover latent errors and provide an indication that
customer requirements have been achieved. Software
engineering offers a variety of different methods to
achieve these activities. In fact, the methods landscape
can be partitioned into three different regions:

• conventional software engineering methods

• object-oriented approaches

• formal methods

Each of these regions is populated by a variety of
methods that have spawned their own culture, not to
mention a sometimes confusing array of notation and
heuristics. Luckily, all of the regions are unified by a
set of overriding principles that lead to a single objec-
tive: to create high quality computer software.

Conventional software engineering methods view
software as an information transform and approach
each problem using an input-process-output viewpoint.
Object-oriented approaches consider each problem as
a set of classes and work to create a solution by
implementing a set of communicating objects that are
instantiated from these classes. Formal methods
describe the problem in mathematical terms, enabling
rigorous evaluation of completeness, consistency, and
correctness.

Like competing geographical regions on the world
map, the regions of the software engineering methods
map do not always exist peacefully. Some inhabitants
of a particular region cannot resist religious warfare.
Like most religious warriors, they become consumed
by dogma and often do more harm that good. The
regions of the software engineering methods landscape
can and should coexist peacefully, and tedious debates
over which method is best seem to miss the point. Any
method, if properly applied within the context of a
solid set of software engineering principles, will lead
to higher quality software than an undisciplined
approach.

19



7.2 Problem Definition

A problem cannot be fully defined and bounded
until it is communicated. For this reason, the first step
in any software engineering project is customer com-
munication. Techniques for customer communication
[11, 12] were discussed earlier in this paper. In
essence, the developer and the customer must develop
an effective mechanism for defining and negotiating
the basic requirements for the software project. Once
this has been accomplished, requirements analysis
begins. Two options are available at this stage: (1) the
creation of a prototype that will assist the developer
and the customer in better understanding the system to
be build, and/or (2) the creation of a detailed set of
analysis models that describe the data, function, and
behavior for the system.

7.2.1 Analysis Principles
Today, analysis modeling can be accomplished by

applying one of several different methods that popu-
late the three regions of the software engineering
methods landscape. All methods, however, conform to
a set of analysis principles [31]:

1. The data domain of the problem must be
modeled. To accomplish this, the analyst
must define the data objects (entities) that are
visible to the user of the software and the
relationships that exist between the data
objects. The content of each data object (the
object's attributes) must also be defined.

2. The functional domain of the problem
must be modeled. Software functions trans-
form the data objects of the system and can
be modeled as a hierarchy (conventional
methods), as services to classes within a sys-
tem (the object-oriented view), or as a suc-
cinct set of mathematical expressions (the
formal view).

3. The behavior of the system must be repre-
sented. All computer-based systems respond
to external events and change their state of
operation as a consequence. Behavioral mod-
eling indicates the externally observable
states of operation of a system and how tran-
sition occurs between these states.

4. Models of data, function, and behavior
must be partitioned. All engineering prob-
lem-solving is a process of elaboration. The
problem (and the models described above)
are first represented at a high level of
abstraction. As problem definition pro-
gresses, detail is refined and the level of ab-

straction is reduced. This activity is called
partitioning.

5. The overriding trend in analysis is from
essence toward implementation. As the
process of elaboration progresses, the state-
ment of the problem moves from a represen-
tation of the essence of the solution toward
implementation-specific detail. This progres-
sion leads us from analysis toward design.

7.2.2 Analysis Methods
A discussion of the notation and heuristics of even

the most popular analysis methods is beyond the scope
of this paper. The problem is further compounded by
the three different regions of the methods landscape
and the local issues specific to each. Therefore, all that
we can hope to accomplish in this section is to note
similarities among the different methods and regions:

• All analysis methods provide a notation for
describing data objects and the relationships
that exist between them.

• All analysis methods couple function and
data and provide a way for understanding
how function operates on data.

• Ail analysis methods enable an analyst to rep-
resent behavior at a system level, and in some
cases, at a more localized level.

• All analysis methods support a partitioning
approach that leads to increasingly more de-
tailed (and implementation-specific models).

• All analysis methods establish a foundation
from which design begins, and some provide
representations that can be directly mapped
into design.

For further information on analysis methods in
each of the three regions noted above, the reader
should review work by Yourdon [32], Booch [33], and
Spivey [34].

7.3 Design

M.A. Jackson [35] once said: 'The beginning of
wisdom for a computer programmer [software engi-
neer] is to recognize the difference between getting a
program to work, and getting it right" Software
design is a set of basic principles and a pyramid of
modeling methods that provide the necessary frame-
work for "getting it right."

73.1 Design Principles
Like analysis modeling, software design has

20



spawned a collection of methods that populate the
conventional, object-oriented, and formal regions that
were discussed earlier. Each method espouses its own
notation and heuristics for accomplishing design, but
all rely on a set of fundamental principles [31] that are
outlined in the paragraphs that follow:

1. Data and the algorithms that manipulate
data should be created as a set of interre-
lated abstractions. By creating data and pro-
cedural abstractions, the designer models
software components that have characteristics
leading to high quality. An abstraction is self-
contained; it generally implements one well-
constrained data structure or algorithm; it can
be accessed using a simple interface; the de-
tails of its internal operation need not be
known for it to be used effectively; it is in-
herently reusable.

2. The internal design detail of data struc-
tures and algorithms should he hidden
from other software components that
make use of the data structures and algo-
rithms. Information hiding [36] suggests that
modules be "characterized by design deci-
sions that (each) hides from all others." Hid-
ing implies that effective modularity can be
achieved by defining a set of independent
modules that communicate with one another
only that information that is necessary to
achieve software function. The use of infor-
mation hiding as a design criterion for
modular systems provides greatest benefits
when modifications are required during test-
ing and later, during software maintenance.
Because most data and procedures are hidden
from other parts of the software, inadvertent
errors (and resultant side effects) introduced
during modification are less likely to propa-
gate to other locations within the software.

3. Modules should exhibit independence. That
is, they should be loosely coupled to each
other and to the external environment and
should exhibit functional cohesion. Software
with effective modularity, that is, independent
modules, is easier to develop because func-
tion may be compartmentalized and interfaces
are simplified (consider ramifications when
development is conducted by a team). Inde-
pendent modules are easier to maintain
(and test) because secondary effects caused
by design/code modification are limited; error

propagation is reduced; and reusable modules
are possible.

4. Algorithms should be designed using a
constrained set of logical constructs. This
design approach, widely know as structured
programming [37], was proposed to limit the
procedural design of software to a small
number of predictable operations. The use of
the structured programming constructs
(sequence, conditional, and loops) reduces
program complexity and thereby enhances
readability, testability, and maintainability.
The use of a limited number of logical con-
structs also contributes to a human under-
standing process that psychologists call
chunking. To understand this process, con-
sider the way in which you are reading this
page. You do not read individual letters; but
rather, recognize patterns or chunks of letters
that form words or phrases. The structured
constructs are logical chunks that allow a
reader to recognize procedural elements of a
module, rather than reading the design or
code line by line. Understanding is enhanced
when readily recognizable logical forms are
encountered.

7.3.2 The Design Pyramid
Like analysis, a discussion of even the most popu-

lar design methods is beyond the scope of this paper.
Our discussion here will focus on a set of design
activities that should occur regardless of the method
that is used.

Software design should be accomplished by fol-
lowing a set of design activities as illustrated in Figure
6. Data design translates the data model created dur-
ing analysis into data structures that meet the needs of
the problem. Architectural design differs in intent
depending upon the designer's viewpoint. Conven-
tional design creates hierarchical software architec-
tures, while object-oriented design views architecture
as the message network that enables object;; to com-
municate. Interface design creates implementation
models for the human-computer interface, the external
system interfaces that enable different applications to
interoperate, and the internal interfaces that enable
program data to be communicated among software
components. Finally, procedural design is conducted
as algorithms are created to implement the processing
requirements of program components.

Like the pyramid depicted in Figure 6, design
should be a stable object. Yet, many software devel-
opers do design by taking the pyramid and standing it

21



on its point. That is, design begins with the creation of
procedural detail, and as a result, interface, architec-
tural, and data design just happen. This approach,
common among people who insist upon coding the
program with no explicit design activity, invariably
leads to low-quality software that is difficult to test,
challenging to extend, and frustrating to maintain. For
a stable, high-quality product, the design approach
must also be stable. The design pyramid provides the
degree of stability necessary for good design.

7.4 Program Construction

The glory years of third-generation programming
languages are rapidly coming to a close. Fourth-
generation techniques, graphical programming meth-
ods, component-based software construction, and a
variety of other approaches have already captured a
significant percentage of all software construction
activities, and there is little debate that their penetra-
tion will grow.

And yet, some members of the software engineer-
ing community continue to debate "the best program-

ming language." Although entertaining, such debates
are a waste of time. The problems that we continue to
encounter in the creation of high-quality computer-
based systems have relatively little to do with the
means of construction. Rather, the challenges that face
us can only be solved through better or innovative
approaches to analysis and design, more comprehen-
sive SQA techniques, and more effective and efficient
testing. It is for this reason that construction is not
emphasized in this paper.

7.5 Software Testing

Glen Myers [38] states three rules that can serve
well as testing objectives:

1. Testing is a process of executing a program
with the intent of finding an error.

2. A good test case is one that has a high prob-
ability of finding an as-yet-undiscovered
error.

3. A successful test is one that uncovers an
as-yet-undiscovered error.

Figure 6. The design pyramid

22



These objectives imply a dramatic change in view-
point. They move counter to the commonly held view
that a successful test is one in which no errors are
found. Our objective is to design tests that systemati-
cally uncover different classes of errors and to do so
with a minimum of time and effort.

If testing is conducted successfully (according to
the objective stated above), it will uncover errors in
the software. As a secondary benefit, testing demon-
strates that software functions appear to be working
according to specification, that performance require-
ments appear to have been met. In addition, data col-
lected as testing is conducted provides a good indica-
tion of software reliability and some indication of
software quality as a whole. But there is one thing that
testing cannot do: testing cannot show the absence of
defects, it can only show that software defects are pre-
sent. It is important to keep this (rather gloomy) state-
ment in mind as testing is being conducted.

7.5.1 Strategy
A strategy for software testing integrates software

test-case design techniques into a well-planned series
of steps that result in the successful construction of
software. It defines a template for software testing—a
set of steps into which we can place specific test-case
design techniques and testing methods.

A number of software testing strategies have been
proposed in the literature. All provide the software
developer with a template for testing, and all have the
following generic characteristics:

• Testing begins at the module level and works
incrementally "outward" toward the integra-
tion of the entire computer-based system.

• Different testing techniques are appropriate at
different points in time.

• Testing is conducted by the developer of the
software and (for large projects) an inde-
pendent test group.

• Testing and debugging are different activities,
but debugging must be accommodated in any
testing strategy.

A strategy for software testing must accommodate
low-level tests that are necessary to verify that a small
source code segment has been correctly implemented,
intermediate-level tests designed to uncover errors in
the interfaces between modules, and high-level tests
that validate major system functions against customer
requirements. A strategy must provide guidance for
the practitioner and a set of milestones for the man-
ager. Because the steps of the test strategy occur at a
time when deadline pressure begins to rise, progress

must be measurable and problems must surface as
early as possible.

7.5.2 Tactics
The design of tests for software and other engi-

neered products can be as challenging as the initial
design of the product itself. Recalling the objectives of
testing, we must design tests that have the highest
likelihood of finding the most errors with a minimum
of time and effort.

Over the past two decades a rich variety of test-
case design methods have evolved for software. These
methods provide the developer with a systematic
approach to testing. More importantly, methods pro-
vide a mechanism that can help to ensure the com-
pleteness of tests and provide the highest likelihood
for uncovering errors in software.

Any engineered product (and most other things)
can be tested in one of two ways: (1) knowing the
specified function that a product has been designed to
perform, tests can be conducted that demonstrate each
function is fully operational; (2) knowing the internal
workings of the product, tests can be conducted to
ensure that "all gears mesh"; that is, internal operation
performs according to specification and all internal
components have been adequately exercised. The first
test approach is called black-box testing and the sec-
ond, white-box testing [38].

When computer software is considered, black-box
testing alludes to tests that are conducted at the soft-
ware interface. Although they are designed to uncover
errors, black-box tests are also used to demonstrate
that software functions are operational; that input is
properly accepted, and output is correctly produced;
that the integrity of external information (such as data
files) is maintained. A black-box test examines some
aspect of a system with little regard for the internal
logical structure of the software.

White-box testing of software is predicated on
close examination of procedural detail. Logical paths
through the software are tested by providing test cases
that exercise specific sets of conditions and/or loops.
The status of the program may be examined at various
points to determine if the expected or asserted status
corresponds to the actual status.

8.0 The Road Ahead & The Three R's

Software is a child of the latter half of the twenti-
eth century—a baby boomer. And like its human
counterpart, software has accomplished much while at
the same time leaving much to be accomplished. It
appears that the economic and business environment
of the next ten years will be dramatically different than
anything that baby boomers have yet experienced.

23



Staff downsizing, the threat of outsourcing, and the
demands of customers who won't take "slow" for an
answer require significant changes in our approach to
software engineering and a major revaluation of our
strategies for handling hundreds of thousands of
existing systems [39].

Although many existing technologies will mature
over the next decade, and new technologies will
emerge, it's likely that three existing software engi-
neering issues—I call them the three R's—will domi-
nate the software engineering scene.

8.1 Reuse

We must build computer software faster. This sim-
ple statement is a manifestation of a business environ-
ment in which competition is vicious, product life
cycles are shrinking, and time to market often defines
the success of a business. The challenge of faster
development is compounded by shrinking human
resources and an increasing demand for improved
software quality.

To meet this challenge, software must be con-
structed from reusable components. The concept of
software reuse is not new, nor is a delineation of its
major technical and management challenges [40]. Yet
without reuse, there is little hope of building software
in time frames that shrink from years to months.

It is likely that two regions of the methods land-
scape may merge as greater emphasis is placed on
reuse. Object-oriented development can lead to the
design and implementation of inherently reusable pro-
gram components, but to meet the challenge, these
components must be demonstrably defect free. It may
be that formal methods will play a role in the devel-
opment of components that are proven correct prior to
their entry in a component library. Like integrated
circuits in hardware design, these "formally" devel-
oped components can be used with a fair degree of
assurance by other software designers.

If technology problems associated with reuse are
overcome (and this is likely), management and cultural
challenges remain. Who will have responsibility for
creating reusable components? Who will manage them
once they are created? Who will bear the additional
costs of developing reusable components? What in-
centives will be provided for software engineers to use
them? How will revenues be generated from reuse?
What are the risks associated with creating a reuse
culture? How will developers of reusable components
be compensated? How will legal issues such as liabil-
ity and copyright protection be addressed? These and
many other questions remain to be answered. And yet,
component reuse is our best hope for meeting the

software challenges of the early part of the twenty-first
century.

8.2 Reenguneering

Almost every business relies on the day-to-day
operation of an aging software plant. Major companies
spend as much as 70 percent or more of their software
budget on the care and feeding of legacy systems.
Many of these systems were poorly designed more
than decade ago and have been patched and pushed to
their limits. The result is a software plant with aging,
even decrepit systems that absorb increasingly large
amounts of resource with little hope of abatement. The
software plant must be rebuilt, and that demands a
reengineering strategy.

Reengineering takes time; it costs significant
amounts of money, and it absorbs resources that might
be otherwise occupied on immediate concerns. For all
of these reasons, reengineering is not accomplished in
a few months or even a few years. Reengineering of
information systems is an activity that will absorb
software resources for many years.

A paradigm for reengineering includes the follow-
ing steps:

• inventory analysis—creating a prioritized list
of programs that are candidates for reengi-
neering

• document restructuring—upgrading docu-
mentation to reflect the current workings of a
program

• code restructuring—recoding selected por-
tions of a program to reduce complexity,
ready the code for future change, and im-
prove understandability

• data restructuring—redesigning data struc-
tures to better accommodate current needs;
redesign the algorithms that manipulate these
data structures

• reverse engineering—examine software in-
ternals to determine how the system has been
constructed

• forward engineering—using information ob-
tained from reverse engineering, rebuild the
application using modern software engineer-
ing practices and principles.

8.3 Retooling

To achieve the first two R's, we need a third R—a
new generation of software tools. In retooling the
software engineering process, we must remember the

24



mistakes of the 1980s and early 1990s. At that time,
CASE tools were inserted into a process vacuum, and
failed to meet expectations. Tools for the next ten
years will address all aspects of the methods land-
scape. But they should emphasize reuse and reengi-
ncering.

9.0 Summary

As each of us in the software business looks to the
future, a small set of questions is asked and re-asked.
Will we continue to struggle to produce software that
meets the needs of a new breed of customers? Will
generation X software professionals repeat the mis-
takes of the generation that preceded them? Will soft-
ware remain a bottleneck in the development of new
generations of computer-based products and systems?
The degree to which the industry embraces software
engineering and works to instantiate it into the culture
of software development will have a strong bearing on
the final answers to these questions. And the answers
to these questions will have a strong bearing on
whether we should look to the future with anticipation
or trepidation.

References

[1] Naur, P. and B. Randall (eds.), Software Engineering:
A Report on a Conference Sponsored by the NATO
Science Committee, NATO, 1969.

[2] Paulk, M. et al., Capability Maturity Model for Soft-
ware, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, PA, 1993.

[3] Boehm, B., "A Spiral Model for Software Development
and Enhancement," Computer, Vol. 21, No. 5, May
1988, pp. 61-72.

[4] Gilb, T., Principles of Software Engineering Manage-
ment, Addison-Wesley, Reading, Mass., 1988.

[5] Mills, RD., M. Dyer, and R. Linger, Xleanroom
Software Engineering," IEEE Software, Sept. 1987,
pp. 19-25.

[6] Dyer, M., The Cleanroom Approach to Quality Soft-
ware Development, Wiley, New York, N.Y., 1992.

[7] Cougar, J. and R. Zawacki, Managing and Motivating
Computer Personnel, Wiley, New York, N.Y., 1980.

[8] DeMarco, T. and T. Lister, Peopleware, Dorset House,
1987.

[9] Weinberg, G., Understanding the Professional Pro-
grammer, Dorset House, 1988.

[10] Curtis, B., "People Management Maturity Model,"
Proc, Int'l Conf Software Eng., IEEE CS Press, Los
Alamitos, Calif., 1989, pp. 398-399.

[11] August, J.R, Joint Application Design, Prentice-Hall,
Englewood Cliffs, N.J., 1991.

[12] Wood, J. and D. Silver, Joint Application Design,
Wiley, New York, N.Y., 1989.

[13] Dreger, J.B., Function Point Analysis, Prentice-Hall,
Englewood Cliffs, N.J., 1989.

[14] Hetzel, B., Making Software Measurement Work, QED
Publishing, 1993.

[15] Jones, C, Applied Software Measurement, McGraw-
Hill, New York, N.Y., 1991.

[16] Fenton, N.E., Software Metrics, Chapman & Hall,
1991.

[17] Zuse, H., Software Complexity, W. deGruyer & Co.,
Berlin, 1990.

[18]Lorenz, M. and J. Kidd, Object-Oriented Software
Metrics, Prentice-Hall, Englewood Cliffs, N.J., 1994.

[19] Pressman, R.S., A Manager's Guide to Software Engi-
neering, McGraw-Hill, New York, N.Y., 1993.

[20] Boehm, B., Software Engineering Economics, Prentice-
Hall, Englewood Cliffs, N.J., 1981.

[21] Charette, R., Application Strategies for Risk Analysis,
McGraw-Hill, New York, N.Y., 1990.

[22] Jones, C, Assessment and Control of Software Risks,
Yourdon Press, 1993.

[24] Crosby, P., Quality is Free, McGraw-Hill, New York,
N.Y., 1979.

[25] McCall, J., P. Richards, and G. Walters, "Factors in
Software Quality," three volumes, NTIS AD-A049-
014,015,055, Nov. 1977.

[26] Cavano, J.P. and J.A. McCall, "A Framework for the
Measurement of Software Quality," Proc. ACM Soft-
ware Quality Assurance Workshop, ACM Press, New
York, N.Y., 1978, pp. 133-139.

[27] Freedman, D and G. Weinberg, The Handbook of
Walkthroughs, Inspections and Technical Reviews,
Dorset House, 1990.

[28] Gilb, T. and D. Graham, Software Inspection, Addison-
Wesley, Reading, Mass., 1993.

[29] Babich, W., Software Configuration Management,
Addison-Wesley, Reading, Mass., 1986.

[30] Pressman, R. and S. Herron, Software Shock, Dorset
House, 1991.

[31] Pressman, R., Software Engineering: A Practitioner's
Approach, 3rd ed., McGraw-Hill, New York. N.Y.,
1992.

[32] Yourdon, E., Modern Structured Analysis, Yourdon
Press, 1989.

[33] Booch, G., Object-Oriented Analysis & Design, Ben-
jamin-Cummings, 1994.

25



[34] Spivey, M., The Z Notation, Prentice-Hall, Englewood [38] Myers, G., The Art of Software Testing, Wiley, New
Cliffs, N.J., 1992. York, N.Y., 1979.

[35] Jackson, M., Principles of Program Design, Academic [38] Beizer, B., Software Testing Techniques, 2nd ed.,
Press, New York, N.Y., 1975. VanNostrand Reinhold, 1990.

[36] Pamas, D.L., "On Criteria to be used in Decomposing r^M ^ « „„ , *
Systems into Modules," Comm. ACM, Vol. 14, No. 1, ™ P

u
ressn™; ^l™*™ T

A ° T ± ! g * n!C°n° Ma"
Apr 1972 pp 221-227 chiavelh," IEEE Software, Jan. 1995, pp. 101-102.

[37] Linger, R., H. Mills, and B. Witt, Structured Pro- [40] Tracz, W., Software Reuse: Emerging Technology,
gramming, Addison-Wesley, Reading, Mass., 1979. IEEE CS Press, Los Alamitos, Calif., 1988.

26



Software Engineering—20 Years On and 20 Years
Back*

J. N. Buxton
Department of Computing, Kings College, London

This paper gives a personal view of the development
of software engineering, starting from the NATO con-
ferences some 20 years ago, looking at the current
situation and at possible lines of future development.
Software engineering is not presented as separate from
computer science but as the engineering face of the
same subject. It is proposed in the paper that significant
future developments will come from new localized
computing paradigms in specific application domains.

2 0 YEARS BACK

The start of the development of software engineering as
a subject in its own right, or perhaps more correctly as
a new point of view on computing, is particularly
associated with the NATO conferences in 1968 and
1969. The motivations behind the first of these meet-
ings was the dawning realization that major software
systems were being fuilt by groups consisting essen-
tially of gifted amateurs. The endemic problems of the
"software crisis"—software was late, over budget, and
unreliable—already affected small and medium systems
for well-coordinated applications and would clearly
have even more serious consequences for the really big
systems which were being planned.

People in the profession typically had scientific back-
grounds in mathematics, the sciences, or electronics. In
1968 we had already achieved the first big break-
through in the subject—the development of high-level
programming languages—and the second was awaited.
The time was ripe for the proposition which was floated
by the NATO Science Committee, and by Professor
Fritz Bauer of Munich, among others, that we should
consider the subject as a branch of engineering; other

Address correspondence to Professor J. N. Bwcton. Depart-
ment of Computing. Kings College London, Strand. London
WC2R2LS, England.

•The paper is a written version of the keynote address at the
International Conference on Software Engineering, Pittsburgh. May,
1989.

professions built big systems of great complexity and
by and large they called themselves "engineers," and
perhaps we should consider whether we should do the
same. Our big systems problems seemed primarily to
be on the software side and the proposition was that it
might well help to look at software development from
the standpoint of the general principles and methods of
engineering. And so, the first NATO Conference on
Software Engineering was convened in Garmisch
Parten-Kirchen in Bavaria.

It was an inspiring occasion. Some 50 people were
invited from among the leaders in the field and from the
first evening of the meeting it was clear that we shared
deep concerns about the quality of software being built
at the time. It was not just late and over budget; even
more seriously we could see, and on that occasion we
were able to share our anxieties about, the safety
aspects of future systems.

The first meeting went some way to describing the
problems—the next meeting was scheduled to follow
after a year which was to be devoted to study of the
techniques needed for its solution. We expected, of
course, that a year spent in studying the application of
engineering principles to software development would
show us how to solve the problem. It turned out that
after a year we had not solved it and the second
meeting in Rome was rather an anticlimax. However,
the software engineering idea was now launched: it has
steadily gathered momentum over some 20 years. Some
would no doubt say that it has become one of the great
bandwagons of our time; however, much has been
achieved and many central ideas have been developed:
the need for management as well as technology, the
software lifecycle, the use of toolsets, the application of
quality assurance techniques, and so on.

So during some 20 years, while the business has
expanded by many orders of magnitude, we have been
able to keep our heads above water. We have put
computers to use in most fields of human endeavor, we

Reprinted from / Systems and Software, Vol. 13, JLN. Buxton, "Software Engineering—20 Years On and 20 Years Back," pp. 153-
155,1990, with kind permission from Elsevier Science-NL, Sara Burgerhartstraat 25; 1055 KV Amsterdam, The Netherlands.

27



have demonstrated that systems of millions of lines of
code taking hundreds of man-years can be built to
acceptable standards, and our safety record, while not
perfect, has so far apparently not been catastrophic.
The early concepts of 20 years ago have been much
developed: the lifecycle idea has undergone much re-
finement, the toolset approach has been transformed by
combining unified toolsets with large project data bases,
and quality control and assurance is now applied as in
other engineering disciplines. We now appreciate more
clearly that what we do in software development can
well be seen as engineering, which must be under-
pinned by scientific and mathematical developments
which produce laws of behavior for the materials from
which we build: in other words, for computer pro-
grams.

THE PRESENT

So, where is software engineering today? In my view
there is indeed a new subject of "computing" which
we have to consider. It is separate from other disci-
plines and has features that are unique to the subject.
The artifacts we build have the unique property of
invisibility and furthermore, to quote David Parnas, the
state space of their behavior is both large and irregular.
In other words, we cannot "see" an executing program
actually running; we can only observe its conse-
quences. These frequently surprise us and in this branch
of engineering we lack the existence of simple physical
limits on the extent of erroneous behavior. If you build
a bridge or an airplane you can see it and you can
recognize the physical limitations on its behavior—this
is not the case if you write a computer program.

The subject of computing has strong links and rela-
tionships to other disciplines. It is underpinned by
discrete mathematics and formal logic in a way strongly
analogous to the underpinning of more traditional
branches of engineering by physics and continuous
mathematics. We expect increasing help from relevant
mathematics in determining laws of behavior for our
systems and of course we rely on electronics for the
provision of our hardware components. A computer is
an electronic artifact and is treated as such when it is
being built or when it fails; at other times we treat it as
a black box and assume it runs our program perfectly.

At the heart of the subject, however, we have the
study of software. We build complex tnultilayered pro-
grams which eventually implement applications for
people—who in turn treat the software as a black box
and assume it will service their application perfectly.

So, where and what is software engineering? I do not
regard it as a spearate subject. Building software is
perhaps the central technology in computing and much
of what we call software engineering is, in my view,

the face of computing which is turned toward applica-
tions. The subject of computing has three main aspects:
computer science is the face turned to mathematics,
from which we seek laws of behavior for programs;
computer architecture is the face turned to the electron-
ics, from which we build our computers; and software
engineering is the face turned toward the users, whose
applications we implement. I think the time has come to
return to a unified view of our subject—software engi-
neering is not something different from computer sci-
ence or hardware design—it is a different aspect or
specialty within the same general subject of computing.

20 YEARS ON

To attempt to answer the question, Where should we go
next and what of the next 20 years? opens interesting
areas of speculation. As software engineers, our con-
cerns are particularly with the needs of the users and
our aims are to satisfy these needs. Our techniques
involve the preparation of computer programs and I
propose to embark on some speculation based on a
study of the levels of language inwhich these programs
are written.

The traditional picture of the process of implement-
ing an application is, in general, as follows. The user
presents a problem, expressed in his own technical
terminology or language, which could be that of com-
merce, nuclear physics, medicine or whatever, to
somebody else who speaks a different language in the
professional sense. This is the language of algorithms
and this person devises an algorithmic solution to the
specific user problem, i.e., a solution expressed in
computational steps, sequences, iterations, choices.
This person we call the "systems analyst19 and indeed,
in the historical model much used in the data processing
field, this person passes the algorithms on to a "real
programmer" who thinks and speaks in the codeof the
basic computer hardware.

The first major advance in computing was the gen-
eral introduction of higher level languages such as
FORTRAN and COBOL—as in effect this eliminated
from all but some specialized areas the need for the
lower level of language, i.e., achine or assembly code
programming. The separate roles of systems analyst
and programmer have become blurred into the concept
of the software engineer who indeed thinks in algo-
rithms but expresses these directly himself in one of the
fashionable languages of the day. This indeed is a
breakthrough and has given us an order of magnitude
advance, whether we measure it in terms of productiv-
ity, size of application we can tackle, or quality of
result.

Of course we have made other detailed advances—we
have refined our software engineering techniques, we
have devised alternatives to algorithmic programming

28



in functional and rule-based systems, and we have done
much else. But in general terms we have not succeeded
in making another general advance across the board in
the subject.

In some few areas, however, there have been real
successes which have brought computing to orders of
magnitude more people with applications. These have
been in very specific application areas, two of which
spring to mind—spreadsheets and word processors. In
my view, study of these successes gives us most valu-
able clues as to the say ahead for computing applica-
tions.

The spreadsheet provides a good example for study.
The generic problem of accountancy is the presentation
of a set of figures which are perhaps very complexly
related but which must be coherent and consistent. The
purpose is to reveal a picture of the formal state of
affairs of an enterprise (so far, of course, as the accoun
tatn thinks it wise or necessary to reveal it). The
traditional working language of the accountatn is ex-
pressed in rows and columns of figures on paper to-
gether with their relationships. Now, the computer-
based spreadsheet system automates the piece of paper
and gives it magical extra properties which maintain
consistency of the figure under the relationships be-
tween them as specified by the accountant, while he
adjusts the figures. In effect, the computer program
automates the generic problem rather than any specific
set of accounts and so enables the accountant to express
his problem of the moment and to seek solutions in his
own professional language. He need know nothing, for
example, of algorithms, high-level languages, or von
Neuman machines, and the intermediary stages of the
systems analyst and programmer have both disappeared
from his view.

The same general remarks can be applied to word
processing. Here what the typist sees is in effect a
combination of magic correcting typewriter and filing
cabinet—and again the typist need know nothing of
algorithms. In both these examples there has been
conspicuous success in introduction. And there are
others emerging, e.g., hypertext. And historically there
is much in the thesis that relates to the so-called 4GLs
and, even earlier, to simulation languages in the 1960s.

Let me return to the consideration of levels of lan-
guage, and summarize the argument so far. I postulated
a traditional model for complete applications in which a
specific user problem, expressed in the language of the
domain of application, underwent a two-stage transla-
tion: first into algorithms (or some language of similar
level such as functional applications or Horn logic
clauses) and second down into machine code. Our first
breakthrough was to automate the lower of these stages
by the introduction of high-level languages, primarily
algorithmic. I now postulate that the second break-

through will come in areas where we can automate the
upper stage. Examples can already be found: very
clearly in specific closed domains such as spreadsheets
and word processors but also in more diffuse areas
addressed by very high-level languages such as 4GLs
and simulation generators.

Perhaps I should add a word here about object~ori-
entedness, as this is the best known buzz word of
today. I regard an object-oriented approach as a halfway
house to the concept I am proposing. Objects indeed
model those features of the real world readily mode-
lable as classes of entities—that is why we invented the
concept in the simulation languages of the early 1960s.
However, the rules of behavior of the object are still
expressed algorithmically and so an object-oriented sys-
tem still embodies a general purpose language.

It is central to the argument to realize that spread-
sheets and such can be used by people who do not
readily think in terms of algorithms. The teaching of
programming has demonstrated over many years that
thinking in algorithms is a specific skill and most
people have little ability in transposing problems from
their own domains into algorithmic solutions. Attempts
to bring the use of computers to all by teaching them
programming do not work; providing a service to
workers in specific domains directly in the language of
that domain, however, does work and spectacularly so.

CONCLUSIONS

I come to the conclusion, therefore, that the most
promising activity for the next 20 years is the search
for more domains of applications in which the language
used to express problems in the domain is closed,
consistent, and logically based. Then we can put for-
ward generic computer-based systems which enable
users in the domain to express their problems in the
language of the application and to be given solutions in
their own terms. To use another buzz word of the day,
I look for non-specific but localized paradigms for
computing applications.

Of course this is not all that we might expect to do in
the next 20 years. We can do much more in developing
the underpinning technology in the intermediate levels
between the user and the machine. Most of our work
will still be devoted to the implementing of systems to
deliver solutions to specific problems. But while we
proceed with the day-to-day activities of software engi-
neering or of the other faces of computing with which
we may be concerned, wemight be wise to look out for
opportunities to exploit new application domains where
we can see ways to raise the '* level of programming
language'* until it becomes the same as the professional
language of that domain. Then, we will achieve another
breakthrough.

29


