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Introduction to Numerical
Modeling

1.1 MODELING AS AN INTELLECTUAL ACTIVITY

Humans often attempt to understand physical phenomena by reduction to
the familiar. At the end of the nineteenth century, scientists used models of
electric and magnetic phenomena that were essentially mechanical in
nature [1]. Mechanical phenomena at that time were accorded the status of
familiar concepts and, by analogy to them, electric and magnetic phenom-
ena were made plausible. Irrespective of their explanatory significance, it
cannot be denied that models are very useful in several respects [2]. If the
laws of a new phenomenon have the same form with those of another
which has already been studied, then the consequences of the latter can be
transferred to the new phenomena. This offers intellectual economy,
strengthens the generality, and broadens the scope of our understanding of
the world. A well chosen model facilitates the grasp of a new phenomenon
and can be an effective heuristic tool in the search for explanations.

Numerical modeling is an activity distinct from computation. The
endless printouts of numbers generated by computers are meaningless
outside a system of knowledge and rationality that stems from human
activity and experience. Numbers by themselves do not convey substan-
tial information unless they can be used as evidence to justify or reject
conceptual models of the phenomena we observe [3]. By repeated obser-
vations, we establish regularities which are embodied in models (mathe-
matical or otherwise). This is a never-ending process which generates
models of increasing generality and power. It is worth pointing out that
however general and sophisticated a model is, it is never the real thing.
Whether a perfect model is possible is a philosophical question of great
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complexity. However, a pragmatic answer to this question can be given
which may be acceptable for engineering models. A model that is "per-
fect" in the sense of being identical to the real thing will be of limited use
to the engineer and therefore undesirable. It will be as unwieldy as the
real thing and will obscure the insights that a simple but effective model
can often provide. The development of engineering models must therefore
be a task focused on simplicity and clarity. Models must be simple—but
not simpler than they have to be. It therefore follows that a task equally
important as the development of a model is the identification, in a qualita-
tive and quantitative manner, of its limitations. A consequence of this
approach is that several different models are necessary to describe what is
the same thing. An example of this can be seen in the modeling of a
human being [4]. In embarking on this task the following question must
be asked: "What is the intended application of the model?" If the answer
to this question is that it is intended for clothes fitting, then a simple
wooden structure padded with straw is perfectly adequate. If, on the other
hand, the model is to be used for studying the effect on humans of rapid
acceleration and vibrations, then a structure made of springs and masses
will be the most suitable model. Similarly, a model for determining the
body's electrostatic field distribution will need to contain a large amount
of water to account for the basic constituent of the human body which, by
virtue of its high dielectric permittivity, will affect strongly the field dis-
tribution. A model of humans that consists of resistors and capacitors is
quite effective in predicting electrostatic charging and discharging. There
is no way of saying that one of these models is a better model of a human,
except in the sense that it is or may be developed into a more general
model.

The above example helps to illustrate the great variety of models
that can be constructed. We all have a multitude of mental models of
which we may not be conscious at all times. It is simply impossible to
have a rational view of the world without some models.

The reader may be persuaded by now of the importance of modeling
in all human activities. However, modeling per se, as a field of study, is in
its infancy, and there is simply a very wide scope for study and develop-
ment of the modeling process.

Focusing now attention on numerical models, it is worth pointing
out that implicit to every modeling activity are the following more or less
distinct steps adapted from Reference [5].

a) Conceptualization. This is the first step in the modeling mental process
whereby observations are related to relevant physical principles. (For exam-
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pie, I release an apple and it falls. This must have something to do with grav-
ity and not with its color!)

b) Formulation. This step consists of the more detailed formulation of the
physical ideas, perhaps in a mathematical form. (For example, in the exam-
ple above, state Newton's Law F = ma and quantify other factors that may be
thought to be relevant, such as air drag, etc.)

c) Numerical implementation. During this stage, the mathematical or other
model described above is prepared for solution—most probably by a digital
computer. A solution algorithm is developed that is suitable for implementa-
tion by the computer. This process can be a simple one (as for the apple
example) or very complex (as with most problems in electromagnetics).

d) Computation. This stage involves the coding of the solution algorithm using
one of the computer languages and the development of preprocessing and
postprocessing facilities. Large programs may involve extensive number
crunching and press computing facilities to their limit. Issues of computa-
tional efficiency must be considered carefully at this stage.

e) Validation. Modeling complex problems involves a number of simplifica-
tions and approximations. At any stage during the process described above,
unacceptable errors may be introduced. It is not uncommon for users of pow-
erful models and computers to regard their output results as beyond
reproach. It is, however, essential that results be checked for physical reason-
ableness. Confidence in models must always be tempered by an understand-
ing of the complexity of real problems.

This brief introduction to modeling should convince the reader of
the skill and sophistication necessary for good modeling. Conceptualizing
demands the skills of a physicist and engineer to identify relevant mecha-
nisms and thus develop the necessary framework for a solution. The more
detailed formulation of the problem requires mathematical skills, as does
the numerical analysis necessary for algorithm development and imple-
mentation. Computation can always benefit from the contributions of a
computer scientist and engineer. Finally, the special gifts of an experi-
mentalist are required to do critical, well documented experiments with
the required accuracy and to interpret results for comparison with simula-
tions.

Naturally, no single person can claim mastery of all these fields.
Nevertheless, anyone seriously involved in modeling should aim to
develop the skills, maturity, and confidence necessary to function cre-
atively and efficiently in this exciting discipline.

In this text, which is focused on a single modeling method, it is not
possible to present in detail all aspects of modeling. However, by a sys-
tematic approach to model building in transmission line modeling (TLM),
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the basic processes inherent in many similar methods will be presented,
and it is hoped that they will be of value in other applications and disci-
plines. The plan of the book is outlined below.

A general classification of modeling methods is given in the next
section, based on the manner in which the problem is formulated. The
chapter concludes with a section that aims to put TLM into context rather
than offering a complete coverage of other methods.

The basic building blocks in TLM are electric circuit components
and, more specifically, transmission line segments. The next two chapters
give an introduction to the basic modeling philosophy and to standard
transmission line theory. Subsequent chapters introduce model building
from the simplest lumped components to the most general field distribu-
tions in three dimensions. The standard theory is presented in terms of
application to electromagnetics. This avoids unnecessary complexity and
loss of focus during the development of the basic concepts and tech-
niques. Generalization to other applications (e.g., thermal, mechanical,
etc.) is then straightforward and is presented mainly in Chapters 7 and 8.
Applications and more advanced topics are presented in Chapters 9 and
10.

1.2 CLASSIFICATION OF NUMERICAL METHODS

Engineering models are used to establish a relationship between the input
(source, stimulus) to a system and the output (response) from the system.
This is shown schematically in Fig. 1.1. The process of Conceptualizing
and formulation leads to the expression of the physical laws describing
the system in a form of the type:

X(<D) = a (1.1)= a (1.1)

where

L = a mathematical operator

<E> = a field function that must be determined

a = a source function

Basic classification schemes for numerical methods can be arrived at by
examining the nature of Equation (1.1).

One criterion for classification is the domain in which the operator,
the field, and source functions are defined. If these are defined in the time-
domain, then the method is described as a time-domain (TD) method.
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Fig. 1.1 Input/output in a system

Alternatively, the frequency domain may be chosen, leading to frequency-
domain (FD) methods. Examples of the two formulations for the circuit
shown in Fig. 1.2 are:

F0cosco^ = i(t)R + L^p-

for TD formulation and

Vo = I(R +ycoL)

for FD formulation, where I represents the current phasor.

Clearly, the TD formulation is suitable for studying transients and
nonlinear phenomena, while the FD formulation is straightforward for
studying the steady-state response to a sinusoidal excitation. In the TD,
the function fully characterizing the system is its impulse response h(t),
while in the FD, the frequency response //(/co) offers a complete system
description. Since h{t) and //(/co) form a Fourier transform pair, any infor-
mation available in the TD can be converted into the FD, and vice-versa.
However, although the two descriptions are formally equivalent, issues of
efficiency normally dictate which approach is the most convenient in a
particular problem. For example, if the steady-state response at a single
frequency is required, the natural choice must be a FD method. For tran-

Fig. 1.2 A simple circuit used to
demonstrate frequency- and
time-domain formulations
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sients, or when the response over a wide frequency range is required, a TD
method may be the most appropriate.

For the simple example shown in Fig. 1.2, both "transfer functions"
h(t) and H(jco) can be readily obtained in an analytical form. However, in
most practical problems, the transfer function is a multivariable, multidi-
mensional, discrete function defined over a large number of mesh points.
It occupies a large amount of computer memory, and its determination
and manipulation forms the formal task of solving a problem by numeri-
cal simulation.

Another criterion for classification is the nature of the operator L
used in Equation (1.1). It may be expressed in a differential or in an inte-
gral form, thus resulting into differential (DE) and integral (IE) numerical
modeling methods, respectively. An example of differential and integral
formulations of the same basic physical ideas can be seen in Gauss's Law:

V D = p

J D dS = Q
s

The former equation is a differential formulation and must be
enforced at every point in the problem space. The latter is an integral for-
mulation and must be enforced on surfaces in the problem space. Numer-
ical methods fall broadly within these two categories.

A further class of methods, with its own special characteristics, is
that of ray methods, which are based on concepts borrowed from optics.
Several formulations are also available combining more than one method,
and these are described as hybrid numerical methods.

In formulating a problem for solution by digital computer, the con-
venient concepts used in analytical techniques of infinitesimally small
time and space steps (dt and dx, respectively) must be replaced by small
but finite steps (At and Ax, respectively). This is fundamental in computer
simulation because, if time-steps were infinitesimally small, a computer
with a finite clock speed would require an infinitely long time to do the
simplest calculation. Similarly, an infinitesimally small space-step would
require a computer with an infinite number of memory locations. There-
fore, implicit in every numerical simulation is the construction of a grid
or mesh of points, covering the entire problem space, on which the rele-
vant physical laws are enforced at successive time steps. It is arguable that
at the atomic level physical processes are finite. However, in most practi-
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cal simulations, the replacement of the concept of a continuum by the dis-
crete approach is dictated by practical considerations, such as computer
storage and run-time. Discretization in time and space therefore intro-
duces errors that must be quantified and controlled in every numerical
simulation.

In a differential method, the entire space has to be discretized, and
this normally results in large computational requirements. In practice, if
a suitable physical outer boundary surface does not exist in the problem
(such as in the case of open-boundary problems), then an artificial
"numerical boundary" must be defined to contain the computation
within manageable limits. Defining the correct boundary conditions on
numerical boundaries is not an easy task. On the positive side, the
enforcement of physical laws on all points in space means that fine fea-
tures, irregular shapes, and material inhomogeneities can be easily dealt
with. In addition, in spite of the large number of quantities to be deter-
mined on grid points in space, the resulting equations can be solved rela-
tively easily.

In contrast, in an integral method, physical laws are enforced on grid
points lying on important surfaces of the problems and, hence, the number
of quantities to be determined is smaller. However, the equations to be
solved are usually more complex, so a relatively small number of points
can be handled. Open-boundary problems can be dealt with rigorously in
IE formulations.

This brief outline of DE and IE methods indicates that each general
class has its own advantages and disadvantages, and that the best method
is application dependent. A more detailed discussion of numerical meth-
ods may be found in [5].

The need for discretization in numerical simulation leads to the
question of the choice of appropriate time- and space-steps. An answer to
this question cannot be given without reference to the method used,
errors, and application requirements. However, a useful practical rule is to
choose a space discretization length that is smaller than one-tenth of the
smallest wavelength of interest. For both classes of finite methods (DE
and IE), and with computing facilities commonly available, it is difficult
to envisage solving problems in three dimensions which are larger in
physical size than a few wavelengths. At very high frequencies, it is
advantageous to use ray methods. These methods can be applied when the
wavelength X is much smaller than the size of the features being modeled.
Fields are calculated by taking into account reflected and diffracted rays.
Methods based on geometrical optics (GO), the geometrical theory of dif-
fraction (GTD), and other more general approaches are available.
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1.3 ELECTRICAL CIRCUIT ANALOGS
OF PHYSICAL SYSTEMS

It is undoubtedly true that humans model best when they use a medium
with which they are familiar. Mechanical phenomena are closest to
human experience and the first to be understood and formulated in scien-
tific terms. The field of mechanics has long been understood in terms of a
coherent self-consistent set of scientific principles. It was therefore natu-
ral that, during the beginnings of electrical science, mechanical models
were used to aid understanding and make predictions. Electrical science
now has the status of a well established scientific theory, and it therefore
can be used as a model for studying other phenomena. While mathemati-
cians are familiar with differential equations, electrical and electronic
engineers have an intuitive understanding of how electrical circuits work
and the significance of each circuit component. They are, therefore, more
comfortable with circuit models than with the more abstract mathematical
models normally used to study electromagnetic fields. Circuit models can
also be used to study thermal and mechanical phenomena—an interesting
development, considering the situation at the turn of the century. The pur-
pose of this book is to provide a systematic treatment of the modeling
process based on electrical circuit analogs. In this chapter, however, only a
general introduction will be given. The modeling principles will be out-
lined with a broad brush to assist the reader in following more comfort-
ably the detailed treatment in subsequent chapters.

The idea of using electrical circuits to model fields is not new. More
recently, the work of Kron and others signposted the equivalence between
field and circuit ideas [6-8]. However, no substantial progress could be
made in exploiting these ideas, because the circuit models could not be
solved using the calculation tools available at the time. Further develop-
ment had to wait for the introduction of modern digital computers and the
pioneering work of Johns and Beurle [9], which provided sufficient impe-
tus for a rapid advance.

The analogy between circuits and fields can be understood by con-
sidering the transmission line circuit shown in Fig. 1.3. The voltage v and
current / on the line are functions of time t and distance x. Kirchhoff 's
voltage (KVL) and current (KCL) laws on the lines give:

-1- = 4M < i 3>
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vT

X X+AX
Fig. 1.3 A simple transmission line network

These expressions are strictly correct provided that Ax —> 0. Equations
(1.2) and (1.3) may be manipulated to eliminate v and thus provide an
equation containing i only:

dx (Ax)2 dt (Ax)2Rdt

It can also be shown that in a one-dimensional EM field problem,
the current density j is determined by the following equation [10]:

ii-yuii + vM, (1-5)
dx2 dt2 dt

where |i, £, and a are the magnetic permeability, electric permittivity, and
electrical conductivity of the medium.

Field components E, B are also described by equations similar to
Equation (1.5), which is known as the wave equation in a lossy medium.
The analogy between the circuit [Equation (1.4)] and field [Equation
(1.5)] problems is based on the similar form of these two equations. Simi-
larly, analogues of Equations (1.4) and (1.5) may be found in three-
dimensional problems, as shown in Chapter 6. The laws governing circuit
behavior have the same syntactical structure as those governing field
behavior. The isomorphism between Equations (1.4) and (1.5) means that
the behavior of fields may be understood by studying the behavior of cir-
cuits. For the particular example considered here, the equivalence
between circuits and fields is summarized in Table 1.1.

It is worth considering further the nature of Equation (1.5). Assum-
ing a harmonic variation for j , i.e., j (x, t) - y0eos (cor- (3x) , the two
terms on the right-hand side of this equation can be evaluated and their
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Table 1.1 Equivalence between circuits and fields

Circuit EM Field

i

L/Ax

C/Ax

l/RAx

<=>

<=>

<=>

<=>

j

8

a

magnitudes compared. The first term describes wave-like behavior, and
given that dj/dt ~ coy", and d j/dt ~ co j ,

I 2

| wave term ~ jieco

The second term describes diffusion-like behavior, and its magnitude is

[diffusion term| ~ |Liaco

Hence,
wave terml coe

(diffusion term| a

In cases where coe » a, wave behavior dominates. This is the case
with propagation in air and low-loss dielectrics at high frequencies. When
coe < a, diffusion behavior prevails, as in propagation at low frequencies
in lossy media. The circuit equation (1.4) thus can be used to model
waves, diffusion, and any combination of the two. To model diffusion, the
first term on the left-hand side of this equation must be negligible com-
pared to the second. The diffusion-dominated equation (1.4) can then be
used to model thermal conduction in a material. In this case, the tempera-
ture distribution Q(x,t) is determined by the diffusion equation:

(1.6)
a^e = s_ ae
dx2 kth dt

where

S = the specific heat in J/Km3

kth = the thermal conductivity in W/Km

Clearly, the analogy between Equation (1.6) and the diffusion-dominated
Equation (1.4) requires the equivalence shown in Table 1.2.
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Table 1.2 Circuit and thermal equivalence

Circuit Thermal

L_ <=> S
Ax

RAx <=> kth

Other circuits can also be used to model thermal problems, as will
be discussed in more detail further in this book. The purpose of the previ-
ous brief treatment is merely to illustrate the principles of establishing
analogies between different physical problems.

The circuit analogs described above would be of only educational
value if their solution could not be found in a relatively simple manner. In
engineering practice, it is important to develop models that clearly illus-
trate the important physical interaction, but a solution of these models is
also necessary to predict behavior and optimize designs. Circuit models
such as the one shown in Fig. 1.3 can be very complex in practice, espe-
cially when they are generalized to describe two- and three-dimensional
distributions, as it will be shown later.

TLM provides a systematic, elegant, and efficient procedure for
solving these networks. It is based on using transmission line elements to
describe all energy storage elements. It is therefore important to summa-
rize (see Chapter 2) aspects of transmission line theory that are important
in understanding the implementation of TLM.

REFERENCES

[1] Lodge, O. 1889. Modern Views of Electricity. London: Macmillan.
[2] Hempel, C.G. 1965. Aspects of Scientific Exploration and other Essays in

the Philosophy of Science. London: Macmillan.
[3] Hammond, P. 1988. Some thoughts on the numerical modelling of electro-

magnetic processes. InternationalJournal of Numerical Modelling 1, 3-6.
[4] Johns, P.B. 1979. The art of modelling. Electronics and Power, 565-569.
[5] Miller, E.K. 1988. A selective survey of computational electromagnetics.

IEEE Trans. AP-26, 1281-1305.
[6] Kron, G. 1944. Equivalent circuit of the field equations of Maxwell. Proc

IRE 32, 289-299.
[7] Whinnery, J.R., and S. Ramo. 1944. A new approach to the solution of high-

frequency problems. Proc. IRE 32, 284-288.



12 Introduction to Numerical Modeling Chap. 1

[8] Whinnery, J.R., et al. 1944. Network analyser studies of electromagnetic
cavity resonators. Proc IRE, 32, 360-367.

[9] Johns, P.B., and R.L. Beurle. 1971. Numerical solution of two-dimensional
scattering problems using transmission-line matrix. Proc IEE 118, 1203-
1208.

[10] Christopoulos, C. 1990. An Introduction to Applied Electromagnetism. New
York: John Wiley & Sons.


