
1. INTRODUCTION

Testing and Diagnosis

Testing of a system is an experiment in which the system is exercised and its resulting
response is analyzed to ascertain whether it behaved correctly. If incorrect behavior is
detected, a second goal of a testing experiment may be to diagnose, or locate, the cause of
the misbehavior. Diagnosis assumes knowledge of the internal structure of the system
under test. These concepts of testing and diagnosis have a broad applicability; consider,
for example, medical tests and diagnoses, test-driving a car, or debugging a computer
program.

Testing at Different Levels of Abstraction

The subject of this book is testing and diagnosis of digital systems. "Digital system"
denotes a complex digital circuit. The complexity of a circuit is related to the level of
abstraction required to describe its operation in a meaningful way. The level of
abstraction can be roughly characterized by the type of information processed by the
circuit (Figure 1.1). Although a digital circuit can be viewed as processing analog
quantities such as voltage and current, the lowest level of abstraction we will deal with is
the logic level. The information processed at this level is represented by discrete logic
values. The classical representation uses binary logic values (0 and 1). More accurate
models, however, often require more than two logic values. A further distinction can be
made at this level between combinational and sequential circuits. Unlike a combinational
circuit, whose output logic values depend only on its present input values, a sequential
circuit can also remember past values, and hence it processes sequences of logic values.

Control Data

Logic values
(or sequences of logic values)

Logic values

Instructions

Programs

Words

Words

Data structures

Messages

Level of abstraction

Logic level

Register level

Instruction set level

Processor level

System level

Figure 1.1 Levels of abstraction in information processing by a digital system

We start to regard a circuit as a system when considering its operation in terms of
processing logic values becomes meaningless and/or unmanageable. Usually, we view a
system as consisting of a data part interacting with a control part. While the control
function is still defined in terms of logic values, the information processed by the data
part consists of words, where a word is a group (vector) of logic values. As data words
are stored in registers, this level is referred to as the register level. At the next level of
abstraction, the instruction set level, the control information is also organized as words,

1

INTRODUCTION

referred to as instructions. A system whose operation is directed by a set of instructions
is called an instruction set processor. At a still higher level of abstraction, the processor
level, we can regard a digital system as processing sequences of instructions, or
programs, that operate on blocks of data, referred to as data structures. A different view
of a system (not necessarily a higher level of abstraction) is to consider it composed of
independent subsystems, or units, which communicate via blocks of words called
messages; this level of abstraction is usually referred to as the system level.

In general, the stimuli and the response defining a testing experiment correspond to the
type of information processed by the system under test. Thus testing is a generic term
that covers widely different activities and environments, such as

• one or more subsystems testing another by sending and receiving messages;

• a processor testing itself by executing a diagnostic program;

• automatic test equipment (ATE) checking a circuit by applying and observing binary
patterns.

In this book we will not be concerned with parametric tests, which deal with electrical
characteristics of the circuits, such as threshold and bias voltages, leakage currents, and
so on.

Errors and Faults

An instance of an incorrect operation of the system being tested (or UUT for unit under
test) is referred to as an (observed) error. Again, the concept of error has different
meanings at different levels. For example, an error observed at the diagnostic program
level may appear as an incorrect result of an arithmetic operation, while for ATE an error
usually means an incorrect binary value.

The causes of the observed errors may be design errors, fabrication errors, fabrication
defects, and physical failures. Examples of design errors are

• incomplete or inconsistent specifications;

• incorrect mappings between different levels of design;

• violations of design rules.

Errors occurring during fabrication include

• wrong components;

• incorrect wiring;

• shorts caused by improper soldering.

Fabrication defects are not directly attributable to a human error; rather, they result from
an imperfect manufacturing process. For example, shorts and opens are common defects
in manufacturing MOS Large-Scale Integrated (LSI) circuits. Other fabrication defects
include improper doping profiles, mask alignment errors, and poor encapsulation.
Accurate location of fabrication defects is important in improving the manufacturing
yield.

Physical failures occur during the lifetime of a system due to component wear-out and/or
environmental factors. For example, aluminum connectors inside an IC package thin out

2

INTRODUCTION

with time and may break because of electron migration or corrosion. Environmental
factors, such as temperature, humidity, and vibrations, accelerate the aging of
components. Cosmic radiation and a-particles may induce failures in chips containing
high-density random-access memories (RAMs). Some physical failures, referred to as
"infancy failures," appear early after fabrication.

Fabrication errors, fabrication defects, and physical failures are collectively referred to as
physical faults. According to their stability in time, physical faults can be classified as

• permanent, i.e., always being present after their occurrence;

• intermittent, i.e., existing only during some intervals;

• transient, i.e., a one-time occurrence caused by a temporary change in some
environmental factor.

In general, physical faults do not allow a direct mathematical treatment of testing and
diagnosis. The solution is to deal with logical faults, which are a convenient
representation of the effect of the physical faults on the operation of the system. A fault
is detected by observing an error caused by it. The basic assumptions regarding the
nature of logical faults are referred to as a fault model. The most widely used fault model
is that of a single line (wire) being permanently "stuck" at a logic value. Fault modeling
is the subject of Chapter 4.

Modeling and Simulation

As design errors precede the fabrication of the system, design verification testing can be
performed by a testing experiment that uses a model of the designed system. In this
context, "model" means a digital computer representation of the system in terms of data
structures and/or programs. The model can be exercised by stimulating it with a
representation of the input signals. This process is referred to as logic simulation (also
called design verification simulation or true-value simulation). Logic simulation
determines the evolution in time of the signals in the model in response to an applied
input sequence. We will address the areas of modeling and logic simulation in
Chapters 2 and 3.

Test Evaluation

An important problem in testing is test evaluation, which refers to determining the
effectiveness, or quality, of a test. Test evaluation is usually done in the context of a fault
model, and the quality of a test is measured by the ratio between the number of faults it
detects and the total number of faults in the assumed fault universe; this ratio is referred
to as the fault coverage. Test evaluation (or test grading) is carried out via a simulated
testing experiment called fault simulation, which computes the response of the circuit in
the presence of faults to the test being evaluated. A fault is detected when the response it
produces differs from the expected response of the fault-free circuit. Fault simulation is
discussed in Chapter 5.

Types of Testing

Testing methods can be classified according to many criteria. Figure 1.2 summarizes the
most important attributes of the testing methods and the associated terminology.

3

INTRODUCTION

Criterion

When is
testing
performed?

Where is
the source of
the stimuli?

What do we
test for?

What is the
physical
object being
tested?

How are the
stimuli
and/or the
expected
response
produced?

How are the
stimuli
applied?

Attribute of testing method

• Concurrently with the normal
system operation

• As a separate activity
• Within the system itself

• Applied by an external device
(tester)

• Design errors

• Fabrication errors
• Fabrication defects
• Infancy physical failures

• Physical failures

• IC

• Board

• System
• Retrieved from storage

• Generated during testing

• In a fixed (predetermined) order

• Depending on the results
obtained so far

Terminology

On-line testing
Concurrent testing

Off-line testing
Self-testing

External testing

Design verification
testing

Acceptance testing
Burn-in
Quality-assurance

testing
Field testing
Maintenance testing

Component-level
testing

Board-level testing

System-level testing
Stored-pattern

testing

Algorithmic testing
Comparison testing

Adaptive testing

Figure 1.2 Types of testing

Testing by diagnostic programs is performed off-line, at-speed, and at the system level.
The stimuli originate within the system itself, which works in a self-testing mode. In
systems whose control logic is microprogrammed, the diagnostic programs can also be
microprograms (microdiagnostics). Some parts of the system, referred to as hardcore,
should be fault-free to allow the program to run. The stimuli are generated by software or

4

INTRODUCTION

Criterion

How fast
are the
stimuli
applied?

What are
the observed
results?

What lines
are accessible
for testing?

Who checks
the results?

Attribute of testing method

• Much slower than the normal
operation speed

• At the normal operation speed

• The entire output patterns

• Some function of the output
patterns

• Only the I/O lines

• I/O and internal lines

• The system itself

• An external device (tester)

Terminology

DC (static) testing

AC testing
At-speed testing

Compact testing

Edge-pin testing

Guided-probe testing
Bed-of-nails testing
Electron-beam testing
In-circuit testing
In-circuit emulation

Self-testing
Self-checking

External testing

Figure 1.2 (Continued)

firmware and can be adaptively applied. Diagnostic programs are usually run for field or
maintenance testing.

In-circuit emulation is a testing method that eliminates the need for hardcore in running
diagnostic programs. This method is used in testing microprocessor (jjP)-based boards
and systems, and it is based on removing the |iP on the board during testing and
accessing the JLLP connections with the rest of the UUT from an external tester. The tester
can emulate the function of the removed joP (usually by using a |iP of the same type).
This configuration allows running of diagnostic programs using the tester's jiP and
memory.

In on-line testing, the stimuli and the response of the system are not known in advance,
because the stimuli are provided by the patterns received during the normal mode of
operation. The object of interest in on-line testing consists not of the response itself, but
of some properties of the response, properties that should remain invariant throughout the
fault-free operation. For example, only one output of a fault-free decoder should have
logic value 1. The operation code (opcode) of an instruction word in an instruction set
processor is restricted to a set of "legal" opcodes. In general, however, such easily
definable properties do not exist or are difficult to check. The general approach to on-line
testing is based on reliable design techniques that create invariant properties that are easy
to check during the system's operation. A typical example is the use of an additional
parity bit for every byte of memory. The parity bit is set to create an easy-to-check

5

INTRODUCTION

invariant property, namely it makes every extended byte (i.e., the original byte plus the
parity bit) have the same parity (i.e., the number of 1 bits", taken modulo 2). The parity
bit is redundant, in the sense that it does not carry any information useful for the normal
operation of the system. This type of information redundancy is characteristic for
systems using error-detecting and error-correcting codes. Another type of reliable
design based on redundancy is modular redundancy, which is based on replicating a
module several times. The replicated modules (they must have the same function,
possibly with different implementations) work with the same set of inputs, and the
invariant property is that all of them must produce the same response. Self-checking
systems have subcircuits called checkers, dedicated to testing invariant properties.
Self-checking design techniques are the subject of Chapter 13.

Guided-probe testing is a technique used in board-level testing. If errors are detected
during the initial edge-pin testing (this phase is often referred to as a GO/NO GO test),
the tester decides which internal line should be monitored and instructs the operator to
place a probe on the selected line. Then the test is reapplied. The principle is to trace
back the propagation of error(s) along path(s) through the circuit. After each application
of the test, the tester checks the results obtained at the monitored line and determines
whether the site of a fault has been reached and/or the backtrace should continue. Rather
than monitoring one line at a time, some testers can monitor a group of lines, usually the
pins of an IC.

Guided-probe testing is a sequential diagnosis procedure, in which a subset of the internal
accessible lines is monitored at each step. Some testers use a fixture called bed-of-nails
that allows monitoring of all the accessible internal lines in a single step.

The goal of in-circuit testing is to check components already mounted on a board. An
external tester uses an IC clip to apply patterns directly to the inputs of one IC and to
observe its outputs. The tester must be capable of electronically isolating the IC under
test from its board environment; for example, it may have to overdrive the input pattern
supplied by other components.

Algorithmic testing refers to the generation of the input patterns during testing. Counters
and feedback shift registers are typical examples of hardware used to generate the input
stimuli. Algorithmic pattern generation is a capability of some testers to produce
combinations of several fixed patterns. The desired combination is determined by a
control program written in a tester-oriented language.

The expected response can be generated during testing either from a known good copy of
the UUT — the so-called gold unit — or by using a real-time emulation of the UUT.
This type of testing is called comparison testing, which is somehow a misnomer, as the
comparison with the expected response is inherent in many other testing methods.

Methods based on checking some function f(R) derived from the response R of the UUT,
rather than R itself, are said to perform compact testing, and f(R) is said to be a
compressed representation, or signature, of R. For example, one can count the number of
1 values (or the number of 0 to 1 and 1 to 0 transitions) obtained at a circuit output and
compare it with the expected 1-count (or transition count) of the fault-free circuit. Such a
compact testing procedure simplifies the testing process, since instead of bit-by-bit
comparisons between the UUT response and the expected output, one needs only one
comparison between signatures. Also the tester's memory requirements are significantly

6

INTRODUCTION

reduced, because there is no longer need to store the entire expected response.
Compression techniques (to be analyzed in Chapter 10) are mainly used in self-testing
circuits, where the computation of f(R) is implemented by special hardware added to the
circuit. Self-testing circuits also have additional hardware to generate the stimuli.
Design techniques for circuits with Built-in Self-Test (BIST) features are discussed in
Chapter 11.

Diagnosis and Repair

If the UUT found to behave incorrectly is to be repaired, the cause of the observed error
must be diagnosed. In a broad sense, the terms diagnosis and repair apply both to
physical faults and to design errors (for the latter, "repair" means "redesign"). However,
while physical faults can be effectively represented by logical faults, we lack a similar
mapping for the universe of design errors. Therefore, in discussing diagnosis and repair
we will restrict ourselves to physical (and logical) faults.

Two types of approaches are available for fault diagnosis. The first approach is a
cause-effect analysis, which enumerates all the possible faults (causes) existing in a fault
model and determines, before the testing experiment, all their corresponding responses
(effects) to a given applied test. This process, which relies on fault simulation, builds a
data base called a fault dictionary. The diagnosis is a dictionary look-up process, in
which we try to match the actual response of the UUT with one of the precomputed
responses. If the match is successful, the fault dictionary indicates the possible faults (or
the faulty components) in the UUT.

Other diagnosis techniques, such as guided-probe testing, use an effect-cause analysis
approach. An effect-cause analysis processes the actual response of the UUT (the effect)
and tries to determine directly only the faults (cause) that could produce that response.
Logic-level diagnosis techniques are treated in Chapter 12 and system-level diagnosis is
the subject of Chapter 15.

Test Generation

Test generation (TG) is the process of determining the stimuli necessary to test a digital
system. TG depends primarily on the testing method employed. On-line testing methods
do not require TG. Little TG effort is needed when the input patterns are provided by a
feedback shift register working as a pseudorandom sequence generator. In contrast, TG
for design verification testing and the development of diagnostic programs involve a large
effort that, unfortunately, is still mainly a manual activity. Automatic TG (ATG) refers to
TG algorithms that, given a model of a system, can generate tests for it. ATG has been
developed mainly for edge-pin stored-pattern testing.

TG can be fault oriented ox function oriented. In fault-oriented TG, one tries to generate
tests that will detect (and possibly locate) specific faults. In function-oriented TG, one
tries to generate a test that, if it passes, shows that the system performs its specified
function. TG techniques are covered in several chapters (6, 7, 8, and 12).

7

INTRODUCTION

Design for Testability

The cost of testing a system has become a major component in the cost of designing,
manufacturing, and maintaining a system. The cost of testing reflects many factors such
as TG cost, testing time, ATE cost, etc. It is somehow ironic that a $10 |iP may need a
tester thousands times more expensive.

Design for testability (DFT) techniques have been increasingly used in recent years.
Their goal is to reduce the cost of testing by introducing testability criteria early in the
design stage. Testability considerations have become so important that they may even
dictate the overall structure of a design. DFT techniques for external testing are
discussed in Chapter 9.

8

