chapter 1

multipath interference
W. C. Jakes

SYNOPSIS OF CHAPTER

Nature is seldom kind. One of the most appealing uses for radio-
telephone systems—communication with people on the move—must over-
come radio transmission problems so difficult they challenge the imagina-
tion. A microwave radio signal transmitted between a fixed base station
and a moving vehicle in a typical urban environment exhibits extreme
variations in both amplitude and apparent frequency. Fades of 40 dB or
more below the mean level are common, with successive minima occurring
about every half wavelength (every few inches) of the carrier transmission
frequency. A vehicle driving through this fading pattern at speeds up to 60
mi/hr can experience random signal fluctuations occurring at rates of
100-1000 Hz, thus distorting speech when transmitted by conventional
methods. These effects are due to the random distribution of the field in
space, and arise directly from the motion of the vehicle. If the vehicle is
stationary the fluctuation rates are orders of magnitude less severe.

These observations seem to defy any attempt at a systematic interpreta-
tion or quantitative analysis. However, starting from a model based on
multipath wave interference, arising from multiple scattering of the waves
by the buildings and other structures in the vicinity of the mobile unit, we
shall see that a great many of the observable properties of the transmission
can be successfully predicted by using the powerful techniques of statistical
communication theory. The fundamental relationships are established in
Section 1.1, where the fields are expressed as a linear superposition of
plane waves of random phase. This leads directly to expressions giving the
probability that the signal envelope can be expected to be found within a
narrow range around a given level (probability density), and the percent of
time it lies below a given level (cumulative distribution).

Besides a random phase, each component plane wave has associated
with it a Doppler shift depending on the mobile speed, the carrier
frequency, and the angle its propagation vector makes with the mobile
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12 Mobile Radio Propagation

velocity vector. This implies that the apparent power spectrum of each of
the three received field components is broadened to occupy a narrow band
about the carrier frequency. General expressions for the shapes of these
power spectra are derived in Section 1.2 and show their dependence on the
assumed density of the arrival angles and the mobile antenna directivity
pattern. As a by-product of these derivations it is also shown that, with
relatively loose restrictions on the distribution of arrival angles, the three
field components are statistically uncorrelated if they are observed simul-
taneously.

The radio frequency characteristics of signals are usually somewhat
difficult to observe; the signal envelope is more directly accessible. A
number of properties of the fading signal envelopes associated with the
mobile transmission path are derived in Section 1.3. Some general correla-
tions and statistical moments of the in-phase and quadrature signal com-
ponents are presented, preparatory to deriving the power spectrum of the
envelope from the Fourier transform of its autocorrelation. The inclusion
of a small steady signal from the base station is shown to explain some
observed fine structure in the power spectra. The rate at which the
envelope crosses a specified signal level is frequently of interest; expres-
sions are presented for this property, along with expressions for the
average length of time the envelope spends below a specified level. Finally,
the auto- and cross-covariance functions for the envelopes of the three
electromagnetic field components are derived, and it is shown how they
may be interpreted in terms of spatial instead of time coordinates.

The instantaneous frequency of the signal received at the mobile under-
goes rapid, random variations due to the variations of the in-phase and
quadrature signal components. This random frequency modulation is
explored in Section 1.4, where its probability density and cumulative
distribution are derived first. The larger frequency deviations are shown to
coincide with the deeper fades and are many times larger than the Doppler
shift of any of the constituent plane waves. The power spectrum of the
random frequency modulation is also derived; beyond a frequency equal
to twice the maximum possible Doppler shift it drops as 1/f.

If two carriers are transmitted from the base station at slightly different
frequencies, then their statistical properties, as observed at the mobile
antenna, are independent if the frequency separation is large enough. The
frequency separation for which the signals are still strongly correlated is
called the coherence bandwidth, and is studied in Section 1.5. The basic
mechanism responsible for this property is shown to be the difference in
propagation time delays associated with the various scattered waves mak-
ing up the total signal. The relationship between the coherence bandwidth
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and the standard deviation of the time delay distribution is developed and
compared with measurements for several models of the delay distribution.
Expressions are derived for the correlation of the carrier amplitudes and
phases as a function of the frequency separation.

The auto-covariance of any field component envelope measured at two
separate points on the mobile is shown in Section 1.3 to decrease rapidly as
the spatial separation increases. When the mobile transmits to the base
station, however, the analogous auto-covariance measured at the base
decreases much more slowly with spatial separation. The reasons for this
effect are studied in Section 1.6. They are shown to be related to the
geometrical asymmetry in the mobile-base transmission path, which arises
because the base antenna is usually located well above any nearby scatter-
ing objects. Theoretical expressions for the auto-covariance are derived
and compared with the relatively few measurements available.

The final acceptability of mobile radio systems is usually established by
tests in the field. Preliminary comparisons between alternative system
designs would be considerably expedited if such tests could be carried out
in the laboratory, using signals that provide the same characteristics of the
fading signals observed in the field. A simulation scheme is described in
Section 1.7 that duplicates the envelope fading statistics, correlation func-
tion, power spectrum, and random frequency modulation of the mobile
radio signal. The method is patterned after the basic multipath interference
model described in Section 1.1. The validity of the technique is established
by appropriate statistical measurements.

1.1 SPATIAL DISTRIBUTION OF THE FIELD

1.1.1 Envelope Measurements and Mathematical Model

One readily accessible property of the signal transmitted over a mobile
radio propagation path is the amplitude variation of its envelope as the
position of the mobile terminal is moved. This information is generally
presented in the form of time recordings of the signal level; with uniform
vehicle motion there is, of course, a 1:1 correspondence between distance
measured on the recording and distance traveled in the street. A typical
recording' is shown in Figure 1.1-1 for a run made at 836 MHz in a
suburban environment. The occasional deep fades and quasiperiodic oc-
currence of minima are clearly evident in the expanded section of the
record.

Recordings such as these made by many workers in the field over the
frequency range from 50 to 11,200 MHz have shown that the envelope of
the mobile radio signal is Rayleigh distributed*> when measured over
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distances of a few tens of wavelengths where the mean signal is sensibly
constant. This suggests the assumption,® reasonable on physical grounds,
that at any point the received field is made up of a number of horizontally
traveling plane waves with random amplitudes and angles of arrival for
different locations. The phases of the waves are uniformly distributed from
0 to 2#. The amplitudes and phases are assumed to be statistically
independent. Other models have also been proposed,” but they lead to
comparable statistical properties of the field for large numbers of con-
stituent waves.

Figure 1.1-1 Typical received signal variations at 836 MHz measured at a mobile
speed of 15 miles/hr. Records taken on the same street with different recording
speeds.

A diagram of this simple model is shown in Figure 1.1-2 with plane
waves from stationary scatterers incident on a mobile traveling in the
x-direction with velicity v. The x-y plane is assumed to be horizontal. The
vehicle motion introduces a Doppler shift in every wave:

w, = Bvcosa,, (1.1-1)
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where B=2x/A, A being the wavelength of the transmitted carrier
frequency.

o™ INCOMING WAVE

v X
MOBILE

Figure 1.1-2 A typical component wave incident on the mobile receiver.

If the transmitted signal is vertically polarized, the field components
seen at the mobile can thus be written

N
E,=E, Y, C,cos(w.t+8,), (1.1-2)
nw]
Ey & . .
x= T 2 C,sina,cos(w.t+0,), (1.1-3)
nwl
E, X
Hy==-;’— > C,cosa,cos(w,t+4,), (1.1-4)
ne=l
where
0,=w,t+¢,, (1.1-5)

and w, is the carrier frequency of the transmitted signal, n is the free-space
wave impedance, E,C, is the (real) amplitude of the nth wave in the E,
field. The ¢, are random phase angles uniformly distributed from 0 to 27.

Furthermore, the C, are normalized so that the ensemble average
G CH=1.
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We note from Eq. (1.1-1) that the Doppler shift is bounded by the values
+ Bv which, in general, will be very much less than the carrier frequency.
For example, for f,=w,/27=1000 MHz, v=60 mi/hr:

El;r—pu=-;%é9o Hz. (1.1-6)

The three field components may thus be described as narrow-band random
processes. Furthermore, as a consequence of the central limit theorem, for
large values of N they are approximately Gaussian random processes, and
the considerable body of literature devoted to such processes may be
utilized. It must be kept in mind that this is still an approximation; for
example, Eq. (1.1-2) implies that the mean signal power is constant with
time, whereas it actually undergoes slow variations as the mobile moves
distances of hundreds of feet. Nevertheless, the Gaussian model is suc-
cessful in predicting the measured statistics of the signal to good accuracy
in most cases over the ranges of interest for the variables involved; thus its
use is justified.

Following Rice® we can express E, as

E,=T,(t)cosw.t— T,(t)sinw_t, (1.1-7)
where
N
T.()=E, Y, C,cos(w,t+9,), (1.1-8)
n=1
N
T,(1)=Ey 3 C,sin(w,1+9,), (1.19)
n=|

are Gaussian random processes, corresponding to the in-phase and
quadrature components of E,, respectively. We denote by 7, and T, the
random variables corresponding to 7,(z) and T,(¢) far fixed . They have
zero mean and equal variance:
2 2 Eoz 2
(TH=(TH=—=(EP. (1.1-10)

The brackets indicate an ensemble average over the a,, ¢,, and C,. T, and
T, are also uncorrelated (and therefore independent):

(T.T,>=0. (1.1-11)
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1.1.2 Probability Distributions
Since T, and T, are Gaussian, they have probability densities of the form

p(x)= \/il;rz e~ x/2 (1.1-12)

where b= EZ2/2 is the mean power, and x=T, or T,.
The envelope of E; is given by

r=(12+712)""’, (1.1-13)

and Rice® has shown that the probability density of r is

r -~/
—e s >0

p(r)={ b r (1.1-14)
0, r<o0

which is the Rayleigh density formula. The Gaussian and Rayleigh densi-
ties are shown in Figure 1.1-3 for illustration.

RAYLEIGH:
'!
plr)= .;_o 2b,

GAUSSIAN: o

s
p(lh—'——- e-z'-

o I, rox
Figure 1.1-3 Gaussian and Rayleigh probability density functions.
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The cumulative distribution functions of T, (or T,) are also of interest:

P[x<X]=fxp(x)dx=—l- l+erf( X ) (1.1-15)
—c0 2 V3b ’
where the error function is defined by
2 (7 _.a
f(y)=— “dt. 1.1-16
()= = [Ce (1.1-16)
Similarly for the envelope,
R
P[r< R]=f p(r)dr=1—¢ R/, (1.1-17)
-0

These distribution functions are illustrated in Figure 1.1-4.
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Figure 1.1-4 Normal and Rayleigh cumulative distributions.

Thus the simple model has predicted the widely observed Rayleigh
nature of the fading. Some of the measurements are shown in Figure 1.1-5
for tests made at 836 and 11,200 MHz in a suburban area.! The
coordinates in Figure 1.1-5 are scaled so that the Rayleigh cumulative
distribution appears as a straight line.
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Figure 1.1-5 Cumulative probability distributions for 836 and 11,200 MHz.

The random processes 7, and T, defined by Eqgs. (1.1-8) and (1.1-9) will
form the basis for much of the statistical analysis to follow in succeding
sections of this chapter. Arguments were advanced earlier to justify the
assumption that they are Gaussian random processes. In addition, for
times that are short compared to the slow variations it will be assumed that
they are wide-sense stationary; since they are assumed to be Gaussian this
implies that they are stationary in the strict sense.® Such processes (e.g., the
wide-sense stationary uncorrelated scattering channel of Bello'®!!) have
been extensively studied, and expressions have been obtained for many
statistical properties that will be freely applied in this work. The final
justification of these assumptions, of course, is the accuracy with which the
analytical results agree with measurements, but in most cases the agree-
ment is good enough to lend credence to the model.

1.2 POWER SPECTRA OF THE FADING SIGNAL

From the viewpoint of an observer on the mobile unit, the signal
received from a CW transmission as the mobile moves with constant
velocity may be represented as a carrier whose phase and amplitude are
randomly varying, with an effective bandwidth corresponding to twice the
maximum Doppler shift of Bo. Many of the statistical properties of this
random process can be determined from its moments, which, in turn, are
most easily obtained from the power spectrum.
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1.2.1 RF Spectra of the Field Components

We assume that the field may be represented by the sum of N waves, as
in Eq. (1.1-2). As N->co we would expect to find that the incident power
included in an angle between a and a + da would approach a continuous,
instead of discrete, distribution. Let us denote by p(a)da the fraction of
the total incoming power within da of the angle a, and also assume that
the receiving antenna is directive in the horizontal plane with power gain
pattern G(a). The differential variation of received power with angle is
then* bG(a)p(a)da; we equate this to the differential variation of received
power with frequency by noting the relationship between frequency and
angle of Eq. (1.1-1):

f(@)=f,cosa+f, (1.2-1)

where f, = fv /27 =0 /), the maximum Doppler shift. Since f(a)=f(— a),
the differential variation of power with frequency may be expressed as

S()df|= bl p(«)G(a)+p(~ a)G(~ a)]|dal. (12-2)
But
\df|=1,,| - sinada|=Vf2 (- £.)* |dal;
thus
S(f)= == [P(@G(@)+p(-a)G(-a)},  (12)
2= (f-1.)
where
i

a=cos"(

7 ) and S(f)=0 if |f—£I>f. (1.2-4)

Equation (1.2-3) gives the power spectrum of the output of a receiving
antenna. In general this power spectrum depends on the antenna gain
pattern and differs from the power spectrum of the field components.
However, within the assumptions of the present model, there are antennas
that respond to the field components directly. For example, we will assume
the transmitted signal is vertically polarized. The electric field will then be
in the z-direction and may be sensed by a vertical whip antenna on the
mobile, with G(a)=1.5. Substituting in Eq. (1.2-3), the power spectrum of

*b is the average power that would be received by an isotropic antenna, that is, G(a)=1.
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the electric field is

1.5b
i2-(-£)

Small loops may likewise be used to sense the magnetic field, a loop
along the x-axis for H, and one along the y-axis for H,. The assumed
antenna patterns are then

Sg,(f)= [p(a)+p(-)] (1.2-5)

H .

x*

G(a)= }sin’a, (1.2-6)
H, : G(a)=3cos’a. (1.2-7)

y

Substituting these in Eq. (1.2-3),

Su ()= '”’\/f’—(f —£) [2(a)+p(~a)], (1.2-8)
l.5b(f—fc)

-~y

The simplest assumption for the distribution of power with arrival angle
a is a uniform distribution:

Su, (/)= [p(a)+p(-a)]. (12-9)

p(a)=4%, —r<as T (1.2-10)

The three power spectra become

sg(f)wil’- l—(f;f‘)] (1.2-11)
2 1/2
S"(f)=—— —(f—f:[-)] (1.2-12)

2 2
s,,,(f)———(ff—mf‘) [1—(f;mf‘)] (12-13)
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Figure 1,2-1 Power spectra of the three field components for uniformly distri-
buted arrival angles. {x =(f—£.)/f.]

These spectra are shown in Figure 1.2-1.

Measurement of the RF spectrum is generally very difficult in practice,
because of its very small fractional bandwidth of 2v/c, where ¢ is the
velocity of light. Some measurements'? were made at 910 MHz using
oscillators with high frequency stability and yielded the frequency spec-
togram of the electric field shown in Figure 1.2-2. Spectral density is shown
as dark intensity on the figure, frequency is plotted on the ordinate, and
time on the abscissa. The mobile was first stationary, as shown by the
narrow line to the left. As the mobile speed increased the trace broadened,

and the spectrogram width corresponds very closely to the predicted value
of 2v/A.

1.2.2 Correlations and Cross Spectra of the Field Components

Additional spectra that occasionally are of interest correspond to the
cross correlations between the three electromagnetic field components, E,,
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FREQUENCY —>

910 -
MH,

TIME ——

Figure 1.2-2 Frequency spectogram of RF signal at 910 MHz.

H,, and H,. Consider E, and H,:

Ry (1)=<E,()H (t+7))
2
= _f,l. z CnCm sina,,,(cos [(wc+wn)t+¢n] Cos [(wc+wm)(t+ ‘T)+¢m]>.

(1.2-14)
The product of the cosines can be expanded into cosines of the sums and

differences of their angles, which includes terms of the form ¢,, +¢,. The

ensemble average over these angles is zero except for the terms ¢, —¢,
with m=n, in which case

N
Ry (1)= —% > C?sina, cos(w, +w,)r. (1.2-15)

Since C2=p(a,)da, in the limit as N—oo we can write
Rgy (1)=- %f'p(a)sinacos(w,_.r+w,,,rcosa)da. (1.2-16)
-

The integrand is an odd function of a if p(— a)=p(a); thus Rg , (1)=0
for any 7 if p(a) is even. It can easily be shown also that Ry, , (r)=0 for
any 7 if p(a) is even; thus H, is uncorrelated with both E, and H, in this
case, and the corresponding cross spectra are also zero. Comparing the
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expressions for E, and H,, we see that H, can be regarded as the output
from a filter with frequency transfer function

wW—w,
Hw)=28% =< 1.2-17
(w) " o ( )

whose input is E,. The cross spectrum in this case is simply given by’

Se.n(f} = Se(IH*(f) = f f( Se\f). (1.2-18)
If p(a)=1/2m, then
NV
Sgn,(f)= (ffﬁ)l (fff‘) ] (1.2-19)

Note that this spectrum is an odd function about the center frequency f,.
The cross correlation of E, and H, is

Ry, (7)=CE,(1)H,(1+ 7))
=— %f"p(a)cosacos(w,-r+w,,,¢cos:x)da. (1.2-20)

For p(a)=1/2=,
Rgp(1)= % sinw,7J,( Bor). (12:21)

Thus we have the important result that all three field components are
uncorrelated at 7=0.

1.3 POWER SPECTRUM AND OTHER PROPERTIES OF THE
SIGNAL ENVELOPE

1.3.1 In-Phase and Quadrature Moments

From the expressions for the power spectral densities given in the
preceding section we can derive a number of interesting properties of the
envelopes corresponding to the three field components, again with the
assumption that the incoming power is uniformly distributed in angle. First
we need certain correlations and moments of the in-phase and quadrature
components of the signal, T, and T,. The subscripts 1 and 2 refer to the
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times ¢ and ¢+ 7, respectively. Following Rice,?
(T, T.)={T,T,)=g(1),

(T T,p=—(T,T.p=h(),

(T Tp=ATIp= (T Ty)=—(T;T,)=g(r),

(1.3-1)
(T T)=ATT =T, T,)=—T, T, >=Hh(1),
(T, T >=(T,T;>=—g"(7),
(T, T)=—T,;T;>=—h"(1),
where
fot S
8= [ "s(Neos2n(f-L)rdy (132)
4 f
h(r)= ff . S(Nsin2n(f~L)rdf, (1.3-3)

and S;(f) is the input spectrum defined for f,—f, < f< f.+f,,. (Primes
denote differentiation with respect to time.)

From the above correlations evaluated at r =0 the moments can also be
obtained:

e+ fm

by=n)" [ S(NU-1) 4. (1.34)
Thus
(T = (T2 =g(0) = b,
(T.T,y=h(0)=0,
(T =(T,T,>=g'(0)=0,
(TTy= —(T.T,y=h(0)=b,
(T2 =(T)= —g"(0)=by,
(T!Ty=—h"(0)=0.

(1.3-5)
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Substituting the expressions for the three spectra given in Egs. (1.2-11) to
(1.2-13) into Egs. (1.3-2) and (1.3-3):

h(7)=0 for all three field components.

(This is a consequence of the symmetry of the spectra about f..) All b,
likewise equal zero for n odd.

Electric field:

g 1:3:5--(n—1) 3E¢
b,,—bow,,, 246 -n ’ b0=l.5b—T (‘.3-6)
8(7)=boJo(wnT). (1.3-7)
Magnetic field, x-component:
B , 2 1:3:5..-(n=1) _3E}
bi=bonoms 53736 bw=—g (1.3-8)
Magnetic field, y-component:
1:3:5---(n+1)
=2bn, 0" 3-
b, o"w"'2-4-6~--(n+2)’ (1.3-10)
g(7) = bog[Jo(, ) — Jo(2,7))- (1.3-11)

Comparison of b, and b,y indicates that the average output power of the
loop antenna is 3 dB weaker than that from the vertical dipole.*

1.3.2 General Expression for Envelope Autocorrelation and Spectrum

The autocorrelation function of the envelope, r, of a narrow-band
Gaussian process can be expressed in terms of a hypergeometric function
(Ref. 13, p. 170):

R.(r)=TboF[~}, —4;1;0%(7)], (13-12)

where

o¥(r)= ;‘glgz(-rm’(r)] (1.3-13)

*Since the vertical dipole will be used often as an example, we do not include the subscript
identification, E (i.c., by as in byy) in order to simplify notation.
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and g(7), h(7) are the correlations defined above. At 1=0, p%0)=1; thus
R(0)=<r>=ThoF(—4, —};1;1)=2b, (1.3-19)

(Note that {(r2)=[&rp(r)dr; using Eq. (1.1-14) for p(r), we also get

(r*y=2b,)
The hypergeometric function may be expanded in an infinite series:

R(r)=Z b1+ 4pX(1)+ dp'(r)+- -] (1.3-15)
Dropping terms beyond second degree,
R (r)= Jho[1+ 4p%(r)). (1.3-16)
At =0 this expression gives

R(0)= §§'ibo- 1.964b,, (13-17)

which differs from the true value of 2b, by only 1.8%; thus Eq. (1.3-16)
serves as a good approximation to the exact R (7).

The power spectral density of the envelope can now be expressed as the
Fourier transform of R,(7), using Eq. (1.3-16):

Si(N=Fbof [1+4p3(r)]emar. (13-18)

= Zb3()+ E%g f_“;[ g(7) + h¥(r)]e~ " r. (1.3-19)

To evaluate this integral we first combine g(r) and h(7) into a complex
quantity:

#(7)=g(r) + ih(r) = 51; f_:F(w)e'"dw, (1.3-20)

where F(w) is a two-sided, real, usually even spectrum:

FQ2nf)=S,(f+1.). (1.3-21)
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Then g*()+ h*(r)=¢(1)¢*(7). Equation (1.3-20) indicates that the Fourier
transform of ¢(7) is F(w); to get the transform of ¢*(7) we note that

o*(1)= .2_17;f°° F*(w)e ™" du

-~ o0

B e——
2 Jy

00
F(—w)e™“ duw

= l ®© iwr
=5/ Fw)e™da, (13-22)

Thus ¢*(7) has the same transform as ¢(7). Applying the convolution
theorem,

S s(nyer(n)eidn= - f_:r(y)r(y—w)dy,

or

7 18+ e dr= 5 [* FO)F(p-a)d. (13:29)
The spectrum of the envelope is then
S(N=3bb N+ g [ FOIFG-0)d.  (13:29)

S,(f) is always positive, real, and even. The first term in Eq. (1.3-24) is just
a dc component. The second term contains one band of width 4f,,
centered at f=0. This band represents the continuous spectral content of
the varying envelope. For positive frequencies it may be expressed as

t+.fm"

So(f)= ﬁ; - fS,(x)S,(x+f)dx, 0< f<2f,. (1.3-25)
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1.3.3 Envelope Spectra of the Field Components

Using Eq. (1.3-25) we can now derive expressions for the baseband
envelope spectral densities of the three electromagnetic field components,
using Egs. (1.2-11) to (1.2-13) for S;(f).

Electric field:

-1/2

¢+fn|_f 2 2
w3t | “1—( - )][n ( L )] .
(1.3-26)

This can be integrated exactly' to give

2
Sos,(f)=£’x[ Vl—(ﬁ—) ] (1.3:27)

where K(x) is the complete elliptic integral of the first kind.

Magnetic field, x-component:

+fn = _e\? 211
s 22 [ (2|1 ,,)” "
m Jfe=fm " "

- () Jo V() |

AN} e

where E(x) is the complete elliptic integral of the second kind.
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Magnetic field, y-component:

b f¢+fm 2 3 -1/2
Son, (/)= wOH “" A )] "(Hf{, f)

Je=Im

«(52) (£2) o

_ bon [HL(L)Z

3\ fn

AT e

These spectra are shown in Figure 1.3-1. Experimental measurements of
the spectrum of the electric field envelope'® in general show reasonably
good agreement with the theoretical expression of Eq. (1.3-27). A modifica-
tion to the original scattering model helps to explain some of the fine
structure observed in the experimental spectra. In many actual cases the
environment is such that a constant direct wave from the transmitter could
be expected, as shown in Figure 1.3-2(a). This wave, arriving at an angle a,
with respect to the mobile velocity vector, would experience a Doppler
shift of f,, cosa,. The resultant electric field spectrum density would appear
as shown in Figure 1.3-2(b), and can be written

Sg(f)=Sg,(f)+BS(f~f.~ L), (1.3-30)

where B is a weighting factor. The modified baseband output spectrum of
the resulting envelope is then, using Eq. (1.3-25),

b
S(;E,(f) = ‘bo—_:isos,(f)

AR YTSYY 8(b +B) [SE,(L+L+f)+SE,(L+L f)]+d¢‘ (1.3-31)
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Figure 1.3-1 Baseband spectra of the field envelopes.

YY)

The ac part of the new spectrum is simply the original spectrum, S, (f),
plus a shifted and folded portion of the input spectrum, Sg (f). The result
will thus contain two new peaks, located at f,, (1+ cosay), but will still cut
off at 2f,, as before. Figure 1.3-2(c) shows an example of the modified
spectrum for a=60°. Two experimental spectra are shown in the solid
curves of Figure 1.3-3,7 one with ay,=90° and the other with ay=0°. The
dotted curves are taken from Eq. (1.3-31) with the constant B adjusted
arbitrarily for best fit. The modified model gives the basic form of the
experimental spectra, but there remain differences in detail. This is prob-
ably due to departures of p(a) from the assumed uniform distribution, and
also to the fact that the process represented by the received signal is not
truly stationary, as assumed, but contains slowly varying terms associated
with gross changes in terrain features.

1.3.4 Level Crossing Rates

As illustrated in Figure 1.1-1 the signal envelope experiences very deep
fades only occasionally; the shallower the fade the more frequently it is
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DIRECT WAVE
FROM TRANSMITTER

f,=f, cosa,

ﬁ
@

o \ A

(¢)

Figure 1.3-2 Effect of the addition of a direct wave from the transmitter on the
envelope spectrum. (a) Geometry, (), input spectrum, (c) spectrum of the enve-
lope.

likely to occur. A quantitative expression of this property is the level
crossing rate, Np, which is defined as the expected rate at which the
envelope crosses a specified signal level, R, in the positive direction. In
general, it is given by?

Np= fo “ip(R,})dt, (13-32)

where the dot indicates the time derivative and p(R,#) is the joint density
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function of r and 7 at r=R. Rnce gives the joint density function in the
four random variables r, #, 8, 6 of a Gaussian process for the case b,=0:

;(boJ'E ’Z )] (13-33)

where tand= — T,/ T,. Integrating this expression over # from 0 to 27 and
6 from — oo to + oo we get

p(r,i‘,ﬁ,é)= exp

2
4n%bob,

Y= 1 ~r’/2b___1___ —#2/2b -
p(r,#) boe 0 2. e 2, (1.3-34)

NGt \u——

p(r)  p(#)

Since p(r,7)=p(r)p(#), r and # are independent and uncorrelated. Substi-
tuting Eq. (1.3-34) into Eq. (1.3-32) we get the level crossing rate:

R
Ny= 2R )f e/ gy

V 2'”b2

-p -
_.\/"bo pe=?, (1.3-35)

Ve Vab, R
Substituting the appropriate values of the moments, b, and b,, we get the
expressions for the level crossing rates of the three field components*:

where

(1.3-36)

E,:  Ng=V2nuf,pe ", (1.3-37)
H,:  Ng=Vaf pe ", (1.3-38)
H,:  Ng=V3nf,pe " (1.3-39)
*In case b, #0:
NR- i bz-.. b_f
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These expressions are plotted in Figure 1.3-4 along with some measured
values.! The rms level of E, is crossed at a rate of 0.915 f,; for example, at
f=1000 MHz and v=60mi/hr, f,=90 Hz; thus Ny =82/sec at p=0 dB.
Lower signal levels are crossed less frequently, as shown by the curves. The
maximum level crossing rate occurs at p= —3 dB.

Ez \ «Hy

W

N/t

.0l

0oL
-40 -30 -20 -10 o] 0

p = 209, (RIR_), 8

Figure 1.3-4 Normalized level crossing rates of the envelopes of the three field
components. Measured values; O, 11,215 MHz, @, 836 MHz (E,).

1.3.5 Duration of Fades

The average duration of fades below r= R is also of interest. Let 7, be
the duration of the ith fade. Then the probability that r < R for a total time
interval of length T is

P[r< R]-szr,. (1.3-40)
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The average fade duration is

- T}VR 3 1, lep[m R], (1.3-41)
R 2
P[r< R]=fo p(r)dr=1-¢", (1.3-42)

so that

_ mhy 1,
Tﬂ.\/—bf ;(e -1), (1.3-43)

using Eq. (1.3-35) for Nj. Substituting the appropriate values of the
moments, we get

E: f=-£-l 1.3-44
A R (1.3-44)
of,n
H: __e’—1
i P (1.3-45)
2
H: 7= ;’—\/‘3_‘— . (1.3-46)
pf,,V3n

These expressions are shown in Figure 1.3-5, again with some measured
1
values.

1.3.6 Envelope Autocorrelations and Cross Correlations of the Field Com-
ponents

From the expressions for g(7) and h(7) the autocorrelation functions for
the envelopes of the three field components may also be derived. In all
three cases h(r)=0; thus p?(r)=g*(r)/b3. Using the approximate expres-
sion for the envelope autocorrelation of Eq. (1.3-16) we can get the
autocovariance function (mean value removed). For a stationary process

r(t),
L(D)=r()—=<)lr@+ )= {DD=R(1) =< (1.3-47)



Muitipath Interference Xy

10.0

N

o}

V7.
//

001
-40 -30 20 =10 0 10

p *201l0g, (R/R,.), 9B

Figure 1.3-5 Normalized durations of fade of the envelopes of the three field
components. Measured values: O, 11,215 MHz, @, 836 MHz (E,).

In our case p(r)=(r/bg)e""/2bs: thus

=L (225 1 [0
rd bofo rle dr V i (1.3-48)

Substituting in Eq. (1.3-16),

L)+ T = o) (1349)
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For the three field components,

E;: L,(1)= %b(,/g(w,,,f), (1.3-50)
Hx: L,(T) = %bOH[‘IO(me)+‘,2(“’mT)]2’ (13'5‘)
Hy:  L(1)= ZboylJo(wn) = Jo(wnm)]’ (1.3-52)

The cross-covariance functions between the envelopes of the three field
components are also of interest. We have shown earlier that E, and H, are
uncorrelated for any value of 7 if p(a) is even, and likewise for H, and H,.
Thus the envelopes of these fields will also be uncorrelated. Using the
series expressions for E, and H,, it can be shown that the correlation
between the envelopes of E, and H, is given in terms of a hypergeometric
function if p(a)=1/27:

R(1)= 7 Vboboy F[- 4.~ 1: L2} wun)],  (13-53)

which can be approximated to better than 1% accuracy for any value of 7
by

R,(7)= 7 Vbobou [1+ 4/ 3(w,7)). (1.3-54)

The cross-covariance function is then

L(r)= % Vbgboy I Hwnr)- (1.3-55)

These four envelope covariances, Egs. (1.3-50)-(1.3-52) and (1.3-55), are
shown in Figure 1.3-6. (the envelope covariances for E,H, and HH, are
zero as pointed out earlier, and thus are not shown in Figure 1.3-6.)
These would be the functions measured in the mobile as a function of time
while it moves with uniform velocity; alternatively, they can be regarded as
spatial correlations by setting § = vr; thus ®,tv = Bt/A. This equiva-
lence between time and spatial correlations is important and should be

noted, since it will be used in space diversity calculations and other
applications.
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Figure 1.3-6 Covariance functions of various field envelopes. (a) | E,|, (b) |H,], (c)
|H, |, (d) cross-covariance of | E,| and |H,|.

14 RANDOM FREQUENCY MODULATION

1.4.1 Probability Distribution of Random FM

The time-varying nature of the in-phase and quadrature components of
the fading signal means that the apparent frequency of the signal varies
with time in a random manner; that is, the signal exhibits random
frequency modulation. The characteristics of this random FM can be most
ecasily described in terms of its probability distributions and power
spectrum. The probability density of # can be easily obtained from
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p(r, #,0,0) by integrating over r, 7, and 8. Using Eq. (1.3-33),

p(6)= ! fowdrfw di'fz”dﬂ

41r2b0b2 -0 0
1, A r’éz)
X r¥ex ——(—+—+——-
p[ 2\, " b, ' b, ]
-3/2
1y /5 bo 42
A (l+b20 . (14-1)

From the expression for p(#) we can deduce the somewhat surprising
result that the mean square value of the random FM is infinite:

6= f:{i’p(é)dé

b —1+ lim log|26 20 =0c0.* (1.4-2)
b, fmroo Vb2 ' '

In actual FM receivers, of course, the discriminator or audio amplifiers
will limit at some value of frequency deviation. With this assumption it
then becomes possible to calculate the rms baseband noise due to the
random FM, as is shown in Chapter 4.

For the E, field b,/by=w’/2, using Eq. (1.3-6), thus p(f) can be
written:

-3/2

)
i/i [|+2(£:) ] . (1.4-3)

*When log appears without subscript, the natural log is assumed.

E;:p(d)=

W
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The cumulative distribution function is
A o b -3/2
i< 6 _l\/_e l+—9é’) dd
P[” < 00] 2 bz . ( bl
-1/2
b, b
-.;.[Hvz‘zl éo(1+-bf03) . (1.4-9)

6 (, .62\
E,:P[l)<0°]--;-[l+\/i -;3(1+2—:;—) : (14-5)

These probability functions are similar for the other two field components,
differing only in scale. Equations (1.4-3) and (1.4-5) are shown in Figure
1.4-1. Note that, in constrast to the sharply defined power spectrum of the
signal (Figure 1.2-1), there is a nonzero probability of finding its frequency
at any value, although the larger excursions occur only rarely since they
are associated with the deeper fades of the s}gmal. This can be seen by
examining the probability density function of # conditioned on the signal
level R:

p(o’R) - R e“ﬂ",/»z.

P(R)  \2m,

p(0|R)= (1.4-6)

For fixed R this is a Gaussian distribution with standard deviationV b, /R.
Thus as R decreases (deep fades) the frequency deviations of interest

increase proportionately. If R=R,_ =V 2b, the significant deviations
occupy a bandwidth approximately equal to w,, in the case of E,; for a
20-dB fade the bandwidth is ten times greater.

14.2 Power Spectrum of Random FM
The power spectrum of § may be derived by conventional methods. The
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autocorrelation function of 8 is given by Rice®:

Ry(r)=<B (18 (1+ 7))
2
_1lgn ] (g _[ &) 147
"T2 [g(«)] [s(f)] ‘°“" [g(o)] ‘ (147
Then the power spectrum is the Fourier transform of Ry(1):

Sy (f)=f_°:°R‘(r)e""‘"d'r=4LmR, (1) coswrdr, (1.4-8)

where a factor of 2 introduced into the second factor since we are only
interested in positive frequencies.

(b)

Figure 1.4-1 Probability functions for the random frequency modulation, 8, of the
electric field. (a) Probability density, (b) cumulative distribution.
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Considering now the E, field for the case p(a)=1/2, the values of g(r)

and its derivatives can be obtained from Eq. (1.3-7):
g(1)
2(0)
£ _ . 5w
g(r) " Jo(u)’

g”('r) -wz ‘,l(u) -1
g(n) | wow) [

Jo(“) U=, T,

and

Jo(u)J ()

Ry(r)= J&(u)—J.’(u)]

]
X log[1-J(u)].

(1.4-9)

(1.4-10)

The integration of Eq. (1.4-8) is then carried out by separating the range of
integration into parts and making the appropriate approximations for the

Bessel functions and the logarithm.

Region 1:

0<'r<1"-—-l-— Jo(u)-'-l—(-;—), J,(u)-ilz‘—.

4w,,’

-— ___[ i )sm(m,) 25,(“".4)]

where S;(wr,) is the sine integral function.

(1.4-11)
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Region 3:

rp<7<co: log(1-J@)=-J}(u), 153~—,

Jo(u)~v—-"2—_u-— cos(u— %),
J,(u)~v—;ui-—-- sin(u-— %)

2
Si(f)==2 f ? [2u °‘Z::)“’]cos(-§’;u)du

_ 20, [ cos (2w,,7p) cos (wrp)
w

(5]
anty +(l+ E‘Z)S,(Zw,,,-r,+m,)

+ (1= 52 ) 520t~ wmal) 26 (o)

—%(l+i-:——+|l-ig:|)]. (14-12)

Region 2: 7, < 7 < 75. S,(f) must be evaluated by numerical integration.
As w approaches zero the spectrum has a logarithmic singularity due to the
term C,(wrp) in Eq. (1.4-12):

40,
Sy(f)-»- —wﬂ log(kw),  k=a constant.

The spectrum Sy(f)=S,(f)+ Sy(N)+ Sy(f) is shown in Figure 1.4-2.
Above w=2w,, the spectrum falls as 1/f; thus 2w,, may be regarded as an
approximate cutoff frequency. Note that this is the same as the cutoff
frequency of the envelope spectra (Figure 1.3-1).
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Figure 1.4-2 One-sided power spectrum of the instantaneous frequency, 4, of the
E, field.

P Y S

Using Watson’s lemma one can obtain the asymptotic form, as f
approaches infinity, of the power spectrum of the random FM for an
arbitrary Doppler spectrum'®:

. bz b? -1
Jim S, (f)~(b—o “n) " (14-13)
where by, b,, b, are defined in Eq. (1.3-4). For low vehicle speeds and low

carrier frequencies (e.g., 60 mph at UHF), the asymptotic form given here
is accurate over the audio band from 300 to 3000 Hz.

1.5 COHERENCE BANDWIDTH
The characteristics of a single-frequency signal transmitted over the
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mobile radio propagation path have so far been explained on the basis of a
fairly simple model. The only required knowledge was the angular distribu-
tion of the incident power, p(a), assumed to be carried by a large number
of plane waves of random amplitudes, phases, and arrival angles. When we
turn to questions concerning the statistics of several signals of different
frequencies transmitted over the path, however, the model must be
elaborated to include explicitly the fact that the path lengths of the
constituent waves are different. The different path lengths give rise to
different propagation time delays, of course. Typical spreads in time delays
range from a fraction of a microsecond to many microseconds, depending
on the type of environment. The longer delay spreads are usually found in
metropolitan areas like New York City that contain many large buildings,
whereas the shorter delay spreads are usually associated with suburban
areas. In the latter the building structures are generally more uniform,
consisting of one- or two-story houses.

The existence of the different time delays in the various waves that make
up the total field causes the statistical properties of two signals of different
frequencies to become essentially independent if the frequency separation
is large enough. The maximum frequency difference for which the signals
are still strongly correlated is called the coherence bandwidth of the mobile
radio transmission path.

Besides providing a more complete physical model of the mobile trans-
mission path, the study of the delay spreads and coherence bandwidth will
be useful in assessing the performance and limitations of different modula-
tion and diversity reception schemes, as we will see in later chapters.

1.5.1 Mathematical Model

We will now proceed to develop a mathematical model that includes the
time delays explicitly. If a single signal of frequency w is transmitted to the
mobile unit, we assume the received field is the sum of a number of waves,
as before:

N M
E,(w,8)=Ey Y > Cppcos(wt+w,t—wT,,). (1.5-1)

n=l mm|
In this representation the nth wave at an arrival angle a, is composed of M
waves with propagation delay times T,,,. All of these M waves experience
the same Doppler shift, w,= Bvcosa,.* The amplitude coefficients C,,,

*The Frontispiece, supplied by Cox (JEEE Proc. Lett., April, 1973), gives a vivid illustration
of this model.
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have been redefined to indicate the power associated with each individual
wave:

anm = G(an)p(am Tnm)da dT. (1'5'2)

As before, G(a) is the horizontal directivity pattern of the receiving
antenna. We interpret p(a, T)dadT to mean the fraction of the incoming
power within da of the angle a and within dT of the time T, in the limit
with N and M very large.

We assume that the a«, and 7, remain constant for motion of the
mobile over distances of several tens of wavelengths and that they are

frequency independent. It also seems reasonable that the difference be-
tween any two phase angles, represented by w7}, —«T,,, is much greater
than 2 for i # n, j% m. At UHF frequencies and above, w » 27 X 10°; thus
for (T;—T,,) on the order of 0.1 to 10 psec (the delay spread), the phase
difference is on the order of several hundred times 27, at least.

We consider the random process E,(w,) to consist of sample functions
corresponding to separate runs made by the mobile on the same section of
street, and assume the phases w,/—wT,, of the individual waves in the
different sample functions are uniformly distributed independent random
variables. The process E,(w,?) is then wide-sense stationary with respect to
ensemble averages. It is not stationary with respect to time averages,
however, and thus is nonergodic. But the difference between time and
ensemble averages decreases as the number of waves becomes large; thus
the statistical properties will be computed on the basis of ensemble
averages. The results will eventually be compared with corresponding
values derived from experiments, in which averages with time are usually
used. The extent to which theory and experiment agree will govern the
degree of confidence we place in the model.

To investigate the coherence bandwidth we will study the statistics and
correlation properties of two signals received at frequencies w, and w,, and,
in particular, of their envelopes and phases. Only the E, field will be
explicitly treated; corresponding results can be easlly denved for H, and
H, by defining an appropriate antenna pattern as in Section 1.2. We start
by writing the field at the two frequencies in terms of narrow-band
in-phase and quadrature components:

At w,: E (w),t)= x,(1)cosw,t — x,(1)sinw,t,
At w,: E, (w,, 1) = x4(1) coswyt — x,(1) sinw,t. (1.5-3)

For large enough N and M the x,(f) are Gaussian random processes (by
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the Central Limit Theorem), and are jointly Gaussian.
They are expressed as

x! (l)= EOE Cnm { c?s }("”n’_wlTnm)!
2 n,m sin

x3(t)=E02 { }(wt w0, T,) (1.5-4)

We will be interested in correlation properties as a function of both time
delay, 7, and frequency separation s=w,—w,. Let us define the four
random variables x,, x,, x;, x4 for fixed time ¢ as follows:

Xy é"1(‘): xzéxz(’),

Xy = x(t+71), x4 ! x(t+7). (1.5-5)

The envelopes and phases are then defined by

Xl ={ rycos, }’ x3 ={ rycosd, } (1.5-6)

2 r,sinf, 4 rysiné,

The statistical properties will depend on moments of the type {x;x;>, where
the brackets refer to ensemble averages. The moments are evaluated from
the series expansion of Eq. (1.5-4):

(xf>=Egnm2 {CamCpq €08 (w,t =y T,y ) cO8 (w1 — 0, T,0)>.  (1.5-7)

The average will vanish unless n=p and m = q, which gives

2
= "'2g 2 bo 2 G(an)p(an’ Tnm)da dT. (15.8)

In the limit as N, M—o0:

2n )
(x¥=b, f G(a)da f p(a,T)dT. (1.59)
0 0
But, by definition,

A “p(a, T)dT=p(a); (1.5-10)
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thus
(xdy=b, fo " G(a)p(a)da. (15-11)
By similar arguments we can show
(P m(x2=(x3y=(xd), (1.5-12)
(xyxp) = x3x) =0, (1.5-13)

(xypxa) = x3X¢)
2n )
=b, fo G(a)da fo p(a,T)cos(Borcosa—sT)dT,  (1.5-14)
(X xg) = —{X3%y)

2w -]
-bof G(a)daf p(a, T)sin(Porcosa—sT)dT.  (1.5-15)
0 0

Using the general expression (Ref. 9, p. 255) for the joint density of the
four Gaussian variables x,,...,x, and applying the transformation of
variables of Eq. (1.5-6), we get the joint density of the envelopes and
phases:

rr;

P(r,r0,,0,)= m

X - , 1.5-16
exp 20—\ ( )
where
" ui+ 3
tang=—, Alm_——=, (1.5-17)
"y [
p= (xb’ By = <Xy X3), By =X Xg). (1.5-18)

All of the statistical properties of interest can now be derived from the
four fold joint density function of Eq. (1.5-16) provided an explicit form
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for G(«) and p(a, T) is known. Interpretation of some measured data™ ' 18
indicates that an exponential distribution of the delay spreads is a good
approximation. If we further assume a uniform distribution in angle of the
incident power, the function p(a, T') can be expressed as

1 -1/
p(a,T)=5—e”T/°, (1.5-19)

where o is a measure of the time delay spread.

With this assumption, and the additional one of no antenna directivity
so that G(a)= 1, the quantities in Egs. (1.5-17)~(1.5-18) may be worked out
with the help of Egs. (1.5-11)-(1.5-14):

JO(me)
b= by, = b°l_+_.;zo_2 ’ By = = Sopy. (1.5-20)
JZ
tang=—s0, A= 0(m)

14s5%2 "

1.5.2 Envelope Correlation as a Function of Frequency Separation

The correlation of the envelopes of the signals at the two frequencies
may now be calculated. We have

R,(s5,7)={rry= f

wfwrlrzp(rl,rz)drldrz. (1.5'21)
0 Y0

We can get p(r,,r,) by integrating Eq. (1.5-16):

27 2w
p(ryr)= fo fo (r1,72,,,8,)db, db,

2, .2
nr ritn (’1’2 A )
=—r2 —_— | —= -, 1.5-22
W2(1-22) °"P{ 2p(1-7%) ] e 1-A2 (15-22)
where Iy(x) is the modified Bessel function of zero order.

Substituting Eq. (1.5-22) into Eq. (1.5-21) the integration may be carried
out exactly' to give

R(s7)=ThoF(=4,— 1 iNY), (1.5-23)
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which may also be expressed as'¢

R,(s,7)= bo(1+7\)£(2‘/_)

oy (1.5-24)

where E(x) is the complete elliptic integral of the second kind. The
expansion of the hypergeometric function yields a good approximation to

Eq. (1.5-23):

R(s,7)% b.,(1+ X ) (1.5:25)

We know that {r)={r,)="V lab, from Eq. (1.3-48) and also that

(rd)=(r})=2b, from Eq. (1.3-14); thus the envelope correlation
coefficient

R,(s,'r) - <r|><r2>
VICD =< [<rdy = (]

p,(s,r)=

becomes

(1+A)E(2v_ )—g

(5.7) 1+A
p,(s,7)=
2-3
. J(w,,7)
a)\l= lo+s2 = (1.5-26)

We see from this expression that the correlation between the envelopes
decreases with increasing frequency separation s, as one would expect. One
measure of coherence bandwidth corresponds to the frequency separation
when the envelope correlation is 0.5. With r=0 this occurs when so=1;
thus the coherence bandwidth is equal to 1/2#7o. Equation (1.5-26) with
=0 is plotted in Figure 1.5-1 for values of o in the range } to } usec. Also
shown are a few measurements made in 1961 by Ossanna and Hoffman*
in a suburban area at 836 MHz. A delay spread on the order of } usec
appears to be appropriate in this case, corresponding to a coherence
bandwidth of about 640 KHz. Measurements of the delay spread using a
more direct pulse-type technique'® tend to substantiate this value of time

*Bell Telephone Laboratories, unpublished work.
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delay spread for suburban areas. Other delay distributions besides the
exponential one of Eq. (1.5-18) could also be considered,® but they do not
appreciably change the shape of the curves in Figure 1.5-1.

Af, MHz

Figure 1.5-1 Envelope correlation of signals received at two frequencies for
different time delay spreads, 0. Solid curves are theoretical for an exponential delay
distribution. O-measurements at 836 MHz in a suburban environment.

1.5.3 Phase Correlation as a Function of Frequency Separation

The statistics of the phases of the two signals are also of interest. (Note
that we mean the phase angles of the signal phasors, 4, and 8,, not the
radio frequency phases.) One property is the correlation of the two phases:

Ry(s,7)=<8,0,>
2n p2n
= fo fo 0,0,p(8,,0,)db, db,. (1.5-27)

Again we can obtain p(8,,0,) by integrating Eq. (1.5-16):

- -] o0
p(6,,8,)= fo fo P(ry,ry,8,,0,)dr,dr,,
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The integration is straightforward, using known integrals of error func-
tions?® to obtain

1_)\ V1-B? + Bcos™'(- B)
(1- 8%

p(6,,6)= , (1.5-28)

where
B=MAcos(0,—0,—¢), O0<cos~'(-B)<m, (1.5-29)

and A, ¢ are defined earlier in Eq. (1.5-20).

The integration of Eq. (1.5-27) with the expression for p(8,,6,) substi-
tuted into the integrand cannot be carried out exactly, but integration by
parts yields a fairly simple series expansion:

Ry(s,7)=n?[1+T(A,¢)+2I%(A,¢) — £Q()], (1.5-30)
where

T\, ¢)= 2—1”— sin™'(Acos o),
(1.5-31)

Q)= —% 2 5—,- a(1)=1.

The phases #, and 8, are random variables uniformly distributed from
zero to 2, that is, p(8)=1/2x. Thus (8> = (0> =m, (9} =(0}>=47%/3.
The correlation coefficient of the phases is then

Ry(5,7) = <8,50,)
Vicoz — <o, %11<82> - <8,

Po(sv"')’

- ;%[R,(s,‘r) — a2, (1.5-32)
Substituting Eq. (1.5-30),

0s(5,7)=3T(\, )[1+ 2T (A, )] - $QQA). (1.5-33)

The dependence of this correlation coefficient on so is shown in Figure
1.5-2, where again 7 has been set equal to 0. If we choose as a measure of
coherence bandwidth the frequency separation for which p,(s,0)=0.5
(analagous to the definition for the envelope correlation) we see that this
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occurs when so=4, corresponding to a coherence bandwidth equal to
1/4ma, or } the value for the former case. Thus if 0~} psec, the coherence
bandwidth for the phase is about 320 KHz.

084
06-
(s,0)

By

04-

021

0 T v v T T T
o] 05 1.0 1.5 20 25 3.0
so

Figure 1.5-2 Dependence of the phase correlation coefficient on the frequency
separation s = w, — w,, and time delay spread o.

1.5.4 Probability Distributions of the Phase Difference at Two Frequencies

Besides the correlation coefficient of the phases we will find the statistics
of the phase difference, 6,—8,, to be of interest. Since both 8, and 8, can
take any value from zero to 2=, the quantity (6,— 8,) can have any value
from —2# to +2x; thus we must be careful to avoid ambiguities of 27 in
defining density functions and mean square values. First let us consider the
probability density of the random variable

{=0,-0,. (1.5-34)

From Ref. 9, p. 189, we find that

27
P($)= fo P(8,,$+0,)d8,. (1.5-35)
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But 6, must satisfy two criteria:

0 < 01 < 27’,
(1.5-36)
0<8,+{<2m;
this defines two regions for p({):
120 p@)= [ p0u5+0)a,
(1.5-37)
2n
£<0: p(©)=[ p(8,5+0) a0,
From Eq. (1.5-28),
2
p(0,5+0)= 12
A2poned(F — - -1[. -
L Vi-Ncod (5 -4) +Acos(g #heos [[-heosG- )] ;5 35

[1-A%cos?(§—¢)]

For brevity it will be convenient in the following development to define a
function F represented by Eq. (1.5-38):

p(8,£+0,) = Flcos(¢ —¢)]. (1.5-39)

Thus p(6,,§+8,) is independent of 8,, so that Eq. (1.5-37) may be im-
mediately evaluated:

P(§)=Qm+|SDF[cos(s-0)]. (1.5-40)

As noted earlier, —27 < ¢ < 2. It will be useful to define a new variable
which is confined to the region from —= to +m, and therefore corre-
sponds to a physically measurable, unambiguous quantity. Let

$—2m, #<{<2n
§=1{¢ ~n<¢{<n (1.5-41)
$+2n, -2r<i{< -7

Then it can be shown® that under this transformation of variables,

p(§)=2nF[cos({—¢)], —w<é<m (1.5-42)
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We now consider an experiment designed to measure the statistics of the
measurable phase difference. Assume two CW signals at frequencies w,
and w, are transmitted from the base station to two separate antennas on
the mobile unit; these antennas being spaced far enough apart so that all
the statistics of the signals received on the two are independent. As shown
in Figure 1.5-3, the signals at frequencies w, and w, from each antenna are
multiplied together and the difference frequency components selected by
the low-pass filters. These signals are at the same frequency, namely
w,—w,, and thus a phase detector can be used to measure the phase
difference, (6,,—8,,—8,,+80,,). Let § correspond to the measurable
phase difference 0,,—4,,, & to 6,,—8@,,, and consider the statistics of

—§,. First let

w=§ —§, —2r<w<27, (1.5-43)

The probability density p(w) is then found in the same way as p(¢), Eq.
(1.5-35):

p0)= [ pln bt w)ds,. (1.5-44)

Under the assumption that §, and £, are independent (since antennas a
and b are well separated), p(£,,4,)=p(&,)p(§,); thus

p(w)=

, f PP E WL, w>0
(1.5-45)

P('fa)l’(fa+ w)de, w<O0

We now define a new variable ¢ such that — 7 <y <« to correspond to
measurable phase angles:

w—2nw n<w<2r
V= 1w, -7 wkm (1.5-46)
w2, -2r<w< —7o

Under this transformation of variables the probability density of ¢ be-
comes

p)= [ PP+ ¥)d. (1.5-47)
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Substituting p(¢) from Eq. (1.5-42)
p(¥)=4n* [ Flcos(t,~ )] Flcos (&~ o+ ¥)]dt,

=4q? f_' F[cosy)F[cos(y + )]y

-4,,2](')"p[cosy]{F[cos(y+¢)]+F[cos(y-,p)]}dy, (1.5-48)

where we have made the variable change y=§ —¢. Inspection of Eq.
(1.5-48) shows that p(¢) is independent of ¢ and symmetric in ¢, p(— )
=p(y). The angle ¢ thus corresponds to the magnitude of the phase
difference |(8,,—0,,)—(0,,—8,,)| that would be measured by a phase
detector in the range —« to +«. The statistics of ¢, such as the density
function p(¢) and the variance (y?) will agree with those one would
measure by the experiment shown in Figure 1.5-3.

BASE ANTENNA MOBILE ANTENNAS
le——many waveLenaTHS——
¥V = g b
wor VYo b, Yo &
w, By, Wy 16
w, Y,
o6 [ =]
Low-PASS LOW-PASS
FILTER FILTER
(wy-w) (wy-w)
(6,58, ) (6,-8,)
PHASE
DETECTOR

'alb —eli -92‘+8'.|
o

Figure 1.5-3 Experiment to measure the statistics of the phase difference between
two signals at different frequencies.

The expression for p(y) given by Eq. (1.5-48) cannot be integrated in
closed form; numerical integration yields the curves of Figure 1.5-4 for
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various values of the parameter A.* As A increases, corresponding to a
decrease in so, the phase difference tends to concentrate more about =0,
as one would expect. Measurements'” of the density show rough agreement
with Figure 1.5-4, depending on the choice of a.

1.4
1.24

X=.95
10 2 - Y (w, )

1+ s? o2

p(y)
6.

Sos

* T T
.6 .8 1.0

‘a-q

0 2
v/w

Figure 1.5-4 The probability density p(y) of the “measurable” phase difference
between signals of two different frequencies, w;, and w,. s=w,—w,.

*An explicit expression can be obtained for the difference between p(0) and p(«), however:
P(0)—p(7)=mA3(4-2A2)(1-2%)""?/32,
This serves as a check on the numerical integration.
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The variance of { may be easily found from p(y):
@=[" vrn)d. (1.549)

Again numerical integration must be used, with the results shown in Figure
1.5-5. If A=0 (signals at w; and w, uncorrelated), P(y)=1/2x; that is, § is
uniformly distributed from —# to +«. In this case (y?)=x%/3. Some
measured values of {y?*) are also shown in Figure 1.5-5.

30 4

204

<y2>
O EXPERIMENTAL POINTS
101 o *015us
ﬁ r =0
O L T T T U
0 2 4 6 8 1.0
2. Jowa®)

1+s? o*

Figure 1.5-5 Mean square value of the “measurable” phase difference between
signals of two different frequencies, w, and w;. s =w, — w,.

1.5.5 Ratlo of Signal Envelopes at Two Frequencles

As a final point of interest we will determine the probability that the
signal envelope at frequency w, exceeds that at w, by a given amount. This
would be of concern when considering interference between two signals at
two frequencies transmitted from one base station. If the signals lie within
the coherence bandwidth, the variation in their amplitudes due to multi-
path fading is appreciably correlated. A receiver that provides adequate
discrimination between the desired signal (at w,) and the undesired signal
under nonfading conditions would also do so under fading conditions in
this case. However, as the frequency separation increases, the chance that
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the undesired signal occasionally exceeds the desired one by a given
amount will increase, with a consequent increase in interference. The
probability that r,> ar, may be obtained from the joint density of Eq.
(1.5-22):

0 - -]
Pl[r,> arl]=f(; dr,j;"p(r,,rz)drz

+r
2(|—>\2)f dnf r,rzexp[ zr('l_;z)]

nr oA
X 10[ T —]TXE ] dr,. (1.5-50)

By making a change of variables r,=rcos, r,=rsin8 this integral may be
easily evaluated'*:
A
P[r,> ar] = P(a,A)
(1-d?)

\/( 1+ az)2 -4\

Equation (1.5-20) gives A for the case of the exponential time delay
distribution. Setting r=0 we can express the probability in terms of so,
obtaining the curves of Figure 1.5-6. For A—0 the curves are asymptotic to
1/(1+ a?), and for small values of sa they approach

(1.5-51)

DO

1
"i+

2
P(a,so)é[ T%] . if a>l. (1.5-52)

The two earlier definitions of coherence bandwidth correspond to so=1
(50% amplitude correlation) or so=0.5 (50% phase correlation). These
values are shown on the figure, and we can see that if the frequency
separation s =w,—w, is less than the coherence bandwidth the probability
that r, exceeds r, by an appreciable amount is very small.

1.6 SPATIAL CORRELATIONS AT THE BASE STATION

The results of preceding sections have been obtained by considering the
mobile unit as a receiver. At first thought it might seem that transmitting
from mobile to base should not change matters; after all, radio transmis-
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sion in a linear medium obeys the reciprocity theorem! However, the
reciprocity theorem must be applied with care in a scattering medium.2!
The base station in a typical mobile radio system layout is usually located
well above surrounding objects so that it has the best possible access to
mobiles within its domain of coverage. The simplified model of this path
places the important scattering objects (those that produce the multipath
effects) within a small distance of the mobile, and more or less uniformly
located around it. Up to now we have concentrated our attention on the
resulting processes at the mobile; now we will examine the implications of
this model with respect to the base station.

%

pla,r),

bl | Ty

.02 .04 .06 & 2

Figure 1.5-6 Probability that the signal envelope r, at frequency w, exceeds a
times that at w,; both signals transmitted from the same base station with equal
power. B,, envelope coherence bandwidth, B,, phase coherence bandwidth.

1.6.1 Mathematical Model

Referring to Figure 1.6-1 we assume that a ring of scattering objects
whose bi-static scattering cross section is uniform are located in a circle of
radius a around the transmitter at the mobile unit. The distance d from
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RING OF
SCATTERERS

t. * (o+d° + 2ad cosy)?

r, cosa=dcos€ + a cos (y+f)

BASE v

STATION
Figure 1.6-1 Scattering model for examination of spatial correlations at the base
station.

mobile to the base receiver will be assumed much greater than a, so that
the base does not lie within this circle. It will be convenient to start with
the power spectrum approach used in Section 1.2; to this end we artifi-
cially assume that the mobile is now fixed and the base moves along the
x-axis with velocity v. We need then to introduce a further assumption that
d is so large that the angle § between v and the direction to the mobile does
not change significantly during observation times of interest (i.e., the
movement of the base station along the x-axis is small compared to d).
Let the distribution of power radiated from the mobile with azimuth
angle y be denoted p(y). The power incident an the scatterers within a
circumferential length 4/ is then Kp(y)dy. The proportionality constant K
can be set equal to unity without loss of generality. This power is scattered
uniformly in angle, so that the power, p(a), at the base station within da of
the angle a is, neglecting multiplicative constant factors independent of a

and vy,
p(a)da=p(y)dy. (1.6-1)

This is also the power within df of the frequency f contained in the power
spectrum S(f) corresponding to the given a; thus

S(f)df=p(a)da=p(y)dy. (1.6-2)
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A complex correlation function of time r can be defined from Egs.
(1.3-2)—(1.3-3):

c(r) = g(r) + ih(r)

c L

= [*** exptitzntis - DSt (163)

In the present case f=f, + f,, cosa, but a depends on y through the relation

cos§+kcos(y+§) k=9 (1.6-4)

Vi+2kcosy + k2 d

which may easily be derived from the geometry of Figure 1.6-1. The
integration on f in Eq. (1.3-21) is replaced by integration on vy, so that

ctr) = [ eseotoWlpiyy. (1.6-5)

a(y)=cos™! [

Assuming now that the power transmitted from the mobile, by, is radiated
uniformly in all directions, we get

by ,7
c(or)a -i%f- e‘q-"m[ﬂ(ﬂ]dy. (1.6-6)

This integral, with Eq. (1.6-4) substituted for a, cannot be explicitly
evaluated. But we have assumed a<d, or k<1, so an approximation may
be obtained to various orders of k by expanding cos a in powers of k:

cosa = § ak", (1.6-7)

n=0

where the first few a, are

ay= cosé,

a,= —sinsiny,

ay= Y1 -3 cos’¢ cos2(y—yy)—4cosé, (1.6-8)

and
tan2y,=2tan§. (1.6-9)
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To second order in k the integral then becomes

c('r)=7;e“"~’“ k/4) cos¢

X f" exp { iwmr[ 1k2\1 = § cos?E cos2(y —vo) — ksin&siny] } dy.

(1.6-10)

To carry out the integration we expand the exponential functions in terms
of Bessel functions with the relation

00
elrcosx o z i"J,,(z)e""'. (1.6-11)

ne= - 00

The integral on y can then be written

” o m
I=[" 3 (= 1)i%,(2)J,(z)e Crs mr=2md gy
—~nmn= —co

00
=21 3 Ja(2),(z)e" 27, (1.6-12)

” -
where

z,=w,tksiné,

2=}k, Y1 - } cos?t .

The envelope auto-covariance function may now be obtained from c(7).
From Egs. (1.3-13) and (1.3-49) we see that

. b
L(1) = g5 ¥ = 55, 11*

(1.6-13)

o0
="8"‘ Z e'('/z—z"”x"—M)Jzn(z|)J2m(z|)Jn(’2)-’m(zz)- (1.6-14)

m,n= — o0

The term for m=n=0 is a good approximation to this expansion, for
third-order accuracy in k (and for fourth-order accuracy in k when ¢=0);
thus

L,(n) % T3 . (16-15)
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1.6.2 Envelope Correlation as a Function of Antenna Separation

Since w,, 7 =2mvr /A, Eq. (1.6-15) can be regarded as a function of spatial
separation {=vr. We can now abandon the artificial assumption of a
moving base station, and instead consider that L, ({) gives the correlation
between the envelopes of signals received simultaneously on two antennas
at the base, separated by a distance §. To third order in k, Eq. (1.6-15) is
directly analogous to Eq. (1.3-50) giving the auto-covariance of the E, field
seen at the mobile. Comparing arguments, we see that the base antenna
separation must be a factor (ksin£)~! times greater than that at the mobile
to obtain the same correlation. Also, for §=0 the third-order approxima-
tion gives a constant value of correlation independent of separation and
equal to the value for { =0. Thus the fourth-order approximation is needed
in this case. Estimates of the scattering circle diameter vary, but it seems
obvious that it must be at least equal to the distance between buildings on
opposite sides of the street where the mobile is located. This is sub-
stantiated by some experimental measurements.'” Thus 2a might typically
be 100 ft; at a range of d=2 miles, k=0.005; thus the power series
expansion in k appears justified.

Curves of the correlation coefficient p, =J2(z,)J3(z,) for k=0.006 are
shown in Figure 1.6-2, along with some values measured at 836 MHz.2?
Comparison with Figure 1.3-6 illustrates how much more rapidly the
signals at the mobile become decorrelated with antenna separation. It
should be emphasized that the model used here assumes no scatterers in
the immediate vincity of the base station; the presence of even a small
number of local scatterers would have a strong effect on the correlation,
particularly for {=0.

The model also does not include the direction of motion of the mobile
with respect to the line-of-sight to the base station. One would expect that
motion along the line-of-sight would require greater base station antenna
separation for the same correlation, compared to motion perpendicular to
the line-of-sight. This effect could be included by assuming that the
scatterers lie on an ellipse with major axis along the direction of motion. A
refined model of this type would approach the actual disposition of the
scatterers more closely.

1.7 LABORATORY SIMULATION OF MULTIPATH INTER-
FERENCE

The testing of mobile radio transmission techniques in the field is
time-consuming and often inconclusive, due to uncertainty in the statistical
signal variations actually encountered. Laboratory testing with signals that
duplicate the assumed statistical properties of the signals encountered in
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Figure 1.6-2 Correlation coefficient p, between signals received on two antennas
at a base station versus their separation and orientation angle 8.

the field is an attractive alternative, provided that all of the relevant
properties can be simulated. Past approaches to the problem of simulating
fading signals may be divided into three classes. First, tape recordings of
the actual fading signals may be used.?’ In another method* a steady
signal is split into several paths, each of which is then randomly phase
modulated as shown in Figure 1.7-1(a). Uniformly distributed phase
modulation is obtained by appropriately shaping the amplitude distribu-
tion of low-pass Gaussian noise. An approximation to Rayleigh fading is
obtained by adding several such paths together. Frequency selective fading
can also be produced by including path delay. However, the power
spectrum of the output signal is very difficult to calculate or control. A
third method?® provides uniform phase modulation and Rayleigh envelope
fading by amplitude modulation of the in-phase and quadrature com-
ponents of a steady carrier with uncorrelated low-pass Gaussian noises, as
shown in Figure 1.7-1(b). Frequency selective fading may be produced by
combining several delayed fading signals. The different noise sources must
have the same power spectrum to produce stationary fading, and the
power spectrum of the fading signal will then be the same as the noise
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spectrum. The limitation with this approach is that only rational forms of
the fading spectrum can be produced, whereas the spectra encountered in
mobile radio are generally nonrational, as shown by Egs. (1.2-11)—(1.2-13).
A method? to simulate mobile radio fading that produces random phase
modulation, a Rayleigh fading envelope, and a time-averaged, discrete
approximation to the desired power spectrum will be discussed in the
remainder of this section.
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Figure 1.7-1 Two types of fading simulators. (a) Simulator using uniform phase
modulation. (b) Simulator using quadrature amplitude modulation.

1.7.1 Mathematical Development

We start with an expression that represents the field as a superposition
of plane waves:

E(t)=Re[T(1)e™], (1.7-1)
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where

N
T(1)=Ey X, c,e’n st e, (1.7-2)

n=|

and
1
2 =
ci=p(a,)da o da.

We assume that the arrival angles are uniformly distributed with da =27/
N; thus ¢2=1/N, and

a,

= 2mn = .
=5 A=L2,..N. (1.7-3)

We further let N/2 be an odd integer; then the series can be rearranged to
give

VN

ne=|

EO N/2-1
T(I)—‘—- 2 [el(w,,,tcosa,,+¢,,)+e—l(w,,,lcosa,+¢_,,)]

+ ei@nt+on) 4 e”“’"n'”’-")} . (1.7-4)

The first term in the sum represents waves with Doppler shifts that
progress from +w,cos(27/N) to —w,cos(2wr/N) as n runs from 1 to
N/2-1, while the Doppler shifts in the second term go from
—w,cos(27/N) to +w,cos(2m/N). Thus the frequencies in these two
terms overlap. The third and fourth terms represent waves with the
maximum Doppler shift of +w, and —w,, respectively. Without much
loss of generality it will be convenient to represent the signal in terms of
waves whose frequencies do not overlap:

N,
T(t)= \/Eo \%) 20 [ei(w,,lcosa,,+¢,,)+e—i(w,,lcosa,,+¢_,,)]

nw=|

+ e"“m‘+¢~’+e"‘“~'+’-"’}, No= %("12! - l)

(1.7-5)

where the factor V2 has been used so that the total power in E(t) will be
unchanged. The simulation should, among other things, provide a good
approximation to Rayleigh fading. If N is large enough we may invoke the
Central Limit Theorem to conclude that T'(¢) is approximately a complex
Gaussian process, so that |T| is Rayleigh as desired. From the work of
Bennett?” and Slack? it follows that the Rayleigh approximation is quite
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good for N > 6, with deviations from Rayleigh confined mostly to the
extreme peaks. Further information as to the value of N may be obtained
by examining the autocorrelation of E(¢):

R(m)=CE()E(t+7))
=} Re[(T(t) T(t+ 1)@+ 4 (TH(1)T(t+7)e™">].  (1.7-6)

The expectations are taken over the random phases ¢,, ¢,,, and they occur
only as sums of differences. The only terms that contribute are those
involving ¢, —¢,, with n=m, so that

N,
b 0
R(1)= -Ivocoswcr 42 cos(w,,,rcos l}'{,—'1)+2cos(mm'r) . (1.7-7)

We note that Eq. (1.7-7) is of the form of a carrier factor multiplied by a
low-frequency factor:

R(r)=g(r)cosw,r. (1.7-8)

We also know, from Eq. (1.3-7), that for a uniformly scattered field
8(7) = byJy(w,,7). Although this expression was derived for a continuum of
arrival angles, we may suspect that if N is large enough, the quantity in
brackets in Eq. (1.7-7) will closely approximate Jy(w,,7). Noting that Jy(x)
may be defined as

n/2
"°(x)=7;2;,/(; / cos (x cosa)da, (1.7-9)

the bracketed factor of Eq. (1.7-7) may be put in the form of a discrete
approximation (Riemann sum) to the integral (1.7-9). We thus expect that

No
2 N
2 2 cos (w,,,*rcos —%) + cos(w,,T)= —2-Jo(w,,,1). (1.7-10)

ne=i

Evaluation of Eq. (1.7-10) for various values of w, v and N shows that the
series gives Jy(w,,7) to eight significant digits for w,,7 < 15 with N =34. The
number of frequency components needed is thus 4(3 — 1)=8. The simula-
tion will thus produce an RF spectrum which is a discrete approximation
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to the form

-1/2

1.7.2 Realization of the Method

The simulation technique is now clear: N, low-frequency oscillators with
frequencies equal to the Doppler shifts w,, cos(2zn/N), n=1,2,...N,, plus
one with frequency w,, are used to generate signals frequency-shifted from
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N, = 1/2( -1)
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- -0 y(') o (1) cosuyt + x (1) singt

- NE x (1) AND x (1) ARE APPROXIMATELY

‘ GAUSSIAN RANDOM PROCESSES.
o o ) |yl 'S RAYLEIGH-DISTRIBUTED.
OSCILLATOR FREQUENCIES

FOR No=8

Figure 1.7-2 Simulator that duplicates mobile radio spectrum.



Multipath Interference 7

a carrier frequency w, using modulation methods. The amplitudes of all the
components are made equal to unity except for the one with frequency w,,,

which is set equal to 1/V2 . The phases 8, are chosen appropriately so
that the probability distribution of the resultant phase will be as close as
possible to a uniform distribution, 1/27. A block diagram of such a
simulator is shown in Figure 1.7-2 along with an illustration of the
frequency spacings of the oscillators for N,=8. By taking advantage of
some trigonometric relationships, the proper oscillator phases are provided
by amplifiers with gains set equal to 2cosB, or 2sin8,. The outputs of the
individual oscillators, with the appropriate gain factors, are first summed
to produce in-phase (x) and quadrature (x,) bands, which are then
multiplied by in-phase and quadrature carrier components, respectively,
and then summed to produce the final composite output signal y(¢). From
the block diagram we get

No

x,()=2 3 cosB,cosw,t+ V2 cosacosw,t, (1.7-11)
n=1
No

x,()=2 3 sinf,cosw,t+ V2 sinacosw,!. (1.7-12)

nw=l

The phase of y(f) must be random and uniformly distributed from zero to
27; this may be accomplished in several ways, provided (x2)~~({x?) and
{x.x,)~0. We have

No
(xPH=2 3 cos?B,+ cos’
nw=|
No

= Ny+ cos’a+ >, cos2B,, (1.7-13)

ne=|

No
(x3y=2 Y sin?, + sin’a

nm=|
No
= Ny+sin®a— 3, cos28,, (1.7-14)
n=1
No
{x,x>=2, sinf,cospB,+ sinacosa. (1.7-15)
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By choosing a=0, 8,=mn/(Ny+1), we find (x.x,>=0 and {(x2)=N,,
{x%y= Ny+1. (Note that the brackets denote time averages now.) Thus
y(?) is a narrow-band signal centered on a carrier frequency w,, having
Rayleigh fading characteristics, and with autocorrelation function
approximately equal to Jo(w,). Its spectrum is therefore the nonrational
form given by Eq. (1.2-4), corresponding to a uniform antenna pattern,
G(a)=1, and uniform distribution of the incident power, p(a)=1/2.
Random FM is also produced by this method. Since the carrier frequency
is provided by one oscillator, it may be set to some convenient value, say
30 MHz, and voice-modulated either in amplitude or frequency for use
with various reception techniques. The performance of a simulator built
with nine offset oscillators (N,=8) is illustrated in Figures 1.7-3 to 1.7-6,
showing measured cumulative distribution of the envelope, autocorrelation
function, RF spectrum, and random FM power spectrum. Comparison
with the expected Rayleigh distribution, Bessel function autocorrelation,
and theoretical RF and random FM spectra shows excellent agreement.

This technique may be extended to provide up to N, independently
fading signals while still using the same offset oscillators. The nth oscillator
is given an additional phase shift vy, + 8,, with gains as before. By
imposing the additional requirement that the output signals y;(f) be un-
correlated (or as nearly so as possible), the appropriate values for y,; and
B,; can be determined. The choices are not unique, but the following seems
to be the simplest:

mn
A= N 41’ (1.7-16)

_2(-1)

Ynj— No""l ’ =l,2,.-.,No. (1-7'17)

By using two quadrature low-frequency oscillators per offset in place of the
single oscillators shown in Figure 1.7-2, the use of phase shifters to perform
the y -+ B shift can be eliminated. This leads to modified amplifier gains as
sketched in Figure 1.7-7 for the nth offset amplifier of the jth simulator.
The N=2 curve in the p(R) graph of Figure 1.7-3 shows the resulting
combined envelope statistics of a simulated two-branch maximal ratio
diversity combiner (cf. Section 5.2).
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Figure 1.7-3 Probability distributions measured from the output of a fading
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Figure 1.7-4 Comparison of theoretical autocorrelation function of the fading
signal with data from a laboratory simulator.
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Figure 1.7-5 RF Spectrum of simulated fading carrier. Dashed line is the theoreti-
cal spectrum, (1~ X2~ /4,
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Figure 1.7-7 Use of quadrature low-frequency oscillators to provide uncorrelated
fading carriers.
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