
Electromagnetic
Theory

The success of electromagnetic analysis during the past century would not have been pos-
sible except for the existence of an accurate and complete theory. This chapter summarizes
a number of concepts from electromagnetic field theory used in numerical formulations for
scattering problems. Differential and integral equations that provide the basis for many
of the computational techniques are introduced. In addition, expressions are developed
for calculating the scattering cross section of a target. The presentation is intended as a
review of these concepts rather than an introduction, and the reader is encouraged to study
references [1-11] for an in-depth discussion of this material.

1.1 MAXWELL'S EQUATIONS

Consider a source-free region of space containing an inhomogeneity characterized by rel-
ative permittivity er and permeability /xr, both of which may be a function of position
(Figure 1.1). If this region is illuminated by an electromagnetic field having time depen-
dence eja)t, the fields in the vicinity of the inhomogeneity must satisfy Maxwell's equa-
tions

V X E = -jCDflo/J,rH (1.1)

VxH = jo)£0srE (1.2)

S7.(s0erE) = 0 (1.3)

V.( /xo/x,^)=O (1.4)

where E and H are the electric and magnetic fields, respectively. (More precisely, E and
H are complex-valued phasors representing the vector amplitude and phase angle of the
time-harmonic fields.) We have specialized these equations to a medium that is linear and
isotropic.
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Chapter 1 • Electromagnetic Theory

Mo

Figure 1.1 An inhomogeneity illuminated by an
Hm c incident electromagnetic field.

The study of electromagnetics involves the application of Equations (1.1)—(1.4) to a
specific geometry and their subsequent solution to determine the fields present within the
inhomogeneity, the fields scattered in some direction by the presence of the inhomogeneity,
or some similar observable quantity. The focus of this text will be the development of
techniques for the numerical solution of Equations (1.1)—(1.4) or their equivalent.

Regions containing penetrable dielectric or magnetic material may be bounded by ma-
terial having a very high conductivity, which is often approximated by infinite conductivity
and termed a perfect electric conductor. Although er and \ir may in general be complex
valued to represent conducting material, in the limit of infinite conductivity we denote the
surface of a perfect electric conductor as a boundary of the problem domain. On such a
boundary, the electric and magnetic field vectors satisfy the conditions

hxE = Q (1.5)

hxH = Js (1.6)
P, PS / 1 -7\

n E = (1.7)
eosr

n-H = 0 (1.8)
where n is the normal vector to the surface that points into the problem domain (Figure 1.2),
Js is the surface current density, and ps is the surface charge density.

Along an interface between two homogeneous regions specified by relative permit-
tivity sr and permeability /x,-, appropriate continuity conditions involving the electric and
magnetic fields are

h x(El-E2) = 0 (1.9)

n x(Hl-H2) = 0 (1.10)

n-(srlEl-er2E2) = 0 (1.11)

n.(HriHi-lir2H2)=0 (1.12)

where h is normal to the interface. Although the tangential components of the E and
H fields are continuous, the normal components exhibit a jump discontinuity at material
interfaces.

By combining Equations (1.1) and (1.2) and eliminating one of the fields, we obtain
the "curl-curl" form of the vector Helmholtz equations

£0er(x, y, z)

E_s

Hs

E inc
'k

2

h x E = 0

h x H = Js

n • E =
eosr

fi.H = Q

£o

MOJMX, y. z)

(1.8)

eO6r

Ps

h x (E{ - E2) = 0

hx(H{- H2) = 0

« • (er\E\ - 6r2E2) = 0

n • (/xri^i - ^riH2) = 0
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p.ex.

Figure 1.2 Electric current and charge density at
the surface of a perfect conductor.

£,V

V x ( — V x E ) - k2srE = 0

V x ( —V x H ) - k2/j.rH = 0
\£r )

(1.13)

(1.14)

where k2 = CD2^OSO. The parameter k is known as the wavenumber of the medium (in this
case, free space). We will consider several forms of these equations for application to two-
and three-dimensional scattering problems.

Two-dimensional problems are those with invariance in the third dimension, such as
an infinite cylindrical structure illuminated by a field that does not vary along the axis of the
cylinder. Throughout this text, the term "cylinder" will be reserved for a structure whose
geometry (er, /xr, and any conducting boundaries) does not vary with translation along
z. If the cylinder axis lies along the z axis in a Cartesian coordinate system, it is usually
convenient to separate the fields into transverse magnetic (TM) and transverse electric (TE)
parts with respect to the variable z [2]. The z-component of the magnetic field is absent in
the TM case, while the z-component of the electric field is absent in the TE case. Under
the assumption of z-invariance, the z-component of Equation (1.13) can be extracted and
written in the form of a scalar Helmholtz equation

V- ( — VE^]+k2srEz =0 (1.15)

In a two-dimensional problem, the TM part of the field can be found from the solution of
Equation (1.15). Similarly, the TE part of the field can be found from

V- ( — VHZ J +k2/xrHz = 0 (1.16)
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Chapter 1 • Electromagnetic Theory

Since the materials and the fields do not vary with z, all derivatives with respect to z vanish
in the two-dimensional equations. After separate treatment, the TM and TE solutions can
be superimposed to complete the analysis.

1.2 VOLUMETRIC EQUIVALENCE PRINCIPLE
FOR PENETRABLE SCATTERERS [2, 7]

As alternatives to the differential equations presented above, integral equations are often
chosen as the starting point for electromagnetic scattering analysis. To simplify the for-
mulation of integral equations, it is convenient to convert the original scattering problem
into an equivalent problem for which a formal solution may be directly written. One way
of accomplishing this is to replace the inhomogeneous dielectric and magnetic material
present in the problem by equivalent induced polarization currents and charges. Equations
(1.1)-(1.4) can be rewritten to produce

V x E = -jcofioH - K (1.17)

V x H = jcoe0E + 7 (1.18)

V.(e0E) = pe (1.19)

V-(ti0H) = pm (1.20)

where
K = jo>iio(Hr-l)H (1.21)
/ = jcoEo(er - 1)£ (1.22)

Pe = e0£rE-v(pJ (1.23)

pm=liolirH'v(—>) (1.24)

Equations (1.17)—(1.20) describe the same fields as Equations (1.1)-(1.4) but appear to
involve a homogeneous space characterized by permittivity £o and permeability /zo instead
of the original heterogeneous environment. The source terms compensate for the apparent
difference between the two sets of equations, and we can think of these sources as replacing
the dielectric or magnetic material explicit in (1.1)—(1.4). Since the two sets of equations
are equivalent, we refer to the procedure of replacing the dielectric or magnetic material by
induced sources as a volumetric equivalence principle. This type of equivalence principle
will be used in the formulation of volume integral equations.

The sources of (1.21)—(1.24) radiate in free space. The task of finding electromag-
netic fields in free space is much more straightforward than the original burden of solving
Equations (1.1)-(1.4) directly in the inhomogeneous environment, and a solution will be
presented in general form below (Section 1.4). However, at this point in the development
the equivalent sources are unknowns to be determined, so the problem has not been solved
by their introduction.

The expressions in Equations (1.23) and (1.24) require additional explanation. The
quantities being differentiated, sr and /xr, will be discontinuous at medium interfaces (in-
cluding the scatterer surface). Therefore the derivatives in (1.23) and (1.24) must be in-
terpreted in the context of generalized functions, that is, Dirac delta functions and their
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Section 1.3 • General Description of a Scattering Problem 5

derivatives. Since er and [ir are constant throughout homogeneous regions of the original
scatterer, Equations (1.23) and (1.24) show that there is no induced charge density in those
regions. If er and /xr vary in a continuous manner and are differentiable in the classical
sense, (1.23) and (1.24) produce the correct induced volume charge density. Furthermore, at
an interface such as the scatterer surface, the Dirac delta function arising from the derivative
signifies that there is actually a surface charge density rather than a volume charge density
at that location. If (1.23) or (1.24) results in an induced surface charge density, the normal-
field discontinuity produced in free space at that location can be shown to be identical to
the discontinuity produced in the original scatterer by the material interface (Prob. PI.6).
Therefore, when interpreted as generalized functions, the expressions in (1.23) and (1.24)
conveniently account for all the possibilities. For additional information on generalized
functions, the reader is referred to Chapter 1 of [12]. Throughout this text, the concepts of
generalized functions are freely used wherever necessary. Problem PI .7 provides additional
practice at manipulating delta functions and their derivatives.

Although we expressed J in terms of E and K in terms of H in Equations (1.21) and
(1.22), we will have occasion to use the alternate forms

7 = ^ — ^ V x # (1.25)

and

^ = - — V x £ (1.26)

These follow directly from Equations (1.21), (1.22), (1.1), and (1.2) and must also be
interpreted as generalized functions.

1.3 GENERAL DESCRIPTION OF A SCATTERING PROBLEM
[6,7]

We are now in a position to describe one way of posing an electromagnetic scattering
problem. Suppose the scatterer of Figure 1.1 is illuminated by a field produced by a primary
source located somewhere outside the scatterer. We have shown that the inhomogeneous
material can be replaced by equivalent induced sources radiating in free space. Consider
splitting the fields into two parts, one associated with the primary source and another
associated with the equivalent induced sources. The fields produced by the primary source
in the absence of the scatterer will be denoted the incident fields Emc and Hinc. The
secondary induced sources, which also radiate in free space, produce the scattered fields
Es and Hs. The superposition of the incident and scattered fields yield the original fields
in the presence of the scatterer. In other words, we can write

E = Einc + Es (1.27)

H = Hinc + Hs (1.28)

where the incident fields in the immediate vicinity of the scatterer (away from the primary
source) satisfy the vector Helmholtz equations

V2£ inc + fc2Einc=O ( L 2 9 )

V2tfinc + k2Hmc = 0 (1.30)

(1.25)

(1.26)

J =
S r - l V x H

£r

K = -
Hr - 1

llr

- V x E

E = Einc + Es

H = Hinc + Hs

(1.27)

(1.28)

V2£ inc + fc2Einc=0

V2tfinc + k2Hmc = 0

(1.29)

(1.30)



Chapter 1 • Electromagnetic Theory

and the scattered fields are solutions to the equations

V2ES + k2Es = jo)fi0J - V V ' y + V x K (1.31)
jcoeo

V2HS + k2Hs = - V x J + jcos0K - VV K (132)

where / and K denote the equivalent sources defined in (1.21) and (1.22). Note that these
sources are a function of the total fields E and H. [As an alternate proof that the fields
can be decomposed in this manner, combine Maxwell's equations for the incident field and
primary source with Maxwell's equations for the scattered field and induced sources to
obtain (1.1M1.4).]

In a source-free homogeneous medium, Equations (1.29) and (1.30) can be obtained
from (1.13) and (1.14) using the vector Laplacian

V2E = V(V • E) - V x V x E (1.33)

and Maxwell's divergence equations. The derivation of Equations (1.31) and (1.32), which
includes sources, is slightly more complicated and will be left as an exercise (Prob. PI.8).

Although the incident field may be arbitrary and may in fact be produced by sources
immediately adjacent to the scatterer or within the scatterer, our primary interest is the case
of an excitation produced by some source in the far zone. Often, we will consider the
incident field to be a uniform plane wave.

Radiation conditions ensure that the fields satisfying Equations (1.31) and (1.32) prop-
agate away from the scatterer. In a three-dimensional problem, where r is the conventional
spherical coordinate variable, radiation conditions have the form

lim r x V x Es = jkEs (1.34)

limfxVxtf =jkHs (1.35)
r-»oo

In the two-dimensional case, these simplify to a form of the Sommerfeld radiation conditions

dEs

lim _ £ = -jkE\ (1.36)
P-+OQ dp

r) Ms

lim —*- - -jkH't (1.37)
/0-+00 dp

for the TM and TE polarizations, respectively, where p is the radial variable in cylindri-
cal coordinates.

1.4. SOURCE-FIELD RELATIONSHIPS IN HOMOGENEOUS
SPACE [1-7]

There are a number of ways to approach the solution of the Helmholtz equations (1.31) and
(1.32) in homogeneous, infinite space. The classical approach is to express the fields in
terms of the magnetic vector potential A and the electric vector potential F, according to

E<=VV-A + k2A-V,F (1.38)

6

V2ES + k2Es j(L>{l0J -
v v - 7
J0)£o

+ V x K (1.31)

(1.32)
jCOflQ

VV K
V2HS + k2Hs = -V x J + JCOSQK

(1.33)V2E = V ( V - E ) - V x V x £

lim f x V x Es = jkEs

r—>oo

lim f x V x Hs = jkHs

r-^-oo

(1.34)

(1.35)

lim
p->oc

lim
/0—>0O

. W'z
dp

-JkEl

~JkHs
z

dp

dHz. (1.37)

(1.36)

VV • A + k2A

j<oso
ri — V x F (1.38)
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F = V x A +
JCDfJ.0

(1-39)

By substitution into Maxwell's equations, it is easily demonstrated that the vector potentials
satisfy

V2A + k2A = -J (1.40)

(1.41)

A solution to these equations satisfying the radiation condition can be concisely written in
the form

A = J * G (1.42)

F = K * G (1.43)

where the scalar function G is the well-known three-dimensional Green's function

G =
e-jk\r\

and the asterisk (*) denotes three-dimensional convolution, that is,

Mr) Iff J{r)
e-jk\r-r'\

dr'

(1.44)

(1.45)

The convolutional property of the solution is useful in a variety of ways and will be exploited
in some of the numerical formulations to be presented in subsequent chapters.

In a two-dimensional problem, the integration over the third dimension only involves
the Green's function and can be performed analytically. For generality, we first present the
result [13, 3.876]

I:=-oo 47t

-jyz dz= <
k2>y2

y2>k2

(1.46)

which may be useful if the geometry is z invariant but the excitation is not. In Equation
(1.46), Ho and Ko are the zero-order Hankel and modified Bessel functions of the second
kind, respectively. In the limiting case, as y vanishes, we obtain the two-dimensional
Green's function

1 (2)/
G = — H^(k\p\) (1.47)

For two-dimensional problems, Equation (1.47) may be used within Equations (1.42) and
(1.43) as two-dimensional convolutions.

To summarize, the above procedure requires that A and F be constructed by an in-
tegration of / and K according to (1.42) and (1.43). The electric and magnetic fields can
then be produced by Equations (1.38) and (1.39), which involve differentiations. Unfortu-
nately, the integration-followed-by-differentiation procedure dictated by these equations is
not well suited for numerical implementation. The typical integrals arising from source-
field relations can seldom be evaluated in closed form but usually must be evaluated at
individual observation points by numerical quadrature algorithms. Both the accuracy and
the efficiency of the computation will suffer if it is necessary to implement a subsequent

7

V2F + k2F = -K

1 w ( 2 )

h" py/y2 - k2

Py/k2 — y2

e-jky/p2+z2

/P'TZ2
-.e

*oo

4 ;

A = J*G

F = K*G

(1.42)

(1.43)

47r|r-r'|

47T|r|

,2 ,2

.2,2Vl

• 2 1

VV . F + k2F.2
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derivative of the integral using finite-difference operations. In three dimensions, a finite-
difference implementation of the second-order vector derivatives in (1.38) and (1.39) will
require every vector component of each integral to be evaluated at a minimum of seven
points around the desired location.

On the other hand, the free-space Green's function is easy to differentiate analyti-
cally. For observation points outside the source region, derivatives can be brought inside
the integrals and carried out analytically, changing the procedure to one of differentiation
followed by integration. The modified procedure eliminates the error introduced by the
finite-difference operations and reduces the number of quadrature evaluations to one per
integral. Because of the singularity of the Green's function in the region containing the
sources, however, a direct interchange of integration and differentiation is not possible with-
out violating Leibnitz's rule. Thus, unless an integral can be evaluated in closed form in
the source region, an alternate approach may be necessary.

As an alternative to the pure vector potential source-field relationship, a mixed-
potential formalism can be developed by seeking a solution of the form

Es = -jcofioA - V<D, - V x F (1.48)

Hs = V x A - jcosoF - V<DW (1.49)

where <&e and Om are scalar potential functions. By carrying out a solution procedure
similar to that employed above (Prob. P l . l 1), A and F can be shown to be the identical
convolution expressions appearing in Equations (1.42) and (1.43). The scalar potentials are
given by

<pe = ^*G (1.50)

<DW = ^ L * G (1.51)
Mo

where the asterisk again denotes multidimensional convolution. Therefore, this particular
choice of scalar and vector potentials results in a complete decoupling of the contribution to
the field from the electric current density, magnetic current density, electric charge density,
and magnetic charge density.

Once the scalar and vector potentials are determined by integration over the given
sources, Equations (1.48) and (1.49) require only a single differentiation to obtain the
electromagnetic fields. Because of the lower order derivative, the mixed-potential source-
field representation is often used within numerical formulations in preference to Equations
(1.38) and (1.39). For direct field calculations in the source region, this procedure is still
an integration-followed-by-differentiation approach with the disadvantages noted above.

A third form of the source-field relationship can be developed using an analogy
between Equations (1.40) and (1.41) and their general solutions (1.42) and (1.43) and the
vector Helmhoitz equations appearing in (1.31) and (1.32). Formally, we can write the
solutions to Equations (1.31) and (1.32) directly as

/ - VV • J - \
Es = -jco/xoJ + — V x K * G (1.52)

V J<oe0 )

and

/ _ _ VV•K\
Hs = V x J - jcoE0K + * G (1.53)

V jCQflo )

Es = -jeofioA - VO e - V x F

Hs = V x A- JOJSQF - V4>w

(1.48)

(1.49)

<*>* =

<&« =

Pe_

£0
*G (1.50)

(1.51)
Mo

Pm *G

Es =
V V . /

JQ)£Q
-jCOfl0J + - - v x k *G (1.52)

vv-JT
jCOflQ

* G (1.53)ITS
V X J — JCOSQK -f

8



Section 1.4 • Source-Field Relationships in Homogeneous Space 9

without the need of intermediate potential functions [14]. These equations can also be
obtained from Equations (1.38) and (1.39) by employing the property that differentiation
operators commute with the convolution operation. In contrast to Equations (1.38) and
(1.39), which require an integration followed by a differentiation, Equations (1.52) and
(1.53) require a differentiation followed by an integration. As noted above, it is often easier
to differentiate a given expression in closed form than it is to obtain a closed-form expression
for the relatively complex convolution integrals of (1.42) or (1.43). Thus, Equations (1.52)
and (1.53) will often permit the closed-form evaluation of the first step of the process. As
discussed in Section 1.2, these derivatives must be interpreted as generalized functions.
Formal rules for manipulating Dirac delta functions and their derivatives must be followed
to correctly carry out their evaluation.

It should be noted that (1.52) and (1.53) are not the equations that would result from
a simple interchange of integration and differentiation in Equations (1.38) and (1.39). In
fact, carrying out such an interchange leads to a fourth type of source-field relationship,
obtained in the form of a convolution between the sources / and K and the so-called dyadic
Green's functions [2, 4, 9]. The expressions can be written

Es = J * Gej + K * Gek (1.54)

H* = J*5mj + K*5mk (1,55)

where Gej and Gek are the dyadic Green's functions for the electric field, symbolically
denoted

dej = —^-(VV + ifc2/)G (1.56)
JOJSo

5ek = -S7 x ( / G ) (1.57)

and Gmj and Gmk are the dyadic Green's functions for the magnetic field,

&mj = Vx (IG) (1.58)

Gmk = — ( W + k2I)G (1.59)

As a consequence of the singularity in the Green's function, Leibnitz's rule is violated by
this interchange of integration and differentiation when the source and observation regions
overlap. In this situation, formal classical integration is not sufficient to evaluate the integrals
required in (1.54) and (1.55). The evaluation of these integrals using "regularization"
procedures is possible [15-17] but is beyond the scope of this text.

Although we will not have occasion to use the dyadic representation, the first three
source-field relationships will be used throughout the text when formulating numerical
schemes for solving electromagnetic scattering problems. Occasionally, it will be possible
to find closed-form expressions for the vector potential functions, which readily permit
their differentiation according to Equations (1.38) and (1.39). Often, the mixed-potential
representation of Equations (1.48) and (1.49) will be preferred because of the lower order
derivative appearing in front of the scalar potential terms. The mixed-potential representa-
tion is also preferred if the charge densities are defined separately from the current densities,
as occurs when (1.23) and (1.24) are used to define the charge densities within a volumetric
formulation. Equations (1.52) and (1.53) require no differentiation of the integral, which
may make them preferable for situations where the integration over the sources must be

Es = J * Gej + K * Gek

Hs = J*5mJ + K* bmk

(1.54)

(1,55)

6ej

Gek

1
_ ^
JOJSQ

- V x (IG)

(VV + *2 /)G (1.56)

(1.57)

5mj = V x (IG)

Gmk
1

jCDflo
;VV + /:2/)G

(1.58)

(1.59)



10 Chapter 1 • Electromagnetic Theory

performed numerically. Of course, if applied correctly, all of the above source-field rela-
tionships are equivalent and produce identical results. As will be demonstrated in chapters
to follow, however, one approach is usually easier to implement than the others within a
specific numerical treatment.

1.5 DUALITY RELATIONSHIPS [2]

Because the equations describing the electric and magnetic fields and the associated sources
exhibit almost perfect symmetry, any relationship between the fields and sources can be used
to directly arrive at a dual relationship describing the complementary fields and sources.
The idea of duality is a useful aid to generating new formulas or just remembering some of
the existing ones. Table 1.1 summarizes the duality relationships.

TABLE 1.1 Principle of Duality.
The equations describing electro-
magnetic fields remain valid if all
the quantities in the left column are
replaced by those in the right.

E
H
J
K

Pe
Pm
e
i"

A
F

H
-E
K
-J
Pm
~Pe
J"

e
F
-A

1.6 SURFACE EQUIVALENCE PRINCIPLE [2, 7, 8]

Equations (1.17)—(1.24) demonstrate that mathematical volume sources can be used to re-
place dielectric and magnetic materials. Equivalent sources distributed on a surface are
of similar utility. To illustrate the surface equivalence principle, consider the hypothetical
situation posed in Figure 1.3. Figure 1.3 shows two regions of space separated by a math-
ematical surface S. Region 1 is homogeneous with s\ and /xj, whereas region 2 contains
inhomogeneities that may include perfectly conducting materials. A source (72, K{) lo-
catedin region 2 and radiating in the presence of the inhomogeneities produces fields E2

and H2 throughout region 1. We also postulate a second source (7i, K\) located in region
1 but radiating fields E\ and H\ in a homogeneous space having constitutive parameters £\
and /JL\. The fields of both sources satisfy the radiation condition on the boundary at in-
finity (Soo).
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Figure 1.3 Two regions separated by a surface S.

Throughout region 1, Maxwell's curl equations can be written

V x Ex = -ja)fi{H{ ~KX (1.60)

V x Hx = joo£\E\ + J[ (1.61)

V x E2 = -jojfi{H2 (1.62)

V x H2 = jo)SXE2 (1.63)

Therefore, in region 1 we can construct the following equations:

tf2 • V x E{ = -ja)\ixH2 • HX-H2KX (1.64)

£2 • V x Hx = jcoexE2 - E{ + E2 - h (1.65)

Hx • V x E2 = -ja)fiiHi • H2 (1.66)

£i • V x H2 = ja)sxEx - E2 (1.67)

By combining these equations, we obtain

H2 • V x Ex - Ei • V x H2 + E2 • V x Hx - Hx • V x E2 = E2 • Jx - H2 • ̂ i (1.68)

which is equivalent to

V.(ExxH2-E2x H x ) = E 2 J x - H 2 K i (1.69)

Equation (1.69) is a form of the Lorentz reciprocity theorem [2]. Integrating both sides of
Equation (1.69) over region 1 and applying the divergence theorem

fffn*-Od-ff,QhdS + II Q-hdS

where h is the normal vector on the surface pointing out of region 1, produce

/ / .
(Ei xH2-E2x Hi)

" " s = / / / r ,
(£2 Ji-H2- *i) dv

(1.70)

(1.71)

n

4.fi

fsl e * ( r )
WH-2 \r)

r2

J2> »^2

kn

Soo

(1.60)

(1.61)

(1.62)

(1.63)

V x Ei = -jeofi[Hi - Kx

V x H2 = jo)SXE2

V X E2 = —JQ)JJLXH2

V x Hx = ja)£XEx + JY

r,5

fSoos•/r.

V '(Exx H2- E2x Hx) = E2JX-H2. Kx

H2 • V x Ex ~ Ex - V x H2 + E2 • V x Hx - Hx - V x E2 = E2 • Jx - H2 - Kx (1.68)

(1.69)

(1.67)

(1.64)

(1.65)

(1.66)

tf2 • V x E{ = -JQ>ILXH2 HX-H2KX

E2 • V x H{ = ja)8XE2 'Ei + E2'J\

HxVxE2 = -j(oiL\H\ • H2

E{W x H2 = jcosiEi - E2

2

QV • Qdv Q

hdS

Ti
ei./*i



12 Chapter 1 • Electromagnetic Theory

(The integral over the surface at infinity vanishes as a consequence of the radiation condi-
tion.) Vector identities dictate that

Exx H2-n=:-EX'(nx Hi) (1.72)

and

E2x Hxn^= -H{ • (E2 x h) (1.73)

Therefore, Equation (1.71) can be rewritten as

ff[E{ • {-h x H2) - Hx • (-E2 x h)} dS = jjf (E2 • 7, - H2 • K{) dv (1.74)

Equation (1.74) is a generalized statement of reciprocity.
Now, let us suppose that the sources in region 1 are

Jx=u8(r-Ff) (1.75)

and

Kx=0 (1.76)

where r denotes the source point in region 1 and F represents the integration variable in
(1.74). For these sources, Equation (1.74) can be written as

u . E2\-r = ff[Ex • {-h x H2) - Hx - (-E2 x h)] dSr (1.77)

where E\ and H\ are the fields produced at location rf in an infinite homogeneous space
by sources J\ and ̂ i located at r. These fields can be expressed in terms of the first
source-field relationship derived in Section 1.4, to obtain

Ei(f) = : [u (1.78)
jcoei \ An\r-r!\J

( -jk\r-r'\ \

uA ,_ _M (1.79)

where k = o){fi\£\)X12. Note that the derivatives are taken with respect to the primed
coordinates. Because of the symmetry of the Green's function, however, it is easily shown
that

/ e-jk\r-r'\ \ I ~jk\r-r'\ \
v V ' Mr-; =~ I = VV • w-— (1.80)

and

V

Therefore, (1.77) becomes

/ e-jk\~r-r'\ \ / e-jk\F-F'\ \

x [u U - V x [u 1 (1.81)
y 4n\r -r'\) ^ An\r-r'\f

VV • 4-k2 I e-Jk\p-p'\ \

II I K ,- J-Hx»2) + v
/ e-jk\r-r'\ \

x u-j—i—— - (~E2 x h) dSf (1.82)

ExxH2-h = -Ex'{hx H2) (1.72)

(1.73)

(1.74)

E2x Hxn^= -Hx • (E2 x h)

•/r,5

7i = w5(r - r')

J^! = 0

(1.75)

(1.76)

(1.77)u - £2|^ = /7 [£ i • (-n x H2) - Hx • (-E2 x h)] dSr

Js

VV • +^2

jcoex

Ex{f)
e-Jk\r-F'\

a-An\r -F\

Hx(r
f) = V x w

g-^l^-f'i

'4jr|r — r'l
(1.79)

e~Jk\f-r'\
u-
'4TC\?-?'\ 1

(1.80)
e-jk\r-r'\

4jr|r — r'|
it

e-jk\r-r'\

4n\r-F\
u-V x

e-jk\r-f'\

4TC\F - F \
x (1.81)

e~jk\r-r'\

4n\r-F\
u-

i.

VV • +&2

7'o>ei

r2

• (-h x //2) + v

e-jk\r-r'\
X M

47r | r - r ^
;-^2 x n

it-

= VV. ivv.

[£l- (-n x H2) - Hx • (-E2 x n)] dSr

(E2 • 7, - H2 • ̂ ) ^i;[£i • (-n x ̂ 2) - Hx • ( -£ 2 x «)] dS =

-£!• n x #2

w • £ 22lr
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The integration is to be performed in primed coordinates over the surface S. Note that the
derivatives appearing in Equation (1.82) are now taken with respect to unprimed coordinates,
while E2 and H2 functions of primed variables. Therefore, the first term in (1.82) can be
modified using

/ e-jk\?-r'\ \

Hx//2)-vv. U——
y A7c\r-r'\J

A , - a d ( e-^-?'\ \

= TllT-\Xi'(-nx H2)A .- -/•
du ~ dxt \ An\r — r'\ I

I e-jk\r-r'\ \
= u • VV • U-h x Hi) (1.83)

y 4Tt\r-r'\)

where [xi] denote the three Cartesian variables and u is a variable defined along u. Further-
more, the second term in (1.82) can be converted using vector identities and the fact that 11
is constant to produce

/ e-Jk\F-F'\ \
Vx [u—— —) .(-E2xn)

( -jk\r-?'\ \

—z—- x u (-E2 x n)

4n\r-r'\J
)x(-E2xh)

ATC\V -r'\J

( e-jk\r-r'\ \
(-E2xh) ) (1.84)

After these results are substituted into (1.82), the derivatives (taken with respect to unprimed
variables) can be moved outside the integrals to produce

u • E2\r = u - — \\(~hx H2)——~— dSr

jcoei JJs 4n\r-r'\

-u • V x / / (-E2 x h) dS' (1.85)
JJs An\r-rf\

Equation (1.85) is a statement that the field produced by (72, K2) at some location outside of
region 2 can be expressed in the form of an integration over tangential fields on the surface
of region 2. In fact, by comparing Equation (1.85) with Equation (1.38), it is immediately
apparent that the field is equivalent to that produced by surface current densities

Js = ~hx H2 (1.86)

(-h x H2) • VV •
e-jk\r-r'\

4n\r-r'\
u-

1=1

• {-ft x H2)
d d

dx[ du

e-jk\F-r'\

[47t\r-F\j

3

_ _a_y-_a_
~ du 4-( dxi

1=1

d J^ d

du f-f dxi
1 = 1

xt (-n x H2]
e-jk\f-r'\

4jr|r — r'|

e-jk\r-r'\

4jr\r-F\
(1.83){-h x H2)= u- VV-

V x
e-jk\r-r'\

47r|r-f'l\h • (-E2 x n)

= V
e-jk\r-r'\

\4n\F-F\
x u - (—E2 x h)

= -u- V
e-jk\f-r\

A*\r-r'\)
x {—E2 x h)

(1.84){-E2 xh)= -u • V x
e-jk\r-r'\

47t\f -r'\

U • E2\r = M *
VV•+fc2

JO)S\ '5
(-h x H2)

e-jk\r-r'\

4n\r -r'\
-dS>

-u- V x
Js

(-£2 x n)
e-jk\r-r'\

4n\r-F\
dS' (1.85)

Js = ~h x H2 (1.86)

13
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and

Ks = -E2 x h (1.87)

located on the surface S and radiating in a homogeneous space having constitutive para-
meters £\ and fi\. This property is a fundamental theorem of electromagnetics generally
known as Huygens' surface equivalence principle. [Note that the normal vector h in Equa-
tions (1.86) and (1.87) points into region 2, i.e., into the closed surface S. This is actually
the opposite of our usual convention, which requires that the normal vector point out of
the region containing the sources. In the following discussion, we revert back to the usual
convention.]

We will now state the surface equivalence principle in a slightly different form. Con-
sider Figure 1.4, which shows a source in region 1 radiating in the presence of inhomo-
geneities located in region 2. Fields produced in region 1 are denoted E\ and H\\ those
produced in region 2 are denoted E2 and H2. Now, consider equivalent sources Js and Ks

located on the mathematical surface S and satisfying

Ks = E\ x n (1.89)

where h is the outward normal vector. According to the equivalence principle, the combi-
nation of the original source and the equivalent sources produces fields E\ and H\ in region
1 identical to that of the original problem illustrated in Figure 1.4. The fields in region 2 are
not identical to those of the original problem; in fact, null fields are produced throughout
region 2 by the combination of the original and equivalent sources. (This result is sometimes
known as the extinction theorem.) The modified problem is illustrated in Figure 1.5.

Reqion 1

Ei."i

Figure 1.4 Electromagnetic source in region 1
/ radiating in the presence of inhomogeneities lo-

' cated in region 2. The surface .S" separates the two
Source regions.

Since the fields throughout region 2 of the modified problem vanish, any inhomo-
geneities present in region 2 may be replaced at will without affecting the fields in region 1.
Figure 1.6 shows one possibility, that of removing all the inhomogeneities from region 2 and

Js = h x H\ (1.88)

e2 (x, y, z)

U 2 (*> y. z)

£ 1 , / i 1• • • I

Region 2

E2,H2

S

n

Source
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Figure 1.5 Intermediate step in the construction
of the equivalent exterior problem associated with
Figure 1.4. Sources / s and Ks are introduced
on the surface S and replicate the original fields
in region 1. Null fields are produced throughout
region 2.

leaving a homogeneous medium with the same constitutive parameters as region 1. This is
often the approach followed in practice, since it effectively replaces the original problem
involving complicated inhomogeneous media with a problem involving only sources radi-
ating in homogeneous space. The effect is that the original scattering geometry has been
replaced by an equivalent exterior problem. As was the case in the volume equivalence
principle described previously, we have not solved the electromagnetic field problem by
the introduction of equivalent sources. In fact, Js and Ks are unknowns that remain to be
determined. However, we have converted the problem from one requiring the solution of

Figure 1.6 Equivalent exterior problem con-
structed from Figure 1.4. The inhomogeneities
within region 2 have been replaced by a homoge-
neous medium identical to that of region 1. The
combination of the original source and the equiv-
alent sources /v and Ks produce the original fields
throughout region 1 and null fields throughout re-
gion 2.

Region 1

*1.«1

Source

£2

i"2

Region 1

£i,Hi

Region 2
(null fields)

Ks = E-, x n

EvH,

Js= n x H^

n

Source

£ i . M i

Region 2
(null fields)

Ks= * î x n

Js= n x H-|

n

£ i . A * i
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Equations (1.1)-(1.4) to one requiring the solution of Equations (1.17)—(1.20), with equiv-
alent surface currents and charges defined respectively by Equations (1.88) and (1.89) and
the continuity equations

Pe = — V, • Js
JCO

Pm = — V , • Ks

(1.90)

(1.91)

where Vv is the surface divergence operator.

1.7. SURFACE INTEGRAL EQUATIONS FOR PERFECTLY
CONDUCTING SCATTERERS

Figure 1.7 shows a scatterer of perfect electric conducting (p.e.c.) material illuminated by
a source. Consider a mathematical surface enclosing the scatterer, over which equivalent
sources Js and Ks are defined according to Equations (1.88) and (1.89). If the mathematical
surface is permitted to shrink until it coincides with the surface of the perfect conductor,
Equation (1.5) dictates that the tangential electric field must vanish on the surface. It follows
that equivalent sources

Js = h x H

ks = o
(1.92)

(1.93)

located on the surface of the p.e.c. scatterer will produce the correct scattered fields in the
exterior region. The equivalent problem is depicted in Figure 1.8.

Region 1

Source

Figure 1.7 Original problem involving a p.e.c.
scatterer.

We now combine the surface equivalence principle, the source-field relationships,
and the boundary conditions discussed previously in order to formulate integral equations
for the unknown equivalent sources. Assuming that the incident fields Emc and Hmc are
specified, the source-field relationships from Equations (1.38) and (1.39) may be combined

jco

- 1

j<»>

— 1
7, • KsPm z

Pe ' Vs'Js

Js = « X / /

n

Region 2
(null fields)

p.e.c.
A*i, £ i

^>^

Region 1
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Figure 1.8 Equivalent exterior problem associ-
ated with Figure 1.7. An equivalent source Js

is introduced along the location of the conduct-
ing surface, and the conductor is replaced by a
homogeneous medium with the same constitutive
parameters as the exterior region.

with the equivalent sources from (1.92) and (1.93) to produce

VV • A + k2A

' ' Js= nxHi

/

Source

E{nc(r) = E(r)-
JO)£0

Hmc(r) = H(r)-V x A

(1.94)

(1.95)

At present, these relationships simply define the fields E and H produced by the excitation in
the presence of the p.e.c. scatterer and hold throughout the exterior region (in this case they
hold throughout the interior region also, since the fields within a p.e.c. vanish). However, if
the boundary condition of Equation (1.5) is imposed on the surface of the scatterer, Equation
(1.94) becomes

h x Emc —h x
f VV- A + k2A\

I jveo Is
(1.96)

which is an integro-differential equation for the unknown equivalent surface current density
Js. Equation (1.96) holds only for points on the surface S of the scatterer and is one form
of the electric field integral equation (EFIE). If Equation (1.6) is combined with Equation
(1.95), we obtain the magnetic field integral equation (MFIE)

h x Hmc = Js~{nxVx A}5+ (1.97)

Equation (1.97) is also an integro-differential equation for the unknown surface current Js

and is enforced an infinitesimal distance outside the scatterer surface (S+). It is common
practice to refer to these equations as integral equations rather than integro-differential
equations. Note that any of the source-field relationships presented in Section 1.4 could be
employed as alternatives, producing equivalent equations.

In principle, either of Equations (1.96) or (1.97) can be solved to produce the unknown
equivalent source Js. Once Js is determined, the electric and magnetic fields everywhere in
space may be found from the source-field relationships presented previously, superimposing
the incident field with the scattered fields produced by Js. In deriving the EFIE and MFIE,
we imposed only one of the conditions (1.5) and (1.6). Because of this, there are scatterers

Reaion 2
e i . M i

(null fields)

n

VV • A + k2A

VV- A + k2A\
jcoe0

E(

{n x V x A

s

Region 1

EvH,

i"i. 1̂

Region 1



1.8. VOLUME INTEGRAL EQUATIONS FOR PENETRABLE
SCATTERERS

The volumetric equivalence principle from Section 1.2 can be used to construct integro-
differential equations describing the interaction of electromagnetic fields with penetrable
scatterers. Combining the sources from Equations (1.21)—(1.24) with the source-field

18 Chapter 1 • Electromagnetic Theory

for which the solution of these equations is not unique. The uniqueness issue will be
discussed in Chapter 6.

Suppose that, instead of a closed body, we wish to treat scattering from an infinitesi-
mally thin open p.e.c. shell, strip, or plate (Figure 1.9). The surface equivalence principle
can be applied in the same fashion as in the case of a solid scatterer. However, if the surface
S collapses to the scatterer surface, the equivalent current densities on either side of the
scatterer become superimposed at the location of the thin shell. The equations are unable
to distinguish between the two equivalent sources, and we are forced to work with a single
equivalent source that represents the sum of the sources on either side. Since the boundary
condition of (1.5) remains valid for innnitesimally thin p.e.c. structures, however, an EFIE
of the form of Equation (1.96) can be used to treat this type of scattering problem.

Figure 1.9 (a) Original problem involving an infinitesimally thin p.ex. scatterer; (b) Equiv-
alent problem. The p.e.c. material is replaced by a single source Js that rep-
resents the superposition of the electric currents on both surfaces of the thin
scatterer.

Although the EFIE can be employed to model a thin shell, the MFIE of Equation
(1.97) is based on a boundary condition that is not valid for extremely thin geometries.
Equation (1.6) is actually a special case of the general boundary condition

hx (Hi -H2) = JS (1.98)

For closed bodies or other situations where the magnetic field vanishes on one side of the
surface, Equation (1.98) reduces to (1.6). For infinitesimally thin structures with nonzero
fields on both sides of the surface, however, Equation (1.6) is not equivalent to (1.98) and
does not actually constitute a boundary condition. Consequently, the MFIE of (1.97) is
restricted to closed bodies and cannot be used to describe scattering from an infinitesimally
thin p.e.c. structure.

Source
n

(b)

Source

J= n x(Hi - H2)

" 1
E, H

H2

E, Hp.e.c. shell
structure

(a)
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relationships from Equations (1.48) and (1.49), we obtain

Emc(r) = E(r) + jkrjA + VO, + V x F (1.99)

Hmc(F) = H(r) - V x A + j - F + V<Dm (1.100)

where 77 = (/xo/eo)l/2- (Throughout the text, we will frequently interchange cofio = krj and
(JO£0 = k/rj.) Equations (1.99) and (1.100) can be thought of as an EFIE and MFIE, respec-
tively, although it is noteworthy that there are some differences between these equations and
those of the previous section describing the p.e.c. scatterer. Specifically, these are volume
equations that hold everywhere throughout the penetrable scatterer rather than just on the
scatterer surface. Instead of designating the equivalent sources as the primary unknowns
to be determined, it is usually more convenient to pose the problem directly in terms of the
internal E or H fields. By using Equations (1.22), (1.23), and (1.26) with the EFIE, all
equivalent sources can be defined as functions of E. Similarly, with the MFIE it is conve-
nient to employ Equations (1.21), (1.24), and (1.25) to define all quantities in terms of H.

In the special case in which the body in question is composed entirely of dielectric
material, terms involving equivalent magnetic currents and charges drop out, leaving

E[nc(r) = E(r) + jkrjA + V<D, (1.101)

Hinc(P) = H(r)-V x A (1.102)

If the scatterer is composed entirely of magnetic material, terms involving electric current
and charge density vanish, producing

Emc(r) = E(r) + V x F (1.103)

Hmc(r) = H(r) + jk-F + V<Dm (1.104)

When simultaneously treating dielectric and magnetic materials with (1.99) and (1.100),
fewer unknowns are required if the internal E or H field instead of the equivalent sources
is designated the primary unknown.

These volume integral equations are suitable for the analysis of inhomogeneous ma-
terial. If the penetrable scatterer under consideration is homogeneous with constant jxr

and £,., the problem can be formulated with either volume integral equations or surface
integral equations. Surface integral equations are usually more manageable for numerical
solution since the unknowns to be determined are confined to the scatterer surface rather
than distributed throughout the scatterer volume.

1.9. SURFACE INTEGRAL EQUATIONS
FOR HOMOGENEOUS SCATTERERS

Figure 1.10 depicts a homogeneous, penetrable body illuminated by an incident electro-
magnetic field. Region 1 is free space and region 2 is characterized by a constant //,. and
er. The terms E\ and H\ denote the fields in region 1, and E2 and H2 denote the fields
throughout region 2. Using the surface equivalence principle, we wish to define equivalent
sources on the scatterer surface that replicate the original fields in both regions.
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The equivalent exterior problem, as shown in Figure 1.11, is constructed in a manner
identical to the general situation presented in Section 1.6. Equivalent sources J\ and ATihave
been placed on a surface coinciding with the original scatterer. These sources have been
defined so that

J\ = h x Hi

Kx = Ei x h

(1.105)

(1.106)

where h is the outward normal vector at points on the surface. These sources, radiating
in conjunction with the original source, replicate the original fields E\ and H\ throughout
region 1. Null fields are produced in region 2, allowing us to replace medium 2 with
free space without changing the fields in region 1. Thus, the exterior part of the original
problem of Figure 1.10 is equivalent to the problem of Figure 1.11, which only involves
sources radiating in free snace.

Figure 1.10 Original problem, involving a
homogeneous body.

Source

Figure 1.11 Equivalent exterior problem associated
with Figure 1.10.

To describe the interior problem, a second equivalence relationship must be con-
structed. The equivalent interior problem is depicted in Figure 1.12. Sources J2 and K2 are
defined according to

h = (-*) x H2 (1.107)

where h is still the normal vector pointing into region 1 (out of the scatterer). Radiating
in the absence of the original source, these equivalent sources replicate the original fields
throughout region 2 and produce null fields throughout the entirety of region 1. Since the
region 1 fields vanish, we are free to insert material having /x = fi2 and s = s2 throughout
region 1 in order to convert the problem to one involving infinite, homogeneous space.
Thus, the equivalent interior problem involves sources J2 and K2 radiating in homogeneous
space characterized by permittivity s2 and permeability /x2.

E2

H2

(homogeneous)

eoer

MoMr

Source

" 1

E,

£o
Vo

n

(null fields)

Mo Mo

K2 = E2x (-n) (1.108)

J1 = /7 x Hy

£o £o

KA - E-, x n
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The continuity of the tangential E and H fields at the dielectric interface dictates that

/i=-/2 (1.109)

and

Kx=-K2 (1.110)

Therefore, it suffices to work with J\ and J^I as the primary unknowns to be determined.
Since we have two equivalent problems and two unknown sources, we must employ a system
of two coupled equations. The source-field relationships from Equations (1.38) and (1.39)
can be combined with conditions (1.105)—(1.108) to produce the coupled EFIEs

(^-(VV-ij+ifcjAO-VxF,}
1.7*1 J s +

h x Emc = -K{ -fix —(VV-Ai +k2
lAl)-V x FA (1.111)

0 = ^ - h —(VV • A2 + k{Ai) - V x F2\ (1.112)

where

Ai = /i * — (1.113)
4jrr

FX = K X * - (1.114)

e-jk2r
A 2 = J \ * (1.115)

Anr

F2 = K{*~ (1.116)
Aizr

k\ = co(fii€i)l/2,k2 = co(/ji2e2)
l/2, m = (/zi/£i)1/2,andr?2 = ( ^ M ) 1 7 2 (the subscript on

A and F indicates the medium into which the sources J\ and Ĵ i radiate). Equation (1.111)
is evaluated an infinitesimal distance outside the scatterer surface (5+), while Equation

n

MoAV
eoer

Mo Mr
eoer

E2

H2

J2= -n x H2

(null fields)

- E 2 x n% .Figure 1.12 Equivalent interior problem associ-
atp.H with Fiaurp 1 10

(1.109)

(1.110)

h = - / 2

^ j = -K2

e~J xr

Anr
e~J ]r

Anr
e-jhr

Anr
e~~Jkir

Anr
F2 = ^ i

A 2 = J\ *

Fi = Ĵ i *

A[ = 7i * (1.113)

(1.114)

(1.115)

(1.116)

,1/2,W2\l/21/2
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(1.112) is evaluated an infinitesimal distance inside the surface (S~). As an alternative,
coupled MFIEs are obtained as

h x Hmc = /) - » x j v x A, + V V F ' + ^ i F l j (1.117)

0 = -7,-nx(vxA2 +
7 7-^ + ̂ ) (1.118)

Either of these formulations could be used to represent homogeneous scatterers. The ex-
tension of these equations to treat layered homogeneous regions will be left as an exercise
(Prob. P1.20). In common with the EFIE and MFIE for p.e.c. scatterers, the coupled surface
integral equations do not always guarantee a unique solution (see Chapter 6).

1.10. SURFACE INTEGRAL EQUATION FOR AN APERTURE
IN A CONDUCTING PLANE

Consider the problem of scattering from an aperture in an infinite p.e.c. plane. Figures
1.13 and 1.14 show the geometry. The source is located in region 1. We will develop an
integral equation formulation based on two equivalent problems, representing regions 1 and
2, respectively.

Source *• £,, M, Region 1

/ /
p.e.c. Aperture

Region 2
E2, H2

Figure 1.13 Aperture in an infinite Figure 1.14 Side view of an aperture in an infinite p.e.c. plane,
p.e.c. plane.

An equivalent representation for region 1 can be constructed by placing a mathematical
surface S on the region 1 side of the conducting plane and introducing equivalent sources

Ji=nxHi (1.119)

Ki = Ex x n (1.120)

on S. These sources, radiating together with the original source, will replicate the original
fields in region 1 and create null fields throughout region 2. Although J\ is nonzero over
the entire surface, the tangential electric field vanishes on the p.e.c. part of the plane, and
therefore the magnetic source K\ is nonzero only over the aperture. The fact that ^1 is
confined to the aperture motivates its use as the primary unknown within an integral equation
formulation.

VVF, +k\F\

jk\rji s+
(1.117)

VV • F2+kJF2

jk2m s-
(1.118)V x A2 +0 = — Ji — n x

n

Aperture

E2, H2

p.e.c.
Region 2

(1.119)

(1.120)

J\ = h x H\

K\ — E\ x h
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Since the fields in region 2 of the equivalent problem vanish, we are free to modify
the material present without changing the fields in region 1. Previous examples have em-
ployed this property in order to remove p.e.c. material. In this situation, suppose instead
that we introduce additional p.e.c. material to completely close the aperture and create a
uniform p.e.c. plane. The equivalent problem now involves the original source and the
sources J\ and K\ radiating in front of the infinite conducting plane. As a second step,
the method of images [2, 3, 7] can be employed to remove the p.e.c. plane. The image of
a magnetic current over a perfect electric conductor is the mirror image; the image of an
electric source is the negative mirror image. For tangential sources immediately adjacent
to the plane, the image of the electric source cancels the original, while that of the magnetic
source adds to the original. Thus, application of image theory eliminates the p.e.c. plane
and the electric source J\, leaving only an equivalent magnetic source 2K\ located in the
original aperture. Consequently, the superposition of the original source, the image of the
original source, and an equivalent source 2K\ radiating in free space replicate the original
fields in region 1 (Figure 1.15). These sources produce nonzero fields in region 2 as well,
but these fields differ from the original fields in region 2 and the equivalence only holds for
region 1.

S o u r c e / _ ^> "1 ^ Region 1
i fj 2/C, = 2E^ x n Mathematical surface

Original p.e.c. Original aperture

Figure 1.15 Equivalent problem for region 1 as- \ s

sociated with Figure 1.14. ^ Image of source

An equivalent problem for region 2 can be constructed in a similar manner and is
depicted in Figure 1.16. A mathematical surface is introduced on the region 2 side of the
plane, containing equivalent sources

J2 = (~n)xH2 (1.121)

K2 = E2x {-h) (1.122)

where h is still the normal vector pointing into region 1. These sources replicate the original
fields in region 2 and produce null fields throughout region 1. Again, the aperture can be
closed with p.e.c. material, and image theory can be employed to reduce the problem to one
involving just an equivalent magnetic source 2K2 radiating in free space. This source is
confined to the original aperture and, radiating in the absence of any other source, replicates
the original fields throughout region 2. (The source also produces nonzero fields throughout
region 1 that differ from the original fields in region 1.)

s Original p.e.c. / Original aperture

2K2 = - 2 / ^
Figure 1.16 Equivalent problem for region 2 as-
sociated with Figure 1.14. E2> H2 Region 2
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Because of the continuity of the original tangential electric field through the aperture,
K\ = —K2, and it suffices to work with K\ as the primary unknown. Relationships similar
to Equations (1.117) and (1.118) can be written involving the tangential magnetic field
on either side of the aperture. Combining these two expressions to eliminate the aperture
//-field yields the integral equation

n,H^ = -4nJVV-P + k2p\ (1.123)

where // inc is the field produced by the original source and its image and F is the electric
vector potential produced by K\ radiating in free space. The term Hmc can also be thought
of as the field produced by the original source radiating in the presence of the infinite p. ex.
plane (aperture closed). Equation (1.123) holds in the original aperture and can be solved
in principle to find K\.

1.11. SCATTERING CROSS SECTION CALCULATION
FOR TWO-DIMENSIONAL PROBLEMS

A useful characterization of the scattering properties of an electromagnetic target is given
by the bistatic scattering cross section. This quantity is an equivalent area proportional to
the apparent size of the target in a particular direction (with the apparent size determined
by the amount of power scattered in that direction in response to an excitation that may
be incident from some other direction). More precisely, it is the area that, if multiplied
by the power flux density of the incident field, would yield sufficient power to produce by
isotropic radiation the same intensity in a given direction as that actually produced by the
scatterer. In a two-dimensional problem, the scattering cross section (sometimes known as
the "echo width") can be defined in a similar fashion as an equivalent width proportional to
the apparent size of the scatterer in a particular direction.

Consider the two-dimensional situation involving a TM plane wave of the form

Emc(x, y) = £-/"*(•* cos^+J'sin 0inc) (1.124)

impinging upon an infinite, cylindrical geometry. The only electric field component present
in the problem is Ez. The two-dimensional bistatic scattering cross section can be expressed
as

<*™W,«Ainc) = lim top^f'^ (1.125)
P-^OO \El

z
nc(0,0)\z

where (p, 0) are ordinary polar coordinates. The scattered electric field can be found from
Equation (1.38), which simplifies for the TM polarization to

E'z(x9 y) = -jkrjA, - ^ + ^ L ( U 26)
ox ay

where

Az(x9 y) = jj Jz(x', y')^H^\kR) dx' dy' (1.127)

F(x, y) = jj K(x\ yf)^;H^(kR) dx' dyf (1.128)

VV • F + k2F

JQ)Ho I 5
h x Hinc = -Ah x

rinc

(1.124)£ i n c( j t y) = g-/*;(-ccos0inc+>'sin0inc)

4/

1Az(x,y) = jj Jz{x',y') :Hg\kR) dx dy'(2)/ (1.127)

(1.128)
4/

1 '(2)

| ^ (P,0) | 2

'|Ejnc(0,0)|2
lim

p->oc
lixp3TM(0,0inC)f)inc) =
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and

R = y / ( x - x ' ) 2 + ( y - y ) 2 (1.129)

Since the observation point (x, 3;) is in the far field, it is convenient to work in cylindrical
coordinates, that is,

R = y/(p cos <p - x')2 + (p sin 0 - y')2 (1.130)

which can be rearranged and written as

/ 2 (xf)2 4- (V)2

R = p \ - - (x ' cos0 + / s i n 0 ) + , (1.131)
V p p 2

As /? —» 00, the third expression under the radical is negligible compared to the others and
may be omitted. The approximation

V l + a = 1 + ~a (1.132)

can be used for small a to simplify Equation (1.131) to the "far-field" form

R = p — xfcos<p — y' s in0 as p -> 00 (1.133)

This result can be obtained from a purely geometrical argument, as illustrated in Figure 1.17.
To further simplify the calculation, the large-argument asymptotic form of the Hankel

function

Ho2)(<x) ~ J—e~ja as a -* 00 (1.134)
V not

may be employed. Substituting (1.133) and (1.134) into the previous expressions, we obtain

A ( p 0 ) = _L H-e-JkP ff Jz{x>, y')ejki*'***+y>*n4) dx> dy> ( 1 l 3 5 )

4jV Ttkp JJ

dx dy 4 y nkp

which may be combined with Equation (1.126) to produce

[[(Kycos<p - Kx sin0)^(x 'cos0+y/sin0) dx' dy' (1.136)

O T M ( 0 , 0 i n C ) = ^
k * " 2

ff(rjjz + Kx sin0 - Ky cos0)^ ( j f 'cos0+y sin^} dx' dyf (1.137)

As shown for emphasis, the scattering cross section is a function of the direction of the
incident field and the far-zone observation angle. Although Equation (1.137) contains a
double integral over volume sources defined throughout the scatterer, the integral collapses
in an obvious way to a surface integral if the equivalent sources are confined to surfaces.
For instance, in the special case of a p.e.c. cylinder represented by electric sources, the
scattering cross section is given by

a T M (0 ,0 i n c ) = X I / Jz(t
f)ejk(xit')cos*+y(t>)s'm<l)) dt1 (1.138)

where / is a parametric variable defined along the contour of the cylinder surface.
In a two-dimensional TE problem, the magnetic field has only a ̂ -component. For a

plane-wave excitation of the form
jj-inc/^ ^ _ e~jk(x cos finc+y sin(f>inc) (1.139)

\2

(x')2 + {y')2

P2

2

P
R = PXl

\2.

2

1

2y
7t kp

-e-*AAp,<b)
1

47

j ,tr\eJk{x(t')cQS(j>+y{t')s\n<t)) ^ i
2

kr,2

4
tinc\

-jk(x cos <t>ilK+y sin 0 i n c) (1.139)

2y
-e -j<*

not
rj(2)/_.x ^ as a —> oc (1.134)

(1.135)JZ(X', y')em*'<X**+S™<l» dx< dy>

dFv dFY

3x dy

-k
4 n kp

1L-e~jkp
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Rn = P-xncos(j)-ynsin(l)

ynsin0
*-x

Figure 1.17 Relative path lengths for the far-field
approximation.

the bistatic scattering cross section may be determined from

.T E(^) = lim 2 ^ ( ^ ) | 2
2 (1.140)

The scattered magnetic field can be found from Equation (1.39), which simplifies in the TE
case to

z dx dy
(1.141)

*n

{*m YnL

P.

\0
*X

1

^n

y

XnCOS0^

9

P

(*n> Yn)

\Hs
7(p^)\2

| ^ n c (0 ,0) | 2lim
p-+OQ

Inn^(0,0^)

dAy dAx

dx dy
Hs

z(x,y)
k

Y]

y
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The far-zone approximations from Equations (1.133) and (1.134) may be used to obtain

r)A ?\A —k I 9 i C C
-£---£- = JL\J±-e-to (Jvcos(t> - Jxsm<P)e^x'™*+>'^ dxf dyf (1.142)
dx dy 4 y nkp J J '

Fz(p, 0) = -L lLe-
jkp ff Kz(x\ y')eM*'«x4>+y'™*) dx> dy> (1.143)

4j y nkp J J
Therefore, the scattering cross section is given by

(1.144)CTTE(0, 0inc) - \ Iff (jx sin0 - Jy cos0 - ^ \ eW«**+y'™4>) dx> dy>

The general expressions for ajM and CTTE will be specialized to a variety of specific examples
in the chapters to follow.

1.12. SCATTERING CROSS SECTION CALCULATION
FOR THREE-DIMENSIONAL PROBLEMS

2

CT(0, 0, 6>mc, 0inc) = lim 4 7 1 ^ ; " V " 7 ^ ' l 2 (1.145)

For a three-dimensional geometry where all components of the electric and magnetic field
are present, the bistatic scattering cross section can be expressed for plane-wave incidence as

|£ i nc(0,0)|

In the far zone, the scattered electric field has the form

Es=GEs
e+j>El (1.146)

Since Equation (1.145) involves the expression

| ^ | 2 = | ^ | 2 + | ^ | 2 (1.147)

it is sufficient to compute the 0- and (^-components separately. In the far zone, these can
be obtained from

Es
6 = -jkr]Ae + -^- (1.148)

E^-jkrjA^--^ (1.149)

where the potential functions are defined in Equations (1.42) and (1.43). Because the sources
of the scattered field are often described in Cartesian coordinates, it may be necessary to
transform to the spherical system using

AQ = cos # cos 0 A* H-cos^sin^A^ — sin#Az (1.150)

A0 = — s'm(/)Ax -\-coscj)Ay (1.151)

For three-dimensional analysis, the argument of the Green's function within the vector
potentials is given by

R = y/(x- xf)2 + (v - yf)2 + (z - z')2 (1.152)

After converting the observation point (JC, v, z) to spherical coordinates and grouping terms

nkp

2/dAy dAx —k
4aydx

(Jv cos6 - Jr sm<t>)ejk(x'cos<t>+y>sm<f)) dx' dV (1.142)

(1.143)
27

e~ikp

-jkp
nkp

-e
1

4 / \
FZ(P,<P) KZ(X\ ^V^'cos^+v'sin^) dx, dy,

Kz^

rj
dx dy'jk(x' cos 0+/ sin 0)Jx sin 0 — Jy cos 0 —

4

k
<TTE(0,0 inC)

Es=0Es
e+4>ESt (1.146)

(1.147)|2

E% = -jkrjAe +
dF,

dr

E^ = -jkrjAf -
dFe

dr

(1.148)

(1.149)

(1.150)

(1.151)

AQ = cos 0 cos (j) Ax + cos 6 sin <p Ay — sin 0 Az

A0 = — sincpAx + cos0A}J

(1.152)\2 _ ^2 \2

(1.145)
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according to powers of r, we obtain

I 2 (x')2 + (vO2 + (zf)2

R = rJl - -(xf sinOcos0 + y' sin0 sin0 + z'cos0) + —- ^-y (1.153)

Approximations similar to those employed to derive Equation (1.133) produce the far-field
expression

R = r — jt /sin0cos0 — y'sin#sin0 — z'cosfl (1.154)

It follows that far-field forms of the vector potential functions are

A(r, 0, 0) = t i l fff J(X\ / , z>)ejk(x'sinecos<t>+y' Sin0sin0+z'cos0) ^ dy, ^ ( U 5 5 )

and

/T(r, 0, 0) = t i l HI K{X\ / , z')^(*'»n«co8*+y sinflsin0+z'c««) j y rfy ^ / ( U 5 f i )

Consequently, the scattering cross section can be written as

a(6>, 0, ^inc, 0inc) = cre(0, <p) + cr^O, $) (1.157)

where

ae{9,(j>) = — / / / (riJxCosOcoscj) + *7/>- cos^ sin</> - ^7Z sin^

- ^ sin0 + Kycos<P)ejkix'™ecos*+y'™esm*+z'cose) dx' dy' dZ
f * (1.158)

or0(6>,0) = *1
4^ / / / ( - " y '

sin <p -\-r\Jy cos 0 + ^ cos 0 cos 0

+ATy cos(9 s in0 - KZ sino)eJi<(x'™oc<»4>+y'™esin*+z!e0*e) dx> dy> dj, (1.159)

and where we have assumed that the magnitude of the incident electric field is unity. Equa-
tions (1.158) and (1.159) are written in terms of triple integrals over volume sources; as in
the two-dimensional case the integrals collapse to surface integrals in an obvious way if the
equivalent sources are confined to surfaces.

As shown for emphasis in Equation (1.157), a is a function of the direction of the
incident field and the far-zone observation angle. The bistatic scattering cross section is
also a function of the polarization of the incident wave. To explicitly characterize the
scatterer as a function of polarization, the scattering cross section data can be obtained for
two orthogonal polarizations and arranged in the form of a scattering matrix such as

= [ °ee °H 1 (1.160)

The entries of this 2 x 2 matrix remain a function of the direction of the incident field and
the far-zone observation angle.

Although preceding sections of this chapter have dealt exclusively with scattering problems,
it is important to note that most antenna radiation problems can be analyzed using identi-
cal techniques. To illustrate the connection between scattering formulations and antenna

(x'V + {yrr + UT
r2 (1.153)

r

2
II-R = rv -{xf sin0 cos0 H- / s in# sin0 + z'cos#) +

R = r — x' sin 6 cos 0 — yf sin 9 sin 0 — z cos 6

A(r,0,0) =
e-)

kr

4nr
J(x', y\ z')eJk<k(x' sin 9 cos <j>+y' sin 0 sin 0+z' cos 0)} dx' dy' dz' (1.155)

(1.154)

4TT

k2

M0,0) = (r}Jx cos 0 cos $ + rjjy cos 0 sin 0 - r\Jz sin#

-Kx Sin0 + ^cos</,)^^sin^cos0+/sin^in0+Z'cos0) ^ dy, ^
2

4n

k2

<y<t)G &<j><t>

Gee 000E :

1.13 APPLICATION TO ANTENNA ANALYSIS
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analysis in detail, consider a monopole antenna of radius a and height L/2 radiating over a
p.e.c. ground plane (Figure 1.18). The monopole is coincident with the z-axis of a cylindrical
coordinate system and is fed by a coaxial transmission line with outer radius b. The ground
plane is located at z = 0, and for simplicity we assume that the aperture of the transmission
line contains only a transverse electromagnetic mode with electric field distribution

E(p,<p) = p- (1.161)
p\n(b/a)

Following the procedure discussed in Section 1.10, we introduce an equivalent magnetic
current density defined at the transmission line aperture. The method of images is used to
remove the ground plane, leaving a dipole antenna of length L (Figure 1.19) illuminated by
a "magnetic frill" source that can be expressed by the volume current density

K(p,<t>,z) = -4> .2f° D(p;a,b)S(z) (1.162)
p\n(b/a)

where the pulse function

p(p;a,b) —
1 a < p < b
0 otherwise (1.163)

serves as a window to identify the original aperture location. The equivalent dipole produces
the same fields in the upper half space as the original monopole.

Outer radius
of coax

= b

Radius = a
Length = L

Figure 1.18 Monopole antenna radiating over a p.e.c. ground plane. Figure 1.19 Equivalent problem
of a dipole fed by a magnetic frill
source.

At this point in the development, the problem is that of a p.e.c. scatterer (the dipole)
illuminated by an incident field (produced by the magnetic frill source). The electric field
produced by a frill source is the topic of Prob. PI. 17, and the z-component of the incident

Radius = a

Height = |
p.e.c.

p.e.c.
ground
plane "Frill feed"

K
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field produced on the surface of the monopole is

where R\ and R^ are defined in Prob. PI. 17. Thus, the antenna currents can be determined
from a surface integral equation, as discussed in Section 1.7. (A specific EFIE for the dipole
antenna will be presented in Chapter 8.)

In general, the primary difference between antenna analysis and the scattering for-
mulations considered earlier is that the primary source in an antenna geometry is located
immediately adjacent to the scatterer, rather than an infinite distance away. In fact, antennas
actually function by scattering the energy emitted by the primary feed. For instance, the
arms of the dipole in Figure 1.19 scatter (or focus) the energy radiated by the magnetic frill
source in order to produce the characteristic dipole radiation pattern. Yagi antennas contain
parasitic elements that clearly act as scatterers to enhance the radiation pattern. Reflector
antennas focus the energy from a primary feed horn to achieve a narrow radiation beam.
Almost all types of antennas can be thought of as scatterers and posed in terms of differential
equation or integral equation formulations.

1.14 SUMMARY

Chapter 1 has reviewed concepts from electromagnetic theory that play an important role in
the numerical procedures of interest. Of particular importance are the source-field relations
summarized in Section 1.4 and the equivalence principles presented in Sections 1.2 and 1.6.
These ideas are central to the formulation of integral equations for scatterers or antennas.

Integral equations for conducting bodies, penetrable bodies, and aperture problems
have been developed in Sections 1.7-1.10. These equations will be specialized to a variety
of situations in the chapters to follow. For instance, Chapter 2 considers integral equation
formulations for two-dimensional (infinite cylinder) geometries. Differential equations
have also been presented and will provide the foundation for alternate numerical solution
methods. Chapter 3 presents several ways of using the scalar Helmholtz equation to treat
two-dimensional open-region geometries. Subsequent chapters extend these procedures to
three dimensions and to a variety of other situations.
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PROBLEMS

Pl.l (a) Derive Equations (1.13) and (1.14).
(b) In a homogeneous region with er = 1 and//,. = 1, containing electric and magnetic

sources J and K, respectively, Equations (1.1) and (1.2) become

V x E = -JCOIAQH - K V x H = ja)s0E + J

Under these conditions, show that the equivalent curl-curl equation for E can be
obtained as

VxVxE-k2E = -JCOHQJ - V x K

Find the corresponding equation for H.

PI.2 Repeat Prob. Pl.l (a) for the case where er and [ir are replaced by tensors to represent
anisotropic material.

P1.3 Under the assumption that the fields in some region do not depend on z, show (using
Maxwell's equations) that the field components Ez, Hx, and Hy (the TM part) are
completely independent from Hz, Ex, and Ey (the TE part).

PI.4 (a) Under the assumption that the z-dependence of the electric field is e~jyz, show that
the z-component of Equation (1.13) can be expressed as

V, • (— S/tEz) + k2erEz - — y2Ez - jyVt (— ) • erEt

where V, is the transverse part of the operator, for instance,

dx dy

1

,Mr
+ k2srEz

1

flr

-Y2Ez-jyVt
1

^r£r

I -erEtV , - I

,dE7 ,dE7

dx dy
VtEz

V x E = -ja)ji0H - K V x H = JCOSQE + J

VxVxE-k2E = -jcofioJ - V x K
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(b) Using duality (Table 1.1), write down the analogous equation involving the magnetic
field H.

(c) In certain cases, the ^-component of the vector Helmholtz equation can be used
instead of the complete vector Helmholtz equation to produce a solution. In general,
this occurs whenever the z-components of the field decouple from the transverse
components, so that the equations in (a) and (b) coincide with the scalar Helmholtz
equations in (1.15) and (1.16). Identify two situations where the equations obtained
in (a) and (b) constitute a sufficient description of the fields Ez and Hz. {Hint:
Obviously, the case y = 0 is one answer. What is the other situation?)

(d) What is the physical interpretation of zero yl Of nonzero yl

P1.5 (TM-TE Decomposition) In a homogeneous region with fields having z-dependence
e~jvz, show that the transverse-to-z field components can be expressed as a function of
the z-components according to

Et = k2_ 2 (-jyVtEz + j<oii& x VtHz)

**' = Ti 2 (~> £ o£ x VtEz - jyVtHz)
k2 — y2 v '

P1.6 (a) Assuming that er is sufficiently differentiate, derive Equation (1.23) using the
identity

2-a)--®'*
(b) At a jump discontinuity in the permittivity, the normal component of E must behave

according to Equation (1.11), that is,

(1) 0 = E^E™ - S^E™

In the equivalent problem constructed by replacing the dielectric material with
induced sources J and pe, the proper behavior at the location of the original dielectric
interface is

(2) pes = eoE™* - eQE™

where pes represents a surface charge density, and the normal direction points from
region 2 into region 1. Demonstrate that Equation (1.23) is consistent with (1) and
(2) and therefore produces the proper surface charge density at an interface when
the permittivity has a jump discontinuity. Because of the generalized function
interpretation of (1.23), the volume charge density in that equation will appear as a
Dirac delta function in the three-dimensional space in order to represent a surface
charge density.

P1.7 (a) Consider the subsectional "triangle" function

JC + A

'(*) =
A

A-x

- A < x < 0

0 < * < A
A
0 otherwise

Show that the second derivative with respect to x is

'"(*) = T 4 = -TS(X + A) ~ T8M + T<5(* ~ A)dx2 A A A

Sketch /, r', and t".

1

k2-y2Et

Ht

1

k2-y2 (~jo)£0z x VtEz - jyVtHz

{-jyVtEz + jiofioz x VtHz

Pes — £()£<i — SQC'2(2)

(1) 0 = £oei^r-^2^2n0r

d2t

dx2
t\x)

1
S(x + A) •

2
A

1

A
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(b) A "sinusoidal triangle" function can be defined

sin(ih; +*A)

s(x) =
sin(fcA)

sin(/:A - kx)

- A < x < 0

. n ^ 0<x < A
sin(/cA)

0 otherwise

Show that

d2s

dx2

k 2kcos(kA) k
= -T-T-T^A- + A) . „ '*(*) + -r-^-TzSi* - A)

sin(fcA) sin(fcA) sm(kA)
PI.8 (a) In a homogeneous medium, use Maxwell's equations

V x E = -j(OfjL0H - K V x H = jcoe0E + J

V • (s0E) =pe V • bi0H) = pm

to derive the equations of continuity

V • / = - y wpe V • K = -jcopm

(b) Using the preceding results and the vector Laplacian

V2A = V(V- A)- V x V x A

derive Equations (1.31) and (1.32).

P1.9 Show that the three-dimensional Green's function
e~jkr

Anr

satisfies the scalar Helmholtz equation

V2G+/:2G = -S(r)

(Hint: The calculation for r ^ 0 is straightforward. In the vicinity of r = 0 , integrate
the equation throughout a sphere of radius r, and use the divergence theorem to obtain

HLwvGdv=iis VGrds = -\

as r -> 0.)

P1.10 A subsectional "pulse" function can be defined as

A
/ A A \ f 1 ~^<x<$

V £6/ [ o otherwise

Show that the convolution

/ A A\ / A A\
p\x;-r-2)*p\x>-rV

= / p l x - x ; - \ dx
Jx'=-A/2 \ 1 1 /c'=-A/2

= At(x)

where /(JC) is the subsectional triangle function defined in Prob. PI.7.

sin(fcA)

d2s

•<5(JC - A )
k

sin(^A)sin(fcA)

2A:cos(A:A)
~8(x)k

sin(A:A)
Kx + A)

4nr

e~jkr

V2G+k2G = -S(r)

V • / = -jcope V • K = -jcopm

V • (s0E) =pe V • (/xo#) = pm

V x E = -jcofjL0H - K V x H = j(oe0E + J

2 2,

A A \

2 2

2 ' 2P\

2 ' 2

A A\
2 2

otherwise

V2A = V(V- A ) - V x V x A

k2s(x)

G
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PI.11 The potential functions in Equations (1.48) and (1.49) satisfy the Lorentz gauge condi-
tions

V • A = -ja)£0<t>e V • F = -ja>}io<$>m

Using these conditions, substitute (1.48) and (1.49) into Maxwell's equations to show
that A, F, <Pe, and <$m can be decoupled from one another to produce

V2A+k2A = ~J V2F + k2F = -K

V2<$>e+k2®e - - — V24>ffl +k2®m = -EaL
£0 Mo

P1.12 Using properties of the Fourier transform integral (see, e.g., Chapter 7), demonstrate that
differentiation and convolution operations commute. Specifically, for two differentiable
functions a(x) and b(x), show that

^-[a(x) * b(x)] =^* b{x) = a(x) * ^
dx dx dx

This concept provides an alternative way of deriving Equations (1.52) and (1.53).
PI.13 A rectangular waveguide of dimension a x b radiates through an aperture in an infinite

p.e.c. ground plane into the half-space z > 0. Assume that the only fields present in the
aperture are those associated with the TEi0 mode.

(a) Identify equivalent surface currents located at z — 0+ that, radiating in the presence
of an infinite ground plane (no aperture) at z = 0, reproduce the fields in the region
z > 0. (Give an explicit expression for Js and Ks in the location of the original
aperture, and comment on their values away from the aperture.)

(b) Use the method of images to remove the p.e.c. ground plane and provide expressions
for the equivalent surface currents that, radiating in free space, reproduce the z > 0
fields. (Hint: The image of a magnetic current over a p.e.c. is the mirror image,
while the image of an electric source is the negative mirror image.)

PI.14 Repeat PI. 13 for the fields of the TEn mode in the aperture of a circular waveguide
having radius a, radiating in the presence of an infinite p.e.c. ground plane.

P1.15 Section 1.4 presents several alternative expressions for the fields produced by sources.
In particular, given an equivalent source density / radiating in free space, the following
are just three of the possible formulas:

(«) E' = I I ^ A
j(D£

(b) Es = -jcofiA - VO,

/ y V • +k2 -\
(C) £' = (-_—J\*G

\ jus )
where A, <t>e, and G are defined in Section 1.4. For the case in which / is a sphere of
uniform current density, that is,

J(r, 6, (p) = xp(r; 0, a) = JC I \ r ^ U .
^ l } [ 0 otherwise

the electric field at the center of the sphere has been obtained using dyadic Green's
functions (D. E. Livesay and K. M. Chen, IEEE Trans. Microwave Theory Tech., vol.
MTT-22, Dec. 1974) in the form

£ J(0,0,0) = jc-r-^fl - 1*-Jka<
J(i)£

9m

Mo
V20>ffl+/:2cDm-EL

£o

dx

da db
dx

d

dx

' V V • + *
JO)£

J

vv • +k
A

j(i)£

1 r < a
J(r,6,<p) =xp(r;0,a) =x

V • A = -ja)£0<t>e V • F = -ja>no&m

* G

(}+jka)]

(a)

(b)

(c)

ES :

Es

Es

—]U)\JLA — V O e
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(a) Derive this result using Equation (c) above. [Hint: You should obtain

V- J = -Jr(G,<p)8(r -a) = -s in0cos05(r -a)
x • (VV • J) = -8'(r - a) sin2 0 cos2 0 - &f& (cos2 6 cos2 0 + sin2 0)

as intermediate results.]
(b) Why is it difficult to derive the result using Equations (a) or (b)? Explain.

PI.16 The current density along a thin linear center-fed dipole antenna of length 2A is often
approximated by a sinusoidal function with support confined to the dipole axis. If
written in terms of a volume current, this function has the form

J(p,z) = zlos(z)8(p)

where s is the sinusoidal triangle function defined in Prob. PI .7. Following a procedure
similar to that employed in Prob. PI. 15, find the z-component of the electric field at a
general location (p, 0, z) produced by this current density in free space.

PI.17 The magnetic current density

K(p,z)=4> ~], ^P(p;a,b)8(z)p\n(b/a)

obtained from the aperture transverse electromagnetic field of an open-ended coaxial
cable is often used as a "magnetic frill" feed model for a dipole antenna. Using Equation
(1.52), show that the z-component of the electric field produced by this magnetic current
density radiating in free space can be expressed as

r2n1 f2n /e-jkR] e-jkR2\

\n(b/a) J0I=A

where
Ri = Jz2 + p2 + a2 -2pacos(p'

and

R2 = yjz2 + p2 + b2 - 2pb cos 0 ;

PI.18 The surface integral equations for p.e.c. scatterers, (1.96) and (1.97), are readily spe-
cialized to the two-dimensional case using

A(t) = J J(t')^H(2) ( W t * ( 0 - * ( O ] 2 + [>'(0-;y(f')]2) dt'

(a) For the TM polarization, identify the components of E, H, and J present and write
down a scalar form of the EFIE.

(b) Repeat part (a) for the TE case, producing a scalar form of the MFIE.

P1.19 Equations (1.96) and (1.97) are obtained using the tangential-field boundary conditions
h x E — 0 andw x H = Js on the scatterer surface. Similar relationships obtained from
the normal-field boundary conditions h- E — ps/£Q and h • H — 0 can be expressed as

SQ [ JCDEQ

n-Hinc = -h- {V x A}s+

Are these valid equations? Can they be used instead of (1.96) and/or (1.97)? Discuss
their possible utility for both two-dimensional and three-dimensional problems.

P1.20 Figure 1.20 depicts a layered dielectric scatterer illuminated by an incident wave. We
wish to extend the procedure of Section 1.9 in order to produce a system of coupled
surface integral equations describing this problem.

S(r-a) ,
r

1 (e-]kR\ e-jkR2^

47T/?i 4JTR2

d$

1

47
rjQ)Ht')A{t)

is

VV • +k2

~A

s+JCOEQ

. P*
£0

- h -h • £ i n c

h • Hlnc -n.{VxA}s+

j

p\n(b/a)
-p(p;a,b)8(z)K(p,z)=4>

Ez(p,(p,z)
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(a) By introducing equivalent sources (J\, K\) on S\ and (J2, K2) on S2, identify three
equivalent problems involving sources radiating in homogeneous space that repro-
duce the original fields in region A, region B, and the exterior of the scatterer.

(b) For each equivalent problem in (a), construct a surface EFIE. Develop a notation
that clearly indicates the medium employed within each equation, the surface over
which each integral is evaluated, and the surface on which each equation is enforced.
(Hint: Use four surfaces: S+, Sf, 52

+, and 52~.)

Figure 1.20 Layered dielectric scatterer (for
Prob. PI.20).

P1.21 (a) Specialize the two-dimensional form of Equations (1.38) and (1.39) in order to
obtain formulas valid in the far field of the sources J and K. Retain only the
dominant-order terms as p -» oo.

(b) Repeat part (a) for the three-dimensional situation.

P1.22 A wave having the form of Equation (1.124) produces scattered fields E'[ (0) and H^ (0)
on a circular boundary of radius a enclosing a two-dimensional obstacle. Express the
two-dimensional scattering cross section OTMO/0 in terms of an integral over Es

z and H£

on the circular contour.

P1.23 Repeat Prob. PI.22 for the three-dimensional case by obtaining an expression for the
scattering cross section in the form of an integral over tangential electric fields on the
surface of a sphere of radius a.

P1.24 Exterior to the circular contour defined in Prob. PI.22, Es
z can be written as a Fourier

series of the form

£*(p,</>) = ] T r"AnHf>(kp)eJ"i>

where

An =
1 fin

• / El(a,<P')e~jn<f> d4>'
1 Jd>'=02jrj-"Hi2\ka) h'-

and where Hn denotes the rcth-order Hankel function. Using the asymptotic approxi-
mation

to simplify your result, find an expression for the two-dimensional scattering cross
section OTM as a function of the coefficients {An}.

£B
S2 S^

?A

i E inc

£0

n = -oo

,jn<t>

£ > , 0 > ~ ^ d<j)r
r>2n

V ..jne-jkp
nkp

H?\kp) »

E:(P,4>)
oo

E r"."AnH^(kp)e

2JTJ~" H,l2\ka) .


