
Theory of AFC Synchronization5

WOLF J. GRUENf, MEMBER, IRE

Summary—The general solution for the important design param-
eters of an automatic frequency and phase-control system is pre-
sented. These parameters include the transient response, frequency
response and noise bandwidth of the system, as well as the hold-in
range and pull-in range of synchronization.

I. INTRODUCTION

AUTOMATIC FREQUENCY and phase-control
/ - \ systems have been used for a number of years

-*• -*-*• for the horizontal-sweep synchronization in tele-
vision receivers, and more recently have found applica-
tion for the synchronization of the color subcarrier in
the proposed NTSC color-television system. A block
diagram of a general AFC system is shown in Fig. 1.

D F P- c 0

<?2 can be written

ex « Ei cos fa (1)

and

<?2 = JE2 sin 02. (2)

<fo and 02 are functions of time and, for reasons of sim-
plicity in the later development, it is arbitrarily assumed
that 0i and 0 2 are in quadrature when the system is per-
fectly synchronized, that is when 0i=02.

Fig. 1—Block diagram of A.F.C. loop.

The phase of the transmitted synchronizing signal 61 is
compared to the phase of a local oscillator signal e% in a
phase discriminator D. The resulting discriminator out-
put voltage is proportional to the phase difference of the
two signals, and is fed through a control network F to a
frequency-control stage C. This stage controls the fre-
quency and phase of a local oscillator O in accordance
with the synchronizing information, thereby keeping
the two signals in perfect synchronism. Although in
practice the transmitted reference signal is often pulsed
and the oscillator comparison voltage non-sinusoidal,
the analysis is carried out for sinusoidal signal voltages.
The theory, however, can be extended for a particular
problem by writing the applied voltages in terms of a
Fourier series instead of the simple sine function. An
AFC system is essentially a servomechanism, and the
notation that will be used is the one followed by many
workers in this field. An attempt will be made to present
the response characteristics in dimensionless form in
order to obtain a universal plot of the response curves.

II. DERIVATION OF THE BASIC EQUATION

If it is assumed that the discriminator is a balanced
phase detector composed of peak-detecting diodes, the
discriminator-output voltage can be derived from the
vector diagram in Fig. 2. For sinusoidal variation with
time, the synchronizing signal t\ and the reference signal

* Decimal classification: R583.5. Original manuscript received
by the Institute, August 21, 1952; revised manuscript received Feb-
ruary 25, 1953.

t General Electric Co., Syracuse, N, Y.

Fig. 2—Discriminator vector diagram.

While one of the discriminator diodes is fed with the
sum of d and 02/2, the other is fed with the difference
of these two vectors as shown in Fig. 2. The resulting
rectified voltages Eai and Ed2 can be established by
simple trigonometric relations. Defining a difference
phase

0 BS fa - 02, (3)

(4)

(5)

one obtains

and

£<«* = E,H

+ - *

- £ 1 E 2

sin

sin

The discriminator output voltage e<* is equal to the dif-

Reprinted with permission from Proc. of IRE, W. J. Gruen, "Theory of AFC Synchronization," pp. 1043-1048,
August 1953. © Institution of Electrical Engineers.
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ference of the two rectified voltages, so that

2EXE2
ed = Edi — Ed2 =

Edl + Ed2
s i n <j>. (6)

If the amplitude Ex of the synchronizing signal is larger
than the amplitude E2 of the reference signal, one ob-
tains

Edl + Ed2 s 2EX. (7)

The discriminator output voltage then becomes

ed = E2 sin <j> (8)

and is independent of the amplitude E\ of the synchro-
nizing signal. As 4>x and <t>2 are time-varying parameters,
it should be kept in mind that the discriminator time
constant ought to be shorter than the reciprocal of the
highest difference frequency dfy/dt, which is of impor-
tance for the operation of the system.

Denoting the transfer function of the control net-
work F as F(p), the oscillator control voltage becomes

ec = F(p)E2 sin <t>. (9)

Assuming furthermore that the oscillator has a linear-
control characteristic of a slope S, and that the free-
running oscillator frequency is <o0, the actual oscillator
frequency in operational notation becomes

P<t>2 - u>o + Sec. (10)

Substituting (3) and (9) into (10) then gives

p4> + SEzFip) sin <f> - p<j>x - w0. (11)

The product SE2 repeats itself throughout this paper
and shall be defined as the gain constant

K a SE2. (12)

K represents the maximum frequency shift at the out-
put of the system per radian phase shift at the input.
It has the dimension of radians/second.

Equation (11) can be simplified further by measuring
the phase angles in a coordinate system which moves at
the free-running speed G)Q of the local oscillator. One
obtains

p<t>+F(p)K sin <t> = p4>x (13)

This equation represents the general differential equa-
tion of the AFC feedback loop. p<f> is the instantaneous-
difference frequency between the synchronizing signal
and the controlled-oscillator signal and p<t>x is the in-
stantaneous-difference frequency between the syn-
chronizing signal and the free-running oscillator signal.

Equation (13) shows that all AFC systems with
identical gain constants K and unity d.c. gain through
the control network have the same steady-state solu-
tion, provided that the difference frequency p$x is con-
stant. If this difference frequency is defined as

the steady-state solution is

Aw
sin* = - (15)

This means the system has a steady-state phase error
which is proportional to the initial detuning Aco and
inversely proportional to the gain constant K. Since the
maximum value of sin <£ in (15) is ± 1 , the system will
hold synchronism over a frequency range

| AcOHold-in I ^ K. (16)

Equations (15) and (16) thus define the static perform-
ance limit of the system.

III. LINEAR ANALYSIS

An AFC system, once it is synchronized, behaves like
a low-pass filter. To study its performance it is per-
missible, for practical signal-to-noise ratios, to sub-
stitute the angle for the sine function in (13). Then, with
the definition of (3), one obtains

pit + KF(p)fo = KF(p)4>i. (17)

This equation relates the output phase 02 of the syn-
chronized system to the input phase <j>x. It permits an
evaluation of the behavior of the system to small dis-
turbances of the input phase, if the transfer function
F(p) of the control network is specified.

a. F{p) = l

This is the simplest possible AFC system, and repre-
sents a direct connection between the discriminator out-
put and the oscillator control stage. Equation (17) then
becomes

p<f)2 + K<t>2 = K<l>x. (18)

If the initial detuning is zero, the transient response of
the system to a sudden step of input phase |$i) is

(0 = 1 - <rKl. (19)

Likewise, the frequency response of the system to a
sine-wave modulation of the input phase is

4>2

9i

1

03
(20)

The simple AFC system thus behaves like an RC-filter
and has a cut-off frequency of

coc = K [radians/sec]. (21)

A w == p4>i = &>i wo, (14)

George1 has shown that the m.s. phase error of the
system under the influence of random interference is
proportional to the noise bandwidth, which is defined as

1 T. S. George, "Synchronizing systems for dot interlaced color
TV," PROC. I.R.E.; February, 1951.

44



f+" <fo 2 and
J5 = I — (jo>) fa. (22)

2 f c o n s — + £ — . (26)
The integration has to be carried out from — oo to + oo T 2 r2

since the noise components on both sides of the carrier . . - e , t ,
A A i 4. J T 4.- /on\ • * mn\ 4.u • 1,4 w» 1S ^ e resonance frequency of the system in the ab-are d e m o d u l a t e d . Inser t ing (20) i n t o (22) t h e n y i e l d s r , ^ i • .̂ \* £ ± i& sence of any damping, and f is the ratio of actual-to-

B - vK [radians/sec]. (23) critical damping. In terms of the new parameters the
time constants of the control network are

It was shown in (IS) that for small steady-state
phase errors due to average frequency drift, the gain = V 1_
constant K has to be made as large as possible, while l

 Wn K (27)
now for good noise immunity, i.e., narrow bandwidth,
the gain constant has to be made as small as possible. A a

proper compromise of gain then must be found to insure K
adequate performance of the system for all require- r2 ~ ~ * (28)
ments. This difficulty, however, can be overcome by the
use of a more elaborate control network. With these definitions (24) becomes

* at * p2fa + 2 f 0 ) n ^ 2 + O3n24>2
—M/V-r • —t-WW—i • / ix

< R| L-II - ( 2J*. - — ) pfa + «.^i. (29)

T c The transient response of the system to a sudden step
% * • • I • of {npU|- phase |< î| is found by integration of (29) and

( Q ) (\)\ the initial condition for the oscillator frequency is ob-
tained from (10). The transient response then is

r, « a,c r, = f\c,
ti*(Ri*R»)C Ti-RtC^Ci) T—r(0 » 1 ~ *-*-Tcos VI - f2wn/

C^ " • * * » • - - ^ i s i n V r ^ ^ . (30)
Fig. 3—Proportional plus integral control networks. V * i J

j i T A For f <1 the system is underdamped (oscillatory), for
6. F(p) — f = 1 critically damped and for f > 1 overdamped (non-

* *•" T2^ oscillatory). In order to avoid sluggishness of the sys-
tem, a rule of thumb may be followed making. 4 < f < 1 !.

Networks of this type are called proportional-plus T h e t r a n s i e n t response of (30) can be plotted in dimen-
integral-control networks8 and typical network con- s i o n i e s s f o r m i f c e r t ain specifications are made for the
figurations are shown in Fig. 3. Inserting the above r a t i o Un/K A s t h e t i m e c o n s t a n t T l o f t h e control net-
transfer function into (17) yields w o r k m u s t b e p o s i t i V e or can at most be equal to zero,

( I x rr the maximum value for un/K is found from (27), yielding

Tj Ti ^ - 2 f . (31)
Ti K K max

** K — p4>x + — * i . (24)
72 Tz In this case the control network is reduced to a single

* 1 and <f>2 are again relative phase angles, measured in a time constant network (n = 0). On the other hand, if
coordinate system which moves at the free-running for a fixed value of wn the gain of the system is in-
speed of the local oscillator. To integrate (24), it is con- creased towards infinity, the minimum value for un/K
venient to introduce the following parameters becomes

- -2 -^ ( " ) f^^0' (32)
• G. S. Brown and D. P. Campbell, "Principles of Servomecha- F ^ * s h o w s ** transient response of the system for

nisms," John Wiley & Sons Publishing Co., New York, N. Y.; 1948. these two limits and for a damping ratio ot $ = 0.5.
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Fig. 4—Transient response for f = 0.5. Fig. 5—Frequency response for J* = 0.5.

The frequency response of the system is readily found ~ „ , r / c r - . ... . , , . , , l L ^
/«j\ i L • For small values of con/i£, it is readily established that

from (24) and one obtains , , . , . . , v A - „ ALv y this expression has a minimum when f = 0.5. Hence, the
1 + j2f — ( 1 —) noise bandwidths for the limit values of o)n/K and f = 0.5

*2 w n \ 2fif/ become
— 0^) ~ * (33)
*x ! + ^J- — - (—Y B I <-/*)-» * TO« = ^^ Mians/sec] (37)

"» V w n / and
Its magnitude is plotted in Fig. 5 for the two limit , r ,
values of con/X and for a damping ratio J—0.5. The B\ ^K^° " 27rco» Mians/secJ. (38)
curves show that the cut-off frequency of the system, The above derivations, as well as the response curves
for f = 0.5, is approximately of Figs. 4 and 5, show that the bandwidth and the gain

o)o ^ wn [radians/sec.]. (34) constant of the system can be adjusted independently if
„ , j * • /9*\ J ,. u *.u - A a double time-constant control network is employed.
If <f>i and 4>2 in (33) are assumed to be the input and
output voltage of a four-terminal low-pass filter, the c% Example
frequency response leads to the equivalent circuit of T L l L . , . .„ . ^ . , .
p. , The theory is best illustrated by means of an exam-

' pie. Suppose an AFC system is to be designed, having

t OflTir^ a stea<3y state phase error of not more than 3° and a
I 1 _ a noise bandwidth of 1,000 cps. The local oscillator drift

< ^ * K L C = a ) « shall be assumed with 1,500 cps.
^ ^ ^ required gain constant is obtained from (15),

®*n ^ RC = —5— yielding
1 6 O ( i * ^ n Aw 2TT-1,500

C JL r , , iT « = » 180,000 radians/sec.
T a - ^ ^ sin<^ sin 3°

• • ^ Since K is large in comparison to the required band-
Fig. 6—Equivalent low-pass filter. width, the resonance frequency of the system is estab-

p̂, . , , . . . £ ., . . . u . . , , u lished from (38).
The noise bandwidth of the system is established by

inserting (33) into (22) and one obtains B 2TT-1,000
Wn = — = s 1 000 radians/sec.

/ c u \ 2 T wn "I2 2TT 2TT
1 + 4 f 2 ( — ) 1 -

f +0° \cow/ L 2fKj /a>\ The two time constants of the control network, as-
°)nJ_O0 / w \ 2 / w \ 4 \Wn/ suming a damping ratio of 0.5, are determined from

1 - (2 - 4f2) {— J - [—J (27) and (28) respectively
The integration, which can be carried out by partial r — — rsj JQ-I s e c

fractions with the help of tables, yields wn K 1,000 180,000 ~

4r»-4f^+f-Y+i and

JC \K/ K 180,000
J5 ». T0} (36) r s» == = 0.18 sec.
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These values K, n , and r^ completely define the AFC
system. A proper choice of gain distribution and control-
network impedance still has to be made to fit a par-
ticular design. For example, if the peak amplitude of the
sinusoidal oscillator reference voltage is E2 = 6 volts,
the sensitivity of the oscillator control stage must be
5 = 30,000 radians/sec/volt to provide the necessary
gain constant of 180,000 radians/sec. Furthermore, if
the capacitor C for the control network of Fig. 3(a)
is assumed to be 0.22 uft the resistors i?i and i?2 be-
come 4.7 kft and 820 kfl respectively, to yield the desired
time constants.

IV. NON-LINEAR ANALYSIS

While it was permissible to assume small phase angles
for the study of the synchronized system, thereby lin-
earizing the differential (13), this simplification cannot
be made for the evaluation of the pull-in performance of
the system. The pull-in range of synchronization is de-
fined as the range of difference frequencies, pfa, be-
tween the input signal and the free-running oscillator
signal, over which the system can reach synchronism.
Since the difference phase <f> can vary over many radians
during pull-in, it is necessary to integrate the nonlinear
equation to establish the limit of synchronization.

Assuming that the frequency of the input signal is
constant as defined by (14), (13) can be written

P<t> + HP)K sin <f> = Aw. (39)

Mathematically then, the pull-in range of synchroniza-
tion is the maximum value of Aw for which, irrespective
of the initial condition of the system, the phase differ-
ence <f> reaches a steady state value. To solve (39), the
transfer function of the control network again must be
defined.

a. F(p) - 1

The pull-in performance for this case has been treated
in detail by Labin.8 With F(p) = 1 (39) can be integrated
by separation of the variables and it is readily found
that the system synchronizes for all values of | Aw| <K.
The condition for pull-in then is

Aw Pull-ia < K. (40)

Large pull-in range and narrow-noise bandwidth thus
are incompatible requirements for this system.

b. F{p) =
1 + np
1 + T2p

Inserting this transfer function into (39) and carrying
out the differentiation yields

d2<t>

~dP

f l n -\d<t> K Aw
+ — + K— cos * -f + — sin * (41)

L.T2 r2 J at r 2 r 2

* Edouard Labin, "Theorie de la synchronization par controle de
phaie," Philips Res. Rep.t (in French); August, 1941.

This equation can be simplified by inserting the co-
efficients defined in (25) and (26), and by dividing the
resulting equation by wn

a. This leads to the dimension-
less equation.

AGJ
+ sin 4, = — • (42)

A further simplification is possible by defining a di-
mensionless difference frequency

d<t>
y^—r (43)

wndt

and one obtains a first order differential equation from
which the dimensionless time CJJ has been eliminated.
It follows

Ao>
sin 4)

dy K w» / wA
— « - (2f - — ) cos 0. (44)
d<f> y K \ * K) V ^ '

There is presently no analytical method available to
solve this equation. However, the equation completely
defines the slope of the solution curve y(4>) at all points
of a $ —y plane, except for the points of stable and un-
stable equilibrium, y ~ 0 ; A«/2C = sin <f>. The limit of
synchronization can thus be found graphically by
starting the system with an infinitestimal velocity Ay
at a point of unstable equilibrium, y = 0; <£=7r—sin""1

Aa)/K, and finding the value of Aco/K for which the solu-
tion curve just reaches the next point of unstable equi-
librium located at;y-0;# = 37r—sirrlAo)/K.The method
is discussed by Stoker4 and has been used by Tellier and
Preston6 to find the pull-in range for a single time con-
stant AFC system.

To establish the limit curve of synchronization for
given values of f and o)n/K, a number of solution curves
have to be plotted with Aco/iC as parameter. The limit
of pull-in range in terms of Aco/K then can be inter-
polated to any desired degree of accuracy. The result,
obtained in this manner, is shown in the dimensionless
graph of Fig. 7, where Aca/K is plotted as a function of
G)n/K for a damping ratio f = 0.5. Since this curve repre-
sents the stability limit of synchronization for the sys-
tem, the time required to reach synchronism is infinite
when starting from any point on the limit curve. The
same applies to any point on the Aco/K-axis, with excep-
tion of the point A&/K ~ 0, since this axis describes a
system having either infinite gain or zero bandwidth,
and neither case has any real practical significance. The
practical pull-in range of synchronization, therefore,
lies inside the solid boundary. The individual points

4 J. J. Stoker, "Non-linear vibrations, * Intersciencs; New York,
1950.

* G. W. Preston and J. C. Tellier, "The Lock-in Performance of an
A.F.C. Circuit," PROC. I.R.E.; February, 1953.
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entered in Fig. 7 represent the measured pull-in curve
of a particular system for which the damping ratio was
maintained at $" = 0.5. For small values of o)n/K this

1.0

.8 -

.6 -

A -

.2 -

0 .2 .4 .6 . 8 t.O K

Fig. 7—Pull-in range of synchronization for f = 0.5.

pull-in curve can be approximated by its circle of curva-
ture which, as indicated by the dotted line, is tangent
to the Aw/if-axis and whose center lies on the a)n/K-
axis. The pull-in range thus can be expressed ana-
lytically by the equation of the circle of curvature. If
its radius is denoted by f, the circle is given by
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Color-Carrier Reference Phase Synchronization
Accuracy in NTSC Color Television*

DONALD RICHMANf, SENIOR MEMBER, IRE

Summary—The results of an evaluation of the capabilities of
the NTSC color-carrier reference signal (the color burst) show this
new color television synchronizing signal to be more than adequate;
information inherent to the signal permits performance far in excess
of that achieved by conventional circuits.

Phasing information inherent to the burst is considered first with
particular regard to measures of accuracy, the required amount of
integration, and the extent of the spectral region necessary to trans-
late the burst information.

Properties of elementary passive and active circuits for using the
burst in receivers are described along with a determination of the
limits of burst synchronization performance for these circuits.

Fundamental considerations in the theory of synchronization
show that better performance is obtainable with two-mode systems.

Properties of two-mode systems are considered and lead to an
evaluation of the limits of synchronizing performance permitted by
the color burst.

The mathematical derivations necessary to support the discus-
sion are presented in the Appendixes.

NTSC COLOR television adds color to a mono-
chrome picture by means of a narrow-band,
frequency interleaved carrier color signal which

carries one component of the color information in its
phase, and another component in its amplitude. It is
customary to provide a phase reference in the trans-
mitted signal in order that receivers shall be able to
measure the instantaneous phase angle of the carrier
color signal so as to reproduce the desired color. This
is accomplished by transmitting a short burst of oscilla-
tions at color subcarrier frequency during line retrace
intervals,1 at a reference phase which corresponds to the
(F-5)axis.*

The color burst carries phasing information. This
paper shows how much phasing information is contained
in the color burst, and how it may be used.

Analysis of the factors limiting performance shows
that, even under extreme conditions of interference and
of stabilization requirements, the burst contains ade-
quate information to provide a reliable color-carrier
reference signal; in fact, the amount of phasing informa-
tion in the color signal appears adequate enough so that
a customer-operated control relating to color sync
should be unnecessary on NTSC color television re-
ceivers. Analysis shows that presently used sync in-
strumentation systems appear capable of meeting but
not necessarily exceeding a reasonable measure of the
above requirements. However, information existing in
the signal permits substantially better performance.

• Decimal classification: RS83. NTSC Technical Monograph No.
7, reprinted by permission of the National Television System Com-
mittee from "Color System Analysis," report of NTSC Panel 12.

t Hazeltine Corp., Little Neck, N. Y.
1 "Recent developments in color synchronization in the RCA

color television system," RCA Labs. Report, Princeton, N. J.; Feb.,
1950.

» Fig. 1 of "Minutes of the Meeting of Panel 14," NTSC; May
20, 1952.

The real limits of performance and sync systems which
more fully utilize the signal information are discussed
in this paper. Because of the excess of existing informa-
tion, a variety of types of circuits can be used.

Several questions may be asked with regard to the
amount of phasing information contained in the color
burst and its application to provide a reference signal
for color demodulation. These are: (a) How closely can
the color-carrier reference signal be maintained to the
true value, when signals are strong (and hence noise-
free) and after transient effects have subsided? (b) How
closely can the color-carrier reference signal be main-
tained in the presence of noise interference? (c) How
long will a system or circuit designed to give satisfactory
operation on (a) and (b) require to reach a stable mode
of operation when stations are switched or a receiver
is turned on? (d) How much performance is required
in (a), (b),and(c)?

Of these questions, (d) is the most difficult to answer
precisely; it depends on many subjective factors and
may be obscured by temporary equipment difficulties.
In order to provide a standard of comparison for use in
this paper, a conservative (pessimistic) estimate has
been made, based on past experience.

The answers to the questions are as follows:
(a) With a strong (clean) sync signal, the color-

carrier reference signal may be maintained as closely
accurate as desired, independent of other factors; in
the presence of noise, the average phase may be main-
tained as closely as desired, independent of the re-
quired integration and transient characteristics; for
example, designs presented later show how the static
or average phase of the color-carrier reference signal
may be controlled to within five degrees of the true
value. Expressed as a time value this is an accuracy of
approximately six m/xsec. This phase accuracy implies
a color fidelity probably substantially better than can
be distinguished by the observer.1

(b) The real limitation on performance is thermal-
noise interference, since this type of interference is the
most difficult type to reject. It is rejected, however,
to any selected measure of reliability by integration of the
synchronization timing information over a suitably long
period. Either of two basic types of integrators may be
used. These are, one, passive integrators, and two,
frequency-and-phase-locked self-oscillating integrators.
The analysis presented in this paper shows that, under
severe assumptions on the requirements of phase sta-
bility and signal-to-noise ratio, the required integra-
tion time for passive integrators is of the order of mag-

» D. L. MacAdam, "Quality of color reproduction,w PROC. I.R.E.,
vol. 39, pp. 468-485; May, 1951.

Reprinted with permission from Proc. of IRE, D. Richman, "Color-Carrier Reference Phase Synchronization
Accuracy in NTSC Color Television," vol.42, pp. 106-133, January 1954. © Institution of Electrical Engineers.
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nitude of 0.005 second, or less than a sixth of a frame
period. Locked integrators on the same assumptions
require 0.01 second for the integration to take place.

(c) The third requirement, of pull-in or stabilization
time, is also limited by the signal-to-noise ratio and the
requirement for integration. This may vary consider-
ably with the method of instrumentation, but the limit-
ing or optimum performance with regard to stabiliza-
tion time is determined by the information carried in
the signal; the limit imposed by signal information is
found to be (for a reasonable measure of reliability) a
few times the integration time discussed above. Later
in this report this is shown to be approached under cer-
tain conditions by fairly simple passive integrators. It
is also shown how locked integrators, characterized by
some new forms of automatic frequency- and phase-
control loops, may be made to achieve the upper limit
of performance. Typical present APC (automatic phase
control) circuits fall somewhat short of this limit, but
when properly designed can be made to pull in quickly
enough so as to appear virtually instantaneous, while
permitting most of the burden of frequency stability to
be borne by the transmitter.

These facts lead to the conclusion that there is ade-
quate information in the color burst for completely
automatic operation, without need for a customer con-
trol. The factors leading to this conclusion are pre-
sented in the following sequence:

Performance limitations for sync systems which are
already synchronized are discussed first, in the section
on "Synchronization Accuracy." The reliability of phase
difference measurements, and factors relating to the in-
tegration time necessary to obtain a specified measure
of reliability in the presence of noise are considered.

Then performance limitations of instrumentation
systems are discussed with particular regard to the
process of synchronization. The basic characteristics of
passive and locked integrators are discussed in the sec-
tion on ftElemental Sync Systems."

Evaluation of ultimate limitations for the signal, and
factors leading to new sync systems capable of fully
utilizing the signal information are presented in the
section on "Theory of Synchronization." Factors of
interest are mechanisms of pull-in, the reliability of fre-
quency difference measurements, and the exchange of
integration time for a specified measure of reliability in
the presence of noise.

Effects of echoes and stability of the gate are briefly
discussed.

The conclusions drawn regarding the adequacy of the
signal are stated.

Mathematical derivations, which substantiate and
illustrate the facts presented in this paper, are presented
in several appendexes.

The NTSC Color Synchronizing Signal

Fig. 1 shows the NTSC color synchronizing signal in
relation to the video and synchronizing wave form, in
the vicinity of one line-retrace interval. It consists

of a burst of approximately 9 cycles of sinusoidal
wave form at the color-carrier frequency of 3,579,545
(± .0003%) cps,4 approximately centered on the portion
of the line blanking pulse following each horizontal sync
pulse. It is omitted during the nine lines in each field
in which the field synchronizing information is trans-
mitted.

(.0751.005) x

So

100%
CARRIER
AMPLITUDE

.THE COLOR BURST

KH

hS0

_JL

SUBCARRIER SPECIFICATIONS'.
455 v M

0.9* M 1.1

•0352'8*455

|

. 1 3,579,5451.0003%

f H - l5 ,734 +

Fig. 1—Wave form during line retrace interval showing horizontal
sync pulse and the NTSC burst reference signal.

Parameters of interest which are shown on the figure
are:

So = the amplitude of the line and field sync pulses,
normally 25% of peak carrier amplitude meas-
ured in the video signal.

A5o = the peak-to-peak amplitude of the burst, meas-
ured in the video signal.

/» = the line scanning frequency.
d = the duty cycle of the burst.

The color burst is used in the color television re-
ceiver to provide a control signal for the generation of a
local continuous wave signal at the nominal burst fre-
quency and locked to it in phase.

SYNCHRONIZATION ACCURACY

Synchronizing Information

Any time-varying signal can carry timing informa-
tion, the character of which depends on the distribution
of signal energy throughout the frequency spectrum. In

4 As specified by NTSC in February, 1953. The analysis is not
critically dependent on the exact value of the color carrier frequency.
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the case of a continuous sine wave, this timing informa-
tion consists only of phase reference information be-
cause it is impossible to identify cycles of the carrier
from each other. The same is essentially true of the pulse
modulated sine wave which constitutes the burst; en-
velope information in the burst is not used. It is this
phase reference information which is of interest with
regard to color-carrier reference phase synchronization.

A signal which passes only through linear noiseless
channels may be located in time (or phase) with theo-
retically unlimited precision. In the presence of noise
the data obtained by a time (or phase) meter from the
signal will fluctuate. This occurs because the timing in-
formation which can be extracted from the combination
of signal-plus-noise in any specified interval is limited
by the signal-to-noise ratio as well as by the statistical
characteristics of the signal and noise.

Integration for Signal-to-Noise Ratio Improvement

The fluctuations in the phase data may be smoothed
by integration. For example, the instantaneous output
of the phase meter may represent the average of all
data obtained over some preceding integration period
TM in duration.

Any measuring device which uses any form of integra-
tion or memory averages some effective number of in-
dependent measurements. One such integrator directly
obtains a suitably weighted average (such as the least
square error average) of all the data obtained in the pre-
ceding period TM. Such an integrator provides a stand-
ard of comparison. Other forms of integrators may then
be characterized by their effective integration times,
TM ; several practical integrators are described later.

A section of a signal existing in an interval of dura-
tion TM niay be expressed as a sum of harmonics of the
fundamental frequency (1/7W); the noise bandwidth
associated with each component is equal to the spacing
between components, or I/TM—ZN. This means, for
example, that if all of the timing information obtained
in a period TM from a signal consisting effectively of a
signal sinusoidal component is averaged, that an im-
provement in reliability is obtained equivalent to that
produced by passing the signal through a filter having a
noise bandwidth of /.y.

Noise Interference

Noise is specified by its energy content and statistical
characteristics. For a flat energy spectrum, taken as an
example, impulse noise and white thermal noise repre-
sent opposite extremes, since for white thermal noise
the relative phases of the several frequency components
are completely random and incoherent; for impulse
noise the relative phases of all components are related
and are not random, although the time of occurrence
of any impulse is a random variable.

Noise may be measured in terms of any convenient
co-ordinate system into which the signal-plus-noise may
be transformed, such as frequency, phase, amplitude,
time of arrival, or more complex parameters.

Thermal noise is the most difficult to reject. It may be
discriminated against only by averaging; this makes the
effective error due to noise vary inversely as the square
root of the number of measurements; hence, (for sys-
tems with fixed bandwidth) the error varies inversely
as the square root of the integration time.

Impulse noise, or noise intermediate between thermal
and impulse noise, may be rejected more easily than
thermal noise since it represents a signal which can be
recognized with a high measure of reliability and re-
moved from the transmission channel.

A synchronizing system is a form of predictor which
bases its estimates on past experience. When the input
to the system has such a character (such as an improba-
ble amplitude) that it is recognized with high reliability
to be a disturbance, it is usually much better to use (at
least approximately) the predicted signal as the input
to the system for the duration of the disturbance. An
equipment system for performing these operations is
called an aperture. (Aperture systems are now widely
used for line and field sync; the same principles are in-
volved in the application to burst sync.)

Since thermal noise represents the most serious (as
well as perhaps the most common) limitation to color
synchronization performance, it is used in this paper as
the measure of interference which must be overcome.
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Fig. 2—Timing error distribution.

Measures of Reliability
A section of the burst reference signal is represented

as S(t) in Fig. 2(a). The time scale associated with the
synchronizing signal may be identified with some repre-
sentative point in a cycle which is selected as a reference.



The timing accuracy which is obtained for a given
signal-to-noise ratio may be expressed in terms of a
relative probability density function p{r) such as is
plotted in the curve of Fig. 2(b). The relative probability
density curve permits the determination of the proba-
bility that the sync timing answer which results from a
single measurement of the sync signal, using all of the
information derived from the preceding period TM} will
occur within a specified time or phase interval. This
probability is proportional to the area under the curve
p(r) or p(<f>) within the specified interval. Due to the
cyclic nature of the information, the time scale may be
replaced by a phase scale. The curve for p(<j>) defines
the probability laws for the noise at the output of the
synchronizing system. The curve is repetitive at the
sync frequency. (The output noise from the sync meas-
uring device has the same basic character from cycle to
cycle.) For many signal energy distributions, and par-
ticularly for burst synchronization at the levels of out-
put noise which give satisfactory performance, the curve
p(r) or p(<t>) has very nearly the shape of a normal or
Gaussian probability curve represented by the expres-
sion

€-l/2«/<0>2
 o r €-l/2(0/0rm.)2

in which case the phasing information may be com-
pletely described by the rms time error, /0, or the rms
phase error <f>rina, which may be expected for a specified
set of measurement conditions.

For this case of the normal law the absolute probabil-
ity that any measurement will yield an answer within a
specified measure of the true answer may be represented
in terms of the rms error. Fig. 2(c), which represents the
integral of one lobe of the curve of Fig. 2(b) for the nor-
mal law, represents the probability that the magnitude
of the phase error at any time is less than some selected
phase error <f>i. </>i is measured in multiples of 0rmS. The
curve illustrates that the probability is nearly unity-
only when 0i approaches 4</>rms, which means that the
effective peak value of Gaussian noise is near four times
the rms value.5

The Sync Accuracy Equation

The parameters which determine the rms time error,
,seconds, for burst sync are:

The signal amplitude %hSo volts.
The duty cycle of the gated sine wave J a s a fraction.
The rms noise (assumed flat over the band) Nw volts.
The video bandwidth occupied by the signal and noise

fw cycles per second.
The subcarrier frequency fsa cycles per second.
The effective integration time TM seconds.
The rms phase error <£rma in degrees.
Equation (1) relates these parameters

Nw

1
\fdJwTM

1

\fdfwTM

1
tofsc
360

0rms

1

irh

1

irh

(1)

This equation is derived in Appendix A.6 The physical
significance of the several factors in (1) is as follows:

The factor So/Nw represents (for example) the small-
est ratio of line sync amplitude to rms noise for which
tofsc will not exceed a selected arbitrary value. It may
be visually estimated if the composite video signal is
viewed with a wide band oscilloscope. When So/Nw = 1
the rms noise is equal to sync pulse amplitude. Since So
represents 25% carrier amplitude, and since the effec-
tive peak value of Gaussian noise is approximately four
times the rms value, the condition So/Nw = 1 also cor-
responds to the "peak" noise being approximately equal
to 100% of carrier amplitude.

The factor tofsc represents the fraction of a cycle of
phasing error at frequency fsc corresponding to the
timing error, to. Thus

tofsc =
rms phase error in degrees <£rm8

360° 360°

The factor dfwTM is the number of effectively inde-
pendent measurements yielding phase information
which may be made in the interval TM on a signal
which is present for only a fraction d of time, and which
occupies portions of the bandwidth fw. The signal is
actually present for a period dTu] the effect of integrat-
ing over the period TM is therefore to reduce the rms
error bv

\/dfwT.\t = A/d —
/A

where/,v = l/T,\r is the effective noise bandwidth.
The factor l/wh is a constant.

SIGNAL

LINE
KEYING

TIME
GATE LI MITER • — — • INTEGRATOR

Fig. 3- -Typical color-carrier phase reference
generation system.

The Required Sync Accuracy

Equation (1) represents the theoretical upper limit of
the phasing accuracy which may be derived from the
subcarrier burst. A variety of circuits are available
which can approach closely to this limit; these circuits
are often of the form shown in Fig. 3. The composite

5 V. D. Landon, "The distribution of amplitude with time in flue- • D. Richman, "Theoretical limit to time difference measure-
tuation noise," PROC. I.R.E., vol. 29, pp. 50-55; Feb., 1941. ments," Proc. NEC, vol. 5; pp. 205-210; 1949.

52



video signal is fed to a time-gate which is keyed from
line flyback to select the burst, which is then amplitude
limited and integrated. Practical integrators are de-
scribed later.

The sync accuracy equation permits the determina-
tion of how much integration is required in order to obtain
satisfactory performance under extreme conditions.
However, due to the many subjective factors involved
it is not possible to specify exactly what is the lowest
level of signal-to-noise ratio which will be tolerable from
a visual viewpoint;7 it is equally difficult to specify
exactly the largest value of rms phasing error which will
not cause visible degradation of the picture. Accord-
ingly, Fig. 4, which is a plot of (1), presents graphically
the relations between the relevant factors over a range
which probably includes the limiting case of interest.
Fig. 4 is based on adverse tolerances presented below.
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Fig. 4—Phasing accuracy relations for NTSC burst
synchronization.

Fig. 4 presents the relation between the rms phase
error, 0™, (in degrees) and the signal-to-noise ratio,
So/Nw, with the integration time, TM, (in seconds) as a
parameter.

For the case corresponding to the most adverse toler-
ances, ft = .9, d = .O352, and jfW = 4.3 me. Equation (1)
then reduces to

So / I 1 / 1
(2)

which is shown graphically in Fig. 4.
1 P. Mertz, A. D. Fowler and H. N. Christopher, "Quality rating

of television images," PROC. I.R.E., vol. 38, pp. 1269-1283; Nov.,
1950.

These curves show that any selected phase accuracy
$rms can be obtained with decreasing signal-to-noise
ratio So/Nw if more time TM is taken for integration of
the signal timing information; i.e., if more measure-
ments are integrated in each complete measurement.

(The facts presented later in this paper with regard
to the relations between noise integration and other
properties of sync systems indicate that the conclusions
reached regarding the reliability of the signal are not
critically dependent upon the assumed values of So/Nw
and 0rm«.)

System Efficiency and the Distribution of Timing In-
formation

The relationships presented above describe the per-
formance of the system when all of the information of
the signal is applied usefully. Another parameter which
needs to be introduced in order to determine the actual
noise bandwidth required is the decoding efficiency,
which represents the fraction of the timing information
of the signal which is used. Systems with equal noise
bandwidths but different decoding efficiencies will give
different performance.

In the burst system practical considerations relating
to tolerances and to the stability of the gate derived
from horizontal sync may result in a gate width r times
wider than the narrowest sync burst. Factors relating
to this are described later. It results in a requirement of
noise bandwidth and integration time such that

ijii VrT;MlAUlT

fN as -JzfNuVLlT

where
(1/vV) is a system efficiency
r = ratio of actual gate width to minimum burst

width.
There is another cause of loss of decoding efficiency

in sync systems which is of interest. This relates to the
relative distribution of timing information in the fre-
quency spectrum. For burst sync systems which are
properly designed, effectively all of the information may
be used; (common attainment in horizontal sync sys-
tems has not been so high).

Fig. 5(a) shows the relative distribution of timing in-
formation in the frequency spectrum occupied by the
burst. The basis for this curve is discussed in Appendix
A. The effective accuracy which can be obtained if only
a portion of the information is used may be measured in
terms of the ratio of the noise bandwidth required (at
any specified signal-to-noise ratio) to the noise band-
width required if all of the information is used. For
example, a problem of interest in receiver design is the
relationship between bandwidth in the burst amplifica-
tion channel and efficiency. If a passband symmetrically
tuned about subcarrier frequency is used in this channel
then the system efficiency resulting is represented by
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the curve sketched in Fig. 5(b). The curve depends, of
course, on the width of the burst. Even for the narrow-
est burst a total bandwidth of approximately 600 kc
translates nearly all of the timing information.
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Fig. 5—Frequency distribution and system efficiency of
burst sync timing information.

Example: As an illustration suppose the limiting
parameter values of interest are approximately <t>rma~ 5°
and So/Nw = 1; these conditions correspond to the point
in the center of Fig. 4; then from (2) TM ^ 0.0045 second.
The required noise bandwidth for a gate width ratio
r= 1.2 is then approximately/# = 200 cycles per second.
This figure is used as a basic design parameter for the
practical forms of integrators which will be discussed in this
paper.

ELEMENTAL SYNC SYSTEMS

The function of combining signal information derived
over an extended interval of time is accomplished by
use of circuits which may broadly be classified as
integrators. The performance characteristics of two
basic forms of integrators are discussed below. The
parameters of interest are:

1. The noise bandwidth and integration time of the
system.

2. The static phase accuracy. In general, in systems
involving feedback, this varies inversely with a circuit
gain parameter and may be made nominally as small as
desired.

3. The frequency pull-in range of the system. This is
the maximum (single peak) frequency detuning for

which the system will automatically achieve the desired
final operating condition.

4. The stabilization time Ts; or the time required for
all operating characteristics to reach effectively their
stabilized conditions. This may consist of one or more
definable segments.

5. The phase pull-in time T+\ or the transient time re-
quired for the output phase of the system to reach some
definable measure of its final conditions.

6. The frequency pull-in time TF, applicable to sys-
tems in which a local signal oscillator must be controlled,
or the time necessary for the oscillator frequency to be
changed from its initial frequency to some selected refer-
ence frequency such as a frequency from which the net
differential phase change between sync signal and refer-
ence oscillator will not exceed one whole cycle. This
overlaps the phase pull-in time T+.

The first integration system discussed is the Passive
Integrator. For this system stabilization consists effec-
tively of a phase transient. The limitations of this sys-
tem are: practical limitations on how high the circuit
Q may be and the possibility of detuning.

These limitations are overcome in the second form of
integrator called a Standard APC (Automatic Phase
Control) System. In this system the signal is hetero-
dyned against a local carrier at the same frequency per-
mitting the desired filtering to be accomplished by
means of a low-pass filter which thus effectively pro-
vides unlimited Q. The limitations of this system relate
to the difficulties of obtaining synchronization and the
long pull-in times which result when narrow noise band-
widths are required.

The real limitations imposed by the signal, and some
system fundamentals related to using all of the informa-
tion in the signal, are presented later.

Passive Integrator

The circuit of Fig. 6(a) shows one form of practical
integrator. This is a passive integrator in which the re-
quired integration is obtained by use of a high-Q filter.
The input signal to the filter consists of time-gated
amplitude-limited bursts of sine waves at subcarrier
frequency fsc* Because of the gating and limiting, side-
bands near fsc (which are separated by integral multi-
ples of/;/) as well as harmonics of fsc which are gener-
ated in the preceding limiter, all have effectively the
same phase modulation due to noise. The noise band-
width of the filter needs to be less than or equal to the
value of /JV which was computed above. If the filter is
approximately equivalent to a single resonant circuit,
the noise bandwidth is fN = (x/2)/3 where fi is the 3 db
bandwidth. The bandwidth /y is indicated in Fig. 6(b).
Thus the filter bandwidth should be approximately
(2/TT)(200) = 127 cps between 3 db points. The Q de-
sired is fsc/fz~ 28,000. This requires the use of a crystal
filter. Practical crystals in the frequency range of the
color subcarrier can achieve the required Q, but up
to the present time apparently cannot exceed it by a
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large factor.8-9 The sum of transmitter frequency toler-
ance of ± 11 cps and the frequency tolerance of the crys-
tal is comparable with the filter bandwidth. Fig. 6(c)
shows how undesirably large static phase shift might re-
sult from normal detunings. This is prevented in the sys-
tem shown in Fig. 6(a) by use of feedback for automatic
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Fig. 6—Passive integrator.

static phase correction. The circuit includes in addition
to the high-Q crystal filter a variable phase shifter, a
phase detector (which has associated with it a 90° phase
shift in one of the signal paths) and a low-pass (dc) filter
in the feedback loop for correcting the average phase of
the system. Other arrangements are possible; for exam-
ple, a post-corrector might be used with the feedback
signal derived directly from the output of the crystal
filter, or a controllable reactance might be coupled to the
crystal filter to insure optimum tuning.

The static phase may be maintained as closely ac-
curate as desired by putting a suitably large amount of
dc gain in the feedback loop. The signal-to-noise ratio
at the output of the system will not be measurably
changed if the dc filter is such that the bandwidth of
the phase feedback loop is narrower than that of the
crystal filter. Design considerations are discussed in Ap-
pendix B.

If the crystal stability is comparable to the transmit-
ter frequency stability, the frequency error will be small
enough so that rapid phase stabilization will occur when

8 W. G. Cady, «Piezoelectricity/' McGraw-Hill Book Co., Inc.,
New York, N. Y.; 1946.

• A. W. Warner, "High-frequency crystal units for primary fre-
quency standards,1* PROC. I.R.E., vol. 40, pp. 1030-1033; Sept., 1952.

channels are switched. The switching transient is a
phase transient and the stabilization time for small de-
tunings will be or the order of a few times the transient
time constant of the phase feedback loop. For the crys-
tal bandwidth required, this time is essentially instan-
taneous. It may be noted however that if appreciable
mistuning could occur the gain versus frequency char-
acteristic of the high-Q filter would substantially reduce
the amplitude of the correction signal, resulting in con-
siderably increased stabilization time, and effectively
reduced loop gain.

Standard Automatic Frequency and Phase Control Locked
Integrator

Fig. 7(a) shows the block diagram of a standard auto-
matic frequency and phase control loop. It includes a
local reference oscillator, a phase detector which com-
pares the relative phase difference between the sync sig-
nal and the oscillator, a filter which partly determines
the transfer characteristic of the A PC loop as an inte-
grator, and a reactance tube for controlling the oscillator
frequency. The loop gain for this system has the dimen-
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Fig. 7—Standard APC locked integrator.

sions of a frequency, /c, which is equal to the frequency
holding range of the APC system. Included in this char-
acteristic is the dc transmission of the filter. Fig. 7(b)
shows the relationship between the static phase error,
A<£, and initial oscillator detuning, A/. By making the
holding range much larger than the normal operating
range the static phase may be controlled as tightly as
desired; here again the price of this control is high loop
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gain. Fig. 7(c) shows effective passband characteristic
(?(/) of the APC loop as a function of modulation fre-
quency. This is determined largely by the ac transmis-
sion of the filter in conjunction with the feedback char-
acteristics of the loop. The noise bandwidth /NN is de-
fined in the normal fashion and indicated on the figure.
Since an APC loop phase detector is essentially a syn-
chronous detector and does not distinguish between
those noise components which are above or below the
local oscillator frequency, then /iv^=/ivr/2, and the ef-
fective integration time TM = 1/2/^^; the noise band-
width of the APC loop should not exceed approximately
100 cps for equivalent performance with the high-Q
filter.

Fig. 7(d) is a sketch of pull-in time for this loop as a
function of A/. The pull-in range cannot exceed half the
gating frequency, i.e. /# /2 , and for many designs is
substantially smaller. The pull-in mechanism of this
loop is not the most efficient one possible. Pull-in times
are particularly long near the limit of the pull-in range.
The APC loop of Fig. 7(a) is of the same basic type10

which has achieved essentially universal use in televi-
sion receivers as an integrator for line frequency syn-
chronizing information. A detailed analysis of the char-
acteristics of this loop is presented in Appendix C and a
derivation of the pull-in time relationships is presented
in Appendix D.

The pull-in range and time are a function of some de-
sign parameters discussed later. It has been found that
for optimum design there is a limit to the pull-in per-
formance obtainable with this loop. For these limit de-
signs the following performance is obtained:

(a) The static phase error A<f> may be as small as pos-
sible and in fact must be smaller than some speci-
fied number in order that pull-in time be min-
imized.

(b) The pull-in range is equal to ±(////2).
(c) Except near the limit of pull-in range, the pull-in

time and noise bandwidth are very nearly related
to the frequency detuning, A/, by (3)

TFJNN
\fyyj

(3)

This has been used in Fig. 8 to plot the limit of pull-in
performance for optimum design standard APC loops.
Fig. 8 represents the pull-in time TF in seconds as a
function of the noise bandwidth fNN in cycles per second.
The range of JNN in this log-log plot is from 10 to 1,000
cps with the approximate normal required bandwidth
of 100 cps in the center of the graph. Pull-in times rang-
ing from less than one-tenth to approximately one
second appear instantaneous and may be characterized
as "good." Pull-in times between 1 and 10 seconds are

10 K. R. VVendt and G. L. Fredendall, "Automatic frequency and
phas* control of synchronization in television receivers " PROC.
I.R.IC., vol. 31, pp. 7-15; Jan., 1943.

acceptable but probably close to the limit of adequate
performance and have been designated "fair." Pull-in
times in excess of 10 seconds are definitely "poor."

The relationship between fNN and 7V is shown for
several values of Af. For example an optimum design
unit having a noise bandwidth of 100 cycles will require
4 seconds to pull in from 1,000 cycles detuning.This indi-
cates that such a sync system should be adequate for
completely automatic phase control but that it appar-
ently does not have an excess of available performance;
for example, if the noise bandwidth needed to be re-
duced to 50 cycles, then 32 seconds would be required
to pull in 1 kc.
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Fig. 8—Standard APC optimum pull-in performance.

Pull-In Performance Attainable with a Standard APC
System

Not all designs of APC circuits will achieve the limits
of performance discussed with respect to Fig. 8. In fact,
partly due to economic limitations, the majority of past
designs have fallen short of the limit. Accordingly, Figs.
9 and 10 are presented as a basis for demonstrating the
pull-in limitations of the Standard APC System. The
curves are expressed in terms of what are believed to be
the parameters of interest to the user, specifically the
noise bandwidth /NNJ the initial frequency difference A/,
and the frequency stabilization time 7>. The dimension-
less parameters TFJNN* and Af/fNNf are used as ordinate
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and abscissa. Two different parameters, designated m
and Ky which are discussed in Appendix C, appear. The
parameter m varies inversely as the dc loop gain for
fixed noise bandwidth. The figure shows that increased
dc loop gain (smaller m) and hence tighter static phase
control permit wider pull-in range and a closer approxi-
mation to the minimum pull-in time curve. The param-
eter K which is a damping coefficient (discussed in

Fig. 9—Pull-in characteristics of standard APC loop.

Appendix C) determines the level of the limit curve as
indicated in Fig. 10. Over part of its range of variation
the parameter K permits an exchange of minimum pull-
in time for pull-in range. The maximum increase, how-
ever, is limited to a 50% increase in frequency pull-in
range, over designs which approach the optimum pull-in
time limit curve.

The mathematics upon which these curves are based
is presented in Appendexes C and D. Appendix C intro-
duces and presents the relevant relations between the
parameters of the Standard APC System. Derivation of
the pull-in time equation and discussion of the pull-in
phenomenon is presented in Appendix D.

THEORY OF SYNCHRONIZATION

Improved Sync Systems

The systems described thus far permit a level of per-
formance which appears to satisfactorily meet the re-
quirements for burst synchronization but do not appear
to have a large excess of performance. The signal itself

permits substantially better performance." This will be
shown below by considering the limitations of the sys-
tems presented thus far and introducing the factors
which lead to full utilization of the signal information.
This leads to a sync system which appears capable of
efficiently using all of the timing and synchronizing in-
formation in the signal. Then an implementation of this
system is described which appears applicable to NTSC
color television receivers to produce what may be ideal
performance at no substantial cost increase.

Finally, the approximate upper limit of performance
capability for the signal is evaluated numerically. The
limitations on the previous system relate to the severe
restrictions interrelating noise bandwidth and pull-in
time. There appear to be a variety of new sync systems
which can overcome this limitation. Several varieties
have been instrumented and found practical. However,
the potentialities of the NTSC burst sync system are
perhaps most clearly demonstrated by examining what
may be the upper limit of performance.
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Two Mode Systems

There are two separate and distinct modes of per-
formance of sync systems. These relate to (a) the phase
stability attainable after the system has achieved a
stable synchronized operating condition, which has been

11 D. Richman, "Theory of synchronization applied to NTSC
color television," IRE CONVENTION RECORD, Part 4; 1953.
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discussed in some detail earlier in this paper, and (b) the
performance associated with the system achieving that
final state. Each of these modes has fundamental physi-
cal restrictions and characteristics associated with it.
The full measure of performance permitted by the sig-
nal can be achieved by a system which makes these two
modes of operation as independent as possible of each
other and of each other's limitations.

Some systems use the same mechanism for hold-in
and pull-in. The Standard APC System falls into this
category. It is inefficient in its use of signal information.
Other types of systems use a multiplicity of mecha-
nisms, usually two.12 One mechanism is designed for
stable performance after synchronization, the second
mechanism is designed to produce synchronization.
Such a device must have within it the inherent ability
to extract from the signal the necessary information with
regard to the mode of performance which is required. For
example, it should not confuse noise which may be pres-
ent when the system is synchronized with a beatnote
indicative of a lack of synchronism.

Factors Relating to Frequency Pull-In

There are two basic factors which relate to frequency
pull-in. The first problem is concerned with the mecha-
nism whereby a frequency difference is recognized in the
presence of strong signals and a control voltage gener-
ated which can be utilized for pull-in. The second prob-
lem relates to the ability of the mechanism associated
with pull-in to discriminate against noise interference.

Frequency Recognition

This separation of the requirements of the system
leads to the following principle. The real limitation of a
synchronization system with respect to frequency pull-in is
the ability of the system when out of sync to recognize a
frequency difference and distinguish it from noise.

This sets the real upper limit of performance. If the
frequency determination is effectively linear, then after
a time delay which permits the frequency difference to
be measured to within a suitable measure of reliability,
the reference oscillator may be switched instantaneously
by the proper amount to insure synchronization. A sys-
tem for accomplishing this may be called an ideal sync
system. Just as with phase measurements this reliability
is obtained by integrating the frequency difference in-
formation for an adequately long period of time. The
shortest stabilization time consistent with reliable per-
formance is therefore determined by the integration
time necessary to measure a frequency difference with a
suitable measure of reliability.

The Pull-In Control Effect

Fig. H represents the generated control effect for pull-
in for two important synchronization systems. Fig. 11 (a)
relates to the frequency pull-in characteristic of a

Ia Fundamentals relating to systems analyzed here have been ap-
plied to automatic gain control circuits as well as to sync systems.

standard APC loop. The generated control voltage for
pull-in is shown as a function of instantaneous applied
frequency difference A/. If the frequency is within a
range roughly two-thirds that of the noise bandwidth,
pull-in (as explained in Appendix D) is effectively in-
stantaneous. The system never slips a cycle; a dc voltage
for frequency control is generated which is proportional
to the frequency difference. For larger values of A/ the

GENERATED
CONTROL
VOLTAGE

/ LINEAR FREQUENCY
'DIFFERENCE DETECTOR

IDARD APC LOOP

(a)

(INSTANTANEOUS)

/ APC FREQUENCY PULL-IN
/ CONTROL CHARACTERISTIC A

GENERATED
CONTROL
VOLTAGE

AUXILIARY
^FREQUENCY DIFFERENCE

DETECTOR

- (b)

(INSTANTANEOUS)

IDEAL AUXILIARY FREQUENCY DIFFERENCE
DETECTOR CONTROL CHARACTERISTIC

Fig. 11—Synchronization control characteristics.

system slips cycles but by virtue of the feedback in the
APC loop generates a dc component of control voltage
which varies in the inverse fashion with frequency dif-
ference indicated in Fig. 11 (a). This inefficient control ef-
fect may be compensated for in this system by very
high ratios of dc to ac loop gain ( l»w) but at the ex-
pense of the long pull-in times indicated by Fig. 9 and
10. An automatic frequency control system13 containing
a linear frequency difference detector14 which generates
a control voltage proportional to the frequency differ-
ence for all frequency differences of interest as indicated
in Fig. 11 (a) provides a more efficient indication of large
frequency differences.

Improved performance may be achieved by supple-
menting the APC system with an "Ideal Auxiliary Fre-
quency Difference Detector," the control characteristic
of which is shown in Fig. ll(b). Such an auxiliary detec-
tor can provide a suitable control effect for nearly opti-
mum pull-in performance and as indicated by the flat

13 C. Travis, "Automatic frequency control," PROC. I.R.E., vol.
23, pp. 1125-1141; Oct., 1935.

14 C. F. Shaeffer, "The zero-beat method of frequency discrimina-
tion, » PROC. I.R.E., vol. 30, pp. 365-367; Aug., 1942.
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portion of the curve will automatically turn itself off when
synchronization has been achieved; this occurs when the
frequency difference is reduced to within the linear slop-
ing portion of the curve of Fig. 11 (a), within which range
the standard APC loop can produce effectively instan-
taneous pull-in.

A Sync System which Efficiently Uses the Signal Informa-
tion

Fig. 12 represents the block diagram for a sync sys-
tem having the auxiliary frequency detection control
characteristic described with regard to Fig. ll(b). It in-
cludes a Standard APC System such as was shown
earlier in Fig. 7 and in addition an auxiliary frequency
difference detector which supplements the pull-in per-
formance of the APC system.

STANDARD APC SYSTEM

SIGNAL PHASE
DETECTOR

APC LOOP1LOOP\

OSCILLATOR

I FILTER

i . :

FREQUENCY
DIFFERENCE
DETECTOR

REACTANCE
TUBE

OUTPUT

Fig. 12—A synchronization system capable of using total signal
information at maximum efficiency.

The idealized upper limit performance described
earlier under ftFrequency Recognition" may be achieved
by means of a suitable interconnection circuit. How-
ever, with the stepped characteristic of Fig. ll(b) an
essentially direct connection is feasible. The composite
system functions as a form of automatic frequency con-
trol system when out of sync and as an automatic phase
control system when in sync; the auxiliary frequency
difference detector turns itself off automatically by vir-
tue of the shape of its control characteristic.

The ideal switched system has pull-in time equal for
all frequency differences.

AFC systems normally require high loop gain and are
characterized by a pull-in time constant. In some in-
strumentations of the system of Fig. 12 a loop gain of
approximately unity (or a little more for tolerance pur-
poses) may be adequate if the frequency difference de-
tector includes a small amount of delay in its output. As

soon as the oscillator is brought near the frequency of
the sync signal, the high-gain APC system becomes
operative, and the frequency difference detector is auto-
matically inactivated.

The Quadricorrelator: A Frequency Difference Detector

In order to illustrate in more detail the problems and
characteristics associated with the achievement of ef-
fectively upper limit performance, a form of circuit ar-
rangement is introduced here which appears capable of
using elements already present in color television receiv-
ers operable on NTSC standards to achieve the ideal
frequency difference detection described above. This
form of circuit will be called a quadricorrelator in this
paper. Analysis of the performance characteristics of
the quadricorrelator presented in Appendix E shows
that when preceded by a limiter it comes within a few
db in signal-to-noise ratio of using all of the signal in-
formation for signal-to-noise ratios of interest here.
When the limiter is omitted from the system, the quad-
ricorrelator is an efficient frequency detector; the extra
noise due to amplitude modulation disappears after
pull-in.16 It is a true frequency difference detector since
it is not subject to tuning errors. The excess of available
over required noise discrimination suggests that the
limiter can be omitted.

There is no real purpose to accomplishing pull-in
much more rapidly than perhaps a few tenths of a
second. The simple quadricorrelator instrumentations
appear (on this basis) to give effectively optimum per-
formance.

A block diagram of a basic form of a quadricorrelator
is shown in Fig. 13. Its elements are a pair of synchro-
nous detectors which are fed with reference signals in
quadrature with each other so that the phase detector
outputs represent "in phase" and "quadrature" com-
ponents of the applied sync signal. These output signals
are then limited in maximum frequency to (for example)
full by filters as indicated in Fig. 13(a). The output of
one of the synchronous detectors goes through a differ-
entiating circuit which provides a 90° phase shift
through the passband. The two signals are then hetero-
dyned in another synchronous detector, and the output
is integrated in a narrow band filter; a low-pass filter is
shown. This filter exchanges brevity of integration time
for reliability of frequency measurement. The resulting
output signal is proportional to the frequency difference
(as explained below) and is applied through an inter-
connection circuit to the controlled oscillator of the APC
system of the receiver.

The mechanism by which the frequency difference is
determined may be explained as follows: Assume that a
frequency difference A/ exists between the sync signal
and the local reference oscillator. The input noise may

15 J. G. Chaffee, "The application of negative feedback to fre-
quency modulation systems/ PROC. I.R.E., vol. 27, pp. 317-331;
May, 1939.
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be considered for simplicity as the sum of two noise-
modulated signals in quadrature with each other at the
oscillator frequency. The output from one synchronous
detector will contain a sine beatnote (see Fig. 13(b)) and
the noise along one reference axis. The output of the
other synchronous detector will contain a cosine beat-
note (see Fig. 13(c)) and the noise along an axis in quad-
rature with the first reference axis. These two noise
voltages are completely independent of each other.

IN-PHASE REFERENCE

SYNCHRONOUS
DETECTOR

FILTER d/dt

QUADRATURE
REFERENCE
BLOCK DIAGRAM

SYNCHRONOUS
DETECTOR

FILTER

OUTPUT

^ - ^ TIME

REPRESENTATIVE BEATNOTE WAVEFORMS

INDICATED FREQUENCY DIFFERENCE

f
(e)

OUTPUT TIME

Fig. 13—Basic quadricorrelator.

The cosine beatnote is converted by differentiation
to a sine beatnote having an amplitude which is pro-
portional to its frequency, as indicated in Fig. 13(d); its
associated noise is differentiated but the two noise volt-
ages are still independent of each other. The output of
the cross-multiplying synchronous detector will contain
a dc term proportional to and polarized according to the
frequency difference. In addition the output contains
random noise; this noise output is discussed in Appen-
dix E.

The quadricorrelator provides a convenient means for
measuring a frequency difference with any selected
measure of reliability in the presence of noise by integra-
tion of the frequency difference information.

An Illustrative Receiver Operable on NTSC Standards

Fig. 14 shows a partial block diagram of an NTSC
cofor television receiver which includes color difference
synchronous detectors, a Standard APC System, and a
quadricorrelator for frequency difference detection. The

composite video signal is fed to a pair of synchronous
detectors for deriving the color difference video signal.
The R— Y synchronous detector output may be fed
through an amplifier gated during line retrace to a filter,
a reactance tube, and an oscillator, the output of which
is fed back in the normal fashion to both synchronous
detectors. These elements comprise a Standard APC
System as described earlier. The gated outputs of both
synchronous detectors are fed to a pair of filters as indi-
cated. These may be bandpass filters having low-fre-
quency cutoffs near the noise bandwidth of the APC
system and having high frequency cutoffs not higher
than half line frequency, as shown in Fig. 14. The dif-
ferentiating circuit may be included in either beatnote
translation path. The third synchronous detector and
filter as indicated complete the elements of the quadri-
correlator, the output of which is fed to the reactance
tube. The low-frequency attenuation characteristics of the
filters in the two channels make the quadricorrelator have
an essentially zero transmission characteristic for small
beatnote frequency differences.

COMPOSITE
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B-Y
SYNCH

DETECTOR
GATE

TO VIDEO SYSTEM *»

FILTER

QUADRICORRELATOR
FREQUENCY DIFFERENCE
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DETECTOR

90*

GATE
SYNCH

DETECTOR

FILTER

STANDARD APC
LOOPx-x

OSCILLATOR

FILTER

REACTANCE
TUBE

Fig. 14—Application of Fig. 12 sync system to NTSC color
television receiver.

The circuit arrangement presented in block form in
Fig. 14 provides one means for realizing the sync system
of Fig. 12. Since this composite frequency- and phase-
control system is essentially free of the previous limita-
tions between noise bandwidth and pull-in time, the
over-all system can be more readily designed for desired
performance.

There appears to be a variety of frequency difference de-
tector circuits and of linear and nonlinear interconnection
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arrangements which can be used to approach upper limit
performance in the burst system.

The excess of performance inherent to these arrange-
ments appears exchangeable for receiver economy and
long term reliability.

The Approximate Limit of Performance Permitted by Sig-
nal Information

There are three requirements on the sync system.
(1) The static phase error shall not exceed some se-

lected value, say 5°. It is shown in Appendexes B and C
that for both passive and locked integrators this may
be accomplished by use of adequately high loop gain.

(2) The rms phase error shall not exceed some se-
lected value, say 5°, for signal-to-noise ratios at least as
high as the approximate lowest level for which mono-
chrome video picture information is acceptable; this is
approximately So/Nvr~l-

The required noise bandwidth for the APC system is

/ i

1
NN

2TiM

1 / 5oV

from (2). (The effect of excess gate width is small and
is neglected here for simplicity.)

(3) The stabilization time shall not be annoyingly
long. For example, pull-in times shorter than 1 second
are acceptable.

The minimum integration time required for frequency
difference detection yielding an rms frequency error
frmM is shown in Appendix E to be

Ti
V 1 *h SoVjw /™

(4)

for the signal. This is based on a pull-in range of
±{f»/2).

It is shown in Appendexes C and D that the linear
portion of the curve of Fig. 11 (a) extends to a value of A/
approaching 2/W/TT; the control effect is strong to near
/ w Then, if for frequency differences between ap-
proximately (2/TT)/AW and frr/2, the error in frequency
difference measurement is less than (2/7r),/W, pull-in
will occur in time TV. The more severe of the following
two requirements then determines the frequency pull-in
time TF.

Tr£
2/

Approximately (5)
NN

hNNJ
fNN

' ~2^
1 / :

Combining (4) and (6),

fl Nw /JZ 1 1

The same adverse tolerances used in obtaining (2)
may be used here. If d = .O352, k=.9, So/Mr = 1,
fw -=4.3 me, and/jr«=15734+cps, then (7) becomes

(6)

(7)

TV*-!-.
JNN

Thus, the required frequency pull-in time is of the order
of magnitude of 1//W or (TT/2)(1//W). After frequency
pull-in, phase pull-in occurs. (Both occur effectively
simultaneously in the continuous feedback system.) The
time for phase pull-in is normally less than

fNN
(8)

The constant in (8) depends on the shape of the pass-
band determining /##.

Then, the stabilization time, Ts is given by

Ts « TF + TV (9)

Since the required value oifNN was found earlier to be
100 cps, pull-in times of the order of .05 second are pos-
sible. This is considerably shorter than is required, indi-
cating that the information inherently contained in the
signal is substantially in excess of what is required.
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Fig. 15—Effect of echoes on the NTSC color burst.

OTHER TOPICS

Effects of Echoes

Some sketches relative to a discussion of the effect of
echoes on burst sync are presented in Fig. IS. Fig. 15(a)
shows one possible representation of a burst to which an
echo has been added. Parameters of interest are the rela-
tive delay, the relative amplitude, and the relative
phase. If the time-gate exceeds the burst width on the
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lagging end as indicated in Fig. 15(b) combined sig-
nals may be used to operate the burst sync system. In
this case the indicated phase as a function of time is as
shown in Fig. 15(c) while Fig. 15(d) is a vector diagram
representing the signals of interest. Phase angles of
interest are indicated for the burst phase, for the phase
of the sum of the burst and echo, and for the phase of
the echo. The average phase is not necessarily equal to
any one of these but may often be near the phase of
burst plus echo. The phase of burst plus echo is the cor-
rect reference phase for low detail large area colors. For
this reason it appears possible that some extra gate
width as indicated in Fig. 15(b) may give a useful and
efficient exchange of noise immunity for performance in
the presence of echoes. However, the existence of high
order correlation between widely separated picture ele-
ments16 may be uncommon enough to make this effect
relatively unimportant.

A complete discussion of the effect of echoes in the
NTSC system is beyond the scope of the present paper.

Effect of Stability of the Gate

The gate is conveniently obtained from horizontal
flyback. The effect of gate stability depends on two fac-
tors: the stability of the horizontal sync system which
produces the gate; and the relative widths of the gating
pulse and the burst, which determines the extent to
which noise jitter of the gate can be cross-modulated
into the burst channel.

The fundamental physical considerations which have
been presented and discussed above with regard to burst
synchronization are also true of horizontal synchroniza-
tion although the shape of the spectral distribution for
horizontal sync introduces some additional complica-
tions. The static phase may be controlled as closely as
desired, limited ultimately by transmission tolerances.
The stability may be held to any desired level still per-
mitting effectively instantaneous pull-in.

The effect of cross-modulation when it occurs is to in-
crease the noise power for those low-frequency com-
ponents to which the horizontal sync system is respon-
sive. The horizontal sync system appears to contain
more information than it needs. Stability of the gate is a
design consideration but it is not a real limitation of the
burst sync system.

CONCLUSIONS

The discussion above has shown that standard sync
systems appear capable of completely automatic syn-
chronization for NTSC burst sync (although without a
large excess of performance). In the presence of strong
signals the burst sync system is capable of yielding a
color-carrier reference having a reliability completely
determined by the gain in the receiver sync system,
while noise is rejected by integrating the timing in-
formation for a suitably long period. An effective inte-

w E. R. Kretzmer, "Statistics of television signals," Bell Sys.
Tech. Jour., vol. 30, pp. 751-767; July, 1952.

gration time of the order of l/200th of a second appears
appropriate. Passive integrators using controlled crystal
filters, appear capable of meeting the requirements on Q,
frequency stability, and rapidity of stabilization. The
Standard APC System, when designed for near limit
performance, appears capable of providing adequate and
usable performance. This means that for reasonable
operating tolerances, synchronization will always occur,
and with adequate synchronization accuracy.

Improved sync systems which overcome the ultimate
limitations of the standard APC sync system have been
presented along with a discussion of factors leading to
improvement and of the upper limit of performance per-
mitted by the signal. These indicate that the require-
ment of a high order of noise immunity does not limit
synchronization performance in the manner and to the
degree experience with previous circuits had indicated.
A large excess of attainable as compared to apparently
necessary performance appears to exist.

The NTSC color-carrier reference phase synchroniza-
tion signal contains adequate information for reliable
performance down to levels of signal-to-noise ratio
where the signals are no longer usable in picture con-
tent. A variety of circuits can provide satisfactory per-
formance.

APPENDIX A

Phase of a Sine Wave Plus Random Noise

Derivation of the Equation

The analysis of the theoretical limits to phasing accu-
racy may be based on the properties of a signal com-
posed of a sine wave plus random noise.17 The informa-
tion of each frequency component may be determined
separately and then all of the information may be com-
bined.

The problem is solved here first for a continuous (un-
gated) sine wave.

The probability density distribution of amplitude co-
efficients for a sinusoidal signal plus two-dimensional
Gaussian noise is shown in Fig. 16. The signal is

5(/) = 5 cos <aacL (A-l)

The noise may be written as

N(t) = a(t) cos o)3Ct + b{t) sin <a8ct (A-2)

where a{£) and &(/) are time-varying parameters, each
having a Gaussian distribution, and defined by the
mean square values shown below.

^2 ^^2 =-jpm (A-3)

This equality results from the fact that by symmetry,
2̂ = ̂ 2 while the total noise power

N2 = {a cos ooscl + b sin

17 S. O. Rice, "Mathematical analysis of random noise," Bell Sys.
Tech. Jour., vol. 23, p. 282-332, July, 1944; vol. 24, pp. 46-156,
Jan., 1945.
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ha* + W (A-4)

For the above case it is possible to express the proba-
bility distribution of phase angles for the combination
of signal and noise, relative to the phase of the signal.
This, however, leads to a cumbersome expression.18

RELATIVE PROBABILITY
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?••?.!?
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COSINE COMPONENT
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\ K S+a **>

t + b(t) sinzn fsc t

Fig. 16—Probability density distribution of a sine wave
and random noise.

It is more convenient to use the simplified vector dia-
gram shown in Fig. 17/ Here 5 represents the signal,
and a and b represent the cosine and sine (in-phase and
quadrature) components of noise.

Then if 0 is the phase error,

0 « tan <t>
S + a

b

~S

or, very nearly, since ftrm^N,

N

S

(A-5)

(A-6)

This equation is a good approximation if N/S is not
large; in the case where the sync measuring system is
primarily responsive to the noise in quadrature with a
reference signal controlled by a long time constant of
integration, it is accurate enough.

Then, since

N
Nw

VfwTM

JN = 1/TM, and since S

noise in the noise bandwidth (A-7)

• ?hSo, we obtain

18 D. Middle ton, "Some general results in the theory of noise
through non-linear devices," Quart. Appl. Math., vol. V, p. 471;
Jan., 1948.

^rms — 2irfsclo =

Nw

hhS,
(A-8)

The above equation applies for a continuous sine
wave which is not gated. However, because the signal is
present only a fraction d of the time, the integration is
only y/d times as effective, and hence to = h'/y/d. There-
fore, by substitution, the following upper limit relation-
ship is obtained.

Nw

1 1 1

VdfwTM fscto ith
(A-9)

This is (1), presented earlier.
If the signal plus noise is passed through a limiter, the

output of the limiter is approximately

S cos u)scl + b(t) sin (*>sct

for signal-to-noise ratios of interest. Thus, the limiter
aids in achieving the upper limit, without improving it.

Fig. 17—Simplified vector diagram.

When not all of the signal spectrum is used, the rms
error will exceed the limiting value of to computed above.

The burst may be represented by the following
Fourier series

H

where

S{t) = X) Sk cos »kt

sin dkic\ hSo sin dkv/ I \ /sind*7r\
- ( — kSo)'d[ )

\ 2 / \ dk« J 2kw

and

CO* = o)sc + koijj.

(A-10)

(A-ll)

(A-12)

Each of these carries timing information; the error asso-
ciated with the measurement of any component is very
nearly Gaussian. For such a case, the Principle of Least
Squares19 may be applied. Then2 0

19 R. B. Lindsay and H. Margenau, "Foundations of Physics,"
John Wiley & Sons, Inc., New York, N. YM chap. IV, pp. 159-187;
1936.

10 D. Richman, "Frame synchronization for color television/
Electronics, vol. 25, pp. 146-152; Oct., 1952,
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(A-13) A<f> 1
** / So \ 2 /A sin d*aV = (B-5)

= E ( —)(/^,)(/5c+*/,,)2( )• A0O l + G
A—kx \Nw/ \ k /

Since A0o<9O°, a loop gain of G> 17 makes A0<5°
The factor (l//o*) has been plotted m Fig. 5(a) as the m- a iw ayS .

formation per component. The effective accuracy, l//o
varies as the square root of the area under the curve, for The Effect of the Feedback Loop Upon Noise Performance
any bandwidth. Although there is an optimum weight- w h e n n o i s e ig p r e s e n t | t h e p h a s e d e t e c t o r o u t p u t

ing, the weighting is not critical in the vicinity of the p r o d u c e s a n o i s e o u t p u t > w h i c h f a f t e r filtering by Y{f)
correct weighting. This is a general characteristic of p r o d u c e s e x t r a p h a s e modulation noise.
integration systems. T he equation written earlier can be rewritten in terms

APPENDIX B o f t h e Phase correction, A#Oorr, since

Passive Integrators A0° effective = A<£corr + A<£. (B-6)

This appendix presents some equations relevant to Affective is the equivalent phase modulation to pro-
the performance of the phase stabilized integrating filter duce the actual phase detector noise output,
shown in Fig. 6(a). Then

The basic loop parameters are as follows: rA , , A , . 1 r v , , , .
(1) The transfer characteristic of the high Q filter is

F(f) or

1 1 A^corr(^) GY{p) G r 1 1
pm „ „ -Z—KI± « i£2_ » . (B-7)

fsc JA (B1) L I + Cj

I p/Af\ The signals to the phase detector are
~ A/ ~ (1) The original composite signal+noise, unfiltered.

I + fa — - (2) The filtered signal, with a narrow band of noise
having a very small rms value.

(2) The phase detector sensitivity, for nominal full Cross beats of signal upon noise produce considerably
amplitude input is dE/d<f> larger output than the beatnote between noise com-

(3) The passband characteristic of the low pass (dc) ponents, which are therefore negligible.
filter is Y(f), where F(0) = 1. Let The output noise may be expressed as a phase:

F( / )~ 14-1 rr ' (B'2) ~ - a * . « ^ MmA4mW

(4) The sensitivity of the phase shifter (assumed — -~ « &<f>Q2(p) • (B-8)
broad band) may be represented as $

d<t> The total phase noise is Affective=A#°i—A0O2 since,
$£ ' if the filter F(f) were removed, the phase detector out-

put would be identically zero.
(5) The loop gain is G

d<t> dE AMP) = —— [1 - H&P)]- (B-9)

dE e<t>
,,s T U , t . , , . 1 , , i^-r^i. There is little noise energy below approximately
(6) I he static phase error which would result if there - ,~ . 1 1 ?

f AU i • AJL / v / 2 appearing at the phase detector output,
were no feedback is Ad>o y

 o . , * , , ^ . . , , .
Since the transfer characteristic for this noise is

/ TTA/\ TTA/"
A0O = arctan I J « • (B-3) A</>corr G f 1

\ / * / / ^ - ^ - ^ - (B-10)
The Static Phase Error with Feedback A*o 1 + G 1 + p

L l f t r J
The static phase error with feedback is A<£

I I (which corresponds to a low pass filter), the following
\fi(&f)\&4>'G'Yo** A<t>o - A* - A<£corr d e g i g n c o n d i t i o n m a y b e employed to insure that the

At/> ^ 1 effective Q of the crystal filter will not be degraded by
A^ * 1 + I F(Af) I GYQ

 (B"4) t h e Redback

or, since for normal operation F(A/)«1 (very nearly) * "̂  ^ ^
and Fo-F(O) = l 27rr 2
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1 +G parameters of the APC loop are defined. The inde-
o r

 wfN * \&-11) pendence of the primary parameters A<f> (the static
phase error) and/jw (the APC loop noise bandwidth) is

Transient Analysis shown; these parameters characterize the performance
The response to a step in differential phase A^o, is after the system has stabilized. The limitations of pull-in

A<b(j>) or A6(t) a r e discussed and some formulas which are derived later
in Appendix D are introduced. The simple relation pre-

&<t>{p) 1 f 1 + pT "I sented earlier for pull-in time is then obtained.
~AcT~ ^ ~/T Ll + FG + pTj Tke formulas derived may be applied for designs

based on any convenient set of assumed criteria.
+ (B-12)

pT 1 + FG 1 + FG The Basic APC Loop Parameters
"i ¥ — — — — — ~j— y/

T J T (1) The output voltage AE of the phase detector, and
the phase difference A<j> between the reference oscillation

A<K0 C l f * r ™,™ 1 , lt^*,™ anc* the signal are related by the control characteristics.
— s s I I €—[l+FGfT}t I At JL. 6—H+FG/T]t i . t . i • • « t

^ * J \ x J When both signals are sinusoidal,

^ where AE is a voltage developed at the phase detector
1 FG €-[i+FGiT]t output in response to a phase difference A<f> between

„ _ _ _ -j- _ _ _ { . j signal and reference oscillation. For operation at or very
near balance,

= steady state + transient response.
dE

For FG»lt the transient term is negligible for t>T. ^ " * v o l t s P e r r a d i a n -
The time for the phase error to settle down to twice its

final value may be computed, as a measure of stabiliza- (2) The transfer characteristic of the feedback loop
tion time. * filter is denoted by

The total transient time consists effectively of an am- output voltage
plitude and phase transient of the high Q filter plus the JY(W) = ~
transient time of the feedback loop. The transient is m P u t voltaB«
effectively completed in three times the time constant of ( 3 ) T h e sensitivity of the reactance tube is denoted
the filter. Since the noise bandwidth is fa, the time is ^

TA ** ̂  Wiv/ (B~14) $ = cycles per second per volt.

This overlaps with the phase loop transient time, which, / J \ TU r * I AI / • u • *• *., . ... j « . M u w The factor hup BS/O is a characteristic parameterneglecting amplitude effects, would be f V , ., . . ' ' . . , 1 M - . ., r. . .
5 s K > of t j i e jOOp. ^ t i m e c o n s t a n t te B l/27r/c IS the transient

1 I f 'A/BHK 1 t ^ m e c o n s t a n t ° ' ^ e loop when i\T(aO ss 1. (This may be
TV == — /»G « — /» • — 1 (B-1S) verified from (C-3) for Q(w) presented later.)

V* *JV L/n̂ <̂ >max J ^ T h e s t a t j c p h a s e e r r o r ^ ^ w h j c h r e s u l t g f r o m ft

which is based on "free-running" frequency difference, A/, between signal
and local oscillator may be found from the preceding

^ * = _ ! _ [i + Ge~(i+(7)( /̂n | relations:
A*o 1 + G A/

- sin A0 - 2r-AM - y • (C-2)
N Although (C-2) contains the appropriate signs, it is the

T = ^ ^" ^ magnitudes of the above quantities which are of interest
"~ TT/Y in design work.

(6) The phase following ratio for an APC loop is
These two pull-in times overlap.

phase variation of output phase N(<a)
— z=sQ(o))= (C-3)

APPENDIX C phase variation of input phase N{w)+pte

Performance Characteristics of the Standard T h i s i s t h e s m a l l s i g n a l f o r m o f t h e differential equation
APC Loop which characterizes the APC loop. It is used to deter-

This appendix presents a description of the operating mine the response of the APC system to noise, after the
characteristics of a standard APC system. The basic system is synchronized.

65



(7) The noise bandwidth of the APC system is /W. (from [C-5] when pTy>\). The parameter m determines
Consistent with the usual practice, this is defined as the pull-in range of the APC system, when certain other

parameters are specified. It is convenient therefore to
fNlf= f °° | <?(«) | 2 df = f "(?(«)<?( - w)df. (C-4) express the synchronous performance in terms of m.

Jo Jo Also, the term xT/lGappears often. This is written as

Representative network configurations for iV(co) are _ j ^ _ _ (r &)
shown in Fig. 18(a). For each of these networks /c

1 + xpT Then, rewriting the earlier expressions in terms of
^ l + (l + x)pT t h e s e Parameters,

I JL fry*
where T=RC and p=j2irf=jo). Then tf(w) = tZ—. (C-9)

y
1 + xpT 1 + p — tc

n(w) « J_£ (C-6) *•
1 + p{tc + xT) + p\\ + x)tcT 1

. . . , . Q(«) = — (C-10)
This equation suggests one manner in which the mean- y
ing of the phase transfer ratio and noise bandwidth of * • P^ \ y) ~r P k
an APC loop may be readily visualized. Fig. 18(b) repre-
sents a network having a voltage transfer characteristic The noise bandwidth is found by integration (at the
which is identical with (?(w) given above. If a voltage end of this Appendix C), using the definition presented

earlier, to be
1 1 + wv

'^-ITTZ^' (CM1)

<>~~~VsA t~*° L ^ ( J j ° (9) In order to prevent resonant ringing on noise im-
wifKUr ? *" WTPUT INPUT *c -A- VOLTAGE pulses, Q(w) should have a moderately flat graph. Since
VOLTAGE f VOLTAGE VOLTAGE *V*

*T>C I c ^ the denominator of Q(to) contains a quadratic expression,
it is convenient to define a damping coefficient, K}

which is defined by the following equation:
(0)

(l + y)8 = K'—- (C-12)
APC FILTER NETWORKS w

Then i^= 1 corresponds to equal roots or critical damp-
R is L|, ( l + x ) teR ing, K> 1 corresponds to overdamping and makes (?(w)

•—wv nnnp—| o approach the shape of the single (RC) low pass filter,

wopwmwAL TO
 xR\ PROPOSAL TO and K<l tends to give Q(w) a high resonant rise.

PHASETOOULATKJN C 1 PMASEOUMTOOUUTLAT,OH Fig. 19 shows the shapes of I C2(co) I and | Q(«) |2 for
T several values of K, and subject to the simplifications

0 ° yy>l> and wy«4Jf, derived below. A value of K close
to 1 gives best performance.

Cb) The Synchronous Performance of the APC System

Fig. 18-Equivalent network representing phase following T h e b a s i c equations relating to the synchronous per-
ratio of an APC loop. formance of the APC system have been presented above.

These are
proportional to the phase modulation of the synchroniz- _ s\n &$ _. 2wAf-to (C-2)
ing signal (by noise or any other disturbance) is applied
to the input of the network of Fig. 18(b), the output jNN =

 + my (C-ll)
voltage is proportional to the phase modulation of the 4/c 1 + y
reference oscillator of the APC loop. The shape of the 4 ^
(low frequency) passband described by Q(o)) defines the m = —• • (C-12)
small signal transient response of the loop as well as the \ -r y)
noise bandwidth. S i n c e b o t h t I g h t s t a t i c p h a s e a n d n a r r o w n o I s e b a n d .

(8) The ratio of ac gain/dc gain through the network w i d t h a r e d e s i r e d^ i t i s possible to define a figure of merit
^ IS for the system as | (sin A0)/(A/)| -fNN\ the smaller this

m =
 x (C-7) Pr°duct is, the better the over-all performance. How-

1 + x ever, relations above show that any arbitrarily selected
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figure of merit may be obtained by proper design, since,
combining the above relations,

The figure of merit may be written as

s i n A<t>

~4/~
•/v.v

1 + (1 + yY
1 +y

(C-13)

2 *

1.6

POWER | .2 .
RESPONSE

.8-

.4-

rsm
0

I0(co)| i

1.2-

.8
RESPONSE

.4-

0 J

Q(oa) *

A**A
>^4\N\

.2 .4

.2 .4

l+<3 2 T T < K + i ) 4

l+<J2TT(K+£)f

fNN

based on

y » i yt c*

.6 .8 1.0 I.
f

^ . -K-4

.6 .8 1.0 1.

x

fNN m y ! ! 4 K

2 1.4 1.6

2 1.4 1.6

Fig. 19—APC loop small signal modulation response.

For the limiting case of a single time constant filter,
y = 0, and then

[ . s i n A<f> . "1 7T

I—-±\.fm\ - - .
A/ J i,-o 2

(C-14)

Thus for the simplified filter the static phase shift and
noise bandwidth are interdependent.21*22 However, for
the filters of Fig. 18a, the parameters can be designed
for whatever figure of merit is required for synchronous
operation.

The above relations may usefully be written in sim-
pler form, since, for the design ranges of interest, m<£\
and 3OM; then, very nearly 4K — my and hence

1 + my
4/ATAT/C — w « tn

m + w y ( - 5 - ) - <c-15)

This equation will be used in expressing the pull-in
performance of the system conveniently.

21 T. S. George, "Analysis of synchronizing systems for dot-inter-
laced color television," PROC. I.R.E., vol. 39, pp. 124;-131; Feb., 1951.

24 K. Schlesinger, "Locked oscillator for television synchroniza-
tion," Electronics, vol. 22, pp. 112-118; Jan., 1949.

sin A0

¥
hNN

fNN * /I + AK\
« —ml 1 •/. i^-ir)- (c-16>

The Transient {Pull-In) Performance

The pull-in behavior of the APC system is investi-
gated in detail in Appendix D. The significant conclu-
sions are as follows: The pull-in performance is expres-
sible in terms of the relations between the parameters

(IL\ = (IL\
\xT)-\yJ

and

I—I •
tnfc

Fig. 20 shows the relation between these parameters.
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Fig. 20—Universal frequency pull-in characteristics.

The following approximation to the data represented
by Fig. 20, based on (D-29), has been found useful in
design work, it can also be solved for A/;

TV « xT
\mjj

4

2fc-mfc
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If \Af/mfc\ ^ 1 the frequency pull-in is effectively in-
stantaneous (7> = 0) but a short period is required for
the phase to approach closely its stable value. If
\Af/mfc\ > 1 , the system can slip cycles; often the slip
is a great many cycles as this pull-in mechanism is fairly
inefficient. The pull-in range is limited to the region

X2

•(7)
r\HK+ 1/4)3

K2
^ 4.2. (C-23)

The approximate value 4 has been used in Figs. 8 and 9.
Fig. 21 shows graphically the relation between K and
X2. The curve has a minimum at K= 1/2.

^ ) < J V m " 1 (C-17)

(D-25)

or

4/max =/cV2m - W2 « V2/C'fnfc

Then,

I sin &<t> I « I Atf> I g | - ^ - 1 = m A/ 1 « V 2 w . (CM 8)

If w < (1/250) the phase angle after pull-in will always
be less than 5°. However, not all of the pull-in range is
normally used. If

I A<f> I < — A/max, m < — makes | A01 < 5°.
2 62

When operation is well within the pull-in range the
frequency pull-in time, TV, which is defined as the time
for the oscillator to be pulled from | Af\ to within mf0 of
the frequency of the color burst, approaches very nearly
the relation

ytc \mfj
(C-19)

(D-28)

By making m smaller and/c larger it is possible to extend
the pull-in range far enough so that the gated nature
of the signal provides the only real limitation on pull-in;
the range is JA/| <(////2). The pull-in time is then ex-
pressed by the square law relation above, except near
the limit of the pull-in range. Furthermore, making m
smaller improves the synchronous figure of merit.

The pull-in relations may be expressed in terms of
JNNI since

yU

and

to
my-- » 4A'

m 4/,

1 (L+ 4/T\ K + 1/4

(C-21)

m 1 4K
mfe = « — -4fNty

2wtc 2ir 1 + 4K

the following equation results

7^) (C-22)
JNN/

where, when fc is large enough so that A/m8X»A/,

Fig. 21—Graph showing the relation between the damping coefficient,
A', and the constant in the APC limit curve equation.

In view of the shape of the curve, and the normal
tolerance variations of practical circuits, a value of J£
near 1 seems desirable. This gives good small signal
transient response also. The problem of optimum design
is discussed in more detail in a reference.23

Derivation of the Noise Bandwidth

The integration is performed as follows. Since

1 + pytc
Q(P) =

m m
— + ptJL\ + y) — + ft*

iy y

(T>
(C-10)

then

Q2\ =QQ*
1 + yW

+ V)(* + V)
where

e = utc

and

but

•'4{
m

(l+y)—±
y

j/[d+y)-T
yj

• m )

y 1

(C-24)

(C-25

(C-26)

23 D. Richman, "APC color sync for NTSC color television,"
IRE CONVENTION RECORD, part 4; presented March 23, 1953.
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l+fs1 _ n-yX* l-yyi i_

(p+V)(*+fltf) L P+es f+tf J ef-ej-
The above is substituted in (C-4) to give

(C-27)

J
J 0

WQd(fte) - UfNN

ef-ej Jo L

(C-28)

;]<W-
Then, since d/dx arctan r e -1 / (1+# 2 ) and arctan

0 = 0, and arctan « =TT/2 .

4/JJ W

40a 4fy

This is simplified as follows. Since

m

and

then

0. + h = — (i + y)
y

m

y

(C-29)

(C-30)

tcfNN [ 60 — ^«

w , - (^-<»«)(fl/.-++ »») J
(C-ll)

1 ws
m

• + y*

m
- (l + y)

Ĵ  /I + wy\
4 \ 1 + y )

This is the desired result.

APPENDIX D

Transient Performance of the APC Loop

This appendix provides a description and derivation
of formulas relating to pull-in characteristics and pull-in
time of APC loops. Exact analysis of a simplified APC
loop provides useful formulas and a basis for under-
standing some of the phenomena relating to pull-in.
This then suggests a simple approximate method for
reducing the differential equation of the loop to a form
which is readily solvable for the pull-in time. The results
are plotted and discussed.

The Simplified Loop
The simplest form of APC network is the one for

which iV(w)=a constant. See Fig. 22(a).
The basic equations are:

N(o>) - m

0(«) - •

| sin A<£ | =

The differential equation

m*we sin <t> =

m
pi*

jmf.

£ 1 .

of the loop is

d<f>
— Aw.

CD-I)

dt
(D-2)

The same equation has been shown applicable for
directly synchronized oscillators.24

S Y N C ^

SIGNAL

PHASE

DETECTOR

p— OUTPUT

OSCILLATOR

I »AAA
l-m REACTANCE TUBE

(0)

| BIAS VOLTAGE |

BLOCK DIAGRAM

1 ,t•-•«
7

4oo^
i

I

i

/

i i

y

* I)

(b)

TYPICAL PHASE TRANSIENTS

SIN #

(O

TYPICAL BEATNOTES

Fig. 22—Basic APC system.

This equation is equivalent to

(Filter transfer characteristic) • (Phase detector output)
= (Rate of change of phase difference)

— (Initial angular frequency difference).

The equation may be rewritten as

d<j>
dt

Aco + w«e sin <t>
(D-3)

It has two solutions, depending on whether Aw/mwfl is
greater than or less than 1. Boundary conditions are

M R. Adler, "A study of locking phenomena in oscillators," PROC.
I.R.E., vol. 34, pp. 351-357; June, 1946.
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< = o
d<f>

It
= Aco 0 = 0o

d<t>
— « 0
dt

0 = 0oo = arcsinin I ) .

We/
Equation (D-3) is directly integrable.25

The pull-in range is A/gm/ c . Within the pull-in range
the phase stabilizes according to the following equation,
which is the integral of (D-3) under this condition:

where

and

WWC/ COS 000 =

AOJ
sss p =

mo)e

= In

tan

tan

tan

tan

— sin 0oo

0
2

0 _

2

00

2

00

T ~

(1

- cot

- tan

- tan

- cot

f>\ <

0oo

2

0»

2

0oo

2

0oo

2

1)

(D-5)

— \ / l — p2 = cos <j>x.

(D-6)

(D-7)

Typical phase transients are shown in Fig. 22(b). Phase
is plotted relative to ^ with a scale calibrated in units
of mo}ct. The starting point on any curve is determined
by 0o-0oo«

An approximate time constant of stabilization is

i 1

rna)c cos 0W \/{m'j>c)% — (Aw)2

however, the actual stabilization time is a function of the
initial phase.

Outside the pull-in range p > 1, and the phase as a
function of time is defined by the following equation,
which is the integral of (D-3) for this condition:

( * >i *tan — + 1
tnu>cty/p2 - 1 < 2 >

= arctan ) j . (D-8)
2 V \ / P 2 - 1 ; *o

This represents a cyclic variation characterized by its
wave form and its fundamental frequency, fsN.

Fig, 22(c) shows examples of the cyclic relationship
between sin 0 and /, p0 = A//m/c being specified as 1.05 or
3. The time scale is normalized to the beatnote period
TuN—l/fiiN. The period TBN is such that t increases
by TBN when <j> increases by 2w, and is found from the
following relation:

M H. B. Dwight, "Tables of Integrals and Other Mathematical
Data," The Macmillan Co., New York, N. Y., Integral 436.00; 1947.

ma)cTBN\/p2 — 1

(D-4) Then

TBN
2TT

= ir when A0 = 2TT.

1

mo>eVp2 - 1 V W ) 2 ~ (mfe)*

(D-9)

(D-10)

This is an important relationship. It states for exam-
ple, that if in the APC loop block diagram presented
above the bias is adjusted so that the effective open
loop frequency difference is A/(>w/ c) , the operating
beatnote frequency difference is V(A/)2— (m/c)

2. If the
bias is a slowly varying function of time (as compared
to /BAT), the above relationship accurately describes the
variation of fBN with time.

The dc bias or average dc potential developed at the
reactance tube input may be determined from the
above relationships. It may be expressed in terms of its
effect on frequency.

Integrating the differential equation over a cycle, and
dividing by the period

1

TBNJ
(h mo)e sin <t>dt =

1 rd<t> 1 r
— fo- -z— <P A<^ (D-l 1)

TBNJ dt TBNJ

or

mo)c sin 0
2TT

TBN

and therefore, dividing by 2TT,

— Aw (D-12)

mfc sin 0 - V(A/)2 - (mfey - A/. (D-13)

This is plotted in Figs. l l (a ) and 23(a) which repre-
sents magnitude of the developed bias as a function of
A/.28 In the standard loop shown later in which the bias
battery is replaced by a capacitor it is proportional to
the control effect which causes pull-in.

Fig. 23(a) shows that ma>c sin 0, the average angular
frequency shift, is a maximum when Aw/ma>c=»l and
decreases beyond that point, approaching zero asymp-
totically. When (Aa)/mo)o)<l, the phase does not shift
2TT radians in a finite time. Enough bias is produced how-
ever, to shift the angular frequency by Aco. This bias is
represented by the straight line portion, as discussed
with regard to Fig. 11 (a).

The Standard APC Loop

The standard APC loop is shown in Fig. 23(b). For the
network shown,

1 + pytc 1 + pyte
N{p) = = m •

y
1 + p — /.

m

m + pyte
m +

1 - m

1 + p — h
m

26 In experimental work this characteristic may be measured in
terms of/jjy. From (D-10), abovc/a^+Cw/^'^CA/)*.
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= wideband direct transfer component

+ long time-constant integration component

= resistive component

+ capacitive component. (D-14)

The differential equation in operational form is

N(p)o)e s in <£ = p4> — Aw (D-15)

which may be written as

1 -m
nt(f)c sin <f> ^ P<t> ""• Aw — •a>csin#. (D-16)

The term

l + p-te
m

1 - w
Aw -| wc sin $ s a>/

y
1 + p — te

m

(D-17)

is the Fourier transform of a time function representing
effective instantaneous impressed frequency difference.

- mf* sin 4

(a)

/ APC FREQUENCY PULL-IN
/ CONTROL CHARACTERISTIC

SYNC
SIGNAL PHASE

DETECTOR OSCILLATOR

l - m

i

(b)

REACTANCE TUBE

BLOCK DIAGRAM

Fig. 23—Standard APC loop.

When this loop is turned on, or has a signal applied
to it, the transient of stabilization lasts for a period of
time which depends on both the initial phase and the
frequency difference. However, the initial phase has only
a small effect on the pull-in time and may be neglected
for simplicity; the phase transient time, T+ is rapid
compared to the frequency pull-in time, TV. Fig. 22(b)
substantiates that for high dc loop gain (^00«90°)
normally ma>eT+<10. Then, using (C-15),

10 > ntUcT* « 4fKNTt
K

K + \
(D-18)

If # = £, 7V<(15/4/W), while if # = 4, T*<{2.1/fNN).

If the frequency difference is such that Af<mfe the
resistive component of loop feedback is adequate to en-
sure pull-in. The analysis presented above for simplified
loop shows the system never slips a complete cycle.

A definition of frequency pull-in time TV, and phase
pull-in time T* is desirable; the following are useful.

If the system never slips a cycle, then the transient is
defined as phase pull-in and measured in terms of the
phase pull-in time, TV

If the system slips cycles, then the period of time from
the instant of switching or excitation until a definable
point is reached from which the phase slip does not ex-
ceed a cycle is T>, the frequency pull-in time.

When the initial frequency difference is such that
Af>mfc, the long time integration component of feed-
back must be relied upon for pull-in.

The time constant (y/fn)tes=zy/(2wmfe) is long com-
pared to the loop time constant, te/tn, since yy>l. Be-
cause of this long time constant, the average bias
across the capacitor which may result from an unsym-
metrical beatnote wave form from the phase detector
will not change rapidly with time. It is not unreasonable
therefore to integrate the differential equation for this
APC loop over a cycle of beatnote.

Then

2TT

wwcSin <f> = wj « \ /(w7)2 — (wwe)
2 — wr (D-19)

TBN

O)I = Aw + m • o)c sin 0. (D-20)

1 + p — lc
m

At this point it is necessary to recognize clearly the
nature of the signal circulating in the APC loop. There
are two components; there is a cyclic component pro-
duced as a result of the average frequency difference,
and having a harmonic composition which is a function
of the frequency difference and hence of time during
pull-in; there is a low frequency drift component which
represents the slow change in frequency difference which
constitutes pull-in. It has been shown earlier that the
generated frequency shift, o)e sin 0, varies in an inverse
manner with Ac* or w7; thus, frequency changes slowly
except when cor is very near m<ac; stated another way,
almost all of the pull-in time is accrued under the condi-
tion that the rate of change of the beatnote frequency
is not comparable to the beatnote frequency. Therefore,
very nearly

t
1 - w

1+P— Um

wc sin 0J/««-
\—m

l+p—(ctn

- (p wc sisin 4>dt (D-21)
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and Then, if ra«l, approximately

1— m 1 — m v dt dp
o>e sin 0 « to, sin 0. (D-22) « » - ( v V - 1 + p)dp (D-26)

1 . >. y , i . A
 y , ?'c W ~ 1 - P

1 + p — te I + p — te
m and hence, integrating from p =p9 to p = 1,

The term coo sin 0 may be eliminated from the above
equations, giving a first order differential equation in ^F _ P° "" * , PoVPo ~" 1
< ,̂ the average angular frequency difference. ytc 2 2

1 — m 1 Po + v W ~ 1 ,_ „_.
wf - Ac = Ui . (D-27)

fy \ 2 1
^ w ' Except for p0 near 1? this is closely equal to

• - [ v W - (mcoe)» - " ^ ] . (D-23) ^> w , = / A / V (D.28)
W y/. \w/ c / (C-19)

This may be written more conveniently, dividing
through by moc, writing p = a>,/m<oo and po=Aa,/mWc which is the equation presented earlier,
and by operating on both sides with the differential T h e P o I e a t Po' = (2A«) - l can be included, writing
operator, l+p(y/m)tc.

 t h e simplified equation as

Then IL . PJL i < p,i < (1 _ A . (D-29)
/ , v l - w 3 * ! _ _ ^ _ p o , W }

1 + P - / . ) ( P - P O ) - (W-I -P) 2-»
\ m / m

The exact integration of (D-24) is accomplished with
the aid of the following substitution:

y dp 1 — m

Transposing p—po and separating the variables whence,

"7" = i_!P (D"24) ~P~~!T and 7z = ~l\7~)-
— tc po — P H ( v V — 1 — P ) T>,

m m A hen

This equation may be directly integrated (between — (z ) dz
the limits p=pQ and p = 1) to yield 7>. TF rei \ z /

The integration is accomplished with the aid of a " ^ = J ^ (2 _ w;22 + 2mpP2 + m
change of variable which permits the application of
some tabulated integrals. The equations obtained are The limits are
cumbersome; they are presented at the end of this ap- p == 1 z = — 1
pendix; they were used for the computations on which and
the several graphs presented are based. Fig. 20 presents P = Po ZQ = v V ~ 1 - Po.

the universal pull-in curves for the standard APC sys- R e f e r r i n g to H. B. Dwight, "Tables of Integrals and
tern. The following simplified analysis obtains the Big- O t h e r Mathematical Data,"" Integrals #160.01, #160.11
nificant conclusions, in simpler form. a n d # 1 6 1 n a r e u s e d

The limiting pull-in range may be determined as the
condition which makes the required pull-in time become Then
infinite. This occurs when the denominator of the above T

integrand has a real root. It will only occur when —!L =- — i In I C2 — m)z2 4- 2mpnz + m I
ytc \2(2 - m) IV '

Jm^L\^A/L^x
 (D-25) i

\ mfJ-V m ' (C-17) - ^ ln (2 _ w ) l . + 2mpoZ + m
A simple approximate solution for the "limit-curve" V2mpo/ 1 1 \ 2

may be obtained by eliminating from the equation the + [ " T ~ W "" 2 - m)V?(2 - m)m - {2mpo)'
L

factor which produces the above limitation. (Specifi-
cally, the small term (po-p) in the denominator is qrctan ^ "" ̂  + 2WP° 1 1 1 " '
omitted.) \Z4(2 - m)m ~ (2mpo)

2J) 19rm\/n-i-n
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—- 1

2(2 - m)

+

In
2(1 - mp0)

(2 — «)zo l + 2wpoZo + tn

2m W/ L
( /I ~ m\

(2 — w)zo2 + 2»tpoZo + »»'

2(1 - wpo)

1

;]

can be used, since (S+ay+P^S2 for signals of interest.
The instantaneous frequency of the amplitude limited

signal is

— \wsc-\ !

27TL
/(/)

* J
(E-7)

• arc tan
L y/m(2

tnpo

\/m(2 ~- m) — (mpo)2

2 + m

— arc tan-

m) - (mpo)2

mpo + (2 — m)zo

(D-31) ^he r m s frequency error due to noise is/rr

2TT L dt J rms
(E-8)

J}-\/m(2 — w) — (mpo)2

APPENDIX E

Reliability of Frequency Difference Detection

This Appendix presents some mathematical deriva-
tions relating to the reliability of frequency difference
detection.

The relations between rms frequency error and inte-
gration time are derived for

(a) the signal
(b) quadricorrelator frequency difference detector

preceded by limiter
(c) quadricorrelator frequency difference detector

alone.

Basic Signal Characteristics

The combination of signal and noise may be expressed
in the following alternate forms (omitting for the
moment the time gate factor)

S cos o)sc + Q>(t) cos otsct + b(t) sin o^sct (E-l)

in which the noise is related to the color subcarrier fre-
quency, or

S cos wsct + ao(t) cos wQt + h(t) sin aot (E-2)

in which the noise is expressed relative to the local oscil-
lator frequency.

After limiting, the signal can be expressed as

S cos (u>sct + *(/)). (E-3)

The phase modulation due to noise is 0(/).

<j>(t) = arc tan
b(t) HO

S + a{t)

as a first order approximation.

Then

(E-4)

d<j>

It

db J

(5 + a)' + b*
As a second order approximation, the relationship

•<*#.. b(t) , a(t)b(t)

(E-5)

*(') I — dt « h
J dt S

(E-6)

The signal amplitudes will also be useful in this
analysis.
Then

S = %hSo = amplitude of a burst

Sd — %hSod = average amplitude of the component at the

burst frequency with gate duty cycle d.

The rms value of b(t) is the square root of the noise
power. If effectively passed through a filter of bandwidth
//7, and gated with a duty cycle d, the noise power per
unit time is d(Nw2/fw)fii and hence, the first order ap-
proximation for r̂m, is

</>roiB

Nw /Ju_
\hSoV dfwS lihSoV dfi

(E-9)

These relations are useful in evaluating the relation
between integration time and reliability of the best pos-
sible frequency difference detector which might be used
for the signal.

To relate reliability to time, the signal information
may be averaged over a period TV, and the rms value of
the average then has improved reliability by virtue of
integration. As in the case of phase information, it is
convenient to use a rectangular time aperture for a
standard of comparison for integrators.

Then

/•«--;£-[ fTi[f(Q-f*c]dl\ (E-10)
1 J L J 0 J rrna

.iff "1**1
T / L ^ o 2TT dt J r m ,

[*(*/) - * ( 0 ) ] ™ .
2ir7V

V2
2irTr

&.

and therefore, using the first order approximation
above,

The term (So/Nw)Vfw is the signal-to-noise-density
ratio.

The factor (1/TI)VJH has the dimensions of (fre-
quency)8'2; such terms normally result in frequency
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modulation noise analysis due to the triangular spec- entiating circuit from the cosine channel to the sine
channel.

Then, since sin2 x = \ — § cos 2x, and since

Aw cos 2[/W - $\dl

trum of the noise.27

The second order approximation is

fn - j - f fey+f^r (E-i2)

Note here that rms values add in quadrature.

The second term varies as

= cos 2[Aw/ - 0]-d[<W

we obtain

\ oo V tw/

f(l) = A/ +

and for signal-to-noise ratios which at present give satis-
factory monochrome video signals is small compared
to the first term.

•o

1-37

where

1 r w
2ivTi J I^Q

1 r
2irZj J <»

i\ S3 Aw/ — <f>(t).

d(j>

cos 2t]dt] (E-20)

Quadricorrelalor with Limiter Thus the output noise consists of two components:
the first represents the frequency noise of the signal;

The quadricorrelator is shown in Figs. 13 and 14. ; t could be measured as output noise if «flC were Anoiwi.
The second represents extra noise introduced by the
measurement of an unknown frequency in this circuit.

The quadrature reference is RQ.

RQ = sin wof.

The in-phase reference is Rr.

R[ = cos w0/.

(E-13)

(E-14)

Then

fn
V2irTr

[«rm.2 + extra noise2]1'2. (E-21)

The cosine beatnote is the beatnote between the input T h e e x t r a n o i s e -s evaluated as follows:
signal and i?/. This is conveniently expressed as

— [S cos (wsct + 0)] cos w0/

= cos [[wo - o)Sc]l - *(/)]. (E-15)

The sine beatnote is then

1 r '-ft

2rTr J <-o
COS 2rjdr]

i
2irT,

[\ sim 2,(77) - h sin 2*(0) ]. (E-22)

— [5 cos (wSct + <t>)] sin «0*

The derivative of the cosine beatnote is

Two effects are indicated:
(a) Due to the use of a rectangular time aperture, an

extraneous "sampling distortion" term appears unless
AwT/ = a multiple of 2ir, which is therefore assumed for

sin [[wo - u>sc]t ~ *(/)]. (E-16) simplicity.
(b) The output noise has the character of random

noise which is passed through a nonlinear amplifier
f ^ 1 *•« rr 1/ ^ / A ! n? ̂  having a gain proportional to the sine of the input.

— wo — wsc sin [|wo — wscJZ — < (̂/)J. (JE-1'J ° & ^ ^ ^
L dtj

This crushes the noise peaks and reduces the rms value.
Then, since sin2 x<x2

Let

w0 — cose = Aws 2TTA/. (E-18)

Then, the indicated frequency, which is the integrated
output from the product of the signals expressed in Jf t h e r e i s s u b s t a n t i a I integration (fffTr»l), the two
(E-16) and (E-17), as multiplied in the output syn- n o i s e components approach complete independence and
chronous detector of the quadricorrelator, is, with due a d d ;n q u a d r a t u r e , h e n c e at worst,

L2irrj

1 rl~Tl l y/2
—- cos 2vdv < —— «rm8. (E-23)
*•?/ J <-o Jrmfl 2irTr

/ r r
TTI

0rrr (E-24)

regard to signs,

f(t) « j Aw sin2 [Aw/ _ ^t)]dL (E49)
nTt Jo L dtj

The polarity of the mdicated frequency may be re- f r e q u e n c y difference to within a few db of the ultimate
versed (when so required) by transferring the differ- r e I i a b i I i t y p e r m i t t e d b y s i g n a l information. It has no

Thus, the quadricorrelator, with a limiter, measures a

27 M. G. Crosby, "Frequency modulation noise characteristics."
PROC. I.R.E., vol. 25, pp. 472-514; April, 1937.

"detuning" error. The stepped characteristic may be in-
troduced to give
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/ _ * , / / tf VNN now appears. This is a two-dimensionally noise modu-
ma ~ TTF V fH ' ' lated sine wave, of the type shown in Fig. 16. The band-

c- r N̂ <W L • . , width of the noise, however, is such that it heterodynes

Since fa»2fsn9 the simpler equations above are ade- w i t h t h e c a r r i e r t o p r o d u c e a d c c o m p o n e n t T h e n , t h e

q u a t e # integral of this term has the rms value

Quadricorrelator without Limiter A w ^ Ato a m

The input signal is ^ ] ^ = - ~ ^ = (E-33)

S cos oisct + ao(t) cos corf + h{t) sin to0*. (E-2) . . . /• T« _* _.• i_ • T.L
v y since there are//r7Y effective harmonic components. The

The cosine beatnote is proportional to remaining term is evaluated as follows, integrating by
/A parts:

cos Ao>* + —^-• (E-26) r , ^ n » n

S f 1 rr^o 4 1

The sine beatnote is *-rTt JO S2 dt Jrm8

« n ^ + — . (E-27) - [ 7 r 7 J c ^ 7 r ^ J r n i 8

The derivative of the cosine beatnote is _ J__ J"_£_ f r/ JL — (a h )di]
1 <W<) V ^ L a r / J o 52 A fl°° Jrm8

- A w sin Aul H ^- • (E-28) , , , »
S dt ^JL^hlH. (E-34)

The quadricorrelator output is f

1 T T T 1 ^oi T h e n

7rr fJ0 L 5 dl \ 1/(0 - A/Jrm.

.[sm AŴ  + 7 j r f / - f™ - TTT L [ ^ — ; + ^ r - ; J

1 f r ' 1 da0 (E-29) t f 2A/ aormBlH1/2

= A/ I 1 sin tortdt +• - 7 = = • (E-35
7rrf Jo 5 rf/ I \ZfnTt SAA

1 T ; ^ _ , . * , , , These terms add in quadrature as they represent in-
irTr J 0 S ° dependent random variables. The first bracketed term

1 rTl 1 da ls °^ s * m ^ a r f ° r m as» but 3 db larger than, the second
I — 60 dt. order signal approximation presented in (E-12), and is

TTTI J 0 S2 dt nearly equal to
The evaluation of the several terms is aided by in- * a°rms

 #

tegration by parts: irTr S
_ * f ^̂  J_ f ^ s j n ^a.^/ The extra noise due to amplitude modulation appears

wTr J0 S tdt in the last term of (E-35). The ratio of the AM com-
4 Tt ponent of noise to the FM component of noise is near

= s j n k^t — rm

—.. • (E-36)
1 rTi ^ VfnTr

-| I _____ ao c o s Aw/̂ /. (E-30)
TrTr J Q S When A/ is small, the quadricorrelator without a

'^hen limiter approaches the limit of performance permitted
by the signal. When A/ approaches J/n, a poorer signal-

[ * „. A #
 a° T /1 * flOrins ,T? 71 \ to-noise ratio is obtained. The time TV must be selected

sin Aw/— = • (E-31) , - 1 ^ j 1 i_

L wTr S 0 Jrms vTt S so that/rma does not exceed some selected value, when
A/ is the nominally maximum design value for pull-in

T h e t e r m range.
1 r Tl Ato Equation (E-3S) shows that the operation of pulling

~~~ZT I ~7T l*o(O sin Aa/ + ao(t) cos Aa/J(i/ (E-32) j n r e s u i t s in a large reduction of output noise from the
quadricorrelator.
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Charge-Pump Phase-Lock Loops
FLOYD M. GARDNER, FELLOW, IEEE

Abstract—Phase/frequency detectors deliver output in the form of
three-state, digital logic. Charge pumps are utilized to convert the
timed logic levels into analog quantities for controlling the locked
oscillators. This paper analyzes typical charge-pump circuits,
identifies salient features, and provides equations and graphs for the
design engineer.

I. INTRODUCTION

PHASE-LOCK loops (PLL's) incorporating sequential-logic,
phase/frequency detectors (PFD's) have been widely used

in recent years [1] - [ 5 ] , [6, ch. 6 ] . Reasons for their popular-
ity include extended tracking range, frequency-aided acquisi-
tion, and low cost. A charge pump usually accompanies the PFD,
as illustrated in Fig. 1. The purpose of the charge pump is to
convert the logic states of the PFD into analog signals suitable
for controlling the voltage-controlled oscillator (VCO).

Good understanding of the PFD itself has been attained but
very little has been published on the operation of charge
pumps. In consequence, design of PLL's containing charge
pumps has often proceeded as an intuitive extension of con-
ventional PLL's. That approach obscures the special benefits
and the special problems of a charge-pump PLL.

The intent of this paper is to place the design analysis of a
charge-pump PLL on a sound basis so that its special features
are recognized and can be either utilized or avoided, as neces-
sary. In Section II we introduce the basic charge-pump model
and derive the loop transfer function based on assumptions of
small error (linearized loop) and narrow bandwidth as com-
pared to the input frequency (continuous-time approximation).

Section III is devoted to second-order PLL's wherein it is
shown that Type-II operation is obtainable even with a passive
loop-filter. This behavior is contrary to that obtained in con-
ventional PLL's and is a particular benefit associated with
charge pumps.

A continuous-time approximation is not valid if the loop
bandwidth approaches the input frequency. In that case, the
discrete-time—or sampled—nature of the loop must be recog-
nized. In particular, sampling introduces stability problems
that do not exist in continuous time networks; the stability
limit for the second-order loop is presented.

Furthermore, the control voltage (vc in Fig. 1) has large,
rectangular excursions (ripple) on each cycle of operation.
Ripple magnitude is shown to be proportional to loop band-
width; ripple can easily be so large as to overload the VCO.
The existence of ripple places limits on the application of the
simple second-order loop.

Paper approved by the Editor for Communication Electronics of the
IEEE Communications Society for publication without oral presenta-
tion. Manuscript received Janaury 4, 1980; revised May 27, 1980.

The author is at 1755 University Avenue, Palo Alto, CA 94301.
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Fig. 1. Phase-lock loop with three-state phase detector and charge
pump.

Filters are frequently added after the charge pump to re-
duce the ripple. Section IV describes the loop performance
obtaining from addition of a single capacitor-the simplest-
possible ripple filter. The loop is now third order (although
still Type II) so analysis is more complicated. Root-locus plots
are given for the continuous-time approximation. For wider
bandwidths, a discrete-time, linearized analysis yields a z-
plane characteristic-function from which pole locations and
stability limits may be obtained. Ripple reduction factor is
also set forth.

Results of a nonlinear, discrete state-variable analysis of the
second-order loop are described in Part V. It turns out that
transient settling times of wide-band loops obtained by dis-
crete-time analysis are very similar to the scaled settling times
of narrow loops analyzed on the ordinary continuous-time
basis. Similar analysis is possible for the third-order loop, but
has not been pursued.

II. MODEL

The states of a sequential-logic PFD are initiated by edges
of the input waveform. In Fig. 1, if the /{-input phase leads the
F-input phase, then an edge of the R input sets the U (de-
noting "up") terminal true. The next V edge resets the U
terminal false. As long as R leads F, the D (for "down")
terminal remains false. Conversely, if Fleads, J?, a Kedge sets
D true and the next R edge resets D false.

Both U and D can be false simultaneously, or either one
alone can be true, but both can never be true simultaneously.
Therefore, a PFD has three allowable states at its two output
terminals. The states will be denoted as U> D, and TV, where the
last connotes "null" or "neutral."

It is also possible to have combinatorial (or multiplier; see
[6, ch. 6] for terminology) phase detectors with three-state
logic outputs as in [7] and [ 8 ] . A combinatorial PD does not
have the frequency-detector properties of the sequential PFD,
but the charge-pump analyses given here apply to either type
of circuit in the phase-locked condition. Matters of frequency
acquisition are not treated in this paper.

Reprinted from IEEE Trans. Cornm., vol. COM-28, pp. 1849-1858, November 1980.
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Assume that the PLL is locked and denote the frequency of
the input signal as coh radians/second. Let the phase error be
0/ — 0O = 0e radians. The ON time1 of either U or D9 as ap-
propriate, is

tp = \0e\/cJi (1)

for each period 27r/co/ of the input signal. (The subscript "p"
connotes "pump.")

These two features-the three-state description and the ON-
time equation—completely characterize the PFD or PD for
purposes of this paper.

A charge pump is nothing but a three-position, electronic
switch that is controlled by the three states of the PFD. When
the switch is set in the U or D position, it delivers a pump
voltage ±Vp [Fig. 2(a) and (c)] or a pump current ±Ip [Fig.
2(b) and (d)] to the loop filter. In the N position, the switch is
open, thereby isolating the loop filter from the charge pump
and the phase detector. This open condition is not encoun-
tered in the conventional, analog PLL's and it engenders
important, novel characteristics, as will be seen presently.

The loop filter can be either passive, as in Fig. 2(a) and (b),
or active, as in Fig. 2(c) and (d). The significant features of the
filters to be studied here are contained in the impedance
ZF(s) of Fig. 2, where 5 is the Laplace-transform complex
variable.

Most attention will be given to the current-pump, passive-
filter configuration of Fig. 2(b). This choice is made partly
because analysis is simplified but also because the configura-
tion is eminently practical under many real-life conditions. It
will be shown that performance of the other three configura-
tions is readily obtained, at least approximately, from the
analysis of 2(b).

Because of the switching, the charge-pump PLL is a time-
varying network; an exact analysis must take account of the
time variations of the circuit topology and that is a more-
involved procedure than usually found in the common time-
invariant networks. In particular, simple transfer-function
analysis is not directly applicable to time-varying networks.

In many applications, the state of the PLL changes by only
a very small amount on each cycle of the input signal. That is,
the loop bandwidth is small compared to the signal frequency.
In these cases we may not care about the detailed behavior
within a single cycle and may be interested only in the average
behavior over many cycles. By applying an averaged analysis,
the time-varying operation can be bypassed and the powerful
tool of transfer functions retained for our usage. The re-
mainder of this section is devoted to the derivation of average-
operation transfer functions. Be aware, though, that the per-
cycle behavior can be important even for quite narrow band-
widths, as will be shown later.

Using Fig. 2(b), a pump current Ip sgn 6e is delivered to the

1 Equation (1) is exact if the VCO leads the input signal but is an
approximation, valid for small bandwidth (compared to input fre-
quency), if the signal leads the VCO. The approximation arises because
the VCO phase can change during the ON interval. The effect is usually
negligible and is considered further in Section V.

(c)

Fig. 2. Charge pumps and loop filters.

filter impedance Zp for the time tp on each cycle. Each cycle
has a duration lir/cjj seconds so, utilizing (1), the average
error current over a cycle is

id =Ipde/2n amps. (2)

Equation (2) is also the error current averaged over many
cycles, provided that both inputs are periodic—that no input
cycles are missing. However, in some applications—notably, in
recovery of clock from digital bit streams-edges, or pulses, of
the R input will be missing at random. To avoid imposing an
erroneously large error current upon the PLL, it is necessary
to arrange the logic circuits to recognize the absence of R and
to force the circuit into the N state upon those occasions. If
the average error current on a single cycle is id> as in (2), and
if the probability of occurrence of R (the so-called transition
density) is denoted d, then the average error current over
many cycles is idd. Where applicable, d must be factored into
each of the following expressions that treats average behavior.

Oscillator control voltage is given by

Vc(s) = Id(s)ZF(s) = IpZF(s)6e(s)/2n (3)

where Id(s) is the Laplace transform of id(t), and similarly for
the other symbols. For a locked loop (the only condition for
which transfer functions are applicable, because of out-of-
lock nonlinearities) the VCO phase is given by

Oo(s) = K0Vc(s)/s (4)
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where Ko is the VCO gain2 in radians/second/volt. These These quantities are interrelated by

expressions, plus 0e(s) = Qfa) — 0o(s), lead to the loop trans-

fer functions K = 2? cort

eo(s)= KQIpZF(s) _

di(s) 2ns + K0IpZF(s)

2nsOe(s)

Ofy) 2ns + K0IpZF(s)
= l -«C0-

(5)

(6)

These functions apply for any ZF.
An important property of any PLL is the static phase error

[6, ch. 4] or loop stress that arises from a frequency offset
ACJ between the input signal and the free-running frequency
of the VCO. Applying the final-value theorem, as in [ 6 ] , the
static phase error is found to be

On —"
2nA<x>

K0IpZF(0)
rad. (7)

The foregoing results were all obtained for the configura-
tion of Fig. 2(b): the current switch with passive filter. Much
the same expressions arise for each of the other three configu-
rations. For an active filter, it is necessary to take the polarity
reversal of the operational amplifier into account. For a volt-
age switch, the same equations as above occur if we let Ip «
VplR\. For Fig. 2(a)-~ voltage switch with passive filter-the
resulting equations are approximate with the approximation
being valid only if I vc \^Vp.

III. SECOND-ORDER LOOP

Continuous-Time Approximation

A large preponderance of applications utilize second-order
PLL's. To obtain a zero-stabilized, second-order loop, consider
a loop filter function

ZF2(s)=R2 + l/sC (8)

which is produced by a series connection of a resistor and a
capacitor.

To systematize the notation, define

T2 =R2Cs

wB = (KoIpHnCf rad/s

i
= r2 [K0[p~t

2 \_2nCJ

* = ^ ^ - 2 r a d / S .
2n

2 Notation throughout corresponds to that established in [ 6 ] .

(9)

*7 2 =4? 2

* /T2=<Ow
2 (10)

where K is the loop gain, coM is the natural frequency and f is
the damping factor. Any two of the three parameters com-
pletely define the linearized, time-averaged behavior of the
PLL. Substituting (8) and (9) into (5) and (6) gives the trans-
fer functions for the second-order, charge-pump PLL. They
turn out to have exactly the same form as obtained for a con-
ventional second-order PLL [6, ch. 2 ] . Therefore, to the ex-
tent that the various approximations are valid, the charge-
pump PLL has exactly the same small-scale behavior as con-
ventional PLL's with the same values for the loop parameters.

To explore further, we note that ZF(Q) = <» so that the
static phase error, from (7), is zero. This desirable performance
is achieved with a passive filter. To approach zero static phase
error in a conventional PLL requires an active filter with large
dc gain. Therefore, the charge pump permits zero static phase
error (Type-II response) without the need for dc amplification.
This effect arises because of the input open circuit during the
N state and does not necessarily depend upon use of an active
current switch. The same behavior is found in any of the four
configurations of Fig. 2.

Practical circuits will impose some shunt loading across the
passive filter impedance. Denote the load as a resistor Rs. The
actual static phase error, from (7), will be

0v =
27rAco

KQIPRS

rad. (ii)

Shunt loading is most likely to come from input impedance
of the VCO control terminal or from the switch itself. Both
impedances can be made extremely large. The VCO may be
varactor-tuned, which implies near-infinite resistance, and the
switch is typically a reverse-biased semiconductor. Some other
variety of VCO could utilize a high-impedance buffer, if neces-
sary to isolate a small-input impedance.

When Rs is very large, then leakage current may be more
significant in producing phase error. The phase error 6b

resulting from a bias current Ib injected continuously into the
filter node can be calculated as

0b = 2nIb/Ip rad. 02)

An active filter, incorporating an ideal op amp, will, of
course, obviate any static phase error from VCO control-
terminal loading effects.

Although the various results above were obtained specifi-
cally for the configuration of Fig. 2(b), they also apply for the
other three configurations, as noted at the end of Section II.
However, the voltage switch with passive filter [Fig. 2(a)]
exhibits a curious nonlinearity that may disqualify it from
serious consideration in many applications. Denote the voltage
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on the capacitor as vx. Pump current is (vp - ux)l(Ri + R2)>
where vp = ±VP with the sign determined by the phase error
direction.

For small vx, the pump current is influenced little by the
capacitor charge so vx could be neglected in determining the
approximate behavior of the circuit. If vx should become
large then it cannot be neglected. (A large vx would be re-
quired if the VCO needed a large uc to tune it to the proper
frequency. Capacitor voltage vx is "large" if its magnitude
reaches a significant fraction of Vp; it can never exceed Vp.)

Let ux be some positive voltage. When vp = +Fp, then the
pump current is ip+ = (Vp - vx)l(Ri + R2) while a negative
vp drives a pump current of ip_ = ~(Vp + vx)l(Ri + R2).
These currents are unequal—substantially so if vx is large
enough-so loop gain about this vx operating point will be
larger for negative phase errors than for positive. It is un-
likely that any significant asymmetry can be tolerated in
most applications.

Granularity Problems

All of the foregoing is based on averaged-response, time-
continuous, constant-element operation of the loop. There are
features arising from the actual discontinuous operation that
need attention, even for narrow bandwidths. The primary fea-
tures are loop stability and phase-detector ripple.

In some sense, the loop operates on a sampled basis and not
as a straightforward continuous-time circuit. A sampled system
almost always has more stability problems than arise in con-
tinuous-time systems. In particular, an analog, second-order
PLL is unconditionally stable for any value of loop gain, but
the sampled equivalent will go unstable if the gain is made too
large. Prudent design requires that the stability limit be known.3

A linearized, sampled analysis is presented in Appendix A.
The end result is the characteristic equation (denominator of
the transfer function) of the sampled PLL in the z-plane,
which has the form

Z>C0 = (z-l)2+(z-l)-
2irK'[

I I
0}jT2 I

2n 1 4n2K'
1 H N r -

Ufa] O>i' T2

(13)

where K' = Kr2 may be regarded as a normalized loop gain,
<Oj is the input frequency, and r2 = R2C is the time constant
of the filter zero.

Transient response for small phase errors and loop stability
are studied by examining the locations of the zeros of D(z)—
the poles of the z-domain transfer function. The root locus
shows pole locations in the z plane for varying K'\ an example
is sketched in Fig. 3. The shape of the locus is very similar to
that of a conventional second-order loop in the s-plane [6,
ch. 2 ] .

The two poles start at z = 1 for K' = 0 and move on a

3 Tal [9] has investigated sampled-stability of a phase-locked speed-
control servo that uses a PFD and a simple lag filter. His problem differs
somewhat from that considered here and his method provides an alter-
nate approach.
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Fig. 3. Root locus plot of second-order loop in z-plane.

circle with center at z = (1 + 27r/co^r2)~
1 for values of

4
K'<-

(1 + 2<n/G>iT2)
2

For larger K\ the poles lie on the real axis; one pole migrates
towards the center of the locus circle and the other migrates
towards —°°.

The loop is stable only if the poles lie inside the unit circle.
Instability results where the outbound pole crosses the unit
circle at z = - 1 , as noted in Fig. 2. Normalized gain at the
crossing point is

K'=-
1

(14)

W/72

1 +
<*W2 /

This value of K' is the stability limit and is plotted in Fig. 4.
Ripple is another granularity effect that demands attention.

Upon each cycle of the PFD, the pump current Ip is driven
into the filter impedance ZFi which responds with an instan-
taneous voltage jump of Avc = IpR2. At the end of the
charging interval (t = tp), the pump current switches off and a
voltage jump of equal magnitude occurs in the opposite
direction.

Frequency of the VCO follows the voltage steps so there
will be frequency excursions of Aco0 =K0IpR2 = 2TTA: radians/
second for each pump pulse. The phase excursion during the
pump interval tp will be A0O = 2irK\6e I/a;,- [using (1)], so
the phase jitter vanishes for Be = 0. (A not-unexpected hap-
pening since the pump pulses are supposed to vanish for 6e =
0.)

Some applications (e.g., bit synchronizers) may be able to
tolerate such frequency jitter, but others (e.g., frequency syn-
thesizers) may require much better spectral purity.

A possibly more serious consequence of the jumps is the
potential for overload of the VCO, even if the indicated ripple
is allowable from a spectral-purity standpoint. Any real VCO
has only a finite frequency range over which it can be tuned. If
control voltages outside of this range are applied, the VCO fre-
quency is unable to follow. (In fact, oscillations may cease or
the circuit might even sustain damage.) We require that the fre-
quency jumps remain within the allowable tuning range of the
VCO under all conditions.
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Fig. 4. Stability and overload limits for second-order loop.

As an extreme instance, the frequency jump must not
exceed the input frequency. A larger jump would imply that
the VCO frequency was driven negative—a meaningless status.
For this extreme condition, the overload bound is inK < co*
or, in normalized form

K'Kufofen. (15)

A multivibrator, operated near the center of its tuning
range, might be able to approach the excursions implied in
(15). Most other oscillators will have a much smaller tuning
range and therefore will be restricted to use in PLL's with
much smaller values of K.

As a comparison to the stability limit, the overload limit of
(15) has also been plotted in Fig. 4. It is apparent that over-
load is the actual restriction on loop gain; overload sets in at a
lower value of gain than does instability for any practical
circuit.

In all discussion of granularity effects it has been assumed
tacitly that all transitions are present. If transitions can be
missing at random, as in bit-clock recovery applications, then
there may be a data-pattern-dependent jitter induced into the
VCO phase. That problem is not treated in this paper.

IV. THIRD-ORDER LOOP

Origination

The frequency jumps inherent to the second-order loop
usually cannot be accepted and additional filtering is often
included within the PLL in order to mitigate the ripple. The
simplest ripple filter is an additional capacitor C3 in parallel
with the earlier RC impedance, as shown in Fig. 5. Defining
b = 1 +C/C3i we obtain

£F3(*) :
fb-l\ ST2 + 1

(16)

S=3 '-JJ
r

Fig. 5. Filter for third-order loop.

loop transfer function from (5) is found to be

H(s)=-
-£?H)

S T * • .2+ s2+K\ * r
K(b-l)

br2

(17)

Retaining the previous definition (9) for K9 the closed-

where the continuous-operation, time-averaging assumption
has been made.

Simple addition of C3 across R2 + 1/sC ought to serve very
well for the passive filter but is not likely to be satisfactory for
the active filter. The operational amplifiers would be required
to deliver step currents of Ip on each cycle, which is likely to
be beyond the slew capabilities of most amplifiers. Rather
than attempting to accommodate the current by brute force
amplifiers, it is more conservative to prevent the current step
from ever reaching the op amp, as in the circuits of Fig. 6. The
general characteristics of these circuits ought to be much the
same as those for the simple passive circuit, but some fine de-
tails will differ. This paper treats only the passive-filter, cur-
rent-switch circuit.

Properties

The transfer function (17) has a denominator of third de-
gree, so the system is a third-order PLL. In the open-loop
transfer function, the additional pole is located at s = — &/T2 ,
which is far away from the dominant, low-frequency poles for
large b. If C3 is small compared to C(b > 1), then we should
expect only high-frequency effects from the additional fil-
tering. Low-frequency properties should be essentially the
same as for the second-order loop.

In particular, the steady-state responses will be the same as
for the second-order loop. The static phase error caused by a
frequency offset will be zero and the phase lag caused by a
frequency ramp will be Ba = co/ww

2 , [6, ch. 4] where co is the
slope of the ramp. Although the loop is third order, it is only
Type II.

The s-plane root locus of (17) has been studied in [6, ch. 8]
for another application. Root loci are shown in Fig. 7 for
various selections of b. For large b and small-enough K' (the
normalized loop gain) the dominant poles are virtually un-
changed from the locations expected for the second-order
loop. As K' becomes very large, the outward-bound real pole
meets the extra pole coming in from — bfti and the pair go
complex asymptotic to a vertical line at s = — 0.5(b — l )r 2 . The
loop could become seriously underdamped for large gain.

As b is reduced, the breakaway point for the vertical asymp-
tote approaches closer to the low frequency portion of the
locus; if b < 9, the locus never returns to the real axis and is
underdamped for all values of K'.
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If b < 1, then the loop is unstable for all K1. In the con-
figuration of Fig. 5 it is impossible to have b < 1, but it is
entirely possible in Fig. 6. (In terms of the component values,
b is defined differently in Fig. 6 than in Fig. 5, but the transfer
function and root locus plots have the same form for both
configurations.)

This stability impairment caused by the third pole is calcu-
lated on the basis of assumed continuous-time operation.
Time-discrete operation can be expected to cause even more
impairment. To investigate stability of the third-order loop, an
analysis similar to that given in the Appendix was performed.
(The analysis is omitted here because of space constraints.)

The criterion for stability—all poles inside the unit circle—is
satisfied if

KT2<
4(1 + a)

2ir(ft-l)r2ff(l+g) 2(1—^X^—1)1
(18)

where

a~ exp

Knowledge of the stability limit alone is not sufficient for
good design; some insight into the transient response is also
needed. To that end, the 2-plane characteristic equation is

D(z) = z* +z - f l - 2 + Gf
27r , (1-aXb-l)

W/T2 b

+ z 2a + 1 -G 2m t ( 1 - < I X 6 - 1 ) \
- +

\Ufl2
a (19)

where

G£A2nKT2(b-l)

btOiT2

The zeros of D(z) are the z-plane poles; their location defines
the response to transients.

Fig. 8 shows the stability limits for several values of b.
Given values for b and co/72, a ny value of Kr2 below the curve
yields a stable loop while any value above the curve is unstable.

Because of the extra capacitor, control voltage vc describes
a continuous, ramp-like, exponential function for each pump
pulse, instead of the rectangular jump that was found for the
second-order loop. The same analysis that provided the stabil-
ity limit gives the ramp amplitude as

|Acoo b = 2nK
\ * A b \

U>iT2

_o\ve\ \ I n
+ i_d (20)

COiT2J

as compared to I Acoo l2 = 2KK for the second-order loop. De-
fine j3 = I Aco0 I3/I Aco0 l2, and assume b\6e l / c o ^ < 1 (not
necessarily true, but a common condition). Then the suppres-
sion of unwanted frequency excursion provided by the extra
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capacitor is

(fr — 1) | 0e I
jjas-

O)tT2

(21)

When the loop is tracking near equilibrium, 16e I is very
small so the suppression afforded by C3 can be substantial.

V. TRANSIENT RESPONSE

The results in all of the preceding sections—the continuous-
time approximation, the z-plane characteristic function, and
the stability limits—were all based upon an assumption of
small phase error. That assumption fails for large phase errors
such as occur during acquisition of lock. An analysis was per-
formed for large phase errors for the second-order loop; the
analysis is outlined in the Appendix.

In essence, the method is to consider the loop state vari-
ables of phase error and frequency at the instant immediately
before each pump pulse. These state variables are related by
difference equations which were iterated numerically on a
programmable calculator. The resulting printout is a sequence
of the state variables along with the times of occurrence.

Two different displays are possible: frequency- or phase-
error versus time to show the familiar transient response, or
frequency error versus phase error to produce a phase-plane
portrait [10 ] . Examples of both are shown below.

The question to be addressed is the following. If band-
width (or gain, K) is very small compared to the switching
frequency to,-, then we know that the continuous analysis
provides an excellent approximation to the behavior of the
charge-pump loop and we can utilize the extensive informa-
tion available from the study of conventional, analog PLL's.
In many applications we want to be able to use a large band-
width. Therefore we ask, "How small can COJ/K be made before
behavior departs significantly from that predicted by the con-
tinuous-time analysis?"

Several example calculations were performed in order to
explore the question. A value of K* = 2, corresponding to
f = 0.707 in the continuous PLL, was chosen as representative
of many applications. Referring to the overload curve of Fig.
4, it can be seen that the VCO is certain to overload unless

G)jT2 > 12.6, or, in other words, CJJK > 12.6/2 = 6.3. To
allow some margin on the limit, a value of COJ/K = 1 0 was
chosen for the example calculations. For practical VCO's that
is probably still too small a ratio but it will illustrate the re-
sults very well.

Transient phase error in response to a phase step of ±6 rad
and of a frequency step of ±2K radians per second were
calculated for the conditions of CJI/K = 1 0 and °°. The latter
corresponds to the continuous-time PLL. Transient curves are
plotted in Figs. 9 and 10, respectively.

It is apparent that, even for such a low frequency as com-
pared to bandwidth, the response of the charge-pump loop is
very close to that of the classical, continuous loop.

Asymmetry between positive and negative phase errors is
evident for the charge-pump loop. (The classical loop, of
course, has symmetric response with respect to error polarity.)
This asymmetry arises from the polarity-asymmetric depen-
dence of pulse duration upon phase error (see the Appendix)
and dwindles as tOj/K is made larger.

The same program yields a phase-plane solution of the PLL.
Example trajectories are shown in Fig. 11. Asymmetry is also
apparent in this display. Each marked point represents the
state of the system at the starting instant of consecutive charge
pulses. The points have been connected by Straight lines, to
aid in following the individual trajectories, but the actual
trajectory between two calculated points has not been deter-
mined and there is no reason to suppose that it would be linear.

The shape of the trajectories may seem rather peculiar; the
vertical sections do not occur on the Aoo = 0 axis as is ex-
pected from previous phase-plane plots [10 ] . The discrepancy
arises not from the charge-pump action, but from the choice
of state variables. Here the variables are 6e and Aco = CJ,- —
ft0 ~~ KoVx> where Sl0 is the free-running frequency of the
VCO and vx is the voltage stored on the capacitor C in the
loop filter. The usual phase-plane plot uses 6e and 6e as the
state variables. Proportional and integral elements enter into
0e whereas only integral elements contribute to the frequency
variable in Fig. 11. If equivalent state variables were defined,
then similar, skewed trajectories would also be obtained for
the classical loop.

It is clear that the loop converges towards equilibrium
without difficulty, at least for the trajectories examined. At-
tempts were made to examine trajectories with larger initial
frequency errors. An overload phenomenon intervened: a
phenomenon that the program was not designed to accom-
modate, so an error message was produced instead of a trajec-
tory. Inasmuch as the loop was running very close to the
nominal overload as deduced from Fig. 4, the program break-
down for small cOf/K was not pursued further, on the supposi-
tion that a practical loop would break down under even more
restrictive conditions.

Trajectories were also obtained for toJK = 100. Much
larger Aco/K values could be accommodated for that condition
and the program breakdown was not encountered again. With
large enough initial frequency error, the loop does not con-
verge within the phase interval ("-27T, 2IT) but slips one or more
cycles before settling. The program was not designed to ac-
commodate phase excursions beyond ±2n> so no results are
provided.
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Fig. 9. Response to phase step. A0 = ±6 rad; KT2 ~ 2; second-order
loop. ^ilK = - ; x ~ X wtIK = 10.

TIME,.t/r2

?-2-

Fig. 10. Response to frequency step. Aw/A" = ±2;A>2 = 2; second-
order loop. LJi/K = ~ , X - X tJi/K = 10.

(The phase-plane portrait for an ordinary phase detector
is periodic in In, but the PFD portrait is more complicated.
One can consider that Fig. 11 is the central region of a phase
portrait but the outer regions to either side of center each ex-
tend over only ~2n to 0 or 0 to +2ir. The PFD portrait is not
strictly periodic.)

Calculations were performed only for the second-order
loop, but the third-order loop resulting from the filter of Fig.
5 is more likely to be employed in real applications. It is
possible to calculate the transient response of the third-order
loop in much the same way employed for second-order by
taking account of three state variables. That has not yet been
accomplished. Moreover, state trajectories for a third-order
loop are three-dimensional and cannot be displayed readily on
a two-dimensional sheet.

If the extra capacitor C3 is effective, the third-order loop
ought not suffer from VCO overload. Instead, stability limits
the allowable gain for a given switch frequency (as in Fig. 8).
From Fig. 7, we see that is it improbable that we would ever
take b significantly less than about 10. UK! = 2, then the
stability limit for b = 10 from Fig. 8 is cof/K «* 7.5. To obtain
some stability margin, a value of OJJK in excess of 15 to 20
might be considered reasonable. In light of the results obtained
with the second-order loop it seems fair to predict that response
of the third-order charge-pump loop will be very much the
same as that of the equivalent continuous-time loop.

VI. CONCLUSIONS

The conventional-wisdom rule-of-thumb has been that
switching granularity effects can be neglected if the switching
frequency exceeds 10 times the loop bandwidth. This paper

-5

Fig. 11. Phase-plane portrait; second-order loop. KTJ - 2; u>j/K - 10.

has shown that the rule-of-thumb is not far wrong if considered
as an approximate outer limit beyond which troubles begin to
appear. Somewhat more conservative design would be prudent
in most circumstances.

The passive filter with current switching has been shown to
have attractive properties. A fast, balanced, current-switch
integrated circuit would be very helpful to the hardware
designer.

The second-order loop has switching-rate frequency-excur-
sions that are excessive for most applications. Any smoothing
results in at least a third-order loop, although still Type II.
Root loci for the third-order loop are presented to aid design
efforts.

Transient response of practical charge-pump PLL's can be
expected to be nearly the same as the response of the equiva-
lent classical PLL.

APPENDIX

DIFFERENCE-EQUATION ANALYSIS OF
CHARGE-PUMP PLL

Analysis of the charge-pump circuit is impeded by the
switching of the pump current between the values —Ip, 0, and
Ip. Moreover, the switching times are complicated functions of
the relative, time-varying phases 0,(f) of the signal input and
0O(O of the VCO. However, during any one switch condition,
the circuit is a linear, time-invariant network and is described
by linear differential equations with constant coefficients.
Given the initial conditions at the start of a switching interval,
it is straightforward to calculate the state variables at any time
within the interval. The final state variables at the end of one
interval become the initial conditions for the next interval.

If we define the phase and frequency errors at the start of
a current pulse as the discrete-time state variables, then it is
possible to write difference equations that describe a recursive
sequence of the state. The exact difference equations were
iterated to obtain the transient responses of Section V while
discrete-time stability was examined for Sections III and IV by
means of linearized difference equations.

This Appendix derives the linearized difference equations
for the second-order PLL and shows an outline of the deriva-
tion of the exact difference equations of the second-order
PLL. The process for the exact equations is shown as com-
ments in parentheses following the corresponding portion of
the linear-equations derivation.

Linearized equations were also obtained for the third-order
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loop, but the derivation is not shown here because of space
limitations. Exact difference equations could be found for the
third-order loop, but that problem has not yet been attacked.

The notation and circuit configuration for the analysis are
shown in Fig. 12. It is convenient to set the time origin to co-
incide with an instant of turn-on of the current switch. Observ-
ing that convention, we obtain the following equations that
are valid for the entire first cycle (i.e., until the next turn-on
instant of the current switch).

0/(0 = 0,(0)+ «V (Al)

too(t) = tto +Kovc(t)

0o(O = 0o(O) + S V + *o / vc(T)dT

ip=Ip sgn0e(O); 0<t<tp

= 0; tp<t< lit/oii

tp^\e6 l/co,-

vc(t) = ipR2 + vx

vx(t) = ~ / ip(r)dT.

(A2)

(A3)

(A4)

(A8)

Suppose that the switching is initiated by an edge of the
VCO waveform. Then —Ip is switched on so as to retard the
VCO phase; also 0O(O) = 0, and 0/(0) = 0e(Q\ which is a nega-
tive number. The input-signal edge that shuts off the current
switch occurs when Off) = Qftp) = 0; in other words, when
the input phase has advanced by 0C(O) radians at a rate of co,-
radians/second. In this case, that time is exactly tp- —
IMM-s.

Now suppose that the switch-on is initiated by an edge of
input signal. The pump current is +/p; 0,(0) = 0, 0o(O) =
—0C(O), 0e(Q) is positive, and the pump current remains on until
the next edge of the VCO. For the linearized analysis, that
time is approximated by tp+ = 0e(O)/co/, the same expression
as for the opposite polarity of phase error.

(In actual fact, since vc is not constant during the pump
interval, the frequency of the VCO changes during (0, tp+)
so a linear equation for tp is incorrect for positive phase error.
In the nonlinear analysis it was found that the correct charging
interval is a solution of a quadratic equation involving the
initial conditions at t = 0 and the loop parameters. The
quadratic solution is carried through in the numerical iteration
of the nonlinear difference equations.)

Define vx0 = 1^(0); vxp = vx(tp). Ordinary linear-network
analysis methods yield

0o(tP) = 0o(O) + Slotp +Ko(vxOtp + ipR2tp+iptp
2/2C).

(A9)

(For positive 0e(O), setting 0o(tp) = 0 in (A9) gives the
quadratic equation for the exact value of tp+9 as described
above.) Furthermore,

Fig. 12. Equivalent circuit of charge-pump PLL.

These equations, (A9) and (A10), are exact. (By substituting
the exact solution for tp into (A9) and (A10), the calculator
program carries the state variables numerically up to tp.)

Let t* be the time following tp at which the next edge—
from signal or VCO, as the case may be—activates the PFD and
starts a new pump pulse. Charge on the capacitor remains con-
stant from tp to t*. Therefore, the VCO phase at t* is

(A5) °o(**) = 0o(*P) + «o(** - tp) + Ko(t*-tp}uxp. (Al 1)

(A6) Substituting (A9) and (A10) into (Al 1) gives

(A7> 0o(**) = fio(O) + nof*

+ K0 ipRitp
2C

+ vxQt* +
iptpt*~\

(A12)

This last equation is also exact. To pursue the linearized ana-
lysis, substitute lptp ^ IpOe/cji from (A4) and (A6), and
approximate t* by 27r/cj/ to obtain

2TT
0o(r*) s 0O(O) 4- — ( « 0 + KQVX0)

CO/

(A13)

Except for the very last term, (A13) is linear in 0C(O). By
dropping the last term—a valid approximation for small 0 e~
we obtain a linear equation for the VCO phase at time t*
in terms of the initial phase and frequency and the loop
parameters.

Define Ato = coj — ft0 and recall that Se = 0t — 0O. By the
previous approximations, 0{ advances by 2n in the time inter-
val (0, t*). With these substitutions, we obtain the linear dif-
ference equations

9e(t*) = 0e(0) + 2nAa/G>i

KoTpOM (R2+2n/a>&-2^^ ( A 1 4 )
CO/ CO/

and

vx(t*) = ux0 4- (A15)

vx(tp) = vx0 + iptp/C. (A10)
(All approximations are avoided in the calculator program.

The quantities 0o('i) = 2TT, from (A12), and 0.(t2) = 0f(O) +
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oJih = 2n are solved for tx and t2. The smaller of these is
taken as the value for t*. Having obtained the correct values of
tp and t*9 the values for 0e(t*) and Aco(Y*) are calculated and
the process repeats with these state variables as the new
initial conditions. The program starts at specified initial condi-
tions and stops after arriving within a specified tolerance band
about the zero state.)

The linearized analysis continues by taking z-transforms
[11] of (A14) and (A15). Treating the initial frequency error
as a frequency step gives the z-transformed equations

2nA£lz K0IpOe(z),
zSe(z) = 6e(z) + — V~Z-^(R2 + 27r/cofC)

<O/(Z-1) G)i

OeWp
zVx(z)=Vx(z) +

coiC

(A16)

(A17)

Solving for 0e{z) gives

0*00 =
2irzASl/o)t

(z-l)2+(z-l)
KQIP

coi2C
(27T + CO<CR2) +

2irK0Ip

(A18)

rived in the same manner for the third-order loop. The volume
of algebra is substantially greater than for the second-order
loop so only the results are given in Section IV. Only linear
approximations have been performed for the third-order
loop; the exact equations have not been attempted.
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Linearized difference equations (three of them) were de
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z-Domain Model for Discrete-Time PLL's
JERRELL P. HEIN, MEMBER, IEEE, AND JEFFREY W. SCOTT

Abstract—The well-known s -domain model for continuous-time phase-
locked loops (PLL's) is a fundamental tool for the linearized analysis of
these systems. For PLL's with digital inputs and outputs, however, a
discrete-time z-domain model more accurately describes loop behavior. In
this paper, a methodology is described for obtaining an accurate z-domain
description of a discrete-time PLL. This method is an alternative approach
to the analysis presented in [4]. The modeling technique transforms
portions of the 5-domain PLL model directly into the z-domain, requiring
only straightforward algebraic manipulations even for complex loop filters.
This methodology is demonstrated for a simple loop filter, and measure-
ments from the digital signaling interface (DSI) integrated circuit are used
to compare s-domain, z-domain, and time step analysis results for a more
complicated loop filter. The z-domain model, although only incrementally
more complicated than the s -domain model, is shown to be more accurate,
especially at higher jitter frequencies.

I. INTRODUCTION

THE basic ^-domain PLL model presented in numer-
ous texts [l]-[3] treats a loop in the locked condition

as a linear continuous-time system. The input and output
waveforms are assumed to be sinusoidal and the phase
detector is modeled as a linear analog multiplier with an
inherent ideal low-pass filter. Although the linear continu-
ous-time model is useful within these constraints, many
PLL's operate under conditions not accurately represented
by these assumptions. In particular, a large class of PLL's
used most notably in data communications have digital
waveforms as both inputs and outputs. For these PLL's,
the phase information is contained in the digital waveform
transitions and should be viewed as a discrete-time se-
quence. The linear, continuous-time model can approxi-
mate the operations of these loops only if the jitter fre-
quencies of interest are much less than the incoming data
transition rate.

To obtain an accurate discrete-time model of a PLL, one
can write the complete set of differential equations describ-
ing the system, convert these into difference equations,
linearize the equations along the way, and finally z-trans-
form the result to obtain H{z\ the z-domain jitter transfer
function. This procedure quickly becomes cumbersome for
all but the simplest loop filters as noted by Gardner [4].

In this paper, a z-domain description for a PLL is
presented which is only incrementally more complicated
than the linear continuous-time model. The model uses the
impulse invariant transformation to convert the j-domain
description of a portion of the loop directly into the
z-domain. In addition to the model derivation and imple-
mentation for a simple loop filter, results will be shown
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comparing the continuous- and discrete-time models with
a PLL timestep simulator, and actual measured devices. In
Appendix A, the assumptions needed to linearize the net-
work analysis will be discussed and it will be shown that
these assumptions are identical to those required to ana-
lyze the PLL with the use of linearized difference equa-
tions. Finally, in Appendix B, the analysis methodology
will be extended to PLL's with switched capacitor loop
filters.

II. DISCRETE-TIME MODEL DEVELOPMENT

A. Continuous-Time PLL's and the s-Domain Model

A functional block diagram for a continuous-time PLL
is shown in Fig. 1. The block diagram of the associated
j-domain PLL model is shown in Fig. 2. This model
assumes that the input waveform is a phase modulated
sine wave, i.e., it has the form,

' . ( ' ) • = a.sin(w c /+ </>,(')).

The input phase modulation 4>,(0> and oscillator output
<f>0(t) are continuous functions of time.

In Fig. 2, the summing node and Kp gain block repre-
sent the operation of the phase detector in thê  frequency
domain. The phase detector is assumed to be a linear
analog multiplier which multiplies the input and output
waveforms. The result is a multifrequency signal which
contains the phase difference information desired (<f>,(.y) —
$0(s)) in the low frequency portion of the phase detector
output spectrum. The higher frequency multiplicative
products are ignored in the analysis. The effect of this last
assumption can be included by assuming that an ideal
low-pass filter sits behind the multiplier. In practice, the
loop filter following the phase detector approximates this
ideal filter.

Finally, the loop filter (F(s)) and voltage-controlled
oscillator (Kc/s) are included in the block diagram.
In general, the loop filter is modeled accurately as a
linear continuous-time element, especially if it is imple-
mented with passive components. Relaxation and current
ramping oscillators exhibit linear and wideband voltage-
to-frequency relationships and are also accurately modeled
as linear continuous-time elements.

The jitter transfer characteristic for the ^-domain model
is also shown in Fig. 2. / / ( / ) will be used to compare the
accuracy of the s- and z-domain models in a later section.

The assumption inherent in the application of the s-
domain model to a PLL are generally valid for loops
operating with sinusoidal inputs and outputs (continuous-
time PLL's). It will be shown, however, that for PLL's

Reprinted from IEEE Trans. Circuits and Systems, vol. 35, pp. 1393-1400, November 1988.
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Fig. 1. Functional block diagram for continuous-time PLL.
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Fig. 2. S-domain model block diagram.

operating with digital inputs and outputs (discrete-time
PLL's), some of the assumptions may result in significant
inaccuracies in the analysis. In these cases, it is necessary
to develop a discrete-time model which more accurately
reflects the actual operation of the loop.

B. Discrete-Time PLUs and the z-Domain Model

The functional block diagram for a discrete-time PLL is
shown in Fig. 3. The input waveform to the PLL can be
described as

Jrf(/)-fl-sgn[sin(wc/ + ^(O)]

where sgn is the signum function. The difference between
the discrete- and the continuous-time PLL structures lies
in the implementation of the phase detector. The phase
detector for a discrete-time PLL is a digital circuit which
drives a pulse width modulated digital pulse into the loop
filter. The width of the pulse is determined by the time
difference between the input data reference edge and the
recovered clock edge. The digital phase detector operation
is depicted in Fig. 4. Phase difference information arrives
at the phase detector input only when data reference edges
occur. Therefore, the phase error between the data and
clock is properly viewed as a discrete-time sequence with
values spaced at intervals approximately equal to the time
between input data reference edges. For a repetitive data
pattern, the time interval between data pulses is given by:
T = l/(recovered clock frequency-input data one's den-
sity). For example, a repetitive 1,0 return-to-zero (RZ)

INPUT
DIGITAL PHASE

DETECTOR

OUTPUT*-

- " - I T LOOP
FILTER

VCO

Fig. 3. Functional block diagram for discrete-time PLL.

INPUT

DATA

OUTPUT

CLOCK

DATA REFERENCE EDGE

DIGITAL

PHASE DETECTOR
OUTPUT ¥

Fig. 4. Digital phase detector operation.

data pattern (as shown in Fig, 4) would have T =
1/(recovered clock frequency- \).

For small phase errors, the pulses driving the loop filter
can be modeled accurately as weighted impulses. The
accuracy of this approximation is calculated in Appendix
A for a simple RC loop filter. The phase detector samples
the difference between the data and clock phases at inter-
vals of T seconds and drives the loop filter with weighted
impulses. The gain factor Kp simply represents the conver-
sion factor between input phase error and output impulse
area. Therefore, the digital phase detector in a discrete-time
PLL can be modeled as a summing node and gain block in
the z-domain. Note that the type of blocks required to
model the digital phase detector in the z-domain are the
same type of blocks used to model the analog phase
detector in the ^-domain.

With the digital phase detector now properly modeled in
the z-domain, the problem remaining is the accurate mod-
eling of the continuous-time loop filter and VCO elements
in the z-domain. For arbitrary signals driving the loop
filter and VCO, it would be impossible to accurately map
the elements' entire ^-domain response into the z-domain.
But the loop filter and VCO are not being driven by
arbitrary signals, they are being driven by a series of
weighted impulses from the phase detector. Therefore, it is
only necessary to preserve the loop filter and VCO's im-
pulse response in transforming from the s- to z-domain. In
other words, the essential characteristics of the loop filter
and VCO will be preserved if the derived discrete-time
network has a unit impulse response with values equal to T
spaced samples of the continuous-time impulse response.
A transformation exists which guarantees exactly this type
of relationship—the impulse invariant transformation.

Fig. 5 illustrates the relationship guaranteed by the
impulse invariant transformation. Given a continuous-time
network with impulse response ha(t), the impulse invari-
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Fig. 6. Z-domain model block diagram.

ant transformed discrete-time network will have a unit
sample response h[n] where the h[n] values are equal to
the ha(t) values sampled at intervals of T seconds [5]. The
actual transformation of some function F(s) to F(z) is a
straightforward process which will be demonstrated in a
later section. Basically, the function F{s) must be divided
using partial fraction methods into simple a/(s — sk) and
l/s2 terms. Each of these terms then transforms directly
into the z-domain. Poles at sk in the ̂ -domain map to
poles at zk = eSkT in the z-domain. Zeros in the j-domain
move to points in the z-plane which depend on the pole
locations. Because the impulse-invariant transformation is
not an algebraic mathematical mapping, the combined
loop filter and VCO j-domain terms (KoF(s)/s) must be
transformed together.

Once the loop filter and VCO are transformed into
F(z), the entire loop can be evaluated in the z-domain.
The z-domain model is shown in Fig. 6 along with the
jitter transfer characteristic H(z). The development of the
complete discrete-time PLL model involves only two steps:
(1) calculation of the phase detector gain constant Kp9 and

(2) transformation of the loop filter and VCO 5-domain
descriptions into the z-domain using the impulse invariant
transformation. The model accurately represents the oper-
ation of the digital phase detector with digital data and
clock inputs, and correctly transforms the continuous-time
networks F(s) and K0/s into the z-domain. The applica-
tion of this technique to a second-order PLL will be
demonstrated in the next section.

C. Application of z-Domain Model to a Second-Order PLL

In this section, the z-domain analysis will be performed
on a discrete-time PLL with a first-order loop filter. For
comparison purposes, the classical j-domain model of this
PLL will be described first.

The ^-domain PLL model is shown in Fig. 2. A first-order
transimpedance loop filter transfer function F{s\ (see Fig.
11) is given by

where R and C are the series resistance and capacitance of
the loop filter. Using this filter transfer function in the
expression for H(s) shown in Fig. 2 yields the following
jitter transfer characteristic:

1
s + -

Hc(s)-RK.K RC
P KOKD

s2 + RKKns + - ^ -

where the subscript "c" denotes the continuous-time na-
ture of the jitter transfer expression; Ko is the voltage-to-
frequency conversion gain of the VCO; and Kp is the
phase detector conversion gain given by

K,-dIp/2«

where d is the one's density of the PLL input data and Ip

is the magnitude of the phase detector pump current.
The loopgain expression required for root locus con-

struction is given by

Kn

The root locus for the PLL modeled in the j-domain is
shown in Fig. 7. There are two open loop poles at the
origin of the j-plane and one open loop zero at s = 1/RC.
Note that, since the loopgain parameter K contains the
one's density information, the closed-loop pole locations of
the j-domain jitter transfer model depend on the input
data pattern. However, it is of further interest to note that
the j-domain model never predicts an unstable loop for
any combination of PLL parameters.
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Fig. 8. Z-domain root locus.

Using this transformed filter/VCO transfer function in the
expression for H(z) shown in Fig. 6 yields the following
jitter transfer characteristic:

KOKBR z(z-a)

2-aKoKpR

l + K0KpR
-z +

l + KoKpR

where the subscript "d" denotes the discrete-time nature
of the jitter transfer expression, and Kp is the phase
detector conversion gain given by

K'~2irf vco

where Ip is the magnitude of the phase detector pump
current.

The loopgain expression required for z-domain root
locus construction is given by

loopgain = K -F(z)

K
Z{Z-CL)

(*-D2

where the loopgain parameter K is again defined as
KoKpR.

The root locus for the PLL modeled in the z-domain is
shown in Fig. 8. There are two open loop poles at z = 1
and open loop zeros at z = 0 and z = a. It is interesting to
note that, since the open-loop zero location (a) is a func-
tion of the input data one's density, the z-domain model
can predict unstable loop performance for the condition of
T> 2RC (in which case an open-loop zero resides on the
negative real axis outside the unit circle).

For T <z RC, the quantity a is close to unity. In this
case, the z- and j-domain models predict similar jitter
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Fig. 7. S-domain root locus.

The discrete-time or z-domain analysis of the second-
order PLL begins by applying the impulse invariant trans-
formation to the term (K0F(s)/s). For the first order loop
filter under investigation, this term is given by

1

C [s2 s \

The impulse response of this section of the PLL is found
by taking the inverse Laplace transform, which yields

*.(0-£[' + *cM0.
The impulse-invariant property requires that

h[n] = ha(nT)

= ^[nT+RC]u[n]

where T is the effective sampling or impulse arrival rate
given by T — l/dfvco where d is the one's density of the
incoming data and /vco is the VCO recovered clock fre-
quency. The desired z-domain description of the loop filter
and VCO is found by taking the z-transform of h[n] (the
nT-u[n] term is most easily transformed by invoking the
differentiation property), which results in the following
expression for F(z):

KB\ TZ-I RC -

..thill
For simplification, let a = l-(T/RC). Then
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transfer characteristics for jitter frequencies within the
loop's bandwidth. Mathematically, the reason is that mini-
mal aliasing occurs as the loop filter/VCO ^-domain
transfer characteristic is transformed to the z-domain;
physically, the results predicted by the two models con-
verge in this case because the ^-domain assumption con-
cerning the ability of the loop filter to reject phase detector
high frequency output energy is valid. The two models
diverge for jitter frequencies outside the loop's bandwidth
where the z-domain analysis correctly models the repeti-
tive nature of the input/output jitter spectra. For wider
bandwidth loops, the z- and ^-domain models will diverge
even for jitter frequencies within the loop's bandwidth.
The reason is that the relatively wideband loop filter does
not reject high frequency phase detector components as
the ^-domain approximation would suggest. In the next
section, it will be shown that the s- and z-domain models
begin to diverge for jitter frequencies within the loop's
bandwidth for practical PLL's. The two models will also
be compared with experimental results taken from the DSI
(Digital Signaling Interface) integrated circuit.

III. MEASURED RESULTS

In the design of the wideband PLL used for clock
recovery in the DSI device, three modeling techniques were
used to estimate loop performance. The jitter transfer
characteristic was derived using both the linear s- and
z-domain models presented in this paper. In addition, a
timestep simulator was written in Fortran which per-
formed a transient analysis on the loop in the locked
condition using time domain models of the loop elements.
The timestep simulation was thought to be the most accu-
rate of the three methods because it included a number of
nonlinear effects in the element models. For example, in
the timestep simulator, the output of the phase detector
was treated as a finite width pulse, instead of a weighted
impulse and the finite pull range of the VCO was taken
into account.

The nominal design parameters were entered into each
of three models and the jitter response was evaluated. For
the timestep simulator, a 0.1 Unit Interval (1 U.I. « 1 clock
period) input jitter magnitude Was. used as the "small
signal" input. Plots of the magnitude of / / ( / ) are shown
in Fig. 9. It is seen that the timestep simulator results agree
with the z-domain model results within ±0.3 dB over all
frequencies. With an input data transition rate of 193 kHz
and VCO clock rate of 1.544 MHz the linear models agree
within ± 0.3 dB up to about l /20th of the input transition
rate. For the z-domain model and the timestep simulator,
the loop response is periodic with a period of 96.5 kHz,
whereas the ^-domain response continues to roll off at
higher frequencies. As a result of these simulations, the
z-domain model and timestep simulator were chosen as the
design tools for determining loop parameters in the actual
PLL.

Upon receipt of silicon, the individual loop parameters
were measured for a specific device. These parameters
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were then entered into both the s- and z-domain models
and / / ( / ) was calculated in both cases. The results were
compared with the measured H(f) for the device under
test. The measured H(f) is defined to be the output jitter
amplitude (peak-to-peak) at the input jitter frequency di-
vided by the input jitter amplitude (pk-pk). Fig. 10 shows
the three curves. It is seen that the z-domain results agree
with the measured results within the ±0.5-dB measure-
ment error bars. Again, the ^-domain H(f) tracks the
z-domain / / ( / ) for low jitter frequencies, but diverges at
about l /20th the input data transition rate. The agreement
of the timestep simulator, fabricated PLL, and z-domain
H(f) verifies the accuracy of the discrete-time linear
model.

IV. SUMMARY AND CONCLUSIONS

In this paper, two classes of PLL's were described:
continuous-time and discrete-time PLL's. Classic .s-domain
analysis, although valid for continuous-time PLL's, cannot
always accurately predict the behavior of discrete-time
loops. The z-domain model, presented here, takes into
account the sampled data nature of the digital phase
detector and accurately predicts overall loop performance.
The interface between discrete- and continuous-time ele-
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ments is handled using the impulse invariant s-io-z-
domain transformation. In this way, the entire PLL is
analyzed in the discrete-time domain. Measured results
from the DSI phase-locked loop support the z-domain
model.

The modeling philosophy presented in this paper can be
generalized to many systems in which discrete- and contin-
uous-time elements coexist. One such system, a PLL with a
switched capacitor loop filter driving a continuous-time
VCO, is described in Appendix B. In this case, the inter-
face waveform is staircase in nature; therefore, the step
invariant transformation is appropriate. In general, if a
well-defined interface waveshape exists, an appropriate
transformation can be chosen to convert all ^-domain
elements into the z-domain. In this way, a complete linear
model for the mixed continuous-time/discrete-time system
can be developed.

APPENDIX A

NETWORK LINEARIZATION APPROXIMATIONS

In the derivation of the z-domain model for discrete-time
PLL's presented in this paper, a number of approxima-
tions were made to linearize the network. In [4], Gardner
uses the difference equation approach to derive a discrete-
time PLL's response to an input phase ramp (frequency
step). In linearizing the difference equations, a number of
approximations are also required. In this appendix, each of
the linearizing assumptions will be discussed. It will be
shown that the assumptions required to derive the z-
domain model through the impulse invariant transforma-
tion are the same as the assumptions required to linearize
the difference equations. Therefore, both approaches lead
to the same results, although the impulse invariant ap-
proach significantly reduces the amount of computation
required.

Linearizing Assumptions
1) In any linear PLL model, it must be assumed that the

loop filter and VCO operate in a linear fashion. As stated
previously, many practical loop filters and VCO's are well
modeled as linear elements.

2) In both discrete-time models, it must be assumed
that phase samples occur at constant intervals and that the
loop responds symmetrically to leading and lagging phase
information. This implies that:

a) the phase tracking errors are small,
b) the data pattern is constant,
c) the bit-to-bit data jitter is small,
d) no significant amount of high frequency energy

can propagate directly around the loop, generating
asymmetric behavior for leading and lagging phase
errors.

Typically, the finite high frequency response of the VCO
and of ripple filters built into the loop filter remove this
high frequency energy sufficiently to allow the loop to
operate in a linear fashion.

LOOP FILTER

Fig. 11. PLL response to finite width pulse input.

3) Finally, in the model using the impulse invariant
transformation, it was assumed that the pulse width modu-
lated output of the digital phase detector could be approxi-
mated as a series of weighted impulses. The validity of this
approximation can be investigated by analyzing the loop
filter and VCO response to a finite width pulse for a
simple RC loop filter. In Fig. 11, a simple RC charge
pump loop filter is shown. The loop filter is driven with a
current pulse of magnitude Ip and duration T.

The output of the loop filter from time 0 to T (the time
at which the next reference data edge arrives) is given by

vc{t) = IpR + -£t, 0 < f < r

The VCO integrates its control voltage to produce an
output phase shift. Therefore, the total phase shift at time
T caused by the finite width pulse starting at time 0 is
given by

^ = KjTvc(t)dt
J(\

— K , •^'-c-V+fitdt

( / , T ) ~ [2(/(C + 7-)-T]. (1)

From this equation, one can see that the phase shift is a
linear function of pulse area (Ip-r) if 2-(RC + T)^>T.
For reasonable loop filter components and small tracking
errors, this is a very good approximation. For the wide-
band loop used to verify the z-domain model in this paper,
the RC time constant of the loop filter was - 40 /xs, much
larger than the maximum phase tracking error ( < 50 ns).
Therefore, approximating the finite width pulse with a
weighted impulse of area Ip- r introduces negligible error
in the analysis.
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In the difference equation analysis from [4], the
|0>c|/2w,C term was dropped from (A13) in order to lin-
earize the equation. This is equivalent to dropping the
nonlinear r term in (1) above. Thus, the difference equa-
tion approach also approximates the finite width pulses
coming from the digital phase detector as a series of
weighted impulses.

From the above analysis, it is shown that the linearizing
approximations required for the impulse invariant trans-
formation method and difference equation method are the
same. Also, for most practical PLL*s, the linearizing as-
sumptions are valid and the loop operates in a linear
fashion for small phase tracking errors.

APPENDIX B

EXTENSION OF MODEL TO SWITCHED-CAPACITOR LOOP

FILTER/CONTINUOUS TIME VCO INTERFACE

The previous sections of this paper have dealt with a
PLL architecture which consisted of a digital phase detec-
tor which was well modeled directly in the z-domain and a
continuous-time loop filter and VCO which were described
by j-domain transfer functions. The modeling technique
presented addressed the problem of converting the contin-
uous-time components of the PLL into the discrete-time
domain when the loop filter is being driven by a weighted

series of impulses. In other PLL architectures, switched
capacitor loop filters may be used to drive a continuous-
time VCO. In these cases, an extension of the modeling
philosophy presented in this paper can be used to develop
a discrete-time linear model for the PLL.

The functional block diagram for such a switched-
capacitor loop filter/continuous-time VCO interface is
shown in fig. 12. The output of the loop filter is a staircase
waveform which changes values at intervals of T seconds.
This staircase waveform can be viewed as a superposition
of step functions whose value for the kth time interval is
given by the difference between the output of the SWC
loop filter in the k and (k - l ) t h intervals. Quantitatively,
if s(k) is the output step function in the kth interval,
then:

vc(k)-ve(k-l) + s(k)

- E s(j)

y-o

or

s(k) = vc(k)-vc(k-l).

Transforming this relationship into the z-domain yields

j ( z ) A c ( * ) - l - z - 1 .
Therefore, the input to the VCO can be modeled as a

summation of step functions s(k) if the output of the loop
filter vc(k) is passed through a first-differencing block
with transfer characteristic 1 —z"1. The first-differencing
block, of course, does not exist in the real system, it is only
required in the model in order to represent the loop filter
output as a sum of step functions.

The treatment of a continuous-time system being driven
by a series of weighted step functions is analogous to the
treatment of a continuous-time network being driven by a
weighted sum of impulses. For a step function input to the
VCO, it is necessary to use the step invariant transforma-
tion to model the VCO in the z-domain. A reconstruction
filter or VCO finite frequency response can be handled by
including these j-domain singularities with the basic Ko/s
VCO term and step transforming the entire expression into
the z-domain. The resulting z-domain model for the SWC
loop filter/continuous-time VCO interface is shown in
Fig. 13.

Once the continuous-time elements have been trans-
formed into the z-domain using the step invariant method,
the discrete-time analysis of the PLL can proceed com-
pletely in the discrete-time domain.

SI
[5]
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ANALYZE PLLs
WITH DISCRETE
TIME MODELING
This multi-rate, discrete time-domain model provides
an accurate description of phase-lock-loop dynamics.

ESIGN and optimiza-
tion of phase-locked loops (PLLs)
for frequency-synthesizer applica-
tions often require analysis of jitter
and loop behavior in the time do-
main. Since these circuits operate on
digital signals, where phase informa-
tion is represented by signal edges,
classical s-domain analysis is a first-
degree approximation at best.1

Classical PLL analysis models are
based on assumptions regarding the
behavior of the loop and its compo-
nent hardware.2 These assumptions
are that the loop is frequency
locked, the loop operates in continu-
ous time, the voltage-controlled-os-
cillator (VGO) signal source is an
ideal integrator, and that the phase
detector is a linear adder.

A PLL in the s-domain (Fig. 1) can
be calculated as:

G(s) - KpZ(s) (i)

With a typical series resistance-ca-
pacitance (RC) filter configuration

JANOS KOVACS, Senior Design Engi-
neer, Semiconductor Div., Analog
Devices, Inc., 1 Technology Way, Nor-
wood, MA 02062; (617) 937-1328.

Phase detector Loop filter
charge pump network

(A/rad)

Phase (rad)

Current (A)

(rad/s/V)

M
(V/A)

Voltage (V)

1. Individual function
blocks can be tied
together to form an s-
domain diagram of a
PLL in the time domain.

(Ru Cx ) with a smaller capacitor in
parallel (GJ, the filter impedance is:

Z(s) =

X
sC2

Rl + Sd + SIS
assuming Q > > C2, leads to:

1 1 + sRiCi
sCi 1 H~ SR1C2

(2)

(3)

The open-loop transfer function be-
comes:

1 1 + sRiCi Ko m

" i d (1 + sRx^) T (4)G ( s )

This third-order system has two
poles at a>=0, one zero at co^ 1/
RjC!, and another pole at o>2= RiC2.
The closed-loop system will be sta-
ble if the open-loop crossover fre-
quency falls between <x>x and a>2>
where the rolloff is 20 dB/decade.
At the crossover frequency, the loop

Note: Measurements are for the AD897 with VCO frequency set at 30 MHz.

Reprinted with permission from Microwaves & RF, J. Kovacs, "Analyze PLLs with Discrete
Time Modeling," pp. 224-229, May 1991.
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gain is one, therefore:

a.o - (KpKJRi = KR, (5)

The loop response can be approxi-
mated as a second-order system, As-
suming «!>2> >&l'

H ( g) = G(«)H ( 3 ) 1 + G(s)

= K \1 + ^l /«>
" ^ ( s ^ s ( K R 0 + | ) ^

The closed-loop transfer function
has its own 0-dB point, a>0. By ana-
1 zing the PLI/s amplitude charac-
teristics (Fig. 2), the natural fre-
quency of the system can be de-
rived:

«.-v£ (7)

Using the above expressions for o>0
and a>lt several useful formulas can
be gained involving the damping
f ictor:

< - £ or "i = (§p (8)

By placing o>l relative to a>0, it is pos-
sible to adjust the damping factor at
will. For example, selecting critical
damping would fix <i)x at half of o>0.
A typical choice for o>2 is about 4 to 8
times the value of t^. (For designers
v illing to experiment with the
AD897 PLL, source code for a short
BASIC program, "PLL filter calcu-
lations," is available from the au-
thor.)

In PLLs based on digital signals,
the phase detector/charge pump
presents a new current value to the
loop filter only when it receives a
data pulse. Between these updates,
t le charge pump is usually tristated
(i.e., not supplying any current to
the filter). PLL performance is
greatly degraded if this hold mode
in not efficient. Any current leakage
produces a voltage change on the
VCO control node. Resulting fre-
quency drift causes pattern-depen-
dent phase errors at the next update
cycle, decreasing the error margin.

To more closely model real PLL
operation, this complex frequency
description must be translated into
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the z-domain. For practical circuits,
an impulse-invariant transforma-
tion is justified.3 Performing this
transformation for a fourth-order
loop, where the finite bandwidth of
the voltage to current converter
found in the VCO is considered with
an additional pole at o)3, the open-
loop gain is:

ir 1 + A 1 i
r«/a\ — & <*>l 1 1 / m

w ~ sC7 ~̂ r Q W
i 4- — i -t- _

The next step in the PLL model de-
velopment is to derive the partial
fraction form of the above expres-
sion:

1
0

where:

a

G(s) =

1
S + O»2

= 1 - on
O>3

0^3 S

+

1
i +

1

)

0)3

7 - W1T9 (ID
The impulse-invariant z-transform

d>

r—

M l

_

ifti-or1)

W-br1)

a
3 .APUcanbe
represented In fhe z-
domain, with discrete
phase^rror updates.
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•
2. Open-loop gain of a
third-order phase-locked
loop Is closely followed

characteristics below 0
d»hrf.

•

with Ts sampling period becomes:

- I z + ggg z \ (
P z - a + pws ^=nb/ (U)

with the new constant defined as:

a - exp (-a>2T8) (13)

b - exp (-o>3T8) (14)

When o>3 approaches o>2, the third
and fourth terms in the partial-frac-
tion form derived for G(s) cancel. In
this case, the original open-loop gain
becomes:

and the partial-fraction form
changes to:

G(s) = w° G + 9
1 (x)2 \

s ~ T ^ ~ (s + W2)2/ (16>

(10)



Assuming that c^ < o>2 < o)3 normally
holds for practical systems, the fre-
quency-domain response can be sim-
ulated. The PLL can be represented
by a weighted sum of parallel and
series combinations (Fig. 3) of
blocks that implement the various
terms of G(z), such as:

g(z)i
1

(17)

During AC analysis, the transfer
functions are evaluated by setting z
= e J27rf/fs. It should be noted that fs
= fdata ; that is, the sampling rate is
determined by the reference fre-
quency supplied by the input data.4

The consequences of switching to
discrete time representation can be
measured by comparing the ampli-
tude transfer characteristics gained
in the s- and z-domains.

The difference between the con-
tinuous and sampled time-domain
results becomes even more obvious
when examining a PLL's closed-loop
response (Fig. 4). The act of sam-
pling continuous signals gives rise
to aliasing.5 In the case of a lowpass
transfer characteristic, spectral
components of signals (including
noise) at frequencies higher than
one-half the sampling rate might be
mirrored to the passband. The repet-
itive peaks of the PLL closed-loop z-
domain response of fdata + f;}dB ±
2fdata i f3(]B> 3fdata ± f3dB, and so on,
will be aliased to the passband un-
less they are removed by filtering.

Although the input signal spec-
trum is limited by lowpass filtering
in the read channel, the bandwidth is
typically set to fmax = fvco/2, which
overlaps quite a few peaks at higher
fvco/fdata ratios. Aliasing should be a
concern when evaluating the noise
performance of these PLLs. The pe-
riodic characteristic of the transfer
function also adversely effects high-
frequency rolloff.

Until now, the integrator that rep-
resents the VCO in this PLL model
has been included with the remain-
der of the loop's frequency-depen-
dent element. However, the VCO
must also be closely examined with-

0 10 20 30 40 50 60 70 80 90 100

Frequency-MHz

4. Closed-loop gain is
plotted in the z< and s-
domains, as a function
of frequency, for a data
rate of 15 MHz.

in this model to ensure accurate loop
simulations.

In a monolithic PLL circuit (the
Analog Devices AD897) with two
cross-coupled voltage-controlled
ramp generators that provide 50
percent duty-cycle output voltages,
the voltage ramp is generated by a
voltage-controlled current source
with a transconductance of gm dis-
charging a capacitor C. When the
voltage on the capacitor becomes
less than a preset threshold value,
vth, a flip-flop is tripped and resets
the voltage on the capacitor to a
maximum value vf) ,thus energizing
the other ramp generator. Neglect-
ing the propagation delay in the
comparator and flip-flop, the capaci-
tor is discharged over a period of To/
2, determined by the allowed volt-
age swing:

vP ~ vth =
vino&m,gmTo

(18)

The oscillator frequency is:

C 2 (vp - v t h)

8=8 Kov i n o (19)

where vino is the DC value of the
voltage applied to the voltage-con-
trolled current source or voltage-to-

5. A VCO's period changes with control voltage;
for small changes, AT < < To.

current (V/I) converter. The VCO
period changes by AT when vin
changes only slightly relative to vino,
due to a Av voltage change on the
capacitor (Fig. 5):

with
Av

Av

gm,.

scv-
(20)

2 A T
- T (21)

vp ~ V th l 0

The change in phase represented in
Eq. 21 can be written as:

2*-gm Vin
2 (vp - vth) C s

A0

IT ^' n
(22)

With a time-interval analyzer (TIA),
it is possible to check how the VCO
period changes with the frequency
of excitation by forcing a sinusoidal
voltage from a signal generator
onto the VCO input and measuring
the period of the oscillator output.
The TIA will give a distribution with
the RMS value of AT. Based on the
above result for vln = Vinsin(ojint),

AT
Vino J

Vindt

-J_Vin
<*>in V i n o

COSoj;nt (23)

that is, RMS(AT) should decrease
with o>in.

Measurements of the AD897 (Ta-
ble 1) indicate flat response to f3 =
12 MHz where the V/I converter's
finite bandwidth affects the re-
sponse. If AT (or A<J> since they dif-
fer only in a fixed multiplier at a
given VCO frequency) is indepen-
dent of the excitation frequency, the
VCO obviously can not be consid-
ered as an integrator.

The problem lies in the crudeness
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of the PLL model. Although the os-
cillator's operation is based on the
interaction of the two ramp genera-
tors, the model does not account for
the synchronous resetting action. It
can be included by adding a parallel
feed-forward path to the output
where Av can be measured (Fig. 6).
The z"1 block samples the voltage on
the capacitor at a rate of fs = fvco,
which means that the voltage at the
time of sampling is subtracted from
the output node, resetting it to zero.
Now, A<f> becomes:

A0 - Ko (1 - z"1) (24)

Since the term 1-z"1 adds a differ-
entiating characteristic to the over-
all gain at lower frequencies, the
VCO gain is flat at lower frequen-
cies, then starts rolling off. In the
AD897, the V/I converter has an ex-
ponential transfer function:

2TT - *
WVCO — r p - e (25)

and the VCO gain becomes Ko.
=kexpo>vco (i.e., it increases with fre-
quency). The consequence is a con-
stant fractional loop bandwidth,
since G(s)/<wVC0=KpkcxpR1. By rewrit-
ing AT as

AT - A 0 ^

K(expf ( 1 - Z - 1 ) (26)

AT can be plotted as a function of
frequency. Besides shifting the flat
portion of the AT curve with the
VCO frequency, the periodic nature
of l-z~l and the fact that it peaks at
multiples of one-half the sampling
frequency is reflected in the oscilla-
tor's noise transfer function. This
can be characterized by injecting Av
directly into the loop circuit.6 TIA
measurements will show that jitter
introduced by this method changes
with frequency and is periodic with
the trigger or sampling frequency.

The PLL model also must include
the phase detection process. Digital
phase detectors apply a control sig-
nal to the charge pump, command-
ing it to either source or sink cur-
rent. The time of pumping charge

into or out of the loop filter is equal
the phase error t^ measured be-
tween the input data edge and the
center of the window. The window
size is defined by the clock signal
period present at the phase detector
input; without any divider in the
feedback path, it is equal to the VCO
period Tvco.

The phase-error measurement
reference center of the window is
marked by one of the edges of the
clock. The phase measurement oper-

6. This VCO representation incorporates a parallel
feed-forward path to measure Av.

7. In a divide-by-M model, the counter averages
VCO jitter over M clock periods.

ation is triggered by the arrival of a
data edge. Let t^ == t ^ be the phase
error at the ith data pulse. If the
data pulses are N clock cycles apart,
the phase error t<f>(t = l} can be calcu-
lated as:

t«i + i) ~ Z (To + ATj)

- NT0 + t#

= .2 ATj + t* (27)
In the discrete time domain, this

accumulation of ATj can be imple-
mented with an adder where one in-
put is receiving ATj while the other
is the value of the adder's output

delayed by one clock cycle. The
block just described implements an
integrator in the z-domain and its
output is the position of the clock
edge relative to some starting point.
Phase error tfc is the difference be-
tween this reference tA0 and the ac-
cumulated clock position, and is
sampled at the update rate.

The phase detection process, de-
scribed in this manner, brings the
integrator back into the loop. By
separating the loop's elements in
this way, it is possible to consider
the effect of introducing dividers
into the PLL's feed-forward and
feed-back paths.

Classical theory suggests that
adding a frequency divider between
the VCO and phase detector will re-
sult in increasing VCO jitter as the
division ratio M increases. Mea-
sured data contradict this predic-
tion, however.

A divide-by-M counter can be
modeled by an M-bit-long shift reg-
ister, which in the z-domain is equiv-
alent to cascading M-l unit delay
blocks (Fig. 7). Since integration of
the VCO period change AT is per-
formed on a cycle basis during the
phase detection process, the jitter at
the output of the M divider can be
written as:

ATi
AT M - l

» - n r 2 z~m (28)

It is clear by now that the divider im-
plements a moving average filter,
with no averaging at the lower fre-
quencies.

The full PLL can now be built by
assembling z-domain building
blocks (Fig. 8). The phase detector is
sampled at the data rate while other
components run at the VCO fre-
quency. The VCO frequency is actu-
ally an integer multiple of the data
frequency, i.e.:

fv dfdata - [2f8]fdata (29)

The different sampling rates auto-
matically take care of the question
of how the phase detector/ charge
pump gain changes with frequency.
In frequency synthesizer applica-
tions, there is a divider in the feed-
forward path so that the VCO out-
put frequency becomes:
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^vco vr Iref (30)

and the data frequency becomes:

£H
t*ef (31)J-data Jj~

which should be the data sampling
rate for the phase detector.

How does noise in the VCO effect
overall jitter when the oscillator is
followed by a divider stage? Since
ATM is given by a geometric series:

M - l

«1 m=0

- MATvcoLzz
M 1-""zr* (32)

When forcing Av in the VCO, the
transfer function becomes:

or

^ - i (1 - ^ M ) (34)

The resulting amplitude curve is
very much like the original noise
transfer function in the VCO, but
with z"1 replaced by z"M and the gain
reduced by a factor M. For Av=l,
the peak amplitude in dB-s is:

ATM, dB = 201ogg (35)

Varying data frequency can also
affect open-loop gain. The average
charge pumped into the loop filter
depends on d=fVC0/f{Jata , the number
of VCO cycles between data up-
dates. In traditional s-domain mod-
els, this is considered by including d
in the formula for the charge pump
gain:

K P -
d. JE_1

- 4 L .
2TT

d</>* 27rd d

fdlata (36)

After replacing the filter compo-
nents with their discrete time equiv-
alent, the update rate is reflected in
the sampling frequency of the z-do-
main network, fs=fdata. The charge
pump gain is

In the final multi-rate sampled
data system, the same thing hap-

8. A complete z-domain PLL model includes two domains with different sampling rates (separated by the
dotted line).

pens to fvco. The charge pump gain
definition is changed to reflect time-
domain operation, since the phase
detector that measures the phase er-
ror in seconds is:

K - d i In (38)

Variations in the open-loop gain
with the update rate should be care-
fully considered as a potential
source of closed-loop instability. Un-
der normal circumstances, the open-
loop crossover frequency co0 should
fall above the loop-filter zero o)x
since the damping factor is:

* 2 v wi (39)

The loop-filter component values
fix the position of o>x (i.e. it is inde-
pendent of the data frequency,
whereas G>0 is not). Increasing the
spacing between updates will de-
crease the open-loop gain, moving
w0 closer to a>l and resulting in less
and less damping. This leads to oscil-
latory transient behavior under
closed-loop conditions.

Introducing a feedback divider
with division ratio M is equivalent to
adding a moving average filter be-
tween the VCO and phase detector.
The transfer function of an M-point

filter is:

sin hrM
H(f) = T.

M sin *t
(40)

Besides the additional low-frequen-
cy rolloff in the open-loop transfer
function, the filter creates an extra
delay in the loop since its group de-
lay is:

tdelay ~
M - L

(41)

where To is the VCO period.
High values of division factor M

create the potential for unstable
closed-loop behavior as the rate of
change around the crossover point
in the open-loop transfer function
gets close to 40 dB/decade. These
problems can be avoided by choos-
ing oyl as low as possible, with the
tradeoff being poor transient re-
sponse. • •
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Properties of Frequency Difference Detectors
FLOYD M. GARDNER, FELLOW, IEEE

Abstract—Among other applications, frequency-tracking loops are
employed in digital-data receivers, either as a frequency-acquisition aid
for phase-locked coherent reception, or as the sole carrier-frequency
control for noncoherent reception. This article provides details of design
and performance of the frequency-difference detector that lies at the
heart of the loop.

I. INTRODUCTION

RECEIVERS of modulated-carrier data signals sometimes
contain frequency tracking loops. Reasons for employing

such loops include the following.
• Frequency must be adjusted accurately for differentially

coherent or incoherent reception.
• ACostas or other phase-locked loop for coherent recep-

tion may require frequency aiding for acquisition purposes.
A frequency-tracking loop, in its simplest form, is arranged

as shown in Fig. 1. The loop consists of a frequency-difference
detector (FDD), a loop filter, and a voltage-controlled oscil-
lator (VCO).

Such a loop strongly resembles automatic frequency
control (AFC) loops, which have been known for many years
(e.g., [1], [2]). A conventional AFC loop employs a fre-
quency discriminator, which relies upon a passive tuned cir-
cuit to furnish the frequency reference. By contrast, the FDD
uses a local oscillator to furnish the frequency reference.

This paper examines the characteristics of a particular type
of FDD in some detail. Features covered include: circuit
principles; response to signals, with emphasis upon data
signals; and effects of noise. Several properties important
to satisfactory designs are brought to light.

Only analog implementations are treated here. Digital
implementations are also of considerable interest and may be
found in [3] and [4].

II. OPERATING PRINCIPLES

Simple Quadricorrelator

The best known FDD is the quadricorrelator of Fig. 2.
It was first presented by Shaeffer [5] but given its name
and described in some detail by Richman [6]. The quadri-
correlator (and some modification thereof) is the only FDD
considered in this paper.

A pair of mixers are used to convert the input passband
signal into the corresponding in-phase and quadrature base-
band components. For analysis purposes, the mixers are
represented as ideal multipliers, but physical circuits could be
switching devices, with no alteration in the results [7, p.
108]. Transfer gain of the mixer is the dimensionless factor
Km.

Outputs from the mixers consist of sum and difference
frequency products between the input signal and the local
oscillator. Low-pass arm filters following the mixers suppress
the sum frequency and pass the difference frequency. For

Paper approved by the Editor for Communication Theory of the IEEE
Communications Society for publication without oral presentation. Manu-
script received April 3, 1984. This work was supported by a contract from the
European Space Agency, Noordwijk, The Netherlands.

The author is a Consulting Engineer at 1755 University Avenue, Palo Alto,
CA 94301.
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Fil ter
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Fig. 1. Frequency-tracking loop, simplified block diagram.

purposes of the immediate analysis, it will be assumed that
the difference-frequency component is passed without attenu-
ation or phase shift. That assumption is removed later.

In order for the quadricorrelator to operate, the difference
frequency between input signal and local oscillator must fall
within the passband of the arm filters. A signal that is well
outside of passband will be attenuated by the filter selectivity.
Bandwidth of the arm filter therefore provides a rough estimate
of the capture range of a frequency tracking loop.

Output of one arm filter (the /-arm in Fig. 2) is differen-
tiated. Time constant (or "gain") of the differentiator is
T(i seconds.

A perfect differentiator is assumed for ease of analysis.
One can object that a perfect differentiator cannot be built
and that the analysis is therefore unrealistic. In fact, perfect
relative differentiation is readily obtainable and so the analysis
is quite realistic. The term "relative differentiation" is ex-
plained as follows.

Let one arm filter have a low-pass filter transfer function
denoted as Ha{s). Let the other arm filter have a transfer
function sHa(s), which is always physically realizable, provided
only that Ha(s) is low-pass. Then if the same signal should be
applied to both filters, the output from the sHa(s) filter
is exactly the derivative of the output of the Ha(s) filter.
Therefore, perfect relative differentiation can be achieved.
Outputs of the arm filters are designated Vj(t) and Vg(t).

Differentiation of the /-channel produces T^Vj(t). Arm
outputs are multiplied in the third multiplier to produce

»d(0 = *3rd»e(0»j(0 (0

where K^ is the gain of the third multiplier and has dimensions
of (volts)""1.

To gain insight into the behavior of a quadricorrelator, let
the input signal be a simple sinusoid

Vin(0=Vs cos (aiit + Oi) (2)

where 6; is an arbitrary, time-invariant phase angle. Defining
frequency error as Ao> = GJ/ — co0, where co0 is the radian
frequency of the reference signals, the arm-filter outputs are
calculated to be

vKO = KmVs cos(A<of + 0,)

vQ(t) = KmVs sinCAwf+fl,). (3)

Reprinted from IEEE Trans. Comm., vol. COM-33, pp. 131-138, February 1985.
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Fig. 2. Quadricorrelator.

Differentiating and multiplying, the output of the third
multiplier is found as

vd(t) = -%Ao)TdKm*K3 Vs* [1 - cos (2Awf + 20,)]. (4)

There are two components in this product: a dc component
proportional to the frequency difference (including its sign)
and a ripple component at double the difference frequency.
Notice that the phase dt appears only in the ripple and not in
the dc component.

The dc component is the useful output; it could be used
for FM demodulation or as the error signal in a frequency-
tracking loop. The ripple, which has the same peak amplitude as
the dc component, can be a major nuisance if the circuit is used
to recover modulation or if the frequency tracker is the only
frequency-control element. A method of cancelling ripple will
be presented below.

There are numerous variations on the basic quadricorrela-
tor. One of them is to recognize that the differentiator need
not be perfect; indeed, it is not even necessary that the box
labeled "differentiator" be a high-pass network.

To see how this can be, let Vj and VQ be as shown in (3)
and let the differentiator be replaced by a selective network
with transfer function Hd(f) = A(f) exp (/0(/)), where A is
the amplitude and 0 is the phase shift of the frequency re-
sponse of the network. Denoting A/ = ACO/ITT, the output of
this network will be

MO = Km VsA(Af) cos (Aojt + 0t + 0(A/)).

(The tilde denotes a filtered signal.)
The output of the quadricorrelator is

(5)

- - lK3Km
 2 V^A(Af)[sin 0(A/)

- sin {2Aoof + 20, - </>(A/)}]. (6)

For any physically realizable transfer function Hd(f), the
amplitude A(f) is an even function of frequency while the
phase 0(/) is an odd function. Therefore, the dc compo-
nent, proportional to sin 0(A/), reverses polarity as the dif-
ference frequency passes through zero, as is required for a
frequency detector. This null at zero frequency difference
occurs for any filter Hd whatsoever; it is a property of the
quadricorrelator and not of the filter.

Frequency-difference information is provided by that por-
tion of Vj that is rotated into phase with VQ by the network
#</(/). Since Vj and VQ are generated 90° out of phase, the

most effective phase shift is 90 . A perfect differentiator
provides 90 ° phase shift at all frequencies.

Amplitude of the dc component is proportional to sin 0,
whereas amplitude of the ripple is independent of 0. To ob-
tain the largest possible dc component relative to ripple
requires 0 = 90°

There are numerous different networks that might be used
for Hd\ some examples include:

• a differentiator: Hd(s) = sTd

• a high-pass filter: Hd{s) = snHL(s)f where HL(s) is a
low-pass filter

• a low-pass filter: Hd(s) = HL(s) (for example, [3],
[8])

• a delay line: Hd(s) = exp (sTd) (for example, [3 J)
• a delay-differencing network (approximating a dif-

ferentiator ):Hd(s) = 1 - exp (sTd).
As pointed out in [8], if the phase shift of Hd becomes

excessive, then sin 0 reverses sign and the FDD output has the
wrong polarity for controlling frequency of the VCO. The fre-
quency error would be increased instead of decreased by
action of the tracking loop.

If phase shift exceeds 270°, there will be one or more
points of false lock where the loop comes to equilibrium at a
frequency error other than zero. This phenomenon is similar
to the false lock sometimes encountered in phase-locked
loops [7,ch. 8] .

A perfect differentiator will be assumed for Hd in the
remainder of this analysis.

Balanced Quadricorrelator

Ripple may be cancelled by the balanced quadricorrelator
of Fig. 3. This is a single-sideband cancellation scheme where
the double-frequency component (the ripple) is cancelled
and the zero-frequency components (the desired error signal)
add together.

The balanced circuit, or variations thereon, have appeared
previously in [8] (using low-pass filters instead of differentia-
tors), [3], and [9], and has been mentioned but not pursued
in [10].

Straightforward analysis shows that if the sinusoidal signal
of (2) is applied to the balanced quadricorrelator of Fig. 3,
the output voltage will be

vd(t) = -AaiK3TdKm
2V/. (7)

Ripple is gone. Moreover, the phase Qt of the input does not
appear in the output expression. Therefore, time-invariant
input phases will be omitted from further consideration.
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Fig. 3. Balanced quadricorrelator.

The remainder of this paper deals exclusively with balanced
quadricorrelators.

III. RESPONSE TO SIGNALS AND NOISE

Bandpass Inputs

Let the input be

v-in(t) = x(t) cos (x>tt - y(t) sin co,f. (8)

All bandpass signals can be reduced to this format. The coeffi-
cients x{t) and y(t) are real variables but no constraints are
placed, yet, on their stationarity, cross correlation, or spectra.

To simplify the discussion, it will be assumed that the arm
filters merely suppress sum-frequency components of the
mixer outputs and do not affect the modulation components
x{t) and y(t). Arm filter functions can be translated to a
fictitious passband filter located before the mixers. Then
yin(0 c a n b e regarded as the output of the passband filter.
This expedient permits filter effects to be included without
cluttering the descriptions to follow.

If this bandpass signal is applied to the balanced quadri-
correlator of Fig. 3, the output is found to be

vd(t) = -K3TdKm
2 [Au{x2 + y2) + xy - yx] (9)

where the time argument has been suppressed for notational
convenience. Some special examples give insight into the
implications of this expression.

First, as a shorthand convenience, define

Kq ~ ^3 Td^m •

DSB-AM: Let y(t) = 0 for all t. Binary PSK is one possible
example of such a signal. Then (9) reduces to

Vd(0 = -Kqx
2(t)Ato. ( ID

We recognize x2(t) as the squared envelope of the input signal
(More generally, in (9) the squared envelope is x2 -f y2.)

Mean value of the output for DSB-AM is

Avg [vd] ^Vd = -KqAooox
2 (12)

where ox
2 = Avg [x2(t)]. (We write Avg [ ] instead of

statistical expectation E[ ] to allow for time averaging as
well as ensemble averaging.)

Two features are apparent from (11).
• There is no additive self-noise generated for any DSB-

AM signal, no matter what the form of x(t). (Self-noise is
explained in [11].)

• Error voltage vd(t) is modulated by the signal envelope.
When the FDD is used in a feedback frequency-tracking loop,
the loop gain will fluctuate with fluctuations in the envelope.

Uncorrelated Channels: Let ^[^(^1)^(^2)] ~ 0 for all
tx and t2. A band-limited signal with this property has a
spectrum that is symmetric about cof- in the passband. It can
be shown that Avg [xy] = 0 = Avg [yx] and so the FDD
mean output is

Kd = -VMa** + aj;*). (13)

This equation has been derived previously in [ 10 ] under slightly
more restrictive conditions.

PAM-QAM Signal: Let x and y be synchronous PAM data
streams of the form

x(t) = Sang(t-nT)

y(t) = Vbng{t - nT)
(H)

where g(t) is a standard signaling pulse and the {an} and {bn}
are multilevel data sequences. Impose the special, but often-
encountered conditions that

E[an] = 0 = E[bn)

E\aman\ =aaHmn

E[bmbn)=oblhmn

EKbm]=0. (15)

(10) Output of the balanced quadricorrelator for such an input

vd(t) = ~Kq Aw J 2 (fl«flm + Kbm)
L \n m

• g{t - nT)g(t - mT)\

~*<7 S Z ) anbm{g{t - nT)g{t -
|_ n m

nT)}\.~g(t~ mT)g(t~ (16)

Taking statistical expectation and applying the conditions of
(15) yields

E[vd(t)] = -KqAa>(oa
2 + ob

2)X 82(t - nT). (17)
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Only the first bracketed term of (16) contributes useful
average output; the second bracketed term has zero mean
and only contributes pattern (or self) noise [11].

Expectation of the first term, as given by (17), is non-
stationary-in fact, periodic in T. That is not surprising inas-
much as the input signal (8) and (14) is cyclostationary
[12], [13]. Useful output of the circuit is the dc value, which
is found by time-averaging (17) over one period, to obtain

Vd = -K-Auioa* + ab
2)(UT)

= -KqAu(oa
2 + a 6 2) ( i / r ) / g2(t)dt.

2/:

n J0

g2(t~- nT)dt

(18)

But the integral is just the energy of the pulse g{t) (dissipated
in a 1 £1 resistor):

-f g2(t)dt (19)

so the useful dc output of the balanced quadricorrelator is

Vd = ~KqAu(o2 + ob*)Eg/T. (20)

Consider pattern noise more closely: in particular, the
difference of products contained in braces in the second term
of (16). For n = m, that difference is zero; the double summa-
tion can contribute pattern noise only for m 4=- n.

If the signaling pulse g(t) is time limited to a single interval
T (that is, g(t) = 0, t < 0, and t > T) then there is no pattern
noise whatever. Pattern noise can arise only if pulses overlap.

The cancellation that is noted arises because of the balanced
circuit; an unbalanced quadricorrelator (e.g., Fig. 2) not only
does not afford the pattern-noise cancellation, but also con-
tains terms that are products of pattern noise and ripple.
This is just one more reason to employ a balanced circuit.

Gaussian Noise

Let the input V[n(t) be bandpass Gaussian noise with two-
sided spectral density Sn(f). Bandpass Gaussian noise can be
expanded in quadrature components about any arbitrary fre-
quency co,- to obtain

<>in(0 = wc(0 c o s °V - n
s(t)

 s i n °V- (21)

There is no implication that the spectrum is centered on OJj
or is in any way symmetric about it. Furthermore, there is
no requirement that the spectrum Sn(f) be symmetric about
any frequency other than zero.

Adapting (8) and (9), the output of the balanced quadri-
correlator, for noise input, is found to be

vd(t) = -Kq [Aoo{nc
2 + n2) 4- hsnc - hcns]. (22)

this interval to obtain expressions of the form

"co(O = 2 ixck cos (2TT*/7O ~ co/)f
k=l

+ xsksin(27Tk/T0 -to,)?]

"JO(O = 2 lxck sin (27Tk/T0 - to,)r
fc=i

-xsk cos(2nk/T0 - co/)r] (23)

where the subscripts "0" in nc0 and ns0 indicate that the
series are valid only in the finite interval To.

These expressions are differentiated and substituted into
(22). The statistical-expectation operator is next formally
applied and the interval To is caused to grow towards infinity
while k is constrained so that k/T0 = fk holds constant. In
the limit, the cross correlations all vanish and the autocorrela-
tions become delta functions, viz.,

E[xck*sn] = 0

E[xckxcn] =6krtE[xck
2]

E[xskxsn] =8knE[xsk*]. (24)

Therefore, following [14], the expectations of the cross
products are

E[nchs] = -E[hcns] = 2 / (to - cJi)Sn(f) <*f (25)
•'o

wherefore the dc output is

V, = ~= -Kq]72Au)on
2 + 4 f (u-Ui)Sn(f)df

Jo
(22b)

But

(CO - CO/) = (tO - CO0) + (C00 - CO,) = (tO - CO0) - AtO

so

4 f (co - ui,)Sn(f)
 df {u>-G>0)Sn(f)df

- 2Acoon
2

since

On2 = 2 /
•'0

S»{f) df.

Therefore, the dc output of the balanced quadricorrelator is

Taking statistical expectations, the average output voltage f
is Vd = -87TKq (f-fo)Sn(f)df (26)

Vd ^ E[vd(t)} = -Kq [AuE(nc
2 + n2) + E(hsnc - hcns)]

= ~Kq [2Acoon
2 + E(nsnc - hcns)] (22a)

where on
2 is the variance of the input noise vm(t). To proceeQ

further we must evaluate E{hsnc ~~ ncns).
To that end we follow the approach described in [14,

sect. 6-4, 8-5]. Consider a finite segment of the noise input of
duration TQ. Expand nc(t) and ns(t) in Fourier series over

irrespective of the arbitrary input frequency co^
In other words, the average error signal generated by the

FDD is proportional to the first moment about the local
reference frequency / 0 of the spectrum Sn{f) of the input
vm(t). The error signal will be zero only if the center-of-
gravity (e.g.) of the input spectrum coincides with the local
reference frequency. In that sense the frequency-tracking
loop tracks the center-of-gravity of the input spectrum.
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Conjecture: Inasmuch as the FDD is incoherent, it seems
plausible that it tracks the e.g. of any input spectrum, not
just that of bandpass Gaussian noise.

Noise Bias

This result has important consequences for circuit design.
In a coherent phase-locked loop, additive noise causes phase
jitter in the loop, but no bias is generated. However, (26)
shows clearly that noise can generate a bias in a frequency-
tracking loop, in addition to the fluctuations in tracking.
An equipment designer must be able to predict the bias and
often wants to be able to avoid it entirely.

Bias will be generated if the e.g. of the noise spectrum does
not coincide with the local reference frequency / 0 . In many
receivers, the noise spectrum is shaped by passing white noise
through bandpass filters in intermediate-frequency portions of
the receiver. To avoid noise bias, it is sufficient to make those
filters symmetric and center them on the reference frequency f0.

There are two ways to close a tracking loop: a short-loop
connection or a long loop. These options are illustrated in
Fig. 4.

The bandpass filter (BPF) in the IF portion of the receiver
has a fixed characteristic. If the frequency / 0 is allowed to
vary, as is necessary in a short loop, then the filter center—and
therefore the e.g. of the noise spectrum—cannot coincide
with /o except by rare accident. In general, a noise bias in
tracking must be anticipated whenever a short loop is em-
ployed.

By contrast, in a long loop, both /<> and the filter center-
frequency are fixed. Tracking is accomplished by controlling
the frequency of an oscillator that precedes the reference
source. If the filter and the reference source are properly
aligned and stable, then the e.g. of the noise spectrum will
always coincide with the reference frequency and no noise
bias will be generated.

Signal Plus Noise
In this section, analysis of the response of the balanced

quadricorrelator to signal-plus-noise is presented. The results
are in the form of the spectrum of the noise output of the
FDD. These results can then be applied to a frequency-track-
ing loop to calculate the fluctuations of tracking error.

Previous workers have analyzed signal-plus-noise from dif-
fering standpoints. Pickard [15] dealt with a simple quadri-
correlator that had hard limiters in each arm. He performed
his analyses entirely in the time domain and did not derive
output spectra. Pawula [16] extended Pickard's work, with
the same circuit; his paper has references to other predecessors.

Park [9] treated the balanced quadricorrelator and derived
output spectra. He was most interested in the use of the FDD
as an FM demodulator, whereas the emphasis here is on
frequency tracking. A portion of Park's article deals with the
balanced quadricorrelator without any limiters-the circuit
of greatest interest here. He states that the FM clicks that
trouble a conventional FM discriminator below threshold
do not arise if there is no limiting. Also, he concludes that
the limiterless circuit has better output signal-to-noise ratio
if input SNR is very small. (At large input SNR's, the circuit
with limiter will be superior because the limiter suppresses
AM noise. It is not possible to achieve the FM noise advantage
unless the AM noise is somehow removed.)

Cahn [3] performed an analysis of the extra phase fluctua-
tion introduced by the presence of the frequency tracker in
a combined phase-frequency tracking loop.

In this analysis we shall be concerned only with fluctua-
tions in a frequency tracking loop. To that end, the input
to the FDD will be assumed to be a pure sine wave plus band-
pass Gaussian noise.

RF In IF
Mixer

IF ̂ BPF FDD

Untracked

Loop
Filter

Local

L-C) feference

VCO
(a)

IF
Mixer

BPF FDD

Tracked
L.O.

'VCO

Loop
Filter

Fixed Local
, Reference

(b)

Fig. 4. Frequency-tracker loop connections, (a) Short loop, (b) Long loop.

Obviously, a data signal is not a pure sine wave so the assumed
signal is a simplification of reality. The simplification affords
better visibility into the operation of the circuit while, it is
hoped, providing a useful approximation of performance with
real signals.

The noise has a spectrum of Sn(f) (two-sided), which is
unrestricted other than being required to be bandpass. (Strictly
speaking, the spectrum should be sufficiently band limited
that foldover problems do not arise in the mixers of the
quadricorrelator.)

The input may be resolved into

*>in(0 = (YS + nc) cos co(t - ns sin w/f (28)

where the time dependence of nc(t) and ns(t) has been sup-
pressed for compactness of notation.

Assume that the arm filters remove the double-frequency
mixer products, but that the filters are broad enough not to
affect nc or ns. That is contrary to standard practice but con-
venient for analysis. The assumption will be removed later.

Under these conditions the filtered outputs of the mixers
are

Vj(t) = Km [(Vs + nc) cos Acot - ns sin Acof ]

UQ(t) = Km [{Vs + nc) sin Aut + n5 cos Acof]. (29)

Performing the balanced-quadricorrelator operations of dif-
ferentiation, multiplication, and subtraction on these arm
voltages gives

vd(t) = -Kq [ A c o ( F , 2 + 2 V s n c + n 2 + n*)

+ Vshs 4- n c h s - hcns]. (30)

(This result is the remnant after combining 30 terms of the
function VJVQ — VJVQ. Output of the simple unbalanced
quadricorrelator is half of the above, plus 13 distinct ripple
terms.)

Average output is

Vd = E[vd] =-KqAtoVs*

~Kq [2on
2 Aco 4- E(nchs - hcns)]. (31)

«in(0 = Vs cos to,t + 7?(0. (27)

Ordinary statistical expectations (instead of double-averaging
as for a QAM input) suffice because the noise is assumed to
be stationary. The terms nC) ns, hc, hs are all zero-mean by the
bandpass assumption. Variance of the noise input is an

2.
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The terms containing nc
2 and ns

2 would superficially
appear to contribute to the useful dc output of the FDD. That
conclusion is contrary to common sense; the terms should be
regarded as an artifact of the particular selection of noise
representation. The last term—E(nchs — ri^)—generates a
component to cancel the anomaly, as has been demonstrated
in(21)-(26).

As is characteristic of quadratic devices, the output in (30)
is composed of S X 5, S X TV, and N X N terms [14, ch. 12].
Desired frequency-difference information is contained in the
S X S term, which is independent of the noise. There is no
signal suppression effect at low SNR, as would arise in a circuit
containing a limiter.

Some portion of the noise in (30) is proportional to the
frequency difference Aco. Total noise decreases as the fre-
quency error is reduced to zero. This dependence of output
noise on frequency deviation has been noted earlier [6], [9].

Frequency error in a successful frequency tracker should
be very small so the error-proportional noise should also be
small. In the sequel we neglect the error-proportional noise
and concentrate on the last three terms of (30). Our objective
is to determine their spectrum; to that end we first obtain
their autocorrelation

=zKq
2(Vs

2E[nslhs2] + Vs(E[n5lns2nc2] ~ E[hslnc2ns2]

+ E[ncliislhs2] - E[nclnc2hs2] ) + E[nclhslnc2ns2]

~ E[ncl'hlf2c2fh2] - El"clns\"c2f'h2]

+ E[hclnslnc2ns2]). (32)

The subscripts 1 and 2 refer to times tx and t2.
Next, the noise functions are truncated to finite time seg-

ments and expanded in Fourier series, as in (23). These func-
tions are substituted into (32), like terms are combined, and
the time segment is allowed to approach infinite extent. The
details are extremely space consuming, so they are omitted.
Underlying principles are identical to those of [14, sect.
6-4,8-5].

Ultimately, it is found that the expectations of the triple
products [second line of (32)] are all zero for Gaussian noise
and that the autocorrelation of the remaining terms is
given by

E[vdlvd2\lKq
2

= 2V5
2 I (uk - Uo)2$n(fk) cos (co* - co0)r dfk

Jo

+ 8 / / (w, - wo)
2Sn(fk)Sn(fp)

JJo

• cos (cok - cop)r dfk dfp

• / / .
+ 8 / / (wp - uo)(w* - O30)Sn(fk)Sn(.fp)

/ / . "
• cos (co* - OJP)T dfk dfp+ 4 (com - co0)

•(co* - ">0)Sn{fm)Sn{fk)dfk dfm (33)

The last step is to take the Fourier transform of (33) to
find the spectrum of the noise on vd(t). After additional
labor, the two-sided spectrum is found to be

Svd(f)/Kq
2

= 2Vs
2(2rrf)2 [Sn(f0 ~f) + Sn(f0 +/)]

+ 8 / (up - wo)2SfI(/p)

'lSn(fp-n + Sn(fp + f)]dfp

+ 8 / (up- co0)5,7(/^)[(cop - co0 - 2?r/)
Jo

' Sn(fp - / ) + (COp - CO0 + 2TTf)Sn(fp + f)] dfp

+ 8 6 ^)[ / o ("p-"0)Sn(fp)dfpY. (34)

The first term in the spectrum arises from S X N; the other
terms are all NX N. The last term is a dc component that is
zero only if the center of gravity of the noise spectrum coin-
cides with /o.

The broad-band assumption on the arm filters can now be
removed. Low-pass arm filters are equivalent to a bandpass
filter placed in front of the mixers; this equivalent band-
pass filter is always symmetric and always centered on / 0 .
To take account of an arm filter, simply translate it into the
equivalent bandpass IF filter. The noise spectrum Sn(f)
then becomes the actual input noise spectrum (often effectively
white), filtered by any actual bandpass filters in the receiver
and by the equivalent bandpass filter corresponding to the
arm filters.

Spectrum Examples

Two particular spectra were investigated in further detail.
They are given by

Sn(fa)=N0/2f l/fl-/ol<W/2

= 0, \fa-fo\>W/2

and

n{fb)~ 2 [n(fb-M/B}2

(35)

(36)

The first is a rectangular spectrum of width W, centered
at / 0 . The second is the spectrum that would be imposed
by an integrate-and-dump arm filter on white noise. These
spectra are related in the sense that if W = B, then the two
spectra contain equal noise powers.

Noise spectra at the FDD output are found by substituting
into (34) and evaluating the integrals. The results are

Svdif)

where fk, / ,„ , fp are dummy frequency variables and r =
*2-t\.

+

2VsH2irf)*Kq*N0

0

(l/KW/2)

(l/l>W/2)

(I/KW)

(\f\>W) (37)
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Fig. 5. Spectrum examples.

for the rectangular spectrum and

Svd(f) = 8 V Vs
2B*N0 sin* (nf/B)

sin 27r//fiN

2nf/B i
8Kq

2B3N0
2 (38)

for the integrate and dump spectrum. Since both input spectra
are symmetric about /Q there is zero dc component present.

These are two-sided spectra, valid for both positive and
negative values of / . Each spectrum consists of two portions:
one arises from S X N and the other from NXN.TheNXN
portions are quite different for the two different input spectra,
but the S X N portions are the same for small magnitudes of
/ . To see that they are the same, approximate sin2 (irf/B)
by (nf/B)2, which makes the first term of (38) equal to the
first term of (37).

At low frequencies at least, the S X N term is the familiar
quadratic-spectrum noise that appears at the output of all
FM discriminators.

The various spectra are sketched in Fig. 5. They have been
drawn with B = W for ready comparison between the two
input shapes. Vertical scales of the output spectral components
are not significant.

It is apparent that the NXN noise has its spectrum con-
centrated near zero frequency. A narrow-band tracking loop is
likely to be more troubled by N X N noise than by S X N,
even for fairly large signal-to-noise ratios.

Modulated Signals
These results have all been obtained for a pure sinusoidal

signal. A data signal is not a sinusoid so the noise spectra
resulting from a data signal plus noise will be altered from the
results shown here. The more difficult analysis needed to
accommodate the modulation sidebands of the data signal
will not be pursued here. Nonetheless, it is useful to speculate
on the noise spectrum that would arise if a data-modulated
signal replaced the sinusoid. Some possibilities include the
following.

• Pattern-noise components might appear, as discussed
earlier.

• The NXN output components are likely to remain
the same inasmuch as they do not depend upon the signal.

• The S X S components will be those already discussed
for QAM signals.

• The SXN components will be modified substantially.
There are two effects that might appear.

i)The SXN components derived for the sinusoid
signal are likely to be spread in frequency by convolving noise
against the spread spectrum of the data signal.

ii) Additional SXN components may be generated
(e.g., [9]).

In the absence of better analysis of the noisy data-signal
input, an engineering approximation should provide useful
guidance to the equipment designer. In two parts, the approxi-
mation is as follows.

1) Calculate useful dc error-signal output (thus obtaining
the gain of the FDD) and pattern noise from the QAM analysis
presented in a previous section.

2) Calculate output noise caused by the additive input
noise according to the sinusoidal-signal analysis of the im-
mediately preceding sections.

This approximation is valid only if the N X N noise is
indeed dominant.

IV. CONCLUSIONS

This article has examined quadricorrelators used as fre-
quency-difference detectors (FDD). The FDD develops an
error signal that is proportional to the frequency difference
between an incoming signal and a local reference oscillator.

The simplest quadricorrelator consists of a differentiator
(or other, less effective network), an /-Q demodulator, and a
baseband multiplier. It suffers from ripple in its output.

A balanced quadricorrelator requires an additional multi-
plier and differentiator; it cancels ripple and is easier to analyze.

It has been demonstrated that the loop will track the center-
of-gravity of the spectrum of certain classes of inputs. It is
conjectured that the loop will track the e.g. of any bandpass
input spectrum.

A quadricorrelator can be used for frequency tracking of
a PAM-QAM data signal. Pattern noise may arise if the data
pulses overlap and the modulation is two-dimensional.

If the input noise spectrum is not symmetric on the center
frequency of the data signal, the FDD (or any other frequency
detector) will develop a noise bias. To avoid bias, use a long
loop for tracking and a bandpass filter that is symmetric about
the final demodulation frequency f0.

105



Noise spectra of the FDD output have been ascertained for
a sinusoidal signal plus bandpass, Gaussian noise. These output
spectra depend upon filter shaping in the receiver. Two im-
portant examples of shaping are given; most practical data-
filter shapes will lie between the two examples.

Both S X N and N X iV noise components are generated.
The N X N component is likely to dominate in a frequency
tracker because the S X N spectrum goes to zero at zero fre-
quency.
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Frequency Detectors for PLL Acquisition
in Timing and Carrier Recovery

DAVID G. MESSERSCHMITT, SENIOR MEMBER, FEEE

Abstract-A. significant problem in phase-locked loop (PLL) timing
and carrier extraction is the initial acquisition. Very narrow loop band-
widths are generally required to control phase jitter, and acquisition
may depend on an extremely accurate initial VCO frequency (VCXO)
or sweeping. We describe two simply implemented frequency detectors
which, when added to the traditional phase detector, can effect acquisi-
tion even with very small loop bandwidths and large initial frequency
offsets.

The first is the quadricorrelator, previously applied to timing re-
covery by Bellisio, while the second is new, and called a rotational fre-
quency detector. The latter, while limited to lower frequencies and
higher signal-to-noise ratios, is suitable for many applications and can
be implemented with simpler circuitry.

1.0. INTRODUCTION

THE initial acquisition of a phase-locked loop (PLL) when
used for timing or carrier extraction is a significant prac-

tical problem, since the narrow loop bandwidth generally
required for jitter requirements severely restricts the pull-in
range. Methods widely employed to effect acquisition include

[i]

a) compromises in loop filter design,
b) highly accurate initial VCO frequency (VCXO),
c) sweeping of the VCO, and
d) in-lock detection with switching of loop filter.

In many instances, as in carrier recovery, several of these
methods may be simultaneously employed.

There is a fifth method of effecting acquisition [ 1 ] , which
seems to have been first suggested by Richman [ 2 ] , and that is
to add a frequency detector (FD) to the traditional PLL phase
detector (PD) in the manner of Figure 1. With a large initial
VCO frequency offset, the PD output has essentially a zero
d.c. output, and the FD generates a voltage proportional to the
frequency difference between input and VCO, driving that
difference to zero. The PD takes over when the frequency
difference is small, completing the acquisition. When the PLL
is in-lock, the FD output will have at the least zero mean, and
optimistically will be identically zero, automatically allowing
the PD and its loop filter to govern the loop dynamics. The
beauty of this approach is that a crystal controlled VCO
(VCXO) can often be exchanged for the additional FD circuitry
in timing recovery applications, an advantageous tradeoff in
this age of integrated circuitry. In carrier recover, a VCXO is
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Fig. 1. PLL with Phase and Frequency Detector.

often still required because of the problem of false locking to
a data sideband, but the sometimes troublesome in-lock de-
tector and/or sweeping circuitry can be eliminated and the PD
loop filter can be designed virtually independently of acquisi-
tion considerations, removing a significant burden from the
designer.

This paper will discuss two specific FD's, each of which is
applicable to both timing and carrier recovery. The first is the
quadricorrelator described by Richman [ 2 ] , which was more
recently rediscovered by Pickard [3-5] , Bellisio [ 6 ] , and in
modified form by Park [ 7 ] , Cahn [8] and Citta [14] . These
authors have discussed its applicability to sinusoid [2, 3] and
narrowband Gaussian process [2-4] input signals, to timing re-
covery [ 6 ] , and to Costas loop carrier recovery for biphase
modulation [ 8 ] . We will show here that the quadricorrelator
is more generally applicable to carrier recovery for any modu-
lation method which has a power spectrum symmetrical about
the carrier frequency. This includes most data modulation
methods, with the notable exceptions of single and vestigal
sideband modulation.

The second FD, called a rotational FD, is new, and unlike
the quadricorrelator is implemented with predominately digital
circuitry. As a consequence, its operation is limited to lower
frequencies, but where applicable it is more amenable to inte-
grated circuitry realization because of the elimination of
multipliers and filtering functions. Its operation depends on
detecting, with simple circuitry, the direction of rotation of
the signal constellation.

For completeness we mention the papers by Oberst [ 9 ] ,
describing an FD for two square waves (useful in frequency
synthesis *), and Runge [10 ] , describing an unrelated FD for
timing and carrier recovery applications.

* The FD's described here can be used for two sinusoids or square
waves, but appear to have greater complexity than Oberst's circuits.

Reprinted from IEEE Trans. Comrn., vol. COM-27, pp. 1288-1295, September 1979.
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Fig. 2. Linearized Loop Models.

While the primary purpose of this paper is to describe and
analyze the FD techniques, we first discuss in Section 2.0 the
choice of loop filters. Then in Section 3.0 we focus on the
quadricorrelator and rotational FD, and describe experimental
results in Section 4.0.

2.0. LOOP FILTERS

Assuming the input signal to the PLL of Figure 1 is of the
form sin {uxt + 0X), the VCO output is cos (co2f + #2)* m&
the PD and FD are both linear, the linearized models of Figure
2 result. The phase-locked loop of Figure 2(a) governs after
lock has been achieved, while the frequency locked loop of
Figure 2(b) governs the acquisition behavior. The design para-
meters are the PD and FD constant Kp and Kfi the VCO con-
stant Kvy and the VCO free-running frequency co0.

The loop dynamics are governed by the standard closed
loop phase transfer function

0i(s)

KpKJ{p(s)

s + KpKvHpis)
(2.1)

plus a transfer function governing acquistion

coa(s) —cooA
^ ( s ) — w2(s) =

1 + KfKJIfis)
(2-2)

Bellisio [6] recommends a proportional plus integral PD
loop filter,

# P ( S ) = M I + — (2.3)

which is a good choice since the static phase error is small [ 1 ]
and the usual concern with the integrator being initially

—• P0 f \^>n

FD
4

J s

VCO

Fig. 3. Choice of Loop Filters.

saturated is alleviated due to the action of the FD. He also
recommends that the FD use the same loop filter (that is,
the summer in Figure 1 be placed in front of a single loop
filter of type (2.3)). This latter choice is shown to be disad-
vantageous when we calculate the time response due to a step
frequency change coi(s) = co1/s from (2.2),

where the time constant is

Mi
T = +•

1

JU2 ix2KfKv

(2.4)

(2.5)

Thus, we see that, as expected, fastest acquisition occurs for
Kf large, but the time constant is limited to r = At1//i2. Physi-
cally, this limitation on speed of acquisition is due to the pro-
portional part of the filter, which initially reduces the fre-
quency error and slows the charging of the integrator. The
solution is to eliminate the proportional filter

s
(2.6)

resulting in the configuration of Figure 3. The FD charges the in-
tegrator capacitor to the correct voltage to reduce the fre-
quency error to zero (in spite of any initial saturation), and in-
lock the PD maintains that charge. While (2.4) predicts that in-
creasing Kf can result in arbitrarily fast acquisition, in practice
the fact that the FD output will have a randomly fluctuating
voltage on its output in-lock places a practical limit on the size
of Kf.

3.0. SPECIFIC FD DESIGNS

3.1. Quadricorrelator Frequency Detector

The quadricorrelator, as shown in Figure 4, consists of two
quadrature mixers, a differentiator in the in-phase channel,
and a cross-correlator.** The mean value of p(i) is propor-
tional to the difference between the center frequency of the
power spectrum of r(t) and co2- While this property has been
demonstrated for sinusoidal [2, 3] and Gaussian [3-5] inputs
r(t), it can be easily established in general. In particular, if

** The similarity of the quadricorrelator to the PD of a Costas loop
[11] is striking.
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Fig. 4. Quadricorrelator.

r(t) has a power spectrum symmetric about the radian fre-
quency a>!, it can be expanded in the form

r{t) = xc it) cos cox t — jc^(O sin o>x f (3.1)

where xc(t) and #s(f) are uncorrelated. It is shown in Appen-
dix A, using (3.1), that

Ep(t) = Auor
2

where Ato is the radian frequency difference,

Aco = coj — co2

(3.2)

(3.3)

and a r
2 is the variance of r(0- Thus, p(0 is an unbiased esti-

mate of Ao> when properly scaled by ar"~2.
Many data transmission modulation methods have a signal

power spectrum symmetric about the carrier frequency, the
most important examples being PSK and QAM [11], The
quadricorrelator is thus a suitable FD for carrier recovery with
these modulation methods. For the particular case of biphase
modulation, Cahn [8] has suggested a FD structure similar to
the quadricorrelator, except that it includes an additional
l(dQ/dt) term. From the foregoing, it is evident that the sim-
pler quadricorrelator would suffice. Bellisio [6] applied the
quadricorrelator to baseband PAM timing recovery, exploiting
the symmetry about the baud frequency of the pulse wave-
form spectrum generated by a NRZ data transition detector
(differentiator followed by dead-zone quantizer).

Finally, we mention that many authors include limiters
in both / and Q channels. This simplifies implementation of
the correlation multiplier, which must have a very small offset
to control static phase error, as well as insures a zero FD out-
put after acquisition and eliminates the ar

2 dependence in
(3.2).

3.2. Rotational Frequency Detector

The rotational FD, in contrast to the quadricorrelator, is
constructed of predominately digital circuitry and includes no
filtering functions. Consequently, it is particularly well suited
to integrated circuit implementation, but is also inherently
limited to lower frequency operation than the quadricorrelator.

The rotational FD is simplest to describe for measurement
of the frequency difference between two square waves, al-
though it offers no particular advantage for that application
over circuits described by Oberst [9]. That description is given
in Section 3.3, and the simple generalizations to timing and

f ,< f 2

(b)
Fig. 5. Situations to be Distinguished by FD.

T / 2 <W<0

f AOJ> 0

7T<#-

HT^lrfc-
kL î -D

* 0

3ir/2

Fig. 6. Phasor Diagram of Two Successive Transitions of fx Relative
to Phase of/2 .

carrier recovery are described in Section 3.4 and 3.5.The effect
of noise and phase jitter is analyzed in Section 3.6.

3.3. Two Square Waves

Two of the three cases to be distinguished by the FD are
shown in Figure 5. These cases would easily be recognized by a
human observer watching the waveforms on an oscilloscope.
When /1 = / 2 , the transitions of fx maintain a fixed relation-
ship to those of/2. When/i < / 2 , the transitions of fx advance
in phase relative to those of/2, and vice versa when ft > / 2 .
An excellent way to view the situation is to draw a phasor
diagram as in Figure 6. One cycle (2?r radians) of/2 is shown
and the two phasors represent the relative phase of two suc-
cessive transitions of/ i . The angle of rotation is readily shown
to be 2ir ((/2//i) - 1), which is counterclockwise i f / i < / 2

and clockwise if fx > / 2 . Hence detecting the sign of the fre-
quency difference is equivalent to determining the direction of
rotation in Figure 6, while the magnitude of the frequency dif-
ference is related to the angle of rotation.
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Fig. 7. Division of VCO Cycle into Four Quadrants.

A circuit which detects the direction of rotation can be
built as follows: Assume f2 is the VCO frequency, and divide
each cycle into four quadrants labeled A, B, C, and D as in
Figures 7(a) and (b). This can be accomplished by actually
running the VCO at four times frequency / 2 , and dividing by
four to obtain/2 itself. Further assume that the PD is designed
so that in-lock the PLL will maintain the positive transition of
ft in the vicinity of the positive transitions of/2 (other PD
designs can be handled in like manner). Therefore, in-lock we
would expect to observe positive transitions of/x predom-
inately or exclusively in quadrants A and/). To ensure that the
FD will produce an output rarely if ever in-lock, it will operate
only upon the observation of positive transitions of / i in
quadrants B and C

Let the fcth cycle of / 2 be denoted by a fc-subscript. The
situation / x > / 2 can be recognized by observation of Ck

followed by Bk+1, in which case the FD generates a positive
pulse. Similarly, if a Bk is followed by Cfe+1, the FD generates
a negative pulse, in recognition that/j < / 2 .

The FD does not generate a pulse for every pair of ft transi-
tions, since the rather special conditions of the last paragraph
must be met. In particular, they will hopefully seldom be met
in-lock, when no FD output is desired, since the PLL should
serve to maintain the transition of/i in quadrants^ and/).

The FD is characterized by the mean value of the pulses at
its output, since that mean value serves to charge or discharge
the integrating capacitor in the loop filter. That mean value
is, assuming FD positive aiid negative output pulses have equal
area,

M F D = p r {positive pulse} ~ Pr {negative pulse}. (3.4)

If the frequency difference is Ato, the angle of rotation is
-Aw//i radians, and JUFD can readily be calculated by assum-

- 1 2

Fig. 8. FD Characteristic for Two Squafe Waves.

ing that the phasor in cycle k is uniformly distributed from 0
to 2flr radians in Figure 7(b). For example, if the angle of rota-
tion of two successive phasors is $ < 7r/2, then an FD output is
generated only when the first phasor is within an angle 0 of
the fl-axis, an event which has probability <j>/2n. By a simple
extension of this argument, the plot of JUFD of Figure 8 can be
generated. The characteristic is periodic for fi > / 2 , since
multiple cycles of/j in a period of/2 cannot be distinguished
from a single cycle by the FD circuit as described. It is not
periodic for fx < f2 since, if the period of fx is too great,
successive positive transition of / i will not occur within two
periods of/2 and the FD will generate no output.

As seen from Figure 8, the useful range of the FD is

| A w | < i r / i = — . (3.5)

That is, a 50% offset in the initial VCO frequency / 2 can be
tolerated. The range of linearity of the FD, that is, the range
over which the model of Figure 2(b) is accurate, is I Aw K
wx/4. The largest FD output is at Aoo = ±cox/4, where the
probability of an output pulse is 0.25.

3.4. Timing Recovery

In timing recovery it is standard to generate a sequence of
timing pulses from the data waveform. For example, Bellisio
[6] describes a circuit consisting of a differentiator and dead-
zone rectifier which generates data transition pulses from an
NRZ data waveform. The nominal spacing between two suc-
cessive pulses can be any multiple of the baud interval T =
l/fi since a pulse is only generated by a data transition. As in
Section 3.3 we let/2 be the VCO output frequency.

The FD described in Section 3.3 works for this case, where
the quadrants of/2 in which the data transition pulses occur
are observed. The calculation of the FD output mean is simi-
lar, except that in addition to the requirement for two succes-
sive phasors to span the ?r-axis, there must be two data transi-
tions in a row in order for an FD pulse to be generated. Thus,
the FD characteristic of Figure 8 remains valid, except that
/xFD must be multiplied by the probability of two data transi-
tions in a row (0.25 for equally likely independent data). The
FD range is 50% of the baud rate, which is comparable to that
reported by Bellisio [6] and more than adequate for the elim-
ination of a VCXO.

3.5. Carrier Recovery

As mentioned in the introduction, the motivation for using
an FD to aid acquisition in carrier recovery is somewhat dif-
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Fig. 9. Configuration of the Rotational FD in Carrier Recovery.

ferent than in timing recovery, for it is usually not practical
to eliminate the VCXO due to the problem of false lock to a
data sideband to be described shortly. Acquisition remains a
problem, however, since worst-case frequency offsets can still
exceed the desired loop bandwidth by many orders of magni-
tude. The problem is particularly acute in microwave radio
transmission, where even very accurate RF oscillator fre-
quencies can result in absolute frequency offsets of 50 to 100
kHz, while carrier recovery loop bandwidths are more typically
in the range of 0.1 to 1.0 kHz.

The signal used by the FD to extract carrier frequency off-
set is assumed to be of the form of (3.1), where cox would
tymcally be the carrier frequency at IF. The object of the FD
is to estimate Aco given by (3.3), where co2 is the IF local
oscillator frequency generated by the VCO in our carrier re-
covery PLL. The configuration of the FD is shown in Figure 9.
The first step is to demodulate to baseband with quadrature
carriers (at frequency co2) Ju s t a s f° r t r i e Costas loop and
quadricorrelator; the resulting quadrature baseband signals
7(0 and Q(t) are given by (A.I). The FD operates on I(f) and
Q(f), while timing recovery is performed on r(t). The major
requirement of the rotational FD is that timing recovery acqui-
sition occur before the FD output is valid and carrier recovery
acquisition is initiated. The interesting property that timing re-
covery can be achieved independent of carrier recovery can be
seen from squaring r(t) in (3.1) and eliminating the double
frequency term; the result is (xc

2(t) + x,2(f)) /2, which will
have a baud frequency component suitable for extraction.

The first operation of the FD is to sample / and Q at the
baud interval kT\ from (A.I) the result is

I(kT) = xc(kT) cos (kAu)T - 0) - xs(kT) sin (kAcoT - 0 )

Q{kT) = ~xc(kT)sin (kAo>T~-6) -xs(kT)cos (kAcoT - 0).

(3.6)

Consider first the case Aco = 0 = 0 following acquisition. The
point (I(kT), Q(kT)) when plotted in a two-dimensional plane
is, in fact* one of the data points in the two-dimensional signal
constellation corresponding to the modulation method. We
show two examples in Figure 10(a) and (b), two-level (bi-
phase) and four-level (QPSK) phase-shift keying. Biphase serves
as a basis of comparison to the work of Cahn [ 8 ] , while

KkT)

Two-level PSK
(a)

Q ( k T )

Four-level PSK
(b)

Fig. 10. Two-Dimensional Signal Constellations and Rotational FD
Thresholds (Constellation shown for Aw = u> = 0).

QPSK demonstrates how the technique generalizes to more
complicated constellations.***

When there is a frequency difference, we recognize (3.6) as
the parametric equations of a circle; that is, the signal constel-
lation is rotated by an angle kAo)T-Q. Rotation is clockwise if
Aco > 0. The nature of the problem of false lock to a data
sideband is now clearly evident; in biphase modulation rota-
tion by AcoT equal to multiples of ir radians can clearly not be
distinguished from AcoF = 0. Thus, any FD characteristic
must be periodic in Aco = n/T, and the maximum useful range
of any FD is

Aco | < n/2T, biphase. (3.7)

Thus, the initial VCO frequency must not deviate from the
carrier frequency in magnitude by more than one-quarter the

*** It is also possible to restrict operation of the FD to a subset of
the data points, if that subset can be unambiguously identified in the
face of rotation. For example, in 16-level QAM, restriction to the four
inner data points results in operation identical to QPSK.
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baud rate. For QPSK, (3.7) is replaced by

| A O J | < I T / 4 7 \ Q P S K (3.8)

since false lock occurs when rotation is by ir/2 radians, and the
maximum VCO offset is one-eighth the baud rate.

Shown on Figure 10, in addition to the signal constellation,
are the radial thresholds required for the rotational FD. Some
of these thresholds can also serve as slicers for data decisions
as well as for implementing a bang-bang type of PD. The radial
thresholds divide the angle between each pair of adjacent data
points into four quadrants A, B, C, D. In each baud interval
the quadrant actually observed is independent of the data,
and depends only on the angle of rotation (kAcoT-0). As be-
fore, to insure infrequent FD pulses in lock when 0 = 0 ,
operation is restricted to quadrants B and C. The actual cir-
cumstances in which an FD pulse is generated are identical to
the square wave and timing recovery cases.

The FD characteristic is plotted in Figure 11. The highest
probability of a pulse output is 0.25 and occurs at I AcoT 1 =
a/2, and the range of useful operation is I AcoT I < a, where
a = 7r/2 for biphase and a = n/4 for QPSK. Since these figures
are consistent with (3.7) and (3.8) it follows that the rota-
tional FD has as large a range of operation for carrier recovery
as any FD.

3.6. Effect of Phase Jitter

The plots of /xFD presented thus far have not taken into
account the effects of noise and intersymbol interference.
Since the rotational FD is sensitive to the angle of rotation,
which in turn is influenced by these factors, there is concern
that they might significantly affect FD operation.

The situation is considered in Appendix B, where it is
shown that if the phase jitter is small relative to 7r/2, TT/4, or
7r/8 for the timing recovery, biphase, or QPSK situations,
respectively, the effect of phase jitter is virtually absent, this
in spite of any statistical dependencies which may exist be-
tween successive samples of phase jitter. For phase jitter with
amplitude less than twice the previously mentioned values, the
effect is to change the shape of the FD characteristic (basically,
round the corners), but not otherwise adversely affect its
operation. Even larger phase jitter will have a significant ad-
verse effect on FD operation, but is not likely to be encoun-
tered in practice, since the effect of this large jitter on error
rate would also be substantial.

4.0. EXPERIMENTAL RESULTS

Experimental results on the use of the quadricorrelator in
timing recovery were reported by Bellisio [6]. We report here
on experimental results obtained in the implementation of a
rotational FD in a carrier recovery application. The terrestrial
microwave system to which it was applied employed a 16-point
signal constellation and lOMbit/s data rate. References [12-13]
describe timing and carrier recovery techniques which are
typical for this type of system.

This particular system protection switches at an error rate
of 10~~6, which corresponds to a baseband SNR of about 22
dB. Reliable acquisition was experimentally observed for an

A O J T

Fig. 11. FD Characteristic for Carrier Recovery.

SNR of 15 dB or less, which is substantially lower than neces-
sary for this type of system. Figure 12 shows the VCO control
line during several acquisitions at SNR's of 22, 20, and 15 dB
starting from a worst-case carrier frequency offset (133 kHz).
The initial flat portion of the curves corresponds to the period
of timing recovery acquisition, which must precede carrier
acquisition for the rotational FD. Total acquisition time is
about 15, 25, and 45 ms for the three cases.

5.0. CONCLUSIONS

The use of a FD to aid PLL timing and carrier acquisition is
a very advantageous technique; the major impediment to its
use appears to have been the lack of suitable FD circuits. We
have described two such circuits, the quadricorrelator and
rotational FD, both of which have a broad applicability. For
timing recovery the rotational FD is somewhat simpler, parti-
cularly for integrated circuit implementation, since it is digital
and requires no multipliers or filters; however, it is also limited
to lower data rates. For carrier recovery there appears to be no
great difference in the difficulty of implementation, since both
circuits require quadrature mixers followed by circuitry which
operates at approximately the baud rate. In some instances a
substantial portion of the rotational FD circuitry can simul-
taneously serve other purposes (such as PD and data threshold-
ing), in which cqse it becomes more attractive.

APPENDIX A

QUADRICORRELATOR OUTPUT MEAN VALUE

Let wide-sense stationary input signal r{t) be written in the
form of (3.1) and assume that the power spectrum of rif) is
symmetrical about radian frequency cot so that xc(i) and
xs(t) are uncorrelated. Assuming that o^ + co2 terms are re-
jected by the low pass filters in Figure 4,

H$) = *e(0 cos (Aut - 6) ~xs(t) sin (Aojt - 0)

Q(i) = ~xc(t) sin (Acor - 0) ~xs(t) cos (Acot - 0) (A.I)

where AOJ is given by (3.3). The crosscorrelation of I(t) and
Q(i) is then easily shown to be, using the fact that xc(t) and
xs(t) are uncorrelated,

RIQ(r)=E[I(t)Q(t + T))

= »( eMwT_ e~/AW rp c (T ) + /*f(r)) (A.2)
4
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where RC(T) and RS(T) are the autocorrelation functions of
xc(f) and xs(t). The cross power spectral density, the Fourier
transform of (A.2), is

Fig. 12. Rotational FD Carrier Recovery Acquisition, (a) SNR = 22
dB (10 ms/division). (b) SNR = 20 dB (10 ms/division). (c) SNR =
15 dB (20 ms/division).

5 (co) = -{Sc(co - Aco) -Sc(u + Aco)
4

+ Ss(co - Aco) - St(u + Aco)}.

The mean of p(t) is thus

Ep(t) = E\Q{t)-^~

/

dco
(/«)*S /O(co)—

27T

1 z-00

= — / co{Sc(co — Aco) - Sc(co + Aco)
4.Loo

, dco
+ ^(co - Aco) - 5s(co + Aco)} — .

2rr

Changing variables in this integral, we obtain finally

dco

(A.3)

(A.4)

Ep(t) = -iAco/ (5c(co) + 5s(co))
2rr

(A.5)

Recognizing that the power in r{t) is one-half the sum of the
powers in xc(t) and xs(t), (3.2) follows.

APPENDIX B

We can model the effect of phase jitter by assuming the
angle of rotation at the fcth baud interval is (kAoiT - 9 + 6k),
where 0fc is a random phase jitter component. It is important
that we not assume that 0*, and 0^+1 are independent, since
intuitively dependencies should have a particularly strong in-
fluence. In order to recalculate juFD for this case, we let 6 be
uniformly distributed on [0, 2ir] as before. The starting angle
is (fcAcor - e + 6k), and the angle of rotation is (AcoF +
6h+1 — 6k). The key to simplifying the problem is to first con-
dition on Bh and 0fe+i, and take the expectation over 0, that
expectation being the same as previously determined but with
AwT replaced by (Aco7 + 0fe+1 - 0fe). Thus, completing the
expectation over Bh and 0k+lt

HFI>=E[F(Ao>T + ek+1-0k)] (B.1)

where F(AcoT) is the FD characteristic of Figures 8 or 11.
Equation (B.I) is exact, but for the special case where the

argument of F is in the linear region with high probability,
where F(co) = ATco,

toB^ElKiAuiT+B^-Bt)}

--K{Au)T + Edk+1-Edk)

= F(AcoT) (B.2)
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where we have made the further assumption that E0k+1 =
E0k (not necessarily zero). The implication of (B.2) is that
the phase jitter has had no effect whatsoever on JUFD . Note
that no assumption of independence of 0h and 0k+1 has been
made.

When this special case is violated, (B.I) can be used to esti-
mate the effect. If 0fe+1 - 0k has probability density /(')>
then (B.I) becomes

VLFj>=fF(AuT + (t>)A<P)d<S>.

Thus, if the argument (AcoT + <p) is not confined to the linear
region of F, the effect is seen to be a smoothing of the corners
of the FD characteristic. If /(0) spans a significant portion of
the period of F, then there is a significant deterioration of the
FD operation.
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Analysis of Phase-Locked Timing Extraction Circuits

for Pulse Code Transmission

ENGEL ROZA

Abstract—An analysis is presented of the performance of phase-
locked timing extraction circuits for baseband pulse code trans-
mission. The phase error of the extracted timing wave is influenced
by the properties of three essential stages in signal processing:
prefiltering, nonlinear treatment, and narrow-band filtering. The
analysis enables us to calculate quantitatively the quasi-static and
the dynamic part of the phase error for arbitrary but specified types
of signal processing. This is more than can be done with existing
theory in the case of resonant-type timing extraction circuits. Ex-
amples are given for practical cases, and conditions for optimum
performance are derived.

Furthermore, the behavior of such phase-locked circuits in a
chain of repeaters is investigated, and in particular, the propagation
law 'or jitter. Byrne's model, as used for resonant-type timing ex-
traction circuits, therefore is generalized. It is shown analytically
and experimentally that by proper implementation of the timing
extraction circuit, considerable improvement can be obtained as
compared with resonant-type circuits.

I. INTRODUCTION

IN ORDER to regenerate pulses in a transmission
system for pulse coded signals, a clock signal should be

available. In self-timing repeaters, this clock signal is
derived from the baseband information signal itself. This
includes filtering by means of a resonant circuit or by a
phase-locked loop (PLL). The properties of a single
resonant circuit with respect to timing derivation have
been analyzed by Sunde, Bennett, and Manley [l}-[3].
Byrne et al. [4] have studied the propagation of jitter of
the extracted timing wave in a chain of repeaters with
resonant-type clock extraction circuits. In this paper, the
PLL is analyzed in these respects. In addition, a more
general approach is followed, permitting the influence of
undesired signal interference to be taken into account.

II. SPECTRAL DENSITY OF THE INFORMATION
SIGNAL

The transmission model used consists of a signal source,
sending synchronous digital impulses into an equivalent
baseband transmission channel, which also includes all
linear processing of the receiving and transmitting end.
Generally, the bandwidth of this transmission channel will
be restricted such that a well-defined transfer of informa-
tion is just possible. The first Nyquist criterion states that
a bandwidth, which extends from zero to a frequency
between the digit frequency and its half, is sufficient.

Manuscript received November 15, 1973.
The author is with the Philips Research Laboratories, Eindhoven,

The Netherlands.

The series of synchronous impulses from the signal
source can be described as a superposition of a deter-
ministic series of impulses with equal amplitudes and a
stochastic series of impulses with discrete amplitudes of a
random distribution. The first series is responsible for
lines in the power spectrum at the digit frequency and its
multiples. The second series produces the continuous part
of this spectrum.

Because of the bandwidth restriction of the transmission
channel, it is not possible to transfer energy at the digit
frequency or its multiples. That means that nonlinear
signal processing is required to derive a clock signal at the
digit frequency from the received signal.

III. NONLINEAR SIGNAL PROCESSING

Two methods are commonly used which avoid un-
desired interference of neighboring pulses in the clock path.
We shall denote this undesired interference as interpulse
interference, which has to be distinguished from inter-
symbol interference in the information path.

1) According to the first method, the input signal of the
clock extractor is shaped in such a way that it fulfills
Nyquist's second criterion [5]. Such a signal has the
property that halfway between the centers of two succes-
sive pulses, the signal value of all other pulses is zero. This
signal is then processed by a nonlinear circuit generating
pulses of a short duration (shorter than one digit interval)
when the signal crosses thresholds which correspond to the
values of a single pulse halfway between two pulse centers.
In this way, a random series of equidistant pulses origi-
nates, possessing a power spectrum with lines at the digit
frequency and its multiples, so that with narrow-band
filtering, a continuous clock signal can be derived. This
method will be referred to as the threshold method.

2) According to the second method, the transmission
characteristic of the clock path is changed such that an
even symmetrical transfer characteristic around the
Nyquist frequency is obtained. Afterwards, the signal is
squared. As a result, a signal component is produced with a
frequency equal to the digit frequency, modulated in
amplitude, but with a constant phase. All components in
the original continuous spectrum around the Nyquist fre-
quency contribute to the power of this signal. Also, this
signal has to be filtered afterwards by a narrow bandpass
filter centered at the digit frequency. This process, denoted
as the symmetry method, will be analyzed in Section VII
in more detail.

The threshold method is used in systems with a digit
Reprinted from IEEE Trans. Comnt., vol. COM-22, pp. 1236-1249, September 1974.
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Fig. 1. Block diagram of a regenerative repeater.

frequency that is relatively low with respect to the fre-
quency range of the applied electronic components. The
symmetry method is used at higher frequencies, although
its fundamental property of avoiding interpulse inter-
ference is not, or hardly, recognized. For example, the
rectification of the symbols of a band-limited first-order
bipolar signal has to be conceived as a nonideal application
of the described principle. The bipolar coding of the first
order [12] is a linear process which yields a symmetrical
power spectrum around the Nyquist frequency between
zero and the digit frequency. Although bandwidth limita-
tion may somewhat deteriorate this symmetry and al-
though rectification substitutes the squaring, the principle
mentioned can readily be recognized. The resulting signal
to be filtered will show phase errors caused by interpulse
interference due to this imperfect execution.

The three essential parts of the clock extraction process,
i.e., prefiltering, nonlinear treatment, and narrow-band
filtering, are shown in the block diagram of a regenerative
repeater in Fig. 1. Various possibilities for implementation
will be investigated and compared in the following sections*

IV. FILTERING

At first, the description of the filter process after the
nonlinear treatment of the signal wall be based upon the
short pulses as obtained by the threshold method. The
symmetry method will be considered later. The obtained
signal after the nonlinear process can be approximated by

s(t) = £ cnb{t-nT - rn).

Herein the coefficient cn is determined by the statistical
properties of the signal, and it possesses in its most simple
form the binary values 0 or 1. T is the digit interval and N
is related to t such that

t = NT + T, 0 < r < T. (2)

The quantity rn denotes the deviation of the nth pulse
from its nominal value.

There are three possible causes for this shift:
1) additive noise in the transmission channel,
2) the input signal to the nonlinear circuit does not obey

the second criterion of Nyquist,
3) the incoming symbols contain timing errors, intro-

duced by preceding repeaters.
In a later section, the influences of more general pre-

processing will be considered. It will be found that these
influences can be taken into account by assigning ap-
propriate values to cn and rn. Statistical mutual de-
pendence of those values may occur in this general outline.

It is useful to make the following remarks about cn and
rn a priori.

1) cn and rn are assumed to be random variables in a
wide sense stationary random process, i.e., their auto-
correlation functions Rc(k) and Rr(k), defined by (3), are
independent of n.

Rc(k) = CnCn+k

RT(k) = TnTn+k' (3)

(The ensemble average of a random variable x will be
indicated by x.)

As a consequence, their discrete Fourier transforms
determine their spectral densities.

2) cn can vary randomly and considerably from digit
interval to digit interval. Its spectral density, therefore,
usually extends beyond the digit frequency.

3) Because of the filtering of preceding repeaters, the
spectral density of rn can show strong components in the
low-frequency part.

4) Due to the growth of the deviations rn along a chain
of repeaters, rn cannot simply be considered to be small
compared with one digit interval T.

A. Bandpass Filtering

Let the signal s(t) of (1), represented by pulses from a
current source, excite a narrow bandpass filter with center
frequency as close as possible to the digit frequency. As a
result, the voltage across the filter will be a harmonic func-
tion fluctuating in amplitude and phase with a nominal
frequency equal to the digit frequency. The amplitude
fluctuation can be eliminated by a hard limiter. The phase
fluctuation deteriorates the quality of the derived clock
signal.

This process has been investigated by Sunde [1] and
Bennett [2] for a resonant circuit.

(!) B. PLL Filtering

An alternative solution for obtaining a clock signal
from s(t) is the synchronization of the oscillator of a
PLL. In order to analyze the PLL, a model for it, using
digital signals, should be available. Such models have been
derived in the past by Byrne [6] and Saltzberg [7]. We
develop here an alternative model to show the relation-
ship with the common linear model for sinusoidal signals
so as to make possible an easy comparison with bandpass
filtering. Fig. 2 (a) shows the general block diagram for a
large class of PLL's. It shows that the loop filter is fed by
the product of the input signal Si(t) and the oscillator
signal 80(t).

In the case that Si(t) and so(t) are sinusoidal signals,
the low-frequency part of the output of the multiplier is
linearly proportional to the actual difference 0ea(t) of
the input phase 6ia(t) and the oscillator phase 0o(t). The
block diagram can then be modified to Fig. 2 (b). The phase
of the oscillator is determined by the convolution of the
phase error 6ea(t) and g(t). By g(t) we denote the pulse
response of the loop filter followed by an ideal integrator
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Fig. 2. (a) General block diagram of a PLL- (b) PLL model for
sinusoidal signals, (c) PLL model for digital signals, (d) PLL
model for digital signals with interpulse interference.

which represents the behavior of the phase of the oscil-
lator due to an applied signal.

So, assuming causality for g(t) and 0ea(t),

0o(t) = f eea(r)g(t - r) dr.
•'ft

(4)

0*(NT) = £ cndett(nT)g(NT - nT)T. (5)
n-0

The correspondence with the sinusoidal model is evident if
we compare (5) and (4).

Bea(NT) represents the phase difference between the
actual phase of the input signal 6ia(NT) and the phase of
the oscillator 0o(iVT), so that

Oea(NT) = Oia(NT) - 0o(NT).

For Bia{NT) we may write

TN
0UNT) = A W 6 i \ r r -27r^ .

(6)

(7)

Aco& is the detuning of the quiescent frequency of the
voltage-controlled oscillator (VCO) from the angular digit
frequency o>& being

W6 =
2TT

T ' (8)

TN has been defined by (1).
The term Ao)bNT represents the nominal phase of the

input signal Bia{NT).
Substituting (6) into (5), we find that

Oia(NT) - Oea(NT) = £ cneea(nT)g(NT - nT)T. (9)

We are more interested in the phase error of the oscillator
signal with regard to the nominal value Aco&iVT rather than
to the actual value eia(NT) because the nominal value
represents an ideal imaginary phase reference. So, sub-
stituting into (9)

The input signal applied to the multiplier in the case of
digital signals consists of a series of equidistant pulses
with random amplitudes. These pulses should have a
finite width which should be, in principle, less than one
digit interval T. The output of the multiplier also con-
sists of a random series of pulses (with another shape).
Because of the integrating properties of the loop, the
momentary signal value of the pulses as such is not
significant, but merely the integrated signal values over
nonoverlapping time intervals, short with respect to the
duration of g(t). For this interval, the period T is a con-
venient choice. Consequently, the output of the multiplier
can be modeled as a random series of Dirac-like impulses at
discrete intervals T. The magnitudes of these impulses are
proportional—linearly as a first approximation—to the
product of:

1) the relative delay 0ea(NT)T/27r of the oscillator
signal with regard to the input pulse positions, and

2) the discrete pulse amplitudes CN of the input signal.
From these considerations, the evaluation of the general

block diagram of Fig. 2 (a) to the PLL model for digital
signals, as shown in Fig. 2(c), is evident.

For the phase of the oscillator signal, responding to an
input signal s(t) of (1), one can write

Be(nT) =6ea(nT) +2TT™ (10)

in which Oe(nT) is the phase error with regard to the nomi-
nal input phase, we have

Oe(NT) + L cn0e(nT)g(NT - nT)T - Aa>hNT
n»0

+ ~T.Cnrng(NT-nT)T. (11)

We rewrite (11) as

Oe(NT) + Z~ee(nT)gw(NT - nT) - AubNT

2 * » CnTn
+ %'LJ^g»{NT~nT) (12)

with

gw(NT - nT) = crf(NT - nT)T (13)

being the normalized weighted open-loop pulse response of
the PLL.

Equation (12) will be referred to as the system equation
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of the PLL for digital signals. In Appendix I the system
equation has been solved. The phase error is found to
consist of a static part and a fluctuating part.

For the static part we find

Oeo = 0eo(l) + Beo{2)

Be0{l) = lim Aco6 —
NT

£ gw(NT - nT)
n*0

a m
 2r CNTN

I CN

And for the fluctuating part we get

M.{NT) = L bnhw(NT - nT)

(14)

(15)

(16)

(17)

with

bn« _ Si^A M i ) - ^ fe>_Tn). (is)
Cn Cn \ Cn /

hw(NT) is the normalized pulse response of the weighted
closed-loop transfer function of the PLL. Its discrete
Fourier transform Hw(ltt), defined by (94) in Appendix I,
will be denoted as the phase-transfer function of the
system.

We summarize the conditions which have been assumed
in the derivation of the model and the solution of its sys-
tem equation.

The first two conditions relate to the model. They
express the extent to which the model represents the
physical reality.

1) Condition of Small Bandwidth: The bandwidth can be
characterized most suitably by the closed-loop noise band-
width, that is,

BL = — lim Z \Hw(lQ) |2fl.
27T JV^OO n = = 0

(19)

The condition of small bandwidth is then mathematically
expressed by

BLT « 1. (20)

2) Condition of Linearity: We have assumed that the
loop operates in its linear range. This can only be true if
the actual phase errors are small. The actual phase errors
are identical with the nominal ones if the pulses of the input
signal are not deviated from their nominal positions, i.e.,
if rn = 0. The linearity condition is then given by

M l ) « 1, (AflT2)1'2 k = o « 1. (21)

Two other conditions have been introduced during
evaluation of the system equation in Appendix I. These
conditions have mainly a theoretical value in order to
indicate the bounds of the developed theory. Practical
systems operate far from these bounds. The conditions are
expressed in terms of spectral densities of the random

variables, which are the discrete Fourier transforms of
their autocorrelation functions.

S) Condition of Sufficient Clock Content:

SCC(0)(2TBLT)M«L (22)

Here Sco is the spectral density of the random variable
(cB — cn) /cn, as defined in Appendix I by (87).

If cn are statistical independent values of a binary se-
quence with mark probability Pr, (22) reduces to

1 - P r
Pr

(2TBLT)1»«L (23)

This condition is apparently strongly related to the small
bandwidth condition. Furthermore, the condition of
sufficient clock content requires that the spectral density
Sec does not vary significantly in the frequency range
covered by the phase-transfer function Hw(ltt). The name
of this condition reflects the importance of the expected
value cn (cn must be sufficiently large).

4) Condition of Restricted Interpulse Interference:

ZRco(0)Ji*Son(0) (2KBLT)M « IRcrcMJ*. (24)

Rcc(0) and RcrCr{0) are the variances of the random
variables (cn - cn)/cn and cn(c^/cn — rn)/cn. SeTe is
the cross spectral density of those variables, as defined
by (93). It has been assumed, in addition, that /Scrc, like
Sec in the former condition, does not vary significantly in
the frequency range covered by the phase-transfer func-
tion. Only strong dependence of cn and rn may deteriorate
this condition. As will be explained in Section VII, de-
pendence of cn and rn is caused by the mechanism of inter-
pulse interference.

V. JITTER

Equation (17) expresses the fluctuating part of the
phase error or jitter. In this form, however, it hardly pro-
duces relevant information for the circuit designer. Let us
therefore discuss the formula in more detail. In Appendix
II an expression for the jitter has been derived in spectral
terms. For its mean-square value, which stabilizes for
large N, we can write

W = l i m liTXT £ Sbb^m) I H ^ |2' ( 2 5 )

Sbb(l&) is the spectral density of the random variable bn

or, in other terms, the discrete Fourier transform of its
autocorrelation function Rbb(k), as defined by (90).
Hw(ltt) is the discrete Fourier transform of the pulse re-
sponse of the phase-transfer function of the system, as
defined by (94).

Let us consider some particular cases.
1) Assume that cn and rn are mutually statistically in-

dependent. This is true, for instance, if the nonlinear pre-
processing is ideally performed according to the threshold
method stated in Section III. We may then distinguish two
contributions to the jitter: first, A0ec

2 due to cn, and second,
A6eT

2 due to rn:
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M.* = A0.e* + A0.r
s. (26)

Let us first examine A0M
2. From (25) and the definition of

&„ as given in (18), we obtain

A9J = M l ) 2 Hm E &.(**) I Hw(Kl) |« (27)
j\r-*oo N -\- 1 tmm0

in which £cc(to) is the spectral density of (cn — cn)/cn,
which is the discrete Fourier transform of its autocorrela-
tion function Rcc(k), as defined by (87).

2) Equation (27) can be evaluated further if cn are
statistically independent values. Then

1 N

AOJ = fc.(l)«fl«(0) lim -r^— Z I # . ( » ) |2. (28)

4tr2 c 2 1 *" y

^ - p f; K» ^ X I £ E <r. - *.) (r. - f.)

• K (NT -nT)hw (NT - mT) (35)

or in spectral terms

**«' - w n l i m F X T E ^(Ri) iF w ( f t i ) i2 <36>
in which £rr(K2) is the spectral density of the random
variable (rn — fn).

In the special case of zero-mean independent values for
rn, we find an analogous expression as found for the reso-
nant circuit [1], [2]:

Using (19), we write for (28) M«
WCr?-^ T

•r-r,

A6J - Oeo(iyRee(0)BLT. (29)

By analogy to a resonant circuit, we define for a general
transfer function an effective quality factor Qeu as

r 2 Ir? n 2Q.u '
(37)

so that

o w x

A^cc
2 — - -r— i 2 c c ( 0 ) .

4 Qeff

(30)

(31)

The causes for the origin of TB| as catalogued in Section IV,
however, do not generally provide statistical independence
for rn.

VI. SECOND-ORDER PLL

Let us consider the results obtained for a second-order
PLL. The closed- and open-loop transfer functions in
general notation are given by [11]

A similar result has been found by Bennett [2] for the
resonant circuit.

3) In addition, let cn be a symbol out of a series of marks
and spaces, and let Pr denote the probability for a mark;
then

Hw(s) =

Gw(s) =

swn

SWn

(2f-
82 + 2f«

- &)„

/Kv)
nS +

JK,)

+

+

<oB
s

S2 + 8(an/K,)un

(38)

(39)

fi»(0) 1 - P r
Pr

(32)

It is evident that the jitter vanishes if Pr —> 1 because the
signal is then fully deterministic. For very small values of
Pr, the condition of sufficient clock content no longer holds,
and an exact calculation of the mean-square jitter requires
numerical computation of the system equation (12).

4) Let us now consider AdeT
2.

Mutual independence of cn and rn results in

Hw(Kl) and Gw(lU) may be regarded as sampled values of
Hw(jco) and Gw(jo)). These transfer functions are deter-
mined by three parameters: the damping factor f, the
natural frequency wn, and the velocity constant Kv. As
follows from (13), these parameters are weighted ac-
cording to the average energy content of the signal, ex-
pressed by the expected value cn. For K9 this weighting is
linearly proportional; for f and w« it is more complicated.
The effective quality factor Qeff for the second-order
PLL, calculated by (38), (30), and (19), amounts to

A0er2
47T2

hm
1

Qeff
2TT

(40)

T* ^ - t f + l t i
E sm(ta) I tf.(B) I2 (33)

T Ww{l + (2f - a>r t/K,)2}'

This expression is for high-gain loops, i.e., loops for which

in which 8m(J&) is the spectral density of the random
variable (cn/cn)(c^/cn - r n ) .

The time domain expression can be derived directly
from (17):

2r»
w»

Kv
(41)

ZI £ CnCm(Tn — fn) (rTO — fn)
4TT2 1

M*? = m"fi l i m AT" , 1 ̂  ^ '

.A.(iVr - nT)hw(NT - mT). (34)

If, in addition, cn are statistically independent, (34)
reduces to

independent of the velocity constant. As seen from (31)
and (37), this Qeff controls the jitter. Evaluation of the
first contribution to the static phase error results in

Ml) =1~. (42)

The detuning Aw* is not a real constant, but is influenced
by temperature, aging, and moisture, which means that
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Beo{l) is a gwm-static error. The influence of the second
part 0eo(2)> however, can be eliminated by an equal shift
of the reference position. It may appear odd that the loop
exhibits this second contribution because, as is commonly
known, the response of the phase error on a phase input
step should be zero in the stationary condition. The ex-
planation comes from the fact that in our analysis, we have
considered the nominal phase error instead of the actual
one.

As may be seen from (42), it is apparently possible to
reduce the quasi-static phase error 06O(1) to an arbitrarily
small amount without influencing Qeff. This is not possible
for resonant-type timing extraction circuits. The cor-
responding expression for the quasi-static phase error, as
found by Sunde and Bennett [1], [2], is

Ml) = PQ
with

0 - &a>bT/ir

(43)

(44)

on the assumption that

P « 1, 0Q « 1.

The independence of static and dynamic phase error is,
in fact, the most important advantage of the PLL system
if compared with the resonant-type system.

On the other hand, faulty performance for worst case
signals is possible, due to the modulation of the loop
parameters by cn.

VII. INFLUENCE OF INTERPULSE
INTERFERENCE

Up to now, rn has been regarded as an undesired time
shift in an idealized model in which it is assumed that the
input signal to the PLL consists of pulses short with respect
to the digit interval T. In this section, however, we shall
drop this assumption, and we shall show that the same
model of Fig. 2(c) applies if the effects of general pre-
processing, resulting in pulses of arbitrary shapes and
duration, are taken into account by appropriately adapted
values for rn and cn.

Let fi(t) represent the waveform of a single pulse of the
signal si(t) before the nonlinear processing, so

si(t) = Y,anf(t-nT) (45)

in which an is a discrete random variable.
The signal S2(t), after a general nonlinear treatment, is

given by

s2(t) = hsi(t) + hSl(ty + kMW + • • •. (46)

The signal s2(t) corresponds with signal Si(t) of Fig. 2(a).
Because of the integrating properties of the loop, we may
approximate the output signal s3(2) of the multiplier by a
series of Dirac-like impulses at interval T:

= £ Ss(nT)8(t nT). (47)

If T is short with respect to the duration of g(t), which
generally is true, the output signal so(t) of the oscillator
will be unaffected by this approximation. The oscillator
signal consists of a sequence of elementary waveforms fo(t)
with maximum duration T7, which are shifted in phase by
an amount Oea*(nT) from the actual phase dia*(nT) of the
fundamental signal component out of s2(0 on which
so(t) locks. Therefore, we may write for the sample values

.772 ( T \
ss(nT) = / s2(nT + r)fo[r - —B,*(nT) ) dr. (48)

J-Tft \ Z7T /

Later we shall argue that the actual phase of the funda-
mental component of s2(t) will be, in general, equal to
the actual phase of the pulses of Si(t) of (45).

As long as Oea*(nT) « 1, according to the linearity
condition (21), we may approximate (48) by

/•772 rp

nT) = / s2(nT + T)/0(T) dr + — Oea*(nT)
•I—Tit &R

/

T/2
i

-r/2

Defining now

St(nT + r)/.'(r) dr. (49)

(50)Cn = — / /. '(r)s2(nr + r )dr
Iv J_T/2

cn-rn* = £- / Mr)»t(nT + r) dr (51)

and substituting (49)-(51) into (47), we may write for
the output signal s3(t) of the multiplier

ss(t) - L cneea*(nT)T8(t - nT)

+ T.^cnrn*T8(t-nT). (52)

The model of the PLL for digital signals with interpulse
interference can then be evaluated from Fig. 2(c) and (d).

The actual phase Oia*(NT) of the input signal «,•($)
may be written as

Oia*(NT) = A»bNT - Y TN**' ( 5 3 >

Here Aco&, as before, is the detuning of the quiescent fre-
quency of the VCO from the angular digit frequency
2r/T and rjv** are the deviations of the pulses from their
nominal positions.

The block diagram of Fig. 2(d) can be reduced again to
that of Fig. 2(c) by defining

6ia(NT) = 6ia*(NT) - y ™* (54)

6ea(NT) = 6ia(NT) - 6O(NT). (55)
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Combining (53) and (54), we get

2*
eia(NT) = Au>NT -yrv (56)

with

TN TN** + TN*

Apparently, we may use the same model as we had before
for short pulses, provided we interpret cn and rn suitably:

1) cn is a random variable, defined by (50), which is
influenced by interpulse interference;

2) rn consists of two parts, rn** and rn*. The first part
represents the phase deviations of the incoming pulses.
The second part originates from interpulse interference and
may be calculated by (51) and (50).

About the actual phases of the input signal Si(t),
defined by (45), and the fundamental signal component
«2(0> it m a y be stated that these are equal provided

1) interpulse interference is restricted to a limited
number of neighboring pulses,

2) neighboring pulses are equidistant, which is true as
long as rn** has a low-frequency character. The noise con-
tributions to rn** may be neglected in practical systems.
Other contributions to rn** are introduced by preceding
repeaters, and will indeed have a low-frequency character
because the power spectrum of rn** is shaped by phase-
transfer functions of those repeaters.

We are now able to calculate the jitter due to inter-
symbol interference for a single repeater, i.e., if rn** = 0.
As we have seen, this jitter is fully determined by the
following.

1) The properties of the transmission channel. The pulse
response of this channel should be known.

2) The statistics of the digital signal. The transmission
code should be known. Conditions 1) and 2) are necessary
to calculate (45).

3) The nature of the essential nonlinear process. The
nonlinearity should be specified to calculate (46).

4) The properties of the PLL filter. A numerical cal-
culation can now be made by applying successively
formulas (45), (46), (50), (51), and (17).

As an example, calculated results are shown in Fig. 3
for transmission channels, fulfilling Nyquist's first cri-
terion at the input of the nonlinearity. The exhibited
variables are defined as follows:

A0eT
2 is the mean-square jitter due to (cn/cn) (cnTn/cn —

Tn),

&0ec
2 is the mean-square jitter due to

(cn — cn)deo(l)/cn,

p is the correlation coefficient of both contributions.
The total mean-square jitter M} can be found from

A0e
2 - A0er

2 + A6U2 + 2p(A0er
2-A0ec

2)1/2. (57)

From (18) it is obvious that (A^?)1/2 can be expressed
per radian quasi-static phase error.

Fig. 3 (a) and (b) show the influence of the rolloff
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Fig. 3. (a) Jitter due to interpulse interference for Nyquist I
channels and squared bipolar signals, (b) Jitter due to interpulse
interference for Nyquist I channels and rectified random ternary
signals, (c) Influence of effective quality factor on jitter due to
interpulse interference.

factor of the channel (rolloff factor as defined in [5,
ch. 5]) for two different processes. Fig. 3(c) shows the
influence of the effective quality factor Qen of the PLL.

From the graphs we may conclude the following.
1) Squaring of symmetrical pulses, e.g., Nyquist I

pulses, gives no guarantee of jitter-free operation, as is
sometimes thought and found in the literature [8].

2) The rms value (A0er
2)1/2 is inversely proportional to

the effective quality factor. Apparently, this means that
the spectral density SCTCT of the random variable
(en/in) {c^rn/Cn — Tn) increases linearly with frequency for
low frequencies. This can be explained from the fact that
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the average interpulse interference does not influence the
symmetry of the waveforms. Consequently, the spectral
density £CTCT is zero for zero frequency.

We may state that the effective quality factor in band-
limited systems, where there is a significant influence of
interpulse interference, is a more important parameter
than suggested by the results of the theory for idealized
systems as given by (31) and (37) and the corresponding
expressions for idealized resonant-type systems.

3) The rms value (A6W01/2 increases with the square
root of the inverse effective quality factor. Apparently, the
spectral density Scc of the random variable (cn — cn)/cn

is almost constant for low frequencies, as might be ex-
pected.

4) Even for large rolloff factors («1) , there appears to
be a very considerable influence of interpulse interfer-
ence. Calculating (A0ec

2)1/2/0eo(l) for the case of zero
interpulse interference by use of (31) yields

(Aojyiyeeo(i) = 0.16, if Q,SS = 29.8.

Note the difference with the results in Fig. 3(a).
5) The correlation of A0ec and A0eT is neglectably small.

VIII. OPTIMAL PREPROCESSING

In Section III, two methods were mentioned that avoid
jitter due to interpulse interference. In this section, we
shall prove this statement for the symmetry method.

The equivalent transmission channel up to the non-
linearity has a symmetrical transfer function around the
Nyquist frequency, yielding a signal

*i(0 = £ anf(t
n==0

nT) cos - (t nT). (58)

an is a discrete random variable. f(t) is the pulse response
of the transposed equivalent low-pass filter of the sym-
metrical transfer function.

2TT

< * - ¥

is the digit frequency.
Squaring the signal Si(t)> we find that

(59)

st(t) = | E Onf(t-nT) cos ?<«-.«if
= | (cos <06< + 1) { £ E anamfit - nT)f(t - mT)

n+»n=odd

- S I anamf{t-nT)f(t-mT). (60)
n+w=even

Let the spectrum of f(t) be limited in frequency:

F(u>) = 0, for co > coi. (61)

The signal s2(0 can then be conceived as a superposition of
an amplitude-modulated signal with a nominal frequency
o>b whose sidebands reach from co& — 2coi to w& + 2wi and a
signal with frequency components below 2wi. Let this
signal be filtered by a symmetrical bandpass filter with

angular center frequency w& and a bandwidth limited
between o)b + o)H and w& — cu//. As a result, the zero
crossings of the filtered signal have a constant spacing T as
long as

2wi < o)b — w//. (62)

After elimination of the amplitude modulation, a jitter-
less clock signal is obtained. The proof for the filtering by
means of a PLL can be given as follows. In the phase
detector, which will be an ideally balanced multiplier,
signal s2(t) of (60) is multiplied by a locked oscillator
signal. Suppose, this oscillator signal does not exhibit phase
fluctuations, so that it can be represented by sin o)bt. As a
result, two signal components are produced, one with a
spectrum from 2co& — 2wi to 2o>& + 2a?i, and one with a
spectrum from co& — coi to cob + o>i. As long as the noise
bandwidth of the loop is limited to co//, fulfilling condition
(62), the phase of the VCO will not change.

Summarizing

In order to derive from a band-limited synchronous
digital signal a clock signal which does not exhibit jitter
due to interpulse interference, the following processes
could be performed:

1) a linear process such that the equivalent transmission
path has a symmetrical transfer function around half the
digit frequency,

2) a nonlinear process such that the signal is squared
after process 1),

3) a narrow-band filtering with a noise bandwidth,
limited to a lower frequency value than the digit frequency
minus the bandwidth of the transmission path of 1).

IX. PROPAGATION OF PHASE ERRORS

The process of jitter propagation in a chain of repeaters
has been studied by several authors, including Byrne
el al. [4T\, for the clock extraction procedure by a resonant
circuit. We shall, in this section, use essentially the same
model to derive results for more general processes.

If the phase errors in the input signal have a more or less
uniform frequency spectrum in the frequency range,
covered by the phase-transfer function H(jo)) of the
narrow-band filter or PLL, and if fluctuations introduced
by interpulse interference do not possess pronounced
spectral components in this frequency range, it may be
stated for the phase of the derived clock signal that

O(ja) = kH(ja) (63)

in which h is a constant.
This relation can only be valid for the first repeater in

the chain. The second repeater will show in its output signal
not only an identical contribution of its own, but also a
response on the spectral components, introduced by the
first repeater. Because its own contribution is due to the
structure of the pattern of digits in the input signal, the
fluctuations will add coherently to the fluctuations of the
preceding repeater, so that
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Fig. 4. Normalized absolute jitter as a function of the number of
repeaters with high-gain PLL's.

G*(ju>) = kH(jw) +kH(ja)-H(ju). (64)

The first term represents the second repeater's own con-
tribution, and the second term the response on the spectral
components originated from the first repeater. Hence, after
M repeaters, we find

-JcH(ju)M

= kH(ju)
H(ja>) - 1 '

(65)

The mean-square value BM
2 after M repeaters can then be

calculated from

OM' _ JL f00

~2wL
eM(ju) \2do>. (66)

This fluctuation can be denoted as absolute jitter, and has
as a reference the nominal position of the digits of the
original transmitted signal. This jitter is important because
at too large a value, it causes foldover distortion in the
decoding process of the digital signal (see [2]).

In Fig. 4 a comparison is given of the jitter propagation
for clock extraction by a resonant circuit and for a second-
order high-gain PLL. This result has been obtained by a
numerical computation of (65) and (66). The phase-
transfer function of the second-order PLL is defined by
(38). The loop is supposed to be of the high-gain type as
long as condition (41) is fulfilled.

It is very clear from the figure that proper performance
of a chain of repeaters with high-gain PLIAs requires high
damping factors.

The exponential growth of the jitter for low damping
factors is caused by the fact that in the Bode diagram of
the phase-transfer function, the corner frequency of the
zero has a lower value than the corner frequencies of the
two poles, as is indicated in Fig. 5. Fluctuations with
spectral components near the natural frequency are then
the more increased the longer the chain is.

This is avoided for a first-order function, like a resonant
circuit, a first-order loop, or a degenerated second-order
loop with infinite high damping factor [Fig. 5(b)]. If
the corner frequency of the zero has a value between those

\"(H
(log)

KM
(log)

\H(JG»\
(log)

Wr> -+a(bg) -~-o)(bg) w " ~^oi(log)

00 (b) (c)
Fig. 5. Phase-transfer function for various types of timing filters,

(a) High-gain PLL. (b) Resonant circuit, (c) Special low-gain
PLL.
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Fig. 7. Normalized absolute jitter as a function of the number of
repeaters with well-designed low-gain PLL's.

of the poles, a further improvement in this respect is
possible [Fig. 5(c)]. This condition is fulfilled if

-'0-9"< 2f - -=• < f + fo-r (67)

It can easily be proved that this condition can be obtained
by replacing the usual phase-lag loop filter by a phase-lead
type (Fig. 6). Of course, the transfer function as a whole
remains of the integrating type, due to the influence of the
VCO, which is an ideal integrator in the mathematical
model. An illustration of possible results is shown in
Fig. 7. Even better results are possible than those ob-
tained by Zegers [9], who, in a repeater with a resonant
timing extraction circuit, used a scrambler in order to
break the coherence of the systematic components.

An experimental chain of ten repeaters has been built
to confirm the theoretical expectation. The dots in Fig. 7
represent a test of a chain operating with a fully deter-
ministic signal, while the VCO's in succeeding repeaters
are modulated coherently with a sine wave. The crosses are
the results of a test with a random digital pattern without
external modulation. Whether such an implementation
can be used in a practical system depends on the stability
and accuracy of the quiescent frequency of the VCO.
Normal practice for the design of a second-order phase-
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locked timing extraction circuit for a chain of repeaters is
1) to fix the required damping factor from propagation

properties, as shown in Fig. 7,
2) to fix the natural frequency from a specification of

the required noise bandwidth and acquisition time; this is
possible by using the figures of Richman [10],

3) to fix the velocity constant such that the static phase
error for a given stability of the quiescent VCO frequency
is small enough.

An implementation according to the parameters of Fig. 7
eliminates the degree of freedom, as indicated in 3),
meaning that the stability and accuracy of the VCO
should be high enough to afford the desired velocity con-
stant. Inspection of required parameters has shown that
implementation with crystal-stabilized VCO's gives satis-
factory results.

Apart from absolute jitter, relative jitter is also impor-
tant, i.e., fluctuations between the phase of the digits of the
input signal of a repeater and the phase of the derived
clock signal. This type of jitter influences the error prob-
ability in the regeneration process. This jitter may be cal-
culated, as Byrne has done, from the difference of the
spectra of phase fluctuations in two succeeding repeaters,
i.e.,

OTM(JCO) = 6 M ( jw) - QM~I( jo>)

The propagation of relative jitter for high-gain phase-
locked timing extraction circuits is shown in Fig. 8.

X. CONCLUSIONS
Comparing the properties of clock extraction systems,

either implemented by a resonant circuit or by a second-
order PLL, we conclude the following.

1) Reduction of both quasi-static as well as dynamic
phase error is by no means simply possible with resonant-
type circuits: the errors are dependent; a compromise is
necessary. There is no such dependence in the case of a
high-gain second-order PLL.

2) In resonant-type circuits, in contrast to the signal
from the PLL, the derived signal is amplitude modulated.

This modulation has to be removed by a hard limiter,
which may introduce new phase errors. This is the more
serious the higher the frequency is and the more the energy
density of the pattern varies between wider limits.

3) The phase-transfer function of the resonant circuit is
of the first order. The PLL under consideration has a
second-order phase-transfer function. To avoid exponential
growth of jitter in a chain of repeaters, high damping
factors (f tt 5) are necessary for high-gain loops. If low-
gain loops can be tolerated, which requires a highly stable
VCO, a very small jitter accumulation can be realized by
proper dimensioning.

4) The phase-transfer function of the PLL is weighted
by the energy density of the signal. Faulty performance in
worst case signals is possible.

A method has been given to calculate the influence of
interpulse interference on phase errors for the case that
the three essential parts of the clock extraction procedure,
i.e., prefiltering, nonlinear process, and narrow-band
filtering, are properly specified. Although this method has
only been derived for the PLL system, it can be proved that
it also applies to resonant-type systems. Optimum proc-
essing requires a clock path in which prefiltering yields
a symmetrical transfer function around the Nyquist fre-
quency in which nonlinearity is a squaring circuit and
where narrow-band filtering fulfills certain conditions, as
specified in Section VIII.

APPENDIX I

A. Solution of the System Equation

We write for the system equation (12)

Oe(NT) + E Oe(nT)gw(NT - nT)
n-0

+ ZC^^gw(NT-nT)
n=0 Cn

= AvbNT + ̂ Y.9v,(NT- nT)

+ ^ E C n T " - CnTngm(NT-nT). (68)

We may split Oe(nT) into an expected value 9€(nT) and a
zero-mean random part AOe(nT):

6e(nT) = 6e(nT) + AOe(nT). (69)

Substitution of (69) into (68) and separation into ex-
pected values and zero-mean random contributions yields

Oe(NT) + £ 6e(nT)gw(NT - nT)

= ~ ^ E gANT - nT) + AvbNT
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(70)
in

or

bn

which

, using

K

(74)

= —

and

Cn C« ^

t

(76),

- ( M l ) +fc

>«> +

.(3))

^ . - - ^ L Z ^ ^ + ^ S S D L Z ^ ( 8 0 )

and c« * cn

N

AQe{NT) + £ A6e(nT)gw(NT - nT)
n«0

= £ £ *!^_*!. ^ j , _ nr) _ £ ^y)
+

Cn — Cn
* & - ) • <

s
"

^ ( A / T - nT) + term (71) _ x. , _ . . , , , f

cn liquation (79) can be conveniently solved by application
of the ^-transform, giving

with
AT

term = - E |A^(n!T) — r — — AOe(nT)—=—> «-o
n«=0 I ^n C n J

or
• j f . ^ r - n T ) . (72) * ^ ^

We shall prove in Section C of this Appendix that the A 9 c ( 0 ) = 5 0
6 n l + Gw(z) Z~"' ( 8 3 )

contribution of "term" can be neglected in most cases,
and we shall then discuss the conditions for which this is A f t e r t h e i n v e r s e transform, the result is
allowed. N

Normally, there is a pole in the origin of the open-loop A6e(NT) — 53 bnhw(NT ~ nT)^ (84)
transfer function of a PLL. We may then expect that in n=*°
the stationary condition the expected error will be a con- still under the condition of large N.
stant, so that Herein hw(NT) is the inverse transform of Hw(z),

lim 6e(NT) = 0eo = constant. (73) d e f i n e d a s

Substituting this in (70), we find i**w - j + G ^ (&>)

0eo = Oeo(l) + 0eo(2) + <?fl0(3) (74) which is, in fact, the weighted closed-loop transfer func-

with t i o n-
N The interrelation of d€0 and A6e(NT) via 0eo(3) as ex-

6eo(l) = Aa>bNT/[lim E g*(NT - nT)'] (75) P r e s s ^ d by (74), (77), and (81) makes a solution of these
JV-OO n«o equations difficult. In Section C of this Appendix we shall

prove t ha t 0eo(3) gives a negligible contribution in prac-

0 ( 2 ) = — CnTn (76) ^ c a ^ s y s ^ e m s - T h e solution of the system equation is then
T cn given by ( 7 4 ) - ( 7 6 ) , (84) , and (81) neglecting 6eo(3).

W)--».{NT)^ (77) \D*fOnB,.. . . - .. + w .
CN For the next discussions, we shall use discrete Fourier

ovided pairs of some variables. T h e t ime interval (N + 1)T will
be regarded as the fundamental period. The correspondingN

JV-+00 n « o

lim T, qw(NT — nT7) » 1 (78) fundamental frequency is then given by

Condition (78) is fulfilled because of the pole in the origin ^ — (M -X- \)T ' ^ ^
of the open-loop transfer function. After substitution of
the results (73)—(77) into (71), we find for the equation We define discrete Fourier pairs of the following.
for the random part A8e(nT) neglecting "term," for large
N (so that BjrtT) has become independent of N), that ^ Autocorrelation Functions:

N n ,i m\ (Cn — Cn\/cn+k — Cn\

Me(NT) + L Ade(nT)gw(NT - nT) Rcc{hT) = ^—>—-J{—-^ J

= L bngw(NT - nT) (79) Scc(lSl) = £ Bw(*r) exp (-iOTtt)
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1 N X

Rcc(kT) = - A - £ &.(«*) exp (jQTkl). (87) £ exp (jUTlk) = tf + 1, if I = 0 (mod iV + 1)
J!V + 1 j-o *=o

[cn has been defined first by (1) ]. = 0, otherwise (98)
Analogously, w e find

Rrr(kT) = (r, - f,) (rn+fc - fn), rn cf. (1) ^ ( 3 ) = ^ ( 3 f l ) + ^ ( 3 & ) ( g 9 )

& r(») *=> «rr(fcT) (88) w i t h

» (I,T\ - 2i ('EE? _ \ ^±k ('Ef* _ \ l y

HcrcAki > ~ -Cn\-Cn
 T») -Cn \ lv

 T"+") 0eo(Sa) = ( M l ) + <U3)} jr~~r £ Scc(m)Hw(lQ)

UB)»«™(tr) (89) ( 1 0 0 )

fl»(fcr) = 5 X S , &* cf. (81) w

^(KD^^fcr) (90) ( - ( 8 ) - - r f ] H T £ U B ) W (101)

fiA#.A#.(*r) = A0e(nT)Ade(nT + kT), A0e(nT) cf. (84) F r o m ( 1 0 0 ) w e c o n c i u d e t h a t ^ o ( 3 a ) m a y b e negiected

SA».AI.(») <^ RAeeM.(kT) (91) with regard to (0eo(l) + 0eo(36)} if

R(cM.AkT) _L j , Scc^Hv>m <K L ( 1 0 2)

~ \ c» / A 0 e ( n r ) \ 5n j A ^ ( « r + fcr) tfM(36) is neglectable in (81) if the last term of the right-
hand part of (81) is much smaller than the contribution of

SiM,Altt) ** R(cM,)>(kT). (92) deo(3b)(cn - cn)/cn. Let us compare these quantities in

*) Cross Correlation Function: t e r m s o f t h e i r s t a n d a r d deviations. 0eo(36) is neglectable
provided

U n rp\ _ Cn (Oil!1 \/Cn+k - Cn\
RcTc{kT) -inVcn " Tn)\ In ) M3&) LRCC(O) J»«£

Scrc(m)^>RCTC(kT). (93)

eeo(3b)lRcc(0)JI* « — IRcrcrWJl*. (103)

Substituting (101), we may write
3) Pulse Response:

HW(IQ) «=> K(nT). (94) IRCC(O)J" ~^— L SCTC(m)Hw(m)

C. Constraints ^ <<c ^ ^ (Q) -j1/a> ( 1 Q 4 )

In this section, we shall discuss the conditions for which
the solution of the system equation, as derived in Section Let us discuss the conditions (102) and (103). In practical
A, is true. cases, ASCC(/!̂ ) and SCTC(l^) do not change significantly in

1) First we discuss the irrelevance of 0«,(3) in (80). t h e frequency range covered by HW(IQ). We may write
From (84) and (77) it follows that t h c n f o r (102)

M3) = - ^ ^ £ bnK(NT - nT). (95) Scc(0) - ^ £ Hw{ty « 1. (105)

Defining a new variable k = N — n, we obtain ^ s o

M 3 ) = - £ ^ - ^ bN-khw(kT). (96) TT^TT ̂  ^ ^ = A -W- ( 1 0 6 )

Using (81), (87), and (93), this can be written as Therefore (105) reduces to

» r Scc(0)hw(0) « l . (107)
e c ° ( 3 ) = E [R°c{-kT) {0e°W + e°°iS)! Using result (134) of Appendix III, we may bound (107)

by

-~-RorC{-kT)\^K{kT). (97) SM<0) (2*5*7)''* « 1 - (108)

Analogously, we may evaluate (104) to
By application of (87), (93), and the well-known or-
thogonality relationships [13] [ / ^ (O) ] 1 ' 2 ^^ ) (2irBLT)^ « [#crCT(0)]1/2. (109)

126



Very small values of cn deteriorate condition (108).
Therefore we denote (108) as the condition of sufficient
clock content.

From the definition of RCTC(kT) as given by (93), we
may conclude that in the case of mutually statistical inde-
pendence of cn and rn, RCTc{kT) is zero. In that case, (109)
is always fulfilled. Because of the fact that mutual sta-
tistical dependence is caused by the mechanism of inter-
pulse interference as described in Section VII, we denote
(109) as the condition of restricted interpulse interfer-
ence.

2) In this section, we shall motivate the neglect of
"term" in (71). The influence of "term" can be estimated
by considering it as a second-order effect. Substituting
results (84) and (77) into "term" and again solving (71)
for the stationary condition (N —» co) yields a contribu-
tion A6e(NT)a in addition to ABe(NT) as given by (84).
Let us assume that A6e(NT)a « AOe(NT) and investigate
whether this assumption can be verified. We may write
for the total dynamic phase error AOe(NT)t

A0e(NT)t = A0e(NT) + A$e(NT)a (110)

with

A6e(NT) = £ bnhw(NT - nT) (111)

A8e{NT)a - £ [ S L _ £ ! A6e(nT) - U 3 ) l

-hw(NT ~nT). (112)

In the previous section, we already proved that 0eQ(3) is
neglectable with regard to &„, provided conditions (108)
and (109) are fulfilled. For (112) there remains a relevant
contribution:

ABe(NT)h = £ °^^ A$e(nT)hw(NT - nT). (113)
«-0 Cn

Its variance can be written, using Appendix II and (92), as

lim A0e(NT)b* = lim — — £ S^XW I »«(») I2

(114)

in which S(CAe.)*(l®) is the spectral density of the random
variable A6e(nT) (cn - cn)/cn.

Analogously, we may write for the variance of A6e(NT)
of (111)

lim A0e(NT)* = lim — 3 — £ &»(») | Hw(lQ) |* (115)

in which Sw(lQ) is the spectral density of bn, as defined by
(90). The spectral density of A6e(NT) is limited by
Hw(lQ). Supposing the condition of sufficient clock content
(108) to be fulfilled, we conclude that the spectal density
of (CN — CN)/CN has a very small intersection with the
spectral density of A6e(NT), so that these random

variables may be regarded to be statistically independent.
Then considering (92), (87), and (91),

RtM.AkT) = Rc*(kT)Rtet*et(kT)y (116)

and consequently

Sw.XKl) = SCC(IQ) *SAi.Af.(B) (117)

in which * denotes a convolution.
Also, from (115)

&#.*#.(») = & ( » ) I HW(IQ) \*. (118)

After substitution of (117) and (118) into (114), we
find

1
lim A0e(NT)b* = lim A_

• £ {Sec(fil) * StoW) I HW(IQ) p}

•|/Mto)l2. (119)

Assuming that Scc(ffi) is almost constant and equal to
Scc(0) in the frequency range covered by Hw(lti)t we may
write, using (19),

lim A6e(NT)b* = 2TBLTSCC(0) lim —^~-

•£5 w ( i0) IJMM) I*. (120)

Comparing now (120) and (115), we may conclude that

lim A6e(NT)b* « lim A6e(NT)2 (121)

if the condition (108) of sufficient clock content is fulfilled.
Consequently, our initial assumption AOe(NT)a«
A6e{NT) is also allowed, and therefore "term" in (71)
may be neglected.

APPENDIX II

Jitter in Spectral Terms

For the following evaluation the author is indebted to
H. van den Elzen.

From (17) it follows that

Hence

A6e(NT) = £ bnhw(NT - nT). (122)
n-0

N N

Me(NTy = £ £ bnbmhw(NT - nT)hw{NT - mT).
n«-0 »i-*0

Let

m = n + fc.

(123)

(124)
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Then
N N

AOe(NT)* = H bnbn+khw(NT - nT)

• hw(NT -nT -kT). (125)

Using (90) and (94) we find

M,(NT)*
1 N N~n

l i V T Aj n»0A; n Ji-0

•expcyorciv-n)?!] E ff.(W)
r2-o

•exp [jttT(N - n - *)k].
(126)

After a change of the order of summation and some re-
arranging, this becomes

AOe(NT)* =
1 N N

(# + !)•,£,£,
£ E HW{W)HW(W

N KT-n

•E exp [-jftlfcft + WD £ R»(kT)
n-0

•exp [-yarfci,]. (127)

Assume for the moment that Rn,(kT) is a periodic func-
tion with period (N + 1) T; then
iV-n iV

I] Rbb(kT) exp (-jQTkh) = £ /?66(fcr) exp (-jtiTkh)

- 5»(») (128)

which is the discrete Fourier transform of the autocorrela-
tion function Rbb(kT).

Using (128) and the orthogonality relationship of (98),
we write for (127)

AOe(NT)* = ^ - 7 Z SbbmHwmHw(~lSl) (129)
^ + 1 ^ 0

or

1
A0e(iVr)2 = 77—- £ iS»(») | jffw(») |2. (130)

Jv "t" 1 z«=o

By extension of the series to N —» °o, the condition of
periodicity of Rbb(kT) becomes trivial. Therefore

Ad* = lim AOe(NT)*

= lim — — E &(») I H.(ia) |2. (131)

APPENDIX III

Relation Between BL and hw (0)

The relation between J5L and hw(Q) can be found from
Cauchy's inequality, which can be written in the general
form

CE a*?),]2 < E a,2 E h\ (132)

Taking a? = Hw(ltt) and 6* = 1, we find

CE fl.(a)? < (iv + i) E I»-(») I2- (133)

Using (106) and (19), it follows that

MO)2 < 2TBLT. (134)
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Optimization of Phase-Locked Loop Performance
in Data Recovery Systems

Ramon S. Co, Member, IEEE, and J. H. Mulligan, Jr., Life Fellow, IEEE

Abstract—Optimized design conditions are presented for a
phase-locked loop (PLL) used as a functional block in data
recovery systems with the primary function of timing recovery.
A mathematical model is presented which takes into account the
nonlinear and discrete-time nature of the PLL when used in data
recovery applications. Performance attributes for these systems
such as acquisition, tracking, and noise are considered. A sys-
tematic design procedure is presented which permits quantitative
trade-offs among these performance attributes. The validation
of the mathematical model and the systematic design procedure
on a practical circuit implementation in CMOS technology is
described.

I. INTRODUCTION

THERE is an ever-increasing need for digital data trans-
mission and recovery. Digital signals are less susceptible

than analog signals to noise and are compatible with the
rapid advancements in digital technologies and digital signal
processing techniques. Digitally encoded speech, for example,
can be transmitted over a long distance with almost no
degradation in signal quality. Central to any data transmission
and recovery system is the recovery of the timing (or the
clock) of the digital information. Data recovery systems have
found widespread use in the digital telephone network (Bell Tl
carrier system) [l]-[3], local area networks (Ethernet, Token
Ring, FDDI) [3]~[5], and in disk drive data storage systems.

A simple mechanization of a digital transmission system
is one wherein the digital information is transmitted in the
form of rectangular pulses. The presence of a pulse, for
instance, signifies binary one, and the absence of a pulse
signifies binary zero. At the receiving end, the clock signal
is recovered from the received pulses, and the edges of the
recovered clock are used to sample the received pulses to
determine the values of the binary information. Most often,
the incoming pulses would have been propagated through a
nonideal channel. The bandwidth limitation of the channel as
well as the noise induced on the channel can impose severe
restrictions on how well the clock can be recovered from the
pulses, and subsequently, on how well the correct information
can be detected at the receiving end.

The data and clock recovery process is typically performed
through the use of a feedback control system such as a
phase-locked loop [6], [7]. Current approaches [8]—[12] in
the analysis of data recovery systems have assumed small
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error signals and small loop bandwidth so that the control
loop can be conveniently modeled as a linear (time-invariant)
continuous-time system. Such an analysis cannot be used,
in general, when the jitter on the incoming data signal is
high. With high jitter on the data signal, the error signal in
the PLL is large, and the dynamics of the control loop are
highly nonlinear. Such an analysis cannot also be used, in
general, to optimize the loop parameters (such as widening
the loop bandwidth) in order to satisfy a given performance
requirement. In addition, the PLL error signal is not a con-
tinuous function of time, but a train of aperiodic rectangular
pulses. Moreover, by modeling the VCO as K0/s, a sinusoidal
VCO has been implicitly assumed in the phase domain. For
data recovery, one is concerned in the timing error between
the transitions of the data signal and a rectangular VCO
(which produces the clock signal), not the phase error of
a sinusoidal input and a sinusoidal VCO. In this paper,
a mathematical model that exactly describes the dynamical
behavior of PLL in data recovery systems is first developed.
Given the exact model, optimization techniques are applied to
find the optimal solutions according to the desired performance
criteria.

In the design of a phase-locked loop for data recovery
systems, one is concerned with a number of performance
attributes. For instance, rapid acquisition is highly desirable.
Faithful tracking of the input signal in the presence of noise
or perturbation is very important for the successful recovery
of data. If the recovered clock is to be used as timing for
retransmission (such as in a repeater chain), the jitter impressed
on the recovered clock should preferably be very small. The
optimization of these performance attributes is the subject
of this paper. As with any engineering design problem, the
optimization of one performance attribute usually leads to the
deterioration of another. This paper also provides a systematic
design procedure which enables the relative importance of
these performance attributes to be traded off against one
another.

The results are presented in five sections. Section II contains
a discussion of the basic PLL model used in a data recovery
system. Section III contains a derivation of the mathematical
model of the PLL when used in data recovery applications. The
mathematical model is compared with the classical linear PLL
model. Section IV describes the most significant performance
attributes of a data recovery system, i.e., acquisition, tracking,
and noise. In Section V, an objective function which can be
used to optimize the performance of the data recovery system
is presented. A systematic design procedure is outlined and
applied to an illustrative example. In Section VI, there is

Reprinted from IEEE Journal of Solid-State Circuits, vol. 29, pp. 1022-1034, September 1994.
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Fig. 1. (a) Phase-locked loop model of data recovery system, (b)
Phase-locked loop associated waveforms, (c) Relaxation oscillator circuit
diagram.

a description of the validation process for the mathematical
model of the data recovery system and the systematic design
procedure. The paper concludes with a summary of the prin-
cipal results, including presentation of the design parameters
determined to yield optimum performance.

II. DATA RECOVERY SYSTEM MODEL

The PLL model used for the data recovery system is shown
in Fig, l(a), and the associated waveforms are shown in
Fig. l(b). The circuit configuration of the PLL is also known
as a charge-pump PLL [12]. For the example shown, data
one is represented by the presence of a pulse in the first half
cycle of the bit period, and data zero is represented by the
absence of a pulse (shaded) in the bit period. The positioning
of the pulses that represents the data depends on the line coding
scheme chosen. In general, the denser the number of pulses,
the easier it is to recover the clock since the timing information
is imbedded on the occurrence of the pulses. It is these pulses
that are tracked by the PLL.

The jitter on the data signal can be described by the
time displacement of the positive transitions of the data

signal relative to the timing reference k. Each unit of the
timing reference is equal to one bit interval. The magnitude
of the jitter is typically expressed as a fraction of the bit
interval. Since a pulse is not present for a data zero, the
jitter is measured with respect to the positive transition of a
fictitious pulse (indicating the bit boundary). Jitter magnitude
can exceed one bit interval. The rate of excursion of the
positive transitions of the data signal relative to the timing
reference is the jitter frequency. The jitter on the VCO signal
can be described in the same manner as the data signal jitter.
The tracking error is the time difference between the positive
transitions of the VCO signal and the data signal. It is also
equal to the time difference between the VCO signal jitter and
the data signal jitter.

A data sampler is generated from the VCO. It is delayed by
one quarter of a bit time (for the particular example shown)
relative to the VCO output, and its rising edge is used to
sample the data signal. It can be seen that if the tracking
eiTor exceeds one quarter of a bit time, the data pulse would
be sampled incorrectly, and a data error would result. Thus,
the probability of error (bit error rate) is determined by the
probability in which the tracking error exceeds one quarter
of a bit interval. It is to be noted that the data sample point
is a function of the line coding scheme used. In NRZ code,
for instance, the data pulse is as wide as the bit interval.
The optimum sample point is the middle of the bit (which
is delayed by half a bit time from the VCO output), and the
peak tracking error is one-half of a bit interval.

The Phase/Frequency Detector (PFD) is a sequential (as
opposed to multiplier) type phase detector as described in [12],
[13]. A sequential phase detector can be configured such that
a phase comparison is made only whenever there is a data
pulse (or a data transition). Whenever there is no data pulse,
an error signal is not generated, and the VCO essentially free
runs. The PFD in the example shown (see Fig. l(a) and (b))
is enabled if there is a data one at its input. If the VCO signal
lags the data signal, the up signal is activated (meaning the
VCO is running too slowly); and if the VCO signal leads the
data signal, the down signal is activated (meaning the VCO is
running too fast). The duration of the up and down signals is
equal to the time difference of the positive transitions of the
data signal and the VCO.

The loop filter is a proportional plus integral type, i.e., series
RC. The PLL is thus a second order loop. A third order loop is
commonly encountered in practice in which a small capacitor
is shunted from the filter node to ground. This small capacitor
serves to smooth out the voltage developed across the filter
resistor R whenever the charge pump (current sources) is
turned on and off. The small capacitor together with the filter
resistor R form a high frequency pole which is typically placed
well beyond the unity gain frequency of the loop so that the
loop essentially behaves as a second order loop. It is important
to fully understand the behavior of a second order loop. Thus,
a simpler loop filter is used for the analysis in this paper.

The VCO is modeled as a relaxation oscillator [14], [15].
A circuit diagram of the relaxation oscillator is shown in
Fig. l(c). The relaxation oscillator belongs to a class of
triggered oscillators in which the output switches state when
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Fig. 2. (a) VCO signal lags input signal at cycle A*, (b) VCO signal lags
input signal at next cycle (k + 1), T{ < ((3k + 2tA).

a certain threshold is reached. The output of a relaxation
oscillator is naturally a square wave which is required for
the clock generation. Its time domain description is also easily
formulated.

III. MATHEMATICAL MODEL

A. Formulation of Dynamical Difference Equations

The PLL is a sampled-data system, and its operation can
be formulated using a difference equation description. The
voltage across the capacitor in the loop filter, and the tracking
(zero crossing) error between the data signal and the VCO are
taken as the state variables. In the steady-state, the positive
transitions of the input signal and the VCO output coincide.
Since there are no zero crossing errors, the charge pump is
disabled. The output voltage of the loop filter is the voltage
across the capacitor C. This is the voltage necessary to hold
the VCO frequency equal to the input signal frequency.

To analyze the behavior of the loop in terms of the tracking
error sequence, the input to the PLL is assumed to be a train of
rectangular periodic pulses. There are two possible conditions
at time instant k of the input signal: either the VCO signal
lags the input signal or the VCO signal leads the input signal.
The waveforms when the VCO signal lags the input signal are
shown in Fig. 2(a) and (b), and the waveforms when the VCO
signal leads the input signal are shown in Fig. 3(a) and (b).

VCO Signal Lags Input Signal: When the VCO signal
lags the input signal, the UP signal of the charge pump is

vco
Integrator
Output

H^ h
(b)

Fig. 3. (a) VCO signal leads input signal at cycle k. (b) VCO signal lags
input signal at next cycle (k -f 1), T{ < (tc + to).

activated by the positive edge of the input signal, and is
terminated by the positive edge of the VCO. The duration of
the charge pump output is equal to the tracking error at time
instant fc, and is denoted by /?*.. During this time interval, a
current of magnitude -f/ is pumped into the loop filter. If Vk

denotes the voltage across the capacitor C in the loop filter
prior to the turning on of the charge pump, then the voltage
across the capacitor after the charge pump is turned off is
equal to

Vk+i = Vk + ~(3k. (1)

Let V be the peak-to-peak threshold of the VCO integrator
(see capacitor voltage Vc in Fig. l(c)), then

a = (mo + kiVk+i)tA

where mo is the slope associated with the free-running fre-
quency of the VCO, and ki is the integration constant associ-
ated with the VCO gain. If we denote the VCO gain Ko as a
fractional change of the VCO free-running frequency per unit
(volt) of input, then

ki = KOTUQ.

Also,

a = m,Q-
To
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where To is the VCO free-running period. Hence,

rooTo/2 To/2
tA = - (2)

m0 + î o^oVfc+i 1 + KoVfc+i

From Fig. 2(a), it can be seen that if (fa + 2tA) is eclual t 0 t h e

period of the input signal T», then the positive transition of the
input signal signal will coincide with the positive transition
of the VCO signal at the next timing reference k + 1. If
Ti < (fa + 2tA) then the VCO lags the input at the next
positive transition of the input signal (time instant k + 1), and
if T{ > (fa + 2tA) then the VCO leads the input at the next
positive transition of the input signal.

a) Calculation of fa+i for Ti < (fa + 2tA): Referring to
Fig. 2(b), the charge pump is reactivated at time instant
fc+1, and is held enabled (pumping a current of -f-J) until
the VCO integrator reaches the negative threshold level.
During the fa+i time interval, the voltage drop across
the loop filter consists of additional contributions from
the III drop across the series resistor and the integrated
voltage across the series capacitor. Thus,

a\ = (m0 + &*Vife+i)/?fc+i + ki IR dt
Jo

ffh + l

+ ki / (I/C)t dt
Jo

= mQpk+i + KomoVk+ifa+i + Ko^o^Pk^i
+ Komo(I/C)f32

k+1/2.

Also,

Therefore,

tB-=
a — Q,\

m0 + KomoVk+i'
(3)

Ti = fa + tA + t B -

After some algebraic manipulations, there is obtained

(K0/2){I/C)\pl+1] + (1 + K0Vk+1 + K0JR)\j3k+1]
+ (Ti - fa)(l + K0Vk+l) - r0 - 0. (4)

/?fc+i is the positive real solution to the above quadratic
equation.

b) Calculation of fa+1 for Ti > (fa + 2tA): When the
VCO signal leads the input signal at time instant k + 1,
fa+i is simply

fa+x =Ti- (fa + 2tA)
^Ti-fa-To/^ + KoVk+i) (5)

since the VCO has already made a transition and is just
waiting for the input signal to make its transition.

VCO Signal Leads Input Signal: When the VCO signal
leads the input signal, the DOWN signal of the charge pump
is activated by the positive edge of the VCO, and is terminated
by the positive edge of the input signal. The duration of the
charge pump output is equal to the tracking error fa. During
this time interval, a current of magnitude —/ is pumped into
the loop filter. If Vk denotes the voltage across the capacitor
in the loop filter prior to the turning on of the charge pump,

then the voltage across the capacitor after the charge pump
is turned off is equal to

Vk^ = Vk~~fa. (6)

Referring to Fig. 3(a) and using the same notations as defined
previously,

rPk+i
0-2 = (mo + fe.Vfe)/3fc+i - ki / ,IR

Jo
rPk+i

-ki , (IjC)t dt
Jo

= mofa + KomoVkfa ~ KomoJRfa
- KomQ(I/C)(32

k/2.

dt

Also,

tD =

a — a,2

m0 4- fciVife+i
a

mo + hiVk+i'

(7)

(8)

It can be seen that if T{ — (tc+t&) then the positive transition
of the input signal will coincide with the positive transition
of the VCO signal at the next timing reference k -f L If
Ti < (tc + tD) then the VCO lags the input at the next
positive transition of the input (time instant k 4- 1), and if
Ti > (tc + tD) then the VCO leads the input at the next
positive transition of the input.

a) Calculation of (3k+\ for Ti < (tc + to): Referring to
Fig. 3(b), the charge pump is reactivated at time instant
fc+1, and is held enabled (pumping a current of - / ) until
the VCO integrator reaches the negative threshold level.
During the fa+i time interval, the voltage drop across
the loop filter consists of additional contributions from
the IR drop across the series resistor and the integrated
voltage across the series capacitor. Thus,

rPk+i
«3 = (m0 + kiVk+{)fa+i +ki JRdt

Jo
rPk+i

+ ki / (I/C)tdt
Jo

= mo&+ i + KomoVk+xfa+i + KomoTRflk+i
+ Komo(I/C)P2

k+1/2.

Also,

Therefore,

th =
a- a3

m 0 + fciVfc+i

Ti = tc + t*D.

After some algebraic manipulations, there is obtained

(Ko/2)(I/C)[p2
k+1] + (1 + K0Vk+1 + K0TR){pk+1]

+ Ti(l + K0Vk+1)-T0

+ /3fc(l + K0Vk - K0TR)
- (Ko/2)(I/C)p2

k = 0. (9)
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Pk+i is the positive real solution to the above quadratic
equation.

b) Calculation offlk+iforTi > (tc + tD): When the VCO
signal leads the input signal at time instant k + 1, 0k+i
is simply

/?*+! = Ti - {tC + tD)

= Ti - [To - /3fc(l + /ifoVfc - IfoIR)

+ (Ko/2)(I/C)0l]/(1 + K0VM) (10)

since the VCO has already made a transition and is just
waiting for the input signal to make its transition.

In summary,
i) when the VCO lags the input signal at time k

and

VM = Vk + ~{3k

tA = (T0/2)/(l + K0Vk+1).

a) If Ti < (/3k + 2tA) then the VCO lags the input
signal at time k -f 1, and fik+i is the positive real
solution of:

(K0/2)(I/CM+1]

+ (l + KoVk+1 + Kom)\J3k+i]

+ (Ti - pk)(l + K0Vk+1) - To = 0.

b) If Ti > (j9fc + 2£A) then the VCO leads the input
signal at time k + 1, and /?*.+! is computed from:

flb+i =Ti-0k~ To/(1 + /ifon+i).

ii) When the VCO leads the input signal at time k

VM ^Vk~ ~pk

and

(tc + *JD) = [To - ft(l + / r o n - /foIR)
+ (Jifo/2)(//C7)i82]/(l + lfoVfc+i).

a) If T̂  < (tc + to)then t h e v c o l a § s t h e i nPu t s i 8 n a l

at time k -hi, and /?&+i is the positive real solution
of:

(Ko/2)(I/C)\fi+1]
+ (1 + KoVk+x + /STolR)[flb+i]

4 - ^ ( 1 + ^ 0 ^ + 1 ) - T o

+ /?fc(l + /JToVi - /T0IR)
~ (Ko/2)(I/C)P2

k = 0.

b) If 2; > (fe + *D) then the VCO leads the input
signal at time k + 1, and /3&+1 is computed from

i.o-

o.o-
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Fig. 4. (a) State trajectories for phase step input (Ti = To = 1); direction
of trajectory is indicated by arrows, (b) State trajectories for phase step input
(Ti = Tb = 1); direction of trajectory is indicated by arrows.

The solutions to the set of difference equations, due to
their sequential and recursive nature, can be easily generated
with the aid of a computer program. Careful examination of
the difference equations (by normalizing the tracking error
/? and the free-running period To to the input signal period
Ti) indicates that the unitless parameters KQIT{/C and KoJR
are sufficient to describe the loop. The two parameters can
be further reduced to KQI/C and K0JR by setting Ti equal
to unity. This is interesting because K^I/C is related to
the natural frequency, and KQIR is related to the unity gain
bandwidth of the loop in linear analysis.

Fig. 4(a) and (b) show the state trajectories for phase step
input with the tracking error (3 and the loop filter capacitor
voltage V as state variables. Each entry in the trajectory is
equivalent to an elapsed time of one clock period or one bit
period. The period T{ of the input signal is equal to the free-
running period To of the VCO; both are normalized to one. The
initial tracking error /30 is varied (from 0.25 to 1.0 and -0.25
to -1.0) using the normalized loop parameters KQI/C = 1
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Fig. 5. (a) State trajectories for frequency step input (T; = 1); direction of
trajectory is indicated by arrows, (b) State trajectories for frequency step input
(T? = 1); direction of trajectory is indicated by arrows.

and KQJR = 1. The inherent asymmetry in which the error
signals are generated in the loop is evident in the asymmetry
of the state trajectories for positive and negative initial tracking
eiTors. The trajectory is the "familiar" spiral shape for positive
initial tracking error; whereas, the trajectory is a "pointed"
spiral for negative initial tracking errors. Recall that when the
input signal leads the VCO signal, the generation of the error
signal is causing the VCO transition to occur earlier from its
nominal transition time. However, when the VCO signal leads
the input signal, the generation of the error signal does not
perturb the time of occurrence of the input signal transition
(the input signal is the excitation source).

Fig. 5(a) and (b) show the state trajectories for frequency
step input. The initial tracking error /?0 is equal to zero. T{ is
normalized to one, and To is varied (from 2 to 5 and 0.2 to
0.5) using the same loop parameters as the phase step input.

For either type of input, the steady-state solution (Vss,p88)
is found by setting V*. = Vfc+i = Vss and 0k = /?fc+i = f3ss.

(KM,j8M) = ([r0/T i-l]//iro,0). (11)

The system is unstable if the state trajectories do not converge
to the steady-state solution given the initial conditions. In
order to determine that the system will be stable over the
expected range of initial conditions, the state trajectories
should be computed once the loop parameters have been
established for a tentative design (see Section V for an
illustrative example). One can also determine from the state
trajectories the acquisition time of the system, i.e., the number
of clock cycles required for the system to reach and stay within
a bounded region of the steady-state equilibrium condition. If
so desired, it is also possible to plot the state trajectories for a
phase and frequency step input; that is, fi0 ^ 0 and T{ ^ To.

B. Comparison With Classical Linear Model

A well-studied model used in the classical analysis of
a second order loop is depicted in Fig. 6. The governing
equations [13] using Gardner's notations are:

u>n = (KoKt/n)1'2 = (KoiKd/R^/C)1'2

/-
LJnT RC

= (ffo ( / t y * i ) / C ) 1 / 2 ^

Hi
(12)

where un is the natural frequency, £ is the damping factor,
K is the unity gain bandwidth, K$ is the VCO gain, and
Kd is the phase detector constant. Notice that the quantity
(Kd/R>i)8e is the average error current which is driven into
the RC feedback elements of the loop filter, where 0e is the
phase error. For a charge pump PLL, the average error current
over a bit interval which is pumped into a similar RC loop
filter is equal to (I/2ir)0e. Therefore, a linear continuous-
time approximation can be made for the charge pump PLL by
equating (Kd/Ri) equal to (//2TT). Using this transformation,
the following equivalent relations are obtained for the charge-
pump PLL:

wn - (Ko(//27r)/C)x/2 (13)

t = (KG(I/2v)/C)^

K = 2(un - K0(I/2TT)R.

These equations are in agreement with those defined by
Gardner [12]. The transient response plots comparing the
classical model and the mathematical model for a phase step
input and a frequency step input are shown in Fig. 7(a) and (b)
respectively. Note that the discrepancy in the response of the
classical model from the mathematical model is particularly
severe for the frequency step input.

C. Dynamical Difference Equations in the Presence of Noise

The difference equations can be modified to include the
effect of noise. This is done by perturbing the period of the
input data signal at each iteration cycle as shown in Fig. 8.
The period of the input data at time instant k is made equal to

Tk = Ti + (ATfc+1 - ATfc) (14)
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Fig. 7. (a) Phase step input for math model (broken line) and classical
model (solid line), (b) Frequency step input for math model (broken line)
and classical model (solid line).

where T{ is the nominal period of the input data, and AT*
and ATfc+i are the jitter components of the input data at time
instants k and A; + 1 respectively. The tracking error fa is
still the time difference between the positive transitions of the
input data signal and the VCO signal, but the jitter on the VCO
signal is now equal to fa 4- AT*.. Thus, the modification of the

T, — ^

T k _

Input Data

VCO Signal

•H K
AT t

H K
AT,k+1

-1-1- -tr
V V < A T

W - Av
Fig. 8. Signal waveforms in the presence of noise,

difference equations to include the effect of noise is achieved
by replacing T{ (a constant) in the original equations by T*..
The modified equations constitute a model for the PLL which
is a principal result of this paper.

The statistics of the input data signal jitter AT), are a
function of the signal to noise ratio of the input data signal, the
characteristics of the transmission medium, the particular data
pattern (intersymbol interference), and the specific line code.
A detailed investigation of the statistics of AT* is beyond the
scope of this paper. It can be shown, however, that if the data
pattern is sufficiently random and the transmission channel is
sufficiently narrowband, AT*, can be adequately modelled as
a white noise process with uniform distribution.

Direct computer simulation can be performed on the dif-
ference equations if one is interested in finding an optimal
design. For the purposes of the simulations, a random number
generator (1000 samples) which is uniformly distributed with
a peak value of 0.2 (of the normalized bit period) is used to
represent the jitter component AT* of the input data signal.
The simulations obtained values of the rms VCO jitter (<rn)
and the rms tracking error (at).

Fig. 9 shows the variation of <rn, the rms VCO jitter
(expressed as a fraction of the normalized bit period), as a
function of the normalized loop parameters KQI/C and KQTR..

It is observed that the VCO jitter is a minimum at K0I/C =
0.001. No appreciable improvement can be obtained by further
decreasing K$I/C. For each K^I/C, there is a particular
value of KoJR that corresponds to a local minimum. Fig. 10
shows the variation of au the rms tracking error (expressed as
a fraction of the normalized bit period), as a function of the
normalized loop parameters. The tracking error is a minimum
at KQI/C = 0.001. Similarly, no appreciable improvement
can be obtained by further decreasing KQI/G. Again, for each
Kol/C there is a particular value of K0JR that corresponds
to a local minimum. Further simulations were conducted for
different noise levels, i.e., 0.1 peak and 0.3 peak; similar
behavior and the same optimum conditions were obtained.
Thus, the parameter KQI/C = 0.001 yields a global optimum
because it minimizes both the VCO jitter and the tracking
error. There is a particular value of KQTR that corresponds
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Fig. 10. Plot of tracking error versus loop parameters (noise = 0.2 peak).
(Expressed as fraction of normalized bit period).

to a global minimum for VCO jitter and another value that
corresponds to a global minimum for tracking error.

D. Dynamical Equations of Different Data Patterns

So far the difference equations that are derived are valid
only for a data one followed by a data one pattern, i.e., a data
pulse followed by a data pulse. There are three other possible
patterns. The difference equations that describe these patterns
are derived as follows.

Data Zero Followed by Data Zero Pattern: Under this
condition, the charge pump is inhibited and the VCO is free-
running at an oscillation frequency determined by the voltage
across the capacitor in the loop filter.

a) VCO lags Input at time k.

Vfc+i - Vk

ft+i - Wk + 2tA) - Ti
= pk+To/{l + KoVk)-Ti. (15)

0k+i is positive if the VCO lags the input signal at time
k + 1, and 0k+i is negative if the VCO leads the input
signal at time k + 1.

b) VCO leads Input at time k.

Vk+1 - 14
0k+\ = (0k + Ti) - 2tA

= 0k-To/(l + KoVk)-Ti.

Data Zero Followed by Data One Pattern:
a) VCO lags Input at time k.

(17)

i) For Ti < (0k+2tA), VCO lags input at time fc+1.

Ti - 0k + tA + tB (see Fig. 2).

And /?fc+i is the positive real solution of

(K0/2)(I/C)[f3l+1]

+ {l + KoVk + Kom.)[l3k+1]

+ (Ti-pk)(l + K0Vk)-T0 = 0.

ii) For Ti > (/3k + 2tA), VCO leads input at time
k+l.

Pk+i =Ti- {(3k + 2tA)

= Ti-f3k+T0/(l + KQVk).

b) VCO leads Input at time k.

Vk+l = Vk. (18)

i) For (fik+Ti) < 2tA, VCO lags input at time k+l.

{Pk + Ti) = tA + t*D (see Fig. 3)
= [To - Pk+i - K0Vk(]k+1

- K0JRpk+1 - (Ko/2)
x(I/C)Pl+1}/(l + K0Vk).

0k+i is the positive real solution of:

(K0/2)(I/CM+1]

+ (1 + K0Vk + Kom.)\Pk+i]
+ (l + K0Vk)(l3k + Ti)-T0 = 0.

ii) For (f3k + Ti) > 2tA, VCO leads input at time
k + l.

Pk+i = {/3k + Ti) - 2tA

= Pk + Ti-T0/(l + K0Vk).

Data One Followed by Data Zero Pattern:
a) VCO lags Input at time k.

Referring to Fig. 2,

vk+1 = vk + - p k

Pk+i = (Pk + 2tA) - Ti
= Pk +T0/(l + K0Vk)-Ti. (19)

Pk+i is positive if the VCO lags the input signal at time
A; + 1, and pk+i is negative if the VCO leads the input
signal at time k+l.

b) VCO leads Input at time k.
Referring to Fig. 3,

(16)

14+i = Vk- -0k

pk+1 = Ti - (tc + tD). (20)
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/?it+i is positive if the VCO leads the input signal at
time k + 1, and /?*+! is negative if the VCO lags the
input signal at time k + 1.

IV. SYSTEM DESIGN CONCEPTS

There are two stages in the data recovery process. The first
is the acquisition stage, and the second is the tracking and data
detection stage. Acquisition is considered to be complete when
the error signal has reached the steady-state (value of zero)
and the VCO frequency is equal to the incoming data signal
frequency. This is, however, a very stringent definition. Noise
is invariably present in the system, and therefore, the error
signal is never reducible to zero. An operational definition of
acquisition is to consider it to have been completed when the
error signal and the VCO control voltage have become equal to
or less than a prescribed percentage (usually taken as 2-5%)
of the bit period and the steady-state VCO control voltage,
respectively. Under this condition, the PLL can start detecting
(by sampling) the received signal.

A. Acquisition Performance

To assist in the acquisition of the incoming data signal, the
VCO is often pretuned to an accurate local frequency refer-
ence, such as provided by a crystal oscillator. This prevents the
PLL from false locking to the harmonics or the subharmonics
of the incoming data signal. When the data transitions start
to occur, the PLL input is switched from the local frequency
reference to the incoming data signal. The voltage which is
necessary to pull the VCO frequency into the incoming data
signal frequency is held temporarily in the storage elements
of the loop filter. With a clever design of the VCO, it can be
started (so called zero phase start) so that its transitions would
immediately coincide with the transitions of the incoming data
signal, thereby totally eliminating the acquisition problem.

In some communication systems, information is transmitted
as a group of data bits known as packets [3]. The data packet
is usually preceded by a preamble. The preamble is a periodic
data pattern with distinct harmonic content so that the phase-
locked loop can pull into the incoming data signal even without
the benefit of pretuning to a local frequency reference. For
these particular systems, the acquisition time is limited to the
length of the preamble.

The PLL acquisition performance is determined by exam-
ining the transient response of the loop subjected to phase
step and frequency step inputs. It can be improved by having
large values of K0I/C and KQJR. A large value of KQI/C,

however, tends to produce an undesirable damped oscillatory
transient response, whereas, a large value of Ko^R tends
to reduce the oscillatory tendency and indeed can yield a
monotonic transient response.

B. Noise and Tracking Performance

When acquisition is complete, the PLL goes into the second
stage of data tracking (and detection). The noise performance
is measured by the jitter on the recovered clock, whereas the
tracking performance is measured by the tracking error. The
latter determines the bit error rate performance of the system.

o.oo

KoVC«0.00i (Optimum)

"O* Output Jitter
•o- Tracking Eiror
• Input Jitter

0.0 0.5 1.0

KoIR

1.5 2.0

Fig. 11. Dependence of loop performance on A'oIR at optimum KQI/C
(expressed as fraction of normalized bit period).

It is highly desirable to have minimum values for these two
attributes.

It has been found from the extensive simulations that the
normalized loop parameter KQI/C = 0.001 yields a global
optimum, since it minimizes both the clock (VCO) jitter and
the tracking error. Given the optimum KQI/C, variation of the
clock jitter and the tracking error versus the loop parameter
KoJR is shown in Fig. 11. The graph indicates that the clock
jitter is a minimum at K0TR = 0.025, and the tracking error
is a minimum at KQJR = 1. Thus, a tradeoff would have
to be made in the selection of KQJR. A smaller value of
ifoIR improves the clock jitter but degrades the tracking
performance; whereas, a larger value of KQJR improves the
tracking performance but degrades the clock jitter. However,
the loop bandwidth cannot be made arbitrarily small (K0JR —>
0) to reduce the clock jitter to zero. With an infinitely small
loop bandwidth, the loop has difficulty maintaining lock to
an input signal with jitter, and the clock would just drift
and wander. The loop bandwidth cannot be made arbitrarily
large (KQIR —> oo ) either to reduce the tracking error to
zero. Aliasing effects become dominant as soon as the loop
bandwidth exceeds half the clock frequency.

As a further note, the loop performance is not sensitive
to variations in Kol/C. Actually, there is a wide range
of K0I/C(0.01 to 0.0001) that can be considered to yield
optimum performance. The choice of ifoIR however, is very
critical.

V. PERFORMANCE OPTIMIZATION

A. Definition of Optimization Problem

An objective function which can be used in the optimization
of the PLL performance is

F = otata + atcrt + anan (21)

where aa,at, and an are weighting factors, at and an are
the tracking and noise performance measures, and ta is the
acquisition performance measure. The optimization problem
is the minimization of the objective function J7 subject to the
conditions that the requirement for each of the performance
attributes is met.

Two alternative definitions of the acquisition performance
measure ta have been considered. The first method consists
of counting the number of bits (clock cycles) until the error
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Fig. 12. Acquisition performance objective function contours.

signal and the VCO control voltage have settled to a prescribed
amount. The performance measure assigned for ta using this
method has the disadvantage, however, that it has a different
dimension compared to the other two attributes (at and an).
With this approach, the acquisition time would typically be
expressed as a number of bits (clock cycles), whereas the
tracking error and clock jitter are expressed as rms values
of fractional change of the clock period.

The second method consists of minimizing the rms value
of the error signal samples up to the desired acquisition
time and normalizing to the bit period. This measure has
the advantage that the result has the same dimension as
the measure of tracking and noise performance. In addition,
optimization of the loop parameters with this method results
in the optimization of the acquisition performance in the mean
square sense. Examples of the plots of the objective function
contours based on these two methods are shown in Fig. 12.

B. Existence of a Solution

For most applications, the requirements set on the perfor-
mance attributes have the form:

acquisition time < A bits

tracking error < T n s

clock jitter < N ns. (22)

These restrictions impose a bound on the optimization space,
i.e., the loop parameters KQTR, and KQI/C, for each of the
attributes. Each attribute, therefore, has its own feasible region
[16]. A solution exists if an intersection of the feasible regions
can be found.

C. The Design Process

Classes of Design Problems: Several classes of design
problems are encountered in practice. These can be sum-
marized as the following distinct possibilities:

a) The same set of loop parameters are used for acquisition,
tracking, and noise.

b) A set of loop parameters is used for acquisition, and
another set is used for tracking and noise. This ap-
proach permits independent optimization of the acqui-
sition process using one set of loop parameters, and the
optimization of noise and tracking (suitably weighted)
with the other set.

c) The VCO is pretuned to a local frequency reference.
Only optimization of the loop parameters for data track-
ing and clock jitter is necessary.

d) A queue is available as shown in Fig. 13 for temporary
storage of jittered data. This approach permits optimiza-
tion of data tracking and clock jitter independently of
one another. PLLi is optimized for tracking performance
for successful recovery of data, and PLL2 is optimized
for jitter performance to provide a jitter-free clock. PLLi
is used to clock the data into the queue, and PLL2 is used
to clock the data out of the queue.

The first item in the list represents a general problem, and
it is the most difficult one to solve. Although the design
procedure to be described pertains specifically to this problem,
it is also applicable to the rest since they are special cases of
the first.

Design Procedure: The design problem is to choose circuit
configurations and values of K0,I,R, and C so that system
specifications on acquisition time, tracking error, and clock
jitter are satisfied given quantities such as the data rate and the
jitter on the incoming data. The procedure includes provision
for a trade-off among acquisition, tracking, and jitter perfor-
mance using preassigned weighting factors (aa,at, and an).

For convenience, the procedure is presented in several
specific steps:

Step J: Convert given requirements/constraints into the de-
sign variables ^ , a t , o - n , and T;.

Step 2: Assign values for Ko and / • Ko is the VCO gain,
defined in Section III as the fractional change in VCO center
frequency (1/T Hz) per volt of input voltage. The value
is based on the designer's estimate of the change that will
occur in frequency once a practical oscillator configuration
has been selected. / , the current in the charge-pump, is a free
variable. Its maximum value is determined by considerations
of noise and other fluctuations which limit the accuracy of its
specification and realization.

Step 3: Examine performance optimization in terms of the
objective function T and the weights aa,at, and an. The
feasible region is determined for each of the performance
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attributes from the design requirements. The intersection of
the feasible regions is the set of possible solutions. A solution
is not possible if an intersection cannot be found. If a solution
is possible, the intersection of the feasible regions is applied as
a set of boundary constraints to the system objective function
T. The preassigned weighting factors for the performance
attributes are used to find the optimum normalized loop
parameters (K0ITi/C = p and K0IR = q).

An alternate to this step is to create more contours for each
of the attributes that have smaller values than the desired con-
straints. Creating a contour with smaller value for a particular
attribute narrows the optimization space, and in effect, imposes
a more stringent requirement for that particular attribute.
Subsequently, an optimal solution will be found that favors
the attribute whose objective function contour is reduced.

Step 4: Determine values of R and C using the equations

C = (K0IT^/p and R = q/(K0I).

The former equation results from the fact discussed in Sec-
tion III upon the introduction of the normalized parameter
KoITi/C that use of the normalizing condition TJ = 1
yields K0I/C which has been utilized throughout the ensuing
development.

Step 5: Compute the state trajectories (see Fig. 4 and 5)
over the expected range of initial conditions to ascertain that
the loop design is stable and that the transient response is
satisfactory.

Illustrative Example: Consider a data recovery system de-
sign with the following specifications:

Data Rate:
Data Jitter:

10 Mbps (Ti = 100 ns)
±20 ns peak (uniform
distribution)
1000 bits
11.5 ns rms
8.1 ns rms

5.0 ns rms

OLa = Ott = OLn = I -

Acquisition Time:
Tracking Error:
Clock Jitter:
Acquisition

Performance Measure:
(using second method)

Performance Weightings:
The tracking error is chosen such that it is equal to the rms

value of the data jitter, i.e., 20 ns peak / y/3 = 11.5 ns rms
(for a uniform distribution, rms value = peak value/\/3).

The first parameter to be chosen in the design is the VCO
gain KQ. It should be large enough to pull the VCO frequency
into the incoming data signal frequency. A K$ of 50% per
volt is chosen as the design value based on the choice of
a ring oscillator for the VCO. It is assumed that the VCO
has a center frequency with 10% accuracy. This implies that
the PLL can have an initial frequency step (error) of 10%.
Objective function contours for acquisition performance based
on the two alternative measures discussed above are shown
in Fig. 12. They were computed from the PLL model for a
10% initial error in frequency based on this assumption. The
second method will be used in this example. An acquisition
performance measure of 5 ns rms implies a normalized rms
value of 5/100 = 0.05. Therefore, contour b of Fig. 12 is
selected to determine the relation between K0I/C and KoTR
to achieve the desired acquisition performance.
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Fig. 14. Tracking and noise performance objective function contours.
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Fig. 15. Intersection of feasible regions for the illustrative example.

Plots of the objective function contours for tracking and
noise performance are shown in Fig. 14. Contour a for track-
ing error provides a basis for estimating the corresponding
relation between KQI/C and KoTR. to meet the 11.5 ns require-
ment. Contour a for clock jitter also provides a comparable
estimate of the relation needed to meet the 8.1 ns requirement.

The three selected contours are superimposed and are shown
in Fig. 15. The shaded region which is the intersection of
the three contours is the set of feasible solutions. This set
of feasible solutions is applied as boundary constraints in the
minimization of the system objective function T.

The system objective function T for aa — ott = otn = 1 has
a minimum at K0I/G = 0.01 and /f0IR = 0.5. These values
fall within the boundary constraints depicted in Fig. 15. Hence,
KoITi/C = p = 0.01 and K0JR =q = 0.5.

With a tentative circuit implementation of the charge pump
in mind, a current of 1.0 mA is selected as the value of / . The
component values can now be calculated using

and

C = (0.5)(0.001)(100 x 10~9)/0.01 = 0.005 pF

R = 0.5/(0.5)(0.001) = 1 Kfi.
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The remaining step in the design process is to compute the
state trajectories to determine that the loop design is stable and
that the transient response is satisfactory. The initial conditions
to which the loop will be subjected to are an initial frequency
error of 10% and an initial phase error which can be as much
as one bit interval.
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Fig. 18. Ring oscillator circuit.
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VI. VALIDATION OF RESULTS

The validity of the applicability of the mathematical model
for practical system implementation was investigated using a
CMOS electronic circuit having the form of Fig. l(a). The
level 7 Lattin-Jenkin-Grove MOSFET model [17] for a 1.25
/j,m feature size CMOS was used as a transistor model in
SPICE to simulate the operation of the circuit. The logic
diagram of the phase/frequency detector PFD is shown in
Fig. 16, the charge-pump circuit (generator / of Fig. l(a)
schematic is shown in Fig. 17, and the VCO of Fig. l(a)
(implemented as ring oscillator circuit) is shown in Fig. 18.
Note that the particular circuit configuration shown in Fig. 16
is a conventional sequential phase detector which is not suited
for random data. The circuit is used in the simulation for
illustrative purposes only assuming that the input is a periodic
pattern.

Fig. 19. Phase step input for math model and circuit simulation.

The transient response of the PLL using the CMOS circuitry
was simulated for a phase step input and a frequency step
input. The results are shown in Fig. 19 and 20. In the figures,
the VCO frequency is 10 MHz which corresponds to a period
of 100 ns. Excellent agreement between the simulated circuit
and the mathematical model was obtained in all the cases.

Jitter was added into the circuit simulations by perturbing
the transitions of the data signal, and the tracking error and the
clock jitter were noted. These operations were performed for
different noise levels and different loop parameters, including
the illustrative design example presented above. Excellent
agreement between the simulated circuit and the mathematical
model was also obtained.
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Fig. 20. Frequency step input for math model and circuit simulation.

VII. CONCLUSION

A mathematical model has been derived for the phase-
locked loop which is commonly used in data recovery systems.
The formulation of the model is exact and takes into account
that a square wave voltage output of the VCO is required.
The mathematical model is a difference equation which relates
the tracking (zero crossing) error and the voltage across the
capacitor of the loop filter at the present bit timing k to the
next bit timing k + 1. The model includes the effect of noise
(or jitter) on the input signal.

The three performance attributes of a data recovery sys-
tem, namely, acquisition, tracking, and noise, are discussed
in detail. The optimum loop parameters for each of these
attributes are determined from the numerical solutions to the
mathematical model. The solutions indicate that the normal-
ized loop parameter Kol/C = 0.001 is optimum for both
the tracking performance and the noise performance over a
wide practical range of input noise levels. Wide bandwidth
(KoJR « 1) is required for optimum tracking, and narrow
bandwidth (KQJR « 0.025) is required for optimum jitter
rejection.

Finally, a systematic design procedure for a PLL for use in
data recovery systems is presented. An objective function is
given which can be utilized for trade-offs among acquisition,
tracking, and jitter performance. A method is also shown
for determining the existence of a solution given the design
conditions. The mathematical model as well as the design
procedure were validated through simulations on a practi-
cal CMOS circuit implementation using the SPICE circuit
simulation program.
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Noise Properties of PLL Systems
VENCESLAV F. KROUPA

Abstract—This is a survey paper which begins by the derivation of
the general PLL noise equation and by dividing the additive noises
into the passband group and the stopband group.

In the following paragraphs the behavior of all the major sources of
additive noises is investigated and the practical numerical values of
the respective power spectral densities are given.

In the terminating sections, guidelines for minimizing the additive
noises in PLL systems and PLL frequency synthesizers are empha-
sized, and finally, phase-noise power spectral densities of several
actual PLL frequency synthesizers are plotted in the normalized form.

The paper is accompanied by a copious bibliography.

I. INTRODUCTION

THE steadily increasing congestion in communications bands
of the electromagnetic spectrum results in efforts for

utilization of new ranges (e.g., microwave and optical fre-
quencies) on one hand and better exploitation of the existing
frequency allocations on the other hand. The latter task is
met by adopting SSB modulation, telegraph multiplexing
techniques, etc., and often by sharing the same communica-
tion channel by several services. In these cases the mutual
interference is the major problem and it can be reduced
only by increasing both the short-term and the long-term fre-
quency stability of respective exciters and local oscillators.

Nowadays the long term stability is effectively solved
with the assistance of frequency synthesis [ l ] - [4 ] . However,
the situation with the short-term frequency stability is not so
simple. Even in the ideal case when the frequency synthesizer
is assumed to be a noiseless frequency transformer, we face
an additive frequency noise [1] and often a too high phase-
noise level after multiplication. The remedy to this difficulty
may be a carefully designed phase-lock loop (PLL). However,
this latter technique is more often used in frequency synthe-
sizers only since it makes possible a substantial hardware
simplification. And here the troubles start as nearly all PLL
building blocks may add a sometimes substantial noise power
to the useful signal. The problem is not yet generally under-
stood and, in addition, is often underestimated. We shall
therefore, in the following paragraphs, discuss theoretical
backgrounds and summarize all the accessible experimental
results to provide the leading lines for the design of low-noise
PLL systems.

II. PLL NOISE EQUATION

In the following paragraphs we shall limit ourselves only
to noises generated in the PLL building blocks and in a "low-
noise" reference, leaving out the large class of cases with the
reference frequency embedded in atmospheric or man-made
noise which have been extensively dealt with in earlier works,
from which many we shall mention only [5] - [7] .

In Fig. 1 we have drawn a fairly general PLL arrangement
with a phase detector (PD), a low-pass filter FL(s)9 and a
voltage-controlled oscillator (VCO) in the forward path and
a mixer (—), an IF filter with the effective modulation trans-
fer function FM(s) [1, p. 234] or [5, p. 147], and a divider
(T/V) in the feedback path. For completeness we have placed
a divider (+Q) between the reference generator (RG) and the
phase detector and a multiplier (XM) between RG and the
second input to the mixer. However, we have to keep in mind
that these two latter blocks, in actual PLL systems, are often
replaced by more complicated frequency synthesis circuits.

Since all the noises generated or added in individual blocks
in Fig. 1 are small compared with the useful signals, we have
applied the rule of superposition and simply add them either
at the respective inputs or outputs. Note that the subscript
"w" indicates the noise signal throughout. Furthermore, the
small signal theory makes it possible to use the Laplace trans-
form approach to find the output noise of the considered PLL
system or, more exactly, the respective power spectral den-
sities.

By assuming a locked loop and by considering Fig. 1, we
may write for the forward path of the loop

<t>o,n = [(4>t.n-4>o,n)Kd + Vl>D,n + VF,n]FL(S)

s 'osc, n 0)

and for the feedback path

<t>o,n = (<Po,n - 4>m.n + 4>MI,n) ~ ~ + <t>DN,n (2)
N

where

Manuscript received June 5, 1981; revised April 12, 1982. This
paper was presented in part at the Third Symposium on Electromagnetic
Compatibility, Rotterdam, The Netherlands, May 1979, and at the Con-
ference on Precision Electromagnetic Measurements, Braunschweig,
West Germany, June 1980.

The author is with the Institute of Radio Engineering and Electronics,
Czechoslovak Academy of Sciences, 182 51 Prague 8, Czechoslovakia.

and

fr,n

Q
+ $DQ,n

§m,n =M<t>rtn
 + <pMU,n-

(3)

(4)

Reprinted from IEEE Trans. Comm., vol. COM-30, pp. 2244-2252, October 1982.
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A'DQtn

Fig. 1. Block diagram ot a general PLL system with additive noise
sources.

Note that all noise components 0 —, n and V •••, n are Laplace
transformed quantities, i.e., 0 •••, n(s), etc.

After introducing (2) into (1) we get for the output phase
noise <j)on

17. . V?Dfn + VFA N
Vo.n = 10/,/i ~ 0D7V,« + ~ ) —TT

L\ ** / FwW
A ] FM(s)FL(s)KdK0/Ns

+ <l>m,n

+ <

l+FM(s}FL(8)KdK0/Ns

1
'OSC,W

1 +
Ns

(5)

which can be simplified with the assistance of the effective
loop transfer function //'(s) [1, ch. 7] and (3) and (4) into

r / # 1 \ /
**,« = tfr.fi I ^ + " 7T7T ) + 1 ^DQ-n "" *DiV-fI

proportion to the division factor TV to a new value

K'=K/N = KdK0/N (8)

and as a consequence we face a reduced effective natural fre-
quency Lon' and a prolongated settling time-the remedy might
be a compensating dc amplifier incorporated into the FL(s)
block.

The second difficulty arrises from the IF filter in the
feedback path, respectively, from its effective modulation
transfer function FM(s). In many instances it may be replaced
by a mere time delay function which causes a reduction of
the pull-in range Aoj/» [8]. However, when the IF filter is a
more complicated circuit we face the danger of false locks
[5, p. 151] and the degradation of the loop stability.

Finally, by investigating the behavior of the PLL trans-
fer function H'(s) in the frequency domain we easily arrive at
the following conclusions: for co < con'

'PD,« + VFwH

where

#'(*)=-

Kd j FM{a)

•H\s) + <l>osc,nll-H'(s)]

FL(s}FM(S)KdK0

Ns

+ 4>MU,,

|W(a) |«l and 11 -#'(«)I * 0

whereas for co > con'

|/T(«)|«0 and \1-H'(s)\*>l.

(9a)

(9b)

(6)
The consequence is that in the PLL passband the output noise
is given by

1 +
FL(S)FM(s)KdK

Ns

(V) , VpD.n + VP,n\

Kd )
(10)

We feel that it is time to discuss the results we have arrived at
until now. Let us start with the last equation.

First, we see that the loop gain KdK0 = K is reduced in

(note that we have neglected FM(s), the influence of which
in the passband is small) and in the stopband by

0<?,« ** 0osc,« 01)
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i.e., the PLL output noise is equal to the voltage-controlled
oscillator noise. However, we shall see later that this rule of
thumb is often invalidated by the improper choice of cow'
or of the loop filter FL(s).

Now reverting to the analysis of the PLL output noise in
the passband we see that the first term on the right-hand side
of (10) is inevitable since it is merely a multiplied reference
generator noise. The situation with the second term is not so
simple; here we encounter both divider noises, the phase de-
tector noise and the "filter noise" VFn, all multiplied by the
division factor N. Finally, with the third term we add the
multiplier and the mixer noises; however, they will be gener-
ally small compared with the second term.

As all the considered noises are random by nature and
uncorrelated, we may sum the respective spectral densities.

r N~
S<pDQ,n(f)

"*" ̂ ipDN.nU) "t" 2 i
J{PMU,n VM/f/7^ (12)

III. NOISES GENERATED IN INDIVIDUAL PLL BUILDING
BLOCKS

In the following sections we shall investigate the quantita-
tive and qualitative share of the individual terms, in the above
equation, to the total effective "reference noise."

A. Loop Filter Noise

When the loop filter FL(s) is a passive one (see Fig. 1), i.e.,
a simple RC lag or lag-lead network, there are two major
sources of noise, namely, some types of capacitors and re-
sistors (carbon resistors) which can generate appreciable
amounts of 1// noise. As a consequence the low-noise design
requires their individual selection (the use of metal-film
type resistors is a necessity). The second source may be the
decoupling resistor jRdc, separating the varactor circuit from
the loop filter and the phase detector. The respective noise
power density is

SVtF = AkT • Rdc ~Rdc X 1.66 X 1 0 " 2 0 [V2/Hz] (13)

and for the typical value of the phase detector gain, Kd =
0.3, we get

$*,F=RdcX 1.84 X 10, - 1 9 [rad2/Hz]. (14)

B. Phase Noise in dc Amplifiers

In many instances we need to introduce either an active
lag-lead filter [1], [5] or merely a dc amplifier.

The design of a low-noise dc amplifier is not an easy task
[9] even in instances where the tested circuit diagram is used
[10]-[14]. Typical equivalent input noise voltage is only
several nV/\/Hz with the corner-low-frequency between
10-100 Hz. Similar performance is also achieved with some
modern IC operational amplifiers [9], [15].

C. Phase Noise in HF Amplifiers

Here, our investigations must start with the famous paper
by Halford etal. [16]. They found that power spectral density
of the flicker phase noise close to the carrier was approxi-
mately the same, i.e.,

-w)~-10- 1 1 . 2

/

+ Sip(f) white (15)

for the surveyed range from 5 to 100 MHz, quite independent
of the transistor type and even of the multiplication factor.
Laboratory experiments proved that the intrinsic, direct phase
modulation of the RF carrier by transistors was responsible for
the phenomenon. The improvement—typically more than 30
dB (and up to 40 dB in some cases)-has been achieved by
applying local RF negative feedback (small unbypassed resistor
in the emitter-typically from 10 to 100 fi). These findings
were later supported theoretically by Healey [17] and ex-
perimentally by other authors [12], [18], [19], Low ampli-
fier currents and high voltages help to keep the 1// noise
current low. The best white noise levels SvlOwhite reported
[18] are of the order of 10" 1 7 .

D. Phase Noise in Phase Detectors and Mixers

The experience with measurement of S^ytl{f) of low-noise
crystal oscillators has taught that the best phase detectors
are double-balanced mixers with Schottky barrier diodes in
the ring configuration. A further improvement may be
achieved by placing two diodes in each arm [11], [18].
Measurements performed by different authors [11], [13],
[14], [18], [19] reveal

1 0-i4±i
,-17 (16)

On the other hand, there is not yet fully proved evidence
that the logic circuit or digital phase detectors are much
noisier [19], [20]. Sojdr [19] has measured noise properties
of popular digital phase-frequency detectors in the range from
0.1 to 1 MHz and found

•W) = -
1010.6±0.3

/
(17)

Furthermore, he verified the statement by Underhill et al
[20] that phase detectors built of ECL and CMOS logic
families exhibit a better noise behavior up to about —22 dB
in the flicker noise region.

E. Phase Noise in Digital Frequency Dividers

Since the frequency or phase modulation index decreases
proportionally to the division factor N9 the ideal noise figure
is

F d i v = ~201ogiV. (18)

However, there is an additional noise generated in the divider
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itself; thus, the output phase noise is given by

Sv,D.n(f) =
•VinC/)

N2 + ^8dd(/)- (19)

To find out the properties of the additive term we have nor-
malized the above equation with respect to the output fre-
quency, i.e. (cf. Section III-G),

o 2

2 ~~ Zj nk,D,n
/out A:=~2

fc=-2 f z> add (20)

and plotted the respective coefficients &i,add anc* /*2,add>
computed from accessible experimental results [3], [19],
[21]-[23] in Fig. 2. We see that the overall behavior is the
same, namely, for large division factors (small output fre-
quency) the data fit a straight line with the slope of 20
db/dec. Be referring to the lowest noise points we may write
for the additive term

10, - 1 4 . 7

^<£,add
/

• + 1 0 i~ 16 .5 (21)

On the other hand, for higher output frequencies (above 1
MHz) both coefficients hl?idd and ft2)add become constants
which indicate that the input noise predominates.

F. Phase Noise in Frequency Multipliers

We have to refer first to the above mentioned paper by
Halford [16] and further to that by Baugh [24] where guide-
lines for the design of low-noise frequency multipliers are
given (RF negative feedback-see Section HI-C-and steep
zero crossings). To get more information we have collected
published results about noise properties of transistor fre-
quency multipliers [12], [24]-[29] and diode frequency
multipliers [12], [28], [30], [31] as well and found that
both noise constants tf_i,inp and tfo,inp a r e nearly the same
for properly designed transistor frequency multipliers, ir-
respective of the frequency, i.e.,

5*MC/,inp(/)^
10- 1 4

/
+ 10r-16.5 (22)

In diode frequency multipliers the flicker phase noise level
is higher, typically

10- 1 2 . 9
/ / •

(23)

We shall see later that the flicker and white phase-noise
spectral densities of the best crystal oscillators are of the
same order or rather worse as the respective additive terms in
frequency multipliers; thus, we can conclude that the phase
noise is not appreciably deteriorated by passing the signal
through a properly designed frequency multiplier. (Note that
this is hardly true with the diode frequency multipliers.)

fc

-htadd

[dB] S9[f)=@-

o FRIED [2*]

+ • SOJDR[19J

* HILTY [22]

A FORCE [233

* SCHEJ?ER[ln3]

2

-220

-2kO

-260
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- 3 W L

-2W -

-260 -

-2B0
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Fig. 2. Plot of the normalized additive phase-noise coefficients h | a^
and /?2,add *n respect to the divider output frequency as measured
by different authors.

G. Phase Noise in Oscillators1

The theory of noise in free-running oscillators has been
dealt with by many authors for nearly half a century and we
feel that the best we can do is to mention only a few of them
[33] -[36]. However, they do not provide the information the
designer of the PLL systems is looking for, at least by the
first fast reading. On the other hand, when we start from the
condition of the zero phase shift around the oscillating loop
[37] we easily arrive at the heuristic oscillator phase-
model suggested by Leeson [38], [17].

In accordance with this model any oscillator can be sim-
plified into a loop containing a resonator and an amplifier-
limiter. As a consequence its output spectral density is given
by

^Mosci. = V W 1 + ( " O / 2 G L " ) 2 ]

where the amplifier-limiter noise is

(24)

(25)

The magnitude of the flicker noise constant a__ x has been
found experimentally [16] in the range from 5 to 100 MHz
to be

fl_i =F_i • 10, - 1 1 . 2 [rad2]. (26)

The noise factor F_x depends on the emitter RF feedback
and may be made as small as 10""3.

The white noise constant is the ratio of the noise power
<Anoise (0 to the oscillator power Po reduced to 1 Hz band-
width and multiplied by a noise factor Fo:

a0 = F o • kT/P0 « 4 X 10" 2 ^ O / P Q [rad2 /Hz]. (27)

1 This section is based on the paper read by the author at the EMC-
79 Symposium, Rotterdam, The Netherlands [32] .
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By introducing (25) into (24) we arrive at a power law
relation

+ -

4GL 2 /
(28)

To compare oscillators with different output frequencies
we face the difficulty that the noise sidebands close to the
carrier are proportional to the square of the resonant fre-
quency / 0 . This problem is often solved by referring to the
fractional-frequency power spectral density

Sy(f) = Wf0)%(f\ (29)

i.e.,

by,osc,n(.f)

«0

f'4QL
2 4QL

2 + - , ' /+?/2
/o2 /o

= ~+ho+htf+h2f
2

or to the spectral density of the phase-noise time [14]

Sx(f) = SJf)/(2nf)\

(30a)

(30b)

(31)

The advantage of this second normalization is the close resem-
blance to the actual phase noise characteristic and the ease
with which Sy(f) is calculated-the proportionality factor
being (2nf0)

2. By dropping the factor (2TT)2 we arrive at a
very useful simplification:

•fyosc,«(/)//o ^-TT + ^ + T + ̂ a (32)

where

A - i

-•a-t/fo2;

ho=aol4QL
2;

fi2=ao/fo
2.

(33a)

(33b)

We have verified the validity of (28)-(32) by computing
coefficients h_x and h0 for different types of oscillators
from a wealth of published data and plotted them as functions
of quoted QL. The results are shown in Fig. 3 and indicate a
good agreement with the simplified oscillator noise theory.
The mean value of the flicker noise constant a_ t is

» 10' 11 (34)

and is practically independent of the oscillator type in the
whole frequency range from 5 MHz to 100 GHz; the same
is true also for the white noise constant a0, the mean value of
which is
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Fig. 3. Plot of the normalized phase-noise coefficients h__i and ft0 in
respect to the loaded Q^ of different oscillators.

aQ » 10- 1 5 (35)

Similar experimental verification of the dependence of hx

and h2 on l/ /0
2 is prevented by the lack of data for the

noise power at higher Fourier frequencies. Some insight
provides the investigation of noise properties of crystal
oscillators discussed in the following section.

Summarizing all the above results we can write a fairly
general oscillator noise equation

J</?osc,, „ ( / ) 1 10" 1 1 - 6 1 1 0 ~ 1 S 6

/o2 f3

1
J

/

Qi2

i o - u

V QL2

+ •
10- 1 5

/o2 /o2
(36)

and plot the normalized oscillator phase-noise characteristics
which consist of two sets of straight lines with parameters
QL and/0 ;seeFig.4.

H. Phase Noise in Reference Frequency Generators

The reference generator in low-noise PLL systems (fre-
quency synthesizers) is a spectrally pure crystal oscillator.
By inspecting (36) or Fig. 4 we see that a low close-to-carrier
noise requires the use of resonators with the highest possible
Q. It has been found earlier [39] that for the AT-cuts the
intrinsic losses in the quartz crystal material are related to
the resonant frequency by

/ 0 G ~ 1 . 5 X 1 0 1 3 . (37)

This product is slightly lower for the advantageous SC-cuts
and nearly two times larger for BT-cuts. Consequently, the
low flicker and white frequency noise, i.e., small h_x and h0

in (32) and (33), requires the lowest possible frequency / 0 .
However, to keep dimensions of the crystal resonators in
practical limits, we hardly can go below 5 MHz (cf. [39, Fig.
2]). Very often 10 MHz crystal oscillators are used as refer-
ence frequency generators.

To find practical values of hk coefficients in (32) we
have recently investigated noise characteristics of about 60
crystal oscillators in the range from 5 to 170 MHz [40] and
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Fig. 4. Normalized phase-noise characteristics of oscillators: param-
eters are the loaded Q^ of the resonator and the output frequency/0.

get for an average crystal oscillator the following noise equa-
tion.

W , " ( / ) 1 10-37.25/ 2 +_L10-39.4, 2

/o2 f3

l_
+7

10, - 1 2 . 1 5

/o2

l_

10- 1 4 - 9

/ o 2

7o2

(38)

By investigating the dispersion of the hk values, particularly
of the best crystal oscillators we have arrived at the conclusion
that in the I / / 3 and I / / 2 regions the crystal resonator noise
[41], rather than the transistor noise, is the limiting factor
[42].

IV. PLL LOOP FILTERS FOR LOW NOISE BEHAVIOR

The problem has been discussed earlier by the author [43]
and here only the results will be summarized.

By formulating the rule of thumb in (9) in Section II we
have assumed that the transfer function H'(s) has a rectangular
behavior. However, this is not true in real systems and a
closer investigation of the second- and third-order systems
gives

W(2S-<W + co,/2

where

«.'-**7T,; l-^T,^-.

K = T3/T2; K'=KdKQlN (40)

and A is the gain of the operational amplifier used.
Since the asymptotic approximation will generally supply

sufficient information for the noise behavior of the studied
PLL system, we shall consider the four most important con-
figurations.

1) Simple RC filter, i.e., A = 1, % = un'l2K\ and K = 0.
After introducing the normalization

CO

co"71

we shall find

H{]x)**-\lx2
x>\

and

1-#(/*) «2/£c x<\.

2) Passive lag-lead filter, i.e., A = 1, and K = 0.

i / (A)^- / (2£~co w 7^> x>\

\-H{jx)**jxo>n'IK' x<l.

3) Active lag-lead filter, i.e., ,4 -»<*>, and K = 0.

H(jx)*t~-2ji>/x x>l

1 -H(jx)*-x2 ton'/AK' <x < 1.

(41)

(42a)

(42b)

(43a)

(43b)

(44a)

(44b)

4) Active lag-lead filter with an additional RC section (it
has been shown [43] that for practical applications K < 0.3).

H(JX)*-\IKX2

l-H(jx)™~x2

x>l

con'/AK'<x<l.

(45a)

(45b)

To get a better insight we shall consider the problem of
phase-locking a 100 MHz crystal oscillator and a low Q LC-
oscillator to a 5 MHz reference signal. All normalized phase
noise characteristics are plotted in Fig. 5. By considering first
the 100-to-5 MHz PLL system we find the crossover point to
be approximately 200 Hz. In instances where /„ is smaller
than 200 Hz we face a large amount of additive noise, the
origin of which is the attenuated 100 MHz oscillator noise;
the dashed lines indicate the situation with passive filters and
dot-and-dash lines indicate the improvement when the active
lag-lead filter is used. Similarly, we encounter an unnecessary
additive noise caused by the attenuated 5 MHz oscillator
noise in cases where /„ > 200 Hz (dashed line). A remedy
can be provided by additional filtering; however, the stability
of the loop deteriorates.

In the second example of phase-locking a low Q oscillator
to a crystal reference, the use of the active lag-lead filter is
necessary since even for /„ equal to the crossover frequency
we face a large additive noise with passive filters only (see
again the dashed line in Fig. 5).

V. NOISE IN PLL FREQUENCY SYNTHESIZERS

By considering the basic PLL configuration, as shown in
Fig. 1, we easily arrive, with the assistance of (12) and the
condition of only a 3 dB noise increase, at the conclusion that

Jtp,r,n ( / )
r NY
[M+a\ ~N2 •S -PLLC/ ) (46)

where
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Fig. 5. Normalized phase noise of the PLL system of the 100 MHz
crystal oscillator locked to a 5 MHz reference crystal oscillator and
a low Q oscillator locked to the same reference oscillator.

VPLL(/) - 2S^D(f) + S^PD(/) + S^nif). (47)

The power spectral densities of individual noise sources in
the above equation have been evaluated in Section III. In a
large majority of cases where active filters are used the last
term on the right-hand side of (47) will dominate. With the
assistance of [9, Fig. 12] and a reasonable value for Kd>

Kd = 03, we find

VPLL(/)J
io- - 1 4

/
-4- 10- 1 5 . 5 (48)

Since the flicker and white noise spectral densities of good
reference oscillators in the 5 and 10 MHz frequency ranges
are of the same order we arrive at the rule of thumb that the
division factor N should not exceed the multiplication factor
M,i.e.,

N^M. (49)

However, this condition can hardly be met in instances
where small frequency steps are desired at the synthesizer
output. One solution is provided by the application of frac-
tional frequency dividers [2, p. 74], [44], [45]. The spurious
phase modulation which is often quite large but predictable
[46] is suppressed by compensation.

Another solution may be provided by a subtracting PLL-
system, the principle of which will be explained with the
assistance of Fig. 6. In the case where N in Fig. 1 is much
larger than M, the output noise of the first digital PLL in its
passband is given approximately by

' V o i . n C / ) * * 2 -<VPLL,l(/). (50)

With the assistance of (12) we find for the output noise (in
the passband) of the subtracting loop

c m~^2yPLL, i ( / ) . A/2Q , n
*Vu2,nU)^ ~pi + ^ Sipr.nU)

+ S<p,PLL,2(f)- (51)

Generally, the last term on the right-hand side of the above
equation may be neglected and the application of the 3 dB
noise-increase condition reveals the second rule of thumb, i.e.,

N
~^M. (52)

By a judicious combination of both these techniques one can
expect a very low additive phase noise from frequency syn-
thesizers at frequency ranges above 100 MHz [44], [45],
[47]. For generation of lower frequencies the use of dividers
instead of output mixers should be preferred [21], [44],
[45].

To demonstrate the state of the art we have plotted in
Fig. 7 the normalized power spectral densities of the output
phase noise of several commercial PLL frequency synthesizers.
The advantage of the normalization is the possibility to com-
pare the noise properties of frequency synthesizers with
different output frequencies and that of the reference
generator together in the same figure. The progress achieved
in the last ten years is impressive.

VI. CONCLUSIONS

In this survey paper we have called the readers' attention
to all major sources of additive noise in the PLL system.
Furthermore, we have shown that, in the first approximation,
these noises add to the input or the reference noise.

In the second we have investigated noises generated in
individual PLL building blocks and tried to find numerical
values for the respective power spectral densities with the
assistance of the experimental findings published by different
authors all over the world.

The major guideline rules for minimizing the additive
noises in complicated PLL systems or PLL frequency syn-
thesizers have been discussed in the last two sections. Finally,
phase-noise power spectral densities of several commercial
PLL frequency synthesizers have been plotted in normalized
form in Fig. 7. On one hand, this figure demonstrates the state
of the art and, on the other hand, the progress achieved in the
last decade.

For readers who intend to go deeper into the problem
we have collected a copious bibliography.
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Fig. 7. Normalized phase noise of several commercial PLL frequency
synthesizers, two reference crystal oscillators, and one typical LC
oscillator (VCO).
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Abstract

This paper presents an analytical model for timing jitter
accumulation in ring-oscillator based phase-locked-loops (PLL).
The timing jitter of the system is shown to depend on the jitter in
the ring-oscillator and an accumulation factor which is inversely
proportional to the bandwidth of the phase-locked-loop. Further
analysis shows that for delay-locked-loops (DLL), which use an
inverter delay chain that is not configured as a ring-oscillator,
there is no noise enhancement since noise jitter events do not
contribute to the starting point of the next dock cycle. Finally,
theoretical predictions for overall jitter are compared to
behavioral simulations with good agreement.

I. Introduction

Higher clock rates in many applications such as video, audio, and
data processors, requires increasingly higher performance from
the clock synthesizers used to drive them. In clock recovery
applications, such as data communications and disk drive read
channels, as well, higher speeds require better performance from
the VCOs and the overall timing recovery phase-locked-loop
itself. In both types of applications clocks are generated to drive
mixers or sampling circuits in which the random variation of the
sampling instant, or jitter, is a critical performance parameter. The
goal of this paper is to predict the timing jitter of phase-locked-
loop (PLL), and delay-locked-loop (DLL) systems from the
parameters of the loop and the jitter in the VCO itself. Of
particular interest are ring-oscillator VCOs which are attractive
from an integration and cost point of view, but suffer from larger
timing jitter than traditional tuned LC-tank oscillators.

In most clock synthesis applications a VCO is locked to a low-
jitter reference, often in the form of a crystal, using a phase-
locked-loop (figure 1). Most of the output jitter results from noise
sources in the phase detector, loop filter, and VCO. With careful
PLL design, however, the jitter in the VCO is usually the
dominant contributor. In clock and data recovery applications
there is often a significant amount of jitter from the input source
as well as the VCO. In this case, it will be shown that there is a
trade-off involved in selecting the bandwidth of the PLL. A
narrow bandwidth PLL rejects input jitter but does not correct
VCO timing errors as quickly, leaving the total output jitter, VCO
noise limited. A wide bandwidth PLL can correct VCO errors
more quickly but if made too wide, leaves the system input jitter

limited.

The ring-oscillator VCO in figure 1 is popular choice in many
applications. The jitter per cycle of oscillation is determined by
the sum of the timing error contributions of each inverter stage in
the ring [I]1. With each cycle of oscillation the jitter variance,
relative to a reference transition in the past continues to grow,
unless the oscillator is configured in a PLL. In a ring-oscillator
PLL, however, the total timing error is the sum of all past errors
weighted by the corrective action of the loop. The total jitter is
made up of the errors in the most recent cycles of oscillation, yet
to be corrected by the PLL, and therefore improves for higher loop
bandwidths.

Another structure popular in many applications is a DLL in which
a voltage controlled delay line, (VCD) is used in place of a VCO.
In this case the jitter accumulated by the end of the delay chain
does not contribute to the starting point of the next cycle since the
delay chain is not configured as an oscillator. The reference
determines the next transition point instead. This type of system
has superior jitter performance, but is only usable in some
applications.

In this paper, the total output jitter for PLL and DLL systems will
be determined and compared to the results of behavioral
simulations. The analysis is the scope of section II and some
design examples and simulations will be shown in section El.

II. PLL/DLL Jitter Analysis

Timing jitter in a ring-oscillator PLL depends on the interaction
of noise in the oscillator with the dynamics of the phase-locked
loop. It has been shown in [1] that the timing jitter variance at the
end of a chain of inverters is given by the sum of the contributions
of each stage. If each stage contributes a timing error with

variance A^2, then the total jitter at the end of N stages is NxAtH
2.

In a ring-oscillator this timing error determines the starting point
of the next cycle and therefore creates a permanent phase shift in
the output signal. If the ring-oscillator is configured in a phase-
locked-loop, however, the phase difference between the reference

1. The paper analyzes the output jitter of the delay cells. Each jitter source is identi-
fied and its contribution to the output jitter is calculated. It also gives guidelines for
design of low jitter delay lines.
Program Supported by NSF, ARPA, and California MICRO Program

Reprinted from Proc. oflSCAS, June 1994.

151



clock and the oscillator output is detected and compensated for by
the dynamics of the loop. The phase detector will sense the shift
and create an error signal to change the frequency of the ring-
oscillator VCO in a way which moves the phase of the output in
the right direction.

Since the amount of phase adjustment is usually small, the phase
error is not corrected in one clock cycle, but it is reduced
gradually over the course of several cycles. The phase error may
remain for up to several hundreds of cycles, depending on the
bandwidth of the loop filter in the PLL.

Analysis of the accumulated phase jitter and its relation to the
loop bandwidth is important for both clock synthesis and clock
recovery applications. In most PLL clock synthesizer designs, the
reference clock comes from a very low jitter source such as crystal
oscillator. Therefore, the jitter in the ring-oscillator is the main
source of the phase error in the synthesized clock. In this case the
bandwidth of the loop filter determines how large the
accumulated timing jitter gets. For clock recovery applications
there is a trade-off involved in the choice of the loop bandwidth
since the input signal that is being locked to is not ideal, but has
timing jitter associated with it as well. A narrow loop-bandwidth
will reduce the impact of jitter in the input signal since the loop
will not try to track input fluctuations as strongly. On the other
hand, this means that it will take more time to compensate for
jitter events in the ring-oscillator. Previously, more attention has
been paid to the first effect than the second, but both are important
for high performance clock recovery applications. So for both
clock synthesis and clock recovery applications, a thorough
analysis of the output jitter due to the internal jitter sources is
important [2].

To find the accumulated rms jitter, a PLL which uses a sequential
phase detector and a charge-pumping circuit is represented by a
simple discrete-time model as shown in Figure 2 [3]. The transfer
function for jitter in the PLL due to the internal jitter sources is
represented by (EQ 1) in z-transform domain.

*oM
«„<*)

l+K/CJFWz - l
(EQ1)

Here the phase detector gain, Kd = — and VCO gain,

dw
K = — respectively, and h indicates the charge pumpingw dv
current. Zp{z) is the z-transform H(s)/s, where H(s) is the transfer
function of the PLL loop filter in ^domain. In most PLL design,
the second order loop filter is used and the transfer function is
given by (EQ 2).

H(s) =
s(s+px)

(EQ2)

where the DC filter gain, a = — , a zero, n, = -^~z* an^ a

pole, px

ICP*
. In most cases, the capacitor CP does not

affect the bandwidth of a PLL and can be ignored for simplicity.
Then, the loop filter is configured as a lead-lag filter composed
of a resistor /?, in series with a capacitor Cj. In this case,

H(s) = , a = /J.and n. = •= T r . Since n,T« 1 in
RC,

most PLL designs, (EQ 1) can be re-written as (EQ 3),

e <*)
(i-r1)

rre*<*> (EQ3)
1 - ( 1 - E ) z

where K = KJCjaT and is actually replaced with the term e
since K « 1.

The phase jitter from the ring oscillator can be modeled
as a sequence of unit step phase jumps with random magnitude.
A single phase jump at time nT can be represented by (EQ 4) in
the z-domain.

2*Af
eM(z)

Td-z'1)
(EQ4)

Here the magnitude of the error step is A/n. The variance of this
error is shown in [ 1] to be proportional to the number of stages in
the ring-oscillator, and the timing jitter variance contributed by
each stage. Hence the output jitter in z-domain is,

2nAt

««« - -K
(EQ5)

7 ( l - ( l - e ) z l)

For all events up to time nT, the sum of output phase shifts is
represented by (EQ 6).

«-..O*) X
2nAt

k(l-e)*~k (EQ6)

To find the rms output jitter, the expectation of the square of the
sum is calculated and given by (EQ 7). Since Atk and A// are not
correlated, the EfA^A/,] = 0 when * * / . When k = /,

E [AtkAtt] can be replaced by Ax^.

Ax2 Atl
L toi^ U l r J e ( 2 - e ) V T J [ 2e J

Note that the expectation of the phase jitter is independent of nT,
the time instant Hence the r.m.s. phase jitter is,

A/AT.,, and a = /

2nAx
a- (EQ8)

where At^g is is defined as the
jlK^aT

accumulation factor. The result in (EQ 8) is the r.m.s. phase jitter
for a ring-oscillator PLL. From the result, the rms timing jitter in
a phase-locked-loop is seen to be a times larger than the intrinsic
jitter in the delay chain. The accumulation factor a is inversely
proportional to the square-root of KJCy/iT and in this case shows
little dependency on Cf and CP. Therefore, as long as /ijT* 1,
Cp«C{ and stability requirements are met [3], the jitter
accumulation factor can be lowered by increasing the bandwidth
of the loop filter, w^ » KJUja..
An alternative scheme for clock synthesis is to use a delay-locked-
loop [4]. In this case, the reference clock is fed to the input of the
delay line, and the rising edge of the output of the delay line is
compared to that of the reference clock. Since the rising edge of
the reference clock reaches the output of the delay line after
passing through all delay cells, the total delay is driven to be the
same as one period of the reference clock. Also, since the output
of the loop filter just changes the phase of the output of the delay
line, the loop does not have any extra poles as a PLL does.
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Therefore, the stability problem is relaxed and a simple capacitor
loop filter can be used without any stability consideration.

In a DLL, phase jitter is not passed on from one period of the
clock to the next since the output of the delay-line is not fed back
to the input. Therefore we expect the jitter in a DLL to be much
smaller than in a ring-oscillator based PLL. To show this
quantitatively we proceed with an analysis similar to that in the
previous section but with the simplified discrete time DLL
model. In this case, the transfer function for output phase noise in
terms of the internal jitter from the delay line is represented by
(EQ9).

e-W
*„(*>

\+KJCpTZp(z)z - l
(EQ9)

where Kd is phase gain and given by — , and Kp is phase gain
2ft

dB
and given by — when voltage controlled delay line is assumed.

dv
If the loop filter in the DLL is a single capacitor and given by

1 a
— » - , the transfer function (EQ 9) becomes (EQ 10).
sC s

•«M -
(i-z"-l)eH(z)

(EQ10)
l+(e-l)z~

where KJCpaT <c 1, and is replaced by the constant e. The jitter
introduced by the delay line is represented by (EQ 11) in the z-
domain since in the time domain the effect of one pass down the
chain is just an error impulse.

2*Af
e,(*) (EQU)

Therefore, the variance of the total output jitter can be shown to
be

and the rms output jitter is therefore given by (EQ 13).

fe^ 2wAt.
(EQ 13)

This expression is very similar to the result for the PLL, given in
(EQ 8), except now there is no noise enhancement factor a .
Therefore a DLL provides superior timing jitter performance.
How much better depends on the size of a which will be
discussed in the next section.

DDL Design Examples and Simulation

To verify the theoretical predictions for PLL/DLL jitter
performance given in the previous sections, monte-carlo
simulations were performed using a behavioral model built
around the basic functional blocks pictured in Figure 3. The
timing jitter generated by the noisy inverter cells in the ring-
oscillator is modeled by a phase jitter noise source which adds an
error phase to the ideal phase coming out of the VCO. This phase
jitter is assumed white and its variance is proportional to the value
of 2N(Ax{)2 determined for a given ring-oscillator design using
the results of [1]. The jitter is normalized to the period of the delay
in order to determine the phase noise variance.

If a phase noise source is applied to a PLL with design parameters
Kd= 8.4/2* nA, Kw = 2K X 20 MHz/volt, R » 90Q and T= 50 nsec
(same parameters as in [6]), then the total PLL jitter is shown in
Figure 4. The total phase error wanders over a wider range than
the unit variance input source. In this example the predicted
accumulation factor is 25.7 and for a unit variance input noise,
should yield a total PLL jitter of around 25.7. This is close to the
result which was extracted from the simulation to be about 26.
The simulation also indicates that the PLL shapes the free running
ring oscillator phase fluctuation to a finite values with a variance
(a/>2=676). Here, the input jitter variance is normalized to 1.

To reduce the jitter accumulation effect, a new design is
simulated. In this design, the bandwidth of the PLL is increased
by using a larger value for/? (/?=900). In this case, the calculated
jitter accumulation factor a becomes 8.1. Figure 5 shows the
simulation results. Now the PLL phase error wanders over a
smaller range, and changes more rapidly since the loop bandwidth
is higher. The noise enhancement factor for this data is 8.3 which
is very close to the predicted result of 8.1.

Figure 6 shows the jitter accumulation factor in respect to the loop
bandwidth, wL « KJCwa for two input jitter values. This figure
shows that the PLL output jitter decreases as the loop bandwidth
increases until the external jitter becomes dominant. Therefore,
the optimum bandwidth is given by the minimum point of the
curve. Smaller bandwidth is preferred when the input jitter is
dominant.

Using the same input noise from the delay cells, a DLL output
jitter is simulated. Figure 7 shows the output jitter for the same
time period. This simulation shows that DLL does not accumulate
jitter and performs better for the internal jitter sources such as
delay cell jitter. In this case, parameter values are taken from [2]
and given as C = 0.039 |xF, Kd = 8.4/2p jiA, KP = 2n; rads/voits
and F = 50 nsec.

For a rough experimental verification, this model for timing jitter
was compared to the jitter observed in the ring-oscillator PLL
described in [5]. This PLL was fabricated in a 2 Jim CMOS
technology and the ring-oscillator was comprised of 16 inverter
delay stages running at a frequency of 30-MHz. The jitter for this
case can be calculated using (EQ 14) and is a function of the jitter
contribution per stage (ATJ), the number of taps in the oscillator
(A0» and the PLL accumulation factor (a) . In [1], it is shown that
for the circuit parameters used in the delay cells in [5], the jitter
contribution per cell was ATj=2.09ps. The parameters for the PLL
in this design were Kd = 20/2* \i\, Kw = 2* x 5 MHz/volt, /? = 200
Q, and T = 33 nsec, giving a jitter accumulation factor of 38.9.
Therefore, the r.m.s. timing jitter for this PLL, is predicted by (EQ
14) to be 81.30 ps. This agrees well with the experimental result
in [5], which was not measured exactly, but determined to be
somewhere in the range of 50-100 ps.

IV. Conclusion

This analysis has shown that, including the results of [1], the jitter
in a ring-oscillator is proportional to three factors; the number of
stages, the jitter contribution per stage, and a PLL accumulation
factor a , which is inversely proportional to the square-root of the
bandwidth of the PLL. For a DLL the result is the same, except
the noise enhancement factor is 1. Therefore in applications such
as clock synthesis, where a DLL can be used, it is the better choice
for jitter performance. To reduce the jitter enhancement in a PLL
a larger loop bandwidth should be used. For applications such as
clock-recovery, however, this bandwidth cannot be increased too
much or it will enhance the jitter seen in the input signal.

153



References
[1] Todd C. Weigandt, Beomsup Kim, Paul R. Gray, 'Timing

Jitter Analysis for High-Frcqucncy, Low-Power CMOS Ring-
Oscillator Design", ISCAS, June 1994.

[2] Beomsup Kim, "High Speed Clock Recovery in VLSI Using
Hybrid Analog/Digital Techniques", UCBIERL

Memorandum* June 1990.

[3] Floyd M. Gardner, "Charge-Pump Phase-Locked Loops",
IEEE Trans, on Communications, vol. COM-28, no. 11, Nov.
1980.

[4] J. Sonntag, R. Leonowich, "A Monolithic CMOS 10 MHz
DPLL for Burst-Mode Data Retiming", ISSCC, vol. 33, pp.
104-105, Feb. 1990.

[5] Beomsup Kim, David H. Helman, Paul R. Gray, "A 30 MHz
High Speed Analog/Digital PLL in 2um CMOS", ISSCC, vol.
33, pp.104-105, Feb. 1990.

[6] National Semiconductor, Mass Storage Handbook, pp 2.49-
2.51,1989.

i

1

P
L

L
c

100

SO

0

-50

-100
c

i ! T
i i ;

u . . ._.L.i L l.|

I ' j f ' l ' f i * - *

I i i

tin*

T 1 1
i 1 '•

mvWi f If Vnl^i/P

! 1 1 i

Figure 4 PLL Jitter Accumulation Effect Simulation (w,

I
I

PL
L

<

20

0

-20

•40
c

{ j j

T 1 y 1 • i J I i 1lF 1 1

1 2 3 -

I ! \

1 5 6 7
tin»<nT,T-50m«:)

i

ij

7
4

1
i
!

15 K

i
i . . ..

1
i

I

1
1

110*

•Mz)

1w
j

9

xlO*

Figure 5 PLL Jitter Accumulation Effect Simulation (wL = 150 KHz)

Data or
Crystal
Ref. ^

Phase
Detector

Loop

Filter

t

Ring Oscillator VCO
i

delay control

I
I

Figure 1 Ring-oscillator phase-locked-loop

Figure 2 Simplified PLL Discrete Time Model

Reference Clock

i c
.

5has<
DeL

lutpul

^^ i rharge-Pumpinj
Circuit

Clock

jenerators

Loop

Filter

vco/vct

Figure 6 Jitter vs. Loop Bandwidth, VCO Noise Dominant Case
(Upper Figure) and Input Noise Dominant Case (Lower Figure)

2 3 4 5 6 7
tifl»(nT,T»50mee)

Figure 7 DLL Jitter Effect Simulation

Figure 3 Jitter Simulation Setup

154



PRACTICAL APPROACH
AUGURS PLL NOISE
IN RF SYNTHESIZERS
By following a graphical analysis routine,
phase noise can be predicted accurately.

OISE and spurious
iignals can be analyzed for even the
most complex of phase-locked loop
(PLL) synthesizer architectures.
Even synthesizers utilizing dual-
modulus prescalers, fractional-N di-
viders, and translation loops can be
understood.12

For example, the presence of the
feedback divider makes the PLL a
sampled data system:* However, the
simpler continuous approximation is
accurate if the loop bandwidth is
less than 20 times the sampling rate
(the comparison frequency). With
this approximation, a Laplace trans-
form analysis of the basic synthesiz-
er yields the following results for
the open-loop gain and the transfer
function:

r M _ Ktt Kp F(S)
G ( s ) i"N

where:
G(s) = the open-loop gain, and

a)

H(s) 0o(s)
0i(s) 1 + G(s)

G(s)

MARK O'LEARY, Consultant, Comm-
design, 21213B Hawthorne Blvd. Ste.
5576, Torrance, CA 90509; (213) 370-
3298

K(, Ko F(s)
s N + K« Ko F(s)

where:
H(s) = the transfer function.
For a second-order, type-II loop:

F(s ) = LliL±I,H(3)

(2)

2 s £ wn + wn
2

s2 + 2s $ wn + wn
2

where:

and,

Wn V7TN"

(3)

(4a)

Reference noise Pnase detector noise

Output FM noise

1. This PLL noise model shows alt of the relevent
individual noise sources.

T'Z
« - ¥2 VT7N" (4b)

A well-known PLL noise model
(Fig. 1) includes the individual
sources of noise within the synthe-
sizer.4 Each of these sources arises
from a different mechanism. Loop-
filter noise arises from the equiva-
lent input noise sources of the DC
amplifier, if one is used, and from
logic circuit and current source
noise, if a pure switching charge
pump is utilized. Phase-detector
noise results whether a digital or an-
alog PLL is used. In either case, the
phase detector will degrade the
phase difference signal by adding
white and flicker noise.

VCO noise, another oscillator
noise source, is measured while the
oscillator is free-running under lab-
oratory conditions.5-6 FM noise oc-
curs when the VCO is operating in a
synthesizer and it is subjected to
several noise sources that modulate
its frequency. These sources include

(continued on next page)

Loopfiter

Hput

Reference noise

-r- N

Output-

VCO noise

2. A consolidated noise
model shows both the
high-pass and low-pass
terms in Eq. 6.

Reprinted with permission from Microwaves & RF9 M. O'Leary, "Practical Approach Augurs PLL
Noise in RF Synthesizers," pp. 185-194, September 1987.
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control-voltage pickup (for example,
capacitive coupling from nearby dig-
ital circuits and audio oscillators),
noise on the VCO supply voltage (all
VCO's have some frequency sensi-
tivity to supply voltage), and vibra-
tion (through frequency sensitivity
to mechanical stress). These effects
are modeled by a single noise source
summed with the VCO control volt-
age.

Divider noise occurs when a divid-
er's output contains phase informa-
tion in the position of its rising
edges, which are influenced by elec-
trical fluctuations within the divid-
er. The divider noise is modeled as a
source summed at the divider out-
put, since contributions from higher
stages are reduced by the factor, 20
log N, where N is the divide ratio.
By modeling divider noise at the out-
put, this source becomes nearly in-
dependent of N and constant for any
given logic family.

All of the above noise sources can
be measured and evaluated. For ex-
ample, op-amp input noise data can
be gleaned from data sheets; such
publications contain much informa-
tion on divider and phase detector
noise.7-8 However, this approach is
tedious and time-consuming. The
only information necessary is the
synthesizer's output phase noise.
Once this information is known, the
PLL can be made to meet the sys-
tem specification. A consolidated
noise model is used to analyze the
phase noise (Fig. 2).

Applying a Laplace transform
analysis to this model results in the
expression for output phase noise:

So(w) = N2 G(s)
1 + G(s)

2 /SP(w)
\~R2-

+ SN(W) + ^ ^ + * g £ > )

(s v c o (w)
1 + G(s)

+
Svfm (W) Ki 9-g2 -I (5)

Eq. 5 can be rewritten as,
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3. A graphical solution is available, which gives
phase-noise output for a PU. synthesizer.

G(s)

X ( ^ + S,,q (w))

1 |2 ( sh e q (w)) (6)
1 + G(s)

In Eq. 6, two kinds of noise
sources have been combined. The
first type of noise source, to which
the loop response is low pass, is
called the equivalent input noise,
S)eq(w), The second source, to which
the loop response is high pass, is de-
noted in-circuit VCO noise, as
Shea(w).

Note that Slefl is independent of
the feedback divider ratio and is
characteristic for a given synthesiz-
er technology—the type of phase de-
tector or loop filter, or the logic fam-
ily of divider output stages.

The consolidated noise model is
useful in that the equivalent input is
easily measured, as is the VCO noise
(Fig. 3). To measure equivalent in-
put noise for a given technology, the
user simply builds a synthesizer
with a high division ratio and wide-

loop bandwidth, and locks it to a
very clean reference frequency.
Equivalent input noise is then the
output phase noise reduced by 20
logN.

With this model, the importance
of N in determining the output
phase noise of a given synthesizer is
immediately apparent. The output
phase noise increases in dB as the
value of 20 log N increases for off-
set frequencies within the loop
bandwidth. Therefore, a constraint
on any synthesizer design is to keep
N low.

The equivalent input noise also
constitutes a noise floor for the syn-
thesizer. Regardless of how quiet
the input signal is, the output phase
noise will be at least 20 log N X
S]eq(w) for frequency offsets within
the loop bandwidth. One effect is
that output noise of PLL synthesiz-
ers is not necessarily a multiplied
version of the reference, as often be-
lieved.

Another implication of Eq. 2 is the
strong dependence of phase-noise
performance on loop response. Both
the loop bandwidth and the sharp-
ness of loop roll-off are very impor-
tant. To illustrate these concepts,
Fig. 3 demonstrates a graphical so-
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lution to Eq. 2 for a hypothetical
synthesizer.

COMPARISON FREQUENCY
Generally, the synthesizer output

will have sidebands offset from the
carrier frequency by the comparison
frequency and its harmonics. For
the simplest LO synthesizers, the
comparison frequency corresponds
to the step size. Therefore, compari-
son-frequency sidebands will limit
the receiver signal-to-noise (S/N) ra-
tio by mixing adjacent channel sig-
nals into the fixed intermediate fre-
quency (IF) along with the desired
signal9 If the total power in each
channel slot is the same, the receiv-
er S/N ratio is limited to B - 3 dB,
where B (in dBc units) is the level of
the comparison-frequency side-
bands. Of course, comparison fre-
quency does not correspond to step
size for fractional-N synthesizers.
Nevertheless, the sidebands must
still meet certain spurious-signal
specifications.

Sideband levels depend on the de-
tails of phase-detector and loop-fil-
ter implementation. For example,
consider a synthesizer that is a
mixed-sampled and continuous-time
system. Almost always, the transi-
tion from sampled to continuous
systems is done at the phase-detec-
tor output. This is because the loop
filter is most easily implemented as
an analog integrator, while sampled
phase detectors are preferred to
continuous ones. Continuous phase
detectors, such as multipliers and
switched mixers, are inherently low-
gain, high-offset, high-drift devices.
Also, their good threshold perfor-
mance is not advantageous in the
high S/N environment of a synthe-
sizer. On the other hand, digital
phase detectors easily interface to
dividers and are less expensive.

The class of sequential digital
phase detectors includes very sim-
ple circuits such as gates and flip-
flops, as well as the phase/frequen-
cy detector (Fig. 4).

The phase/frequency detector
(PFD) has a wide linear range (that

Reference input -

D Q1

C K s 1 Q i

VCO input-

-Output +

D S 2 Q 2

CK O2

<J
-Output •
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I

I

ii
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4. A common version of the phase/frequency de-
tector (a) operates as illustrated by the character-
istic waveforms (b).

is, + 2 7r) and possesses the remark-
able feature of functioning as a fre-
quency comparator when it is out of
phase lock.10 Fig. 4 illustrates the
locked-condition operation of a com-
mon version of the phase frequency
detector. The leading edge of the
signal causes its corresponding out-
put to be set; the other input edge,
after setting its output, allows both
outputs to be reset after two gate
delays. This creates a linear phase
detector with a range of + 1 cycle,
the phase being encoded into the
pulse width of the difference of the
two outputs.

A device called a charge pump
takes the digital output of the
phase/frequency detector and pro-
duces an analog signal suitable to
drive the loop filter.11 The charge
pump recognizes three independent
states: pump up (U), pump down (D),
and neutral (N). It sources current
to the loop filter when U is true,
sinks current when D is true, and is
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isolated when N is true. If U, D, and
N are derived from the PFD output
states, as shown in Fig. 4, the
charge pump will provide the follow-
ing average current to the loop filter
each cycle:

Ip »ei-(t) (7)

Assuming the loop bandwidth is
much less than the comparison fre-
quency, the sampling period aver-
age describes the system:

IP fle (s)
2TT

Id(s) (8)

The loop filter consists of an im-
pedance, ZF(s), so that:

Vc (s) - Id (s) ZF(s)

In ee (s) z F (s) (9)

A charge pump may produce a
pump voltage instead. When this
voltage is averaged over one cycle
and an active loop filter with a trans-
fer function, F(s), is used, this re-
sults in:



VCO Input-

Logic

Case 2

Control
voltage

Case 3

Reference input

VCO Input

•
Control vottooe g Q ^ ^ ^ ^ fe $ j m p | e fo j m p j e -

CH ^ ment In synthesizer design. The sec-
ond case lower comparison-frequency
sidebands. And, the third case has
high gain capability and reduces
comparison*frequency sidebands.

Vc (s) - Kd 6e (s) F (s) (10)

To summarize, the PFD accepts
digital inputs, produces an analog
output in conjunction with a charge
pump, and causes comparison-fre-
quency sidebands because of the
pulsed nature of its output.

The other type of phase detector
of practical importance is the sam-
ple-and-hold phase detector. One in-
put clocks a ramp (if a linear charac-
teristic is desired) or another wave-
form. The other input samples the
waveform. The sampled voltage is
held until the next cycle. This pro-
cess implements a sampled phase
detector and zero-order hold with a
linear range of ±7r. The sample-
and-hold phase detector has several
advantages and disadvantages rela-
tive to phase/frequency detectors.

Advantages include reduced com-
parison-frequency sidebands; high
gain capability resulting in noise ad-
vantages; and accurate Z-transform
analysis and design. Disadvantages
include the lack of built-in frequen-
cy-acquisition capability and the
need for analog circuitry.

The comparison-frequency side-
band levels for the three cases can
now be computed (Fig. 5). The first
case is the phase/frequency detec-
tor with a switching charge pump.
Leakage current out of the loop-fil-
ter impedance node results in the
creation of comparison-frequency

sidebands. In the phase-locked
steady-state case, this current,
which may include charge-pump
switch varactor bias and filter-ca-
pacitor leakage currents, must be
cancelled by the average charge-
pump current each cycle to maintain
the filter capacitor at the correct
voltage. The charge-pump supplies
current in pulses of peak value, I.
These pulses modulate the VCO to
make the sidebands. (Assume that
the loop filter contains a capacitor,
as is the case with the usual type-II
loop.)

The level of the sidebands can be
calculated as follows. In the steady
state, the charge pump supplies cur-
rent in pulses of peak value, Ip, and
width: T

D - f (11)
h

From Fourier analysis, the RMS
level of the pulse train at the nth
harmonic of the comparison fre-
quency is as follows:

I InD
RMS —

V2
for n « YJ (12)

or,

IRMS = - ~ for n « p (13)

To compute the output phase
modulation, it is easiest to let the
phase-detector output current har-
monics be the input of the loop and
use the ordinary closed-loop trans-
fer function. The following equation
relates PFD output, Id, to input 0e:

Id - | ^ (14)
so,

dP = I
V 2 7T

1 IT" (15)

The output response to this equiv-
alent input (which arose due to the
pulsed nature of the charge pump)
is:

jg , N H w i, yg , (16a)

and,

B = 20 log I. |N H (fc) Ii y/2

for B < -20 dBc

dBc,

(16b)

Assuming that N is constrained
by the architecture, the sidebands
can still be reduced. H(ft.)--where fc
equals the carrier frequency—can
be decreased either by lowering the
loop bandwidth or by adding a pole
to the loop filter. The extra pole
must be no lower than about 10
times the loop bandwidth to main-
tain adequate stability margin.
Next, the charge pump can be im-
proved. As evident in the above
equation, Ip/I, is a figure-of-merit
for the comparison-frequency side-
band performance of a charge
pump. The value of fc should be
maximized in order to minimize the
sidebands.

The second case, for which com-

6. A differential amplifier
charge pump eliminates
finite-switching-time dis-
tortion.

VCO input - CK Q2

V
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parison-frequency sidebands can be
computed, is a phase/frequency de-
tector with an amplifier charge
pump. The previous scheme—a PFD
with a switching charge pump—has
the advantages of simple implemen-
tation, rapid acquisition, and no
need for a DC amplifier. However,
the charge-pump switching time im-
poses a limitation on input zero
phase-error resolution. The phase
detector cannot distinguish input
edges whose arrival time differ-
ences are less than the switching
time of the charge pump.

Referring to Fig. 4, the transfor-
mation between the PFD'S 2-bit out-
put and the charge pump's three-
state input can be accomplished us-
ing subtraction with a linear circuit
instead of a digital one. The circuit
for which a differential amplifier im-
plements the charge pump and loop
filter is shown in Fig. 6.

There is no limitation on the zero-
phase resolution with the circuit in
Fig. 6. Comparison-frequency side-
band levels are calculated from the
formula derived above, using the op-
amp input offset current in place of
I,. The op-amp input voltage does
not affect the sidebands unless a re-
sistive buffer stage is used in the
circuit before a single-ended loop fil-
ter. This is because the capacitors
will hold the correct voltage to can-
cel the input offset voltage and ob-
tain the necessary VCO input. If a
resistive buffer stage is used, the
sideband levels are:

L ^ \ / K D
 J

for B < -20 dBc (17)

where:
KD = Vcc/4 n.
However, this is unnecessary

since the charge pump, besides solv-
ing the phase-resolution problem
mentioned, is also capable of a high
figure-of-merit:

JlO ass CC

h R Ios
(18)

This value can be greatly in-

creased by using a FET input ampli-
fier. Disadvantages to the PFD/dif-
ference-amplifier approach are that
it requires an op amp, op-amp noise
is not negligible in some cases, and
the loop bandwidth is limited by am-
plifier slew rate. However, these
aren't normally important factors in
commercial areas of the LO synthe-
sizer performance envelope.

The third case is the sample-and-
hold phase detector. In a type-II loop
with a sample-and-hold phase detec-
tor, ripple due to hold-capacitor
droop results in the comparison-fre-
quency sidebands. Assuming the
phase detector is well designed so
that switching transients are negli-
gible the sidebands can be calculat-
ed as follows. The phase detector
output voltage, Vd, will be a saw-
tooth waveform (Fig. 5). From Fou-
rier analysis, the level of Vd at the
nth harmonic is:

(19)

(20)

(21)

where:
I, = the leakage current out of the

hold-capacitor node, between sam-
pling instants.

Using Vd = ©jK, the ripple can be
sent to the input for ease of compu-
tation. This gives a fictitious input
signal at the nth harmonic of:

°" ~ (Wrn i rKn (22)

Then, using Eq. 21, the output
phase is:

N H (nf,.) I,
C}\(v n 7r K D

And,

Then

vd
since:

A - J

A - j r

vd =

A

d V d _
~3T~

_ r,

II
CSS

0S

And, the comparison-frequency
sidebands are "D" dB down from
the carrier, where:

B = 20 log [N H (fc) Til (23b)

The figure-of-merit for sideband
performance of the sample-and-hold
phase detector is slow and unreli-
able. A convenient way to obtain fre-

quency-aided acquisition is to use a
PFD and switching charge pump as
a parallel phase detector. Outputs
are then summed for both the PFD
and the switching charge-pump cir-
cuits, with the PFD gain much lower
so that performance is not harmed
while both circuits are in phase lock.
Some CMOS synthesizer parts pro-
vide both types of phase detectors
for this reason. ••
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The Effects of Noise in Oscillators

ERICH HAFNER, MEMBER, IEEE

Abstract—An explicit expression for the output signal from an
oscillator with several noise sources in the circuit is derived. This
formula describes qualitatively and quantitatively the manner in which
thermal and shot noise act to corrupt the performance of an ideal
oscillator. The statistical properties of the signal are then evaluated, as
it emerges from the oscillator stage, after passage through an output
filter and after being operated on by an ideal w-times multiplier.
Expressions are derived for the short term frequency stability, the
power spectral density, and the power spectrum of the signal, as well as
for the spectral density of the signal phase.

The key to the results reported is an apparently novel perturbation
technique which does not require smoothing of the instantaneous
nonlinearity in the basic differential equation. Discussion of the
solutions shows that the instantaneous nonlinearities cause the device
to act simultaneously like a linear AGC oscillator and like a high Q
passive tuned circuit, with each aspect accorded one half the total noise
excitation. Possible implications of this effect for other types of
transient conditions in oscillators are indicated briefly.

INTRODUCTION

f II ^ H E THEORY of noise in nearly harmonic oscil-
|j lators has received considerable attention in the

past, and a number of properties of the noise-per-
turbed signal are firmly established. However, it is very
well recognized that the existing theories provide only
partial descriptions of a many-sided phenomenon, and
that several important questions have remained un-
answered.

A common feature of the literature on the subject is
the derivation of the power spectral density of the signal
voltage in a noise-perturbed oscillator. This provides a
convenient reference for discussing the most essential
aspects of the earlier work. Some investigators [ l ] - [4]
chose to consider the oscillator simply as a linear noise
filter of very narrow bandwidth; and they arrived at re-
sults which generally agreed (a factor of two which often
occurred is now known to be extraneous [5], [6]) with
those derived by far more sophisticated techniques [8] -
[ l3j . Since these latter techniques are based on the
nonlinear differential equations for the noise, perturbed
oscillator, a satisfactory physical explanation for this
agreement could not readily be offered, primarily be-
cause the significance of the approximations involved
was rather difficult to assess.

It does not appear to have been fully realized that, as
is shown in Section III-C of this paper, the linear noise-
filter approach contains implicit assumptions which can
be met only when the device considered is indeed a
linear oscillator, equipped with an external mechanism
(AGC) which automatically regulates the gain of the

Manuscript received October 29, 1965; revised November 29,
1965.

The author is with the U. S. Army Electronics Command, Ft.
Monmouth, N. J.

active device, or the circuit losses. On the other hand,
the most important step, consistently taken in all non-
linear analyses reported so far, is the application of the
averaging principle [14] which involves smoothing of the
instantaneous nonlinearity in the circuit [12]. It is
shown in the Appendix that this approximation is
equivalent to replacing the actual nonlinear oscillator
again by a linear oscillator with AGC. The agreement
just mentioned is thus to be expected, even though
explicit equations describing the behavior of a linear
AGC oscillator have only recently become avail-
able [15].

Whereas the power spectral density of the oscillator
signal is, of course, a very useful piece of information,
the derivations of the expressions for it do not contain
enough parameters to provide a clear picture of what the
oscillator signal is really like, and just why real oscil-
lators do not behave as they are supposed to according
to these theories. When investigating the performance
of systems fed by a signal from a noise-perturbed oscil-
lator, instead of by a pure sinusoid, it has been necessary
[16] to invent working models for this signal, making
numerous and varied ad hoc assumptions in the process.
Also, only a limited amount of useful guidance for the
development of improved devices could be extracted
from the analytic investigations of the oscillator itself.

To extend the results of the earlier work, an oscillator
model was chosen for the present analysis which closely
resembles an actual quartz crystal oscillator. The several
noise sources in the circuit are assumed at first to gener-
ate impulses of random strength at randomly spaced
intervals, and the effects of white noise on the oscillator
signal are obtained by appropriate summation over the
disturbances caused by the individual impulses. The re-
sult is an explicit expression for the output signal from
the noise perturbed oscillator. It reveals that, regardless
of their location in the circuit, the effects of all noise
sources are essentially equivalent. However, the source
which appears directly across the output of the oscillator
also contributes an additive white noise component to
the output signal, which plays a very significance role in
high Q oscillators.

Although the statistical properties of this signal are
computed after the series of impulses are replaced in
Section III-A by continuous random functions, the re-
sponse of the oscillator to a single noise impulse is found
to be a very powerful tool, peculiarly well suited for the
investigation of heretofore unexplored areas of oscillator
behavior. Only those aspects which pertain to noise
effects are discussed in detail.

The key to the advances reported here is an appar-
Reprinted from Proc. of IEEE, vol. 54, pp. 179-198, February 1966.

160



ently novel technique for the solution of the perturba-
tion equation. It is developed in the Appendix. Unlike
the earlier techniques, it fully recognizes the instantane-
ous character of the oscillator nonlinearity, and does not
employ the smoothing concept. It also provides a clear
appreciation of the significance of the approximations
which are made to arrive at reasonably compact
expressions.

The major consequence of the presence of instantane-
ous nonlinearities in the circuit is that they cause the
oscillator to act simultaneously like a linear AGC oscil-
lator and like a passive tuned circuit whose effective
quality factor is inversely proportional to the nonlinear-
ity parameter, with each aspect accorded one half the
total perturbing excitation. While, with white noise ex-
citation, the former aspect is responsible for the familiar
random walk phenomenon in the oscillator phase, the
latter aspect contributes with each impulse a phase dis-
turbance that decays slowly to zero, usually with a very
long time constant.

In regards to white noise excitation of oscillators with
time invariant circuit parameters, the existence of the
tuned circuit aspect is perhaps of limited significance for
practical applications. This is so primarily because the
noise effects from within the oscillator loop are in many
cases less important than the additive white noise from
the source across the oscillator output. However, the
virtual tuned circuit is also excited by sudden changes
in the circuit parameters of the oscillator; and it is quite
likely that, so far, the behavior of the signal phase in
oscillators with time variable circuit elements has
largely defied theoretical description, just because the
slow decay of this excitation has not been reckoned
with. It is strongly suspected that future work in this
area will be considerably more successful if the presence
of the virtual tuned circuit is admitted.

The impetus to the work reported here was provided
by the need to determine in detail the effects of noise in
lumped parameter oscillators, particularly crystal oscil-
lators, without resort to the many intuitive concepts
which are often employed. The results, however, are
applicable to all major classes of oscillators, and this
includes masers and lasers.

While oscillators of this latter type are governed by
the laws of quantum mechanics and electrodynamics,
those laws which are of consequence here can quite
generally be recast in classical form [l7],and the de-
scription of the device in terms of a van der Pol oscil-
lator becomes possible. In fact, Lamb's equations
[18] that pertain to lasers in single mode operation are
essentially the equations for a linear AGC oscillator.
The analysis there is concerned primarily with the
steady state and the question of whether or not the
nonlinearity is instantaneous—that is, whether or not
the tuned circuit aspect exists in lasers, too—does not
arise. This question could conceivably be quite import-
ant in explaining the role of frequency pulling and en-
trainment phenomena in multimode oscillators during

build-up and transient phases of operation.1 Evidently,
it cannot yet be answered with certainty.

I. THE BASIC DIFFERENTIAL EQUATIONS

An oscillator model which closely resembles a quartz
crystal oscillator and yet is still manageable analytically
is shown in Fig. 1. All elements of the feedback network
are considered constant unless specifically stated other-
wise. The active device in the oscillator is assumed to
have infinitely high input and output impedances, and
to generate a current iu which is a nonlinear function of
the output voltage of the feedback network:

**!=/(«.)• (1)

The current generator i8 and the voltage generators vit

vit and v3 inject extraneous signals into the oscillator
whose effects are to be evaluated.

kV'«

V3 R3
 C3 L

-O—J*-)\-~
"3

./"VVY

o

-o«fl
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L-L.+L

3'i-Vi * i
l , - f ( e g )

Fig. 1. Oscillator Model. The feedback network is fed from an ideal
current generator whose strength i\ is a nonlinear function of the
output voltage eg. The generators iAt vu vi% and v* are assumed to
be white noise sources. The Rz, L^ & branch approximates, by
proper choice of the parameter values, the action of a quartz
crystal unit.

The differential equation describing the form and be-
havior of the output voltage eg is best derived by start-
ing with the equation

Z X Z 2

zt + z2 + z3
Zl + Z3

(*i + Q + — z2
Zi + Z2 + Z3

(vi + vi)

+ Zx + Z2 + Z3
02, (2)

which follows readily from Fig. 1. Considering the Zy as
operational impedances [19]

Zx = pLh Z2 = l/pC2, Z3 - R* + pU + 1/pCs

and replacing, after some rearrangements the differ-
entiation operator p by d/dl, one finds with (1)

L^ + IcTVTT de. )di +mr ~ m {)

1 Multimode laser oscillators can be represented, equivalently as
shown by Lamb, by an equal number of van der Pol oscillators,
weakly coupled to one another.
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whereby

L

and

1 1 1 1 1

C C*i Cz LC L1C2

L\ dis C
F(0 = - — — + «o2 — (»i + »i)

LC2 dt C2

+
/rf2 i?3 d C \

V*2 L dl C, )
(5)

Whereas the circuit in Fig. 1 contains four reactive
components compared to the two customarily assumed
in noise analyses of oscillators, it is important to realize
that the two additional components do not cause a
qualitatively more complicated behavior of the oscil-
lator. The basic differential equation (3) is only of
second order, and its essential features are not at all
altered when these components are eliminated from the
circuit. The ratios L\/L and C/C2 revert to unity for a
simple LC oscillator in which L3 = 0 and C3—>°°. They
carry the information required to describe the effects of
the simultaneous presence of a high Q and a low Q ele-
ment in the oscillator, without adding to the labor in the
analysis. This information is useful when dealing with
quartz crystal oscillators or with masers and lasers.

For simplicity, and to make the general applicability
of the results more apparent, the following symbols will
be used:

coiL
Qr

1
r—7 _____ •_ - . ^

O)\Ll 1
J

y.v

£ •«(-&)• (48)

QT is the effective quality factor of the entire passive
feedback network; QN is its quality factor when the high
Q element is replaced by its series resistance at o)\.
Qf the ratio of these two, shall be called the reduced
quality factor of the oscillator. Later on, an additional
symbol Qc, will be introduced for the quality factor of
the filter following the oscillator. No Q symbol is used
for the virtual tuned circuits representing certain per-
formance aspects of the disturbed oscillator; their
effective relative bandwidths will be characterized by y,
to be defined in (22).

Of major concern in this paper are the properties of
the solutions of (3) when the extraneous signals are
random noise. Stable, nearly harmonic solutions are
assumed to exist; and we restrict ourselves to the
stationary-state properties of such solutions.

If the noise sources in Fig. 1 are quiescent, (3) be-
comes completely deterministic, and it is well known
that, with F(t)~0, there are steady-state solutions
which are oscillatory in nature, provided certain condi-
tions are met [20], [21]. The presence of the noise
sources is not essential for these solutions to exist; rather,

with increasing intensity, the noise causes progressively
more severe random disturbances of the deterministic
solutions.

The solutions of (3) with F(t) =0are perfectly periodic
in the steady state and can be represented in the form

eoo = 2 ^ * 0 cos (icoit + <pi). (6)

For a harmonic oscillator capable of steady-state oscil-
lations, the Aio are not all zero and a>i is in the neighbor-
hood of coo defined in (4). With all transients in the
infinite past, the AiQ and tpi are constants whose values,
as well as the value of coi, can be determined at least in
principle to any desired accuracy.2

The noise sources in Fig. 1 introduce transients into
the system and the steady state cannot be maintained
exactly; the various harmonics of the solution of (3)
never have sharply defined amplitudes and phases.

Consequently we write e0 in the form

«. = Z (4<o + fl,-(0) cos (iuxt + <pi + foil)), (7)
»•

where a,-(0 and 0,(0 are stochastic variables represent-
ing the amplitude and phase disturbances caused by the
noise. Equation (7), in turn, can always be written as

e0 = e^Q + u(t) (8)

where eoo is the solution (6) of the unperturbed oscillator
and u(t) represents all disturbances and only the
disturbances.

When (8) is substituted into (3) and the fact that effo
satisfies the unperturbed equation identically is con-
sidered, one finds an equation for u(t) alone. If the dis-
turbances are small, so that terms of higher order in
u(t) are negligible, the following perturbation equation,
linear in u(t) is obtained:

T i l Ll (RzC2 dfM \ d

L dt2 LC2 \ Li deoO ) dt

( Li

deo0 /)

The time variable coefficients of (9) depend upon eQo,
the steady-state solution of the undisturbed oscillator,
and hence are known.

Assuming higher order terms in u{t) to be negligible
already implies that #*•(/) and <f>%{t) in (7) are small; and
u(t) can be written to within the same degree of approxi-
mation required to obtain (9) as

2 When (6) is substituted into (3) with Fit) =0 and the principle
of the harmonic balance [22] is applied, an infinite set of nonlinear
algebraic equations results which can be solved by an iteration pro-
cedure. The effects oi harmonic content on oscillator frequency have
been studied extensively by Groszkowski [23].
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The fact that this approximation is justified, in particu-
lar that

0.(0 | « 1, (11)

remains to be verified once u(t) is computed for any
given situation.

Evidently, a basic problem which must be dealt with
herein is to determine the solution u(t) of (9) when F(t)
depends upon the white noise sources in the oscillator
according to (5).

The most realistic representations of the noise current
ia and the noise voltages Vi, v*, and v$ in F(t) are series
of delta functions of variable strength and occurrence.
These are also the representations for which the solution
of (9) is readily found and conveniently interpreted.

We therefore assume

k

iv = Z arkKt ~ tk) (r - 1, 2, 3). (12)
k

Once ego is determined and (9) has been solved for a
single impulse from each one of the noise sources in the
circuit, the stationary-state solution of (3) is obtained
with (8) according to the linear superposition principle.
We confine ourselves to an approximate solution.

II. THE DISTURBANCES OF THE
FUNDAMENTAL COMPONENT

A. The Approximations

When the nonlinear terms in the current voltage
characteristic (1) of the active device are small and/or
the feedback network in Fig. 1 is highly selective, the
second and higher harmonics in (6) are much smaller
than the fundamental and can be considered negligible
to a first approximation. Accordingly, (6) becomes

^0 = A i cos (o)it + v). (13)

A first approximation to the disturbances of the funda-
mental frequency component of eg can now be evaluated
from (9) by letting u(f) in (8) become

u(t) = ax(i) cos fat + <p) + yi(l) sin fat + <p) (14)

where

yi(0 = - Atlnit). (15)

Better approximations to x\ and yx can still be deter-
mined from the linear perturbation equation (9) if the
noise sources are weak. Successively higher harmonics
must be included in eg0 and u(t)9 whereby the first sig-
nificant improvement should not be expected until at
least the third harmonic is considered.3 When any one

* When dealing with crystal oscillators we also note that crystal
units generally have an overtone response close to the third electrical
harmonic of the oscillator frequency. Under high-drive conditions,
the two frequencies can coincide. The presence of this crystal re-
sponse in the feedback network then becomes very important and
cannot be disregarded.

or all of the extraneous sources i8, vu v2, and vz are strong,
higher order terms in u(t) are no longer negligible, even
if u(t) is approximated by (14) and eg0 by (13); (9) is
then no longer adequate, and a nonlinear perturbation
analysis becomes necessary. However, this latter case
can be of significance in practical oscillators only when
the perturbing forces are signals other than thermal or
shot noise.

The two approximations of major significance for the
following developments are, therefore: First, the noise
sources in the oscillator are assumed weak so that the
terms of higher order in the disturbances u(t) are neg-
ligible. This assumption led in Section I to the linear
differential equation (9) for u(t). Second, the harmonic
content of the output signal from the undisturbed oscil-
lator is assumed to be very low. This assumption per-
mits approximating eoo by (13) and u(t) by (14). To-
gether the two assumptions imply that all amplitude
disturbances of the fundamental component of the sig-
nal are represented by Xi(t) in (14), all phase distur-
bances by —yi/Ai.

To assure that the second approximation is reason-
able, it will be assumed later that the active device in
the oscillator is only weakly nonlinear and/or that the
oscillator is operated at low signal levels. This assump-
tion in turn entails that the quantity y, to be defined
later, is always very small. As shown in the Appendix,
other approximations, which go beyond those stated
here, are not required.

B. The Unperturbed Signal

Without imposing undue further restrictions, the cur-
rent voltage characteristic (1) of the active device is
assumed to be

h = f(eg) = gmoeg - 0ee\ (16)

For (13) to be a reasonable approximation to (6),
/3^2«gmo is desirable, especially when the transfer im-
pedance of the feedback network at the harmonic fre-
quencies is not extremely low.

When (16) and (13) are inserted into (3) with F(t) = 0,
the values of Ai and o?i can be determined to

4 / C2RA

03\ = Wo-

The quantity

gm = gmO — iPAi2

(17)

(18)

(19)

will be recognized as the effective transconductance [24]
of the active device for signals of amplitude A\. With gm0
and )3 both positive, (19) indicates that gm decreases
monotonically with increasing A\y as shown in Fig. 2.
Because (17) requires [25]

C2R.Z
gn ( ___ wiC2\

= ~Q7)'
(20)
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Fig. 2. Typical behavior of the effective transconductance gm as a
function of signal level. Dots are experimental points obtained on
a 2N2808 transistor, rated at f'« = 2 mA.

the amplitude Ai of the steady-state oscillations can be
adjusted by proper choice of the circuit parameters.

In many cases gmo and /3 can be determined from data
such as plotted in Fig. 2, and the values obtained are the
proper ones for use in (20). A more detailed examination
of the contributing factors shows, however, that a /3*<j3
should be used in the following Sections pertaining to
u(/), whereby /?* is the coefficient of the third-order term
when the instantaneous function/^) in (1) is developed
into a Taylor series. The coefficients of the Taylor series
depend upon the bias conditions of the active device and
the bias conditions change, almost invariably, with
amplitude. Therefore, the gm vs. amplitude curves, when
measured under static conditions, include implicitly the
effects of the even-order terms in/(<?„), particularly the
second-order term. The difference between /3 and /3* is
not very significant except in oscillators with artificial
level control such as AGC or lamp bridge oscillators.
In AGC oscillators the change in the bias conditions is
artificially magnified and utilized [25] to adjust gm0 and
j8 such that (20) is satisfied for a very small value of Ax.
In a lamp bridge oscillator [3] the value of R* or its
equivalent, depending upon the actual circuit, varies
with signal amplitude, while gmn and 0 remain nominally
unchanged. All amplitude dependent changes in bias
conditions, or in R%, require a finite time to become
effective, governed by an RC time constant, while the
first effects of a noise impulse occur instantaneously.

Therefore, for the purposes of the present analysis,
the function (16) is always understood to represent the
instantaneous relationship between i\ and eQ. Any de-
layed action will primarily affect the envelope function
of e0 and can be accounted for approximately by im-
posing suitable constraints on the behavior of this
function after the instantaneous behavior has been
established.

C The Impulse Response

The general equation (9) for the perturbation u(t)
assumes, with (13), (16), and (17), the form

il + wi7(l + 2 cos 2{<jtit + ip)) u

+ coi2 (1 - 4y sin 2(«i* + tp))u = F(t) (21)

whereby the parameter y is conveniently defined by
either of the two equivalent expressions

1 1

W1C2

3

QN 4

£m

gmQlf

(22a)

(22b)

It will become apparent later on that 2/a>i7 is the time
constant which controls the decay of disturbances in the
oscillator. This time constant is appreciably larger than
2/o)ijT the time constant of the passive feedback net-
work, when the assumptions made to arrive at (21) are
met: since 0egO

2 in (16) should be much smaller than gm0,
it follows approximately from (22a) with (19) and (20)
that

7 =
1 1 3 1 1

Q wiC2 4 Q C01C2

1 gm

Q W1C2

o)iL
(i.e., 7«Yr). (23)

Equation (21) is a Mathieu equation [26]. Because
it is linear, the response of the system to white noise
from all sources is found by superposition of the indi-
vidual impulse responses. The method used here to find
these impulse responses is a cornerstone of this paper
and is detailed in the Appendix.

Following the procedure used there it can be shown
that the response of the system to an impulse from any
one of the noise generators in Fig. 1 is, aside from dif-
ferences in magnitude and phase, the same for each
generator, with only one exception: the impulse from v2

(i.e., from the source across the output) generates a
system response like that caused by the other sources,
and it also appears directly in n{t) as an additive term.
The existence and form of this additive term follows
from the equations and requires no further assumptions.

For a single impulse at time tk from each generator,
i.e., when fli = a i*5 (*-**), 02 = a2*$(*-fc)» vz = azkh{t - tk)
and ia = aakS(t — tk)y one finds as the solution of (21),
except for terms with 7 or y2 as a factor,

uk(t) = aker*ny<t~t*> cos (corf + <p) — Airjk sin (o^t + </?)

+ nk(t) + v2 (24)

whereby

«*(/) = [Mk sin«i(/-/*) + iV* cos «i(/-/*)]*-<«"'*>«-<*> (24a)

and the constants ak and rjk are

ak = — Mk sin (ontk + <p) + Nk cos (mh + <P) (24b)

Mk Nk
Vk — c o s (Wlk + ^) s i n ( ^ + 3̂).

Ay Ai

The parameters Mk and Nk define the effective strength
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of the impulses as weighted by the feedback network,
and, for the circuit in Fig. 1, they are

Mk

Nk

(flU + 03* ~* #2*)

60i /ask

• ) •

(24c)
2QQN\gm

The significance of the solution (24) of the Mathieu
equation (21) can perhaps best be appreciated when it
is compared to the corresponding solution of the
equation

up + uiyTUp + o>i2up = F(/)f (25)

which describes the output of the passive feedback net-
work in Fig. 1. The solution of (25)

uPh = 2[Mk sin u)i(t - tk) + Nk cos wi(/ - /*)]

which is easily found by standard techniques, can be
written as

«P*(0 = a*e-<wl /̂2>«-<*> cos (wi/ + ?)

- AxtiteriWM*-**) sin {out + <p) + npk + v2, (26a)

with

nPk = \(uPh - v2). (26b)

ak t}k, Mk and Nk are again defined by (24b) and (24c).
Evidently, the method developed in the Appendix

separates (21) into two parts, with each accorded one
half the strength of the original excitation. One de-
scribes the behavior due to the low-pass equivalent of
the system (around zero frequency), the other due
to the band-pass equivalent (around 2«). The equations
are solved in the transformed form and the results pro-
jected back again into the range around oh. In (24)
nk(t) is the response of the band-pass part. It differs
from nPk(t) in (26a) only by the value of the time con-
stant. Hence, with regard to this part of the solution,
the disturbed oscillator behaves like a passive tuned
circuit with quality factor I/7.

The first two terms in (24) and (26a) represent the
responses of the respective low-pass parts; here, essential
differences are noted, which are brought about by the
parametric pumping action apparent in (21). The low-
pass part of the solution of (21) is that of a lossless tuned
circuit as far as the component in-phase4 with the pump
is concerned; but the out-of-phase component is the
damped response of a tuned circuit with quality factor
I/27. In the solution of (25) the low-pass part is, of
course, identical with the band-pass part.

The practice of evaluating only the low-pass response
and doubling the result, correct for the passive circuit,
is seen to be inapplicable in general for the system de-
scribed by (21). Its applicability to other problems—

4 The pump phase is taken here to be that of sin (w, t-\-<p).

even linear problems, since (21) is linear—must evi-
dently be carefully evaluated in every case.

The representation of the impulse response of (21)
thus requires two virtual tuned circuits. To within the
approximations used here, both are resonant at «i. Each
is excited by one half the strength of the original im-
pulse and their outputs are added linearly to the almost
full strength impulse from the source across the output
terminals of the network.5 The one resulting from the
low-pass equivalent shall be called the UL circuit," that
from the band-pass equivalent the UB circuit." The
"L circuit" performs independent operations on the
two orthogonal components of its response, with the
pump signal providing the reference. These can be
represented by different effective quality factors and
the composite shown in Fig. 3 results. The applicable
Q values are indicated in the individual circuits. The
circles denote the effective noise voltage generators. The
distribution of the half-strength impulse to the genera-
tors in the || and ± circuits depends on the time tk at
which the impulse occurs in relation to the phase of the
pump at t~tk. This follows from (24). Because the pump
is out of phase with the undisturbed oscillator signal Ax

cos (wit+tp), the outputs of the || circuits are the phase
disturbances (<£), those of the JL circuits the amplitude
disturbances (a).

B-CIRCUIT L-CIRCUIT

Fig. 3. Virtual circuits used to represent the components of the
impulse response of the perturbed oscillator.

The L || circuit is lossless. Energy supplied to it by its
share of the impulse strength is stored indefinitely; its
output is the undamped sinusoid — A\rjk sin {(*>\t-\-<p) in
(24). The output of the LV 1. circuit is the first term in
(24), and the J3|j and B JL circuits deliver, respec-
tively, the two orthogonal components

-Airtk exp [-(a>i7/2)(/ - /*)] sin (coi/ + <p)

6 Because y is assumed very small, only a small portion of the
energy in the impulse is accepted by the virtual circuits. Terms with
7 or -y2 as factor were neglected in (24)
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and

ak exp [-faiy/2)(t - /*)] sin faxt + <p)

of nk(t).
The structure of the disturbances u(t) of the oscillator

signal, due to a single impulse from each one of the noise
sources, is thus established. It is most interesting that
the properties of the particular oscillator model chosen
in Fig. 1 enter (24) only by way of the parameters Mk

and iVfc. If the appropriate values are used for these
parameters, this formula and, hence, the scheme in
Fig. 3 evidently applies to any arbitrary oscillator.
Those whose frequency depends strongly on funda-
mental amplitude already in the undisturbed case [14]
will require additional terms.

D. The Perturbed Oscillator Signal

The approximation (13) requires the undisturbed os-
cillators to be represented as a single lossless tuned cir-
cuit with energy stored in it. According to (8) and the
developments of the preceding Section, the perturbed
oscillator is described by the virtual circuits in Fig. 3 if
the L\\ circuit has been imparted a finite amount of
energy initially and if the pump signal is orthogonal to
the oscillations represented by this energy (i.e., e0o) at
all times.

The undamped oscillations in the L\\ circuit caused by
the noise impulses at t~h are out of phase with eoo;
added to it, they change its phase permanently. Since
(8) with (10) is an approximation of (7), the response
functions of the L\\ circuit represent phase disturbances
only, and amplitude effects of any order do not occur in
this circuit. AH amplitude disturbances are represented
by the outputs of the L 1. and the B _L circuit, with the
5|| circuit contributing another phase disturbance
which, significantly, decays with time.

It is important to realize that the energy supplied to
the Z|| circuit by the impulses at /* is necessary to effect
the permanent phase changes in ego; although it is not
"used up" thereby and remains stored in the circuit, it
cannot be regained if no phase reference is available, and
is nevertheless lost irreversibly.

Analytically, the oscillator output follows from (8),
(13), and (24) as

eg = [Ax + akr°W-tk)] cos faxt + rjk + <p)

+ nk(t) + v2 (27)

or alternatively, when nk(t) is decomposed into compo-
nents parallel and normal to eg, as

eg = [At + xk(t)] cos fat + rjk + MO + <P) + it (28)

whereby

xk(t) = ak(er»iv<*-t*> + e-<«iT/*> (*-«*>) (28a)

Vk + MO = Vk(l + *-<«"/««-«*>). (28b)

These two forms for eg illustrate different performance
aspects of the disturbed oscillator. Equation (28) con-

forms closely to (7) and will generally be found more
convenient for further work. Equation (27) emphasizes
the existence of the "B circuit." It shows that the oscil-
lator, in addition to generating egQ} disturbed by the out-
put components of the "L circuit" [i.e., by the first two
terms in (24)] also acts simultaneously like a passive
tuned circuit of relative bandwidth Aco/o) = y.

The last term in (27), V2~a2kd(t — tk) is contributed to
the signal by the source across the output. This term is
present also as seen from (26), in the output from the
passive network alone and is, thus, not peculiar to the
oscillator. It still appears as an additive term in (28).
Since a 5-function is infinitely large by definition, what
might be its orthogonal component in reference to egQ

can of course not simply be taken into the argument of
the cosine function. Until the oscillator signal has been
acted upon by a filter in the output amplifier, v2 must
be carried as an additive term.

The solution (27) or (28) applies to oscillators whose
amplitude is limited by the instantaneous nonlinearities
in the circuit and whose circuit parameters are inde-
pendent of time. The effects of a delayed action mecha-
nism for amplitude control (such as changes in gm0 and/or
the circuit losses) on this solution are complicated in the
general case. An approximation is obtained rather sim-
ply, however, when the time constant T of the AGC
loop and the time ra required for the loop to correct an
amplitude disturbance obey the conditions:

2*/ux « T « r« « \/uxy.

Whereas the effects of the impulses at tk on ea are in-
stantaneous, the AGC mechanism does not affect it im-
mediately. The form of e0 is thus established first and
can then be assumed modified by operations on the am-
plitude disturbances only (i.e., the concomitant effects
on the signal phase are neglected). Hence, an approxi-
mation for the output of a nonlinear AGC oscillator is
given by (28) if (28a) is replaced by

ak(t) = 2a*e-«-'*>/'«. (28c)

The representation by virtual circuits results from
Fig. 3 if the indicated Q values in both the L L and the
B JL circuits are replaced by u)Xra. When ra goes be-
yond the upper limit stated above, the AGC mechanism
becomes ineffectual: when T is comparable to or larger
than Taf it becomes a disturbance. For T—»0 the action
becomes instantaneous. In the latter case the output
signal is again given by (28) with (28a) and (28b), if the
proper value for the nonlinearity is used in 7.6

E. The Response to White Noise

The response of the oscillator to white noise is ob-
tained by linear superposition of the effects of all the
individual impulses in (12). The undisturbed signal eao,
used in deriving the response to the impulse at time /*,

8 Further details of AGC action in linear oscillators will be dis-
cussed in Section III-C.
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was assumed in the Appendix to include all permanent
effects of the impulses prior to /*. Hence, the phase
angles in (13) and, consequently, in (27) and (28) has
the form

(29)

and need not be carried further. The oscillator signal as
disturbed by the action of the white noise source in the
circuit becomes

eg = (Ax + *(/)) cos fat + T;(/) + »(/)) + vt (30)

or alternatively, for reasonable values of y

eg = Ax cos fat + ij(t)) + x{t) cos fat + rj{t))

- i4itf(/)sin(«i/ + ij(0) + **
= EC + EA + E^ + EX (31)

with

*(/) - £**(<), «w - £**. *«) - 5>(0 (32)
k k k

whereby Xk(t), *?*, and &k(t) are given by (28a) and (28b)
together with (24b) and (24c). The summations in
(32) extend over all values of k for which /*</. Ac-
cording to the developments of the preceding Section,
Ec-Ax cos fat + r)(t)) in (31) is the output of the L\\
circuit in Fig. 3, if the latter has initially energy stored
in it. Ec is thus to be considered the carrier signal. Its
phase, and hence the ph^se of the pump signal in (21)
execute a random walk due to the cumulative effect of
the permanent shifts caused by the individual impulses.
EA~x(t) cos(o)y+rj(t)) is the combined output of the
L JL and the B X circuit and represents the amplitude
disturbances of the carrier, whereas

E* = - .41#(0 sin fat + *K0)

are the phase disturbances due to the JB|| circuit. Both
EA and Ed consist of the superposition of a large number
of exponentially decaying components. £JV==V2 is the
white noise from the source across the oscillator output.

The process indicated by (32) has considerable merit
conceptually. The individual impulses in (12) are caused
by the elemental phenomena involved in the transport
of electrical charges and, though exceedingly numerous,
are extremely weak. The addition of the effects of any
one of these impulses to x{t)% rj(t), and #(0 in (30) or
(31) (and they are to be added one by one) changes
these quantities by only infinitesimal amounts. There
can never be any reasonable doubt that the linear per-
turbation equation (21) applies and that the out-of-
phase components of «*(/) can be taken into the argu-
ment of the sinusoid. It will frequently be found useful
to retrace, at least mentally, the steps going from single
impulses in the oscillator to the summation of their
effects.

Of the various assumptions which had to be made in
deriving the expressions (30) or (31) as an approxi-

mation to the solution of (3), the one regarding the
absence of harmonic components, particularly of the
third harmonic, in the undisturbed signal is considered
to be the most serious. In general it must be expected
to limit the validity of the results to oscillators operating
at low signal levels. Nevertheless, the expressions do
give a detailed description of the effects of noise on the
oscillator signal, which becomes increasingly more
accurate as the harmonic content is reduced.

III. THE STATISTICAL PROPERTIES OF THE SIGNAL

A. The Continuous Noise Record

The statistical properties of ea are more readily
evaluated when the sums in (12) are replaced by con-
tinuous functions. Without discussion of the essentially
philosophical questions involved thereby [27], it will
be assumed from here on that the output of the noise
sources in Fig. 1 is equally well described by

is = 5.(0

iV - Br(t) (r = 1, 2, 3). (33)

The Bj(t) can be visualized as the curves that result
when a series of points At apart are connected by a
continuous line, with each point representing the inte-
gral over all noise impulses occurring during the re-
spective time interval At.

While the detailed course of any Bj(t) is basically un-
predictable, these functions are uniquely defined if it is
specified that they are independent stationary Gaussian
random variables, and if their mean and variance is
given. Forcing functions of the type described have been
dealt with extensively in the theory of Brownian Motion
and their Gaussian property is well established [28]. It
is also known that they are ergodic, have zero mean, and
are delta correlated; hence,

(Bj{h)Bs(h)) = Bj*5(ti ~ k)

(Bi(h)Bj(h)) = 0 i * j . (34)

The brackets here and in the following denote en-
semble averages which, as generally understood, are the
arithmetic mean of the quantities within the brackets,
each formed with values from a particular noise record,
averaged over a large number N of like records, with
N->*>. The fact that the Bj(t) are delta correlated
[expressed by the second relation in (34)] means that
the value of Bi(ti)t for example, is completely inde-
pendent of the value of Bi(t) a moment before (i.e.,
at J = /i—A0, and it is independent of the values of JB2,
Bz, and B8 at the same or any other moment, as ex-
pressed by the third relation in (34).

With Vj now given by (33) instead of by (12), the djk
in (24c) are to be replaced by

ajk = Bj(t) dt

and the sums in (32) become integrals:

(35)
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x(t) = f «(^)[e-«'vu-f)4.e-(^/2)('-{)]^

HO = f »;(f)e~('11T/2)((~f)^- (36)

a(0 and i?(̂ ) follow from (24b) with (24c), (29) and
(35) to

«(£) = - M(0 sin (Wl? + rj(O)

+ N(0 cos M + *?(£))

*({) = -
i l l

COS (coif + ij(0)

- ^ sin (Wl{ + $(f)) (36a)

with

Wl

Jf (0 = ^ [5i(f) + 5,(|) - £,«)]

•5.(f)
iVft)

20

2QQN gr*
+ Bt(&}• (36b)

The difference in the definitions of M(£), N(£), a(f),
and ?;(£) when compared to that of Jlfi, iV*, • • • in
(24) should cause no confusion: M(!;)di;<->Mk. When
#,-(£)= a#8(£ — /jfe) is substituted into the above expres-
sions, they revert to (28a) and (28b), respectively.

The properties of JV/(£) and NQt) follow directly from
those of the £>(£):

(Jlftt)) = <;V(£)> = 0

<AT({i)Jlf ftt)> = M25(?i - it)

(N(ii)N(b)) - iV^fti - «,)

with

M2 - f — J (^!2 + ^22 + Bf)

\2QQNJ W I

Of special importance in the later developments is the
quantity K2 = (M* + N*)/<tii*

which can be regarded as the weighted noise intensity
of all sources in the oscillator combined.

The means oi a(£) and rj(^) are obviously zero:

<««)> = MO) = 0. (38a)

If all osci/lators in the ensemble are assumed to have
already been operating sufficiently long for their relative
phase angles to be randomly distributed at time £ = 0,

i}(£) with respect to the ensemble is a random number
between zero and 2?r at any value of £ in 0<f </. Hence,
ensemble averages can be employed to compute the
correlation functions of a(£) and r/(£). Because

(cos («(«) + rj(v))) = (sin (rj{u) + *(*))> = 0,

we find
(«(«)«(»)) = (G>I2K2/2)8(U - v)

<*(«)*(»)> = (coi2^2/2)5(^ - r)

(38b)

The relations (38a) and (38b), together with the knowl-
edge that a(£) and rj(^) are Gaussian random processes,
completely characterize these functions.

The explicit expressions for the fundamental fre-
quency component of the output from a noise perturbed
oscillator have thus been derived. The more general
form is given by (30), with (32), when the noise is
thought of as a series of random impulses, or with (36),
when the noise is represented by continuous random
functions. Whereas the two descriptions of white noise
(12) and (33) are equivalent, the expressions resulting
from the latter are obviously more abstract and do not
provide the same conceptual insight into oscillator
operation afforded by the impulse response functions.
Nevertheless, the expression (30) with (36), (37), (38a),
and (38b) is more compact, and is more easily handled
when computing the statistical properties of the oscil-
lator signal. Because the decomposition of (30) into (31)
is valid in nearly all cases of practical significance, the
latter can be used whenever this is desirable.

B. The Autocorrelation Function of the Signal

The power spectral density Gee(f) will be computed
from the autocorrelation function T<,€(T) of ea according
to the well-known relations [29]

GUI)
/ • 00

v 0

cos cor AT (39)

r«(r) = <«,(/)«,(/ - r)). (40)

The most convenient representation of the oscillator
signal for the present purpose is given by (31), together
with (36). Since all cross correlations between the terms
there are zero, the autocorrelation function simply is

Tee(r) - Tcc(r) + TAA(r) + rw(r) + IW(r). (41)

The individual terms in (41) are found with (38b) by
established techniques [30], [5].

Tcc(r)
A !2

e~{»\2K2HAx2)T C Q S W l T

L i l i t

coiK2 / 7 5 \
W 7 \24 12 /

coxK2

T#0(T) = —— e-
(u"/2)T cos coir

IW(r)
47

£2
25(r). (42)
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The relations for TAA and Tdd are approximations which
hold whenever

7 » 2w1K
2/A !2. (43)

When AGC is used, TAA(T) in (42) is to be replaced by

a>!2K2

r^(T)«-^-T.*-*/r. (44)

where ra is, according to (28c), the time required by the
AGC mechanism to correct an amplitude disturbance.
All other terms in (42) remain the same.

The magnitude of 2coiK2/A i2 in (43) is in the order
of 10~21, with values of a>i, K2, and Ai representative of
a typical precision crystal oscillator, while the actual
values of y encountered in such devices are in the order of
10~8. [See (47) in Section III-D.] The discrepancy is not
always this large, but it is doubtful that the instantane-
ous nonlinearities are ever small enough to violate (43),
even in laser oscillators [31]. Hence, in nearly all cases
of practical significance, the autocorrelation function of
the output signal is properly given by (41) with (42)
and, where applicable, (44). It is this case that will be
considered when the power spectral density function of
the signal is computed in Section III-D.

The average power in the individual output compo-
nents is obtained from the relations (42) with r = 0 [32].
That due to the B circuit in Fig. 3 [T^(r) + lTAA(r) for
AGC oscillators] is seen to be substantially smaller than
that in the carrier for most practical oscillators. That is,
when (43) holds, the tuned circuit aspect contributes
only a very small fraction of the total output power of
the oscillator. The practical significance of the B circuit
is rather limited, therefore, when the disturbances due
to thermal and shot noise in an oscillator with time in-
variant circuit parameters are considered. It is held,
however, that its existence is vitally important for a
proper explanation of the behavior of the signal phase
in oscillators with time variable circuit elements, an
area which is left for further research.

C The Linear Oscillator

To aid the reader in relating earlier concepts to those
developed here, the properties of signals from oscillators
with linear active elements will now be discussed. Since
the virtual circuits in Fig. 3 describe the oscillator out-
put, these will be used thereby.

As 7 decreases, the quality factors of the B circuit and
of the L _L circuit increase. The responses to the indi-
vidual impulses require a longer time to decay, and
their cumulative effects become larger. Eventually the
phase disturbances due to the B\\ circuit become too
large to be considered as additive terms in the oscillator
output (which in effect means to neglect their influence
on the phase of the pump signal), and it becomes neces-
sary to include them immediately into the phase of eg;
that is, the transition from (30) to (31) is no longer

applicable. With 7—>0, all circuits in Fig. 3 become loss-
less and the oscillator output no longer shows a per-
formance aspect identifiable with a tuned circuit of
finite Q. In this transition the B circuit becomes identical
with the L circuit and the two can be fused into one,
which shall be called the LB circuit. Now the amplitude
disturbances, as well as the phase disturbances, are un-
damped sinusoids; and the amplitude of the output
signal also carries out a random walk, with A\ as its
mean value.

Since EA in (30) is, with 7 = 0 in (36), Eji = 2/oea($)d£
and ^ ( / )=T?(0I *he autocorrelation function of the out-
put signal is now

Fee + VAA + TNN

whereby

2
Tec = ~ er<«i2*2Mi2>' cos coir

TAA - m2K2(t - r)e-<»i2*2/^2>* cos »,T • (45)

This is the situation obtained in a linear oscillator
without an AGC mechanism (i.e., with T—>oo, where 7'
is the time constant of the AGC loop), provided, of
course gm = gmo satisfies the condition (20) for steady-
state oscillations precisely.

When gmo is larger than is required by this condition,
the oscillations of the undisturbed oscillator build up;
when it is smaller they decay, as is well known. The un-
disturbed oscillator can thus be represented as a tuned
circuit, to be called the "LB circuit, whose quality factor
is l /7 e , whereby ye is defined by (22b) if the difference
between the quantities on the rhs and lhs of (20) is
used in place of gmo-gm.

Amplitude noise interferes with the orderly build-up
or decay of the oscillations, originally set up in the
LB circuit at / = 0, and if its average, obtained by inte-
grating over a time T («2/wi7 e) , has the proper sign
and magnitude, it can, in fact, hold the amplitude at a
constant level. It is the function of a properly designed
AGC mechanism to steer the value of ye so that this
condition does occur continually. In an AGC oscillator,
therefore, ye is a random variable of zero mean (7«) = 0.
The average amplitude noise energy delivered by the
source during T is <ai2K2 T; the initial gain or loss in oscil-
lation energy during this time is (A \*-/2)w\yeT\ since the
two should balance, the root-mean-square value of ye is

V < T 7 ) = 2viK*/Ax*.

It is noted that most of the oscillation energy supplied
at / = 0 has been replaced in the process by noise energy
of the proper phase after 2/o?i7e seconds, with the AGC
mechanism lending or borrowing energy temporarily to
smooth the random variations in the noise energy sup-
ply. The remaining amplitude variations are those oc-
curring during the time interval [t — Tai t], whereby ra
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is the time required by the AGC mechanism to remove
a given amplitude disturbance. Their autocorrelation
function is given by (44).

The time period ra depends inversely on the AGC
loop gain (and directly on the reduced quality factor Q
of the feedback network). When the time constant T of
the loop increases beyond ra, the AGC action gets to be
out of phase with the amplitude variations, and the
slow oscillations in amplitude discussed by Golay [15]
and earlier by Edson [33] will occur. To maintain mini-
mum total disturbances requires, therefore, that the
AGC loop gain be decreased as T increases. This even-
tually will act to limit the range of ye values controlled
by the AGC mechanism and (YC

2)--»0 with T—»«> results.
Hence, with T—> «> the LB circuit becomes lossless and
identical to the LB circuit described above. Oscillations
of stable amplitude, however, are obtained only for
r « r t t « . 4 i2/Wjfi:2. The following discussion of the signal
phase is restricted to these cases.

Assume again the LB circuit supplied at J = 0 with
an amount of energy large when compared to the
noise energy. The oscillations represented by this
energy provide the reference for decomposing the
noise impulse responses of the circuit into amplitude
and phase disturbances and, in particular, for the
AGC mechanism while removing the amplitude noise.
Although the phase disturbances are time dependent
with exp [ — («i7./(2) (/-/*)], it is the shift in the
reference phase accumulating during ra seconds that
determines their effect on the oscillations. Since the
concurrent amplitude variations are eliminated after r«
seconds, time can start anew, but with the basic oscil-
lations at a different phase. In spite of their time de-
pendence, the phase disturbances in a linear AGC oscil-
lator act as though they were undamped sinusoids,
which, added out of phase to a constant amplitude
signal, cause its phase to execute a random walk.7 The
output of an AGC oscillator with a linear active ele-
ment is thus to be represented by the output from a
lossless tuned circuit, which has stored in it the energy
of the basic oscillations and is excited by a noise source
delivering that half of the total noise energy which pro-
duces the out-of-phase response components, and added
to it the output from another tuned circuit of effective
quality factor coira/2 to which the second half of the
noise energy is fed, producing the amplitude distur-
bances. That is to say, the LB circuit is equivalently
represented by the LB circuit discussed above when the
latter is modified to account for the AGC according to
(44). The link from the scheme in Fig. 3 is thus esta-
blished, even if the reverse path is not obvious. The linear
model seems to give no indication that the introduction

7 This of course does not apply to the phase disturbances due to
the B\\ circuit when y is large enough to satisfy (43). The carrier
provides the reference phase in that case, and the phase disturbances
in response to an impulse excitation relax towards it exponentially.

of instantaneous nonlinearities requires the LB circuit
to be split into the L and B circuits shown there.

Approaching the linear oscillator from the standpoint
of a passive noise filter, as was variously done in the
past, leads in a most direct manner to the autocorrelation
function of the oscillator output. Consider the passive
feedback circuit in Fig. 1, replace i?3 by Rz =(yf/yr)R^
without affecting the strength of the noise sources,
assume half the average output power removed by
some appropriate mechanism, and demand that the re-
mainder of the average output power equal A\2/2.
One finds for the only adjustable parameter yf the value
7 / = 2coiJ£2/,4i2; that is, 7 / = V<7?). With it the auto-
correlation function of the output becomes

Tee = TcC + ?AA + TNN

with Tec given in (45) and F ^ by (44) exactly.
Hidden in these assumptions, however, is the full

description of the linear oscillator with AGC as given
above. If the AGC mechanism is visualized as an ampli-
fier following the filter, the amplifier provides the
reference for decomposing the noise responses into
orthogonal components. As this reference is fixed, no
random walk of the output phase will occur. However,
the amplitude of a noise filter output can go to zero
temporarily. To maintain constant amplitude at all
times, therefore, requires the AGC mechanism to be
part of the feedback loop and the oscillator discussed
before results. Also, it is noted that the amplitude noise
is not removed by the AGC mechanism as one might be
led to believe by the above assumptions. It is converted
at the proper rate into the basic oscillation as mentioned
before. The phase noise energy remains stored in the
random phase walk and is irreversibly lost, since no
absolute phase reference is available.

Whereas the passive noise filter is not the proper
physical model for the linear AGC oscillator, it does
lead in the most simple and direct manner to the correct
autocorrelation function and, hence, power spectral
density of the output from these devices. However, it
is of no apparent assistance in dealing with instantane-
ous nonlinearities in the oscillator.

D. The Power Spectral Density of the Signal

Proceeding now to the power spectral density (PSD)
of the signal, one finds Gee(f) from (39) with (41) and
(42) as the sum of the following components:

Gcc(f) -

GAA{J)

G**(J)

1 + (4^!Vcoi^2)2(l - a>M)2

(7/12)(#7Y2) , (5/3)(#772)
• + •

1 + (1/7)2(1 - a>M)2 1 + (2/7)2(l - co/cox)2

tf2/V
1 + (2/7)2(l - u/utf

G™(/) = 4i?2
2. (46)
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As a numerical example let

wiLi = 100 S2 a>i = 2x5 X 106 rad/sec gm0 = 1/20 mho

i?3 = 100 Q Q = 106 /̂  = 10 mho/volt2

= 20 0 ^ i 2 /2 = 4 X 10-5 volt2 Y = 1.2 X 10~8

P 3 - Ui2/2)tf3(coiC2)2 = 10-5 w a t t S j K2 = L 7 5 x 1 0 - « Watts/cycie. (47)

The parameters for the active device are typical for a
2N2808 transistor; the values for Rz and Q could apply
to a precision crystal unit. The power spectral density
of Johnson noise is 4kTR, that of shot noise in a tran-
sistor 2kTgm\ hence, because of (42) and (39),

Bj2 = kTRj

B* = \kTgm. (48)

The resistive components R\ and R2 have not been con-
sidered so far because, other than affecting the values of
QT and QN, their effect upon the results does not extend
significantly beyond their action as noise generators.
Rather pessimistic assumptions [34] about the effective
values of Ri and JR2 in a transistor oscillator lead to
10 ohms each. With the above values and &r = 5X10~21

W/s, one finds, for the peak densities (in watts per cycle)
and normalized half widths at midheight (in cycles/cycle)
of the individual terms in (46), respectively

Gcc[l.4Xl08,3.5Xl0-20], G^i[7.1X10~16, 3.5Xl0~8],

G^2[2X10-16, USX 10-8], C41.2X10-16, 1.75X1O-8];

and GW = 2X1O-20 watts/cycle.
The power spectral density function cannot be ob-

served directly. The power spectrum P(f) which is
observable can be defined as

(49)

whereby H(]y / ) is the transfer function of the filter
being used in the observation of the spectrum and / its
mean frequency. The output power from the filter, when
it is tuned to the carrier frequency, i.e., when / = / i ,
must then be considered the signal power and the defi-
nition of the noise-to-signal power ratio at the frequency
j becomes

N/S = P(/)/P(/i). (50)

It is obvious that the noise-to-signal power ratio de-
pends upon the bandwidth of the filter. This parameter
is implicit in H(f,f). The form factor of the filter deter-
mines whether PQ) (i.e., the output power from the
filter when it is tuned to / ) , is indeed due to Gee(J) in
the neighborhood of /= / , or instead is due to the carrier
in the tail of the filter characteristic.

When evaluating the ratio (50) analytically, it is fre-
quently possible to approximate the PSD curves given
in (46) by their limiting curves, truncated at their peak

height, as indicated in Fig. 4. The limiting curves are

GccW-tiKt/m-"/"!)-2

GAA(f)-*K*(l -u/co!)-2

Gto(f) -> (K2/4)(l - "M)~2

G™(/)->4£2
2. (51)

They are, in conformance with a general property
of Lorentzian curves, independent of Ai2 and 72,
respectively.

Because GW does not decrease with increasing fre-
quency separation from the carrier, it crosses the other
curves at a certain value of F=f—fu and from there on
dominates the PSD of the oscillator output. The cross-
over point depends, according to (37), on the strength
of the noise sources and on the reduced quality factor Q
of the oscillator. In an LC oscillator Q = 1, and the cross-
over occurs too far out from the carrier frequency to be
of practical significance. The white noise from the
source across the output has no noticeable effect on the
PSD of the LC oscillators. When Q is large, however,
such as in quartz crystal oscillators, the crossover is
very close to the carrier (about 3 parts in 106 in the
a.bove numerical example), and it is the white noise
component that determines the N/S ratio of the oscil-
lator in many applications. A very significant improve-
ment in this ratio can often be achieved in this case by
using an output filter of sufficiently narrow bandwidth
[35]. The relations pertaining to this case are given in
the following Section. In all cases, it is obvious that the
most effective way to improve the N/S ratio is to oper-
ate the oscillator at as high a power level as is possible,
subject to limitations by higher order effects.

E. The Effects of the Output Filter

Up to now it was assumed implicitly that the signal
at the output of the oscillator stage is available directly
for observation or actual use. This however, is rarely the
case. Normally the oscillator signal is fed to an isolation
amplifier or to some other devices which contain tuned
elements. It is the output of these devices that is ac-
tually observed, and the modifications of the signal in
passage through them must be considered. Of primary
interest is the effect of the tuned elements.

Although it is obvious that more effective filters can
be used, consider as a simple example the circuit in
Fig. 5. When the filter is tuned to wi (i.e., LCCC= 1/coi2),
and it is assumed that, because of (23),
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Fig. 4. Illustration of general property of PSD curves. Truncated
limiting curves are useful in approximate calculations involving
PSD functions.

Fig. 5. Model of oscillator with output amplifier. The filter in the
output amplifier serves primarily to shape the white noise com-
ponent in eff, which stems from vi. The effect of the filter on the
carrier and on the noise response of the oscillator loop is negligible
in a high Q oscillator.

Qc s 1/7- =
o)iLc

Ra + Rb + Ra
« 1/7, (52)

the equivalent to (30) becomes to a very good approxi-
mation

with

and

*»(0

MO

<W = C4i + *(*)) cos («it + 0(0) (53)

x(t) = x(t) + xn{t)

0(0 = vO) + HO + *.(«, (53a)

The expressions (53) and (54) then are explicit forms
of the oscillator signal after it has passed through the
tuned output stage.

All relations in Section III-B for eg apply equally for
tfout, if only TNN(T) and GNN(0 in (42) and (46), re-
spectively, are replaced by

FNN(T) = — — (1 + QjQdf-toTM'costtiiT
Qc 2

GNS(J)
2£2

2(1 + QC/QT)

(55a)

(55b)
1 + (2ft)'(l - o>/o>i)2

The limiting curves for GW(0 are given by

GNN(/) -> (£2
2/2&2)(l + Qe/QrKl - «/«i)-». (56)

F. The Properties of the Signal Phase

When evaluating the properties of the signal phase it
is important that the effects of the output filter be in-
cluded in the considerations. This eliminates the dif-
ficulties with the additive white noise component in (30)
which, according to the comments in Section II-D,
cannot be decomposed into orthogonal components until
acted upon by the filter. Hence, the signal representation
(53) must be used. Because of rj(t) in (53a), the phase of
the signal is only a weakly stationary random process;
however, it does have stationary independent incre-
ments, and the autocorrelation function of #(/) can be
readily computed to

<««*(<-r)> 2 3

= (Wl*tfV24i») (/ - r + + i
\ wi7 o>i7

+ («ifl»V2ili'ft)[ft/2Qr + (1 + Qc/Gr)*-("»"/f)r]. (57)

With some care in dealing with the first term, (57) can
be used in (39) to obtain the spectral density of the sig-
nal phase. Except for some 8 functions at the origin, it is

G»(J) = (IKVAx'Xui/w)*

+ (12tfV^iV)[l + (2/7)
2(a)/Wl)2]-i

+ ( W W X l + QJQT)[1 + (2/7.)1(«/«i)*]-1. (58)

.e-(«lY/2)r J
o>i7 /

0)1

O)i

A sketch of the three terms in (58) is shown in Fig. 6.
The respective limiting curves for the second and third
term are

O t f W ) W o ) 2 ; W M i W X l + QJQT)(*I/<*Y (58a)

and, as before, it may be adequate for practical purposes

f J3i(©*-<"«*/»<»-«> cos [wil + «ft)] di
J o

r t and, as Detore, it may De adequate lor practical purposes
J Btffle-iww-v sin [Wlf + f}(f)] rff (53b) to approximate these terms by their truncated limiting

0 curves as indicated by the dotted lines in Fig. 6.
where *(/), rj(t) and tf(0 are still defined by (36). The
equivalent to (21) becomes

<Wt = Ec + EA + Ei + EN (54)

The expression (58) for the spectral density of the
signal phase can be compared to the expressions for Ge9

or for GCC + GM + \GNN [using the relations (46) with
(55b)]. The latter is the PSD of the output signal with

whereby only the definition of EN is changed from all amplitude disturbances removed. It will be noted
EN^B2{t) to

EN
Oil

ft

that, in spite of the similarities of the corresponding
terms, there is no simple relationship between these

J52(f)^-(«i7c/2)(«-f) c o s W l ^ _ t\ ^t (54a) expressions. In the most general case the seven parame-
n f-*»f»c p n f p r m o 1 -f-1n£»m m u c f l-»fk «a\r<al 11 a f î ri f r o m 1 nnPrkPfiril^n t"ters entering them must be evaluated from independent
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Fig. 6. Sketch of spectral density of oscillator phase
disturbance components.

measurements to specify the different aspects of the
signal. These parameters are A\, «i, Qc, QT, 7, K2, and
B2

2. Only when the additive noise component due to the
source across the output of the oscillator stage pre-
dominates over all other terms, can the properties of the
power spectrum of the output signal be related directly
to those of the spectrum of the phase and vice versa. In
all cases it is important to recognize the distinction
between these two spectra.

IV. THE SHORT TERM FREQUENCY STABILITY

The frequency of a periodic or quasi-periodic signal
can be obtained by integrating the phase 6 over a time
T and dividing the result by r:

1 Cl

wT = — I dd
0(0 - B(t - r)

(59)

In general, coT is a function of the time t at which the
integration is carried out. When 0(0 can be assumed to
have the form

0(0 = mi + 0(0, (60)

whereby coi is a constant and 0(0 a random variable of
zero mean, the short term frequency stability of the
signal for integration times of r seconds can be defined as

Sir) V{*
(O)r — W l )

O>1*
(61a)

With (59) and (60) this becomes

S(r) = — {<(0(O)2> + <(*(* - r))*>
COiT

When 0(0 is known, o>T and S(T) are readily evaluated;
however, the reverse process, that is the determination
of the characteristics of the signal phase from the
properties of coT, can be carried out only in a very re-
stricted sense.

The form of the output signal of the oscillator appro-
priate for use in this Section is given by (53), since the
effects of the output filter must be included in the
analysis. The autocorrelation function of 0(0 required
in (61b) was derived in Section III-F. With (57) one
finds the short term frequency stability of the signal as

S(r) = \(2K*/A1*T*)[T + (6/Wy)(l - *-<"IT/»T)]

+ ( W / « i & 4 i V ) ( l + QJQT)(\ - erfrm/Dr)}!/!. (62)

K2in (62) is given by (37), with (4a) and (48), 7 by (22);
and Qc = \/yc is the quality factor of the output filter in
in Fig. 5. The conditions (23) and (52) are assumed
satisfied.

The first term in (62), {IK} IA i2r)1/2, corresponds quali-
tatively to the familiar result obtained when only the
random walk in the signal phase is considered, while the
second term in the first bracket, with

( l - exp [ - (« l T / 2 ) r ] )

as factor, is due to the output from the B\\ circuit in
Fig. 3. With y—>0 the first component of (62) becomes
(8K2/A i2r)1/2, in full agreement with the corresponding
expressions found in the literature.

The second component of (62) is due to the additive
white noise component in eg and depends strongly on
the properties of the output filter.

With the numerical values for the various parameters
as chosen in (47) and a (?c=10, (62) becomes

44X10-28r 3 "I

8 X 10-2 4
 6

+ (1 - e r 1 - 6 * 1 0 ' ) . (63)

- 2(0(000 - r ) ) } 1 ' 2 . (61b)

The two components of S(r) as given by (63) are
drawn in Fig. 7. The overall character of the first com-
ponent shows a r~~l/2 dependence on integration time.
The transition of the curve from a higher to a lower level
occurs at a value of r, which depends upon y and, hence,
upon the nonlinearity of the active device. A large value
of y is desirable to push this transition to shorter inte-
gration times. The overall level of this component of
5(T), in an oscillator whose noise generators have a
given strength, depends primarily upon the reduced
quality factor Q and upon the signal amplitude.

The contribution to S(T) of the second component in
(63) varies with r""1 for integration times larger than the
time constant of the output filter. In the above example
the latter is less than one microsecond; and at r = 1 sec
this contribution is still greater than that of the first
component by more than one order of magnitude. It can
be reduced, as apparent from (62) and as indicated
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Fig. 7. The short term frequency stability of a crystal oscillator as
a:function of integration time is the sum of the two solid curves.
The lower curve, given by (Si2) l / 2 , is due to effects inside the os-
cillator loop. It includes the effects of the random walk phenom-
enon in the carrier phase and of the noise response of the oscil-
lator. The upper curve, given by (Sz2)112, is due to the additive
white noise from the source in the oscillator's output (v* in Fig. 5).
Its significance can be reduced by the use of high Q filters in the
output amplifier. The numerical values of (47) apply.

previously, by increasing the quality factor of the out-
put filter. When Qc is larger than 10\ the short term
stability of the signal frequency at r = l sec is in this
example essentially given by the first term in (63).

An important conclusion can be drawn from the fact
that the last term in (62) is for QC<£QT independent from
the properties of the oscillator feedback network and the
active device characteristics. If this term is much larger
than the first, the short term frequency stability of the
oscillator can be expressed approximately by

S(r) = — VteTRz/u&AS = (2/Wlr) VV?/V? (64a)
r

whereby

VN* « a>tB2
2/2Qe (64b)

is the mean square noise voltage measured at the ampli-
fier output when the crystal unit is disconnected, and
Vs2 the mean square output voltage when the oscillator
is operating normally. The advantage of (64) for prac-
tical design work is obvious.

The relationship between the power spectrum of the
signal or the spectrum of the phase and the short term
frequency stability is rather simple only when S(r) in
(62) is dominated by the last component, i.e., when the
signal disturbances of interest are due to the additive
white noise from the oscillator output. In the general
case.such a relationship is again best established, as in
Section III-F, via the basic parameter Au «i, Qct QT,
y, K\ and B2

2.

V. THE SIGNAL AFTER FREQUENCY MULTIPLICATION

For many applications it is necessary to multiply the
frequency of the oscillator signal, and the properties of

the signal at the output of the multiplier have to be
known. The short term frequency stability of the multi-
plied signal is still properly represented by the expres-
sions derived in Section IV, provided the multiplier it-
self does not contribute significant noise components.
The spectral characteristics of the signal, however, afe
modified by the multiplication process, and the nature
of these modifications under idealized conditions will
now be determined.

An ideal n times multiplier removes all amplitude
disturbances and multiplies the phase of the signal by w,
hence, with the signal as given by (53) as an input, the
multiplier output is

em = Ai cos n[oil + <£(/)]. (65)

It can be approximated for small &(t) by

em = Ai cos n[o>it + rj(t)]

- Ax[&(t) + 0,(0] sin n(Wl/ + rj(t))

= Emc + Eme, (66)

and the power spectral density of em can be computed
following the procedure used in Section III-D. One finds

Gemem

4AiA/nWK*

1 + (4^1
3/wco1/t2)2(l - co/nuy)2

n2K2/y2

+

+

1 + (2n/y)2(i - io/n^Y

n2B2
2(l + Qe/QT)

1 + (2n/ycy(l - co/moi)2
(67)

The character of the change in the PSD brought about
in the multiplication process is best appreciated by first
considering the limiting curves of GCmCtn and of

G*out*out == Gcc + Gee + ^GNN,

respectively, which are, term by term

Gemem -> (K^Kl ~ «/««!)-* + (#2/4)(l ~ CO/WO,!)-2

+ (£2
2/4&2)(l + QC/QT)(1 - Wna>i)~\ (68a)

fto,U -» (#2/4)(l ~ u/on)-2 -f- (#2/4)(l - a,/*!)-2

+ (U2
2/4gc

2)(l + Q,/QT)(1 - a>M)-2. (68b)

Whereas these curves are identical on a relative fre-
quency scale, the peak densities of the noise terms in-
crease with n2 while the peak density of the carrier de-
creases with 1/w2 due to the multiplication. Neverthe-
less, the PSD of the carrier of the multiplied signal is
equal to that of a signal derived from an oscillator
operating at ah'=na>i in every detail, provided Ai and
K2 are equal.

For many practical applications it is of interest to
know which conditions are potentially capable of pro-
viding the highest signal-to-noise ratio at a given fre-
quency. The above equations are quite useful to answer
a number of questions in this area. A few examples
will be discussed below by comparing the N/S ratio of
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two signals, one derived with the aid of an ideal n
times multiplier from Oscillator I, which operates at
o?i, the other derived from Oscillator II which operates
directly at coi/ = wo>i. Amplitude disturbances are as-
sumed removed from both signals. Each oscillator is
considered under two conditions 1-1, 1-2, and II-l, II-2,
respectively, whereby 1 and % refer to

1) no additive noise K2-»B2
2/2Q2

2) white additive noise K2«B2
2/2Q2.

Condition 1) occurs either when the oscillator is free
running, or when an output filter of sufficiently high
quality factor is used to suppress the additive noise to
insignificant levels. Condition 2) can occur only in oscil-
lators with large reduced quality factor Q, and only over
that range of frequencies away from the carrier where
GNN in (55b) is effectively constant (i.e., where the addi-
tive noise is essentially white).

The N/S is computed according to (50), whereby
under Condition 1) only the limiting curves are con-
sidered. H(F, f) is assumed to represent a rectangular
window whose pass band extends from/« to fb and, with
F = 0, is wide enough for P& to be given by Ai2/2 to a
good approximation. F is the mean frequency separation
of the filter pass band from the carrier at nf\ =/i ' , de-
fined by

F2 = W - U)<Ji - h).

One finds for the N/S ratios of the high frequency sig-
nals under Condition 1)

1-1 Ni/Si - (Ki*/A ii2) W / ^ X A - /«)

II-l Nn/Sn - (Ku
2/Am

2)(fi'2/F*)(fb - / . ) (69)

TABLE I

and under Condition 2)

1-2 Nj/Si = (2n*B21
2/A„*)(/„ - /.)

II-2 Nn/Sn = (2Bm*/Am
2)(fb ~ fa) (70)

whereby the parameters of the two oscillators are iden-
tified by the subscripts I and II, respectively.

Evaluating the ratios (Ni/Si)/(NU/Su) permits es-
timation of the relative merits of deriving a desired sig-
nal from a lower frequency oscillator by multiplication
or directly from an oscillator operating at the required
frequency.

In many cases, the noise intensities in the two
oscillators can be assumed to have about the same mag-
nitude. The ratio Ki2/Ku

2 is then determined primarily
by the reduced quality factors Q\ and Qn of the oscillator,

*iV*n* - <?II7(?)

while the signal amplitudes are determined by the dis-
sipated power, i.e.,

An2/Am2 « Pi2/Pn2.

If, furthermore, B22 is assumed to be about an order of
magnitude smaller than the sum of all sources entering
K2, the relative merits can be estimated from the follow-
ing table.

II1

II 2

I 1

/ i " Pa
F2 P1Q12

I 2

n2F2 PuQn*

/1'2 Pi

n*Pn/Pi

When the ratios shown in Table I are smaller than
one, the Oscillator I-multiplier combination is to be pre-
ferred; when they are larger, the high frequency oscil-
lator has the lower N/S ratio under the conditions
stated. The upper left ratio shows that, if the additive
noise is suppressed, the oscillator with the larger Q2Ps
product will be superior, regardless of the multiplication
ratio. If additive noise is present in both oscillators,
however, the lower right ratio shows that regardless of
its reduced quality factor, the lower frequency oscillator
is almost invariably an inferior source. The upper right
ratio indicates that a free running microwave oscillator
can give a lower N/S ratio than a quartz crystal oscil-
lator multiplier combination, if no high Q output filter
is used in the crystal oscillator and n is large. The lower
left ratio might be of interest when the signal derived
from a quartz crystal oscillator under optimum condi-
tions is compared to the output of a maser, where the
additive noise is not readily suppressed.

Whereas these relations are valid only under a number
of restrictive conditions, they do illustrate the very
serious degradation of the signal properties caused by
the additive noise from the source across the output of
the oscillator stage. If this noise is eliminated, however,
only the properties of the feedback network and the
final frequency determine the N/S ratio of the signal,
but not the multiplication factor.

CONCLUSIONS

A major result of this paper is the derivation of the
explicit form of the output signal from a noise perturbed
oscillator. It permits the complete evaluation of any de-
sired performance aspect, such as the spectral properties
of the signal and of the signal phase, as well as the short
term frequency stability, and it clarifies the inter-
relations between them. Although a specific oscillator
model was chosen to formulate the basic differential
equation, the results apply to all oscillators whose fre-
quency does not depend on signal amplitude in first
order. They are expressed in terms of a few general
parameters all of which, except one, can be determined
from the impulse response function and the noise output
of the passive feedback network alone. Only the parame-
ter 7, which depends upon the magnitude of the in-
stantaneous nonlinearity in the circuit, requires a
knowledge of the active device characteristics.

The expression for the output signal was derived by
means of a novel first-order perturbation technique
which, in contrast to earlier work, does not require
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smoothing of the instantaneous nonlinearity. Considera-
tion of the instantaneous nonlinearities reveals a para-
metric pumping action to occur within the oscillator
loop which, however, affects only the low-pass equiva-
lent of the disturbed system, but not the band-pass
equivalent. Two dissimilar performance aspects are thus
created and the oscillator appears to act simultaneously
like a linear AGC oscillator and like a high Q passive
tuned circuit. The investigation of the significance of
this effect in oscillators with time variable circuit
parameters and in frequency pulling, pushing, and en-
trainment phenomena is believed to be a very fruitful
area for further research.

APPENDIX

SOLUTION OF THE PERTURBATION EQUATION

A. The General Solution

The basic equation (3) for the noise perturbed oscil-
lator contains no approximations or restrictive condi-
tions, other than that the circuit elements are inde-
pendent of time. The perturbation equation (9)

u +

+

LC.

i /RzC2 df(eo0) \

Li deg0 /

/ Lx & df(eoo)\

\ LC2 dt deg0 )
F(t)

results from it when u(t) in (8) is assumed small, so that
higher order terms are negligible. A small u(t) can, re-
gardless of its time dependence, cause only small varia-
tions in eg. Hence, (9) already contains the basic premise
of the method of the slowly varying amplitude and
phase [26], and this method cannot be applied again to
impose additional restrictions on u(t).

In the general case efl0, the steady-state signal in the
unperturbed oscillator can be represented as

ego = H W cos n{<MXt + (p) + bn sin n{ont + <p)], (72)
n

and with it we find

df(eg0)

de>
X [<Xn COS W(o?i/ + ip) + fin SlTl w(wi/ + <p)]

<?0 n

where the an and )3n are (nonlinear) aggregates of the
constants an and bn in (72) and the coefficients of the
various powers of ego when f(ego) in (1) is developed into
a Taylor series. When u(t) is then assumed to have the
form

»(0 = Z [*»(0 cos *(«i/+?)+y»(0 sin n(wi/+*)], (73)
n

(71) can be written as

]L l*n + gn(t)] COS n{o3Xl + <p)

+ £ [% + hn(t)) sin nfat + <p) = F(t) (74)

whereby the

gn{t) = gn(*u %u ̂ 2, * » , • • • ; yh yh y2, yi, • • • )

A»(0 = hn(xh xh x2, x2y • • • ; yh yu ytf y2, - • - ) (75)

are linear functions in the xq, xr, ya, yt with constant co-
efficients.

It is noted that only identities have been used in
transforming (9) into (74). We can furthermore intro-
duce the identity

F(t) = F{t) • 1 = Fc{t) cos (wi/ + <p) + F, sin (Wl/ + <p)

Fo(t) = F{t) cos (Wl/ + 9)

F.(t) = F(t) sin («i/ + <p) (76)

into (74) and we find (71) to be identical with

l*i + gi(t) - Fc] cos (cô  + if)

+ bt + Ai(0 ~ F>] s i n («i' + ?)
00

+ ]C [*n + gn(t)] COS n(03it + ip)
n»2

+ E {% + hn(t)] sin n(o>it + <p) - 0. (77)
n » 2

(71) Equation (77) is of the form

n » 0
Gn(t)UD = 0 [Goto = 0] (78)

whereby {^n(0} is a complete set of orthogonal func-
tions in the interval [t, t + 2it/o)i]. Solving (71) is thus
reduced to determining the functions Gn(t) such that
(78) is satisfied for all t.

The trivial solution of (78) is

Gn(t) = 0 n = 1, 2, 3, (79)

Hence, if a set of functions {(0)xn} and {(0)^n} is found
which satisfies the simultaneous equations

*i + gi(t) = Fe(t) yx + h(t) = Ft(t)

x2 + gt(t) = 0 y2 + *,(/) = 0

*3 + gz(t) = 0 yz + A,(0 = 0 (80)

it will, inserted into (73), define a u(t) which satisfies
(9). The condition (79) is thus clearly sufficient to de-
fine a solution u(t) of (9).

Aside from (79), however, there exists a countably
infinite number of other conditions which satisfy (78).
These are obtained by demanding that the terms in the
sum (78) cancel in pairs, triplets, quadruplets and so on.
For example, (78) is satisfied if

Gi(t)M0 + Gt(0M0 = 0, Gn(f) = 0, n = 3, 4, • • -. (81)

This condition is met, of course, when (79) holds; but it
is also met when Gi(t) =\ i^ 2 (0 , G2(t) = -Xi^i(/) with Xi
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an arbitrary constant. This leads to

*i + gi(t) = Fe + Xi sin (wit + <p),

yi + hiQ) = F, - Xi cos (wi/ -I- p)

*« + gt(l) - 0

y* + *«(0 = 0. (82)

The set of functions which satisfies these equations can
be written as {(0)#«+Xi(%n} { ^ n + X i ^ n } whereby
the (0)xn,

 iQ)yn are the solutions of (80) and the Xi(1)xn,
Xi(1)yn are the particular integrals for the sinusoidal
forcing terms in (82). Proceeding in this manner, it can
be shown that any possible choice of the Gn(t), other
than (79), which satisfies (78), leads to solutions {#„}
and {yn}, which consist of the integrals of (80) plus the
particular integrals in response to some (in every case
well defined) combination of the ^n as forcing terms,
multiplied by an arbitrary constant X,-. In all cases, it is
necessary, therefore, that the equations (80) be satisfied.

Considering all possible choices of the Gn(t)f the solu-
tion of (77) can be written as

[Xn\ - l^Xn + itx^Xn]
I i-1 )

\yn\ - {^n+EX/^i (83)
I i-1 /

When the development leading to (82) is traced back-
wards and (82) is written in the form (74), it is found
that the left-hand side of (74) remains unaltered, while
the right-hand side becomes

F(/)+Xi[sin («i/+tf>) cos (o>i/+<pj — cos (u)\t+<p) sin (cait+tp)]

= F(/)+XiO.

This result is true for all possible choices of the Gn(t)
other than (79). Hence, when the ij)xni

 u)yn are inserted
into (73), the resulting {i)u(t) is but the complementary
function of (9), which is, of course, contained already in
(O)w(O. All solutions of (77) which are not based on (79)
are redundant. Therefore, all X; in (83) can be set equal
to zero without affecting the solutions in any way.

It follows that the equations (80) are necessary and
sufficient to determine, with (73), a solution u(t) of (71),
and that this solution is the general solution of that
equation.

A. An Approximate Solution

The equation (77) was obtained by neglecting higher
order terms in «(/). Its solution will thus only give the
first-order approximation to the disturbances of the
oscillator signal. When the perturbing forces are thermal
and shot noise, knowledge of this first-order approxima-
tion is adequate, beyond any reasonable doubt, for all
practical purposes. However, to determine it fully re-
quires solving the infinite set of simultaneous linear
equations (80), a task which clearly calls for an iteration
procedure.

The zero-order solution is found by setting all #»,
Xn\ yn, yn for n>2 equal to zero; that is, by assuming
u(t) to be given by (14):

u(t) = *i cos fat + (p) + yi sin («i/ + <p). (84)

Then xi and yx are to be determined from the first two
equations in (80); that is, from the equations which re-
sult when the coefficients of the fundamental frequency
terms in (77) are required to be zero for all /. These
equations are of the form

#1 + CiXi + C2XX + Czyi + C&! = Fe

3>i + d&i + d2x2 + dtyi + dAyx = F8 (85)

whereby the Ck and dk are constants which depend upon
the parameters of the nonlinear current voltage charac-
teristic of the active device and upon the harmonic
amplitudes of eo0. The latter, of course, must be deter-
mined from the homogeneous part of (3).

The evaluation of these constants becomes very
simple if it is justified to approximate eg0 by its funda-
mental component, as in (13). It then is also adequate
to approximate the Taylor series f(eg*) by (16), since
the second power in ego contributes no fundamental
component to (77), and the fourth and higher order
terms are usually small enough to be neglected in nearly
harmonic oscillators.

With these approximations the equations (85) become

xi + 2wiyi + 2O>1Y*I = Fe

yi — IWIXI — 2(ai2yxi = F t (86)
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which are most easily verified when (84) and (76) are
inserted into the Mathieu equation (21). And, to deter-
mine u(t) to within these approximations, it remains to
solve (86) when F(t) is given by (5) with (12).

The impulse response functions of the system (86) can
be found in the following manner. With

*'• = 0, vi = v2 = 0, i>3 = ask&(t ~ h) (87)

Fc and F8 in (76) become

Fc - (<*iVQ)a*kh{t - /*) cos (otf + *>) (88)

F. = W/Q)au8(t - Ik) sin (cat + <p).

Since the initial conditions for xi and y\ and their first
derivatives are zero when, at t~ tk the oscillator is as-
sumed to be in that state which would result had all
previous impulses been in the infinite past, the Laplace
transform of (86) is

(p* + 2«i7 p)Xn + 2*9ipYu = Ue~^

-2o)i(p + t»iy)Xu - P2YU = Ue"^ (89a)

whereby

Lc = (e>i2/Q)a3k cos (caitk + <p)

L> = (<*i2/Q)azk sin (Wl/A + *>). (89b)

The characteristic equation of (89a)

P[P2(P + 2<ol7) + 4Wl
2(/» + «,y)J = 0 (90a)

can be approximated by



p(P + ua)(p2 + o>iyp + W ) = 0 (90b)

when 72«4.
The inverse transforms of the solutions Xn and Y^

of (89a) are then, except for terms with y2 as a factor

*i» = - ~ *-«**-«>

1
H ci»ni*ut-ik)[Lc sin 2«i(/ - /*) + La cos 2«i(/ - **)]

2wi

- | _£-(«l7/2)<*-

2coi

Km = —-
1

!-**) Lc cos 2coi(/ — Ik) sin 2o>i(/ -4
(91)

H e-«i7/2(i-«fc)[^ s i n 2Wl(/
2coi

— Z,c cos 2o)i(l

y

k)

La cos 2o)i(t — tk)
4coi

La 1
+ — sin 2«i(/ - /*)

It is noted that approximating €0o by (13) a n d / ( ^ o ) by
(16) is a matter of convenience only and is not necessary
to solve (85). Likewise, approximating (90a) by (90b),
that is, assuming 7 2 « 4 , results in a simplification of the
expressions (91), but (86) can, of course, be solved for
arbitrary values of 7. Since the parameter 7 determines
the effective bandwidth of the oscillator, it is realized
that the narrow band approximation need not be intro-
duced at any point to solve (71). I t is also realized, how-
ever, tha t (13) will be a rather poor approximation of
eoa if 7 is not very small. Hence, even assuming 7<<Cl is
thoroughly consistent with the approximation (13), and
the terms with 7 as a factor in (91) need not be consid-
ered further.

When (91), without the 7 terms, is inserted into (84),
one finds as the approximate solution of (21) for a single
impulse from vh

u(t) = (o)i/2Q)au cos (coA + <p) sin {uxt + q>)

- (wi/2<3)fl8* sin («ifc + p)«r«nr(«-i*> cos (Wl/ + <p)
+ («1/25)fl»«r<-"r/«('-«*) sin Wl(/ - /*). (92)

When the expressions corresponding to (92) are derived
for a single impulse from each of the other noise gen-
erators contributing in F(t) and the results are added,
the relations (24) shown in the text are obtained. The
Laplace transforms of derivatives of delta functions re-
quired thereby are readily found according to estab-
lished techniques [36].

C. Comparison with Prior A rt Results

Previous investigations of the effects of noise in oscil-
lators have led to results the essence of which is equiva-
lent to the statement that the perturbation u{t) is given
by

u(t) = (coi/Q)au cos (ojitk + <p) sin (wi/ + <p)
- (oJi/Q)au sin (Wlfc + ^e-"1*<'-<*> cos (w^ + <p) (93)

instead of by (92). The most conspicuous difference is
the absence in (93) of the third term in (92), which is
recognized as the response function of a tuned circuit of
relative bandwidth 7, excited by one half of the strength
of the original impulse. The impulse response (93) cor-
responding to the prior art agrees in form with the first
two terms in (92), but is twice as strong.

Considering the discussions of the oscillator perturba-
tions in the Sections II-D through III-C of the text it is
noted that (92) will assume the form (93) when the in-
stantaneous nonlinearity in the oscillator is zero (i.e.,
7 = 0), and when the amplitude disturbances are cor-
rected by a delayed action mechanism (i.e., AGC). In
that case, however, W17 in (93) must be interpreted to
mean the reciprocal of ra, the time required for the AGC
mechanism to correct a given amplitude disturbance.
(When the time constant T of the AGC loop is short, ra

is almost directly proportional to the AGC loop gain and
is nearly independent of T, a fact that follows from
Golay's equations [IS].)

The techniques used in the literature for the analytic
treatment of noise perturbed nonlinear oscillators differ
substantially [8]-[l3]. But upon closer study one can
find that, indeed, all include, at various stages of the de-
velopment, the assumption that there are no instantane-
ous nonlinearities in the circuit. The present results,
thus, are not in conflict with those derived earlier; they
extend them to the more realistic case where the pres-
ence of instantaneous nonlinearities in the circuit is ad-
mitted.

The most commonly used procedure employs the
averaging principle [14], which involves smoothing of
the instantaneous nonlinearity [12]. Its application in
effect reduces a differential equation of the type

+ w</ a + p ^ J e + o)0
2e = o>0

2£(0, (94)

which describes rather generally the voltage e in a van
der Pol [20] oscillator under the influence of a disturb-
ing noise voltage E(t) to [7]

e + wo ( £ - . + M>)+ / ^ 2 ) e + wo
2e = coo2£(0. (9S)

Ay thereby, is the amplitude of the oscillator voltage
which is apparently always approximated at the very
beginning by e = A V cos wt] (95), however, no longer
describes the behavior of a truly nonlinear oscillator. It
refers to an oscillator with a linear active element whose
effective transconductance (« — 0A2) is controlled by an
amplitude sensitive mechanism with a small, but finite,
time constant. The smoothing process cannot physically
be accomplished within the nonlinear active element;
rather, the signal from a linear oscillator must be recti-
fied externally and the information obtained used to
steer the gain of the device.

The perturbation equation corresponding to (95) with
e — en+u is not (21), but

u + o)0
2w = <ao2E(t), (96)

plus an additional equation, similar to that used by
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Golay [15], which describes the behavior of the ampli-
tude disturbance under the influence of the delayed
action mechanism.

The Mathieu equation (21) and, hence, ultimately
the solution (92) is obtained when the parametric pump-
ing action [13] that occurs in the oscillator because the
j3e?2 = !j3,42(l+cos 2wt) term in (94) is properly repre-
sented in the perturbation equation. Conversely, when
the perturbations are assumed to be given by (93), the
existence of an instantaneous nonlinearity in the oscil-
lator is ignored.

The difference between the present results and those
of the earlier work can also be illustrated by tracing the
development of the equations (86) back to the form (74),
that is, to

(xi + 2a>i>'i + 2coi7 î) cos (aM + <p)

+ (ft - 2«i*i - 2coiVi) sin («i/ + <p) = F(t) (97)

which, with

ua = #i (0 cos (a>i/ + <p)

Ui> = yi(/) sin (o>it + <p) (98)

can be rewritten as

w« + 2o?i7«« + WI2M« + #* + o>i2ud = F(l). (99)

The earlier results (93) are obtained when (99) is
assumed to be identical [l 1 ] with

iia + 2o)iyua + o)i2ua = Fe cos (wrf + <p)

Ho + a)i*uo = F8 sin (wi/ + <p). (100)

While any pair of solutions ua and u* of (100) satisfies
(99), the converse is true only when y in (99) is zero,
that is, when the oscillator contains no instantaneous
nonlinearity. Replacing (99) by (100) thus involves
smoothing of the instantaneous nonlinearity. The first
equation in (100) is then equivalent to the additional
equation mentioned above in connection with (96). It
represents the action of the AGC mechanism, that is,
o>i7 in (100) is to be considered the reciprocal of TO as
explained before.

According to the discussions in Section III-C, the
solutions (92) and (93) are stochastically equivalent
when y<2uiK2/Ai2. Whereas the response of the L cir-
cuit satisfies the equations (100) for any value of 7, the
fact that the solution of (99) representing the response of
the B circuit does not satisfy (100) becomes increasingly
more important as 7 exceeds 2w\K2/Ai2, and the solu-
tions (92) must be used to describe the oscillator be-
havior.
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A Simple Model of Feedback Oscillator Noise Spectrum

INTRODUCTION

This letter contains brief thoughts on the following points.
1) The relationships among four commonly used spectral de-

scriptions of oscillator short-term stability or noise behavior.
2) A heuristic derivation, presented without formal proof, of the

expected spectrum of a feedback oscillator in terms of known
oscillator parameters.

3) Some experimental results which illustrate the validity of the
simple model.

4) Comments on the effect of nonlinearity, specific spectral re-
quirements for several applications, choice of resonator fre-
quency and active element, and expected spectrum charac-
teristics of several oscillator types.

SPECTRAL MODELS OF PHASE VARIATIONS

Consider a stable oscillator whose measurable output can be ex-
pressed as

v(l) - A cos [«o* + 0(fl].

It is common to treat <f>(t) as a zero-mean stationary random process
describing deviations of the phase from the ideal. The frequency do-
main information about phase or frequency variations is contained in
the "power" spectral density Sj(a>m) of the phase <f>{t) or, alterna-
tively, in the "power" spectral density 5^(wm) of the frequency^'. By
analogy to modulation theory, we use <am to mean the modulation,
video, baseband, or offset frequency associated with the noise-like
variations in <f>(t). The units of S^oim) are radians2/cps bandwidth
or dB relative to 1 radians2/cps BW; S<j>(a)m) is expressed in (radians/
sec)2 per c/s BW [l ] [2]. The two are related by S^m) = a)m

250(wOT).
S^(wm) can also be expressed in terms of the equivalent rms fre-

quency deviation Afrms in a given video bandwidth. Further, subject
to the limitations that tf>2«l (small total modulation indes) and that
AM<3CFM components, the normalized RF power spectrum G(u> — wo)
is identical to the two-sided spectrum of the phase 5^(a>m); i.e., RF
sidebands relative to the carrier are down by 5^(wm) expressed in
decibels relative to 1 radian2/BW.

RELATION TO OSCILLATOR INTERNAL NOISE

A basic requirement on an oscillator noise model is that it show
clearly the relationship of the spectrum of the phase 5^(wm) to the
known or expected noise and signal levels and resonator charac-
teristics of the oscillator. A simple picture can be constructed using
a model of a linear feedback oscillator. Minor corrections to the re-
sults are necessary to account for nonlinear effects which must be
present in a physical oscillator. Assume a single resonator feedback
network of fractional bandwidth 2J5/CO0~ 1/Q, where Q is the operat-
ing, or loaded, quality factor. For small phase deviations at video
rates which fall within the feedback half-bandwidth CJQ/2Q, a phase
error at the oscillator input due to noise or parameter variations re-
sults in a frequency error determined by the phase-frequency rela-
tionship of the feedback network, Ad — 2Q<j>/wo. Thus, for modulation
rates less than the half-bandwidth of the feedback loop, the spectrum
of the frequency 5<£(w) is identical (with a scale factor) to the spec-
trum of the uncertainty of the oscillator input phase due to noise and
parameter variations. This uncertainty will be denoted &0(t)t and its
two-sided power spectral density S&e{cam).

For modulation rates large compared to the feedback bandwidth,
a series feedback loop is out of the circuit. At these modulation rates,
the power spectral density of the output phase S<t>(w) is identical to
the spectrum of the oscillator input phase uncertainty 5^(wm).

For a physical oscillator the spectrum S&e(o}m) of the input phase
uncertainty A6(t) is expected to have two principal components. One
component is due to phase uncertainties resulting from additive
white noise at frequencies around the oscillator frequency, as well as
noise at other frequencies mixed into the pass band of interest by

Manuscript received December 10, 1965; revised December 29, 1965

nonlinearities. The second component is due to parameter variations
at video frequencies which affect the phase (such as variations in the
phase shift of a transistor due to carrier density fluctuations in the
base resistance). The additive noise component of 5^(wCT) is iden-
tical to the spectral density of the noise voltage squared relative to
the mean square signal voltage. For white additive noise, this com-
ponent is flat with frequency. For a feedback oscillator with an ef-
fective noise figure F, the two-sided S^e(<a)-2FKT/Ps\ Ps is the
signal level at oscillator active element input.

The video spectrum of parameter variations is found typically to
have a power spectral density varying inversely with frequency
(a l/ccm or 1//spectrum). The total power spectral density of oscil-
lator input phase errors is of the form S&o(um)~ot/u>m-\-p, where
a is a constant determined by the level of 1 / / variations and
/3 is = 2FKT/Ps for two-sided spectra.

To find S<t>(oym) or Si(a)m), we use the fact that

for Wm < g - S*M - [ • - - ] ' $*(«*.)

w m >

2Q

too

2Q

2Q-

A suitable composite expression is

This yields an asymptotic model for 5^(w) shown on log-log scales in
Fig. 1.

The model can be summarized as follows.

•^(wm) decreases with wm

at 9 dB/octave up to the point where 1//effects no longer
predominate,

at 6 dB/octave from that point up to the feedback loop
half-bandwidth,

at 0 dB/octave above that frequency up to a limit imposed
by subsequent filtering.

Sj>M decreases at 3 dB/octave up to the first breakpoint, is
flat with frequency up to the feedback baseband bandwidth,

and increases at 6 dB octave above that point.

The case where 1//effects predominate only for frequencies small
compared with the feedback loop bandwidth is shown here as an

in this region

S A . * M

Afrms(wm)

-jr = » G ("-«<>]

Fi«. 1. Derivation of Oscillator Spectra. The logical sequence leading from oscil-
lator parameters to spectrum characteristics is presented here. The power spectra
of output phase or frequency are derived from the spectrum of input phase
uncertainties and from the oscillator feedback bandwidth. The calculable con-
stants of the oscillator are FKT, P,, and w»/2Q; the 1//constant a is not accu-
rately predictable but can be inferred from data. The amplitude spectrum of
frequency deviation and the RF spectrum can be derived as shown, subject to
limitations discussed in the text.

Reprinted from Proc. of IEEE, pp. 329-330, February 1966.
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example. For a high-Q oscillator, 1//effects in S&e can predominate
out to a modulation rate exceeding «o/2Q; in this case there is no 6
dB per octave region in 5^(w). A similar spectrum results where large
additive noise in following amplifier stages or measuring equipment
obscures the oscillator internal noise, except at very low modulation
frequencies.

Note that there is a portion of the curve 6 (̂wm) which is propor-
tional to l/com

2, leading to a l/wm or 1// variation for rms phase de-
viation. This is often confused with the true 1// effects associated
with parameter variations leading to the 1// portion of the curve for
S^e(<am) and S$(<am)- These two are not the same thing; u\/fn refers to
a power spectral density rather than an amplitude spectrum.

In practice, the measurable 5̂ (wTO) is always modified by sub-
sequent bandlimiting filtering and by additive noise contributed by
following amplifiers. It is conceivable that, for a two-terminal oscil-
lator, the filtering action of the resonator eliminates the additive
phase noise component for vm>(c>o/2Q).

EXPERIMENTAL VERIFICATION

Measurements were taken on a stable microwave signal source1

designed to have a spectral purity limited only by the oscillator,
which was a 100 M/s crystal oscillator. This unit employs two large-
jump step recovery diode multipliers with amplification between
them. The data are presented in Fig. 2 in comparison with a model
derived from the following constants:

Feedback bandwidth * 16 kc/s
Ps
F
KT = -174dBminlc/sBW
Multiplication ratio = 100 = 40 dB
N*2FKT/PS = + 4 0 + 3 4 - 9 - 1 7 4 + 4 = - 1 1 8 dB.

This leads to an asymptotic value for 5^(wm) of -118 dB relative to
1 radian2/BW in 1 c/s bandwidth, i.e., a carrier-to-sideband ratio of
118 dB. The "1//" region (9 dB/octave) constant a is estimated for
best data fit.

- 6 0 d 8

- 7 0 4 8

-80dB

-90dB

lOOdB

IIOtfB

l20dB

!
s^ - 9 d B per octi

L

N

ve
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• MEASURED

er octovi

250 1000 4000 16000 64000
wffi/27r C/S

Fig. 2. S$(ww) for Stable Microwave Signal Source. The data presented here is
the average of two independent measurements which were in excellent agree-
ment. These measurements were made at X Band on the multiplied output of
a 100 Mc/s voltage controlled crystal oscillator having a 16 kc/s feedback half-
bandwidth. Since this bandwidth can be reduced by a considerable factor with-
out exceeding the present state of the art, the data is not intended to represent
ultimate attainable levels, but rather serves as an illustrative example. The 1//
constant is chosen for best data fit. Slopes and other calculated parameters are
derived from known oscillator characteristics.

NONLINEAR EFFECTS

The data was based on an estimated transistor noise figure of 9
dB. This was taken high to account for nonlinear mixing of noise at
third harmonic and higher frequencies which is mixed into the pass
band of interest by second harmonic periodic parameter variations

9.5 Gc/s Solid State Local Oscillator PN 31-007191. manufactured by Applied
Technology, Inc.. Palo Alto. Calif. Measurements are average of values measured
by the author and D. J. Healey, III, Westinghouse Corp., Baltimore, Md., using
Spectra Electronics SE-200 and Westinghouse proprietary noise test sets.

caused by the nonlinearity. The excellent fit of the data implies that
this degradation of effective noise figure may well be an adequate
description of the effect of nonlinearity.

VIDEO FREQUENCY RANGE OF INTEREST

A number of applications which have been dealt with in this issue
of the PROCEEDINGS may be summarized in terms of the video fre-
quency range of interest. Space systems and Doppler radar applica-
tions are of particular interest to the author. For these two, interest
lies in the range of a few c/s up to 100 kc/s. Space applications
typically concentrate on the range where, for a crystal oscillator,
S/(wm) is proportional to S^(um) [3], while Doppler radar applica-
tions place additional emphasis on the region above the oscillator
feedback loop bandwidth [4]. Both applications typically require
microwave systems which employ multiplication from the oscillator
frequency.

CHOICE OF OSCILLATOR FREQUENCY FOR CRYSTAL
OSCILLATOR-M ULTIPLIER

It is of interest to inspect the effect of oscillator frequency upon
the output spectrum of an oscillator-multiplier system having a
fixed output frequency. Two assumptions which aid the calculation
are a) constant oscillator input signal-to-noise ratio, and b) res-
onator Q varying inversely with the oscillator frequency w0. Under
these assumptions a comparison of two oscillator frequencies yields
the following results.

1) For on <(WQ/2Q), of the lower frequency oscillator, the multi-
plied output £$(«„,) is identical for either choice.

2) For ww»(w0/2(?), the output £*(wm) varies as the square of
the multiplication ratio (i.e., inversely as the square of the
oscillator frequency).

This can be verified by a simple graphical construction.

CHOICE OF ACTIVE ELEMENT IN A TRANSISTOR OSCILLATOR

It is apparent that \/f variations and nonlinearity can have
significant deleterious effects on the attainable low levels of S«(a>m).
In the light of suggestions by O. Mueller that microthermal effects
[6] contribute to 1// noise in transistors, it is suggested that AGC
oscillators using large area transistors having high power capabilities
may provide simultaneous improvements in 1// level and in non-
linear effects.

SPECTRUM CHARACTERISTICS OF MICROWAVE SOLID STATE SOURCES

The spectrum model given here allows simple prediction of spec-
trum shape and level for microwave sources of the types discussed by
Johnson et al [S]. Comparison with their data shows good agreement
—their measurements for crystal oscillator units extend to wm

»(wo/2Q), while microwave oscillators are characterized by Q factors
such that, for the measurements cited, wm <(o>0/2Q).
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Noise in Relaxation Oscillators
ASAD A. ABIDI AND ROBERT G. MEYER, FELLOW, IEEE

Abstract —The timing jitter in relaxation oscillators is analyzed. This
jitter is described by a single normalized equation whose solution allows
prediction of noise in practical oscillators. The theory is confirmed by
measurements on practical oscillators and is used to develop a prototype
low noise oscillator with a measured jitter of 1.5 ppm rms.

I. INTRODUCTION

LOW noise in the output of an oscillator is important in
many applications. The noise produced in the active

and passive components of the oscillator circuit adds ran-
dom perturbations to the amplitude and phase of the
oscillatory waveform at its output. These perturbations
then set a limit on the sensitivity of such systems as
receivers, detectors, and data transmission links whose
performance relies on the precise periodicity of an oscilla-
tion.

A number of papers [l]-[6] were published over the past
several decades in which theories were developed for the
prediction of noise in high-g LC and crystal oscillators
which are widely used in high-frequency receivers. Noise in
these circuits is filtered into a narrow bandwidth by the
high-Q frequency-selective elements. This fact allows a
relatively simple analysis of the noise in the oscillation, the
results of which show that the signal to noise ratio of the
oscillation varies inversely with Q.

Relaxation oscillators are an important class of oscilla-
tors used in applications such as voltage-controllable
frequency and waveform generation. In contrast to LC
oscillators, they require only one energy storage element,
and rely on the nonlinear characteristics of the circuit
rather than on a frequency-selective element to define an
oscillatory waveform. These circuits have recently become
common because they are easy to fabricate as monolithic
integrated circuits.

Due to their broad-band nature, these oscillators often
suffer from large random fluctuations in the period of their
output waveforms, termed the timing jitter, or simply, jitter
in the oscillator. In an application such as an FM demodu-
lator, the relaxation oscillator in a phase-locked loop will
be limited in its dynamic range, and hence sensitivity, due
to this jitter. There are no systematic studies in the litera-
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ture, however, on either measurements of jitter in relaxa-
tion oscillators, or on an analysis of how noise voltages and
currents in the components of the oscillator randomly
modulate the periodic waveform. Such an analysis was
perhaps discouraged by the nonlinear fashion in which the
oscillator operates, as shall become evident in Section III
below.

Despite this state of affairs, circuits designers have suc-
cessfully used methods based on qualitative reasoning to
reduce the jitter in relaxation oscillators. The purpose of
this study has been to develop an explicit background for
these methods. By analyzing the switching of such oscilla-
tors in the presence of noise, circuit methods are developed
to reduce the timing jitter.

The results of this study have been verified experimen-
tally, and a prototype low jitter oscillator was built with
jitter less than 2 parts per million, nearly an order of
magnitude better than most commonly available circuits.

II. OSCILLATOR TOPOLOGIES AND DEFINITION OF

JITTER

One of the most popular relaxation oscillator circuits is
the emitter-coupled multivibrator [7] with a floating timing
capacitor shown in Fig. 1, which uses bipolar transistors as
the active devices. Transistors Q\ and Q2 alternately switch
on and off, and the timing capacitor C is charged and
discharged via current sources /. Transistors Q3 and Q4
are level shifting emitter followers, and diodes D\ and D2
define the voltage swings at the collectors of Ql and Q2. A
triangle wave is obtained across the capacitor and square
waves at the collectors of Ql and (?2.

This circuit is sometimes modified for greater stability
against temperature drifts, and other types of active de-
vices are used, but in essence it is always equivalent to Fig.
1. The oscillator operates by sensing the capacitor voltage
and reversing the current through it when this voltage
exceeds a predetermined threshold.

Another common relaxation oscillator is shown in Fig.
2(a), which uses a grounded timing capacitor. The charging
current is reversed by the Schmitt trigger output, whose
two input thresholds determine the peak-to-peak amplitude
of the triangle wave across the capacitor. The block dia-
gram of this circuit is shown in Fig. 2(b). As the ground in
an oscillator is defined only with respect to a load, the
circuit of Fig. 1 is also represented by the block diagram of
Fig. 2(b).

Reprinted from IEEE Journal of Solid-State Circuits, vol. SC-18, pp. 794-802, December 1983.
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Fig. 4. Typical waveform of the current in a switching device in a
relaxation oscillator.
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Fig. 2. (a) Relaxation oscillator with grounded timing capacitor, (b)
Topological equivalent of oscillator.

The voltage sensor in such oscillators is a bistable circuit.
When the capacitor voltage crosses one of the two trigger
points at its input, the sensor changes state. The sensor has
a vanishingly small gain, while the capacitor voltage is
between these trigger points; but as a trigger point is
approached, the operating points of the active devices in
the sensor change in such a way that it becomes an
amplifier of varying gain. The small-signal gain of the
circuit is determined by an internal positive feedback loop,
and becomes unboundedly large at the trigger point, caus-
ing the sensor to switch regeneratively and change the
direction of the capacitor current.

In contrast to the linear voltage waveform on the capaci-
tor (Fig. 3), the currents in the active devices of the sensor
circuit are quite nonlinear because of this regeneration. The
slope of these currents increases as the trigger point is
approached, as shown in (Fig. 4), so that noise in the
circuit is amplified and randomly modulates the time at
which the circuit switches. Thus, the noisy current of Fig. 5
produces the randomly puisewidth modulated waveform of

__ Regeneration
Level

Fig. 4. Typical waveform of the current in a switching device in a
relaxation oscillator.
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Fig. 5. Actual waveform (including noise) of the current in a switching
device in a relaxation oscillator.
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Fig. 6. Output voltage waveform of a relaxation oscillator showing the
effect of noise.

Fig. 6. The timing jitter may be defined in terms of the
mean /i, and standard deviation ot of the puisewidth as

jitter = a,//i, (1)

which is usually expressed in parts per million.
To determine the noise in FM demodulation, it is more

desirable to know the frequency spectrum of an oscillation
with jitter. However, the problem is more clearly stated,
and solved, in the time domain, and the spectrum of the
jitter should, in principle, be obtainable from a Fourier
transformation.
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III. THE PROCESS OF JITTER PRODUCTION

The switching of a floating capacitor oscillator in the
presence of noise is now analyzed by examining the circuit
of Fig. 7 as it approaches regeneration. The device and
parasitic capacitance are assumed to be negligibly small.
Suppose Q2 conducts a small current Il9 while Q\ carries
the larger current 2 / 0 — Iv The current flowing through the
timing capacitor produces a negative-going ramp at V4,
causing an increase in VBF(Q2) and thus in the current
through (?2. A single stationary noise source /„ is assumed
to be present in the circuit, as shown in Fig. 7. The
equations describing the circuit are

vBErvT^e
2/0-/1

vBErvr^er

(2)

(3)

Vc = (2/0 - IJR + VBEi-(h -In)R~ VBEl (4)

dVc = I0-h
dt C (5)

where VT = kT/q and Is is the reverse leakage current at
the base of the transistor.

Substituting (2) and (3) into (4), and applying (5), the
differential equation describing the circuit is

2/0-/1
+ ̂ - 2 « R +

dl, Rdln

dt dt C (6)

This may be rewritten as

dU
dt

2/n - /,
T 4-^I-lR

dt (?)

where the right-hand side consists of two terms, one due to
the autonomous dynamics of the circuit and one due to
noise. As Ix increases, the denominator of the right-hand
side diminishes until it becomes zero when

W*-d?2R (8)

where Ix «: 70; lx must satisfy this inequality for the circuit
to oscillate. IR is defined as the regeneration threshold of the
circuit: upon exceeding it, and in the absence of any device
or stray capacitance, Ix would change at an infinite rate
until one of the circuit voltages limits. Accordingly, the
circuit is said to be in the relaxation mode while 0 < I{ < JRi

and in regeneration when IR < Ix < 2 / 0 . (Ix may be the
current through either Q\ or Q2, depending on the particu-
lar half cycle of oscillation.)

Suppose that at some time t = tA the circuit is in relaxa-
tion so that the current Ix = IA, and that it builds up the
threshold of regeneration IY = IR at time t = t2. Equation

•vs

2Io-I| 1 •
0.

v l i

JR

h
V|
y \

II,
l jC

V1,

[ |R

|I., <j•i

r
-Vc

Fig. 7. Generalized equivalent circuit of a relaxation oscillator for noise

analysis.

(6) can then be integrated from tA to t2 as follows:

['*( Vr , VT 1R\dI

(hi h~ h- V
c dt-R{ln{t2)~In{tA)}

(9)

so that

VK = ^ih-tA)- j'^dt- R{ln{h)-In{tA)} (10)

where VK, the left-hand side of (9), is a constant which
depends only on the choice of initial current IA, 70, and,
from (8), on VT and R.

The influence of the noise current on the instant of
switching is now evident from (10): random fluctuations in
the value of In(t2) must induce corresponding fluctuations
in t2 so that the sum of the terms on the right-hand side of
(10) remains equal to the constant VK. More precisely, if
tA = 0 and t2 = T (the half-period of the oscillation), then

k def L rriMF(in(nr) = £ r - f^dt- R{in(T)-in(o)}

= constant (11)

and thus

8F =
dF

8In(T) +

which implies

9F{lH,T)
sr=o

-/j«/B(r)+(^-^-}«r=o

so that

57" =
R

C J
K(T).

(12)

(13)

(14)

By definition, IX{T) = IR so

8T =
R

-8In(T). (15)
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Fig. 8. Graphical interpretation of (19).

The main result of this paper lies in interpreting this
equation as follows: the variation in switching times ST is
equal to the variation in the times of first intersection of a
ramp(I0- IR/C)T with the noise waveform RIn(T), as
shown in Fig. 8. Note that the x axis in this figure is T, and
not "real" time t. Thus, while the current waveform is
nonlinear, as in Fig. 5, and while the time T, at which it
starts to regenerate is given by the integral equation (10),
variations in T appear as if they were produced by the first
crossing of a noisy threshold by a linear ramp.

The statistics of T are contained in (10) in terms of the
distribution of In(t). This is the well-known equation for
the first-crossings' distribution of a deterministic waveform
with noise [8] and does not have a convenient closed form
solution.

Nevertheless, a useful empirical result has been obtained
for the distribution of T which allows the jitter in relaxa-
tion oscillators to be predicted quite accurately. This result
is based on the following observations.

1) The linearized equation (15) describes completely the
deviations in T\ therefore, it contains information on the
statistics of T.

2) It is plausible that the jitter will be directly propor-
tional to the rms noise current for a fixed slope of the
timing waveform.

3) If the dominant noise power in the oscillator lies at
high frequencies, it acts to reduce the mean period of
oscillation. This is evident from Fig. 8, where the ramp will
almost always cross a positive-going peak of the noise.

4) If low-frequency noise is dominant, the resulting jitter
will be greater than it would be if the same noise power
were concentrated at higher frequencies. Again, Fig. 8
shows this, because if noise varies slowly compared to the
ramp rate, the first-crossing will occur both above and
below the x axis.

These observations can be quantitatively summarized as

o(8D = a(r) = a T ^ r a( / n ) (16)

where a denotes the standard deviation of its argument and
a is a constant of proportionality which by 1) and 2) above
depends on whether the noise power is contained at high or
at low frequencies. Equation (15) changes to (16) in going
from the variation in T in one switching event to the
standard deviation of an ensemble of such events.
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Fig. 9. Measured values of parameter a versus normalized noise band-
width uN.

The constant a varies with the relative slope of the ramp
to the rms slope of the noise. For white noise which has
been low-pass filtered, the rms slope can be defined rela-
tive to the ramp rate by wN9 where

def rms noise voltage X noise bandwidth
voltage ramp rate

(17)

and where the rms noise voltage is responsible for modulat-
ing the first-crossing instant of the voltage ramp of Fig. 8.

The dependence of a on wN for low-pass filtered white
noise is shown in Fig. 9. It was obtained from measure-
ments on different oscillator circuits, and at varying noise
levels, as described in Section V of this paper. This depen-
dence should be the same for white noise in any relaxation
oscillator. For ca^^cl, a approaches unity, as 4) above
suggests, because the deviation in oscillator period faith-
fully follows the meanderings of the noise waveform. For
o)N » 1 , a is asymptotic to about 0.5 because only the
positive peaks of noise determine the first-crossing, in
accordance with 3).

If the effect of all the noise sources in an oscillator is
represented by the single source /„, then using the ap-
propriate a, the jitter in its output can be predicted by (16).
For example, in Fig. 7 devices Q\ and (?2, while
forward-biased, act as voltage followers for the various
noise voltage sources in the circuit, so that /„ is the rms
sum of these noise voltages divided by the node resistance
at the collector. This is true for all noise sources except the
noise current flowing through the timing capacitor which is
integrated into a voltage by the capacitor. As shown in
Appendix I, its contribution to the jitter is usually negligi-
ble.

IV. INTERPRETATION AND GENERALIZATION OF

RESULTS

We emphasize that the linear result of (16), which de-
scribes the variations in the nonlinear waveform of Fig. 5,
is not merely an outcome of an incremental analysis of the
problem, which would go as follows. As the loop ap-
proaches regeneration, the dc incremental gain increases
and the small signal bandwidth due to the device and
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Fig. 10. Representation of noise in the relaxation oscillator by an
equivalent input generator Vn.

parasitic capacitance decreases in inverse proportion, so
that the incremental gain is infinite and the bandwidth zero
at the onset of regeneration. Having entered the regenera-
tion regime, the effect of the capacitance is to limit the
maximum rate of change of the circuit waveforms. Think-
ing in terms of signal-to-noise ratio, the incremental device
current is the signal which must compete with the ampli-
fied noise in the circuit to determine the time of switching.
From the considerations of gain and bandwidth above, the
rms value of white noise would become infinite at the
regeneration threshold, so reducing the "signal"-to-noise
ratio to zero. This implies infinite jitter, which is obviously
not the case in reality. Such an approach demonstrates the
inadequacy of thinking of this problem in terms of small
signals.

A complete, large scale analysis shows that jitter produc-
tion is better understood by thinking of the oscillator as the
simplified threshold circuit of Fig. 10. The equivalent noise
at the input of the circuit adds to the linear voltage
waveform on the timing capacitor to produce an uncer-
tainty in the time of regeneration. It is important to realize
that Fig. 10 represents the oscillator only for an incremen-
tally small time before the onset of regeneration.

This result is independent of the type of the oscillator
circuit, and of the nature of the active devices used in it.
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Fig. 11. Capacitor voltage waveform in a relaxation oscillator.

the measurement of the latter very difficult. By placing the
oscillator in a phase-locked loop with a crystal-derived
reference frequency, and by designing the loop filter with a
cutoff well below the oscillation frequency, the thermal
drift can be compensated, while the cycle-to-cycle jitter
produced by noise frequencies above this cutoff remains
unaffected. Appropriate precautions must be taken against
fluctuations in the power supply, and against ground loop
noise.

The effect of a noise voltage Vn over a complete cycle of
oscillation is shown in Fig. 11, where the timing capacitor
waveform is assumed to be asymmetrical for generality. As
the device current Ix in Fig. 7 always equals IR at switch-
ing, the limits of the capacitor voltage have to fluctuate in
response to the noise. Therefore, as the capacitor voltage is
a continuous waveform, the fluctuations at times tv /2, and
t3 all contribute to ST. Thus,

AT- F»('i) , vn(h) , K(h) , K(h)
01 - ^ + ~ + - + - .

°1 °1 °2 °2
The standard deviation of the random variable 8T is

(19)

a(8T) = a X (mean value of/ ^ ^ - + V?{tA ±- + ~) + K2(h)
1/2

(20)

The analysis of the grounded capacitor oscillator in Ap-
pendix II, and further generalizations given elsewhere [10]
show that the jitter in any relaxation oscillator is given by
the following expression:

jitter : rms noise voltage in series with timing waveform
slope of waveform at triggering point

X a constant. (18)

V. EXPERIMENTAL RESULTS

To verify the formulas for phase jitter developed above,
and also to develop low noise oscillator circuits, it is
necessary to be able to measure jitter with a resolution of
about 1 ppm. This entails obtaining the distribution of
pulsewidths from an accurate pulsewidth meter while the
oscillator runs at a low frequency; the jitter is then
the standard deviation of this distribution. However, the
short-term thermal drift of the oscillation frequency can
overwhelm the variations in cycle-to-cycle jitter, making

where Vn(tx\ Vn{t2\ and Vn(h) a r e statistically indepen-
dent values of the noise voltage Vn(t), and a is the constant
of proportionality defined in (16). When Sx = S2 = S in
magnitude,

ff(6r)=a^i^ (21)

where o(8T) is the jitter.
Measurements were made by dominating the oscillator's

internal noise sources by an externally injected low-pass
filtered white noise current. Two different oscillator cir-
cuits, described below, were used to obtain the experimen-
tal data. Histograms for the distributions of pulsewidths
for injected noise with uN = 0.2 and 1000 are shown in Fig.
12, where this range of <oN was obtained by adjusting both
the power and bandwidth of the injected noise. These
histograms are unimodal and approximately symmetric,
and they fit the normalized Gaussian function to within
experimental error. Such experiments were also used to
obtain the curve of a versus coN of Fig. 9, with the jitter
defined as the standard deviation of these histograms.
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Fig. 12. Measured distributions of time jitter per cycle in the AD537
oscillator with (a) io# «1000 and (b) wN = 0.2; fractional number of
samples of single pulses versus their pulse widths.

To verify the general result of (18), the following experi-
ments were performed:

1) For a fixed injected rms noise, the jitter was measured
as a function of the period of oscillation; the results are
shown in Fig. 13.

2) For a fixed period of oscillation, the jitter was mea-
sured for a varying rms input noise; the results are plotted
in Fig. 14.

The straight line fit of the data confirmed (18). In both
1) and 2), the range of the independent variable was
restricted such that aN » 1 , thus ensuring that a was at its
lower asymptotic value of 0.48, so that variations in a did
not confound the measurements. The data of Fig. 13 were
obtained from the AD 537 [9] floating capacitor oscillator,
with a noise voltage applied in series with the voltage
reference; Fig. 14 was obtained from measurements on a
discrete component grounded capacitor oscillator [10], with
a noise current injected into the Schmitt trigger. The reduc-
tion in mean period of oscillation predicted by 3) in
Section III was also observed.

The most important application of this theory is in
determining the jitter due to the inherent noise sources in
an oscillator circuit. However, it is essential to know the
bandwidth that applies to these noise sources in determin-
ing their total noise power. The small-signal bandwidth
changes with the approach to the regeneration threshold
when the circuit starts to behave like an integrator, as
discussed in Section IV. While a detailed analysis of this is
beyond the scope of this paper, the situation can be
examined qualitatively. Consider the circuit described by
(7) in the relaxation regime, and with all devices in the
active region, when, say, Ix = 0.1 X IR. If the spectrum of
the superposition of all the noise sources on /x is consid-
ered as the "output" noise variable, the noise bandwidth of

6 10 12 14

Oscillator Period (ms)

Fig. 13. Measured jitter per cycle versus oscillator period with noise
injected into the AD537.
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Fig. 14. Measured jitter per cycle versus injected noise amplitude in a
grounded capacitor oscillator.

the circuit can be defined as the 3 dB down frequency of
this spectrum. The equivalent input noise source of Fig. 10
is then this superposed noise in Ix referred to a voltage
source in series with the capacitor.

As Ix approaches IRi the circuit acts more like an in-
tegrator, so that fluctuations in the switching instant T are
proportional to the fluctuations in the initial conditions of
the integrator. The latter are simply produced by the noise
in the circuit when the approach towards regeneration is
started, which may roughly be defined as the time when
A-0.1X7*.

The spectral density of some of the noise sources in the
circuit will depend on Iv but usually they make a small
contribution to the total noise, and their value at 0.1 X IR is
a good approximation.

The noise bandwidth of the oscillator can be measured
experimentally in two ways. The first relies on the availa-
bility of a white noise source with an adjustable output
filter whose cutoff extends beyond the bandwidth to be
measured. In response to a constant injected noise power,
with the filter cutoff being progressively increased, the
jitter will drop by 3 dB at the noise bandwidth of the
oscillator. Alternatively, if the noise source has a fixed
cutoff frequency, it can be used to modulate the amplitude
of a carrier frequency, which is then injected into the
oscillator. The random modulation will produce jitter, and
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as the carrier frequency is increased, the jitter will reduce
by 3 dB at the noise bandwidth. This relies on the fact that
while the jitter is determined by the amplitude fluctuations
(Fig. 8), the frequency components of the injected noise are
concentrated around the carrier frequency, and increase
with it.

As an example, the inherent jitter of the AD 537 VCO
can be predicted. The noise bandwidth was measured to be
16 MHz using the second method described above. This 16
MHz value gives a fair agreement with SPICE noise simu-
lations of the circuit biased at Ix = 0.1 X IR, despite the fact
that the exact values of the device capacitances were not
available. The noise spectral density was simulated to be
1.3XlO"8 V/7Hz using SPICE, and was primarily due to
the current sources and the base resistances of the level
shift and switching transistors. Thus,

Fw=1.3xl(T8X\/l6xl06 =52/AVrms

At an oscillation frequency of 1 kHz, the slope of the
timing capacitor ramp was 2.6 X103 V/s, giving coN = 2.01
and thus a = 0.8 from Fig. 9. The predicted jitter is

Vcc

a ( r ) = / 6 X0.8X

= 39ns
- 39 ppm.

- 652X10

2.6X103

The measured jitter from several samples had a mean value
of 35 ppm, an excellent agreement in view of the ap-
proximate values of the active device noise models.

VI. A Low JITTER OSCILLATOR CIRCUIT

Many applications require even lower values of jitter
than that of the AD 537 which is one of the lowest jitter
monolithic VCO's widely available. The theory developed
in this paper allows oscillators to be designed to a specified
noise performance; as an example, a circuit with 1 ppm
jitter was designed.

In the block diagram of Fig. 10, suppose that the timing
voltage on the capacitor is a triangle wave with a peak-to-
peak value V and period T. The slope of the ramp is

S = 2F/T

so the fractional jitter is

ay[6
J=^-!L

V

(22)

(23)

where Vn is the rms noise voltage. Thus, to obtain a small
jitter, it is necessary to reduce Vn and increase V within the
constraints of the circuit. V is limited by the power supply
of the circuit, and Vn depends on both the characteristics of
the active devices and the circuit topology. In the AD 537
topology (Fig. 15), for example, many devices additively
contribute to the total noise in series with the timing
capacitor because the functions of regeneration and
threshold voltage detection are combined into one circuit.

Bondgop $ R

Voltage'

Fig. 15. Simplified schematic of the AD537.
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Fig. 16. Low-noise grounded capacitor oscillator topology.

In the grounded capacitor circuit [Fig. 2(a)], however, the
current switch is separate from the regenerative Schmitt
trigger; their noise contributions can thus be minimized
independently.

Fig. 16 shows a variation of this topology where the
Schmitt trigger is driven by fast pulses produced by high
gain comparators following the timing capacitor. The result
(18) shows that the contribution of the noise in the Schmitt
trigger to the total jitter is inversely proportional to the
slope of the waveform which drives it, and so is very small.
Instead, the input noise of the comparators, which are
driven by a slow ramp, determines the jitter. This scheme
was used because very low input noise comparators are
easily available, although there is no fundamental reason
why a Schmitt trigger of comparable noise could not be
designed. The complete schematic of the discrete compo-
nent oscillator circuit is shown in Fig. 17. The differential
comparators have a gain of 100 and an equivalent input
noise of 6.3 JUV rms over a noise bandwidth of 75 kHz.
Using ±6 V power supplies, the timing capacitor wave-
form was 8.8 V peak-to-peak, so (23) predicted the jitter to
be 0.9 ppm rms. At an oscillation frequency of 1 kHz, the
cycle-to-cycle jitter was measured to be 1.5 ppm rms; the
additional jitter probably came from inadequate decou-
pling in the circuit.

An oscillator working from a single 5 V power supply
with a jitter of about 1 ppm would be desirable in many
systems applications. Such a circuit has been developed
[12] on the basis of the results above, and the jitter mea-
sured to be less than 1 ppm at a 1 kHz oscillation frequency.

VII. CONCLUSIONS

Noise in relaxation oscillators can be described by a
single normalized equation, which allows the jitter in any
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17. Complete schematic for the low noise grounded-capacitor oscillator.

89K

such oscillator to be predicted. The importance of this
equation is that it linearizes the nonlinear regenerative
waveforms in the oscillator. Further, it suggests those cir-
cuit topologies which promise low jitter, as demonstrated
by an experimental prototype, whose jitter was measured
to be 1.5 ppm at 1 kHz.

APPENDIX I

Effect of Noise Current Through the Timing Capacitor

In the schematics of Fig. 1 and Fig. 2 it can be seen that
noise in the current sources appears directly in series the
timing capacitor. In practice, these current sources are
almost always active sources whose noise can be repre-
sented by a band-limited output noise current generator
/wc(f). The capacitor then acts as a low-pass filter and the
contribution Vnc from Inc to the equivalent input noise
voltage Vn of the oscillator (see Fig. 10) is

vM-lf'Ut)* (AI)

where tr is the time during which Inc charges C. If Inc is
subject to a single-pole frequency roll off with bandwidth
B and flat spectral density Snc(f\ then it can be shown
that [11]

(Vnc)(rms) = ±{sJJjxft; (A2)

where it is assumed that tr » \/B.
The rms ncise contribution in Vn due to Inc as given in

(A2) can be compared with the contribution Vnn from /„ at
the collector

(FnJ(rms) = (/J(rms)K.

The relative importance of these two terms is now ex-

"~T~ I

Fig. 18. Grounded capacitor oscillator's Schmitt trigger using MOS
transistors.

amined. Taking some typical values, if 1 mA current
sources produce the shot noise,

Swc(/) = 3.2X1O-22A2/Hz

and if tr = 1 ms and C = 0.5 JAF, then from (A2)

(Kwc)(rms)=l.lXl0-6V.

In comparison, when /„ is the shot noise in 1 mA of dc
current, and it is band-limited to 16 MHz by the circuit
capacitances, then R = 500 Q gives

(FnJ(rms) W3.2XHT22 X16X106 X500

= 36xlO~6V.

Thus Vnc <?c Vnny and the difference is even larger when
additional contributions to Vnn are considered.

APPENDIX II

Noise in an MOS Grounded Capacitor Oscillator

A simplified circuit of a grounded capacitor oscillator
consisting of only the timing capacitor and the Schmitt
trigger is shown in Fig. 18, where the latter uses MOS
active devices with square law characteristics. The current /
through device Ml is driven by the capacitor voltage and
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makes the Schmitt trigger approach its regeneration
threshold. The noise in the circuit is represented by the
equivalent source Vn, and adds to the timing capacitor
ramp in the manner of Fig. 10; it could equally well have
been represented as a noise current source within the
Schmitt circuit.

The circuit equations are as follows:

Ft I I \l/z

-^• + K-vGSi + vs^vT + \[^ +vs (Bi)

/ / -l\x/1

Subtracting (B2) from (Bl)

^- + K-XV,
1/2

P '")

1/2

(B2)

(B3)

and differentiating (B3),

C dT
'n+XRdI l((P\1/2

 +

h-I

1/2^dl_

dt

(B4)

rewriting which

dl
dt

dt

±l(i\
2fi\\l)

,1/2

+
P

Io-I

1/2
(B5)

X/?!

The regeneration threshold IR = l/4/3\2Rf is the current at
which the denominator of the right-hand side becomes
zero. If this happens at t = T relative to some time / = 0,
then integrating (B5) from 0 to T gives

vK'^ + {K(T)-vM} (B6)

[4] M. G. E. Golay, " Monochromaticity and noise in a regenerative
electrical oscillator," Proc. IRE, vol. 48, pp. 1473-1477, Aug 1960.

[5] P. Grivet and A. Blaquiere, "Nonlinear effects of noise in electronic
clocks," Proc. IEEE, vol. 51, pp. 1606-1614, Nov. 1963.
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where VK is a constant voltage, depending only on the
circuit parameters. This is exactly the same equation as
(10), and gives the same result for jitter as (16).
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Abstract
In this paper the effects of thermal noise in transistors on timing
jitter in CMOS ring-oscillators composed of source-coupled dif-
ferential resistively-loaded delay cetts is investigated. The rela-
tionship between delay element design parameters and the
inherent thermal noise-induced jitter of the generated waveform
are analyzed. These results are compared with simulated results
from a Monte-carlo analysis with good agreement. The analysis
shows that timing jitter is inversely proportional to the square root
of the total capacitance at the output of each inverter, and
inversely proportional to the gate-source bias voltage above
threshold of the source-coupled devices in the balanced state. Fur-
thermore, these dependencies imply an inverse relationship
between jitter and power consumption for an oscillator with fixed
output period. Phase noise and timing jitter performance am pre-
dicted to improve at a rate of 10 (IB per decade increase in power
consumption.*

I . Introduction

Ring oscillators are widely used in phase-locked-loops (PLL) for
clock and data recovery, frequency synthesis, clock synchroniza-
tion in microprocessors, and many applications which require
multi-phase sampling [1] [2]. In many such applications, clock sig-
nals are generated to drive mixers or sampling circuits in which the
random variation of the sampling instant, or jitter, is a critical per-
formance parameter. In some applications the frequency domain
equivalent of jitter, called phase noise, is important. A block dia-
gram of a typical PLL using a ring-oscillator for multi-phase clock
generation is shown in figure 1. Jitter requirements in typical
applications range from on the order of 100 picoseconds r.m.s.
down to less than 5 picoseconds in very high-speed communica-
tions receivers, for example.

Jitter can arise from many sources, including inadvertent injection
of signals from other parts of the circuit through the power supply.
However, interfering sources like these can often be minimized by
the use of circuit techniques such as differential implementations.
In a fully optimized design the main source of timing jitter is the
inherent thermal and/or shot noise of the active and passive
devices that make up the inverter cell. 1/f noise is usually not of
practical importance since it is rejected by the PLL loop filter, and
does not effect the stage-to-stage delay in a DLL. Therefore mini-
mizing the impacts of thermal and shot noise in the basic inverter
cells becomes the key to attaining low timing jitter.

Data or
Crystal ,
Ref- »NPhase

TDetectoi

Figure 1. Ring-oscillator phase-locked-loop with multi-
phase sampling

This paper attempts to determine analytically and through simula-
tion the relationship between the design parameters of the inverter
cell used in the ring-oscillator and the resulting noise-induced jit-
ter. The class of circuits analyzed is source-coupled differential
delay cells with resistive loads, implemented in CMOS technol-
ogy, where the loads are realized by PMOS transistors in the tri-
ode region (figure 2). This particular implementation has proven
useful in practical applications because of its high speed and
rejection of supply noise [1]. In this paper we will first consider
jitter for the individual delay stages in a ring-oscillator, and then
look at the implications for design of the overall ring-oscillator
phase-locked-loop.

II. First Order Timing Jitter Analysis
The period of a ring-oscillator is determined by the number of
stages in the ring and the delay for each stage. Accompanying
each cycle of oscillation is a random timing error due to noise.
The goal of this section is to determine the contribution of thermal
noise sources in an ECL type inverter circuit, like that shown in
figure 2, to the timing jitter of the ring-oscillator.

In this analysis, each inverter stage in a ring-oscillator is assumed
to contribute a nominal time delay, td, and a timing error, A t , to
each cycle of oscillation. The timing error has a mean of zero and
a variance denoted by A t y-. To first order, the delay per stage is
measured from the time when the outputs begin switching to the
time when the differential output reaches zero, as illustrated in fig-
ure 3. With this assumption the nominal delay per stage is given
by

CL
(1)

1. Research supported by NSF, ARPA, and the California MICRO
Program

where fa I CL is the output slew rate and Vpp is one half the full
differential output swing. The load capacitance, Q , , is the total
capacitance at the output of each inverter.

The random component of the timing delay is estimated using the
first crossing approximation ([3]), illustrated in figure 4. Here, the
simplifying assumption is made that the next stage begins switch-

Reprinted from Proc. oflSCAS, June 1994.
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Figure 2. Differential delay cell with noise sources

ing when the differential output voltage crosses zero, and the error

in the actual time of crossing is the timing error passed on to future

stages in the delay chain. Figure 4 shows that an error voltage at the

nominal time of crossing shifts the actual time by an amount propor-

tional to the voltage error divided by the slew rate of the output.

Using this approximation, the timing error variance is given by :

r 2
AVsAvX^) (2)

The voltage noise variance in equation (2) is the sum of contribu-

tions of each of the thermal noise sources in figure 2. The contribu-

tion of these noise sources to the differential output voltage is

actually time varying in nature since they change as the circuit

switches. In this section the simplifying assumption is made that the

voltage noise variance will be the same as if the circuit where in

equilibrium. In this case traditional noise analysis techniques [4]

apply and the output referred voltage noise can be determined by

integrating the noise spectral density over the bandwidth of the low-

pass filter formed by the load resistor and the gate capacitance of the

next stage. If this result is combined with (2) and (1), the r.m.s. tim-

ing jitter error for one stage normalized to the time delay per stage

can be shown to be :

AT '"» - A v ' - _ f2kfm , /1 + 2 v . 1 (3)

Interestingly, the ratio of the timing error to the time delay per stage

is just given by the ratio of the r.m.s. voltage noise to the voltage

swing, VPp. The voltage noise has the familiar kT/C dependence,

and is proportional to another term called the noise contribution fac-

tor, £ . In this case £ = Jl -f (2 /3 ) (lv where eiy is the small-sig-

nal gain of the inverter. The NMOS noise contribution is given by

the second term in this expression and is proportional to the gain

since, for a fixed output bandwidth, higher gain implies higher

transconductance and hence a larger noise contribution. The PMOS

contribution is the first term which in this case is just one.

Gml,

Vol Vo2 Vo3

Gm2 nrx\
Figure 3. Output waveforms for CMOS inverter chain

Ax2 =
Av,,'

(Slew Rate)'

Figure 4. First crossing approximation for timing jitter

III . Second Order Analysis

The first order analysis neglects many important contributions to
noise. A more thorough analysis must consider the time varying
nature of the noise sources, the effects of the tail current noise
sources, and interactions between stages.

Time varying noise sources

The assumption that the voltage noise variance is the same as its
equilibrium value is not valid for the NMOS differential pair transis-
tors since each side switches from fully on to fully off, during which
the transconductance, and hence the noise contribution changes dra-
matically. Furthermore the tail current noise, although rejected by
the circuit when balanced, contributes to the output voltage noise
during other parts of the switching transient.

To simplify the analysis we break up the noise contributions into
two piecewise constant regions of operation, as shown in figure 3.
The tail current noise seen at the output is assumed zero while in
balanced mode (I), and fully on during the unbalanced mode (II).
The NMOS differential pair noise source contribution is approxi-
mately zero for the unbalanced mode1, and is approximated as con-
stant for the balanced region of operation. The contribution of the
triode-region PMOS noise sources is nearly constant for both. To
find the voltage noise at the output as a function the current noise
sources, analysis is carried out in the time domain using autocorrela-
tion functions and convolution. The result is a new noise contribu-
tion factor which captures the time dependence of the output voltage

noise.

$ = f^aAl-e-^)+^ave-"* (4)

This equation shows that as the circuit begins switching (t=0), the
diff. pair noise contribution (second term) rises exponentially from

1. In the unbalanced mode, one .vide of the differential pair is off, and the
other side's contribution is reduced by emitter degeneration.
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zero to its equilibrium value considered previously. The third com-
ponent of the noise contribution factor is due to the tail current noise
source and decays exponentially from its equilibrium value in the
unbalanced mode (II) towards zero when switching begins. It can be
shown that the time constant X is approximately equal to the time
delay of the stage, in which case the exponentials in this expression
reduce to constants at the time of interest, td. This means that the
noise contribution factor is relatively insensitive to most design
parameters except gain.

Inter-stage Interaction

Figure 4 shows that for a typical CMOS inverter chain the switching
times of adjacent stages overlap and there are times when more than
one stage is in the active region of amplification. In this case it is not
sufficient to consider the noise contribution of a single inverter
alone since noise from one inverter may be amplified and filtered by
the next stage, contributing to the jitter in the subsequent stages in
that manner. A better model is to consider two successive stages,
and determine the voltage noise at the output of the second stage
directly from the thermal noise current sources in the first stage.

V $ ^ l 2 vn22

yi^( t ) :Egds=^:L Vnl (pGmvnl^gds = =CL vn2

tiont as indicated by the top axes.

Figure 5. Extended circuit model for inter-stage interaction

Analysis for this case yields a slightly different noise contribution
factor £ than before, and an increase in the voltage noise variance
by a factor of 1/2 (av)

2. With some re-arrangement, the new normal-
ized timing jitter expression can be shown to be :

At 1 rms I
(VGS-VT)

(5)

This means the normalized r.m.s. timing jitter is actually given by
the ratio of the kT/C noise level to the gate bias voltage above
threshold for the balanced state, (VGS - VT). If the second term is
brought under the radical, then it is apparent that this fundamental
timing error can also be expressed as the ratio of the thermal noise
energy level to the electrical energy stored on the gate capacitance
of the next stage.

IV. Simulations

A monte-carlo approach to transient noise analysis was taken to
simulate the jitter performance of ring-oscillators in SPICE. This
approach includes the effects of time-varying transconductances and
inter-stage interaction. Figure 6 shows that, as expected, the normal-
ized timing jitter improves with the square root of CL. In the graph,
CL is scaled by changing the gate width. The gate width and current
are scaled proportionally so as to keep (V0S-VT) constant and fix
the delay per stage. Since the static power consumption is propor-
tional to Iss, jitter improves with the square root of power consump-

Power/Stage (mW) (Vdd=5 V)

200 on

*ti <D

5<L> 50

0,
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[for td = 178 ps/stage]

2x Jitter]

4x Power

MT "TOir -m
Gate Width (microns)

Figure 6. RMS timing jitter versus inverter size / power per stage

V . Design Implications

When designing a ring-oscillator, the parameter of interest is the jit-
ter per cycle of oscillation. The analysis to this point h*»s investi-
gated the intrinsic jitter per delay stage, and we now extend these
results to consider the jitter of the overall ring-oscillator. The jitter
per cycle of oscillation can be used to determine the total PLL jitter
for a ring-oscillator configured in a phase-locked-loop, and can also
be used to predict the oscillator's phase noise spectrum.

Cycle-to-cycle jitter

Suppose the goal is to design a ring-oscillator with a fixed period,
TQ, and minimal jitter. For an N-stage configuration the period of
the oscillator is given by 2ATX t^, and the total jitter variance for
once cycle of oscillation is given by 2tfxAxJ, provided noise
sources in successive stages are independent. Using the results of
the last section, the jitter per cycle of oscillation, or cycle-to-cycle
jitter, can be shown to be

A t ^ = A X ;
2 X — =

N I td

kT av^>
7^(vGS-vr)xrG

(6)

where the substitution 2N = TQ/ t^ is used so that the jitter can be
expresses as function of To, rather than N.

To design for low jitter, (VGS'^TN) should chosen as large as possi-
ble. The inverter gain term, (lv> is the result of inter-stage amplifica-
tion consideration. For designs where this is a factor (more true of
CMOS than bipolar), this implies that a for a fixed delay and fixed
current, the jitter improves with lower gain per stage. Inverter gain
must be kept greater than one, however, for oscillation to occur. The
noise contribution factor, £, is a weak function of most design
parameters except gain. For many CMOS designs, av is kept in the
range of 1.5-3, and ^ ranges from 1.3 to 1.9.

The main result of equation (7) is that with everything else fixed, the
timing jitter variance improves linearly with an increase in supply
current. Since power consumption depends on the quiescent current
level, this implies, at least for the class of circuits considered here, a
direct trade-off between power consumption and timing jitter.

193



Interestingly, the implications of equation (7) to first order do not
change with changes in supply voltage, technology scaling, and
configuration. If (VQS'VTN) is proportional to the supply voltage,
then for a constant jitter, decreasing the supply voltage requires
increasing the supply current by the same amount. This means that
the power consumption stays the same. Scaling of the gate length
gives access to higher speeds, but equation (7) shows that for a fixed
TQ, the jitter is proportional to the current itself, and does not depend
directly on the gate length. Velocity saturation effects have not been
neglected, to first order, either, since no form for the current equa-
tion has been assumed. Another interesting result, is that the jitter
variance does not depend on the exact configuration of the oscillator
itself. Each of the configurations in figure 7, for instance, have the
same period if inverters with the same (VGS - VT) and Iss are used;
but by equation (7), they also have the same jitter variance. Power is
minimized, in this case, by using the configuration with as few
delay stages as necessary.

4>4>H>->-CM>-L

T 2 C L T 2 C L T 2 C L

Figure 7. Multiple oscillator configurations with same period

Equation (7) shows that cycle-to-cycle jitter variance is proportional
to the period, To itself. A better figure of merit, however, is the jitter
normalized to the period of oscillation. The r.m.s. jitter as a percent-
age of the output period (Ax^rm5/7*0) actually varies as
1 / *JTO. This implies that higher frequency oscillators will have
poorer jitter for the same power consumption.

Overall ring-oscillator PLL Jitter

In a ring-oscillator the variance of the timing error relative to a fixed
reference transition, grows with each successive period of oscilla-
tion unless the oscillator is configured in a PLL. Analysis in [5] [6]
shows that the total r.m.s. jitter when locked in a PJJL will be a
times the cycle-to-cycle jitter, where a is a multiplying factor
which is inversely proportional to the bandwidth of the PLL. A
wider bandwidth PLL corrects timing errors more quickly, resulting
in a smaller overall jitter and an earlier roll-off point in figure 8. The
minimum practical value of a is limited by clock feed-through, and
other PLL design issues, a is typically in the range of 10-100. For a
delay-locked-loop [4], jitter is not accumulated between periods,
and a is effectively equal to one.

PLL BW«10KHz

PLL BW=100KHz

Nott
Scal(

• o 2 T 0 3T0

Figure 8. Jitter variance vs. time for reference transition at t=0

Ring-oscillator phase noise

Phase noise is an important figure of merit for oscillators used in RF
applications. An ideal oscillator spectrum is an impulse in the fre-
quency domain at the carrier frequency^. A real oscillator has its
energy spread over a narrow bandwidth around/#, and phase noise
is a measure of the noise power in a 1-Hz bandwidth at a frequency
fm , offset from the carrier, relative to the total power of the oscilla-
tor. Phase noise can be determined from ring-oscillator timing jitter
in a few ways. One way is to note that the accumulated phase error
is a Wiener process, in which case its power spectrum can be shown
to be a lorentzian. The other is to relate the spectral density of the
normalized frequency fluctuations to the instantaneous error in the
period of oscillation, (Ax / JQ ), and then use the relationships in
[4] to arrive at the spectral density of phase fluctuations. With some
re-arrangement of terms, the phase noise spectrum can be shown to
have the following form :

_ h (Lxrms

•'m
l0 / -

(f°) kTafi

^S^GS'^
(7)

The phase noise is related to the ratio of the offset frequency to the
oscillator frequency, and falls off at a rate of 20 (IB / decade for
higher offsets. For a given frequency offset from carrier, the phase
noise improves with higher inverter cell supply currents. Therefore
phase noise is expected to improve with power consumption at a
rate of 10 dB I decade.

VI. Conclusions
This paper has analyzed the relationship between design parameters
of ECL type inverter cells and the resulting thermal-noise-induced
jitter. The jitter per stage was shown to depend on the ratio of the kT/
C noise level to the (VGyVT) bias point. The cycle-to-cycle jitter of
a ring oscillator was shown to improve with larger bias currents and
the normalized jitter was proportional to 1/JTQ, indicating inher-
ently higher jitter for higher speeds. Finally, the overall jitter in a
PLL and the phase-noise of a ring oscillator were determined from
the cycle to cycle jitter, and phase noise was predicted to improve at
a rate of 10 dB / decade increase in power consumption.
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Phase Noise in Monolithic Voltage-Controlled Oscillators
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Abstract

In this paper, the phase noise of monolithic vol-
tage-controlled oscillators is formulated with the
aid of a linearized model. A new definition of
Q is introduced and three mechanisms leading to
phase noise are identified. A simulation tech-
nique using sinusoidal noise components is also
described.

I. INTRODUCTION

Low-noise voltage-controlled oscillators (VCOs) are an
integral part of high-performance phase-locked systems
such as frequency synthesizers used in wireless tranceivers.
While most present implementations of RF VCOs em-
ploy external inductors to achieve a low phase noise, the
trend towards large-scale integration and low cost man-
dates monolithic solutions. For example, ring oscillators
have been proposed as a suitable candidate [1], but their
phase noise is generally known to be "high."

This paper describes an approach to analyzing, model-
ing, and simulating the phase noise of monolithic VCOs,
with particular attention to CMOS ring oscillators. Fol-
lowing an analysis of a general oscillatory system and a
new definition of the quality factor, Q, we employ a lin-
earized model of ring oscillators to predict the phase noise
with reasonable accuracy.

II. GENERAL OSCILLATORY SYSTEM

Consider the linear feedback system depicted in Fig. 1.
The system oscillates at a; = wo if the transfer function

goes to infinity at this frequency, e.g., JEf(jwo) = —1.
(We call Wo the "carrier frequency.") The phase noise

X (/<•>) «(/<») K(/*>)

Fig. 1. General oscillatory system.

observed at the output is a function of: 1) sources of
noise in the circuit, and 2) how much the feedback system
rejects (or amplifies) various noise components. Modeling
each source of noise as an input, X(JOJ), to the system,
we first quantify the latter effect for frequencies close to
wo. If w = o>o + Au/, then H(ju>) w H(JWQ) + AwdH/du)
and the noise transfer function is

rr / - X A d H

Y H(ju>o) + Aw-j—

JU(«to + AU,)] = 4 ^ . (2)
X l + JT(iwo) + A w ^

Since H(JCOQ) = —1 and for most practical cases
\AwdH/du>\ < 1, (2) reduces to

^ ( l ^ + AftFj lw-^gr . (3)
AoJ-r—

du)
This equation indicates that a noise component at w =
w&+Au) is multiplied by —(AtvdH/du))"1 when it appears
at the output of the oscillator. In other words, the noise
power spectral density is shaped by

£[««, + £<•)] ' = 1-—l. (4)

This is illustrated in Fig. 2. As we will see later, (4)
assumes a simple form for ring oscillators.

w « 0 w co0

Fig. 2. Noise shaping in oscillators.

0)

To gain more insight, let H(JLJ) = A(w) exp[j$(u;)].
Thus, (4) can be written as

YU(«o + Aw)]
1

(A-PKa;)1+ <£)"]'
(5)

Reprinted from Proc. CICC, pp. 323-326, May 1995.
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We define the open-loop Q as

The open-loop Q is a measure of how much the closed-loop
system opposes variations in the frequency, as is better
seen when (5) and (6) are combined:

X
[j(u>0 + Aw)]

4Q 2*

1 - "o x2

AOJ r, (7)

a familiar form previously derived for simple LC oscil-
lators [2]. It is interesting to note that in an LC tank
at resonance, dA/du = 0 and (6) reduces to the conven-
tional definition of Q: wo(d^/du)/2. As will be seen later,
in ring oscillators dA/du) and d$/du> are of the same or-
der and only the more general definition proposed in (6)
can be used.

III. LINEARIZED MODEL OF CMOS VCOs
Submicron CMOS technologies have demonstrated po-

tential for RF phase-locked systems [3]. Fig. 3 shows a
fully differential 3-stage ring oscillator suitable for such
applications. To calculate the phase noise, we model the
signal path in the VCO with a linearized (single-ended)
circuit as in Fig. 4. Here, R and C represent the out-
put resistance and the load capacitance of each stage,
respectively, (R « l /g m 3 = l/0m4), and GmR is the gain
required for steady oscillations. The noise of each dif-
ferential pair and its load devices is modeled as current
sources /ni-/n3> injected onto nodes 1-3, respectively.

Before calculating the noise transfer function, we note
that the circuit of Fig. 4 oscillates if, at a>o, each stage has
unity voltage gain and 120° of phase shift. Thus, o>o =
-\/3/(JRC), and GmR = 2, and the open-loop transfer
function is given by

H(ju>) =
-8

U)
(1 + J V S ^ ) 8

OJQ

(8)

Therefore, \dA/du\ = 9/(4w0) and \d*/du\ = 3V5/(4w0).
It follows from (5) that if a noise current Ini is injected
onto node 1 in the oscillator of Fig. 4, then its power
spectrum is shaped by

Inl
\j(w0 + Aw)]

2 7 l A w ' " (9)

This equation is the key to predicting various phase noise
components in the ring oscillator.

IV. ADDITIVE AND MULTIPLICATIVE NOISE

Modeling the ring oscillator of Fig. 3 with the lin-
earized circuit of Fig. 4 entails a number of issues. While

Freq.
Control1

-+s*^ l -JV^"^ \-+*^ m
Output

(a)

HSTMSI
'DD

•Hi
' in

Freq. ° 1
Control o h

ss

(b)

Fig. 3. CMOS VCO. (a) Block diagram, (b) implementation of one
stage.

Fig. 4. Linearized model of the VCO.

the stages in Fig. 3 turn off for part of the period, the
linearized model exhibits no such behavior. Furthermore,
the dependence of the delay upon the tail current Iss is
not reflected in Fig. 4. In order to incorporate these
effects, we identify three types of phase noise.

A. Additive Noise

Additive noise consists of components that are directly
added to the output as shown in Fig. 2 and formulated
by (4) and (9).

To calculate the additive phase noise in Fig. 4 with
the aid of (9), we note that for u w WQ the voltage gain
in each stage is close to unity, and the total output phase
noise power density due to Jni-/n3 is

Ivi^K + Aw)]!2^^)2/*,
9 2wJ (10)

where it is assumed iJJi = n̂2 = n̂3 = n̂* F°r the
differential stage of Fig. 3(b), the noise current per unit
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bandwidth is equal to J* = %kT(gml + ffro3)/3 w SkT/R.
Thus,

|VUot[i(a»o + AW)]|2 = 8 f c T | ( ^ ) 2 . (11)

Additive phase noise is predicted by the linearized model
with high accuracy if the stages in the ring oscillator turn
off for only a small portion of the period. In a 3-stage
CMOS oscillator designed for the 900-MHz range, the
differential pairs turn off for less than 10% of the period.
Furthermore, at zero-crossing points —where most of the
phase noise is generated— all stages are on. Therefore,
the linearized model emulates the CMOS oscillator with
reasonable accuracy. A simple measure of this accuracy
is the error in the oscillation frequency of the model with
respect to that of the actual circuit. This error remains
below 10% for a 3-stage ring and 20% for a 4-stage ring.

Since additive noise is shaped according to (11), its ef-
fect is significant only for components close to the carrier
frequency.

B. High-Frequency Multiplicative Noise

The nonlinearity in the differential stages of Fig. 3,
especially as they turn off, causes noise components to
be multiplied by the carrier (and by each other). If
the input/output characteristic of each stage is expressed
as Vout = atVin + OL2V?n + a 3 ^ , then for an input
consisting of the carrier and a noise component, e.g.,
Vin[t) = Aocosuot + An cosu>nt, the output exhibits the
following important components:

Vaun(t) oc a2A0An cos(u>o ± un%
Vaut2(i) oc asAoAl cos(o;o - 2o;n)t,
Vout3(t) oc a3AlAn cos(2u>o - wn)t.

Note that Vouti(t) appears in band if a/n is small, i.e., if
it is a low-frequency component, but in a fully differential
configuration, Vouti(t) = 0 because c*2 = 0. Also, Vout2(t)
is negligible because An <C AQ, leaving Vout3{t) as the
only significant cross-product.

Simulations indicate that the feedback in the oscillator
yields approximately equal magnitudes for Vaata^t) and
the original component at wn. Thus, the nonlinearity
folds all the noise components below w0 to the region
above and vice versa, effectively doubling the noise power
predicted by (11). Such components are significant if
they are close to WQ and are herein called high-frequency

con co0 6) O)n G>0 20)0-0>n (0

multiplicative noise. This phenomenon is illustrated in
Fig. 5.

C. Low-Frequency Multiplicative Noise

Since the frequency of oscillation in Fig. 3 is a function
of the tail current in each differential pair, noise com-
ponents in this current modulate the frequency, thereby
contributing phase noise. Depicted in Fig. 6, this effect
can be significant because, in CMOS oscillators, WQ must
be adjustable by approximately ±20% to compensate for
process variations, thus making the frequency quite sen-
sitive to noise in the tail current.

HtL M4y
'DD

Fig. 6. Carrier modulation by tail noise current.

To quantify this phenomenon, we note that since vari-
ations in the tail current modulate the impedance of
M3 and M4, the resistor 12 in the linearized circuit can
be modeled as the sum of a constant term and a small
current-dependent term. It can be proved that if the
noise current In — Inocoso;nt, then two current com-
ponents described by ^Inocos(o/o ± <*>n)£ appear in the
signal path and hence are multiplied by the transfer func-
tion in (9). Thus,

\V I 2 - 5 ! f — \ 2 \ T I2 (12)

where Aw — wn. This mechanism is illustrated in Fig. 7.

ii k
o>o (0 <*>n (0

Fig. 7. Low-frequency multiplicative noise.

Fig. 5. High-frequency multiplicative noise.

It is seen that modulation of the carrier brings the
low frequency noise components of the tail current to
the band around o>0. Thus, flicker noise in In becomes
particularly important.

In the differential stage of Fig. 3(b), two sources of low-
frequency multiplicative noise can be identified: noise in
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Iss and noise in Ms and Me- For comparable device size,
these two sources are of the same order and must be both
taken into account.

V. SIMULATION

To simulate the phase noise in the oscillator and verify
the accuracy of the above derivations, we use a small
sinusoidal "noise" current that is injected onto different
nodes of the circuit. This approach is justified by the fact
that random noise can be expressed as a Fourier series of
sinusoids with random phase [4].

Designed to operate at 970 MHz, each oscillator is sim-
ulated in the time domain for 2 /xsec with 30-psec steps
and the resulting output waveform is processed by Mat-
lab to obtain the spectrum. Shown in Fig. 8 is the output
spectrum of the linearized model in response to a sinu-
soidal current with 2-nA amplitude at 980 MHz. The
vertical axis represents 10 log V?ms. The observed mag-
nitude of the 980-MHz component is in exact agreement
with (10).
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Fig. 8. Simulated spectrum of linearized model.

A similar test on the CMOS oscillator of Fig. 3 yields
the spectrum in Fig. 9. Note that the component at 980
MHz has approximately the same magnitude as that in
Fig. 8, indicating that the linearized model is indeed an
accurate representation. As explained in Section IV, the
960-MHz component originates from third-order mixing
of the carrier and the 980-MHz component and essentially
doubles the phase noise.

Low-frequency multiplicative noise is simulated by mod-
ulating the tail current of one stage in the CMOS oscilla-
tor with a 2-nA 10-MHz sinusoid. The resulting sideband
magnitudes, shown in Fig. 10, closely agree with (12).

VI. CONCLUSION

Analysis of a general oscillatory system leads to a lin-
earized model of ring oscillators that predicts the phase
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Fig. 9. Simulated spectrum of CMOS VCO.
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Fig. 10. Simulated spectrum of CMOS VCO with tail current noise.

noise with reasonable accuracy. Quantified in this pa-
per are three mechanisms, namely, additive noise, high-
frequency multiplicative noise, and low-frequency multi-
plicative noise, that contribute to the phase noise of os-
cillators. Simulations confirm the accuracy of the model
and the derivations.
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