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ASPECTS OF NUMERICAL

ANALYSIS

INTERPOLATION AND APPROXIMATION

1.1 Interpolation

There are many situations in which one is given the value of a quantity at
certain times and would like to say something about the behaviour at
intermediate times. For instance, from readings of an electric meter taken at
noon every day one might wish to make deductions about the consumption of
electricity at 9 in the morning. This is a problem of interpolation in which one
attempts to estimate from data at isolated points the form of a function at
intervening points. The same problem arises in the use of mathematical tables
when the value of a function is required at some point not listed in the table.

When all that we know about a function are the isolated data we can expect
that there will be different opinions on its performance in between. Suppose we
are given the values of fl9 f2 and f3 at x = xl9 x2, and x3 respectively (see Fig.
1.1). Then, a simple rule would be to join successive values by straight lines
and use these lines to tell us the value of/ in between. This is an approximation
/0 in which

/ o ( x ) = ^ Z ^ / l + ^ Z ^ _ / 2 (Xl*x*x2)
x2 — xt x2 — Xj

j2 _j y3 ^x2 ^ X ^ X$)
X 3 — X2 X 3 — X2

and, in general, if /„ is the value at xn

/ o « = ^ 1 — ^ / „ + -AZ^L_ fa+l (xB < x ^ xn+ ,)• (1.1)
xn + 1 ~~ Xn Xn + 1 Xn

Of course, some people will say that they are not willing to accept this
approximation because the derivatives are not continuous across the data
points but, for the moment, let us note that by combining the formulae (1.1)
we can obtain the approximation

foM = t BJx)fm {x^x^ xn) (1.2)

(*1

x3 — x X — X2

x <
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x, x2 x3

Fig. 1.1. Linear interpolation.

where

Bi(x) =

BJLx) =

x2 — x

x2 — * i

x — x7 1 - 1

Xn-X,-!

= 0

and, if m ^ 1 or n9

Bm(x) = 0

Y* vm - 1

-y

___ m+1 x

^m+1 ~ xm

= 0

(Xj ^ X ^ X2)

(x2 < x < xn),

(xx ^ x ^ x r t _ t )

(Xj ^ X ^ X m _ j )

(xm-i ^ x ^ x m )

( x w ^ x ^ x M + 1 )

(xm+1 ^ x ^ x j .

Each of Bl9..., #„ vanishes outside a finite interval and has the shape of either
a half triangle or full triangle (Fig. 1.2). For this reason the functions Bu . . . , Bn

are known as triangle or pyramid functions. So we could call (1.2) an
approximation to our function in terms of pyramid functions. It will be
necessary to consider more complicated expansions in order to meet some of
the conditions encountered.

2

x

f,

f*

u

f

(x2 < x < xn),

(Xn_! <X ^Xn)

(Xj ^ X ^ X r t _ t )

f\

Xm ~~ Xm-1

m+1 x

xm+l xm
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Fig. 1.2. Pyramid functions.

X 1 * 2 * m - 1 Xm *#n + 1 Xn^ Xn X

Suppose, now, that we are given the additional data of the values of the
derivative of/, say / i , f ' 2 , . . . at x — xu x2, It is immediately obvious that
the derivatives of /0 will not agree with the derivatives of / except in rare
circumstances. If we are to remedy this we need an approximation between xf

and xi+l which gives the correct derivatives and must therefore satisfy two
extra conditions. So our straight lines must be replaced by cubics, if we stick
with powers of x for our approximations. Let us try

y = a(x - xf)
3 + b(x - xf)

2 + c(x - xt) + d.

Then since y = /, and y' = f[ when x = xt we see that d = /, and c = /• . The
conditions >> = /J+j, / = / { + 1 at x = xi+1 then imply that

a(xi+1 - x(-)
3 + fc(xi + 1 - xf)

2 4- (xl+1 - xf)/,' + // = /i+i,

3a(x,+1 - xf)
2 + 2b(xi+1 - xt) + / ; = / { + 1 .

From these can be deduced

i(jc,+1 - xt)
2 = 3(/ i+1 - /,) - (/ ;+ 1 + 2/;)(xf+1 - X |) .

Therefore our approximation between xt and x (+1 can be expressed as

y = ««(x)/, + A(x)/»+, + y,(x)/l + ^ * ) / i + i
where

«iW = ,(X' + 1 X)' {(*i+i ~ xi) + 2(x - xf)},

AW =

Vtto =

(x i+1 - x , ) 3

(x ~ xf)
2

(Xl+1 ~Xi)

(xi+l -x)2(x-Xj)

(Xi+l-Xi)2

(x~Xj)2(x-~xi+l)

(Xi+1-Xi)2

{(x l+1 -x f . ) + 2(x l+1 - x ) } ,

3

BnBm,B^

1

a\xi+l ~~ xi) ~ \J i+ 1 ~^~ J i)\xi+ 1 ~~ xi) ~~ 2\Ji+l ~~~ Ji/f

8t(x) =
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•• x

Fig. 1.3. Cubic basis functions: solid curve, B^; broken curve, B{*\

By means of these formulae we can construct our approximation over the
whole interval as

/0(x) = £ {B£\x)fm + B<*Kx)fm} (x, ^ x < x.) (1.3)

where
B™(x) = 0

= j8M-,(x)

= ««W
= 0

(Xm_! «X<X m )

(xm^x^xw + 1)

(xm+1 <x^x n )

and JBj^ is the same with ym and <5m taking the place of <xm and pm respectively.
These formulae do not hold for m = 1 and w = n; the necessary modifications
are easy to carry out and are left to the reader. The behaviour of B™ and B™
when m is neither 1 nor n is shown in Fig. 1.3.

In both (1.2) and (1.3) the interpolant f0 consists of a series, each term of
which is the product of a given value such as fm or f'm and a function of x such
as Bm or B(

w
2). The given values occur only in the coefficients, the functions of

x depending only on the points which are selected for observation and not on
the values found there. For this reason the functions Bm, B{J;\ and Bff are
known as basis functions. In the following whenever we have an expansion
which has the form of (1.2) or (1.3) we shall call the corresponding Bs basis
functions whether or not they are polynomials.

So far we have discussed the two cases in which the Bs are linear and cubic
polynomials respectively in the interval (xm_ l 5xm + 1) and zero outside. These
are obviously particular instances of the more general situation in which B is
a polynomial of degree 2q ~ I in the interval and zero outside. The general
case is known as piecewise Hermite interpolation, the adjective piecewise being
incorporated to indicate that once we have partitioned our interval at the points

^m*1!*m*m-1

1

4

(*! ^X^Xm_i)
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x l5 x 2 , . . . the basis function is required to be zero on all of the sub-intervals
except one or two.

Suppose that we are given a function which, together with its first r
derivatives, is continuous for xx ^ x ^ xn. Such a function will be signified by
writing / e Cr[xl9 x j ; sometimes C° will be denoted by C. Also the brackets
will be dropped if there is no ambiguity about which interval is being referred to.

Now, if we have a polynomial of degree 2q — 1 it will contain 2q coefficients
which we can adjust. Consequently we can make it satisfy q conditions at x = xt

and q conditions at x = xl+1. Thus, if fe Cq~l[xhxi+1'] we can ask that the
polynomials p2q-i(x) satisfy

dxfc dxk

at both x = xt and x = xi + 1 for k = 0, 1 , . . . , q - 1. In this way we construct
a piecewise Hermite interpolant which agrees with a function and its first q — 1
derivatives at the points of observation. The corresponding basis functions can
be deduced as in the cases q = 1 and q = 2 which we have already discussed.

Of course, even if / or one of its derivatives is not continuous between the
points of observation we can use the same interpolant so long as there is
continuity near the points of observation. This is an example of approximating
a discontinuity by something continuous. Whether it is valuable or not will
depend upon the circumstances.

One plain disadvantage of this type of interpolation when q > 1 is its
involvement of the derivatives of / and the steadily increasing complexity of
the equations to be solved as q grows. One way of avoiding the derivatives of
/ is to ask that the derivative of the interpolant be continuous at the points
xl9 x 2 , . . . , x n_! but not to impose the additional restriction that it has the same
value as the derivative of / . So we can reduce the order of the polynomial to
2 and try

y = at(x - xtf 4- bt(x - x,) -f c£.

To satisfy y = ft at x = xf and y = fi+1 at x = xi+1 we need ct = ft and

at(xi+1 - xf)
2 4- bt(xi + 1 - x,) = fi+1 - f{.

If we substitute for bt from this relation we obtain

y = at(x - xf)(x - xI + 1) + / | + ( / i + 1 - /f)(x - Xi)/(xi + l - x,). (1.4)

The constant ax is at our disposal but must be such that the derivative of y is
the same as x approaches xt from above or below. Hence

at(x, - xl+1) +
 ft+i~ft = „,_,(*, - ,,_,) + AzAj . . (1.5)

xi+l — xt xf — xi-1

d*/_d*pa,_t(x)
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If xi+1 — xt = xt — x ,_ ! = /z this simplifies to

1

/r«i-i+fli = 72W+1-V'+ /'-i)- (L 6>

These equations hold at the n — 2 points x 2 , . . . , xw-i. Since there are n — 1
coefficients a, it follows that one can be chosen arbitrarily and then the
remainder are known from (1.5) and (1.6) as appropriate. It will be noticed that
the second derivative of y is 2at so that choosing one of the at is equivalent to
specifying the second derivative of the interpolant in a sub-interval.

An approximation of the form (1.4) subject to (1.5) or (1.6) is known as a
quadratic spline and xl9..., xn are known as its nodes or nodal points or knots.

The quadratic is the simplest of the splines. If we demand that the first and
second derivative be continuous at the internal nodal points we are led to a
cubic spline. It is easiest to work with the second derivative of the spline. Since
it will be a linear function we can ensure its continuity by adopting the form
(1.1) i.e.

d2y , xt+l-x x-Xi
• = 0 | + bi+lJ 2 ' !~1

0.X "^t+1 ^i *^i+l — ^i

for each of the intervals (xt9 xi+1). The coefficients b( will then be values of the
second derivative of the spline at the nodal points. For simplicity, it will now
be assumed that the nodal points are equally spaced so that xi + l — xf = h for
i = 1 , . . . , n — 1. Then an integration gives

and

dy __ 1 fc, 2 l b i + l 2
— - —• (X; + 1 — x) 4- - —-— (x — x f ) 4- ct

dx 2 h 2 h

y = IT ( x ' + i - x)3 -f - ~ ^ ( x - xf)
3 + ct(x - xt) + d(.6 h 6 h

To make dy/dx continuous at x = x{ we must have

— %bth 4- ct = \bth 4- Cf-j

while y — ft, fi + 1 at x = xh xi+l necessitate

/, = hbih2 + dt,

/i+1=ifef+1/J
2 + cift + </(.

From the last two equations we deduce that the cubic spline can be written as

6h l 6 hy - ^ ( « l + 1 - * ) 3 + I^±l (x-» l )3 + [il-'ZL (x i + 1-x)
(ft hbt\

+ (^-h^)(x-xi) (1.7)
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provided that

h1bi+l + 4bt + V i = 7i(/ f +i - Vi + /i-i) (1.8)

for / = 2 , . . . , n — 1. There are now n coefficients available so that two can be
selected arbitrarily and the rest are then determined by (1.8). Often, the choice
bt = bn = 0 is made.

These formulae can be combined so as to express the interpolant in terms of
basis functions. However, it is more convenient to proceed in a different way.
Let S,(x) denote the spline in (xh x r+J. Then S'j and SJ'_ x must agree at x = xt-
so that

s>; = s;'_ t + 6/w* - Xt)/(x,+l - x,)3. (1.9)

where f}t has to be found. Define the function x+ by

x + = x (x > 0)

= 0 (x ^ 0).

Thus [(3) + }3 = 27, { ( - 3 K } 3 = 0 whereas {t ~ 5)+ = t - 5 if t > 5 but 0 if
t ^ 5. Then applying (1.9) for i = 2 , . . . , n and using an equally spaced partition
with xl + 1 = ih we see that

S" = 2iS0//!
2 + 6/^x/fc3 + t Wi{x - (i - l)h] +/h3 (0 ^ x ̂  nh)

where the first two terms represent Si'. After two integrations we obtain

S = «0 + ai(x/h) + P0(x/h)2 + pt(x/h)3 + t /?,•{* - (i - \)h)Mh\ (1.10)
i = 2

By construction S and its first two derivatives are continuous: we make it take
the value fx at x = ift by requiring that

ao = /o>

«i + /»o + ft = / i ~ /o.

a0 + «im + j80^2 + Pi*"3 + Z W ^ — i + I)3 = /m (n ^ m ^ 2). (1.11)
f = 2

Let us use the central difference operator d, defined so that

Vto = fix + ifc) - /(x - ifc).

Then «/(ifc) = f(h) - /(0) or <5/1/2 = ^ - /0 . Similarly

t2fm = fm+i-2fm + / - - 1 .

7
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Our equations can now be written as

«o = /o, «i + Po + /», = V1/2. 2po + 6pl+p2

6P, + 5j?2 4- jS3 = <53/3/2, / U 2 + 4 / ^ . 2 -f ft, = 54/m

(m = 2 , . . . , n - 2 ) (1.12)

which are (n + 1) equations governing the (n 4- 3) coefficients a0, a t, /Jo, . . . , /?„.
Two of these coefficients may be chosen arbitrarily and then the others found
from (1.11) or (1.12).

Once the eqns (1.11) or (1.12) have been solved the coefficients in (1.10) are
linear combinations of the values / , of / at x = ih. Accordingly, (1.10) can be
rewritten in the form

S=t fiCt(x) (1.13)
i = O

where the polynomials C,(x) can be determined. Clearly Ci(jh) = 0 (j ^ 0 and
Ci(ih) = 1 for /, j = 0, 1 , . . . , n. The functions Ct(x) are known as cardinal
splines. They can be regarded as basic functions for (1.13) but they are not
satisfactory for many practical applications because they are non-zero over
most of the interval.

To overcome this difficulty cubic splines which vanish identically outside an
interval of length Ah have been constructed. Consider the function B\ defined by

(1.14)

Notice firstly that B* vanishes identically for x ^ i' — 2 and is also identically
zero for x ^ / 4- 2. Also, since the first two derivatives of x+ are continuous,
the first two derivatives of B\ are continuous and, in addition, vanish identically
for x ^ i - 2 and x ^ i 4- 2. Thus the B* are splines which are non-zero only
for the interval i — 2 < x < i + 2; they are known as cubic B-splines and each
forms a bell-shaped curve.

Special consideration may have to be given to the B-splines to be used at
the ends of intervals. Often one will wish them to be lop-sided in order not to
stray outside the given interval; sometimes taking half a bell is satisfactory.
(There is additional information about B-splines in §6.8.)

One reason why splines may be preferred to the polynomial approximations
described earlier in this section is that the latter are subject to the Runge
phenomenon. If one is given a function and, in a definite interval, one seeks to
improve the approximation by increasing the number n of points where the
given function and approximant agree, one finds that, although the separation
between the points of agreement decreases, the maximum difference between
the given function and approximant increases and, in fact, becomes infinite as
n -> oo if the length of the interval exceeds a certain quantity. By using different

BXx)=mx-i + 2)l-4(x-i+l)i + 6(x-i)3
+-4(x-i-l)l+(x-i-2)H
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polynomials in adjacent intervals as when splines are employed this difficulty
can be overcome.

It is, of course, possible once the splines have been constructed with
specified knots to ask that the given function be matched not at the knots but
at some data points chosen in some convenient way. For quadratic splines the
error between the given function and approximant tends to have a ripple on it
when the data points coincide with the knots. If, however, the data points are
midway between the knots the ripples die away, effectively by a factor of 6, as
can be seen from the parabolic shape of cardinal spines. (For further informa-
tion on splines see Ahlberg, Nilson, and Walsh (1967). Extensive tables of
coefficients are given by Sard and Weintraub (1971).)

1.2 Inverse interpolation

Frequently, the problem of determining where a function takes a specified value
is met. In other words, given y find an approximate value of x such that /(x) = y
when / is known only for certain values of x, perhaps corresponding to entries
in a table. One method is to construct an interpolating polynomial p(x) and
then solve

p(x) = y (1.15)

This is known as inverse interpolation.
Inverse linear interpolation occurs when p(x) is chosen to be linear. In this

case, the table is first inspected and two consecutive entries xt and x2 are
determined between which x must lie. Then define

p(x) = {(x2 - x)f(xx) + (x - x1)/(x2)}/(x2 - Xl)

and the solution of (1.15) is

x = [ { / ( x 2 ) - y}Xl + {y- Rxx)}x2-\l{Kx2) - / ( * , ) } .

If p(x) is not chosen to be linear then more complicated methods must be
used to solve (1.15). Examples are Muller's method, the secant method, the
method of false position and the method of bisection described in §1.8.

An alternative way, if the function inverse to / is known, is to carry out
interpolation on the inverse function. In general, this will be less reliable than
inverse interpolation on / because, although a polynomial may well be a good
approximation to / , there is no guarantee that the inverse function can be
represented equally well by a polynomial. For example, if /(x) = x2 the inverse
function x = Jy does not have a good representation as a polynomial near the
origin x = 0, y = 0.

1.3 Interpolation in two dimensions

The problem of interpolation in two or more dimensions is much more
complicated than for one variable. In part, this is due to the fact that functions
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(x3,y3)

(x*,yz)

(*i,Ki)

Fig. 1.4. Triangular interpolation.

may be specified on domains of highly irregular shape. It is usually assumed
that any shape likely to arise in practice can be approximated to as high a degree
of accuracy as required by a network of standard shapes, e.g. triangles or
rectangles, provided that they are made sufficiently small. Therefore we restrict
our attention to such shapes.

Suppose that we want an approximation F to / (x , y) over the triangle shown
in Fig. 1.4 and suppose that F has the form

F(x, y) = a + fix + yy

i.e. we make a linear approximation. If we impose the condition that F and /
are to agree at the three vertices we discover that

F(x, y) = oc1f(xu y{) + a2 / (x2 , y2) + a3 / (x3 , y3)
where

^«i = x2y3 - x3y2 + (y2 - y3)* - (*2 - *3))>,

A(x2 = x3yt - xxy3 + (y3 - yx)x - (x3 - xx)y,

A(x3 = xty2 - x2yt + ( ^ - y2)x - (xr - x2)y

and A, twice the area of the triangle, is given by

A = (x2 - XiX)^ - yx) - (x3 - x ^ C ^ - }>i)-

Take another triangle with vertices (x^}^), (x2, y2) and (x4, y4) which does
not overlap that of Fig. 1.4 and find a similar linear approximation Fl to / over
this triangle. Then, since both F and Fx vary linearly along the side joining
(x l5 j ^ ) and (x2, y2), and have the same values at the two vertices, they must be
equal at every point of the side. In other words, F and Ft are continuous across
the common side. In this way, by selecting non-overlapping triangles to cover
the region of interest, we obtain a linear approximant which is continuous
throughout the region.



INTERPOLATION AND APPROXIMATION

Fig. 1.5. Interpolation on a rectangle.

11

If rectangular elements are employed (Fig. 1.5) we can try the approximation
F(x, y) = a + fix + yy + Sxy. If we require that F = / at the four vertices,
we have

F(x, y) = «! + j3i(x - x t) + yx(y - yx) + <5t(x - xx)(y - 3 )̂
where

*i = {/(^i + *, yi + *) - /(*i + K yd - f(xi9 yt + k) + f(xu yi)}/hk.

For fixed y, F is a linear function of x and, for fixed x, a linear function of
y. Consequently, F is known as a bilinear interpolant. On any side F depends
only on the values at the two vertices so that, for two non-overlapping rectangles
with a common side, the two bilinear interpolants take the same value on the
common side. Thus bilinear interpolants yield a continuous approximant over
the region covered by non-overlapping rectangles.

Exercises
1. The function f(x) has the values shown

X

0.1
0.2
0.3
0.4

/<*)

1.10517
1.22140
1.34986
1.49182

Using linear interpolation determine an approximate value for /(0.26).
2. If f(x) = 3x2 — 1 find a piecewise linear interpolant which agrees with it at x = 0,

0.1, 0.2, 0.3, 0.4, 0.5. What approximation to /(O.33) does it give?

(*vKi+rt) (x,+h,y,+k)

(*vKi) (x,+/i,Ki)

«i = /(*!, yd, Pi = {/(*! + *, 3»i) - /(*i, yi)}/*,

7i = {/(^i.3'i+fc)-/(Xi,>'1)}/fe,
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3. If /(x f) and / (x i + j) are increased by the small quantities et and £2 respectively, what
is the change to the value of the linear interpolant for /{K** + */+1)}?

4. If the approximation F is linear on [a, b"] and agrees with / at the end-points, show
that there is some c satisfying a < c < b such that f(x) — F(x) = |(x ~- a)(x — b)f"(c)
if / e Cx\a, b] and / " exists. What accuracy does this suggest for linear interpolation
in a table of (i) sin x, (ii) In x when x is given at intervals of 0.01 between 1 and 2,
while / is given to 5 decimal places?

5. Find a polynomial P(x) of degree 2 or less such that P(l) = 1, P(2) = 1, P'{\) = 1.
6. Show that there is no polynomial P(x) of degree 2 or less such that P(x) = a,

P(x + h) = b, P'(x + \h) # |(b - a).
7. For each of the functions (a) sin jnx, (b) tan"1 x, (c) (1 + x 2 )" 1 determine a single

polynomial and a cubic spline approximation which agrees over — 1 ^ x ^ 1 at
points separated by (i) 0.5. (ii) 0.25, (iii) 0.1, (iv) 0.01. Draw graphs of the original
functions and their interpolants.

8. For the function of g.l find x0 such that / (x0) = 1.3.
9. Show that, for linear interpolation on a triangle, OL1 4- a2 -f a3 = 1.

10. Prove that, in bilinear interpolation on a unit square, the basis function at an internal
node is given by

Bjk(x, y) = 0Lj(mx)ak(my) (1 ^ j9 k ^ m - 1)

where

a/x) = * - . / + 1 O ' - l < J C < 7 )

= 7 + l ~ x (j<x^J+ 1)
and is zero elsewhere.

11. If

r = O s = O

express the coefficients ars in terms of the values of F, dF/dx, dF/dy, d2F/dx dy at
(0,0), (0,1), (1,0), and (1,1).

12. If /(1,11) = 1, /(3,1) - 4, / ( I , 2) - 5, / (3 , 2) = 7 find the approximate value of
f(h I) by (a) triangular interpolation over (1,1), (3,1), (1,2), (b) bilinear interpola-
tion, (c) interpolation over a triangle formed from a side and two diagonals.

1.4 Approximation

How do we know when an interpolant is a good approximation to a function?
In a sense this question has no answer because what is regarded as good by
one person will be deemed unsatisfactory by another. Nevertheless, certain
measures of error have been introduced and once a particular measure has been
adopted we have decided on a criterion which determines whether some errors
are better than others.

One measure of the difference between two functions / and F over an interval
[a, ft] is provided by

sup | / (x)-F(x) | .

This is known as the maximum or uniform norm and measures the maximum

F(*,y)~ E I «r,*V
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Fig. 1.6. A possible deviation in
approximation.

Fig. 1.7 Comparison of norms.

deviation that occurs between the two functions. Another measure which is
often used is

[f {f(x)-F(x)}2dx
11/2

It is known as the L2 or least squares norm. The L2-norm estimates the total
deviation of/ from F over the whole interval. In Fig. 1.6 the maximum norm
has value d whereas, in Fig. 1.7, it has the greater value dv Therefore, if these
figures represent different approximants F to the same / , Fig. 1.6 will be
considered to be better than Fig. 1.7 as far as the maximum norm is concerned.
On the other hand, the L2-norm is larger in Fig. 1.6 than in Fig. 1.7 so that
Fig. 1.7 will be preferred on the basis of the L2-norm.

The maximum norm is the natural one if one wishes to be within an assigned
accuracy at every point of the interval. In general, there is little virtue in
arranging high accuracy throughout most of the interval with only moderate
accuracy elsewhere. It is better to have the difference / — F small over the
whole interval and making small oscillations through positive and negative values.

For the maximum norm there are two theorems related to approximation
and which will be quoted without proof.

THEOREM 1.4 (WEIERSTRASS). / / / e C [ a , b ] then, given any e > 0, there is a
polynomial pn(x) such that

IP-M-/(*)!<«
for x e [a, &].

-d -d

d

i

Xba
I

d

d,

x
ba
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THEOREM 1.4a. / / / e C[a, fr] and n is a given integer, there is a unique polynomial
pn of degree n or less such that

sup |pH(x)-/(x)|< sup \Qn(x)~f(x)\

for every polynomial Qn of degree n or less. The sup on the left is attained at
n + 2 points at least.

There is no algorithm for calculating pn in Theorem 1.4a in a finite number
of stages. If, however, we only impose the condition at a finite number of points
then we can construct an algorithm often known as the^im algorithm ofRemes.
Let us denote the set of points by S and select from them n + 2 points
x o , x 1 , . . . , x I I + 1 such that x0 < xt < • • • <xn + l.

Define

Xi^liixt-xj)-1 (1.16)

where the prime means omit j = i from the product, and then put

/i:1(-)%=-ni:1A(/(x(). o.i7>
i = 0 i = 0

Construct

p-w= i {IT ^-^Woo+(-)•<?}•
i = 0 0 = 0 Xj — Xj)

Then
?•,(*,) = / ( * , ) + ( - ) ' * (1-18)

for i = 0 , . . . , n. Also

Pn(*n + i) = ~ I ^{/(x,) + (-)'ff}M, + i
i = 0

= /(xn+1) + (-r+if/

from (1.17). Thus (1.18) holds for i = n + 1 as well and we have ensured that,
at n + 2 points, pw does not differ from / by more than \rj\.

Now check the other points of S. If the difference at them does not exceed
\rj\, then pn is the required polynomial. Otherwise find the point x' of S when
\pn — f\ is a maximum. If x{ < x ' ^ x f + 1 (f = 0, . . . ,w) replace xf by xr if
{Pn(^') - /(*')}{P«(*t) - /(X|)} > 0; otherwise replace xl + 1 by x'. If x' < x0 put
x' for x0 if {pn(x') - f(xr)}{pn(x0) - /(x0)} > 0; otherwise replace xn + 1 by x1.
Operate similarly if xr > xn + v Return now to (1.16) and repeat the calculation
with the new set of points. Proceeding in this way we shall, after a finite number
of steps (since there is a finite number of selections of n 4- 2 points), reach a
polynomial pn for which the inequality of Theorem 1.4a is valid at all points
of the set S.

Acceleration of the convergence may sometimes be achieved by the second

a^x^b a^x^b



INTERPOLATION AND APPROXIMATION 15

algorithm of Rentes. Since pn- f changes sign in each of the intervals
[x0, x j , [x1? x 2 ] , . . . , [xw, x n + J it has at least one zero in each interval. Let yt

be a typical zero in [xh xi+J. In each of the intervals [a, y0], [j/0, J /J , . . . , [yn9 b"]
find a value of x, say z{, where /?w(Zf) — f(zt) is an extremum and has the same
sign as /(x,). If, for some zh

l p ^ ) - / ( ^ ) l = max|pn(x)~/(x)|

work with the set z0 , . . . , zn+19 otherwise find x' so that

|pB(x')-/(*') = max |pn(x)-/(x) |
xeS

and replace one z{ by x; as in the preceding paragraph.

Exercise
13. Construct a computer program to carry out the first algorithm of Remes and use

it to determine some best approximation over a finite set of points.

1.5 L2-norm approximation

The determination of the best polynomial in the L2 or least squares norm
involves considerations which are more conveniently handled in a rather more
general setting. If jb

a \f\
2 dx exists we write / e L2(a, b) or, more briefly, / E L2

when no confusion can arise.
When / e L2 and g e L2 we can introduce the inner product (/, g) by

r'9)-f(f,g)=\"fg*dx (1.19)

where g* is the complex conjugate of g. Although we are only concerned with
real functions at the moment, complex-valued ones will occur later and it makes
little difference to the analysis to cover both cases at once.

We may verify that the right-hand side of (1.19) exists by deriving the Schwarz
inequality. Clearly

Wf\ + »\9\)2dx>0r
J aor

X2 P |/|2 dx + IXfx [b \fg\ dx 4- A*2 f * |#|2 dx ^ 0
J a J a J a

for any real X and \i. The inequality on the quadratic form can hold only if

(j Vsl dxj < j* |/|2 dx J V dx
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whence
rb 2 rt Cb

fg* dx < |/ |2 dx \g\2 dx
J a J a J a

which constitutes the Schwarz inequality.
The norm || / 1 | of / is defined by

11/11 =( / , / ) 1 / 2 . (1.20)
(When other norms are considered, a suffix will be added to this norm to
distinguish it from the others.) The norm is always positive unless/= 0 almost
everywhere. Further consideration of norms will be found in §1.11.

It will be remarked that, if c is a complex constant,

(cf,g) = c(f,g); (f,cg) = c*(f,g);

lk/ | |=|c | H/ll; (f,g) = (g,f)*. (1.21)

From the Schwarz inequality

l(/,0)KII/IMM|. (1-22)
Also

f" 1/ + g\2 dx = f" |/|2 dx + [" (fg* + f*g) dx + f * \g\2 dx
J a J a J a J a

by the Schwarz inequality. This may be expressed as

ll/ + ffll<ll/ll + IM|. (1.24)

On replacing / by ft - f2 and g by f2 - /3,

I I /1-/3IKII/1-/2II + II/2-/all- (1-25)

If the norm of / is regarded as the length of/, (1.22) states that the modulus of
the inner product of / and g is never greater than the product of their lengths.
There is an obvious analogy with the scalar product of vectors and, if (/, g) = 0,
we often say that / and g are orthogonal Similarly, (1.25), expressed in terms
of lengths, is the same as the triangle inequality of vectors. The distance between
two functions fx and f2 is || fx — f21| and is zero only when ft = f2 almost
everywhere. Approximation in the L2-norm is an attempt to reduce the distance
between two functions to a minimum, distance being understood in the sense above.

An important role is played by orthogonal elements. Suppose there is a finite
or infinite set of functions </>l5 0 2 , . . . , of L2 such that

((/>„,(/>„) = 0 (m*n), (1.26)

( 0 n , 0 J = !!</>„ II2 = 1. (1.27)

c/rb \i/2 / rt Vi2)2

(1.23)
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Such a set is said to be an orthonormal set and (1.26) and (1.27) are often
abbreviated to (<£m, <£„) = Smn.

Suppose we want to approximate a function / e L 2 by means of an
orthonormal set 01} <£2,..., (j>N using the L2-norm. Then we wish to choose the
coefficients cn so that

/ - X>A
is a minimum. Now, on account of (1.26) and (1.27)

2 N

/ - I cA
11 = 1 « = 1

= ll/l l2- Z K/,*.)ia + Z l(/ ,^)-cj2 .
n = l » = 1

Only the third term contains the coefficients cn and, since no member of the
series can be negative, it attains its smallest value of zero when

*„ = < / , * • ) ( n = l , 2 , . . . , N ) . (1.28)

Thus (1.28) gives the rule for selecting the coefficients so that the norm is a
minimum. When this choice is made

n = l
l l / l l2- E K/.^)l2

«=i

The left-hand side cannot be negative and so

ll/ll2 > Z i(/,*.)ia> Z ic»i2
n = l n = l

(1.29)

(1.30)

which is known as BesseVs inequality.
An orthonormal set is said to be complete, if for every / e L2, there is a linear

combination such that the L2-norm of the difference is arbitrarily small. If
( / , <j)m) — 0 for every 4>m °f a complete orthonormal set all the coefficients cm

are zero so that the norm of the difference cannot be made arbitrarily small
unless / = 0.

There is no loss of generality in assuming that the number of elements in
a complete orthonormal set is infinite. Letting N -> oo in Bessel's inequality
(1.30), we obtain

I U,4>*)\2< ll/ll2
«=i

(1.31)

which shows that the series on the left-hand side is convergent. Therefore

I (/,&)& = I \(fAk)\
2

k = m II k = m

= ll/ll2 - I {«.*(/, <t>n) + cMn, f) ~ CnC*}
« = 1

JV 2

/ - I cA
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must tend to zero as m and n tend to infinity. It follows (from the Riesz-Fischer
theorem) that there is a g e L2 such that

lim
H-+OO

9- I (/,**)&
k = l

= 0.

From the Schwarz inequality (1.22)

Hence

\{g - j i (/> 0*)**, *«) < |.9 - ^t (/, **)**

(g, 0J = lim £ (/, &X&. 0.) = (/, K)-

Consequently, (g — / , 0m) = 0 for m = 1 , . . . and since the orthonormal set is
complete our earlier remarks entail / = g. We may summarize this by saying:
ifip!, (t>2, - - • is a complete orthonormal set every f e L2 can be expressed as

the equality being understood to mean that

lim / - I (/,&)&
fc=l

= 0.

It follows from (1.29) that, for a complete orthonormal set, / = Xfc°=i cit0fc
implies that

ll/ll2 = I \ck\
2. (1.32)

fc=l

If ^ = Zft°= i K<f>k and we apply (1.32) to / + g, f - g, f + ig, f - igf then, from
the identity

11/ + 9\\2 ~ 11/ - 0ll2 + i l l / + toll2 - i l l / - toll2 = 4 ( / , ^ ) ,
is derived ParsevaVs formula

k=i

Given a set of linearly independent elements \j/u ^ 2 , . . . which will approximate
any f e L2 arbitrarily close in L2-norm we can always manufacture a complete
orthonormal set by a method known as the Schmidt process. First define <pl by

</>i = <Ai/ll<MI.

Then pick <£2 = 02/II02II where g2 = \j/2 — (\//29 ^^(f)^ g2 cannot be zero because
i//! and \j/2 are linearly independent. Clearly (</>2> 0i) = 0. In general, <f>n = gj\\ gn ||

</,») = I ckbt.
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where

0n = ^n ~ tyn, 4>n-\)4>n-\ ~ (̂ «> fa-lWn-l 0An> 0l)</>l-

It is important to observe that in the whole of the preceding discussion
concerning the minimization of the norm we have not used the specific form
(1.19) but only properties of the inner product such as (1.20), (1.21), (1.22), and
(1.24). Therefore we can draw the same conclusions if the inner product is
defined in another way so long as it has the properties (1.20), (1.21), (1.22), and
(1.24). For instance, if we choose

(f,g)= I/(x()0*(x,)

for some fixed xt we can easily verify that the properties are valid and so we
may deduce that \\f - £?=i cn4>n\\ or Yfei l / fo) - Z"=i c,A(*,)l2 is a mini-
mum when

i=l

It is this kind of problem which arises in fitting data at a discrete number of
points by the method of least squares. Note that it is frequently a computational
advantage to employ orthonormal polynomials for least squares rather than
expansions in non-orthogonal functions because the matrices tend to be
diagonally dominant even when round-off error is present.

Another possibility is to take

f,g)= f(/,</) = w(x)f(x)g*(x)dx
Ja

where w is a real non-negative function. This corresponds to varying the
contribution from the various parts of the interval according to the weight
function w. In this connection there is the following interesting result:

THEOREM 1.5. If 4>u <f>2, - • • is an infinite orthonormal set of polynomials on the
finite interval [a, b] with weight function w, i.e.

I vv(x)(/)m(x)^(x)dx = 5wn,

then the orthonormal set is complete.

Proof Theorem 1.4 ensures that, for continuous / , there is a polynomial p(x)
such that

\f(x) - p(x)\ < e.
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The choice (1.28) guarantees a minimum of the L2-norm so that

f\v(x)/(x)- £ cAw'dxs? Pw(x)|/(x) - p(x)\2 dx
J a n—1 J a

provided that N is made larger than the degree of p. Since the right-hand side
does not exceed e2 J* w(x) dx and can be made arbitrarily small we have the
desired result. Since any / e L2 can be approximated as close as one wishes by
continuous functions the proof is terminated.

As an example let a — — 1, b — 1, and w = 1; first construct an orthonormal
set (which must be complete by Theorem 1.5) from the powers of x, i.e. with
\jj. = x

j~{. The Schmidt process gives

^ = 1/2^ * 2 = (3/2)1'2*, 03 = ( 5 / 2 ) 1 / 2 | ( 3 x 2 - l ) , . . . ,

which are multiples of the Legendre polynomials Pn(x) which are defined by
Rodrigue's formula

fi!2"dx"
The first few are

P0(x) = l, P1(x) = x, P2(x) = i(3x2 - 1), F3(x) = i(5x3 - 3x)

and they satisfy the recurrence relation

(n + l)PB + 1(x) = (2n 4- l)xPM(x) - nPn^(x)

and have the orthogonal property

J. Pm(x)Pn(x)dx = 25mJ(2n+l).
- 1

In practical calculation it may be more convenient to compute the $k via the
recurrence relations directly instead of deriving the analytical expressions first.

A second example is supplied by a = — 1, b = 1, w = (1 — x2)~1 /2 . Again we
start from the powers of x and find for our orthonormal set

0i = 1M1/2, 0 2 = (2/TT)1/2X, 4>3 = (2/TT)1/2(2X2 - 1) , . . .

which are multiples of the Chebyshev polynomials. The Chebyshev polynomial
Tn is defined by

7^(x) = COS(H cos"1 x)

nU — 7Y d"

= ^r?-(i-*2)1/2~[(i-x2r t /2].
(2n)\ dx

Some examples are
T0(x) = 1, 7i (x) = x, T2(x) = 2x2 - 1, T3(x) = 4x3 - 3x.

1 d"
Pn(x) = (x2 - 1)".
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The term of the highest power in Tn is 2n~lxn. The Chebyshev polynomial has
a celebrated property concerning the maximum norm, namely

THEOREM 1.5a (CHEBYSHEV). Of all polynomials of degree n in which the coefficient
of the highest power is unity the one with the smallest maximum norm on [— 1, 1]
fa Tn(x)/2n-1 and

||7;(x)/2M-1|loo = 1/2"-1.

Here the notation \\f\\^ is employed to signify the maximum norm, i.e. sup | / |
over the appropriate interval which, in this case, is [ - 1 , 1 ] .

Proof. Assume that there is a polynomial pn(x) of degree n and with leading
coefficient unity which is of smaller maximum norm than Tn(x)/2n~l. Let

q(x) = Pn(x)-Tn(x)/2n-1.

Then q is a polynomial of degree at most n — 1. Since pn has a smaller norm
than TJ2n~l, q must be negative at the maxima of TJ2n~l and positive at the
minima of Ttt/2

n~l. Now putting x = cos 0, rn(cos 0) = cos nO so that Tn(x) has
zeros at x = cos{(2/c — l)n/2n} for k = 1, 2,..., n and therefore possesses n + 1
maxima and minima on [— 1,1]. Hence q must vanish at least n times which
is contrary to its being a polynomial of degree n — 1. Thus the first part of the
theorem is proved and the second part follows from the form of Tn when
x = cos 0.

Another way of expressing Theorem 1.5a is to say that of all polynomials of
degree n with maximum norm unity on [—1,1], Tn(x) has the largest leading
coefficient, namely 2tt~~l.

Series of Chebyshev polynomials can be readily summed on the computer
by taking advantage of the recurrence formula

Tn + 1(x)-2xTn(x) + Tn^(x) = 0.

For instance, if

f(x) = £ anTn(x),
w = O

define bN+i = 0, bN~aN and then calculate bN^.l,...,bl from

bn = an + 2xbn+l -bn+2.

It follows from the recurrence formula for Tn that

f{x) = ao~b2 + btx.

The round-off characteristics of this method are no worse than those of
ordinary polynomial evaluation and the same number of multiplications is used.
In fact, the method can be used for any system of polynomials pn(x) which
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satisfies a recurrent relation of the form

Pn+iM - p(x)pn(x) + pH+i(x) = 0
by putting

K = flB + pbn + i - bn + 2

and then

N

n = 0

Any power series can be expressed as an expansion in Chebyshev polynomials
by employing formulae such as

i = ro(jc), x = 7Ux), x2 = i{r0(x) + r2(x)},

x3 = i{3r1w + r3(x)}.

It is often possible to reduce the degree of an approximating polynomial and
thereby economize in computation by implementing the properties of Chebyshev
polynomials. For example, if the function / is approximated by the polynomial
pn+1 where

pn+1(x) = a0 + axx + • • • + an+lx
n + 1

consider the polynomial pn defined by

pn(x) = prt + 1(x) - an + lTn + y{x)/2n.

Then pn is of degree n and

Pn - / = Pn + i - / - an + iTn + 1(x)/2n.

Thus the error in pn does not exceed that inpn + 1 by more than aB+ x Tn+l(x)/2n.
Since |rM + 1(x)| ^ 1 on [ - 1 , 1], this error can be quite small when an+l/2

n is
small enough. In other words, truncation of the power series by removal of the
higher powers by subtracting appropriate multiples of Chebyshev polynomials
can lead to an effective measure of economization.

Although the properties of Chebyshev polynomials have been described for
the interval [—1, 1] they can be extended to other finite intervals such as
[xi, x2] by first making the substitution

y = — 1 + 2
x 2 ~~ Xi

Exercises
14. Express 1, x,..., x5 in terms of Legendre polynomials.
15. Find the polynomial of degree 2 which gives the best L2-norm approximation to

e* on [0, 1].

N

Z "nPnto = (a0 - b2)p0(x) 4- ftjp^x).
n = 0
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16. The function / (x) was determined experimentally and found to have the following
values

x: 1.00 1.04 1.08 1.12 1.16 1.20
f(x): 8.41 8.63 8.82 9.00 9.17 9.32

Find the polynomial of degree 2 which gives the best approximation in L2-norm.
17. By making the substitution

(72 - l)y + 1

express tan" * y in terms of Chebyshev polynomials of x. If only those Tn are retained
for which n < 7 show that the recurrence relation method gives

tan~1(l/V3) = 0.5235986.

18. By starting from the Taylor series for e* up to powers of x5 show that Chebyshev
truncation leads to

e* = (382 + 383x + 208x2 + 68x3)/384

with an error of not more than one unit in the second decimal place on [ — 1,1].

1.6 Rational approximation

Although Weierstrass's theorem tells us that any continuous function can be
approximated as closely as we like on a finite interval, the degree of the
polynomial may be unduly high for a specified level of accuracy. Again, the
presence of a singularity in the complex plane near the real axis may render
polynomial approximation awkward. For these reasons it is worth considering
whether a rational function will give better accuracy as an approximant than
a polynomial. It has been suggested (see, for example, Hart et al. (1968)) that
for a given amount of computational effort rational functions give greater
accuracy than polynomials.

Consider the possibility of constructing a rational approximation to / in a
neighbourhood of the origin—there is no loss of generality in selecting the
origin since any other point can be converted to it by a simple change of
variable. We try pm(x)/qn(x) where pm and qn are polynomials of degree m and
n respectively, and are supposed to have no common zero since, otherwise, it
could be cancelled. One method of specifying pm and qn is to require that pm/qn

and its first m 4- n derivatives agree with / and its first m + n derivatives at
x = 0; it is then called a Pade approximant.

For example, for a Pade approximant to ln(l + x) with m = 2 and n = 2we
would want the coefficients in

(a0 + axx + a2x
2)/(b0 + bxx + b2x

2)

chosen so that the expansion of the rational function near x = 0 was the same
as x — x2/2 -f • • • . To put it another way we wish to make as many powers of

X =
(V2+l)y-l
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x disappear from

a0 4- aAx + a2x
2 — (b0 + bxx + b2x

2)(x — \x2 + • • •)

as possible. Therefore, select

« 0 = 0, ax = fc0, a2 = ftA - |fc0,

fr2 - i&i + &> = o, -i&2 + i * i - i * o = o

so as to eliminate powers up to and including x4; if we tried to remove x5 we
should find b0 = bt = b2 = 0 which is obviously unacceptable. Since we have
one more coefficient than equations we normalize by putting b0 — 1. Then
aA — 1, bl = 1, fl2 = 3, ft2

 = 6 a n d the Pade approximant to ln(l + x) is

x + £x2

1 + x + %x2

agreeing to powers of up to x4 in ln(l -f x).
Other Pade approximants can, of course, be constructed by choosing different

values of m and n but, as a matter of practice, it is usually found that the best
approximations are obtained by taking m = n or possibly m — n -f 1 provided
that / has a Taylor expansion at the origin.

An alternative form of rational approximation may be derived from Obresch-
koff's formula

V r .y* "!(m + i i - fc)! (* - *i)fe ,-w, v
kh

{ } {n-k)\{m + n)\ k\ J W

= y wl(m + w - fc)| ( x - x t )
f c

fcfo(n-/c)!(m + «)! ft! V* i ;

1 f*
+ (X _ tnx, - tyf<m+n+1\t) At(m + n)\JXl

K

which may be verified by integrating the integral by parts m + / i + l times. The
integral is effectively of order (x — x1)m + " + 1 and so can be ignored to a first
approximation; its explicit form can be used to provide an estimate of the error
made in such neglect.

As an example let / (x) = x" and xl = 1. Then, dropping the integral, we
have with m = n = 1

x" - | (x - l ^ x " " 1 = U | ( x - l)ju
or

x , _ 2-V + fix x

H + {2- ii)x

as a rational approximation valid near x = 1 for any real ju.
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Pade approximates usually become increasingly inaccurate as |JC| increases.
So attempts have been made to minimize \pjqn — f\ over an interval.
Something like the second algorithm of Remes (§1.4) can be constructed but
the algorithm may not converge if the initial approximation is not sufficiently
good and, in any case, the solution of non-linear equations is involved at each
stage.

A convenient method for evaluating rational functions is by continued
fractions, which may also arise in other contents in numerical work. (Expansions
for numerous functions in polynomials, Chebyshev polynomials, rational
functions, and continued fractions can be found in Abramowitz and Stegun
(1965).) To fabricate a continued fraction suppose we are given m/n. Divide m
by n; let ax be the quotient and p the remainder so that

m p 1
- = ai+

i- = a1+—.
n n n/p

Divide n by p; let a2 be the quotient and q the remainder; then

n a 1

p p p/q

Proceeding in this way we obtain

m 1 1 1
- = fll + _ = ax +n 1 a2+ fl3-f

a3 + • • •

More generally we can consider expressions of the form

ax a2bo +
&1+ &2 +

If the number of terms is finite it is called a terminating continued fraction.
Otherwise, it is called an infinite continued fraction and the terminating fraction

is called the nth convergent. If lim,,.,^ fn exists, an infinite continued fraction
is said to be convergent. It can be proved that, if at = 1 and the b{ are integers,
convergence is always secured.

If fn = AJBn it may easily be verified that

AH = bnAn-t+amAH-29 (1.33)

Bw = M n - i + « A - 2 , (134)

AA-i-A,-i£w = (-!)"

= fl,+ = a ,+

a2 +
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subject to A-i = 1, Ao = b0, 5_ t = 0, Bo = 1. Hence

fn+l-fn- ~-an+lBn-l(fn~ fn~l)/Bn+l-

If flj and b{ are all positive, (1.34) indicates that 0 < fln+iBn_1/JBn+1 < 1. Thus
fn + i ~ fn is numerically less than, and of opposite sign to, /„ — /„-!• Now, in
this case, b0 is less than the continued fraction since part is omitted while the
convergent b0 + al/b1 is greater than the continued fraction because the
denominator is too small. Following this route we conclude that, when the at

and bt are positive, every convergent of odd order is greater than the continued
fraction and every convergent of even order is less than the continued fraction;
moreover

fin + 1 < fin - 1» fin > fin - 2

so that the convergents of odd order steadily decrease while those of even order
steadily increase.

These properties make continued fractions very convenient for computation.
Since, for any rational function an equivalent terminating continued fraction
can be manufactured (clearly, a terminating continued fraction in which at and
b{ are polynomials is equivalent to a rational function), the continued fraction
may be evaluated more economically, as far as the number of arithmetical
operations is concerned, than calculating the numerator and denominator of
the rational function separately and then dividing.

For the conversion of series the following terminating continued fractions
may be noted:

1 1 1 , * . 1 b? b* b-
1 + b2 + b2b3 + ••• + b2b3 • • • bn =

(1.35)

I + 1 + ... + 1 . J * *i_. (1.36)
" l Ul Un Ui- II! + M 2 - ~ M n - l + "„

1 X X2 (-)V

__ 1 fl0^
 alX an-lX

aQ+ ax — x+ a2 — x+ an ~ x

Infinite series may be handled via

(1.37)

i>,,x« = -5L_J^ ^ (1.38)
n = o 1— 1 + o^x— 1 4- a 2 ^ -

where a0 = a0 , an = an/an_1 (n > 1). Alternate expressions can be derived by

I - b2 + I - 6 3 + 1 - -bn+ T

aQ aoax «o«ifl2 «o«i • • • an
+ +

>x
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using the fact that the nth convergent can be written as

for arbitrary non-zero ct.

Exercises
19. (i) Construct the Pad6 approximant with m = n = 2 for e* in the neighbourhood of

the origin.
(ii) Find the maximum norm of the difference between the Pade approximant

and e* on [0, 1]. Compare your result with the polynomial of degree 5 obtained by
the first algorithm of Remes with S the set 0(0.1)1.

20. Find the Pade approximants with (i) m = 2, n = 2, (ii) m = 3, n = 2 for sin x near
the origin.

21. Use Obreschkoff's formula to obtain the approximations

6(x + If
(i) ln(l + x) = - - ? - ^ (2x2 - 3x - 3),

. 1 * 2
1 + - x + —

1 - - X + —
2 12

near the origin. How does (ii) compare with 19(i)?
22. Find a, 6, and c so that

foe
max I , « +
nax ex

^ < i | 1 +
0<x<lI 1 + CX

is a minimum. Compare the corresponding Pade approximant with m = n = 1.
23. Calculate successive convergents to

(oz-f-l-LJLJ-1

6 + 1 + 1 + 1 1 + 2 '

,..- 1 1 1 1 1 1 1

2+2+ 3+ 1+4+ 2+ 6'

24. A metre equals 1.0936 yards. Find limits to the error in taking 222/203 yards as
equivalent to a metre.

25. Show that

X X2 X3

(1) t anx = ^ r — — • • - ,

(ii) in
 ! + x - 2x x2 ( 2 x ) 2 ( 3 x ) 2

n 1 -x~~ 1 - 3 - 5 - 7 -

Jn ~~ °0 « i , , , , ,
C1&1+ C2^2+ ^3^3+ C A

(ii) ex =
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26. The numerator and denominator of a rational function, both of degree n, are
expressed in terms of Chebyshev polynomials. Obtain the formulae converting it to
a continued fraction of the form

flo + _ _ * i _*? .

1.7 Trigonometric interpolation

The approximation of a function / on [0, 2n\ by a series of the form

N

2a0 + Z (an COS nX + K S*n nX)
« = 0

is a particular case of the general theory developed in §1.5. Nevertheless some
of the formulae are of interest and will be needed subsequently. By the general
theory the best L2-norm approximation to / is obtained when an = an and
bn = pn where

f(x) cos nx dx,f21

Jo

pn = (\/n) f(x) sin «x dx.
Jo

The coefficients an and J?n are, of course, those which would occur in
the infinite Fourier series representation of / . This infinite series may not
converge to / but, if / has only a finite number of discontinuities which are
finite jumps, the series converges to \{f(x + 0) -f /(x - 0)} at interior points
and i{/(0 4- 0) + f(2n - 0)} at x = 0, 2n (when / is piecewise smooth).
However, since at the moment we are concerned with finite trigonometric series
the problem of convergence does not arise.

Suppose now that we ask that the trigonometric expansion be specified not
by the L2-norm but by being required to agree with / at certain points. Let
the points be chosen as kh (k = 0, 1, . . . , M) where M is a positive integer and
h = 2n/M. Then we try to find an and bn so that

N

I
rt= 1

\a0 + £ (an cos nkh + bn sin nkh) =f(kh) (k = 1, . . . , M - 1)

= ±{/(0) + f(2n)} (/c = 0,M) (1.39)
Now

M pinft __ «i(M+l)nft
V f>inkh —

unless Qinh = 1. But ciMnh — 1, since n is an integer and so the series is zero if

a t 4- JC-f- a2 + x +

«. = (l/«)

1 - e'"*
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Qinh _£ i j£ however, e"1* = 1, each term in the series is 1 and so

£ Qinkh = M (if n/M is an integer)

= 0 (otherwise) (1.40)

since n/M being an integer is the condition for cinh = 1. If m and n are integers
we see from (1.40) that

£ eK«+n)M = M ( i f ( m + nyM i s a n integer)^
fc=i

M
£ e*(»-m)fc* = M ( i f (n _ myM i s a n i n t e g e r )

and otherwise the sum of each series is zero. With $ denoting the real part

cos nkh cos mkh = i«{e'(w+")fc* 4- e'
(""w)fc*}

and hence
Af

^ cos nkh cos mfc/i = 0 or \M or M (141)
k = i

according as (a) neither (n + m)/M nor (n — m)/M is an integer, (b) one but
not both of (n + m)/M and (n — m)/M is an integer, (c) both (n + m)/M and
(n - m)/M are integers.

Similarly, from

£ sin nkh sin mkh = @- J {ef(n-m)Wl - e
i<n+m)fc'1},

£ cosnfe/isinmfe/i = . / ^ £ {ei(w+m)k" - e*"-"1**}
fc=i 2fc=i

we deduce that

f sin nfe/i sin mkh = 0 or - J M or | M (1.42)

according as (a) both (n + w)/M amd (n — m)/M are integers or neither is,
(b) (n + m)/M is an integer but (n — m)/M is not, (c) (n — m)/M is an integer
but (n -f m)/M is not, and that

M

]T cos nkh sin mfeft = 0. (1.43)
fc=i

Multiply the fcth equation of (1.39) by cos mkh, where m is one of the integers
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0 , . . . , N, and add. Then

X fikh) cos mkh + i{ / (0) 4- f(2n)} cos 2nm

M ( N 1
== Z ) i^o + Z ( a n c o s "k'1 4- £>„ sin nfc/i) > cos wfcft. (1.44)

Suppose how that M is even; select N = | M . Then, from (1.40), (1.41), and
(1.43) the right-hand side of (1.44) is \Mam \lm^\M and MaN if m = \M = AT.
In a similar way the right-hand side of

£ /(fe/t) sin mfcft -f | { / (0 ) + /(2TT)} sin 2nm

M ( N ^
== Z ) 2 <*0 + Z (a» COS nkh + n̂ S i n "fe'1) f S*n 'Wfc'1

is |Mhm when m # 0, | M .
Thus the solution to our problem when M is even is

i V - l

\a0 + î yv c o s Nx + 5] (art cos nx + brt sin nx)
n = 1

where iV = £M and

flm = ~ Z f(kh) cos mkh, (1.45)

b« = ~ , l f(kh) sin mkh (1.46)

with the understanding that / (Mh) means i{/(0) + f(2n)}. It will be observed
that there is no other solution since the coefficients am and bm vanish when /
is zero in (1.45) and (1.46).

If M is odd, an analogous procedure gives the expansion
N

2^0 + Z (an c o s nx + bn sin nx)

where AT = \{M — 1) and the coefficients am9bm are still given by (1.45) and
(1.46).

The analysis of the inner product ]£/(x i )0*(x i ) in §1.5 demonstrates that,
not only does the trigonometric polynomial agree with the function at the
specified points, but also it is the same as would be obtained by the method
of least squares in fitting the data by a trigonometric polynomial of degree N.

Exercises
21a. Find the trigonometric interpolant on [0, 2TT] for f(x) = x with M — 4 and show

that it is badly in error at the end-points.
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27b. If/(x) = x(0 ^ x ^ 7c), = 2n — x(n ^ x ^ 2TT) obtain the trigonometric interpolant
when M = 3 and when M = 10. Compare the graphs of the interpolants with the
original function.

SOLUTION OF EQUATIONS

1.8 Solution of an equation

Often one is faced with the problem of finding the values of x which satisfy an
equation of the form

/(*) = 0. (1.47)

Such a value of x is called a root of (1.47) or a zero of / . Since the number of
equations which can be solved analytically is very limited, the devising of
numerical techniques is of paramount importance.

It is necessary to be aware right from the start that it will rarely be possible
to find the roots of (1.47) exactly by numerical methods. There are several
reasons for this. In the first place, unless / is a very elementary function, it will
usually have to be replaced by some approximant—perhaps one of the types
discussed in preceding sections. Such replacement is bound to introduce some
error. Secondly, any computation will usually involve round-off error. Thirdly,
any computer can carry only a certain set of rational numbers so that if the
root of (1.47) is not a rational number or is a rational number outside the
computer set its representation in the computer must inevitably be in error.

Given that these sources of error are virtually inescapable it is vital to arrange
that techniques produce answers which can be related to the roots of (1.47)
and, in particular, do not supply more or less zeros of / than were originally
present.

Suppose that / is continuous for a ^ x ^ b and that f{a) and f(b) have
opposite signs, i.e. f(a)f(b) < 0. Then we know that f(x) = 0 has at least one
root in [a, &]. In the bisection method we aim to locate a root by taking a
sequence of intervals, each half the size of the previous one and each containing
a root. The actual algorithm is:

Define a0 = a, b0 = b and then form the numbers au bu a29 b2,... successively
by the following procedure. Put

cr = \(ar^1 + fcr_!)

and calculate f(cr). If f(cr) = 0 then x = cr is the root sought. If f(cr) ^ 0
then either (i) f(cr)f(ar-1)>0 and then we define ar = cr, fer = fer_1, or
(ii) f{cr)f(ar. 0 < 0 and then we define ar = ar_ u br = cr. Stop the process when
\ar — br\ < e, where s is some pre-assigned number.

In general e is selected so that desired accuracy is attained or so as to keep
the number of iterations down to a specified level. The convergence of the
process is governed by Theorem 1.8.
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THEOREM 1.8. Under the conditions of the algorithm
(i) br - ar = (b - a)/T

and, ifx0 is the root of f(x) = 0,
(ii) |x0 - &ar + br)\ < \{br - ar) <(b~ a)/T+1.

Proof If (i) of the algorithm applies

br- ar = br_i - cr = i(&r_! - flr-i).

If (ii) applies

ftr - ar = Cr - ar_ t = i ( b r _ t - ar_ 0
so that there is the same connection between the lengths of successive intervals
in both cases. Part (i) of the theorem is an immediate consequence.

For part (ii) remark that

*o - 2<«r + br) = | (x 0 - ar) + i(x0 - br).

Now x0 — ar is positive and x0 — br is negative so that the right-hand side must
be less than | (x 0 — ar) and greater than | (x 0 — br). However, x0 < br so that
x0 — ar < br — ar, and x0 > ar so that x0 — br > ar — br. Thus the right-hand
side is smaller than \{br — ar) and larger than \{ar — br), i.e.

ko - K«r + K)\i\{br - ar).

The final statement in part (ii) follows from part (i) and the proof is complete.

Theorem 1.8 (i) tells us that successive intervals containing the root become
smaller and smaller so that the root can be placed to any desired degree of
accuracy. From (ii) we see that if the iteration is stopped when br — ar^e the
error in \{ar -f br) as an approximation to x0 does not exceed \z. Furthermore,
the number of iterations to achieve this accuracy satisfies 2r ^ (b — a)/e.

These conclusions and Theorem 1.8 assume that / is calculated exactly. As
we have already remarked this is not true in general. However, reasonable
results can be expected provided that e is not chosen too small, e.g. it must be
greater than the minimum distance between two consecutive numbers of the
computer set.

A variant of the bisection method is the method of false position. In this the
approximation cr+i to the root, instead of being taken as %(ar 4- br\ is chosen
as the point where the straight line joining (ar,f(ar)) and (br,f(br)) cuts the
x-axis in the (x, /(x))-plane. Consequently,

brf(ar) - n r / ( 6 r )
Cr+1 = 77-T r/, , - (1.48)

f(ar) - f(br)
Apart from this change the method of false position has the same procedure
as the bisection method. It can be proved that the method of false position
converges to a root under the same conditions as Theorem 1.8 but the
convergence is generally much slower than that for the bisection method.
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A relation of the method of false position is the secant method, in which a
sequence of points xi9 x 2 , . . . is generated via (1.48) so that

xr+1 = — _ - — — _ - _ — (i.4y;
/(*r)-/(*r-i)

with x t = a9 x2 = b. Here there is no requirement that f(a)f(b) < 0 but now
we have no guarantee of convergence. Indeed, if there is convergence, the
denominator of (1.49) must approach zero which can make for numerical
difficulty. There is, of course, complete failure if f(xr) =/(x r_1). On the other
hand, the secant method will, when it converges, usually do so faster than the
bisection method or the method of false position.

The iterative methods that have been discussed so far and those to be
mentioned subsequently are all of the type

x r + 1 =F(x r ) . (1.50)

If lim^^ xr = x0 and F is continuous in a neighbourhood of x0, lim,..,^ F(xr) =
F(x0). Hence, a convergent iteration with continuous F leads to a root of

x = F(x). (1.51)

Thus the main question is whether the sequence converges and the answer to
this may depend not only on the form of F but also the starting value xv

A somewhat stronger condition than continuity is to require

\F(x)-F{y)\^M\x-y\ (1.52)

which is a Lipschitz condition. If F is differentiate the mean value theorem
asserts that

F(x) - F(y) = F'(O(* - y)

for some £ in (x, y). Thus, if \F\^)\ < M,F satisfies the Lipschitz condition (1.52)
We now prove

THEOREM 1.8a. If F satisfies (1.52) for all x,y with M < 1 then (1.51) has a
unique root x0 and the iteration (1.50) converges to it for any xv

Proof From (1.50) and (1.52)

|xr+1 - xr\ = \F(xr) - F(xr_0l < M\xr - x,-t\ ̂  Mr~l\x2 - xx\

by repeated application. Hence, for any integer s ̂  1,

|xr+s - xr| ̂  |xr+s - xr+5_!| + \xr+s-x - xf+s_2| 4- • • • + |xr+1 - xr|

^ (Mr+S~2 + Mr+S~l + • • • + Mr~l)\x2 - xx\

^M'-^-xJ/O-M).

Since M < 1, the right-hand side tends to zero as r -> oo and therefore so does
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the left-hand side. But this is the standard Cauchy condition for the convergence
of the sequence {xr} to a limit x0. Because (1.52) implies that F is continuous,
x0 is a solution of (1.51).

To complete the proof it remains to show that there is no other root. Suppose
there were another root y0. Then

|j>o ~ *ol = \F(yo) - F(xo)\ < Af |y0 - xo|

from (1.52). On account of M < 1, the only possibility is y0 = x0 and the proof
is terminated.

The disadvantage of Theorem 1.8a is that it needs the Lipschitz condition
(1.52) to hold for all x and y. If we are prepared to assume that x0 exists in
some interval we can lighten this restriction.

THEOREM 1.8b. Let x0 = F(x0) and assume that (1.52) holds with M < 1 for
all x, y in the interval [x0 — a, x0 + a"] for some a > 0. / / x 0 — a < xi < x0 + a
the iteration (1.50) has the properties

(i) x0 - a < xr < x0 + a,
(ii) l i m ^ x , = x0

(iii) |x r + 1 - xo| ^ Mr|x2 - xx|/(l - M).

The result (i) ensures that all iterates stay within the given interval while (ii)
shows that the iteration converges to the root. An estimate of the distance of
an iterate from the root is supplied by (iii).

Proof. Assume firstly that, for some r, x0 — a < xr < x0 -f a. Then

|xr + 1 - xo| = \F(xr) - F(xo)| ^ M\xr - xo| (1.53)

from (1.52). Hence |x r + 1 — xo| < a. Therefore, if the result is true for r it is true
for r 4- 1. Since |x t — xo| < a9 the validity of (i) follows by induction.

Inequality (1.53) implies that

|x r + 1 - x o | ^ M r | x ! - x o |

whence lim^^, |x r + 1 — xo| = 0 and (ii) is proved.
Further

1*2 - *ol = |F(*i) ~ F(x2) + F(x2) - F(xo)\ ^ M\x{ - x2| + M\x2 - xo|

so that |x2 - xo| ^ M\xv - x2|/(l - M). From (1.53) | x r + 1 ~ x 0 | ^
Mr~l\x2 — xo| and the proof of the theorem is finished.

THEOREM 1.8C. If F is continuous and differentiate on [x0 — a, x0 + a] where
x0 = F(x0), and \F\x)\ ^ M < 1 then Theorem 1.8fe holds and

r~* C» %r Xn

lim
xr+l — x0

= F'(x0).
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Proof. We have already seen that the differentiability of F entails the
conditions of Theorem 1.8b so only the last part needs proof. Now

H m x r ± ^ 1 x o = H m F(xr) - FQcp) = F ( x o )

r-»oo %r XQ r-»oo Xf XQ

from the definition of a derivative and Theorem 1.8b (ii).
It should be remarked that Theorem 1.8c states that the iteration converges

if |F'| < 1 but this does not imply that the iteration diverges if |F'| ^ 1. In fact,
we could permit F'(x0) = 1 without invalidating the theorem. More generally,
if x - F(x) > 0 and F'(x) > 0 for a -f x0 ^ x > x0 then a + x0 ^ xr > x0 has
the consequence

xr+1 = F(x r )<x r

while the mean value theorem

xr+1 - x 0 = (xr - xo)F'(cr),

with cr between xr and x0, shows that xr+l> x0. Therefore, if a + x0 ^ xx > x0,
induction demonstrates that x o < x r + 1 < x r for all r. Thus the sequence
converges to a limit L ^ x0. By continuity, L = F(L) and so L = x0. Thus the
sequence converges to x0.

Similarly, the conditions F(x) — x > 0, F'(x) > 0 for x0 — a ^ x < x0 give a
sequence converging to x0 if x0 — a ^ xt < x0.

Newton's method for finding x0 so that /(x0) == 0 may be derived in the
following manner. Let xr be an approximation to x0. Then

f(x0) = f(xr) + (x0 - xr)f\xr) + i(x0 - xr?f"{xr + 6(x0 - xr)} (1.54)

where 0 < 0 < 1. lfxr is a good approximation to x0, x0 - xr can be expected
to be small and then, if/" is not too large, the last term can be neglected, i.e.

/(xo) « f(*r) + (-̂ 0 - xr)f
f(xr).

This will make /(x0) zero if

x0 - xr = -f{xr)lf\xr).

In other words, if xr is an approximation to x0, xr — f(xr)/f'(xr) should be a
better one. Calling this new approximation x r + 1we have the iteration formula

v - v _ f^Xr' (\ 55)
r+1 ' T&rY

Note that if xr converges we expect its limit to be a zero of / if / ' does not
vanish there. In fact, the iteration will converge to a multiple zero as will be
seen later.

Sometimes to simplify the computation f'(xr) is replaced by /'(*i) but we
shall consider only the form (1.55).
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The eqn (1.55) has the structure of (1.50) if

F(x) = x - f(x)/f'(x).
Hence

F\x) = f{x)f"{x)l{f\x)¥

and Theorem 1.8c tells us that Newton's method converges to a simple zero of
/ if \ff"lft2\ < 1 in a neighbourhood of the zero. Since / is small near zero,
the basic assertion is that the method will converge if xx is close enough to the
zero.

However, it must not be concluded that, if xx is closer to one zero than
another, the iteration will necessarily converge to the nearby zero. For example,
the iteration for

/(x) = (x - l)(x + I)3

will converge to - 1 if xx = J even though xx is closer to 1 than — 1.
A modification of Newton's method is Cauchy's method in which 9 is placed

equal to zero in (1.54). Then xr + 1 is chosen as the root of

|(x r + 1 - xr)
2f"{xr) + (xr+1 - xr)f\xr) + f(xr) = 0

for which x r+1 - xr has the smallest modulus. The obvious disadvantage of
Cauchy's method is that it requires the calculation of two derivatives as well
as the solution of a quadratic equation.

An iteration scheme which is a generalization of the secant method is Muller's
method. For this, three starting values, say xls x2, and x3, are necessary. Then
one constructs a polynomial of degree 2 which has the values /(xx), /(x2), and
/(x3) at xi9 x2, and x3 respectively. The polynomial has two zeros; choose the
one x4 for which |x4 — x3| is smallest. Then repeat the process starting with
x2, x3, and x4. The polynomial always possesses a root unless /(x r) = f(xr+ x) =
f(xr+i) when it represents a straight line parallel to the x-axis. Hence, provided
that this situation is never met, the iteration can proceed.

The advantage of Muller's method over Newton's is that no computation of
a derivative has to be undertaken. Also Muller's method offers the possibility
of finding complex roots, which are excluded by Newton's method when / is
real.

To discuss the convergence of an iterative process we say that, if

Hm !^LLZ_^! = b
r-*co \Xr Xo |

where b is finite and non-zero, the iterative method is of order p. If

supK+i-*ol=B

r^s \Xr Xo |
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we have
IY —. Y I < R I Y — Y \P
\xr + s+l x0\ ^ D\xr + s x0\

<B 1 + ' |x r + , - i -x o l ' a

and, continuing in this, we obtain

| x r + s + 1 - x o | ^Bc\xs+l - x o r r

where

c = 1 4-p + p2 + --- + P1""1.

If p = 1, c = r and

l*r + s+l - *ol ^ #1*5+1 - X0| (1.56)

whereas, if p ^ 1, c = (pr - l)/(p — 1) and

|x r + s + 1 - x o | ^ - ^ { i i i / c p - i ) ^ ^ - X o i r . (1.57)

It is evident that, if p = 1, convergence is relatively slow and only certain if
B < 1. On the other hand, if p > 1 and

| X S + 1 - X 0 | B 1 ^ " 1 > < 1

convergence will be very fast. Therefore iterative methods of higher order are
to be preferred from the point of view of speed of convergence.

A theorem on the order of an iterative procedure is

THEOREM 1.8d. Let limr_00 xr = x0 where xr+l = F(xr) and F is continuous on
x0 - a < x ^ x0 4- a (a > 0).

(i) lfF\x) exists on x0 — a < x < x0 + a and F'(x0) ^ 0, the iterative method
is of order 1.

(ii) / / F'(x0) = 0 and F"(x) is continuous on x0 — a < x < x0 + a, then the
iterative method is of order 2 if F"(x0) ^ 0.

Proof As in Theorem 1.8c

lim
Xr+l ~" X0

xr — x0

\F'(xo)\

so that, when F'(x0) # 0, the method is of order 1.
In case (ii) lim,..^ xr = x0 implies that all xr from some r onwards will

certainly lie between x0 — a and x0 + a. For such r Taylor's theorem gives

F(xr) = F(x0) + (xr - xo)F'(xo) + i(xr - xo)
2F\cr)
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where cr is between xr and x0. Since F'(xQ) = 0,

lim
r~*oo

xr+i ~~ X0

(xr — x0)
= lim

F(xr) - F(x0)

(xr - x0)2

= lim |iF"(c,)|
r~+oo

= l^"(*o)l

because F" is continuous and cr -> x0 since xr --> x0. Since F"(x0) ^ 0 the proof
of the theorem is complete.

In Newton's method F'(x0) = 0 and F"(x0) = /"(xo)//'(xo). Therefore, if
/"(x0) ^ 0, Newton's method is of order 2 for a simple root provided that / '"
is continuous on an interval including x0.

If x0 is a g-fold root where /(xo)=/'(*o)= ' • • =f{q~ 1 W = 0 but f{*Kxo)*0,
Newton's method may still be shown to converge when f{q) is continuous in a
neighbourhood of x0. First, observe that

_ (Xr ~ X0)f'(xr) - /(Xr)
X - 4. 1 X n — .

fix,)

By Taylor's theorem
/(Xr) - (Xr ~ X0Yf^lW,

/ '(x r) = ( x r - x 0 ) " - 1 / « ^ 2 ) / ( q - l ) !

where both ^ and <J2 He between xr and x0. Hence

As xr ~> x0, (Ji -* x0 and f2 -* *o s o that, from the continuity of f{q\

x r + 1 - x o » ( x r - x o ) ( l - i/q).

This demonstrates that the convergence is much slower than in the case of a
simple root and can be very slow indeed if q is large.

For a multiple root the convergence of Newton's method can be improved
by adopting the formula

xr + 1=xr-qf(xr)/f'(xr). (1.58)

Using the same technique as just above but taking one extra term in the Taylor
expansions we obtain

(x , -x o ) 2 / " + 1 ) (x o )
x '+1 Xo~ 7 + i /«'(xo)

X r + i •— XQ ~* \xr ~~ xo) 1 «/w«2)i'
/w«j)

«/w«2).

1
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so that the method is of order 2. However, one should be warned that if (1.58)
is employed near a simple root convergence may fail.

It can be demonstrated that the secant method is of order 1.62 approximately
and Muller's method of order 1.84 approximately.

A standard scheme for accelerating the convergence of an iteration procedure
is Aitkerfs 52-method. In this method, starting from xr, we generate yr+1 =
F(xr), yr+2 = F(yr+l) and then define

v _ „ Ov+2-.Vr+i)2
xr+l — yr+2 ; * •

yr+2 + xr~2yr+l

Analysis reveals that this scheme is of order 2 if F'(x0) # 1 and neither F'(x0)
nor F"(x0) is zero. If F'{x0) = 1 the scheme is of order 1.

Exercises
28. Use the bisection method to solve

(i) 8x3 - 4x - 5 = 0,
(ii) 2x = tan x,
correct to two decimal places.

29. On 0 ^ x ^ i f(x) = \ and on \ ^ x ^ 1,

f(x) = 6x - 1 - 6x2.

Obtain the value of cr+ x in the method of false position.
30. Solve 3 sin x = 2 correct to three decimal places by the secant method.
31. Use Newton's method to find yjl correct to 2 decimal places, starting from xl = 3.
32. Obtain by Newton's method a root of

(i) x3 - 2x2 - 5x + 10 = 0, starting from xx =* 3,
(ii) x3 - 6x2 + 13x - 9 = 0, starting from xt = 2.

33. Find the root of 27x3 + 18x — 25 = 0 between 0 and 1 using the iteration

x ^ ^ & t f - l S x , ) 1 ' 3 ,

checking whether Theorem 1.8c is satisfied. Is the iteration

x,+ 1 = (15-27x3)/18
better?

34. Examine the iterations
(i) xr+l = (xr

2 + c)/b,
(ii) xr+1=b -(c/xr)
as possible schemes for determining the larger root of x2 — bx -f c = 0 when b > 0,
\b2>c> 0.

35. What happens when Newton's method is applied to x2 — 2x + 2 = 0?
36. Solve x3 = 3 by Cauchy's method starting from xx = 3.
37. Find a root of sin x + 2 = x by Muller's method starting with Xj = — 1, x2 = 0,

38. If F(x) = x + h(x)f{x) find h so that the iteration method is of order 2.
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39. To calculate yja when a > 0 the following iteration is suggested:

x? + 3axr

xr+l = — — .

3xr
2 + a

Show that it is of order 3.

1.9 Systems of non-linear equations

The solution of simultaneous non-linear equations is complicated and we shall
be content to describe how Newton's method can be generalized. Suppose the
values of x and j ; are required which simultaneously satisfy

/ (x , )0 = O, 0(X,JO = O.

By Taylor's theorem, if we neglect second orders,

f(xr+1, yr+1) = f(xr9 yr) + (xr+1 - xr)fx + (yr+l- yr)fy,

g(xr+l,yr+1) = g(xr1yr) + ( x r + 1 - xr)gx + (yr+1 - yr)gy

where fx denotes the partial derivative df/dx and all the partial derivatives are
evaluated at (xr, yr). If we hope that (xr+u yr+1) is close to a zero we want the
left-hand sides to be zero. This can be arranged by putting

xr+i =xr + (gf,-fgy)/J9 (1.59)

yr+i = yr + (f0x-gfx)/J <i-«>)

where J is the Jacobian defined by

J = fx9y ~ fyQx-

Eqns (1.59) and (1.60) constitute the generalization of Newton's method to two
equations, all quantities on the right-hand side being calculated at (xr, yr).

MATRICES

1.10 Matrices

It is assumed that the reader has some acquaintance with the theory of matrices
so that the treatment here will be somewhat cursory (see, for example, Liebeck
(1969)). A general matrix consists of mn entries arranged in m rows and n
columns, giving an m x n array, to be denoted by a capital letter such as A:

l a l x a 1 2 ••• a l H \

__ <*21 a21 '" «2«
rx —

W l am2 "' amnl

Show that it is of order 3.
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The symbol atj denotes the element in the ith row and jth column and often
we shall abbreviate the notation by writing A = (#0).

The matrix is called square and of order n if m = n. If n — 1 so that the matrix
consists of a single column we shall call the matrix a column vector and signify
its special nature by using bold type, e.g.

lGl\
a2

a =

\aj
The elements au for i = 1, 2 , . . . , n in a square matrix are said to be the diagonal
elements.

The elementary rules of combination are:

A = B if and only if au = bVi all 1,7
A + J5 = (a0. 4- 6y),
a/1 = (aalV).

Multiplication of A and 5 is possible only if v4 has the same number of columns
as B has rows. If A is m x n and B is n x p then

the result being a n w x / i matrix. In general, two matrices do not commute, i.e.
AB 7̂  BA even if both are square.

The unit matrix I of order n is a square matrix all of whose elements are zero
except the diagonal ones which are unity. Thus AI = A.

The transpose of a m x n matrix A = (ay) is the n x m matrix whose i/th
element is ajf. The symbol AT will be used to indicate the transpose. Note that
the transpose aT of a column matrix will be a row matrix, i.e. a matrix whose
elements lie in a single row. There is no difficulty in verifying that

(A + Bf = 4 T + £T , G4T)T = ,4, (/15)T = J3T/1T.

If >4 is m x n and x is a column matrix with n elements Ax is a column matrix
whose ith element is

n

I <*ijXj.

Observe that xT^4T is a row matrix. If B is a n x m matrix such that BA = /
then B is called a left-inverse of A Similarly, if C is n x m and ,4C = / then
C is called a right-inverse of ,4. Suppose ^ is square and has both a left-inverse
and a right-inverse then

B = BI = (JBG4C) = (£A)C = IC = C.

lai\
a2

a =

w

*B = ^ E aikbk)j
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Thus there is only one left-inverse and only one right-inverse and both are
equal. This unique matrix is called the inverse of A and denoted by A"1. Clearly,

(>*-1)-1=/l, {AB)~l = B~lA-1

but, in general, (A + J5)"1 ^ A"1 + B~l.
A matrix is called symmetric if A — Ar and anti-symmetric if A = — AT. A

matrix such that A"1 ~ AT is known as orthogonal.
From now on we shall be concerned primarily with square matrices A. It

will therefore be assumed that A is square and of order n unless otherwise is
specifically stated.

It is known that the equations
Ax = 0

possess a solution with x =£ 0 if and only if det A = 0, where det signifies the
determinant of the matrix.

The quantities X{ such that
Axt = A,x, (1.61)

has solutions xf =£ 0 are called the eigenvalues of A. The Af are solutions of

det(/4 - A/) = 0

and are therefore n in number, though some of them may be multiple roots.
Since the determinant of the transpose of a matrix is the same as the determinant
of the original matrix

detO4T - XI) = 0.

Consequently, there are y,. ̂  0 such that

ATyj = Xjyj (1.62)

Hence A and Ar have the same eigenvalues.

Multiply (1.61) by yj and (1.62) by xj and subtract. Then

y]Axt - x]ATyj = A,yjx, - Xjxjyj.

The left-hand side vanishes and so

(A, - A,)yjxf = 0.
If A,- 7̂  Xj then yjxf = 0, i.e. the eigenvectors of A and AT corresponding to
distinct eigenvalues are orthogonal.

Moreover, the eigenvectors corresponding to distinct eigenvalues of A are
linearly independent. Suppose, to the contrary, that s are linearly dependent and
that any smaller number are linearly independent. Then

o^xt + • • • + asxs = 0 (1.63)

where all the <xt are non-zero. On multiplying by A we obtain

a l ^ l X l H + MsXs = 0.
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If A4 = 0, s — 1 vectors would be linearly dependent contrary to our hypothesis.
If At ^ 0 multiply (1.63) by kx and subtract; then

«2(A2 - Ai)x2 + • - • + as(As - Xx)xB = 0.

Since kt — Xx ^ 0 for i = 2 , . . . , s this gives a linear relation between 5—1
vectors. Again, a contradiction occurs and the statement is proved.

One consequence is that, if A has n distinct eigenvalues, y]xt ^ 0. For, if this
were not true, yt would be orthogonal to the n independent vectors x l 9 . . . , xff

which is impossible because yf ^ 0. It is therefore always possible to select y,
so that yjxi = 1.

Moreover, if A has n distinct eigenvalues, define X as the matrix with columns
Xf, i.e.

X — (xu x 2 , . . . , xn).

Then, with yt picked so that yjxt = 1,

JTN

^yV
because of the orthogonal relations. Hence

X AX = X (AJXJ, / 2 X 2 , . . . , Anxn)

= diag(A,.) (1.64)

where diag is used to denote a diagonal matrix, i.e. a matrix whose non-diagonal
elements are all zero.

Two matrices A and B are said to be similar if there is a non-singular matrix
R (i.e. detJR^O) such that B — R~iAR. Sometimes, A is said to have
undergone a similarity transformation. The eigenvaues of similar matrices are
the same because Ax = kx can be written as

(R-lAR)R~1x = lR~lx

showing that R~xx is an eigenvector of R~XAR.
What has been demonstrated above is, if A has n distinct eigenvalues, that

A is similar to a diagonal matrix whose entries are the eigenvalues of A. If A
is also symmetric then yt = xt. and X~l = XT so that, in this case, there is an
orthogonal similarity transformation converting A to diagonal form.

If A is symmetric with multiple eigenvalues it can be shown that there is still
an orthogonal similarity transformation which changes A to diag(Af). If,
however, A has multiple eigenvalues but is not symmetric the situation is more
complicated. What can be demonstrated is that there is a non-singular R such
that

R~XAR = J (1.65)

* - ' =
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where J is the Jordan canonical form of A and has the following structure: J is
a block-diagonal matrix

M \
o

\ V
where each Jt is either the number kt or a matrix of the form

/ *• • \
0

J i = ••. t (1.66)

0

which is an upper triangular matrix since all the elements below the diagonal
are zero. The Jordan canonical form is the most compact to which a general
matrix can be reduced by a similarity transformation. The same eigenvalue may
occur in different Jh but the total number of times that a given eigenvalue
occurs in the diagonal of./ is the same as the multiplicity of the eigenvalue.
The number of linearly independent eigenvectors of A is k, i.e. the number of
Jordan blocks in the canonical form. In particular, if J( is m{ x wi, and rf is the
ith column of R then rl5 rWl + 1 5 . . . , rmi + . . .mk_, + 1 are the eigenvectors of A.

If the elements of A are changed continuously, then det(/4 — XI) varies
continuously and so the eigenvalues of A change continuously. In general,
however, the eigenvectors do not alter continuously.

If p(t) = a0 + a it + • • * 4- amtm is a polynomial in t, a corresponding matrix
polynomial p(A) can be defined by

p(A) - a0 + a^A + • • • + amAm

where, of course, Ar — AAr~x. It is immediate that any eigenvector of A is an
eigenvector of p(A) with eigenvalue p(X(). If A has an inverse the eigenvalues of
A'1 are l/Xt.

If the elements of A are complex, the matrix A* is obtained by replacing each
element of A by its complex conjugate. Write AH — A*T. Then a matrix is said
to be unitary if AHA = /. It is called Hermitian if AH — A. Note that the
Hermitian matrices include the real symmetric matrices.

If k is the eigenvalue of a Hermitian matrix A so that Ax = kx then

xH,4x = kxHx. (1.67)

J —
J2

0

x>,
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Now (xH/4x)H = (xTA*x*)T = x"4Hx = xH>4x so that xHy4x is real. Since xHx
is real and non-zero it follows that A is real, i.e. the eigenvalues of a Hermitian
matrix are real. Furthermore, if xt and x̂  are two eigenvectors,

A,x"xf = xfAxt = (x"^x7-)
H = A/x^x,)" = Ajxfxt

from which we deduce that x^x* = 0, i.e. the vectors are orthogonal, if A, ^ Xj.
It can be shown that if A is Hermitian there is a unitary matrix U such that

C/H/4t/ = diag(Af). (1.68)

Moreover, the eigenvectors can be arranged to be mutually orthogonal.
Consequently, any vector y can be expressed in the form

n

Hence

since x"xf = 0 (i ^j) and the magnitude may be made to satisfy xfx( = 1. Put
the eigenvalues in order so that kx < X2 ^ • • • ^ Xn. Then

K t M 2 > y"Ay z ^ i \ai\\
i = l i = l

In other words, for arbitrary y,

^yHy ^ yH-4y > ^y"y (169)
when A is Hermitian and Alf Aw are the least and largest eigenvalues respectively
of A

A Hermitian matrix is said to be positive definite if

xHAx > 0

for every x ^ 0 and positive semi-definite if

xHAx S* 0

for every x ^ 0. A deduction from (1.67) is that a Hermitian matrix is positive
definite if, and only if, all its eigenvalues are positive. It is positive semi-definite
if and only if all its eigenvalues are non-negative.

A measure of the eigenvalues of a matrix is provided by the trace Tr A defined by

TvA =an + a12 + - - + am.
Obviously

Tv(kA) = kTrA, (1.70)

Tr(,4 + B) = Tr A 4- Tr B. (1.71)
Also

Tr(^)= t t aikhi= t t bkiaik = Tr(BA). (1.72)
« = 1 * = 1 fc=li=l
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A deduction from (1.72) is that

TriR-'AR) = TriARR-1) = Tr A.

It therefore follows from the Jordan canonical form (1.65) and (1.66) that

TrA = X1+Ji2 + -" + XH. (1.73)

Exercises
40. Find the eigenvalues, eigenvectors, and Jordan canonical form of

- 1 0 0\
/I 2\ /

(0
1

4

2\

3/
(ii)

V

1

1

0

1

- 1

- 2

41. If A and B are symmetric prove that AB is symmetric if and only if AB — BA.
42. Show that A and AT are similar.
43. If det A # 0 prove that AHA is positive definite.
44. Prove that the eigenvalues of Am(A -f ju/)"1 are AJ"(Af + fi)~l given /* ̂  ~hx for

any L
45. Prove that the eigenvalues of

/ 1 \
1 + ~-cos2 r + 1 - 2 r s i n 2 r + l

~2 r s in2 r + 1 1 - ~ c o s 2 r + 1

\ T I
are 1 + 2" r . Deduce that the eigenvalues tend to 1 as r ~> oo but that the eigenvectors
do not have a limit.

46. A is real positive semi-definite and R is an orthogonal matrix such that RTAR =
diagOi,-). If B = diag(7A.) and C = RBRT prove that C2 = A so that a square r<w£
of A may be defined as A112 = C.

47. Show that the Hermitian matrix A is positive semi-definite if and only if there is a
matrix B such that A = BBH.

48. Show that (i) Tr(AAH) > 0, (ii) if A is anti-symmetric Tr A = 0.

1.11 Matrix norms

The modulus of a complex number gives an idea of its size and it is desirable
to have a single number which plays a similar role for matrices and vectors.
This quantity will be known as a norm (see also §1.5). We define the norm in
terms of its properties, and not by means of a specific formula. In this way it
is possible to define many different kinds of norm associated with a vector. In
fact, any formula for the norm ||x|| of a vector x will be acceptable if it has the
properties

(a) ||x|| > 0 if x ^ 0; ||x|| = 0 only if x = 0;
(b) || ax || = |a| ||x|| for any complex number a;
(c) ||x + y | |< | |x | | + ||y||.
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If x has elements x1? . . . , xn standard norms are the lp-norms defined by

i/p

Wl, = I I Mp) ( U P < « ) .

The lrjo-norm is defined by

IIXIL = max |xf|

and corresponds to the uniform norm we have already considered.
Norms can always be obtained from inner products as we have seen in §1.5

and we now take this opportunity to define an inner product formally. An inner
product (x, y) is required to satisfy

(a) (x, x) > 0 if x # 0; (x, x) = 0 only if x = 0;
(b) (x,30 = (y,x)»;
(c) (x + y,z) = (x, z) + (y, z), (ax, y) = a(x, y).

An inner product supplies a norm via ||x|| = (x, x)1/2 and the Schwarz inequality

\(x,y)\^\M\\\y\\
always holds.

The /2-norm is often known as the Euclidean norm since it stems from the
inner product xHy. Note that in inner product notation

\HAy = (x,Ay) = (AH\,y).

A matrix norm can also be introduced by asking that it has the
properties

(a) \\A\\ > 0 if A # 0; \\A\\ = 0 only if A = 0;
(b) || ocv41| = |a||| ,41| for any complex number a;
(c) \\A + fl|| < M| |+ ||fl||;
(d) M0 | |<M| | | | 0 | | .

If || ||' is a matrix norm and || || is a vector form, the matrix and vector norms
are said to be compatible if

MxIKMHJxH (1.74)

A matrix norm can be constructed from a vector norm by defining

Ml |= sup \\Ax\\; (1.75)
l|x|| = 1

such a matrix norm is said to be subordinate to the given vector norm. It is
obvious that the subordinate norm is compatible. From (1.75) can be seen by
putting A = / that any subordinate norm has the property ||/|| = 1.

From now on the only matrix norm which will be considered is the one
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specified by (1.75). Corresponding to the vector /p-norms we have

11411!= max t |fly|, (1.76)
1 ^ j < n t = 1

MIL= m a x t l««l. (1-7?)
l^i^n7=1

IMIla = V/* (1-78)
where /t is the largest eigenvalue of AHA. Sometimes ||i4||2 is known as the
spectral norm of A. From (1.76) and (1.77) | |A|, = ||^LT||00.

To prove these results we remark that

Mxlli = E
i = l

I *U*J
7=1

n n

< Z E Kyllx.K I |x,l2>y|
I - 1 J - l J = l

^ ( m a x £ |fly|)||x||,.

This inequality shows that the norm certainly does not exceed the value given
in (1.76). Moreover, if

i K\
1 = 1

is largest when j = k choose xr- = 0 (i ^ fc), = 1 (i = k) and then the value in
(1.76) is actually attained and so (1.76) is proved.

The proof for || 4̂1| 00 is similar except that in the last stage, if

I Kl

is greatest for i = fc, we choose xt = flfc;/|afcI| (nfci # 0), = 1 (aki = 0) to achieve
the supremum.

For | |4| |2 we remark that \\Ax\\2 = (xHAHAx)l/2 and the result follows from
(1.69).

If A is Hermitian, (1.78) implies that

| | 4 | | 2 = max |Af|.

The spectral radius p(A) of a matrix is defined by

p(A) = max |Af|.

Thus ||X||2 = {p(AHA)}il2 which simplifies, if A is Hermitian, to | |4 | |2 = p(A).
In general, if x is an eigenvector of A,

Mx|| = ||Ax||=|A|||x||
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which demonstrates via (1.75) that \X\ ^ \ \ A \ \ , i.e.

P(A)<\\A\\ (1.79)

for any norm of A. However, if the norms are badly chosen the norm and
spectral radius need not be close; for example

lie : i -
but the spectral radius is zero. In contrast, it can be shown that there is always
some norm which is arbitrarily close to the spectral radius.

A useful theorem is:

THEOREM 1.11. l im^^ Ar = 0 if and only if p(A) < 1.

Proof It is evident from the Jordan canonical form that Ar can approach
the zero matrix if and only if each of its eigenvalues tends to zero. But its
eigenvalues are AJ which can vanish as r -> oo if and only if \At\ < 1 and the
theorem is proved.

THEOREM 1.11a. If p(A) < 1 then (I — A)~l exists and

(I-Ay1 = lim £ A1.
m-*ao i = 0

Proof Since p(A) < 1, / — A has no zero eigenvalues and so possesses an
inverse. Also

(/ - A)(l + /! + ••• + Am~l) = / -Am

and so
/ 4- A 4- • • • + A"1"1 = (I - A)'1 - (J - A)~lAm.

The result now follows from Theorem 1.11 by letting m -> oo.

It will be remarked that a sufficient condition for the validity of Theorems
1.11 and 1.11a is that \\A\\ < 1, on account of (1.79).

A matrix A is called strictly diagonal dominant if

r h / l < l * « l 0"=l, •.-,»)

where the prime on J] means omit the term; = i. The importance of this concept
arises from:

THEOREM 1.116. If A is strictly diagonal dominant then A"1 exists.

Proof Suppose there is x ^ 0 such that Ax = 0. Let xm = maxl3S/sSw \xt\.
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Then, from
n

X amjxj = 0,

we obtain

l O W = Z amJXJ ^\Xm\ Z \amj\

which contradicts the condition of strict diagonal dominance.

We can now prove:

THEOREM 1.11C (GERSCHGORIN CIRCLE THEOREM). Every eigenvalue of A lies in
one of the complex domains

\z ~ ati\ ^ ff \au\ ( i = l , 2 , . . . , n ) .

Proof Let X be any eigenvalue which does not lie in one of these domains.
Then

iA-*«i>rh/ i o'=i,...,«).

Hence A ~ U is strictly diagonal dominant and hence, by Theorem 1.116, has
an inverse. But this is impossible because k is an eigenvalue and the theorem
is proved.

One consequence of Gerschgorin's theorem is that

p(A) ^ min ( max £ \au\; max £ \au\).
\ I J j i J

Gerschgorin's theorem and (1.69) provide rules for locating the positions of
eigenvalues. While they may not always be very precise they do at any rate
limit the possibilities.

A type of matrix often encountered with difference equations is a Stieltjes
matrix which is a real positive definite matrix with all its off-diagonal elements
non-positive.

Exercises
50. Prove that HxlU ^ wML and ||x||2 < VrtllxlL.
51. If C/is unitary prove that (i) || t/x||2 = ||x||2, (ii) || C/̂  ||2 = ||^ ||2, (iii) || t7^L/H|!2 = ||>1|| 2.

fa 4\
52. If a is real and A = I I show that

VO a)
f 8r2 f / fl2\1/2]T/2

U'\W = a' 1 +
a1 1 + 1 +

a2"

4r2,
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53. Prove that maxla^l ^ \\A \\ 2 < n max|fly|, the maximum being taken over all i and;.
54. Prove Mill ^ M||,MIL.
55. If a is real show that the spectral radius and spectral norm of

/ l 0 «\

0 1 0

\0 0 1/

are equal only if a = 0.
56. Show that (i) lfi{(AHA)-1}rl<\*,\2<PWHA), (ii) JJ- i M 2 <ff i - i S - i K/H"2-
57. For the tridiagonal matrix

a b 0 0 ••• 0

c a b 0 ••• 0

0 c a b -•• 0

0 ••• c a b

0 • •• 0 c a

show that

A, = a + 2(6c)1/2 COS{;TT/(W + 1)}-

Check that this satisfies Gerschgorin's theorem.
58. In the tridiagonal matrix

\ 0 ••• dn.t an I

dt = (b,ct)
lf2 where btct>Q, a^lb^ + lc^^ (I = 2 , . . . , I I - 1 ) , fl^lM and flH>|cII_1|.

Prove that it is positive definite.

LINEAR EQUATIONS

1.12 Linear equations—direct methods

The solution of the system of linear equations Ax = b where A is non-singular
is simple in principle. In fact, the solution can be written as x = >4"1b. When
A"1 can be calculated easily by analytical means this is often satisfactory.
However, for numerical work, it must be recognized that simple analytical
formulae for A ~l usually involve the ratio of determinants and the computation
of determinants of order 4 or higher is a complex task. Therefore, if we are to
realize efficient numerical methods we must seek other ways of finding a solution.

<*! di •" 0

d i a 2 ••• 0

• • dn^
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In practice, the systems of equations which arise are frequently of two types:
(i) The matrix A may be of moderate order, say n < 100, and dense, i.e. nearly

all its elements are non-zero;
(ii) A may be of large order, say n > 1000, and sparse, i.e. it contains a large

number of zero elements.
The type of matrix is of prime importance in deciding on a method of solution.

For dense matrices, direct methods are appropriate and will be described in
this section. Sparse matrices should be treated by iterative techniques (see next
section) and it may be possible to economize in computer storage by retaining
only non-zero elements.

Perhaps the most popular direct method for the numerical solution of a
system of linear equations is Gaussian elimination. It has two parts—an elimination
or triangularization procedure and hack substitution. Its principle is simple and
can be illustrated by the problem of finding the unknowns xu x2, and x3 in

*i + *2 + 4.x3 = 7,

x 1 - 2 x 2 + 6x3 = 15,

2xi + x2 - x3 = 7.

Subtract the first equation from the second; then subtract twice the first from
the third. There results

*i + *2 + 4x3 = 7,

— 3x2 4- 2x3 = 8,

•—•" X 2 V X 3 —- / •

The first equation, which was used to remove xx from the other two equations,
is known as the pivot equation and the coefficient of xt in it is called the pivot.
Now, we make the new second equation the pivot equation and use it to
eliminate x2 from the third. Thus, by subtracting J of the second from the last,
we reach

xt + x2 + 4x3 = 7,

- 3 x 2 + 2x3 = 8,

- 2 9 x 3 / 3 = - 2 9 / 3 .

If these were written in matrix form, the matrix on the left would be upper
triangular which explains why the process is sometimes called triangularization.
Clearly, if we reversed our steps we should recover the original equations so
the two systems are equivalent.

The final step of back substitution is now undertaken. From the last equation
x3 = 1. Substituting this value in the second we obtain x2 = — 2. Then the first
equation gives xA = 5.

The method can obviously be generalized to a system of n equations in n
unknowns and is very easy to program. A simple count of the operations
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involved reveals that about %n3 multiplications and additions are required to
solve a system. By taking b as a unit vector and by employing the special
properties of unit vectors we find that the inverse of A can be found in n3 (and
not ^tt4 as might be expected) multiplications and additions. If mn multiplica-
tions are required for a determinant of order n and additions are ignored,
expansion in co-factors gives mn+1 = (n + \)mn whence mn is about nn\ Thus
Gaussian elimination gives a dramatic improvement over Cramer's rule. Even
if more sophisticated methods of evaluating determinants are adopted this
statement remains true (see, for example, Kunz (1957)).

It may happen that during the elimination the normal pivot is zero. In that
case two equations are interchanged so that the pivot is non-zero (there must
be at least one equation with non-zero pivot so long as A is non-singular) but,
if the pivot is non-zero but very small compared with other coefficients in its
column, numerical instability can arise. This is caused by the fact that computers
have a finite word length.

As an example suppose that the computer can store only three significant
digits in floating point and is working in the base of 10. Let the equations be
(Forsythe and Moler (1967))

1.00 x lO"4*! + 1.00x2 = 1.00,

l.OOx! + 1.00x2 = 2.00.

Gaussian elimination, taking account of the limitation of word length,
supplies

1.00 x lO"4*! + 1.00x2 = 1.00,

-1.00 x 104x2 = -1.00 x 104.

From back substitution, x2 = 1.00 and xx = 0.00 which is obviously incorrect.
By reversing the order of the original equations and performing Gaussian
elimination we obtain x2 = 1.00 and xx = 1.00 which is acceptable.

The general rule therefore, in eliminating xr from some equations, is to select
as the pivot the coefficient of xr which has the largest magnitude; this is termed
partial pivoting. If, however, the element of largest magnitude in both rows and
columns is chosen as pivot the process is known as complete pivoting. According
to Wilkinson (1965) and Ralston and Wilf (1967) it is doubtful whether
complete pivoting warrants the additional complication and computer time.
Wilkinson also shows that partial pivoting is not necessary for numerical
stability even if it is sufficient, e.g. if A is a real symmetric positive definite matrix,
or if A is strictly diagonal dominant.

Although pivotal strategy can control the difficulty of large multipliers in
Gaussian elimination it still leaves open the possibility that the solution is very
sensitive to small changes in the coefficients, i.e. the system is ill-conditioned.
Suppose that A (which is non-singular) is perturbed to A + B and b to b -f c.
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These perturbations cause a change in x, altering it to x + y (say). Then

(A + B)(x + y) = b + c.

A bound for y is provided by:

THEOREM 1.12. / / | |B | | M""1!! < 1 then

| |y| |^C|M~i(| |c| | + ||£||||x||) and M < C i c f § i + l | B | 1

ilxll V||b|| M||
where K - M | | \ \ A ' l \ \ and C = ||/|| + \\A~"B\\I(\ ~ \\A'lB\\).

Proof. Since A is non-singular

(I + A-1B)y = A-l(c-Bx).

From (1.79) and Theorem 1.11a, II^BII < 1 implies that / + A~lB has an
inverse. Consequently,

y = (/4-i4"1B)"M-1(c-Bx)
whence

llylKIKZ + ^^BJ^IIM-MKIIcll + HBll ||x||).

Because of the expansion in Theorem 1.1 la,

| |(/ + ^ - ' B ) " 1 ! ! < 11/II + WA-'BUl - I I ^ ^ B I I ) " 1 ;
also ||b|| ^ ||i4|| ||x|| and the result stated in the theorem follows.

If K is small then small changes in b and A will produce only small changes
in ||x|| and the equations can be regarded as well-conditioned. However, large
K does not necessarily mean that the system is ill-conditioned because only
upper bounds occur in Theorem 1.12. Nevertheless, we cannot improve those
bounds, when B = 0 at any rate, since examples are known (see, for example,
Forsythe and Moler (1967)) in which equality is achieved in Theorem 1.12.

We call K the condition number of the system. Its precise value depends upon
the choice of norm. If the spectral norm || ||2 is selected then, from (1.78),
K = (liJlin)112 where JU, and \in are the largest and smallest eigenvalues of AHA;
this K is sometimes described as the spectral condition number.

The condition number can be altered by scaling, i.e. by multiplying each
equation in Ax = b by some integer power of 10, in the decimal system, though
the same power need not be used for each row. If K is large, whatever scale
factors are employed, the equations are ill-conditioned. A small value of K
indicates a well-conditioned system. It is desirable to have available a systematic
technique for scaling that ensures that K is small as possible. Unfortunately, no
method is known which applies to arbitrary matrices and arbitrary norms. One
practical method is to attempt to arrange that n elements of A are of order
unity, no two of these elements being in the same row or column, all other
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elements of A being less than unity in magnitude. Round-off error may be
reduced by using the power of the machine number base closest to the largest
element.

It should be remarked that det A not being large does not necessarily signify
ill-conditioning. Examples are available in which det A is small and ||y||2/l|x||2 =
IIc II2/II bII2- H, by scaling, it is arranged that ||>4||2 = 1 then K = 1/JUW

1/2 and the
spectral condition number is large if and only if \xn is small. Let det A -> 0; then
fxn -* 0 provided that jut is fixed. In other words, if A is normalized so as to
keep px fixed then det A is closely related to the condition of A. But, in general,
the largeness of the condition number is more significant than the smallness of
det A as a criterion for determining ill-conditioning.

Gaussian elimination is applicable to complex equations if the computer has
a facility for complex arithmetic. Otherwise the equations must be separated
into their real and imaginary parts and the resulting real equations solved.

There are other inversion algorithms. A popular one is triangular decomposi-
tion in which the aim is to write A in the form

A = LU (1.80)

where L is a lower triangular matrix (i.e. all elements above the diagonal are
zero) and U is an upper triangular matrix. If this can be done in such a way
that L and U are non-singular then, by putting Ux = y, we have to solve the
two systems

Ly = b,

l/x = y.

Since both systems are triangular the first can be solved for y by back
substitution and then x can be determined from the second by back substitution.
The effort involved in the back substitution is substantially less than that in
the triangular decomposition.

Conditions which permit (1.80) are contained in:

THEOREM 1.12fl. Let Ak be the matrix formed by the first k rows and columns of
A. If Au A 2,..., An_ lf A are all non-singular A- LU and the decomposition is
unique if the diagonal elements of either L or U are specified.

Proof. Only the situation in which all the diagonal elements of L are chosen
to be unity will be considered, the general case being left to the reader.

With

/ I 0 ••• 0 \ / « n ul2 ••• uin\

In 1 • • • 0 1 I 0 u22 ••• u2n

L = , U = I

\ /„ ! In2 • • • 1 / \ 0 0 • • • uj
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we require that

'2lMll '2lWl2 + W22 '2l«13 + «23

A = ,
' 3 1 « 1 1 ' 3 l " l 2 + ' 3 2 « 2 2 ' 3 1

W 1 3 + ^ 2 ^ 2 3 + ^ 3 3 '•"

\ /

To get the first row of A right we need

«u = flu0' = 1 , . . . , n).

The first column of A will be given correctly if

hi =<Wwii ( ' = 1, • • • , " )

which is possible since ull — an ^ 0 by assumption. Now the second row of
A is obtained by taking

**2j = <*2j - hiUij (j = 2,...,n)

and then the second column may be realized by

hi = (an ~ h\ul2)lu22 (i = 2 , . . . , ») .

The last formula is legitimate provided that u22 ^ 0, i.e. «22 ~~ ^21^12/^11 ^ 0
which is true since det A2 ¥" 0. Proceeding in this way, a row and a column at
a time, we construct L and U and the construction obviously leads to unique
elements.

Remark that, since A is non-singular, neither L nor U can be singular.
If A is real, symmetric, and positive definite we can show by the same

procedure that there is a real lower triangular matrix L such that

A = LLT.

This is known as Cholesky decomposition. The algorithm, in this case, is highly
stable. If A is Hermitian positive definite then A = LLH where the diagonal
elements of L are positive.

Finally, we observe that it is sometimes possible to improve the accuracy of
a computed solution to a system of linear equations by iteration. If x(1) is the
first approximation, calculate the residual

r(1> = b - Ax^

as accurately as possible. Then solve the system Ay = r(1) and take x(2) =
x(1> -f y. Clearly this is the first stage of an iterative procedure which, under
suitable circumstances, will lead to more accurate numerical values.

" 1 1 W12 H 1 3 ' " \

' 3 1 « 1 1 ' 3 l " l 2 + ' 3 2 « 2 2 ' 3 l " l 3 + ^ 2 ^ 2 3 + M 3 3 ' • "
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Exercises

59. Is the system with

( 10~4 0.1 - 2 x 10~ 4 \

0.2 1.0 0.1

- 1 0 ~ 4 0.2 - 1 0 " 4 /
badly scaled?

60. Find the triangular decomposition of

\2 4 0/

61. Suppose there are two triangular decompositions

A = LXUX =L2U2

with Lt and L2 having units on the diagonal. If A is non-singular prove, without
using Theorem 1.12a, that Ux and U2 are not singular. Deduce from L[XL2 = Ul U2

 l

that the decomposition is, in fact, unique.

1.13 Iterative methods

Iterative methods, which are appropriate for large sparse matrices, are based
upon the idea of starting with an initial guess x(0) to the solution of Ax == b
and then deriving a sequence x(1), x (2),... which converges to the exact solution.

All of the methods are based on rewriting A in the form

A=L+D+U

where D is a diagonal matrix with diagonal elements the same as those of A,
L is lower triangular with zeros on the diagonal, and U is upper triangular
with zeros on the diagonal. For instance, if we express Ax = b as

Dx = b - (L + U)x

this suggests the iterative scheme

x<r+» = D-lb-'D-l(L+ U)xir)

which is known as the Jacobi method. A necessary condition for the application
of this method is that all the diagonal elements of A are non-zero. Alternatively,
the form

(L + D)x = b - Ux

suggests the iteration

x(r+1) = (L + D)~lb - (L + DyiUx™

-10~ 4 0.2 -1(T 4

A =
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which is the Gauss-Seidel method. Again, by introducing the non-zero scalar
parameter co and writing

(D + coL)x = {- OJU + (1 - co)D}x + cob,

we derive the procedure

x<' + 1> = (D-f CQL)-1{-CQU 4- (1 - co)D}x{r) + (£> + cuLJ-'o*.

This is the method of successive over-relaxation (SOR). It reduces to the
Gauss-Seidel method if co = 1.

Of course, one does not in practice calculate the inverse matrices on the
right-hand sides in the iterative schemes but, instead, solves the linear system
which arises before the application of the inverse matrix. One advantage is
evident in that zero elements of the matrix need not be stored and successive
vectors can be overwritten on their predecessors so that considerable economy
of computer storage can be achieved.

The iterations are all examples of taking an equation

x = Bx + c

and replacing it by

x ( r+1 ) = £x(r) + c.

Let e(r) = x(r) - x be the error at a particular stage. Then, by subtraction, we
see that e(r + 1) = Be{r) whence

e(r) ^ Bre(0)9

Now x(r) converges to x if and only if e(r) approaches zero which can happen
for every choice of e(0) if and only if Br -> 0. From Theorem 1.11 we deduce:

THEOREM 1.13. The iterative scheme converges to the correct solution if and only
ifp(B) < 1.

Thus the convergence of the three schemes turns upon the spectral radii of
the relevant matrices, i.e. of D~\L + U\ (L + D)~lU and 2?m = (D + coL)~l x
{—coU 4- (1 - co)D}. The smaller the spectral radius the more rapid the
convergence. One aim of successive overrelaxation is to choose co so that the
spectral radius of S£m is as small as possible. However, we are limited in our
choice by:

THEOREM 1.13a. If p{&m) < 1 then 0 < co < 2.

Proof If X is an eigenvalue of j£^, det(j£^, — A/) = 0. Now, in the polynomial
equation for A which results, the coefficient of ?" is ± 1 and the constant term
is det S£m which, from the structure of Z), L, and U, is (det D)~l(l - co)n det D.
Thus the product of the roots of the characteristic equation is ± (1 — co)n. Hence,
at least one of the eigenvalues must have a modulus as great as |1 — co\. Since
p ( ^ , ) < 1 this implies that |1 — co| < 1 and the theorem is proved.
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As a consequence of Theorem 1.13a there is no point in considering values
of co outside the interval (0,2) and, in practice, it is normal to choose co so that
1 < co < 2. In general, the determination of the optimal value of co is extremely
complicated (see, for example, Mitchell (1969)).

It can be shown that the Gauss-Seidel method converges if A is a real
positive definite matrix, though the Jacobi method may not, and other
conditions for convergence are known (see, for example, Varga (1962)). In
general the convergence of the Gauss-Seidel method is faster than that of the
Jacobi method and SOR is usually appreciably better than either (see subsequent
exercises).

Another iterative scheme which is often employed is the Peaceman-Rachford
method. In this method we write A = Ax + A2 4- A3 where Al9 Al9 and A3 have
certain properties which will not be elaborated here. An intermediate iteration
is inserted so that x(r) -» y(r) -> x(r + 1) by the process

(Ax + <oxA2 + a)2I)y
ir) = b - {A3 + (1 - coMi ~ co2l}x{r\

(A3 + co3A2 + cw4/)x<'+1) = b - {A, + (1 - co3)A2 - coj}y{r).

The analysis of this scheme is highly complex but it does seem to be a profitable
method in connection with difference equations (see, for example, Mitchell
(1969)).

Particular methods for sparse matrices have been the subject of considerable
research in recent years (see, for example, Duff (1976)).

Exercises
62. Find the spectral radii of the Jacobi and Gauss-Seidel methods for

\ 0 -J 1/

and show that both methods converge.
63. If A is symmetric show that an eigenvalue A and the associated eigenvector u

(possibly complex) of the Gauss-Seidel method satisfy

{(u, Du) + (u, Lu)}A = (u, LTu) = (u, Lu)*.

By forming \X\2 deduce that, if A is a real positive definite matrix, |A| < 1 and that
the Gauss-Seidel method converges.

64. Let A be a tridiagonal matrix. Let A, u be an eigenvalue and associated eigenvector
of the matrix of the Jacobi method so (L + U)u = Wu. By applying (L -I- U)D~l

show that X is a diagonal element of (UD~lL + LD~1U)D~K
If f.i is an eigenvalue of the SOR method use this procedure to demonstrate that

(1 - a ; - / 0 2 = a>V2.

A =

1 - * (A

-\ 1 -i
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Deduce that the Jacobi and Gauss-Seidel methods either both converge or both
diverge for a tridiagonal matrix and that the convergence of the Gauss-Seidel is faster.

If all k are real and kt(< 1) is the largest show that the optimal choice for co is
2{1 4 (1 — k\)ll2}~l and determine the corresponding value of fiv If, say, kl — 0.995
then fix « 0.8 and the convergence of SOR is much more rapid than that of
Gauss-Seidel.

1.14 Matrix eigenvalues

The matrix eigenvalue problem occurs in many applications and is concerned
with solving

(A - kl)\ = 0,

i.e. with determining the eigenvalues k and associated eigenvectors x of A. The
eigenvalues must satisfy det(/4 — kl) — 0 and it is tempting to try expanding
this as a polynomial in A, whose roots can be found by one of the methods of
§1.8. Apart from the difficulty of calculating the coefficients there is a classic
example due to Wilkinson (1965) which demonstrates why this should not be
done. The polynomial

(x - l)(x - 2 ) . . . (x - 20) - 2~23x19

is a slight perturbation from a polynomial with zeros at 1, 2 , . . . , 20. But only
ten of its zeros are real and two of the complex ones have imaginary parts of
about 2.8 in magnitude. Since round-off error can easily introduce perturbations
in the coefficients of a polynomial the characteristic polynomial is never used
for the computation of eigenvalues. Indeed, it may be wiser to calculate the
zeros of a polynomial by solving an associated eigenvalue problem.

To begin with we discuss an iterative scheme known as the power method.

THEOREM 1.14. Let A have n linearly independent eigenvectors x{ and the
corresponding eigenvalues k( satisfy

\ll\>\l2\>\*3\>'->\K\.

Then the sequence ur + l — Aur is such that

lim (u r+1) J/(u r) i = /l1
r-» oo

where (ur)j denotes thejth element ofur.

Proof. Since the x, are linearly independent, there are constants a( such that

u0 = a1x1 -f a2x2 4-• • • + anxn.
Hence

ur = Aru0 = axk\xx 4- • • • 4- ank
r
nxn
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and

(Ur-fiX,^ «i(xi)J-ha2(A2Mly
+1(x2)J.+ ->

\)j ' «i(xi)j + ViVMMj + ' ' * '

By hypothesis, {XJlxY -» 0 as r -> oo if i: # 1 and the theorem is
proved.

Strictly, the proof of the theorem requires that otl ^ 0, otherwise X2 *s

obtained as the limit rather than Xv However, round-off error is almost certain
to introduce a small component of \x and the effect of this will be to direct the
convergence towards kv

It is also common to normalize the iteration by putting vr + 1 = A\kr and then
defining u r + 1 = vr+1/||vr+1||00. The effect of this is that ||vr|| -> Xi as r -» oo.
Furthermore, ur -• x^HxJl^ so that the associated eigenvector is supplied at
the same time.

The iteration fails if there are a number of unequal eigenvalues of the same
modulus. There are ways of overcoming this difficulty but details will not be
given here. (See, for example, Gourlay and Watson (1973).)

Aitken's method (§1.8) can be employed to accelerate convergence. Another
technique is to work with A — ql instead of A. The eigenvalues of the new
matrix are Xx — q and, provided that Aj — q is still dominant, it may be possible
to choose q so that |(A2 - q)/(Xl - q)\ is much smaller than |A2Mil-

Another iterative plan is that of inverse iteration. In this procedure we form
w r+1 = (A — ql)~1\¥r; actually we determine w r+1 by solving the linear
system

(A-qI)v/r+1 = wr.

By Theorem 1.14 inverse iteration provides an eigenvalue of (A — ql)~y, i.e.
one of l/(Xi — q). With the normalization described above the associated
eigenvector is also obtained.

Inverse iteration is capable, by judicious choice of q9 of finding any eigenvalue
or eigenvector of A. It also has a fast rate of convergence. It is one of the most
powerful and accurate methods available.

While the above methods compute a single eigenvalue at a time there are
others which aim for the complete eigensystem right from the beginning, usually
at the price of requiring A to be symmetric or Hermitian.

Let etj denote the (ij) element of the unit matrix. A plane rotation matrix
Rij is a matrix derived from the unit matrix by replacing four elements according
to the following scheme

(eu eu\ /cos0 - s i n 0 \

\eji ejjj Vsin 6 cos 9 }
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so that

jx ... 0 ... 0 ... o \

0 ••• c o s 0 • • -~sin0 ••• 0

«</ =

0 • • • sin 0 • • cos 0 • • 0

\ 0 • • • 0 • • • 0 •• 1 /

The nomenclature stems from the fact that the replacement represents a rotation
of two-dimensional axes through an angle 0.

It is immediate that R(j is orthogonal, i.e. RyRfj L
Let A be a real symmetric matrix and then put

B = R]jARu.

The elements of B are the same as those of A except for

bik = bfci = aik cos 0 -f ajk sin 0, /c # f j

bjk== f̂cj = ~aifc s i n # + fljfc c o s 0> k ¥" ij

ha = flfl7 cos2 0 •+- 2«0- sin 0 cos 0 + «# sin2 0,

>̂i7 = fe^. = atJ cos 20 + j(an — crH) sin 20,

bjj = flH sin2 0 — 2aVj sin 0 cos 0 + a^ cos2 0.

We now choose 0 so that bi} = 0. If ô - ^ ofl. we take 0 so that — ̂  < 0 < £71 and

tan 20 = 2au/(ajj - «„).

If aj7 = aH and ay # 0 we select 0 = 47r(fly/|ay|); if atJ = 0 no choice is necessary.
So far i and 7 are at our disposal. They are determined by searching the

elements of A above the diagonal and finding the element afj of maximum
modulus. Having fixed 0 the resulting matrix B is denoted by Av The largest
off-diagonal element of Ax is now reduced to zero by the same procedure of
applying a plane rotation matrix. Denoting the new matrix by A2 we note that
the (1,7) element which was reduced to zero in AY is no longer zero in A2.
However, it can be shown that if the procedure is repeated indefinitely, the
limit of the sequence Ar is a diagonal matrix with the eigenvalues of A on its
diagonal.

This algorithm, which is known as the Jacobi method, is easy to program but
it is not very efficient. For small matrices which can be held entirely in the fast
store it may be appropriate because it is very reliable.

Elements annihilated by a plane rotation in the Jacobi method may be
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recreated at later stages. An algorithm to overcome this is provided by the
Givens method. Instead of choosing Q so that b{j = 0, pick some k # i and ask
that bkj = 0, i.e. select

tan 0 = ajk/aik.

Suppose, in fact, A1 — R \ARX where Rt is the plane rotation which annihilates
a13 (say, i = 2,;' = 3, k = 1). Next form A2 = RlAiR2 where JR2 reduces the
(1, 4) element of At to zero with i = 2, j = 4, fc = 1; the (1, 3) element which
is zero in Ax remains zero in A2. By repeating the process we can make (n - 2)
elements in the first row zero; by starting from (2,4) we can operate on the
second row without affecting the first. In this way a real symmetric can be
transformed by tridiagonal form by plane rotations.

Denote the tridiagonal matrix by B and let bu = bt, bii+l = bi+li = ct. Let
pr(X) be the determinant formed by the first r rows and colums of B — XI and
define po(X) = 1. Then, it may easily be established that

po(X) = l,pl(X) = bl - X,

pr(X) = (br - A)pr.1(A) - cr
2_lPr_2(A) (r = 2, 3 , . . . , n).

The zeros of pr~i(X) lie between those of pr(X). Also, define the sequence sr(X)
by sr(X) = sr_t(A) + 1 if pr(>0 is zero or has the same sign as pr-x(X) and by
sr(X) == Sr-tiX) otherwise. Starting from so(X) = 0, we generate sr(X) as either
zero or a positive integer. Define s(X) = sn(X), then the Stwrm sequence property
states that s(A) is equal to the number of eigenvalues of B which are strictly
greater than X\ in fact, this property holds if B is symmetric instead of being
tridiagonal.

The Sturm sequence property permits the location of an interval (Xf\ X{
2

0))
in which only one eigenvalue X lies, i.e. for some m <n, s(X{

2
0)) = m, s(A(

1
0)) =

m + 1. Let ^(0) = i(A(
1
0) + A(

2
0)) then s(/i(0)) is either m or m + 1 and a smaller

interval for X has been determined. This is akin to the method of bisection (§1.8)
and is very efficient for finding the eigenvalues in a particular interval.

Once the eigenvalues have been calculated it is tempting to find the
eigenvectors by solving (B — XtI)x = 0 by omitting the last equation of the
system and solving the first (n — 1) for xl9..., xn^1 in terms of an arbitrary
xn. In general, this is catastrophically unstable and should never be undertaken.
The preferred method is inverse iteration.

Another technique for the reduction of a real symmetric A to tridiagonal
form is the Givens-Householder method. Here, one considers matrices of the type

P = / - 2wwT

where the vector w satisfies ||w|| = 1 but is otherwise at our disposal. Observe
firstly that P is symmetric. Also

ppT = / - 4wwT 4- 4wwTwwT = /

so that P is, in fact, orthogonal.
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If u and v are real vectors such that ||u|| = ||v|| put

w = ( v - u ) / | | v - u | | .
Then

||v - u||2 - (v, v) - (v, u) - (u, v) + (u, u) - 2(0 - v, u)
and

Pu = v.

Thus, with this choice of w, P converts to a real vector u into another one v
of the same length.

In particular, let aA be the first column of A. Let bx be a vector with element
blx in the first row and zero elsewhere. Take

*n = -fliillaill/lflul

and then ||bt || = ||aj || so that we may place u = al9 v = b t above. Consequently,
PA is a matrix whose first column is zeros except the diagonal element which
is blv An arbitrary m x n matrix can be transformed by this approach to the
form QU where Q is orthogonal and U upper triangular.

For our particular purposes the transformation is not quite suitable since we
want PTAP, rather than PA, to be simpler than A. However, it indicates the
direction in which to go. When A is real and symmetric partition it according to

A-!'" "T)
V a Aj

and introduce

/I 0T\

Vo pj
where P is an (n — 1) x (n ~ 1) matrix of Givens-Householder type. Then

falx «TP \
MTAM = [

\PTa PTAlPj

so that, if we choose P so that the last n — 2 elements of FTa are zero, the
matrix MTAM will have n — 2 zeros on its first row and column. We remark
that

M = / - 2G>COT

where co = ( I and w is an (n — 1) vector. This suggests that for the next stepw
we try M t = / — loa^J where

n

M =

'«n «T

where P is an (M — 1) x (n — 1) matrix of Givens-Householder type. Then

»! =
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and Wj is an (n — 2) vector. There is no difficulty in checking that MT
1M

TAMM1

has the same zeros as MTAM in the first row and column and we can choose
wx so that there are n — 3 additional zeros in the second row and column. It
is now obvious how we may create a tridiagonal matrix from a real symmetric
A by the Givens-Householder process.

The Givens-Householder method requires §n3 multiplications as compared
with fn3 for the Givens. It is therefore more efficient and generally regarded as
one of the best methods for finding the eigenvalues of a Hermitian matrix
though the Givens method is sometimes valuable for sparse matrices. For
non-symmetric matrices where the two methods reduce A to the more
complicated Hessenberg form (which is the same as a tridiagonal matrix below
the diagonal but may have non-zero elements anywhere above the diagonal)
the situation is less clear.

In the symmetric case both methods lead to a tridiagonal matrix and we
have already described one way of dealing with eigenvalue problems by Sturm
sequences. Another technique is based on triangular decomposition. Suppose

A, = LtUt

where LY is lower triangular with units on the diagonal and U1 is upper
triangular (cf. Theorem 1.12a). Let A2 = VXLV Then A2 = Lf 1i41L1 and is
similar to Av This suggests the iteration: given As9 write it as As = LSUS and
then form Aa+1 = USLS. This is known as the LR algorithm (LR because
Rutishauser, who introduced it, called the decomposition left, right instead of
lower, upper). It is subject to many shortcomings but its introduction led to the
QR algorithm, one of the most powerful devices for the matrix eigenvalue problem.

The QR algorithm is based on the fact that, for any non-singular A, there is
a decomposition

A = QU

in which Q is unitary and U is upper triangular. Moreover the decomposition
is unique if we impose the condition that the diagonal elements of U are positive.
The iteration is now performed as: write As = QSUS and then define As+1 = USQS.
Since As+X = QfAsQs, As+l is unitarily similar to As and therefore to A.

In the QR algorithm the tridiagonal property is preserved, i.e. if A is
tridiagonal so are its iterates. In spite of the power of the algorithm it has been
suggested that a matrix should be reduced to Hessenberg or tridiagonal form
before the algorithm is applied. (See, for example, Ralston and Wilf (1967).)

Exercises
65. Use the power method to find the largest eigenvalue of

6 2 l \ / 0 1 1 ^

(a) | 2 3 1 , (b) 1 - 1 0 1

1 1 1 / V — 1 — 1 0/
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66. Use inverse iteration to find the eigenvalues of the matrix in 65(a).

( 4 0 0\

0 3 1 .

0 1 3/

68. Use the Givens and Givens-Householder methods to reduce to tridiagonal form

/ I 2 1 2 \
/ 4 4 2\ / \
/ 2 2 - 1 1

(a) 4 4 1 , (b)
1 - 1 1 1

\ 2 1 8/ \ /
\ 2 1 1 1 /

69. Show how P ~ 1 — 2wwH may be used to transform a Hermitian matrix to
tridiagonal form.

1-2 1 0 0\

1 - 2 1 0
70. Show that has two eigenvalues in ( -2 ,0 ) and is, in fact,

0 1 - 2 1 I

\ 1 0 1 - 2 /

negative definite.

f "\
71. Find the eigenvalues of 2 —1 1 by Sturm sequences.

\0 1 3/

72. In the QR algorithm prove that

GENERALIZED INVERSE

1.15 The generalized inverse

It is not uncommon in applications to encounter the problem of solving the
system

Ax^b (1.81)

where A is not square but m x n. For example, in making observations it may
be that we have data from less points than we have unknowns so that m < «,
or we may have more data points than unknowns in which case m > n. In the
former case the linear system possesses an infinite number of solutions while,

67. Find the eigenvectors of

71. Find the eigenvalues of by Sturm sequences.

72. In the QR algorithm prove that

A\=QlQ2...Q.Ua...Ul.
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in the latter, the system may strictly have no solution because the equations
are inconsistent with one another. Yet it may be important for the application
to identify a single entity which one is prepared to accept as 'the solution' of
the system.

One method which suggests itself is that of least squares. There are at least
two ways in which this could be applied. We could consider minimizing the
sum of the squares of the residual rTr where r = b — Ax or we might try
minimizing xTx. Let us deal with residuals first.

The rank of a matrix is the order of the largest non-singular submatrix in
the matrix. It is not difficult to confirm that, when A is real, A and ATA have
the same rank. With that notion we can formulate

THEOREM 1.15. If real A is m x n with m > n and of rank n, the solution o/(1.81)
which minimizes rTr is given by

x = (ATA)~lATb.

Proof. Since A1 A is n x n and of rank n, it is non-singular and so the formula
makes sense. Also

rTr = bTb - xTATb - brAx + xT,4T,4x

so that d(rTr)/dXi = 0 for i ~ 1 , . . . , n leads to

ATAx = AJb (1.82)

and the theorem is proved.
For the case m < n we have

THEOREM 1.15a. If real A is m x n with m < n and of rank m, the solution of
(1.81) which minimizes xTx is given by

x^AJ{AAT)-lb.

Proof. The formula makes sense because AAV is m x m of rank m and
therefore non-singular. The minimum of xTx subject to Ax = b is found by
Lagrange multipliers, i.e. by minimizing

S = xTx + XT(b - Ax)

where X is a column vector with m elements. From dSjdxi = 0, i = 1 , . . . , n we
obtain x = ATX and from dS/BXj = 0, j = 1 , . . . , n we have Ax = b. Hence

AA7X = Ax = b

which can be solved for X and the theorem follows.

It is desirable to relax the conditions on rank in Theorems 1.15 and 1.15a
and find a single formula which encompasses all possibilities. To this end we
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examine whether there is a matrix A+ such that x — A+b. In the case of
Theorem 1.15 we have

A+ =(ATAylAT

and we remark that

A+AA + = (AJAylATA(ATAylAT = (ATAy1AT = A +.

Similarly A A* A = A. Also AA+ and A +A are symmetric. Now, for Theorem
1.15a, A* = AT(AAT)~1 and a check reveals that it has the same three
properties. This prompts:

DEFINITION. A matrix A + with the properties (i) A +AA + = A+, (if) AA+A = A,
(in) AA+ amd A + A are symmetric, is called the generalized inverse of A. If A is
complex replace symmetric in (in) by Hermitian.

It has already been verified that the inverses of Theorems 1.15 and 1.15a
comply with this definition. If A is square and non-singular, the inverse A ~ l

obviously satisfies it. Moreover, we can show that A possesses only one
generalized inverse so that A + = A " * when A " * exists.

Suppose, in fact, that real A had a second generalized inverse B + . Then, from
property (ii)

A + A = A + AB + A,

and then property (iii) implies that

A + A = B+AA+A = B+A

whence B+ = A+AB + . Similarly, AA+ = AB+ from which A+ = A + AB+ and
hence A+ = B+ so that the generalized inverse is unique.

By taking the transpose of the quantities in the definition we deduce that
(A+)J = (AT)+ so that, if A is symmetric so is A+. Obviously, (A+)+ —A and
A+ has the same rank as A.

To obtain an explicit formula for A+ it is convenient to derive first some
properties of complex m x n matrices. If /i is a non-zero number and there are
vectors u, v such that

Au = JUV, AH\ = jt/u

then \i is known as a singular value of A and u, v as the corresponding pair of
singular vectors.

Now
AHAu = jiAHv = ^2w.

Since AHA is positive semi-definite the values of fi2 are real and non-negative.
Also AnA, which is of order n x n, possesses n linearly independent eigenvectors
ii t , . . . , un which can be arranged to be orthonormal. If the rank of A is k so
is the rank of AHA and precisely k of the values of fi2 are non-zero. Pick the
order of the eigenvectors so that u t, u2, . . . , u k correspond to the non-zero
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eigenvalues j u j , . . . , \i\. Note that ufc + l y . . . , uff can be chosen to satisfy AVLX = 0.
Define vt for i = 1 , . . . , k by vf = AuJ^i with fa the positive square root of

/.if. Then
AAH\( = AAHAut/Hi = jMf/lUf = ^?vf

so that v,. is an eigenvector of /1/1H and, since /lHvf = /i(uf, JU1? . . . , /ifc are the
positive singular values of 4 and uhvt the corresponding singular vectors.

The vectors v, are orthonormal because

The set may be completed by adding on m — k orthogonal vectors satisfying
AHy = 0; they are automatically eigenvectors of AAH corresponding to the
eigenvalue zero.

Define the n x n matrix U and the m x m matrix V by

l/ = (u1 , . . . ,u I I)> F = ( v 1 , . . . , v J .
Then we have

THEOREM 1.156. If A is of rank k there are unitary matrices U and V such that

/A 0\
'HAU =

\0 0/

where A is a diagonal matrix of order k whose diagonal elements are the singular
values of A.

Proof By construction UHU is the n x n unit matrix so that U is unitary.
Similarly V is unitary. Also

AU = (ii1yl9...,fikyk,O,...9O)

and the theorem follows from the orthonormal property of the vf.

Since the diagonal elements of A are non-zero, A"1 exists. This fact enables
us to state

THEOREM 1.15C. If A is of rank fe, its generalized inverse is given by

A+ = U[ KH.
\ 0 Oj

Proof
/A"1 0\/A 0\M °\

A+AA+ = U[ ) ) ) F H

\ o oAo oA o oj
from Theorem 1.156. Property (i) of the Definition follows at once. Further,

Vilifyh \j) = (Aui9 Auj) = (uf, ^
Hv4u7) = ^2(u /5 uy.).

'A"1 0'
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since U and V are unitary

\0 0/

so that

AA+^vt1 °)vu

\0 0/

(I 0\
A+A = U[ )UH

\0 0/

which show that property (iii) is satisfied. Finally,

/A 0\
AA + A=V[ )UH = A

\0 Oj

and the proof is complete.

Remark now that

AHAA+ =AH

so that x = A + b satisfies (1.82) with the affix T replaced by H. Moreover, in
the analogue of Theorem 1.15a, we need a solution of AAH>k — b. But AAH is
Hermitian and so has the structure of Theorem 1.15fe with V — U whence
(AAH)+ = (AH)+A+. Therefore x = AH(AH)+A+b = A + b. Therefore, we have
proved

THEOREM 1.15d. If A is a complex m x n matrix of rank k the vector x which
minimizes (a) (b — Ax, b — Ax) and (b) (x, x) subject to Ax = b is given by
x = A + b where A+ is specified in Theorem 1.15c.

It is sometimes possible to derive formulae for A+ which do not involve
finding U and V (see exercises). In practice, the system (1.82) may be
ill-conditioned and, indeed, worse than the original system. For consider the
case when A is square. Then, if Ax = b is ill-conditioned, det A is likely to be
small and det(.4T,4) = (det A)2 will be much smaller again. There are similar
arguments if A is not square. For this reason, when A is real, advantage is
sometimes taken of the result derived in the previous section that A = QUX

where Q is orthogonal and Ut upper triangular to solve instead

Utx = QTb.

The condition of the system may then be considerably improved.

/ 4 = V
A 0s*

U"
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Exercises
73. If u and v are non-zero real vectors prove that (i)u+ = (u7!!)"1^, (ii) A* = A7/

(vTv)(uTu) where A = uvT.
74. If A = BC where B is m x k, C is k x n and all three matrices are of rank k prove that

A+ =CT(CCTyl{BTBy1BT.

15. Give an example in which (AB)+ & B+A+.

76. Calculate the singular values of | 1 — 1

-2 2/

77. If Ax — b is a consistent system prove that
k n

x = X (vf, b)u,//i! + X a<u*

in the notation of this section, the af being arbitrary constants.
78. If A is Hermitian with eigenvalues A, and orthonormal eigenvectors xf show that

79. Prove from (1.83) that >4+ = (AHA)~1AH if /4H/4 is non-singular.
80. If AHA is non-singular prove that the vector x which minimizes rHJ?r, where B is

positive definite, is x = (AHBA)~lAHBh.

- 1 M

A =


