
Foundations
of Neural Networks

1.1 OBJECTIVES OF NEURAL NETWORKS

Neural network research can be divided into two areas of investigation. The first area,
the direct problem, employs computer and engineering techniques to model the human
brain. This type of modeling is used extensively by cognitive scientists (Harley, 1998)
and can be useful in a number of domains, including neuropsychiatry (Rialle and Stip,
1994, Ruppin, Reggia, and Horn, 1996), and neurophysiology (Saugstad, 1994). For
more detailed coverage of the direct problem, the reader should consult MacGregor
(1987) and Aakerlund and Hemmingsen (1998).

The second area, the inverse problem, simulates biological structures with the ob-
jective of creating computer or engineering systems. The inverse problem is applied ex-
tensively in building computer-assisted decision aids used in differential diagnosis,
modeling of disease processes, and construction of more complex biomedical models.
Part I of this book concentrates mainly on the inverse problem, although the two
areas cannot be completely separated since one problem often sheds light on the other.

Neural networks are used to solve problems in which the complete formulation
is unknown—that is, no causal model or mathematical representation exists, usually
because the problem itself is not completely understood. The neural network uses data
to derive patterns that are relevant in differentiating the groups. Neural network mod-
els fall into the category of soft computing, as do fuzzy logic approaches, in that solu-
tions are found to approximate problems rather than approximating solutions of exact
formulations.

1.1.1 Modeling Biomedical Systems

Historically, numerous modeling techniques have been used, including mathe-
matical approaches and simulation. Some of the early systems were quite successful,
especially in the area of drug therapy. Realistic models for most biological systems are
still difficult to achieve both because of our limited knowledge and the complexity of
these systems. Recent approaches have used chaos theory to address nonlinear dy-
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14 Chapter 1 • Foundations of Neural Networks

namics in biological systems. Neural network modeling of biomedical systems com-
prises the direct problem and has resulted in a number of interesting applications in
which neural network models successfully mimic characteristics of human learning as
well as providing models of learning disorders. In general, modeling and simulation
systems are outside the scope of this book with two exceptions: features of neural net-
works relevant to modeling and the use of chaos theory in a hybrid system (illustrated
in Chapter 18). Modeling using symbolic techniques is considered in Part II of this
book.

1.1.2 Establishment of Decision-Making Systems

The use of neural network models as decision aids comprises the inverse prob-
lem. These systems have their historical foundations in earlier pattern recognition
techniques and limited neural network models.

1.2 BIOLOGICAL FOUNDATIONS
OF NEURAL NETWORKS

The motivating factor behind neural network modeling was the structure of biological
nervous systems, or biological neural networks. To draw attention to this parallel,
neural network models are sometimes referred to as artificial neural networks
(ANNs). Although some basics are known about biological nervous systems, a great
deal remains unknown.

1.2.1 Structure of the Neuron

Figure 1.1 shows a simple biological cell. A semipermeable membrane that is be-
tween 70 and 100 Angstroms in thickness surrounds the cell. In the interior of the cell,
components include the nucleus, the mitochondria, and the Golgi bodies. The nucleus
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Figure 1.1 Structure of a Biological Cell.
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consists of nuclear sap and a nucleoprotein-rich network from which chromosomes
and nucleoli arise. A nucleolus contains DNA templates for RNA. The mitochondria
produce energy for the cell through cellular respiration. Golgi bodies are involved in
the packaging of secretory proteins (Rogers and Kabrisky, 1991).

Figure 1.2 shows a neuron, which is an extension of the simple cell in that two
types of appendages have been formed: multiple dendrites and an axon. The dendrites
receive input from other neurons, whereas the axon is an output channel to other neu-
rons. Note that a neuron still possesses all the internal features of a regular cell as
shown in Figure 1.1. The neuron has important basis characteristics, and it has a num-
ber of inputs called dendrites and one output called the axon. The cell membrane has
an electrical resting potential of -70 mV. The resting potential is maintained by pump-
ing positive ions out of the cell. The principal pump is the sodium (Na+) pump.
The main difference between a neuron and an ordinary cell is that the neuron is ex-
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Figure 1.2 Structure of a Neuron.
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citable. Because of inputs from the dendrites, the cell may become unable to maintain
the -70 mV resting potential, resulting in an action potential that is a pulse transmit-
ted down the axon. Note that the action potential results only after a certain threshold
has been exceeded, for example, if the potential is raised above -50 mV. After releas-
ing the pulse, the neuron returns to its resting potential. The action potential causes a
release of certain biochemical agents known as neurotransmitters that are the means
by which messages are transmitted to the dendrites of nearby neurons. These neural
transmitters may have either an excitatory or inhibitory effect on neighboring neurons.
A number of biochemical transmitters are known, including acetylcholine (usually ex-
citatory), catecholamines, such as dopamine, norepinephrine, and epinephrine, and
other amino acid derivatives such as histamine, serotonin, glycine, and 7-aminobutyric
acid (GAB A). GAB A and glycine are two important inhibitory transmitters (Butter,
1968).

1.2.2 Structure of the Central Nervous System

The puzzle of how individual neurons are organized into complex neuronal struc-
tures has been the subject of a great deal of research over the years. Santiago Ramon
de Cajal was the first to discover the complex interconnection structure in the cerebral
cortex summarized in an English translation by DeFelipe and Jones (1988). Along with
his associate Camillo Golgi (Golgi, 1886) he produced photographs of the structures
by applying dyes that were absorbed differently. For this work, Cajal and Golgi were
awarded the 1906 Nobel Prize in medicine.

Later, in the 1930s, Lorente de No, one of CajaFs students, examined the types of
neurons in the cerebral cortex showing 32 to 34 different types based on shape classi-
fication, not on function (Asanuma and Wilson, 1979).

In the 1940s, Hodgkin and Huxley (Hodgkin, 1964; Huxley, 1971) began their
well-known work on the giant squid, chosen because of its two very large neurons.
Hodgkin and Huxley were awarded the 1963 Nobel Prize for their investigations into
threshold, inhibition, and excitation in the giant squid axon.

Next, Hubel and Wiesel (1962) did extensive investigation into the cerebral cor-
tex of the cat. They mapped many complex structures and tracked the path from the
optic nerve to the lateral geniculate body to the visual cortex. They found columns of
cells in the visual cortex that appeared to be responsible for processing various shapes.
In the process, they distinguished between simple, complex, and hypercomplex cells.
Their work also emphasized the parallel nature of the visual processing system. Figure
1.3 shows the optical pathways Hubel and Wiesel mapped out.

1.3 EARLY NEURAL MODELS

1.3.1 The McCulloch and Pitts Neuron

In a 1943 paper, McCulloch and Pitts (1943) presented a two-state logical deci-
sion element model based on a simplified neuron which they used to compute Boolean
functions. They declared that "neural events and the relationship among them can
be treated by means of propositional logic" (p. 115). Their artificial neuron per-
formed logical operations on two or more inputs and produced an output if a thresh-
old value was exceeded. This work can be considered the ancestor of artificial neural
networks.
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Figure 1.3 Optical Pathways.

1.3.2 Hebbian Learning

In 1949, Donald Hebb (1949) published his approach to learning laws. In his orig-
inal approach, excitatory neuron coupling weights were increased by a subsequent fir-
ing, based on the idea of learning driven by activity. However, weights could only in-
crease. (Many later models were based on this initial work and are discussed in detail
in Chapter 5.)

1.3.3 ADALINE

ADALINE, an acronym for ADAptive LINear Element, was developed by
Bernard Widrow (Widrow and Stearns, 1985). He used the mathematics of adaptive
signal processing to produce the first commercial neural network.

1.3.4 Rosenblatt Perceptron

In the 1950s, Rosenblatt (1962) introduced models of the brain which he called
perceptrons. Although his representation of artificial neurons was based on the neuron
models of McCulloch and Pitts, he departed from their approach by basing his model
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on probability theory rather than symbolic logic. The photoperceptron as defined by
Rosenblatt responded to optical patterns, and contained a sensory, an association, and
a response area (Figure 1.4). The sensory area corresponds to the retinal structure.
Each point responds to light in an on/off manner; input is then transmitted to the as-
sociation area. The connections have three possible weights: 1 (excitatory),—1 (in-
hibitory), or 0. When a pattern is presented to the sensory area, a unit in the associa-
tion area becomes active providing its value exceeds a predetermined threshold 6. At
time t, the output from the association area is defined as

y(t) = sgn%[xi(t)wi(t)-Q] (1.1)

where sgn is either +1 (for positive argument) or —1 (for negative argument), xt{i) is
the ith input signal, and w,-(f) is the weight of the ith input to the node.

The basic perceptron model was an example of a learning algorithm. Nilsson
(1965) summarizes these early learning systems.

1.3.5 Problems with Early Systems

Neural network research experienced a general setback following the publica-
tion of a paper by Minsky and Pappert (1969) proving that a single-layer perceptron
could not solve the exclusive or (XOR) problem. In fact, single-layer perceptrons can
only separate categories that are linearly separable, that is, separable by a hyperplane
(in two dimensions, a line). Figure 1.5 shows the XOR problem; c0 is the category in
which the polarity of the features is the same, which should have an output of 0 for the
XOR, and C\ is the category in which the polarity differs, which should have an output
of 1 for the XOR. There is no line that can separate these categories. Unfortunately,
even though Rosenblatt had proposed the use of multilayer networks to overcome this
problem, these criticisms stymied neural network research for well over a decade. The
limitation of the current computers in terms of both memory and speed was one rea-
son for the loss of interest in the early neural network research. The problems ad-
dressed as examples in the neural network models were fairly simple, with few nodes.
The training often took hours to accomplish. Many justifiably felt that these time and
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Figure 1.4 Diagram of Simple Photoperceptron.
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Figure 1.5 The Exclusive OR Problem (XOR).

memory considerations made it difficult to tackle practical problems. With the advent
of faster and faster hardware with large, inexpensive memory, these worries ceased to
be considerations in the new generation of neural network models.

1.4 PRECURSOR TO CURRENT MODELS:
PATTERN CLASSIFICATION

Pattern classification (sometimes called pattern recognition) was one of the first meth-
ods applied to medical applications and has found applications in diverse areas from
electrocardiograms to genetic sorting. (For an historical perspective of pattern recog-
nition, see Chapter 9.)

What is a pattern recognition problem? As an example, consider a group of pa-
tients who have come to the emergency room with chest pain. Subsequently, some of
these patients are found to have had a myocardial infarction (MI), and others are
found to have had angina. The first objective of a pattern classification system is to de-
termine which parameters enabled the medical staff to distinguish between these two
diagnoses. This is a two-category problem. The initial phase consists of feature extrac-
tion. Features are properties of items to be classified that will aid in discriminating be-
tween classes.

1.4.1 Feature Extraction

Determining features is the most crucial step in designing a pattern recognition
decision aid. In the emergency room example given earlier, we must identify parame-
ters useful in distinguishing between the two classes. Identification of possible features
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requires domain knowledge or access to domain knowledge relevant to the applica-
tion. As a simple illustration, suppose we know that patients with Mis in general have
low blood pressure, whereas those with angina in general have elevated blood pres-
sure. If we plot the histograms for blood pressure for all patients with either disease,
we may get a plot similar to that shown in Figure 1.6. Note the area of overlap between
the two groups, so that the groups cannot be completely separated by this one variable.
In addition, we know that patients with Mis may have elevated white blood counts,
whereas patients with angina have normal white blood counts. If we consider only
these two parameters, or features, we have a two-variable problem. We combine these
features into a two-dimensional feature vector x = (xlt x2), where xx = systolic blood
pressure (BP) and x2 = white blood count (WBC). For the sake of this example, we will
consider only systolic blood pressure. In this simple case we can plot xx versus xz. Fig-
ure 1.7 shows a sample plot of five cases in each category. The squares represent cases
with MI, and the circles represent cases with angina.

The second objective of a pattern classification system is to find a separator that
will divide these two classes by placing as many samples into the correct category as
possible. The dashed line in Figure 1.7 shows a possible separator with one misclassifi-
cation. Additional features may result in better classification or a more robust model.
The following considerations should be kept in mind:

1. Look for a classification that minimizes error.
Ideal: all cases classified correctly; if not possible, minimize either the number
of errors or the cost of errors.

2. More features may be needed.
For three features, Figure 1.6 becomes 3-D, for four or more, no picture!

d d d d c2 c2 c2 c2 c2

Figure 1.6 Histograms of Systolic Blood Pressures for Myocardial Infarction (MI) and Angina.
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Figure 1.7 Plot of White Blood Count versus Systolic Blood Pressure.

3. More classes may be relevant.
For example, MI, angina, and congestive heart failure.

The final objective of pattern classification is to use the separator to classify new
cases. In this way, the pattern recognition system is used as a decision aid.

1.4.2 Supervised Learning

The preceding classification is an example of supervised learning: data of known
classification are used to determine important parameters (components of the feature
vector) that contribute to the correct decision. To use supervised learning, a training set
must be available for development of the separating vector. A test set is then used to
determine the accuracy of the separator. Ideally, the training set and test set should be
disjoint.

The question that remains is, How can the separating vector be obtained? In our
simple example, we did it geometrically; for data of higher dimensionality, this will not
be possible. The separator is determined through a learning algorithm that is the heart
of the method. (Learning algorithms will be discussed shortly and in detail in Chap-
ter 6.)

1.4.3 Unsupervised Learning

Unsupervised learning is a much more difficult problem. In this case, data of un-
known classification are used. The objective is to try to find patterns in the data that
will allow the data to be grouped or clustered according to similar characteristics with
the characteristics defined in the feature vector. The main method for accomplishing
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unsupervised learning is clustering, with a number of variations. (Clustering will be dis-
cussed in detail in Chapter 5. Recent approaches also include data mining and genetic
algorithms, discussed in Chapter 14.)

1.4.4 Learning Algorithms

The purpose of a learning algorithm is to determine which features are important
for a particular decision as well as their relative importance. In most pattern classifica-
tion systems, a feature vector is defined as

x = (*i,*2,. • • ,xn,) (1.2)

where each xt is a feature and n is the dimensionality of the vector. In classification pro-
grams, the objective in the most straightforward two-class problem is to obtain a deci-
sion surface that can separate the data. The two-variable equivalent to this is shown in
Figure 1.7. For the ^-dimensional case, we want the following to hold:

D(x) > 0 => x belongs in class 1
D(x) < 0 => x belongs in class 2
(D(x) = 0 is indeterminate)

where

D(x) = fj=wixi (1.3)
i = l

or in vector format

D(x) = w x (1.4)
In order to find the value for D(x), the values for the two vectors w and x must be
known. The values for x are obtained from the data. It is the job of the learning algo-
rithm to determine the values for w. In supervised learning, an additional important
piece of information is available: for each x, the class to which it belongs is known.

A general algorithm for supervised learning follows:

Make an initial guess for each component ofw.
Select a training set of data.
For each vector in the training set-

Compute D(x)
7/D(x) > 0 and x £ class 1 or D(x) < 0 and x e class 2, do not adjust w
7/D(x) > 0 and x e class 2 adjust w according to rule 1
7/D(x) < 0 and x £ class 1 adjust w according to rule 2

Until w does not change (or until criterion function is minimized).

Basically, learning algorithms differ in the definition of rules 1 and 2 in the preceding
algorithm and in the determination of the criterion function that determines when the
iterative weight adjustment should stop. A number of approaches have been used, in-
cluding Bayes learning (Chapter 15), perceptrons (Chapter 4), potential functions
(Chapter 4), and backpropagation (Chapter 4).

The simple algorithm given above is complicated in practice by a number of fac-
tors. The most obvious problem is what to do if w does not cease to change, which will
happen when it is not possible to correctly classify all samples in the training set. If all
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samples can be correctly classified, the set is said to be linearly separable. If not, the al-
gorithm must terminate on some other condition, which will hopefully ensure that as
many samples as possible are classified correctly. This is handled by defining what is
known as a criterion function. These functions are defined differently depending on the
approach taken and will be discussed in detail later in this book.

As an example, consider our two-dimensional problem given earlier. This is a
two-category problem. We will consider the presence of MI to be class 1 and the pres-
ence of angina to be class 2. Our problem is then defined by the following components:

D(x) = w • x = wtx2 + w2x2 (1.5)

where

jci: systolic blood pressure
x2. white blood count

If D(x) > 0, then we will assume that x belongs to class 1 (MI); if D(x) < 0, we will as-
sume that x belongs to class 2 (angina); if D(x) = 0, then we can make no determina-
tion.

For the purpose of illustration, we will use the perceptron learning rule, de-
fined as

wfr + 1) = wt{i) + T)[d(0 - y(0]*.<0 (1-6)

that computes each weight adjustment. The iteration is represented by t, and TJ is the
learning rate, which we will set to 0.01. We define y(t) and d(t) as follows:

y(t) = l if£>(x)>0
y(t) = - l i f D ( x ) < 0
d(t) = 1 if vector belongs to class 1
d(t) = - 1 if vector belongs to class 2

Table 1.1 contains values for our ten feature vectors. To make our calculations
simpler, we can scale the data so that both values are of similar magnitudes. We will di-
vide all WBC values by 1000 and all blood pressure values by 10. We will select the first
two vectors of each class, alternating classes, for inclusion in the training set:

ti = (11.0,13.0) (vector x1? class 1)
t2 = (18.0,5.0) (vector x6, class 2)

TABLE 1.1 Feature Vector Values for Differentiation between
Myocardial Infarction (MI) and Angina

Feature Vector Diagnosis Systolic Blood Pressure White Blood Count

Xi

x2

x3

x4

x5

x6

x7

x8

x9

Xio

MI
MI

MI

MI

MI

Angina
Angina
Angina
Angina
Angina

110

90

85

120

130

180

200

165

190

120

13,000
12,000
18,000
8,000

18,000
5,000
7,500
6,000
6,500
9,000
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t3 = (9.0,12.0) (vector x2, class 1)
t4 = (20.0,7.5) (vector x7, class 2)

We will make an initial guess for each weight as wt = -0 .3 , w2 = 1.0. Initially, we
substitute vector tx into Eq. (1.5):

Z)(ti) = -0 .3 (11.0) +1.0(13) > 0; therefore y(t) = 1
ti belongs to class 1; therefore d(t) = 1

Substituting into Eq. (1.6), we see that as the classification is correct, no weight adjust-
ment is made. We then proceed with the second vector substitution, which also results
in no weight adjustment as does the third. For the fourth vector

D(t4) = -0.3(20.0) + 1.0(7.5) > 0,y(f) = 1
t4 belongs to class 2

Therefore, substituting into Eq. (1.6)

wi(l) = -0 .3 + 0.01[(-l - (1)] 20.0 = -0.7
w2(l) = 1.0 + 0.01[-l ~(1)]7.5 = 0.85

The process must then begin again with ti and continue until all vectors are classified
correctly. After completion of this process, the resulting weights are:

wi = -0 .7
w2 = 0.85

Our decision surface is

D(x) = -0.7*i + 0.85x2 (1.7)

The remainder of the vectors in Table 1.1 will be our test set, which will be used to de-
termine how well our decision surface works. For example, substituting vector x3 from
Table 1.1 in Eq. (1.5):

D(x3) = —0.7(8.5) + 0.85*(18) > 0, which is correct since vector x3 belongs to class 1.

1.5 RESURGENCE OF THE NEURAL
NETWORK APPROACH

Neural networks have found a wide range of applications in the last decade (Carpen-
ter and Grossberg, 1988; Sabbatini, 1992; Computer Magazine, 1988) and in many cases
have replaced knowledge-based approaches that became popular in the 1970s (Davis
and Lenat, 1982; Barr and Feigenbaum, 1982). Neural networks permit rapid develop-
ment of a model through the learning algorithm if sufficient data are available.

Resurgence of the neural network approach began in the late 1970s and early
1980s with the work of Kohonen, Hopfield, Grossberg, and Rummelhart. In the 1970s,
Grossberg (1988) developed the adaptive resonance theory (ART) and theories about
the functioning of biological nervous systems that Carpenter and Grossberg (1988)
later developed into self-organizing neural network architectures. Kohonen (1984) also
did pioneering work on self-organizing networks. In the early 1980s, Hopfield and oth-
ers introduced new approaches based on the early work of Hebb (1949). Rummelhart
and his group (Rummelhart and McClelland, 1986) developed the backpropagation
method, which became one of the most widely used approaches in neural network de-
sign. Hypernet, developed by Cohen and Hudson in the early 1980s (Cohen, Hudson,
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and Anderson, 1989), extended the potential function approach and in the process in-
troduced the single and multidimensional Cohen orthogonal functions that encom-
passed the possibility of fractional contribution of nodes. The new approaches devel-
oped by these researchers, as well as others, overcame the limitations of the early
neural network approaches. These methods, together with the advances made in com-
puter architecture providing faster processing and cheaper memory, made the neural
network concept practical. (In Chapters 2 through 5 we will examine in detail the new
neural network structures that began in the 1980s, along with biomedical applications
for each method.)

1.6 BASIC CONCEPTS

1.6.1 Artificial Neurons

One of the basic ideas behind neural networks is to construct artificial neurons
that have the characteristics of actual neurons. Artificial neurons, or nodes as they are
often called, receive input from multiple other nodes. These multiple inputs can be con-
sidered as dendrites in the biological neuron. Like neurons, the nodes produce one out-
put that can be associated with the axon. In computing the output, the input informa-
tion is weighted, either positively or negatively. These weights are analogous to the ex-
citatory and inhibitory action of the chemical transmitters in the actual neuron. In neu-
rons, an output results only if a certain threshold voltage is exceeded. This action is
sometimes simulated by use of threshold values in the node, although not all models
use the threshold approach.

1.6.2 Selection of Input Nodes

In the initial design of a neural network, the number and type of input nodes
must be determined. These decisions are based on the nature of the problem. As we
will see in the next chapter, nodes may be binary, representing only an on or an off
state, or they may accept continuous values. The input nodes must be able to represent
all relevant information that is pertinent to the problem. The process of defining input
nodes is connected with feature selection in which salient features of the problem un-
der consideration are analyzed. This process is discussed in Chapter 3.

1.6.3 Network Structure

The early neural networks were only two-layer structures. As discussed earlier,
this construction greatly limited their usefulness in that only linear problems could be
represented. In the second generation of neural networks, new structures were devel-
oped which consisted of three or more layers. The most common structure is the three-
layer network as illustrated in Figure 1.8. These three layers consist of the input layer,
the hidden or interactive layer, and the output layer. Many other network configura-
tions have been used, but in general the three-layer network is capable of addressing
all problems which the more complex structures address. The manner in which nodes
are connected is different depending on the approach and will be described in detail in
later chapters when each method is discussed.

1.6.3.1 Feed-Forward Networks. The methods described in Section 1.4 apply
to feed-forward networks. These networks compute weights that are used to determine
output from a node that is subsequently fed to the next layer. In the detailed example
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Figure 1.8 Three-Layer Neural Network Structure.

given earlier, the weights determined the impact that the input nodes have on the out-
put, but no information is fed back to the input nodes.

1.6.3.2 Feed-Backward Networks. The revival of neural networks began in
the early 1980s with the work of Hopfield (1982). The Hopfield model was completely
different from earlier approaches in that the neurons, or nodes, had two-way connec-
tions. Instead of adjusting weights to tune the output of nodes, the network stored pat-
terns that were later used to process unknown input vectors. (The Hopfield net and
other feed-backward approaches will be described in detail in Chapter 2.)

1.6.4 Learning Mechanism

We saw an example of a learning algorithm in Section 1.4, with a specific learn-
ing rule given by the perceptron learning rule. As we will learn in subsequent chapters,
many different learning mechanisms have been tried in neural networks. All have ad-
vantages and disadvantages. Some offer strong mathematical foundations, whereas
others are more ad hoc. The learning mechanism affects the speed of convergence of
the network, and indeed determines whether or not it converges at all. It can also af-
fect the accuracy of the model in classification of unknown cases.

1.6.5 Output

Many neural networks have only one output node. This is not the only possible
structure. As we will see in subsequent chapters, it is possible to have multiple output
nodes and even output nodes that feed into other types of decision-making strategies,
such as symbolic reasoning.

1.7 SUMMARY

In this chapter we have reviewed some of the components of biological nervous sys-
tems that are important contributors to the foundations of artificial neural networks.
In addition to these biological precursors, the most important technical precursor to

Hmfh K

O, o. o,



References 27

neural networks, pattern classification, which was used successfully for many years in
design of medical decision-making aids, was summarized. In the subsequent chapters
of Part I, we review pattern classification in more depth, along with different types of
neural networks and corresponding learning algorithms as well as their uses in bio-
medical problem solving.

EXERCISES

1. What is the main reason that the neural network approach introduced in the late
1950s was abandoned for over twenty years?

2. In what ways do neural network models correspond to biological nervous systems?
Can you list aspects of biological nervous systems that have not been incorporated
into neural networks?

3. Explain why the two-layer neural networks of the 1950s and 1960s could not solve the
exclusive OR problem.

4. In the example based on Table 1.1, we computed the weighting factors for the first four
passes. Complete this calculation, stopping when all four vectors in the training set
have been classified correctly. Check to make sure that your weights agree with those
given in the text.

5. Substitute the remainder of the vectors in Table 1.1 into Eq. (1.5). How many of them
are correctly classified? Does this correspond to the geometrical results in Figure 1.7?

6. Repeat exercise 4, but change the order of the vectors in your training set to x6, x1? x2,
x7. Do you get the same values for wx and w2?

7. If you add a third variable, the linear separator is no longer a line. What is it? What
happens for four or more variables? Can the same approach be utilized?

8. Devise an alternative strategy for determining a decision surface if the two groups are
not linearly separable.

9. What happens if the classification problem has more than two classes? For example,
assume the three possibilities are angina, MI, and congestive heart failure. Is it possi-
ble to use a perceptron-type model to solve this problem?

10. Formulate mathematically the perceptron approach for four variables: white blood
count, systolic blood pressure, diastolic blood pressure, and pH of the blood.
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