
CHAPTER I

PRELIMINARIES

1.1. OBJECTIVE

In the pedagogy of the theory of the electromagnetic field it is
customary to pay considerable attention to the plane wave. This
is due primarily to the relative simplicity of plane wave solutions
of Maxwell's equations; their use enables some of the important
elementary physical and engineering characteristics of the electro-
magnetic field to be elucidated without appeal to other than quite
straightforward mathematics.

On the other hand, in somewhat more advanced work, such as
diffraction theory, the tradition has mainly been, in the spirit
of Huyghens and Fresnel, to think of the field as generated by a
distribution of localized sources. Also, of course, the standard
retarded potential formulation involving volume integrals over the
actual current distribution in effect simply treats each volume ele-
ment as a dipole.

There is, however, the possibility of continuing to benefit from
the simplicity of plane wave solutions by retaining them as the
bricks from which to construct whatever more elaborate type of
solution arises. This idea has a long history. Its wide exploitation,
though, is comparatively recent, as is also the explicit recognition
of its close association with the technique of Fourier analysis.

The object of this short book is to explain how general electro-
magnetic fields can be represented by the superposition of plane
waves travelling in divers directions, and to illustrate the way in
which this plane wave spectrum representation can be put to good
use in attacking various characteristic problems belonging to the
classical theories of radiation, diffraction and propagation.

It need hardly be said that in a book of this size the problems
are not treated exhaustively. To have included alternative theoreti-
cal methods, or details of the physical background, or details of

3



4 THEORY

the analytical, numerical or physical nature of the solutions, would
have tended to swamp the avowed didactic content.

It must also be conceded that various topics that could legiti-
mately be embraced by the title of the book are omitted altogether.
Most conspicuous by their absence are problems in which the plane
wave spectrum of the field is essentially discrete. Such fields arise
typically in cavities and waveguides, and these topics are so fully
covered in other books that their inclusion seemed superfluous.
Also omitted are problems involving fields in some sense "random"
in space or time; their treatment would require the introduction
of statistical concepts, which themselves are quite unconnected
with the main stream of the mathematical development here pre-
sented.

On the positive side of the balance sheet the book offers a largely
unified theory of a range of problems, solutions to all of which
are obtained in forms at least patently capable of yielding numeri-
cal results by straightforward means. The reader is assumed to be
competent at integration in the complex plane, but otherwise the
discussion is virtually self-contained; the burden of the analysis is
carried by the exponential function, and the sprinkling of Bessel
functions does not signify the need for any great familiarity with
their properties. In this way the aim is to furnish the student of
electromagnetic theory with a useful technical tool and a compara-
tively compact account of some interesting aspects of his discipline.

1.2. MAXWELL'S EQUATIONS

The electromagnetic fields are for the most part assumed to be
time-harmonic. The complex representations of the field vectors,
with the time factor exp(/a>*) understood, are used in the standard
way. They satisfy the Maxwell equations

curlE = -icoB, (1.1)
curlH = icoD + J. (1.2)

In (1.2), J is the volume current density, and it is associated with
the volume charge density Q through the charge conservation rela-
tion

divJ-fm>e = 0. (1.3)
The divergence of (1.1) gives

divB = 0; (1.4)
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and the divergence of (1.2), together with (1.3), gives

divD = e. (1.5)

Any media involved are treated microscopically, being described
by linear constitutive relations between the field vectors, which
then denote the "average" fields that would be recorded by con-
ventional laboratory measurements.

If the fields can be regarded as generated by a current in what is
otherwise a vacuum, then

D = eoE, B « /%H, (1.6)

where 80 and /iQ are the vacuum permittivity and permeability.
In this case eqns. (1.1) and (1.2) read

curlE = -icopoH, (1.7)
curl H = icoeoE + 3. (1.8)

At points where there is no current density

curlE = ~fe/%H, (1.9)
curlH = iaiSoE, (1.10)

which imply
divH = divE = 0. (1.11)

By eliminating one of E, H from (1.9), (1.10), and using (1.11),
it follows that each cartesian component of E and H satisfies the
time-harmonic, homogeneous wave equation

V2q> + kfo = 0, (1.12)
where

k2
Q = a)2sQ/A0. (1.13)

It is sometimes convenient to appeal to the converse of this last
statement, namely that any divergence free vector each of whose
cartesian components satisfy (1.12) can legitimately be identified
with either E or H to specify a vacuum electromagnetic field. It
is also worth noting that from any solution of (1.9) and (1.10)
another can be deduced at once by the transformation

E->H, H - » ~ E , 80++/AQ* (1.14)

Difficulties associated with the vector character of eqns. (1.7)
and (1.8) are significantly eased in the idealized case in which the
field is two-dimensional, being independent of one cartesian
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coordinate, z say. For the equations then separate into two
independent groups, namely

SEZ . __ BE, . „
- ^ ~ = -icaf£0Hx, - ^ = ia)/x0Hy9

dHv 8HX ,. . x

_ J L _ _ L « ^ ^ + / 2 > (1.15)

and

~ — = toco£"jc + Jx> - - y 1 - = / f t ) ^ ^ + Jy,

3Ey dEx . TT / i .

and any two-dimensional field can therefore be regarded as the
superposition of an E-polarized field, in which EZ9 HX9 Hy9 and/z

are the only non-zero field components, and an H-polarized field
in which HZ9EX9 Ey9 Jx and Jy are the only non-zero field compo-
nents. The identification of Ez with any solution of the two-
dimensional, time-harmonic, homogeneous wave equation

| £ + | J + «*. = O, (1.17)

completely specifies an 2?-polarized field in a current free region;
the other non-zero field components, Hx and Hy9 follow at once
from a knowledge of Ez through the first two equations of (1.15).
The identification of Hz with any solution of (1.17) likewise speci-
fies an if-polarized field in a current free region.

When isotropic media are considered it is assumed for the sake
of simplicity, what is commonly the case in practice, that the per-
meability differs negligibly from the vacuum permeability /JL0. The
constitutive relations are thus taken to be

D = eE, B = ^oH, J = erE, (1.18)

where e and a are the permittivity and conductivity respectively,
and J in (1,18) of course signifies the conduction current. The
substitution of (1.18) into (1.1) and (1.2) gives, at points where
there is no impressed current source,

curlE = -/eo/*oH, (1.19)
curl H = im(e - iajco) E; (1.20)
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so that the use of the complex representation has the advantage
that the effect of conductivity can be readily allowed for by work-
ing in terms of the single parameter

e - fc/co, (1.21)

which is sometimes called the complex permittivity. The appear-
ance of co in (1.21) indicates explicitly what may often be the major
dependence of the complex permittivity on frequency, but it must
not be forgotten that s and a are themselves certainly frequency
dependent, albeit possibly in effect constant over an appreciable
range of frequencies.

Anisotropic media are not treated extensively in this book, but
some consideration is given to media that can be characterized, for
time-harmonic fields, by the linear constitutive relations

D = £0JHE, B = ^ 0 H , (L22)

where X is a tensor. The tensor form of the relation between
D and E means that the two vectors are in general no longer
parallel. The relation takes account of all current due to the average
motion of the charged particles constituting the medium, in the same
sort of way as (1.21), andX can be frequency dependentand complex.
For a lossless medium «#* is Hermitian; that is, its /, j element KV

is identical with the complex conjugate x* of the j9 i element.
This result follows from a statement of energy balance, consequent
on Maxwell's equations, which deserves brief mention.

The interpretation as power flux density of the Poynting vector
E A H, where E and H momentarily stand for the actual electric
and magnetic fields, is well known. For time-harmonic fields it is
commonly only the time-averaged power flux density that is of
interest, and this is conveniently obtained in terms of the complex
representation of the field from the form Re £E A H*. With
(1.22), eqns. (1.1) and (1.2) read

curlE = -KO/JQH, (1.23)
curl H = icoe03fE. (1.24)

Thus the mathematical identity

div(E A H*) « H* .curlE - E.curlH*
gives

div (E A H*) = -~ia>/*0H . H* + icoe0 (Jf *E*) . E. (1.25)
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Now in a lossless medium the time-averaged power flux has zero
divergence at any point where there is no impressed current source;
that is, the real part of (1.25) is zero. The necessary and sufficient
condition that this be so is evidently that (Jf *E*). E be real; or,
introducing suffix notation and the summation convention, and
equating the expression to its complex conjugate, that

H%EfE% = HiSEjEf.

If on one side of this relation the dummy suffixes i and j are inter-
changed, it appears that the condition is indeed xSi = n%.

1.3. FOURIER INTEGRAL ANALYSIS

There are many ways of expressing the integral representations
associated with the names of Fourier and Laplace; these differ in
degree of generality, in outlook, in interpretation and in notation.
The purpose of this section is merely to record the particular for-
mulation adopted in this book, introducing only those few simple
examples that are required subsequently.

The basic concept is the representation of any function /(£) of a
real variable £ in the form

/ ( ! )= fF(V)e*>dri. (1.26)
— 00

The path of integration is initially presumed to run along the real
axis, although distortions permitted by the rules of contour inte-
gration may legitimately be introduced later. The spectrum func-
tion F(rj) must therefore at least be defined for effectively all real
values of rj9 and the essence of the Fourier theorem is that for such
values

F(rj) = ~ fM)e-**d£. (1.27)
— oo

The case of paramount importance in the present context is

Suppose, first, that rj0 has a non-zero imaginary part. Then the
path of integration in (1.26) can be closed by an infinite semicircle,
above the real axis when I > 0 and below when £ < 0, without
altering the value of the integral. The behaviour as \tj\ -> oo of the
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exponential factor in the integrand ensures that there is no contri-
bution from the semicircular part of the path, a standard result
which it is not difficult to establish rigorously. Once the path has
been closed the value of the integral can be written down from
Cauchy*s residue theorem; then (1.26) gives

m Wfor!>0, U ^
when the imaginary part of ^0 is positive; and

when the imaginary of TJ0 is negative. It requires but a trivial
direct integration to confirm that the substitution of (1.29) or
(1.30) into the inverse formula (1.27) does indeed correctly recover
(1.28).

These results need only be expressed in a slightly different way
to cater for the case when t}0 is real. It is then necessary to indent the
path of integration in (1.26) so that it avoids the pole at rj0. If the
path is chosen to pass above t)09 then/(f) is given by (1.30); if
below, by (1.29). Several immediate deductions from this case are
now listed.

By putting r]0 » 0 it is established that the unit step function

JKJ 11 for I > 0,
has spectrum

with the t) path of integration passing below the origin.
A trivial generalization of (1.31), (1.32) is that

has spectrum function

with the r) path of integration passing below the origin.
By subtracting the unit step function (1.33) for which £0 = a

from that which for £0 = —a it is established that the rectangular
2 EF
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pulse 0 for | < - a
/(£) = ] 1 for -a < f < a (1.35)

0 for | > a
has spectrum function

*fo)-™fc£. (1.36)

Here, of course, F(rj) has no singularity at YJ = 0, and the ?? path
of integration runs undisturbed along the real axis.

Finally it is remarked that free use will be made of the concept
of the delta function. This is written <5(£), and is as usual attributed
with the formal definition

<5(£) = 0 for { # 0 , / W ) # - l . (1.37)
— 00

On replacing/(|) in (1.27) by <5(f) it appears that the spectrum
function of <5(|) is simply l/(27r), so that it has the formal representa-
tion oo

d(i)=^ je^dti. (1.38)
— oo

A convenient way of thinking of the delta function in the present
context is as the limit as a -» 0 of l/(2a) times the rectangular pulse
(1.35), since, loosely stated, this gives a rectangular pulse of unit
area and zero width. The limit as a -+ 0 of l/(2a) times (1.36) of
course recovers the spectrum l/(2rc).

The correctness of the relations (1.26) and (1.27) has been readily
established for the rectangular pulse (1.35) and the associated
spectrum (1.36) It is instructive to appreciate that this result can
be made the basis of a heuristic demonstration of the validity of the
relations for an effectively arbitrary function /(£), in the following
way. As just noted, (1.36) implies that <5(f) has spectrum l/(2rc). But
/(f) can be expressed as a superposition of delta functions; formally

/(!)= //(««(f-««'. (1-39)
— oo

Hence the spectrum F(rj) of/(f) is the corresponding superposition
of the functions exp(—1|'^)/2^), these being the spectra of 8(§ — f ) ;
that is, oo

— oo


