Chapter 1

Vector and Dyadic Algebra

1-1 Representations of Vector Functions

A vector function has both magnitude and direction. The vector functions that
we encounter in many physical problems are, in general, functions of space and
time. In the first five chapters, we discuss only their characteristics as functions of
spatial variables. Functions of space and time are covered in Chapter 6, dealing
with a moving surface or a moving contour.

A vector function is denoted by F. Geometrically, it is represented by a line
with an arrow in a three-dimensional space. The length of the line corresponds to
its magnitude, and the direction of the line represents the direction of the vector
function. The convenience of using vectors to represent physical quantities is
illustrated by a simple example shown in Fig. 1-1, which describes the motion
of a mass particle in a frictionless air (vactum) against a constant gravitational
force. The particle is thrown into the space with an initial velocity v, making an
angle 6 with respect to the horizon. During its flight, the velocity function of the
particle changes both its magnitude and direction, as shown by vy, v, and so on, at
subsequent locations. The gravitational force that acts on the particle is assumed
to be constant, and it is represented by F in the figure. A constant vector function
means that both the magnitude and the direction of the function are constant, being
independent of the spatial variables, x and z in this case.

The rule of the addition of two vectors a and b is shown geometrically by
Fig. 1-2a, b, or c. Algebraically, it is written in the same form as the addition of
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Figure 1-2 Addition of vectors,a+b = c.
two numbers of two scalar functions, that is,
c=a-+h. (1.1)
The subtraction of vector b from vector a is written in the form
d=a-—-bh. (1.2)

Now, —b is a vector that has the same magnitude as b, but of opposite direc-
tion; then (1.2) can be considered as the addition of a and (—b). Geometrically,
the meaning of (1.2) is shown in Fig. 1-3. The sum and the difference of two
vectors obey the associative rule, that is,

at+b=b+a (1.3)
and
a—b=-b+a (1.4)
They can be generalized to any number of vectors.

The rule of the addition of vectors suggests that any vector can be considered as
being made of basic components associated with a proper coordinate system. The
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Figure 1-3 Subtraction of vectors,a — b = d.

most convenient system to use is the Cartesian system or the rectangular coordinate
system, or more specifically, a right-handed rectangular system in which, when
X is turning to y, a right-handed screw advances to the z direction. The spatial
variables in this system are commonly denoted by x, y, z. A vector that has a
magnitude equal to unity and pointed in the positive x direction is called a unit
vector in the x direction and is denoted by x. Similarly, we have 7, z. In such a
system, a vector function F that, in general, is a function of position, can be written
in the form

F=FxX+F)y+ F;z:. (1.5)
The three scalar functions F, F), F, are called the components of F in the
direction of X, , and 2, respectively, while F;.x, F} 7, and FZ are called the vector
components of F. The geometrical representation of F is shown in Fig. 1-4. It is
seen that Fy, F}, and F; can be either positive or negative. In Fig. 1-4, F; and F,
are positive, but F), is negative.

-

X

Figure 1-4 Components of a vector in a Cartesian system.

In addition to the representation by (1.5), it is sometimes desirable to express
F in terms of its magnitude, denoted by |F|, and its directional cosines, that is,

F = |F| (cos 0% + cos By + cosyZ) . (1.6)
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o, B, and vy are the angles F makes, respectively, with X, », and Z, as shown
in Fig. 1-4. It is obvious from the geometry of that figure that

1/2

IF| = (F} + F> + F?) 1.7)
and
cosOL = — cosB=—Fl COSY = — (1.8)
|’ F|’ ¥ ‘
Furthermore, we have the relation
cos® o + cos? B + cos?y = 1. (1.9

In view of (1.9), only two of the directional cosine angles are independent. From
the previous discussion, we observe that, in general, we need three parameters to
specify a vector function. The three parameters could be F;, F), and F; or [F| and
two of the directional cosine angles. Representations such as (1.5) and (1.6) can
be extended to other orthogonal coordinate systems, which will be discussed in a
later chapter.

1-2 Products and Identities

The scalar product of two vectors a and b is denoted by a - b, and it is defined by
a-b = |a| |b|cos6, (1.10)
where 0 is the angle between a and b, as shown in Fig. 1-5. Because of the notation

used for such a product, sometimes it is called the doz product. By applying (1.10)
to three orthogonal unit vectors i, #,, i3, one finds

SO 1, i=j ..
u,--u,~={ 0 z;ej } i,j=123. (1.11)
The value of a - b can also be expressed in terms of the components of a and b

in any orthogonal system. Let the system under consideration be the rectangular
system, and let ¢ = a — b; then
lc|> = |]a—b|? = |a]® + |b|> — 2|a| [b]| cos 6.
Hence
2 2 2
a bl"—Ja—Db
a-b=|a||b|cosO=ll +1bl” — | l

2

_ a3+a§+a3+b§ +bf,+b3—(ax —by)? — (a),—by)2 — (a; — by)?
- 2
=axby +ayb, +a,b,. (1.12)

Figure 1-5 Scalar product of two vectors,
2 4.b=allbcos6.
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By equating (1.10) and (1.12), one finds
1
cosO = m (axbx + ayby + azbz)

= COS O, COS O, + cos B, cos B, + cos Y, cos Y,

(1.13)

a relationship well known in analytical geometry. Equation (1.12) can be used to
prove the validity of the distributive law for the scalar products, namely,

(a+b)-c=a-c+b-c. (1.14)
According to (1.12), we have
(@a+b)-c=(ax +by)ex + (ay +by) ey + (a; + by) c,
= (axcx + aycy + a;c;) + (bacx + bycy + byc;)
=a-c+b-c
Once we have proved the distributive law for the scalar product, (1.12) can be
verified by taking the sum of the scalar products of the individual terms of a and b.

The vector product of two vector functions a and b, denoted by a x b, is
defined by

a x b = |a| |b| sin 8, (1.15)

where 0 denotes the angle between a and b, measured from a to b; i, denotes a
unit vector perpendicular to both a and b and is pointed to the advancing direction
of a right-hand screw when we turn from a to b. Figure 1-6 shows the relative
position of #, with respect to a and b. Because of the notation used for the vector
product, it is sometimes called the cross product, in contrast to the dot product or
the scalar product. For three orthogonal unit vectors in a right-hand system, we
have @) X ily = U3, ity X 13 = 1, and it3 X il = #,. Itis obvious that#; x &I; = 0,
i = 1, 2, 3. From the definition of the vector product in (1.15), one finds

bxa=-axb. (1.16)
The value of a x b as described by (1.15) can also be expressed in terms of the

components of a and b in a rectangular coordinate system. If weleta x b =v =

axb

4

>

Figure 1-6 Vector product of two vectors,
a x b = |a|{b] sin 0fi; . L a, éic Lb. > a
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VX + v,y + v.2, which is perpendicular to both a and b, then

a-v=a,v +av,+av,=0, (1.17)
b-v=>byv,+byv,+bv;=0. (1.18)
Solving for v, /v, and v,/v;, from (1.17) and (1.18) we obtain
Ur a,b, —a,b, vy a,b, —a.b,
v, acb, —a,b,’ v ab, —ayb,’
Thus,
Uy vy vz

ayb, —a;b, T abe —ah,  ach,— ayb,’

Let the common ratio of these quantities be denoted by ¢, which can be determined
by considering the case with a = x, b = J; then v = a x b = Z; hence from the
last ratio, we find ¢ = 1 because v, = 1 and a, = b, = 1, while a, = b, = 0.
The three components of v, therefore, are given by

vx =ayb, —ab,

v, =a;b, —asb, }, (1.19)

v, =axh, —a,by
which can be assembled in a determinant form as

A A A

x y z
v=|ax a, a;|. (1.20)
by b, b,
We can use (1.20) to prove the distributive law of vector products, that is,
(a+b)xc=axc+bxec. (1.21)

To prove (1.21), we find that the x component of (a + b) x ¢ according to (1.20)
is equal to

(ay + by) c: — (az + b,) ¢, = (ayc; — azc)) + (bye; — bey) . (1.22)
The last two terms in (1.22) denote, respectively, the x component of a x ¢ and

b x ¢. The equality of the y and z components of (1.21) can be proved in a similar
manner.

In addition to the scalar product and the vector product introduced before,
there are two identities involving the triple products that are very useful in vector
analysis. They are

a-(bxc)y=b-(cxa)=c-(@axb), (1.23)
ax(bxc)=(@-¢cob—(a-b)c. (1.24)
Identities described by (1.23) can be proved by writing a- (b x ¢) in a determinant
form:
a a4 as
a-(bxc)=| b, by bs
(4] (%] c3
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According to the theory of determinants,

a a as by by b g ¢
by by by |=|c a o |=|a a a
C| 6] Cc3 ai a as b] b2 b3

The last two determinants represent, respectively, b - (¢ x a) and ¢ - (a x b);
hence we have the validity of (1.23). To prove (1.24), we observe that the vector
a x (b x ¢) lies in the plane containing b and ¢, so we can treat a x (b x ¢) as
being made of two components ob and Be, as shown in Fig. 1-7, that is,

ax (bxc)=ab+ e (1.25)
Because
a-l[ax(xe)]=0,
hence

a(@-b)y+p@-c)=0.

bxe
A
a
ob Be
AN //
o
b c

ax(bxc)=ob+pc
Figure 1-7 Orientation of various vectors in a X (b x c).
Equation (1.25), therefore, can be written in the form
a-b
ax(bxc)=a[b—;—-c—c:|=a'[(a-c)b——(a-b)c], (1.26)
where o is a constant to be determined. By considering the casea = 3, b = X%,
¢ = y, we have
ax((xe)=%x,

(a-c)b=1=x,
(a-b)c=0.
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Hence o' = 1. All other choices of a, b, and ¢ yield the same answer. The validity
of (1.23) and (1.24) is independent of the choice of the coordinate system in which
these vectors are represented.

1-3 Orthogonal Transformation of Vector Functions

A vector function represented by (1.5) in a specified rectangular system can
likewise be represented in another rectangular system. To discuss the relation
between these two representations, we must first show the geometry of the two
coordinate systems. The relative orientation of the axes of these two systems can
be formed by three successive rotations originally due to Leonhard Euler (1707-
1783).

Let the coordinates of the original system be denoted by (x, y, z). We first
rotate the (x, y) axes by an angle ¢, to form the (x;, y;) axes, keeping z; = z as
shown in Fig. 1-8; then the coordinates of a point (x, y, z) change to (xy, y1, z1)
with

x1 = xcos ) + ysinoy, (1.27)
y = —xsin@; + ycos ¢, (1.28)
z] = z. (1.29)

Now we turn the (4, z;) axes by an angle ¢, to form the ()1, 2;) axes with x, = x3;
then,

» = y1cosdy + z; sind,, (1.30)
zp = —y1 sind, + z; cos ¢y, (1.31)
X2 = X1. (1.32)

Finally, we rotate the (z;, x;) axes by an angle ¢; to form the (z3, x3) axes with
3 = ; then,

z3 = z3 08 @3 + x sin §3, (1.33)
X3 = —2zsin 3 + x5 cos 3, (1.34)
Y3 = 2. (1.35)

By expressing (x3, )3, z3) interms of (x, y, z) and changing the letters (x, y, z) and
(x3, 3, 23), respectively, to the unprimed and primed indexed letters (x1, x3, x3)
and (x}, x5, x3), we obtain

3
X! _—_Z;a,.jxj, i=1,23, (1.36)
J=
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3 y
)
(x.y) or (x;.y)
—_ \ ' x| =xcos ¢, +ysin ¢,
x
)/E - y) =ycos §; —x sin ¢,
Zor gy
4
2
(}’p Z|) or ()’2, 2)
P \ Y2 .
- \ Y2 =) €05 ¢, -2, sin ¢,
¢,
yi 2=z cosh-y sing,
Xy Or Xy
X3 *2
)
(22, x2) or (23, X3)
4+ .
\ 7 23 = 25 COS §3 + X, sin ¢3
M . ) '
2 X3 = X CO8 §3 — 2 Sin @5
Y2 Or y3

Figure 1-8 Sequences of rotations of the axes of a rectangular coordinate system.

where

aj; = cos ¢ cos d3 — sin ¢; sin ¢; sin ¢3,
ayy = sin ¢; cos @3 + cos ; sin ¢, sin 3,

a3 = —cos ¢, sin¢s,
ay = — sin¢; cos ¢y,
ay = cos ¢ cos ¢y,
azs = sin ¢y,

as3) = cos 01 sin ¢3 + sin ¢, sin ¢, cos 3,
a3 = sin ¢; sin ¢3 — cos ¢, sin §; cos ¢z,
azz = cos @ cos 3.

(1.37)
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The coefficients a;; correspond to the directional cosines between the x] and x;
axes, that is,

aj = Cos Bij’ (138)

where [3;; denotes the angle between the two axes.
If we solve (x, y, z) in terms of (x3, 33, z3) or x; (j = 1, 2, 3) in terms of x;
(i =1, 2,3) from (1.27) to (1.32), we obtain

3
xj = Za,.jx;, j=1,2,3, (1.39)
i=l

where a;; denotes the same coefficients defined in (1.37). It should be observed
that the summation indices in (1.36) and (1.39) are executed differently in these
two equations. For example,

x| = anxi + apx; + aizx;, (1.40)

but
Xy = anx; + azlxé + a31x;, (141)

and a;; # a; when j # i. Henceforth, whenever a summation sign is used, it is
understood that the running index goes from 1 to 3 unless specified otherwise. A
more efficient notation is to delete the summation sign in (1.36) and (1.39). When
the summation index appears in two terms, we write (1.36) in the form

x,f = ai,-xj. (142)

The single index (i) means i = 1,2,3 and the double index (j) represents a
summation of the terms from j = 1 to j = 3. Such a notation, originally due to
Einstein, can be applied to more than three variables. In this book we will use the
summation sign in order to convey the meaning more vividly, particularly when
several summation indices are involved in an equation. The summation index will
be placed under the sign for one summation or several summations separated by a
comma. The linear relations between the coordinates x; and x ;, as stated by (1.36)
and (1.39), apply equally well to two sets of unit vectors X; and X; and also to the
components of a vector A, denoted respectively by 4] and 4; in the two systems.
This is evident from the processes by which the primed system is formed from
the unprimed system. To recapitulate these relations, it is convenient to construct
a 3 x 3 square matrix, as shown in Table 1-1. We identify i, the first subscript
of a;;, as the ordinal number of the rows, and j, the second subscript, as the ordinal
number of the columns. The quantities involved in the transformation are listed at
the side and the top.
The matrix can be used either horizontally or vertically, for example,

Ay = a3 Ay + asdz +asds,
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Table 1-1: The Matrix of Transfor-
mation [a;;] for Quantities Defined
in Two Orthogonal Rectangular
Systems

i\j x; or X; or A;

!’
x,. or an a a3
ar
X; or asy a ans
’
4; ay  axn a4y

and

Ay = a|2A/l + azzA’z + a32A’3,

which conform with (1.36) and (1.39) after x/ and x; are replaced by A4; and 4.
For convenience, we will designate the a;;’s as the directional coefficients and its
matrix by [a;;]. There are several important properties of the matrix that must be
shown. In the first place, the determinant of [a;;], denoted by |a;;|, is equal to
unity for a right-hand system under consideration. In such a system, when one
turns X to X, using a right-hand screw, it advances to the ¥; direction. To prove

laij| = 1, (1.43)
we consider a cubic made of X; withi = 1, 2, 3. Its volume is equal to unity, that is,
X x3) =1 (1.44)

The expression on the left side of (1.44) is given by

> auk- (Zajmfm x Zak,.f,.) = lay;l, (1.45)
1 m n

where (I, m, n) and (i, j, k) = (1, 2, 3) incyclic order. The identity between (1.44)
and (1.45) yields (1.43). A second identity relates the directional coefficients a;;
with the cofactors or the signed minors of [a;;]. If we solve (xi, X2, x3) in terms
of (x1, x5, x3) from (1.36) based on the theory of linear equations, we find

Z A;jx!, (1.46)
|aul

where 4;; denotes the cofactor or the 51gned minor of [a;;] obtained by eliminating
the ithrow and jth column. By comparing (1.46) with (1.39) and because |a;;| = 1,
we obtain

Xj=

A,'j = a,-j. (147)
An alternative derivation is to start with the relation

= ZAijf,{y (1.48)
i
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which is the same as (1.46) with |a;;| = 1, and to replace x;, x; with X; and %;;
then the scalar product of (1.48) with X; yields
aij = Aij. (149)

As an example, leti = 1, j = 2; then

apy = —(azass — a2as). (1.50)
The validity of (1.49) can also be verified by using the expressions of a;; defined
in terms of the Eulerian angles listed in (1.37); that is,
—anasz; + axpaz = sin@; cos ¢, cos d cos §3
+ sin ¢, (cos ¢; sin ¢3 + sin ¢ sin §; cos ¢3)
= cos ¢ sin ¢, sin @3 + sin §; cos P3
=daj2.

Equation (1.47) is a very useful identity in discussing the transformation of vector
products.

Because the axes of the two coordinate systems x; and x; or the unit vectors
%] and X ; are themselves orthogonal, then

Al A 1! l:: "
% -x;=5,-,-={ o #j, (1.51)
and similarly,
J’(:'i . .XA'J = 8,'_,‘, (1.52)

where §;; denotes the Kronecker & function defined in (1.51). In terms of the
unprimed unit vectors, (1.51) becomes

D Gimin - ) ajndn = 8ij; (1.53)
m n
because
-’?m N -”En = 8mm
(1.53) reduces to
Za,-,,,aj,,, = 8,'}', (154)
m
and similarly, by expressing (1.52) in terms of X,, and %}, we obtain
D amiam; = 8. (1.55)
m

Either (1.54) or (1.55) contains six identities. Looking at the rotational relations
between the unprimed and the primed coordinates, we observe that the three
Eulerian angles or parameters generate nine coefficients. Only three of them
are therefore independent, provided they are not the triads of

Yah=1, i=123 (1.56)
J
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or
doai=1, j=123 (1.57)
i

The remaining six coefficients are therefore dependent coefficients that are related
by (1.54) or (1.55) or a mixture of six relations from both of them. For example, if
a1, a2, and ay3 have been specified, then we can determine a3 from the equation

2 2 2
aj +apt+ap=1,
and subsequently the coefficient a3; from
2 2 2 _
aj3+ay+ap =1
The remaining four coefficients as;, a2, @31, a3, can be found from the equations
ayna,, + apdy +apan =0,
and
angy; +anasy +ana =0.
‘We underline the unknowns by placing a bar underneath these coefficients. They
must also satisfy
ana,, + anaz +apap =0,
and

ax3ay, + a33as, + apap =0.

For convenience, we summarize here the important formulas that have been
derived:

x| = Zaijxj, i=1,23, (1.58)
7
xj=Yayx,  J=1,23 (1.59)
=) aj%;, i=1273, (1.60)
J
2= ay, j=123, (1.61)
A=Y ay4;,  i=1,23, (1.62)
J
A;=Y ayd;,  j=12,3, (1.63)
i
laijl = 1, (1.64)
a;; = 4ij, (1.65)
> aimajm =8, (1.66)
Zamiamj = Jjj. (1.67)
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In expressions (1.58) through (1.67), all the summation signs are understood to be
executed from 1 to 3. The conglomerate puts these relations into a group.

Equations (1.62) and (1.63) are two important equations or requirements for
the transformation of the components of a vector in two rectangular systems rotated
with respect to each other. These relations also show that a vector function has an
invariant form, namely,

A= E Aix; = E A'j)?; (1.68)
i J
and

AA=) 2= 47 (1.69)
d J

Equation (1.69) shows that the magnitude of a vector is an invariant scalar quantity,
independent of the defining coordinate system. The speed of a car running 50 miles
per hour is independent of its direction. However, its direction does depend on
the reference system that is being used, namely, either (X, X2, X3) or (X}, X3, X3).
The vector functions that transform according to (1.62) and (1.63) are called polar
vectors, to be distinguished from another class of vectors that will be covered in
the next section.

1-4 Transform of Vector Products
A vector product formed by two polar vectors A and B in the unprimed system
and their corresponding expressions A’ and B’ in the primed system is
C=AXxB (1.70)
or
C' =A"xB. (1.71)

According to the definition of a vector product, (1.19), its expression in a right-
handed rectangular system is

C,= A;B} - A’jB,f (1.72)
with i, j, k = 1, 2, 3 in cyclic order. Now,
4, =" aimAm, (1.73)
m
By = anBy. (1.74)
n

Hence
C]:: = A:B; - A;B{ = ZZ(aimajn - ajmain)AmBn
m n

= Zzaimajn(AmB" — A"Bm). (175)
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It appears that the components A,, B, — A, B,, in (1.75) do not transform like the
components of a polar vector as in (1.62). However, if we inspect the terms in
(1.75), for example, withk = 1, i =2, j = 3, then

C = (anas; — apazn) (A2 B3 — A3B))
+ (a23a3) — anaz)(As By — A1 B3) (1.76)
+ (ax1a3 — anas)(4y By — A2 By).

The terms involving the directional coefficients are recognized as the cofactors
A1, Ar2, and Ag3 of [a;;] and, according to (1.65), they are equal to ayy, a2,
and a,3; hence

Cl=A1C1+ 412C2 + 413C3
=a1C) +a;pCs + a13C3

= ZaijCj.
J

Equation (1.77) obeys the same rule as the transformation of two polar vectors.
Thus, in a three-dimensional Euclidean space, the vector product does transform
like a polar vector even though its origin stems from the vector product of two polar
vectors. From the physical point of view, the vector product is used to describe
a quantity associated with rotation, such as the angular velocity of a rotating
body, the moment of force, the vorticity in hydrodynamics, and the magnetic field
in electrodynamics. For this reason such a vector was called a skew vector by
J. Willard Gibbs (1837-1903), one of the founders of vector analysis. Nowadays,
it is commonly called an axial vector. From now on, the word vector will be used
to comprise both the polar and the axial vectors in a three-dimensional or Euclidean
space. In a four-dimensional manifold as in the theory of relativity, the situation
is different. In that case, we have to distinguish the polar vector, or the four-
vector, from the axial vector, or the six-vector. This topic will be briefly discussed
after the subjects of dyadic and tensor analysis are introduced. Even though the
transformation rule of a polar vector applies to an axial vector, we must remember
that we have defined an axial vector according to a right-hand rule. In a left-hand
coordinate system, obtained by an inversion of the axes of a right-hand system,
the components of a polar vector change their signs; then we must use a left-hand
rotating rule to define a vector product to preserve the same rule of transformation
between a polar vector and an axial vector. We would like to mention that in a
left-hand system the determinant of the corresponding directional coefficients is
equal to —1.

Before we close this section, we want to point out that as a result of the
identical rule of transformation of the polar vectors and the axial vectors, the
characteristics of the two triple products A - (B x C) and A x (B x C) can be
ascertained. The scalar triple product is, indeed, an invariant scalar because

A-BxC)=A"-B xC). (1.78)

(1.77)
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For the vector triple product, it behaves like a vector because by decomposing it
into two terms using the vector identity (1.24),

AxBxC)=A-CB- (A -B)C, (1.79)

we see that A - C and A - B are invariant scalars, and B and C are vectors; the sum at
the right side of (1.79) is therefore again a vector. This synthesis may appear to be
trivial but it does offer a better understanding of the nature of these quantities. The
reader should practice constructing these identities when the vectors are defined
in a left-hand coordinate system.

1-5 Definition of Dyadics and Tensors

A vector function F in a three-dimensional space defined in a rectangular system
is represented by

F=) F#. (1.80)

If we consider three independent vector functions denoted by

F;=) F&,  j=123, (1.81)
i

then a dyadic function can be formed that will be denoted by F and defined by
F=Y F;, (1.82)
J

The unit vector X; is juxtaposed at the posterior position of F;. By substituting
the expression of F; into (1.82), we obtain

F=Y"N"Ftik; =Y Ffid. (1.83)
i ij

Equation (1.83) is the explicit expression of a dyadic function defined in a
rectangular coordinate system. Sometimes the name Cartesian dyadic is used. A
dyadic function, or simply a dyadic, therefore, consists of nine dyadic components;
each component is made of a scalar component F;; and a dyad in the form of a
pair of unit vectors X;X; placed in that order.

Because a dyadic is formed by three vector functions and three unit vectors,
the transform of a dyadic from its representation in one rectangular system (the
unprimed) to another rectangular system (the primed) can most conveniently be
executed by applying (1.61) to (1.83); thus,

T o’ al
F = E Fi; _;_ ApiX,, E AnjX,
i,j m n

Al AL
= E Amianj Fijx, x,.

i,j,m,n

(1.84)
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If we denote

F, =) amanFy, (1.85)
iJj
then
F=) F,x,%,
o (1.86)

Equation (1.85) describes the rule of transform of the scalar components F;; of a

dyadic in two rectangular systems. By starting with the expression of F” in the
primed system, we find

Fij=Y_ amianF},. (1.87)
m,n

When the 3 x 3 scalar components F;; are arranged in matrix form, denoted by
[Fj;], itis designated as a tensor or, more precisely, as a tensor of rank 2 or a tensor
of valance 2. The exact form of [ F;;] is

Fnn F Fp
[Fjl=| F Fn Fs |. (1.88)
Fy F3 F3

In tensor analysis, a vector is treated as a tensor of rank 1 and a scalar as a tensor
of rank 0. In this book, tensor analysis is not one of our main topics. The subject
has been covered by many excellent books such as Brand [1] and Borisenko and
Tarapov [2]. However, many applications of tensor analysis can be treated equally
well by dyadic analysis. Inthe previous section, we have already correlated a tensor
of rank 2 in a Euclidean space with a dyadic. Tensor analysis is most useful in the
theory of relativity, but one can formulate problems in the special theory of rela-
tivity using conventional vector analysis, as illustrated in Appendix E of this book.

1-6 Classification of Dyadics

When the scalar components of a dyadic are symmetrical, such that
D;; = Dj;, (1.89)

it is called a symmetric dyadic and the corresponding tensor, a symmetric tensor.
When the components are antisymmetric, such that

Djj =-Dj;, (1.90)

such a dyadic is called an antisymmetric dyadic and the corresponding tensor, the
antisymmetric tensor. For an antisymmetric dyadic, (1.90) implies D;; = 0. An
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antisymmetric tensor of this dyadic, therefore, has effectively only three distinct
components, namely, Dy3, Dy3, and D,3. The other three components are — D3,
— D3, and — D3, which are not considered to be distinctly different.

Let us now introduce three terms with a single index, such that

Dy = D3, D, = Dy, D3 = Dy,

or

D,' = Djk
with i, j, k = 1, 2, 3 in cyclic order; then the tensor of this antisymmetric dyadic
has the form

0 D; -D,

[Djjl1=| —D;s 0 D, . 191
D, -D 0

The transform of these components to a primed system, according to (1.85), has
the form

Dj; =" aimajnDpn» (1.92)
m,n

where we have interchanged the roles of the indices in (1.85). In terms of the
single indexed components for D,

D =" aim@n Dn, (1.93)
m,n

where (i, j, k) and (I, m, n) = (1, 2, 3) in cyclic order. For example, the explicit
expression of D is
Dj = (axnass — axnasn)Dx
+ (azaz — anaz) D3y (1.94)
+ (az1a32 — axas) Dya.
The coefficients attached to D,,, are recognized as three cofactors of [a;;]; they

are, respectively, 411, Ai2, and 4,3, which are equal to a3, a1z, and ay3. By
changing Dj3, Ds;, and Dy to Dy, D,, and D3, we obtain

D{ = A Dy+ 412D + A13Ds
=aubD +ai2D; +ai3Ds

= Za,'ij.
J

Equation (1.95) describes, precisely, the transform of a polar vector in the two-
coordinate system. By tracing back the derivations, we see that an antisymmetric

(1.95)
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tensor is essentially an axial vector (defined in a right-hand system) and its com-
ponents transform like a polar vector. The connection between an antisymmetric
tensor, an axial vector, and a polar vector is well illustrated in this exercise. We
now continue on to define some more quantities used in dyadic algebra.

When a symmetric dyadic is made of three dyads in the form

I= XX + XoXy + Ba3x3 = 25&,‘)2‘,’, (1.96)
i

itis called an idemfactor. Its significance and applications will be revealed shortly.
When the positions of F; and X j areinterchangedin (1.82), we form another dyadic

that is called the transpose of F, and it is denoted by [F]T, that is,

[FI' =) %F; =Y Fif =Y Fukif;. (1.97)
J Jii iy
The corresponding tensor will be denoted by
Fu Fa Fu
(R =[Fil=| Fo Fn Fn |. (1.98)
Fis Fy Py

We therefore transpose the columns in [ F; j]_to form the rows in [ F; j]T. Itis obvious
that the transpose of [ F; j]T goes back to [F].
1-7 Products Between Vectors and Dyadics

There are two scalar products between a vector A and a dyadic D. The anterior
scalar product is defined by

B=A-D=A.) D
J
=A-)  Dyhii; (1.99)
i
=Y A:Dyf;,
ivj

which is a vector; hence we use the notation B. Following the rules of the transform
of a vector and a dyadic, we find that the same vector becomes
m mn='n

B=Y4,D,% =A"-D. (1.100)
m,n

Hence

B=B. (1.101)
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That means the product, like the scalar product A - B, is independent of the
coordinate system in which it is defined, or it is form-invariant.

The posterior vector between A and D is defined by

C=D-A=) Dyik; A=) Dyd;k. (1.102)
i j iJj

The scalar components of (1.102) can be cast as the product between the
square matrix or tensor [D;;] and a column matrix [4], that is,

[Ci] = [Di;1[4;]. (1.103)
A typical term of (1.103) reads
Cy = D114y + D124, + Dy34s. (1.104)

Linear relations like (1.103) occur often in solid mechanics, crystal optics, and
electromagnetic theory. Equation (1.102) is a more complete representation of
these relations because the unit vectors are also included in the equation. We
then speak of a scalar product between a vector and a dyadic instead of a product
between a tensor and a column matrix.

By transforming 4 ;, D;;, and X; into the primed functions, we find

C=C =) 4,D,,%, (1.105)

m,n

The anterior scalar product between A and [B]T, denoted by T for the time being,
is given by

T=A-[DI'=A-Y Duis; (1.106)
iJj
=Y AiDjif; =) A;Dy;, (1.107)
ij ij
which is equal to C given by (1.102); hence we have a very useful identity:
A-[DT=D-A. (1.108)
Similarly, one finds
(DIT-A=A-D. (1.109)

For a symmetric dyadic, denoted by lz)s,

[D,]" = D,. (1.110)

Hence

>
lwlll
Il
pu
»

(1.111)
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When l:)s is the idemfactor defined by (1.96), we have
A-T=T-A=A. (1.112)

The tensor of I can be called a unit tensor, with the three diagonal terms equal to
unity and the rest are null.

There are two vector products between A and D. These products are both
dyadics. The anterior vector product is defined by

f? =A X l=)
=Ax Y Dyt (1.113)
ij

=) Dij AR x £)%;,
ik

where i, j, k = 1, 2, 3 in cyclic order. The posterior vector product is defined by
C=DxA=Y Dijdiki(®; x 5. (1.114)
ik
One important triple product involving three vectors is given by (1.23):
A-BxC)=B-(CxA)=C:(AxB). (1.115)

In dyadic analysis, we need a similar product, with one of the vectors changed to
a dyadic. We can obtain such an identity by first changing (1.115) into the form

A-BxC)=-B-AxC)=(AxB)-C. (1.116)

Now we let

C=C-F,
where F is an arbitrary vector function and Cisa dyadic. Then
A-BxC) F=-B.-AxC)-F=(AxB)-C-F. (1.117)
Because this identity is valid for any arbitrary F, we obtain
A-BxC)=-B-(AxC)=(AxB)-C. (1.118)

An alternative method of deriving (1.118) is to consider three sets of identities
like (1.116) with three distinct C;, with j = 1, 2, 3. Then, by juxtaposing a unit
vector X ; at the posterior position of each of these sets and summing the resultant
equations, we again obtain (1.118) with

J

Other dyadic identities can be derived in a similar manner. Many of them will be
given in Chapter 7, which deals with dyadic analysis.
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Finally, we want to introduce another class of dyadics in the form of

5=MN
=Y MY N;i; (1.119)
! J
= Z Mle,.fj,
LJ
then,
Sij = M;N;. (1.120)

Because there are three components of M and three components of N, all together

six functions, and they have generated nine dyadic components of L, three of the
relations in (1.120) must be dependent. For example, we can write

S3 = MyN3 = (M N2) N3/ N,
= (MyN») (M N3) /(M N7) (1.121)
= 52813/512.

When the vectors in (1.120) are defined in two different coordinate systems
unrelated to each other, we have a mixed dyadic. Let

M = M(x1, x2, x3)
and
N =N"(x{, x3, x3),

where we use a double primed system to avoid a conflict of notation with
(x1, x5, x3), which have been used to denote a system rotated with respect to
(x1, x2, x3). Here x;.’ with j = 1, 2, 3 are independent of x; withi = 1, 2, 3. The
mixed dyadic then has the form

T =MN' = Z Mi%; Z N/
- s,

We can form an anterior scalar product of T with a vector function A defined
in the x; system, but the posterior scalar product between A and T is undefined
or meaningless. Mixed dyadics can be defined in any two unrelated coordinate
systems not necessarily rectangular, such as two spherical systems. These
dyadics are frequently used in electromagnetic theory [3]. Many commonly used
coordinate systems are introduced in the following chapter.

(1.122)



