CHAPTER

STATIC FIELDS AND SOURCES

This chapter is a brief review of the basic laws governing static electric
and magnetic fields. The defining relations between static fields and their
sources are examined. Definitions and units of measurements for electric
and magnetic field strength, flux, flux density, and force are summarized.
For a more comprehensive study of static electric and magnetic fields, refer
to any elementary text on electromagnetics such as Ramo, Whinnery, and
Van Duzer [1]; Kraus and Carver [2]; Plonsey and Collin [3]; or Paul and
Nasar [4].

1.1 POINT CHARGE—COULOMB'S LAW

Charles Augustin de Coulomb (1736-1806) was a French physicist, inventor
and army engineer. He made many fundamental contributions in the fields
of friction, electricity and magnetism, including the formulation of Coulomb’s
law. The unit for electric charge was named in his honor.!

The source of the static electric field is stationary charge. The simplest
source is a point charge Q as shown in Fig. 1.1. If a unit positive test charge
g is placed in the vicinity of Q, a force F is exerted on the test charge which
is given by Coulomb’s law as

Qq

= —"—a
deR2 R

1.1

! Much of the biographical data in Chapters 1 and 2 is from the World Book Encyclopedia, Free
Enterprises Educational Corp., Chicago, 1973.
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Figure 1.1 Radial electric field from a point charge.

where F  force in newtons, N
Q charge in coulombs, C
q unit positive test charge, one coulomb
& =¢,6, permittivity of the medium, farads/meter (F/m)
g, relative permittivity (or dielectric constant) of the medium
&, permittivity of free space, 8.854 x 10~'? farads/meter
R  distance between charges in meters (m)
ap unit vector in the radial direction.

By definition, the electric field strength E is

F
= — newtons per coulomb (N/C). (1.2)

q

For a point charge then,
E = 4N§R2 ap volts per meter (V/m). (1.3)

In the International System of Units (SI), the units of volts per meter and
newtons per coulomb are equivalent.
Note that the radial electric field from a point charge falls off as 1/ R>.

1.2 ELECTRIC FLUX DENSITY AND GAUSS'S LAW

Karl Friedrich Gauss (1777-1855) was a German mathematician. Often re-
ferred to as the Prince of Mathematics, he is considered one of the greatest
mathematicians of all time, ranked with Archimedes and Newton. A child
prodigy, he became famous for his work in number theory, geometry, astron-
omy, and for important contributions to the mathematical theory of electro-
magnetism. His inventions include the bifilar magnetometer and the electric
telegraph.
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Electric field strength E has dimensions of volts per meter and is a
measure of the intensity of the field.

Electric flux density D is defined as

D =¢E (1.4)

and has dimensions of coulombs/m?, or charge per unit area. Thus the term
flux density. D is sometimes called the electric displacement vector.

While E is dependent on the permittivity of the medium, D is indepen-
dent of the medium (assuming the medium is isotropic) and depends only
on the sources of charge.

For the point charge in Fig. 1.1, we have from (1.3) and (1.4)

- ap coulombs per square meter (C/m?).

Now consider the more general case of a distribution of charges.

This could be a distribution of point charges g;, a line charge distribu-
tion with density p;, a surface charge distribution with density p;, a volume
charge distribution with density p,, or a combination of these. If these
sources are contained within an arbitrary closed surface S as indicated in
Fig. 1.2, Gauss’s law states that

%D - dS = Qenclosed- (1.5)
s
That is, the integral of the normal component of the electric flux density
over any closed surface is equal to the net charge enclosed.

Figure 1.2 Illustration of Gauss’s law.

The charge enclosed is given by, in general,

Qenclosed =qu +/pld1+/p3 ds+/pvdv.
! s v

1.7 ELECTRIC FLUX

The electric flux ¥ passing through a surface S is defined as the product
of the normal flux density D, and the surface area S, assuming that D is
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uniform over S. More generally, when D is not uniform over the surface
(Fig. 1.3), ¥ is the surface integral of the scalar product of D and dS,
or

¥ =/D-dS coulombs (C).
s

An interesting aside—The surface exists in space and contains no charges.
If ¥ is a time-varying function, the quantity dy/dt has dimensions of
coulombs per second, or amperes. That is, a time rate of change of electric
flux is associated with a current. This is called displacement current, a
concept introduced by Maxwell.

s Figure 1.3 Electric flux density.

1.4 CONSERVATION OF ENERGY

If a test charge is moved around any closed path in a static electric field, no
net work is done. Since the charge returns to its starting point, the forces
encountered on one part of the path are exactly offset by opposite forces on
the remainder of the path. The mathematical statement for conservation of
energy in a static electric field is

fE-dl:O. (1.6)

This statement is not true for time varying fields, in which case Faraday’s
law applies.

1.7 POTENTIAL DIFFERENCE

The potential difference between two points a and b immersed in an electric
field E (see Fig. 1.4) is defined as the work required to move a unit positive
test charge from a to b and is given by

b

Vap = — f E - dl joules per coulomb (J/C) or volts (V). (1.7)
a

The potential difference is independent of the path taken from a to
b. That is, it depends only on the endpoints. The negative sign in (1.7)
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Figure 1.4 Potential difference.

indicates that the field does work on the positive charge in moving from a
to b and there is a fall in potential (negative potential difference).

1.6 FIELD FROM LINE AND SURFACE CHARGES

Refer to Fig. 1.5a. The radial electric field from a uniform line charge of
infinite extent is

_ M

"~ 2me,R

Eg (1.8)

where Ep radial electric field strength, V/m
o line charge density, coulombs/m
R radial distance, m
&, permittivity of free space.

The transverse component of the electric field is zero. Note that the ra-
dial component falls off as 1/R. This solution has applications in transmis-
sion line problems, including overhead power distribution and transmission
lines.

The field normal to a surface of infinite extent having a uniform surface
charge density p; (Fig. 1.5b) is

Ps

E, (1.9)
£o
E'I
ER
|- Ly
P[
(a) Line charge (b) Surface charge

Figure 1.5 Line and surface charges.
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and
D, = Ps (110)

where E, normal electric field, V/m
D,, normal flux density, coulombs/m?
ps surface charge density, coulombs/m?.

The field above the surface is constant because the surface is infinite in
extent. Again, there is no transverse field component.

1.7 STATIC E-FIELD SUMMARY
A summary of important static electric field relations is provided in Tab-
le 1.1. The electric fields from a point charge, an infinite line charge, and

an infinite surface charge are given in Table 1.2.

Table 1.1 Summary of Staric Eleciric Field Relations

Definition Units
, _ Qq
Coulomb’s law F= ——=ap newtons (N)
4reR?
E Field E=% V/m or N/IC
Flux density D=¢E C/m2
Gauss’s law fD'dS = Qenclosed C
S
Electric flux y=[Dds c
S
b
Potential difference Vo = ~IE'd 1 VorJ/IC
a
Table 1.2 Fields from Various Sources
Source E Field
. Y
Point charge E= a
g 4ner? R
Infinite line ch Ep= A
nfinite line charge R= m
Py

Infinite surface charge E, =%
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1.8 LINE CURRENT—BIOT-SAVART LAW

Biot and Savart, in 1820, established the basic experimental laws relating
magnetic field strength to electric currents. They also established the law of
force between two currents.

The source of static magnetic fields is charge moving at a constant
velocity, namely, direct current (also referred to as steady current or sta-
tionary current). By definition, the current through any cross-sectional area
is equal to the time rate at which electric charge passes through the area,
or

_4q
T dt

The current gives rise to a magnetic field. For example, consider an in-
finitesimal current element / dl as shown in Fig. 1.6. [ is the magnitude
of the current element, and ¢l is a unit vector that defines the direction.

The differential magnetic field strength dH in vector notation is given
by

coulombs per second (C/sec) or amperes (A). (1.11)

IdlxaR

dH = P amperes per meter (A/m) (1.12)
and is one form of the Biot-Savart law. (This law is sometimes attributed
to Ampere.)

The magnitude of (1.12) is
Idlsin6
dH = ————— A/m. 1.13
4n R? m (1.13)
dH
X
Side view End view

Figure 1.6 Illustration of the Biot-Savart law.
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1.9 MAGNETIC FIELD FROM A LINE CURRENT

The magnetic field strength Hj from a line current of infinite extent (Fig-
ure 1.7) is obtained directly from the Biot-Savart law by integrating (1.12)
over the length of the conductor. The result is

I
¢= — A/m.
2w R

The magnetic field strength from an infinite line current falls off as 1/R.
This solution has applications in transmission line analysis, including over-
head powerlines.

The direction of the H -field vector in relation to the direction of current
flow is given by the “right-hand rule.” See Figs. 1.6 and 1.7. If the thumb
points in the direction of the current flow, the fingers indicate the positive
direction of the magnetic field strength.

Figure 1.7 Magnetic field from an infinite
line current.

1.10 MAGNETIC FLUX DENSITY AND MAGNETIC
FLUX

Magnetic field strength H has dimensions of amperes per meter and
is a measure of the intensity of the field, analogous to the electric field
strength E.

Magnetic flux density B is defined as

B=uH (1.14)

where B magnetic flux density, webers/m? (Wb/m?) or tesla (T)
U = U 1, permeability of the medium, henrys/m (H/m)
ur  relative permeability of the medium
i, permeability of free space, 4w x 1077 henrys/meter
H  magnetic field strength, A/m.

B has dimensions of weber/m?, or flux per unit area, and is therefore called
flux density. B is analogous to electric flux density D.
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Lines of magnetic flux are conceptually similar to lines of electric flux
(except that lines of magnetic flux close on themselves while electric flux
lines terminate on charges). The magnetic flux & passing through a surface
S is defined as the product of the normal magnetic flux density B, and the
surface area S. This assumes that B is uniform over S. More generally, when
B is not uniform over the surface (see Fig. 1.8), the magnetic flux is given
by the integral over the surface of the scalar product of B and d8, that is,

P = /B -dS webers (Wb). (1.15)

s
(Note that the symbol used for magnetic flux is the uppercase Greek & to
distinguish it from the spherical coordinate denoted by the lowercase Greek
¢.) The unit of webers is equivalent to volt-seconds.

B

Figure 1.8 Magnetic flux density. s

1.11 AMPERFE'S LAW

Andre Marie Ampere (1775-1836) was a French mathematician and physi-
cist. His experiments led to the law of force between current carrying conduc-
tors and to the invention of the galvanometer. He postulated that magnetism
was due to circulating currents on an atomic scale, showing the equivalence
of magnetic fields produced by currents and those produced by magnets.

Ampere’s law states that the line integral of the tangential magnetic
field strength around any closed path is equal to the net current enclosed
by that path. Mathematically,

fﬂ ~dl = Lenciosed- (1.16)

For example, the closed integral of the tangential H-field around the circular
pathin Fig. 1.6 yields the current /. However, Ampere’s law is more general
in that it applies to any closed path and it applies to magnetic fields arising
from both conduction and convection currents. (Convection currents are
charges or charge densities moving with velocity v, i.e., gv and pv.) For
time-varying fields, the right-hand side of (1.16) contains an additional
displacement current term.
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Ampere’s law is the magnetic field analog of Gauss’s law, except that
it involves a closed contour rather than a closed surface. Comparing (1.16)
with (1.6) reveals that while the static electric field is a conservative field,
the magnetic field is not.

1.12 LORENTZ FORCE

Hendrick Antoon Lorentz (1853—-1928) was a Dutch physicist who became
famous for his electron theory of matter. In addition to the formulation of
the Lorentz force equation, he developed the Lorentz transformations, which
show how bodies are deformed by motion, and the Lorentz condition, which
has special significance in relativistic field theory. He shared the 1902 Nobel
prize for physics with Pieter Zeeman for discovering the Zeeman effect of
magnetism on light.

A point charge g moving with a velocity v in a magnetic field B expe-
riences a force, called the Lorentz force, which is given by

F=¢gvxB newtons (N). (1.17)

Equation (1.17) assumes that there is no electric field acting on the point
charge. If an electric field is present, the total force acting on the point
charge is the sum of the Lorentz force and the gE force from (1.2), that is,

F=gq(E+ v xB) newtons (N). (1.18)
The Lorentz force on an infinitesimal current element /dl immersed in a

magnetic field B follows from (1.17), the definition of current / = dq/dt,
and the velocity v = dl/dt. We have

dl dg
dgv=dq— = —dl = 1dl.
W= =
The instantaneous force on the infinitisimal current element is
dF=1dl x B newtons (N). (1.19)

For the special case of a linear conductor of length L carrying a current /
in a static uniform magnetic field B (Fig. 1.9), the Lorentz force is

F = IL x B newtons (N) (1.20)
and the magnitude is
F = ILBsin6. (1.21)

The Lorentz force is proportional to the magnitude of the current, the length
of the conductor, the strength of the magnetic field and the sine of the angle
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Figure 1.9 Lorentz force on a conductor 7
in a uniform magnetic field. 1

between the current and the field. The direction of the force is perpendicular
to the plane containing the current and the magnetic field.

The Lorentz force is utilized in Hall effect devices, in the focusing
and deflection of electron beams in cathode-ray tubes, and in galvanometer
movements, to mention a few applications. The Lorentz force has also been
suggested as a possible factor in the biological effects of electromagnetic
fields. In particular, the movement of charged electrolytes in body fluids
in a magnetic field (for example, the earth’s magnetic field) may cause
changes in body chemistry.

Equation (1.20) can also be interpreted as the defining relation for the
magnetic field B. If /d1 and B are perpendicular

B F
T
That is, the magnetic flux density can be defined as a force per unit current
element, analogous to the definition of the electric field as a force per unit
charge in equation (1.2). The units of B are the Tesla, or equivalently,
webers/m? or newtons/ampere-meter.

(1.22)

1.17 MAGNETIC FIELD UNITS AND CONVERSIONS

While SI units are preferred for magnetic field quantities, many applica-
tions still use centimeter-gram-second (cgs) units as a matter of custom or
tradition. Table 1.3 is a summary of SI and cgs magnetic field units and
the conversion factors from one system of units to the other.

ELF magnetic fields from appliances, video display terminals, and
power distribution and transmission lines are commonly measured in mil-
ligauss. DC magnetic field measurements of magnets and magnetized ob-
jects (for complying with FAA regulations for air shipments, for example)
are also commonly expressed in milligauss. In fact, most of the instru-
ments used for DC and ELF magnetic field measurements are calibrated
in milligauss.
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Table 1.F Magneric Field Units

Quantity
H B 1] “,
ST units Amps/meter Tesla Weber 4 x 1077
A/m T Wb H/m
cgs units Oersted Gauss Maxwell
Oe Gs Mx 1

Conversion 10e=79.6A/m 1Gs=104T 1Mx=108Wb

1.14 STATIC MAGNETIC FIELD SUMMARY

A summary of important static magnetic field relations is provided in
Table 1.4.

Table 1.4 Summary of Staric Magneric Field Relarions

Definition Units

Biot-Savart law dH = Idl x ag A/m
47 R?
Flux density B=upH T
Magnetic flux )] =JB-dS Wb
s
Ampere’s law j( H-dl =1, 4 A
Lorentz force F=/LxB N
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