
Chapter I
Array Processors and Mapping
High Performance Signal Processing Via Systolic Array

Architectures and Algorithms

IN the last fifty years, the development of array processors for
high performance signal processing has been closely inter-

weaved with the development of high-performance digital com-
puters. The earliest and most well known computer design was
based on von Neumann architecture. It has a single processor
executing single sequence of instructions (SI) on a single stream
of data (SD) and is called a SISD machine [19].

This conceptual simplicity and associated technology led to
the immense success of the digital computer revolution. In or-
der to achieve higher computational throughput speed, the uti-
lization of newer device technology with a faster switching
speed has been an obvious approach. Often, this approach based
only on device-technology improvement has not been suffi-
cient. However, various alternative basic computer processing
concepts and architectures have also been proposed.

In one approach, various forms of concurrent operations are
used. Concurrency denotes the ability of a computational sys-
tem to perform more than one operation at a given time and can
be achieved through either parallelism or pipelining, or both.
Parallelism utilizes concurrency by replicating some process-
ing elements (PE). High throughput rate is achieved by having
simultaneous operations of these functions on different parts of
the program. Many parallel-processing, vector-data processor
arrays operate in the single instruction (SI) and multiple data
(MD) SIMD mode.

On the other hand, pipelining addresses concurrency by
breaking some demanding part of the task into many smaller,
simpler pieces, using many corresponding PEs, so that the pro-
cessing can be performed consecutively. This digital pipe is
arranged so that it is capable of processing the instructions and
data independent of the number of PEs in the pipe. The high
throughput rate in the pipe can be achieved by having fast PEs.
A computer utilizing the pipelining feature is considered as a
MISD machine since different parts of the single data (SD)
stream are being processed simultaneously by multiple instruc-
tions (MI). Finally, multiple-instruction and multiple-data
stream computers have many PEs with independent computa-
tional capabilities.

For many years, these general "parallel" processing computer
architectures have been used only on specialized mainframe and
minicomputer array processing computers for some very com-
putational intensive off-line scientific, economic, meteorologic,
and military applications. These "parallel" processing comput-

ers were almost always extremely expensive and were generally
not available for dedicated real-time signal processing applica-
tions. Only with the advent of VLSI semiconductor fabrication
technology have these parallel processing computer architec-
tures been significant to high-performance modern signal pro-
cessing. One of the most basic and important links between
parallel computation/architecture and high throughput modern
signal processing is the concept of systolic arrays.

The systolic array concept and term were coined by H. T.
Kung and C. E. Leiserson [32] to denote a simple class of con-
current processor, in which processed data move in a regular
and periodic manner similar to the systolic pumping action of
blood by the heart. The most basic idea of a systolic array is that
once data are available, they are used effectively inside many
PEs in the array to yield a higher throughput rate. Thus, a sys-
tolic array may exploit both the parallelism and pipelining ca-
pabilities of various algorithms. In the motivational and tutorial
reprinted paper by H. T. Kung, a systolic array is required to sat-
isfy the properties when there are only a few types of PEs in the
array, with each type performing the same specific operation.
All the operations are performed in a synchronous manner in-
dependent of the processed data. The only control data broad-
cast to the PEs are the synchronous clock signals, and the PEs
communicate only with their nearest neighbors. These regular
structure and local communication properties of a systolic array
are consistent with efficient modern VLSI designs. A series of
systolic designs for correlation/convolution was obtained intui-
tively. These examples demonstrate the basic property that a
given signal processing algorithm can have many different sys-
tolic implementations with different hardware requirements and
implications.

Various extensions of the earlier systolic array assumptions
have since been made. These arrays may have the properties of
wavefront array processing which allow PEs to start/end/control
their own processing tasks dependent on the data. Some of the
PEs can perform a limited number of different functions de-
pending on the presence of some control data. Some PEs can
communicate with a few nearby neighbors while the PEs at the
edge of the array are allowed to have wrap-around communica-
tions. The reprinted paper by S. Y. Kung introduces the concept
of asynchronous communication among PEs in wavefront array
processing. While the original systolic array concept was ap-
plied only at the cellular PE level, the reprinted paper by H. T.
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Kung and Lam considers systolic array methodology to the PEs
resulting in a two-level pipelined systolic array with a more ef-
ficient design.

The earlier work on mapping a signal processing algorithm
onto a systolic array was performed intuitively. In 1982, a sys-
tematic approach based on space-time transformation was pro-
posed for the systolic design of convolution [7]. Since then,
various formal systematic procedures for systolic designs of
many classes of algorithms, often called dependence graph
mapping techniques, have been proposed. One of the earliest
works in this direction is the reprinted paper by Moldovan
which considers the transformation of algorithms with loops
into parallel forms suitable for systolic implementations. Ex-
amples with Fortran loop structure and LU decompositions are
given. Another early systematic systolic design approach of
Quinton [62] introduces the concept of shift-invariance of the
dependence graph, modeling the index variables of the algo-
rithm. Uniform Recurrence Equations (URE) require only one
computational element, while the Generalized URE (GURE)
can use multiple computational elements. The reprinted paper
by Quinton and Van Dongen extends Quinton's earlier tech-
niques by using general systems of linear recurrences to define
the class of algorithms suitable for systolic implementation. The
reprinted paper by Rao and Kailath first critically reviews pre-
viously known techniques of URE and GURE and then intro-
duces a general class of algorithms for systematic systolic
designs, denoted as regular iterative algorithms (RIA). The con-
cepts of PE scheduling and allocating in the systolic design were
defined precisely, and the linear programming procedure for
their computations was proposed [29]. Variations and generali-
zations of these approaches have appeared in other works [25,
50, 67, 69, 84].

Another recent systematic approach [12] for efficient systolic
design is to formally interpret the dependence graph of an algo-
rithm as a lattice in a multidimensional integral space [57]. The
whole procedure of mapping an algorithm onto a systolic-type
processor consists of two different but interdependent opera-
tions using space and time transformations. The former projects
the dependence graph onto a lower dimensional structure which
can then be mapped onto the physical array, while the latter
yields the execution of each computation in the array. Recent
Ph.D. thesis work on general systolic mapping techniques in-
clude [4, 41, 75].

As stated earlier, the systolic concept normally applied at the
PE word level of a processor array can also be applied at the
lower bit level [43]. Various generalizations of this bit-level de-
sign have been demonstrated for correlation, convolution,
Winograd matrix-vector multiplication, and IIR [44, 80]. In the
reprinted paper by McCanny, McWhirter, and S. Y. Kung, the
dependence graph technique based on the cut-set method [34]
was proposed to perform general bit-level systolic array designs.
On the other hand, it is well known that many modern signal pro-
cessing tasks are matrix-computational problems [24, 72].
These complex higher-level problems are also well suited for
parallel/systolic processing. The reprinted paper by Moreno and

Lang considers matrix computations on application-specific
systolic-type array architectures. They proposed a multimesh
graph method for matching the fine granularity of the architec-
ture to that of the matrix algorithm for an efficient design.

In recent years, there have been many proposed schemes to
perform systematic and efficient systolic array designs. One ba-
sic approach uses partitioning to split a large dimensional sys-
tolic array problem so that it can be implemented on a
physically smaller fixed array, as proposed in [51]. Other parti-
tioning papers include [26, 27, 42, 55, 56, 76]. On the other
hand, in many practical complex DSP problems, such as in sys-
tolic Kalman filtering [39, 66] and systolic eigen/singular value
decompositions [1,40], the computational algorithms have sev-
eral distinct stages which need to be processed sequentially.
Dedicated systolic array hardware for implementing each stage
yields a highly inefficient system. In the reprinted paper by
Hwang and Hu, a multistage systolic-design technique has been
proposed to map different phases of the algorithm expressed in
several nested loops onto a single systolic array hardware. The
critical issue of interfacing data flow and distribution between
stages is addressed.

As the systolic design field becomes more mature, it is natu-
ral to consider optimized systolic designs. The reprinted paper
by Wong and Delosme considers the derivation of time-optimal
linear schedules of systolic designs for RIA algorithms. The
time performance is measured as the product of the number
of systolic cycles needed to perform some computation. The
maximum time duration of a cycle as well as other optimiza-
tions are based on integer linear programming techniques.
Many other generalizations and optimization criteria for sys-
tolic designs have been proposed in [10, 17, 30, 33, 37, 38, 70,
71,81,84].

From the beginning of systolic designs, there is continual in-
terest in constructing CAD tools for automated VLSI synthesis
of the processing array architecture. The goal is to start with
some high level DSP algorithm specification (such as in C,
Matlab, and others) and end up with a reasonably efficient sys-
tolic processor design, taking into consideration user-imposed
constraints on throughput, chip area, I/O, power consumption,
and so on. While much interesting work has been done on this
problem [13, 15, 56, 61, 65], the design of a practical CAD pro-
gram for the automated synthesis of systolic arrays at the multi-
processor level so far remains unsolved. Some recent work at
the automated design of systolic array at the chip level include
[45,77].

In the last fifteen years, hundreds of technical papers on ar-
ray processor architectures and mapping techniques have ap-
peared. A detailed treatment of these topics is given in the book
by S. Y. Kung [34] in 1988. Many other books [16, 18, 23, 48,
52, 59, 60, 63, 68, 73, 78] and edited chapters and tutorial arti-
cles [20, 28, 31, 46, 49, 74, 83] dealing with these topics have
appeared. New research results have appeared regularly in the
proceedings of the VLSI Signal Processing Workshop [2, 5, 6,
14, 35, 54, 58, 64, 82] and Applications Specific Array Proces-
sors [3, 8, 9, 11, 21, 22, 36, 47, 53, 79].
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Systolic architectures, which permit multiple computations
for each memory access, can speed execution of

compute-bound problems without increasing I/O requirements.

Why Systolic Architectures?

H. T. Kung
Carnegie-Mellon University

High-performance, special-purpose computer sys-
tems are typically used to meet specific application re-
quirements or to off-load computations that are especial-
ly taxing to general-purpose computers. As hardware cost
and size continue to drop and processing requirements
become well-understood in areas such as signal and image
processing, more special-purpose systems are being con-
structed. However, since most of these systems are built
on an ad hoc basis for specific tasks, methodological
work in this area is rare. Because the knowledge gained
from individual experiences is neither accumulated nor
properly organized, the same errors are repeated. I/O and
computation imbalance is a notable example—often, the
fact that I/O interfaces cannot keep up with device speed
is discovered only after constructing a high-speed,
special-purpose device.

We intend to help correct this ad hoc approach by pro-
viding a general guideline—specifically, the concept of
systolic architecture, a general methodology for mapping
high-level computations into hardware structures. In a
systolic system, data flows from the computer memory in
a rhythmic fashion, passing through many processing
elements before it returns to memory, much as blood cir-
culates to and from the heart. The system works like an
automobile assembly line where different people work on
the same car at different times and many cars are assem-
bled simultaneously. An assembly line is always linear,
however, and systolic systems are sometimes two-dimen-
sional. They can be rectangular, triangular, or hexagonal
to make use of higher degrees of parallelism. Moreover,
to implement a variety of computations, data flow in a
systolic system may be at multiple speeds in multiple di-
rections—both inputs and (partial) results flow, whereas
only results flow in classical pipelined systems. Generally
speaking, a systolic system is easy to implement because
of its regularity and easy to reconfigure (to meet various
outside constraints) because of its modularity.

The systolic architectural concept was developed at
Carnegie-Mellon University,1"7 and versions of systolic
processors are being designed and built by several indus-
trial and governmental organizations.8"10 This article

reviews the basic principle of systolic architectures and ex-
plains why they should result in cost-effective, high-
performance special-purpose systems for a wide range of
problems.

Key architectural issues in designing
special-purpose systems

Roughly, the cycle for developing a special-purpose
system can be divided into three phases—task definition,
design, and implementation. During task definition,
some system performance bottleneck is identified, and a
decision on whether or not to resolve it with special-
purpose hardware is made. The evaluation required for
task definition is most fundamental, but since it is often
application-dependent, we will concentrate only on archi-
tectural issues related to the design phase and will assume
routine implementation.

Simple and regular design. Cost-effectiveness has
always been a chief concern in designing special-purpose
systems; their cost must be low enough to justify their
limited applicability. Costs can be classified as nonrecur-
ring (design) and recurring (parts) costs. Part costs are
dropping rapidly due to advances in integrated-circuit
technology, but this advantage applies equally to both
special-purpose and general-purpose systems. Further-
more, since special-purpose systems are seldom produced
in large quantities, part costs are less important than
design costs. Hence, the design cost of a special-purpose
system must be relatively small for it to be more attractive
than a general-purpose approach.

Fortunately, special-purpose design costs can be reduced
by the use of appropriate architectures. If a structure can
truly be decomposed into a few types of simple substruc-
tures or building blocks, which are used repetitively with
simple interfaces, great savings can be achieved. This is
especially true for VLSI designs where a single chip com-
prises hundreds of thousands of components. To cope
with that complexity, simple and regular designs, similar

Reprinted from IEEE Computer, pp. 37-46, January 1982.
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to some of the techniques used in constructing large soft-
ware systems, are essential.] * In addition, special-purpose
systems based on simple, regular designs are likely to be
modular and therefore adjustable to various performance
goals—that is, system cost can be made proportional to
the performance required. This suggests that meeting the
architectural challenge for simple, regular designs yields
cost-effective special-purpose systems.

Concurrency and communication. There are essential-
ly two ways to build a fast computer system. One is to use
fast components, and the other is to use concurrency. The
last decade has seen an order of magnitude decrease in the
cost and size of computer components but only an incre-
mental increase in component speed.12 With current
technology, tens of thousands of gates can be put in a
single chip, but no gate is much faster than its TTL
counterpart of 10 years ago. Since the technological trend
clearly indicates a diminishing growth rate for component
speed, any major improvement in computation speed
must come from the concurrent use of many processing
elements. The degree of concurrency in a special-purpose
system is largely determined by the underlying algorithm.
Massive parallelism can be achieved if the algorithm is
designed to introduce high degrees of pipelining and
multiprocessing. When a large number of processing
elements work simultaneously, coordination and com-
munication become significant—especially with VLSI
technology where routing costs dominate the power,
time, and area required to implement a computation.13

The issue here is to design algorithms that support high
degrees of concurrency, and in the meantime to employ
only simple, regular communication and control to enable
efficient implementation.

Balancing computation with I/O. Since a special-
purpose system typically receives data and outputs results
through an attached host, I/O considerations influence
overall performance. (The host in this context can mean a
computer, a memory, a real-time device, etc. In practice,
the special-purpose system may actually input from one
"physical'* host and output to another.) The ultimate

Figure 1. Basic principle of a systolic system.

performance goal of a special-purpose system is—and
should be no more than—a computation rate that bal-
ances the available I/O bandwidth with the host. Since an
accurate a priori estimate of available I/O bandwidth in a
complex system is usually impossible, the design of a
special-purpose system should be modular so that its
structure can be easily adjusted to match a variety of I/O
band widths.

Suppose that the I/O bandwidth between the host and a
special-purpose system is 10 million bytes per second, a
rather high bandwidth for present technology. Assuming
that at least two bytes are read from or written to the host
for each operation, the maximum rate will be only 5
million operations per second, no matter how fast the
special-purpose system can operate (see Figure 1). Orders
of magnitude improvements on this throughput are possi-
ble only if multiple computations are performed per I/O
access. However, the repetitive use of a data item requires
it to be stored inside the system for a sufficient length of
time. Thus, the I/O problem is related not only to the
available I/O bandwidth, but also to the available
memory internal to the system. The question then is how
to arrange a computation together with an appropriate
memory structure so that computation time is balanced
with I/O time.

The I/O problem becomes especially severe when a large
computation is performed on a small special-purpose sys-
tem. In this case, the computation must be decomposed.
Executing subcomputations one at a time may require a
substantial amount of I/O to store or retrieve intermediate
results. Consider, for example, performing the H-point fast
Fourier transform using an S-point device when n is large
and 5 is small. Figure 2 depicts the /i-point FFT computa-
tion and a decomposition scheme for n = 16 and 5=4. Note
that each subcomputation block is sufficiently small so that
it can be handled by the 4-point device. During execution,
results of a block must be temporarily sent to the host and
later retrieved to be combined with results of other blocks
as they become available. With the decomposition scheme
shown in Figure 2b, the total number of I/O operations is
O(n log rt/log 5). In fact, it has been shown that, to per-
form the rt-point FFT with a device of O(S) memory, at
least this many I/O operations are needed for any decom-
position scheme.M Thus, for the n-point FFT problem, an
5-point device cannot achieve more than an 0(log S)
speed-up ratio over the conventional O(n log n) software
implementation time, and since it is a consequence of the
I/O consideration, this upper bound holds independently
of device speed. Similar upper bounds have been estab-
lished for speed-up ratios achievable by devices for other
computations such as sorting and matrix multiplication.14»15

Knowing the I/O-imposed performance limit helps pre-
vent overkill in the design of a special-purpose device.

In practice, problems are typically "larger" than
special-purpose devices. Therefore, questions such as
how a computation can be decomposed to minimize I/O,
how the I/O requirement is related to the size of a special-
purpose system and its memory, and how the I/O band-
width limits the speed-up ratio achievable by a special-
purpose system present another set of challenges to the
system architect.
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Systolic architectures: the basic principle

As a solution to the above challenges, we introduce
systolic architectures, an architectural concept originally
proposed for VLSI implementation of some matrix oper-
ations.5 Examples of systolic architectures follow in the
next section, which contains a walk-through of a family
of designs for the convolution computation.

A systolic system consists of a set of interconnected
cells, each capable of performing some simple operation.
Because simple, regular communication and control
structures have substantial advantages over complicated
ones in design and implementation, cells in a systolic
system are typically interconnected to form a systolic ar-
ray or a systolic tree. Information in a systolic system
flows between cells in a pipelined fashion, and communi-
cation with the outside world occurs only at the "bound-
ary cells.*' For example, in a systolic array, only those
cells on the array boundaries may be I/O ports for the
system.

Computational tasks can be conceptually classified
into two families—compute-bound computations and
I/O-bound computations. In a computation, if the total
number of operations is larger than the total number of
input and output elements, then the computation is
compute-bound, otherwise it is I/O-bound. For example,
the ordinary matrix-matrix multiplication algorithm
represents a compute-bound task, since every entry in a
matrix is multiplied by all entries in some row or column
of the other matrix. Adding two matrices, on the other
hand, is I/O-bound, since the total number of adds is not
larger than the total number of entries in the two matrices.
It should be clear that any attempt to speed up an I/O-
bound computation must rely on an increase in memory
bandwidth. Memory bandwidth can be increased by the
use of either fast components (which could be expensive)
or interleaved memories (which could create complicated
memory management problems). Speeding up a com-
pute-bound computation, however, may often be accom-

plished in a relatively simple and inexpensive manner,
that is, by the systolic approach.

The basic principle of a systolic architecture, a systolic
array in particular, is illustrated in Figure 1. By replacing a
single processing element with an array of PEs, or cells in
the terminology of this article, a higher computation
throughput can be achieved without increasing memory
bandwidth. The function of the memory in the diagram is
analogous to that of the heart; it * 'pulses' * data (instead of
blood) through the array of cells. The crux of this ap-
proach is to ensure that once a data item is brought out
from the memory it can be used effectively at each cell it
passes while being "pumped" from cell to cell along the
array. This is possible for a wide class of compute-bound
computations where multiple operations are performed
on each data item in a repetitive manner.

Being able to use each input data item a number of
times (and thus achieving high computation throughput
with only modest memory bandwidth) is just one of the
many advantages of the systolic approach. Other advan-
tages, such as modular expansibility, simple and regular
data and control flows, use of simple and uniform cells,
elimination of global broadcasting, and fan-in and (pos-
sibly) fast response time, will be illustrated in various sys-
tolic designs in the next section.

A family of systolic designs
for the convolution computation

To provide concrete examples of various systolic struc-
tures, this section presents a family of systolic designs for
the convolution problem, which is defined as follows:

Given the sequence of weights (wj, w2, . . . , w^j
and the input sequence [x]tx2, . . . ,*„),

compute the result sequence [yi,j>2» • • • IJ'K + I-A:)
defined by

^, = w1jfl-+w2r/+1 + . . . + wkxi+k_x

Figure 2. (a) 16-point fast-Fourier-transform graph; (b) decomposing the FFT computation with n = 16 and S = 4 .
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Figure 3. Design B1: systolic convolution array (a) and cell Figure 4. Design B2: systolic convolution array (a) and cell
(b) where x/'s are broadcast, tv,-'s stay, and y/'s move (b) where x/'s are broadcast, y,'s stay, and w/'s move
systolically. systolically.

We consider the convolution problem because it is a sim-
ple problem with a variety of enlightening systolic solu-
tions, because it is an important problem in its own right,
and more importantly, because it is representative of a
wide class of computations suited to systolic designs. The
convolution problem can be viewed as a problem of com-
bining two data streams, w/'s amd jt/'s, in a certain man-
ner (for example, as in the above equation) to form a
resultant data stream of yfs. This type of computation is
common to a number of computation routines, such as
filtering, pattern matching, correlation, interpolation,
polynomial evaluation (including discrete Fourier trans-
forms), and polynomial multiplication and division. For
example, if multiplication and addition are interpreted as
comparison and boolean AND, respectively, then the
convolution problem becomes the pattern matching
problem.1 Architectural concepts for the convolution
problem can thus be applied to these other problems as
well.

The convolution problem is compute-bound, since
each input x; is to be multiplied by each of the k weights. I f
the Xj is input separately from memory for each multi-
plication, then when k is large, memory bandwidth
becomes a bottleneck, precluding a high-performance
solution. As indicated earlier, a systolic architecture
resolves this I/O bottleneck by making multiple use of
each Xj fetched from the memory. Based on this principle,
several systolic designs for solving the convolution prob-
lem are described below. For simplicity, all illustrations
assume that k = 3.

(Semi-) systolic convolution arrays with global data
communication. If an xn once brought out from the
memory, is broadcast to a number of cells, then the same
x/can be used by all the cells. This broadcasting technique
is probably one of the most obvious ways to make mul-
tiple use of each input element. The opposite of broad-
casting is fan-in, through which data items from a number
of cells can be collected. The fan-in technique can also be
used in a straightforward manner to resolve the I/O bot-
tleneck problem. In the following, we describe systolic
designs that utilize broadcasting and fan-in.

Design Bl—broadcast inputs, move results, weights
stay. The systolic array and its cell definition are depicted

in Figure 3. Weights are preloaded to the cells, one at each
cell, and stay at the cells throughout the computation.
Partial results yx move systolically from cell to cell in the
left-to-right direction, that is, each of them moves over
the cell to its right during each cycle. At the beginning
of a cycle, one.*/is broadcast to all the cells and one^/, in-
itialized as zero, enters the left-most cell. During cycle
one, W] X\ is accumulated to yx at the left-most cell, and
during cycle two, w\ x-i and w2 x2 are accumulated to y2

and y\ at the left-most and middle cells, respectively.
Starting from cycle three, the final (and correct) values of
y\, yi» • • • are output from the right-most cell at the rate
of one y, per cycle. The basic principle of this design was
previously proposed for circuits to implement a pattern
matching processor16 and for circuits to implement
polynomial multiplication.17"20

Design B2—broadcast inputs, move weights, results
stay. In design B2 (see Figure 4), each yx stays at a cell to
accumulate its terms, allowing efficient use of available
multiplier-accumulator hardware. (Indeed, this design is
described in an application booklet for the TRW multi-
plier-accumulator chips.21 The weights circulate around
the array of cells, and the first weight wx is associated with
a tag bit that signals the accumulator to output and resets
its contents. * In design B1 (Figure 3), the systolic path for
moving j>/s may be considerably wider than that for mov-
ing w/'s in design B2 because for numerical accuracy y^s
typically carry more bits than w/s. The use of multiplier-
accumulators in design B2 may also help increase preci-
sion of the results, since extra bits can be kept in these ac-
cumulators with modest cost. Design Bl, however, does
have the advantage of not requiring a separate bus (or
other global network), denoted by a dashed line in Figure
4, for collecting outputs from individual cells.

Design F—fan-in results, move inputs, weights stay. If
we consider the vector of weights {wk, wk_] wjjas
being fixed in space and input vector {xn, *„ _ ], . . . , x\)
as sliding over the weights in the left-to-right direction,
then the convolution problem is one that computes the in-
ner product of the weight vector and the section of input
vector it overlaps. This view suggests the systolic array

*To avoid complicated pictures, control structures such as the use of tag
bits to gate outputs from cells are omitted from the diagrams of this article.
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Figure 5. Design F: systolic convolution array (a) and cell
(b) where W/'s stay, x/'s move systolically, and y/'s are
formed through the fan-in of results from all the cells.

Figure 6. Design R1: systolic convolution array (a) and cell
(b) where y; 's stay and x; 's and y,'s move in opposite direc-
tions systolically.

shown in Figure 5. Weights are preloaded to the cells and
stay there throughout the computation. During a cycle,
all xfs move one ceil to the right, multiplications are per-
formed at all cells simultaneously, and their results are
fanned-in and summed using an adder to form a new y{.
When the number of cells, k, is large, the adder can be im-
plemented as a pipelined adder tree to avoid large delays
in each cycle. Designs of this type using unbounded fan-in
have been known for quite a long time, for example, in the
context of signal processing33 and in the context of pat-
tern matching.43

(Pure-) systolic convolution arrays without global data
communication. Although global broadcasting or fan-in
solves the I/O bottleneck problem, implementing it in a
modular, expandable way presents another problem.
Providing (or collecting) a data item to (or from) all the
cells of a systolic array, during each cycle, requires the use
of a bus or some sort of tree-like network. As the number
of cells increases, wires become long for either a bus or
tree structure; expanding these non-local communication
paths to meet the increasing load is difficult without slow-
ing down the system clock. This engineering difficulty of
extending global networks is significant at chip, board,
and higher levels of a computer system. Fortunately, as
will be demonstrated below, systolic convolution arrays
without global data communication do exist. Potentially,
these arrays can be extended to include an arbitrarily large
number of cells without encountering engineering diffi-
culties (the problem of synchronizing a large systolic ar-
ray is discussed later).

Design Rl—results stay, inputs and weights move in
opposite directions. In design Rl (see Figure 6) each par-
tial results stays at a cell to accumulate its terms. Them's
and w; 's move systolically in opposite directions such that
when an x meets a w at a cell, they are multiplied and the
resulting product is accumulated to the y staying at that
cell. To ensure that each xt is able to meet every w/, con-
secutive x/s on the x data stream are separated by two cy-
cle times and so are the w/s on the w data stream.

Like design B2, design Rl can make efficient use of
available multiplier-accumulator hardware; it can also
use a tag bit associated with the first weight, wh to trigger
the output and reset the accumulator contents of a cell.

Figure 7. Design R2: systolic convolution array (a) and cell
(b) where y;-'s stay and x,'s and wt 's both move in the same
direction but at different speeds.

Design R1 has the advantage that it does not require a bus,
or any other global network, for collecting output from
cells; a systolic output path (indicated by broken arrows
in Figure 6) is sufficient. Because consecutive w/s are well
separated by two cycle times, a potential conflict—that
more than one y{ may reach a single latch on the systolic
output path simultaneously—cannot occur. It can also be
easily checked that the yfs will output from the systolic
output path in the natural ordering yl ,y2,. . . .The basic
idea of this design, including that of the systolic output
path, has been used to implement a pattern matching
chip.1

Notice that in Figure 6 only about one-half the cells are
doing useful work at any time. To fully utilize the poten-
tial throughput, two independent convolution computa-
tions can be interleaved in the same systolic array, but
cells in the array would have to be modified slightly to
support the interleaved computation. For example, an
additional accumulator would be required at each cell to
hold a temporary result for the other convolution com-
putation.

Design R2 —results stay, inputs and weights move in
the same direction but at different speeds. One version o f
design R2 is illustrated in Figure 7. In this case both the x
and w data streams move from left to right systolically,
but thex/s move twice as fast as the w/s. More precisely,
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Figure 8. Design W1: systolic convolution array (a) and
cell (b) where w/ 's stay and x/ 's and y; 's move systolically
in opposite directions.

each Wj stays inside every cell it passes for one extra cycle,
thus taking twice as long to move through the array as any
Xj. In this design, multiplier-accumulator hardware can be
used effectively and so can the tag bit method to signal the
output of the accumulator contents at each cell. Com-
pared to design Rl , this design has the advantage that all
cells work all the time when performing a single convolu-
tion, but it requires an additional register in each cell to
hold a w value. This algorithm has been used for im-
plementing a pipeline multiplier.22

There is a dual version of design R2; we can have the
w/'s move twice as fast as the xfs. To create delays for the
x data stream, this dual design requires a register in each
cell for storing an x rather than a w value. For cir-
cumstances where the w,'s carry more bits than the xfs,
the dual design becomes attractive.

Design Wl—weights stay, inputs and results move in
opposite directions. In design Wl (and design W2,
below), weights stay, one at each cell, but results and in-
puts move systolically. These designs are not geared to the
most effective use of available multiplier-accumulator
hardware, but for some other circumstances they are
potentially more efficient than the other designs. Because
the same set of weights is used for computing all the^/s
and different sets of the x/s are used for computing dif-
ferent yfs, it is natural to have the w/s preloaded to the
cells and stay there, and let the x/s and thej>/s move along
the array. We will see some advantages of this arrange-
ment in the systolic array depicted in Figure 8, which is a
special case of a proposed systolic filtering array.3 This
design is fundamental in the sense that it can be naturally
extended to perform recursive filtering2'3 and polynomial
division.23

In design Wl, the vv/s stay and the xfs and yfs move
systolically in opposite directions. Similar to design Rl,
consecutive */s and yfs are separated by two cycle times.
Note that because the systolic path for moving the yfs
already exists, there is no need for another systolic output
path as in designs Rl and R2. Furthermore, for each /, yt

outputs from the left-most cell during the same cycle as its
last input, *,-+*_| (or xi+2 for k = 3), enters that cell.
Thus, this systolic array is capable of outputting a^every
two cycle times with constant response time. Design W1,
however, suffers from the same drawback as design Rl,

Figure 9. Design W2: systolic convolution array (a) and
cell (b) where iv/'s stay and x/'s and y/'s both move
systolically in the same direction but at different speeds.

namely, only approximately one-half the cells work at any
given time unless two independent convolution computa-
tions are interleaved in the same array. The next design,
like design R2, overcomes this shortcoming by having
both the xfs and j / ' s move in the same direction but at dif-
ferent speeds.

Design W2—weights stay, inputs and results move in
the same direction but at different speeds. With design
W2 (Figure 9) all the cells work all the time, but it loses one
advantage of design W1, the constant response time. The
output of ̂ ,now takes place k cycles after the last of its in-
puts starts entering the left-most cell of the systolic array.
This design has been extended to implement 2-D convolu-
tions,6*24 where high throughputs rather than fast
responses are of concern. Similar to design Rl , design W2
has a dual version for which the x/s move twice as fast as
them's.

Remarks. The designs presented above by no means ex-
haust all the possible systolic designs for the convolution
problem. For example, it is possible to have systolic
designs where results, weights, and inputs all move during
each cycle. It could also be advantageous to include inside
each cell a "cell memory" capable of storing a set of
weights. With this feature, using a systolic control (or ad-
dress) path, weights can be selected on-the-fly to imple-
ment interpolation or adaptive filtering.24 Moreover, the
flexibility introduced by the cell memories and systolic
control can make the same systolic array implement dif-
ferent functions. Indeed, the ESL systolic processor8'10

utilizes cell memories to implement multiple functions in-
cluding convolution and matrix multiplication.

Once one systolic design is obtained for a problem, it is
likely that a set of other systolic designs can be derived
similarly. The challenge is to understand precisely the
strengths and drawbacks of each design so that an ap-
propriate design can be selected for a given environment.
For example, if there are more weights than cells, it's
useful to know that a scheme where partial results stay
generally requires less I/O than one where partial results
move, since the latter scheme requires partial results to be
input and output many times. A single multiplier-accu-
mulator hardware component often represents a cost-
effective implementation of the multiplier and adder
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Figure 10. Overlapping the executions of multiply and add in design W1.

needed by each cell of a systolic convolution array.
However, for improving throughput, sometimes it may
be worthwhile to implement multiplier and adder sepa-
rately to allow overlapping of their executions. Figure 10
depicts such a modification to design Wl. Similar
modifications can be made to other systolic convolution
arrays. Another interesting scenario is the following one.
Suppose that one or several cells are to be implemented
directly with a single chip and the chip pin bandwidth is
the implementation bottleneck. Then, since the basic cell
of some semi-systolic convolution arrays such as designs
Bl and F require only three I/O ports, while that of a
pure-systolic convolution array always requires four, a
semi-systolic array may be preferable for saving pins,
despite the fact that it requires global communication.

Criteria and advantages

Having described a family of systolic convolution ar-
rays, we can now be more precise in suggesting and evalu-
ating criteria for the design of systolic structures.

(1) The design makes multiple use of each input data
item. Because of this property, systolic systems can
achieve high throughputs with modest I/O bandwidths
for outside communication. To meet this criterion, one
can either use global data communications, such as
broadcast and unbounded fan-in, or have each input
travel through an array of cells so that it is used at each
cell. For modular expansibility of the resulting system,
the second approach is preferable.

(2) The design uses extensive concurrency. The process-
ing power of a systolic architecture comes from concur-
rent use of many simple cells rather than sequential use of
a few powerful processors as in many conventional ar-
chitectures. Concurrency can be obtained by pipelining
the stages involved in the computation of each single
result (for example, design Bl), by multiprocessing many
results in parallel (designs Rl and R2), or by both. For
some designs, such as Wl, it is possible to completely
overlap I/O and computation times to further increase
concurrency and provide constant-time responses.

To a given problem there could be both one- and two-
dimensional systolic array solutions. For example, two-
dimensional convolution can be performed by a one-
dimensional systolic array24'25 ox a two-dimensional
systolic array.6 When the memory speed is more than cell
speed, two-dimensional systolic arrays such as those
depicted in Figure 11 should be used. At each cell cycle, all
the I/O ports on the array boundaries can input or output
data items to or from the memory; as a result, the
available memory bandwidth can be fully utilized. Thus,
the choice of a one- or two-dimensional scheme is very
dependent on how cells and memories will be imple-
mented.

As in one-dimensional systolic arrays, data in two-
dimensional arrays may flow in multiple directions and at
multiple speeds. For examples of two-dimensional sys-
tolic arrays, see Guibas et al.26 and Kung and Lehman4

(type R), Kung and Leiserson5 and Weiser and Davis27

(type H), and Bojanczyk et al.28 and Gentleman and
Kung29 (type T). In practice, systolic arrays can be
chained together to form powerful systems such as the
one depicted in Figure 12, which is capable of producing
on-the-fly the least-squares fit to all the data that have ar-
rived up to any given moment.29

For the systolic structures discussed in the preceding
section, computations are pipelined over an array of cells.
To permit even higher concurrency, it is sometimes possi-
ble to introduce another level of pipelining by allowing
the operations inside the cells themselves to be pipelined.
(Note that pipelined arithmetic units will become increas-
ingly common as VLSI makes the extra circuits needed for

Figure 11. Two-dimensional systolic arrays: (a) type R, (b) type H, and
(c) type T.
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Figure 12. On-the-fly least-squares solutions using one- and two-
dimensional systolic arrays, with p = 4.

staging affordable.) Both designs Wl and W2 support
two-level pipelining.25 Since system cycle time is the time
of a stage of a cell, rather than the whole cell cycle time,
two-level pipelined systolic systems significantly improve
throughput.

(3) There are only a few types of simple cells. To achieve
performance goals, a systolic system is likely to use a large
number of cells. The cells must be simple and of only a few
types to curtail design and implementation costs, but ex-
actly how simple is a question that can only be answered
on a case by case basis. For example, if a systolic system
consisting of many cells is to be implemented on a single
chip, each cell should probably contain only simple logic
circuits plus a few words of memory On the other hand,
for board implementations each cell could reasonably
contain a high-performance arithmetic unit plus a few
thousand words of memory. There is, of course, always a
trade-off between cell simplicity and flexibility.

(4) Data and control flo ws are simple and regular. Pure
systolic systems totally avoid long-distance or irregular
wires for data communication. The only global commu-
nication (besides power and ground) is the system clock.
Of course, self-timed schemes can be used instead for syn-
chronizing neighboring cells, but efficient implementa-
tions of self-timed protocols may be difficult. Fortunate-
ly, for any one-dimensional systolic array, a global clock

parallel to the array presents no problems, even if the ar-
ray is arbitrarily long. The systolic array (with data flow-
ing in either one or opposite directions) will operate cor-
rectly despite the possibility of a large clock skew between
its two ends.30 However, large two-dimensional arrays
may require slowdown of the global clock to compensate
for clock skews. Except for this possible problem in the
two-dimensional case, systolic designs are completely
modular and expandable; they present no difficult syn-
chronization or resource conflict problems. Software
overhead associated with operations such as address in-
dexing are totally eliminated in systolic systems. This ad-
vantage alone can mean a substantial performance im-
provement over conventional general-purpose com-
puters. Simple, regular control and communication also
imply simple, area-efficient layout or wiring-—an impor-
tant advantage in VLSI implementation.

In summary, systolic designs based on these criteria are
simple (a consequence of properties 3 and 4), modular
and expandable (property 4), and yield high performance
(properties 1,2, and 4). They therefore meet the architec-
tural challenges for special-purpose systems. A unique
characteristic of the systolic approach is that as the
number of cells expands the system cost and performance
increase proportionally, provided that the size of the
underlying problem is sufficiently large. For example, a
systolic convolution array can use an arbitrarily large
number of cells cost-effectively, if the kernel size (that is,
the number of weights) is large. This is in contrast to other
parallel architectures which are seldom cost-effective for
more than a small number of processors. From a user's
point of view, a systolic system is easy to use—he simply
pumps in the input data and then receives the results either
on-the-fly or at the end of the computation.

Summary and concluding remarks

Bottlenecks to speeding up a computation are often due
to limited system memory bandwidths, so called von Neu-
mann bottlenecks, rather than limited processing cap-
abilities per se. This problem can certainly be expected for
I/O-bound computations, but with a conventional archi-
tectural approach, it may be present even for compute-
bound computations. For every operation, at least one or
two operands have to be fetched (or stored) from (or to)
memory, so the total amount of I/O is proportional to the
number of operations rather than the number of inputs
and outputs. Thus, a problem that was originally com-
pute-bound can become I/O-bound during its execution.
This unfortunate situation is the result of a mismatch be-
tween the computation and the architecture. Systolic ar-
chitectures, which ensure multiple computations per
memory access, can speed up compute-bound computa-
tions without increasing I/O requirements.

The convolution problem is j ust one of many compute-
bound computations that can benefit from the systolic
approach. Systolic designs using (one- or two-dimen-
sional) array or tree structures are available for the
following regular, compute-bound computations.

Signal and image processing:
• FIR, IIR filtering, and 1-D convolution2'3*31;
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• 2-D convolution and correlation6'8'10'24-25;
• discrete Fourier transform2'3;
• interpolation24;
• 1-D and 2-D median filtering32; and
• geometric warping.24

Matrix arithmetic:
• matrix-vector multiplication5;
• matrix-matrix multiplication5*27;
• matrix triangularization (solution of linear systems,

matrix inversion)5'29;
• QR decomposition (eigenvalue, least-square compu-

tations)28*29; and
• solution of triangular linear systems.5

Non-numeric applications:
• data structures—stack and queue,34 searching, 15»35-36

priority queue,7 and sorting7*15;
• graph algorithms—transitive closure,26 minimum

spanning trees,37 and connected components38;
• language recognition—string matching1 and regular

expression39;
• dynamic programming26;
• encoders (polynomial division)23; and
• relational data-base operations.4*40

In general, systolic designs apply to any compute-
bound problem that is regular—that is, one where repeti-
tive computations are performed on a large set of data.
Thus, the above list is certainly not complete (and was not
intended to be so). Its purpose is to provide a range of
typical examples and possible applications. After study-
ing several of these examples, one should be able to start
designing systolic systems for one's own tasks. Some
systolic solutions can usually be found without too much
difficulty. (I know of only one compute-bound problem
that arises naturally in practice for which no systolic solu-
tion is known, and I cannot prove that a systolic solution
is impossible.) This is probably due to the fact that most
compute-bound problems are inherently regular in the
sense that they are definable in terms of simple recur-
rences. Indeed, the notion of systolicity is implicit in quite
a few previously known special-purpose designs, such as
the sorting41 and multiply designs.22 This should not
come as a surprise; as we have been arguing systolic struc-
tures are essential for obtaining any cost-effective, highr

performance solution to compute-bound problems. It is
useful, however, to make the systolic concept explicit so
that designers will be conscious of this important design
criterion.

While numerous systolic designs are known today, the
question of their automatic design is still open. But recent
efforts show significant progress.27*42 Leiserson and
Saxe, for instance, can convert some semi-systolic
systems involving broadcasting or unbounded fan-in into
pure-systolic systems without global data communica-
tion.42 A related open problem concerns the specification
and verification of systolic structures. For implementa-
tion and proof purposes, rigorous notation other than in-
formal pictures (as used in this article) for specifying
systolic designs is desirable.

With the development of systolic architectures, more
and more special-purpose systems will become feasi-

ble—especially systems that implement fixed, well-under-
stood computation routines. But the ultimate goal is ef-
fective use of systolic processors in general computing en-
vironments to off-load regular, compute-bound compu-
tations. To achieve this goal further research is needed in
two areas. The first concerns the system integration: we
must provide a convenient means for incorporating high-
performance systolic processors into a complete system
and for understanding their effective utilization from a
system point of view. The second research area is to
specify building-blocks for a variety of systolic processors
so that, once built, these building blocks can be pro-
grammed to form basic cells for a number of systolic
systems. The building-block approach seems inherently
suitable to systolic architectures since they tend to use on-
ly a few types of simple cells. By combining these build-
ing-blocks regularly, systolic systems geared to different
applications can be obtained with little effort. •

Acknowledgment

Parts of this article were written while the author was
on leave from Carnegie-Mellon University with ESL's
Advanced Processor Technology Laboratory in San Jose,
California, January-August 1981. Most of the research
reported here was carried out at CMU and was supported
in part by the Office of Naval Research under Contracts
N00014-76-C-0370, NR 044-422 and N00014-80-C-0236,
NR 048-659, in part by the National Science Foundation
under Grant MCS 78-236-76, and in part by the Defense
Advanced Research Projects Agency (DoD), ARPA
Order No. 3597, monitored by the Air Force Avionics
Laboratory under Contract F33615-81-K-1539.

References

1. M. J. Foster and H. T. Kung, 'The Design of Special-
Purpose VLSI Chips," Computer, Vol. 13, No. 1, Jan.
1980, pp. 26-40.

2. H. T. Kung, "Let's Design Algorithms for VLSI
Systems,*' Proc. Conf. Very Large Scale Integration: Ar-
chitecture, Design, Fabrication, California Institute of
Technology, Jan. 1979, pp. 65-90.

3. H. T. Kung, "Special-Purpose Devices for Signal and Im-
age Processing: An Opportunity in VLSI," Proc. SP1E,
Vol. 241, Real-Time Signal Processing III, Society of
Photo-Optical Instrumentation Engineers, July 1980, pp.
76-84.

4. H. T. Kung and P. L. Lehman, "Systolic (VLSI) Arrays
for Relational Database Operations," Proc. ACM-
Sigmod 1980 Int't Conf. Management of Data, May 1980,
pp. 105-116.

5. H. T. Kung and C. E. Leiserson, "Systolic Arrays (for
VLSI)," Sparse Matrix Proc. 1978, Society for Industrial
and Applied Mathematics, 1979, pp. 256-282.

6. H. T. Kung and S. W. Song, A Systolic 2-D Convolution
Chip, Technical Report CMU-CS-81-110, Carnegie-
Mellon University Computer Science Dept., Mar. 1981.

7. C. E. Leiserson, "Systolic Priority Queues," Proc. Conf.
Very Large Scale Integration: Architecture, Design, Fabri-
cation, California Institute of Technology, Jan. 1979, pp.
199-214.

8. J. Blackmer, P. Kuekes, and G. Frank, "A 200 MOPS
systolic processor," Proc. SPIE, Vol. 298, Real-Time
Signal Processing IV, Society of Photo-Optical Instrumen-
tation Engineers, 1981.

13



9. K. Bromley, J. J. Symanski, J. M. Speiser, and H. J.
Whitehouse, "Systolic Array Processor Developments,*'
in VLSI Systems and Computations, H. T. Kung, R. F.
Sproull, and G. L. Steele, Jr., (eds.), Carnegie-Mellon
University, Computer Science Press, Oct. 1981, pp.
273-284.

10. D. W. L. Yen and A. V. Kulkarni, "The ESL Systolic Pro-
cessor for Signal and Image Processing," Proc. 1981 IEEE
Computer Society Workshop on Computer Architecture
for Pattern Analysis and Image Database Management,
Nov. 1981, pp. 265-272.

11. C. A. Mead and L. A. Conway, Introduction to VLSI
Systems, Addison-Wesley, Reading, Mass., 1980.

12. R. N. Noyce, "Hardware Prospects and Limitations," in
The Computer Age: A Twenty-Year Review, M. L.
Dertouzos and J. Moses (eds.), IEEE Press, 1979, pp.
321-337.

13. I. E. Sutherland and C. A. Mead, "Microelectronics and
Computer Science," Scientific American, Vol. 237, No. 3,
Sept. 1977, pp. 210-228.

14. J-W. Hong and H. T. Kung, "I/O Complexity: The Red-
Blue Pebble Game," Proc. 13th Annual ACM Symp.
Theory of Computing, ACM Sigact, May 1981, pp.
326-333.

15. S. W. Song, On a High-Performance VLSI Solution to
Database Problems, PhD dissertation, Carnegie-Mellon
University, Computer Science Dept., July 1981.

16. A. Mukhopadhyay, "Hardware Algorithms for Nonnu-
meric Computation," IEEE Trans. Computers, Vol. C-28,
No. 6, June 1979, pp. 384-394.

17. D. Cohen, Mathematical Approach to Computational
Networks, Technical Report ISI/RR-78-73, University of
Southern California, Information Sciences Institute, 1978.

18. D. A. Huffman, "The Synthesis of Linear Sequential
Coding Networks," in Information Theory, C. Cherry
(ed.), Academic Press, 1957, pp. 77-95.

19. K. Y. Liu, "Architecture for VLSI Design of Reed-
Solomon Encoders," Proc. Second Caltech VLSI Conf.
Jan. 1981.

20. W. W. Peterson and E. J. Weldon, Jr., Error-Correcting
Codes, MIT Press, Cambridge, Mass., 1972.

21. L. Schirm IV, Multiplier-Accumulator Application Notes,
TRW LSI Products, Jan. 1980.

22. R. F. Lyon, "Two's Complement Pipeline Multipliers,"
IEEE Trans. Comm., Vol. COM-24, No. 4, Apr. 1976, pp.
418-425.

23. H. T. Kung, "Use of VLSI in Algebraic Computation:
Some Suggestions,'' Proc. 1981A CM Symp. Symbolic and
Algebraic Computation, ACM Sigsam, Aug. 1981, pp.
218-222.

24. H. T. Kung and R.L. Picard, "Hardware Pipelines for
Multi-Dimensional Convolution and Resampling," Proc.
1981 IEEE Computer Society Workshop on Computer Ar-
chitecture for Pattern Analysis and Image Database Man-
agement, Nov. 1981, pp. 273-278.

25. H. T. Kung, L. M. Ruane, and D. W. L. Yen, "A Two-
Level Pipelined Systolic Array for Convolutions," in VLSI
Systems and Computations, H. T. Kung, R. F. Sproull,
and C. L. Steele, Jr. (eds.), Carnegie-Mellon University,
Computer Science Press, Oct. 1981, pp. 255-264.

26. L. J. Guibas, H. T. Kung, and C. D. Thompson, "Direct
VLSI Implementation of Combinatorial Algorithms,"
Proc. Conf. Very Large Scale Integration: Architecture,
Design, Fabrication, California Institute of Technology,
Jan. 1979, pp. 509-525.

27. U. Weiser and A. Davis,' 'A Wavefront Notation Tool for
VLSI Array Design," in VLSI Systems and Computations,
H. T. Kung, R. F. Sproull, and G. L. Steele, Jr. (eds.),
Carnegie-Mellon University, Computer Science Press,
Oct. 1981, pp. 226-234.

28. A. Bojanczyk, R. P. Brent, and H. T. Kung, Numerically
Stable Solution of Dense Systems of Linear Equations Us-
ing Mesh-Connected Processors, Technical Report,
Carnegie-Mellon University, Computer Science Dept. May
J98J.

29. W. M. Gentleman and H. T. Kung, "Matrix Triangular -
ization by Systolic Arrays," Proc. SPIE, Vol. 298, Real-
Time Signal Processing IV, Society of Photo-optical In-
strumentation Engineers, 1981.

30. A. Fisher and H. T. Kung, CMU Computer Science Dept.
technical report, Jan. 1982.

31. P. R. Cappello and K. Steiglitz, "Digital Signal Processing
Applications of Systolic Algorithms," in VLSI Systems
and Computations, H. T. Kung, R. F. Sproull, and G. L.
Steele, Jr. (eds.), Carnegie-Mellon University, Computer
Science Press, Oct. 1981, pp. 245-254.

32. A. Fisher, "Systolic Algorithms for Running Order
Statistics in Signal and Image Processing," in VLSI
Systems and Computations, H. T. Kung, R. F. Sproull, G.
L. Steele, Jr. (eds.), Carnegie-Mellon University, Com-
puter Science Press, Oct. 1981, pp. 265-272.

33. E. E. Swartzlander, Jr., and B. K. Gilbert, "Arithmetic for
Ultra-High-Speed Tomography," IEEE Trans. Com-
puters, Vol. C-29, No. 5, May, 1980, pp. 341-354.

34. L. J. Guibas and F. M. Liang, "Systolic Stacks, Queues,
and Counters," Proc. Conf. Advanced Research in VLSI,
MIT, Jan. 1982.

35. J. L. Bentley and H. T. Kung, "A Tree Machine for
Searching Problems," Proc. 1979 Inti Conf. Parallel Pro-
cessing, Aug. 1979, pp. 257-266. Also available as a
Carnegie-Mellon University Computer Science Dept.
technical report, Aug. 1979.

36. T. Ottmann, A. L. Rosenberg, and L. J. Stockmeyer, "A
Dictionary Machine (for VLSI)," Technical Report RC
9060 (#39615), IBM T. J. Watson Research Center, York-
town Heights, N.Y., 1981.

37. J. L. Bentley, A Parallel Algorithm for Constructing
Minimum Spanning Trees, " Journal of Algorithms, Jan.
1980, pp. 51-59.

38. C. Savage, "A Systolic Data Structure Chip for Connec-
tivity Problems," in VLSI Systems and Computations, H.
T. Kung, R. F. Sproull, and G. L. Steele, Jr., (eds.),
Carnegie-Mellon University, Computer Science Press,
Oct. 1981, pp. 296-300.

39. M. J. Foster and H. T. Kung, "Recognize Regular
Languages With Programmable Building-Blocks," in
VLSI 81, Academic Press, Aug. 1981, pp. 75-84.

40. P. L. Lehman, "A Systolic (VLSI) Array for Processing
Simple Relational Queries," in VLSI Systems and Com-
putations, H. T Kung, R. F. Sproull, and G. I. Steele, Jr.
(eds.), Carnegie-Mellon University, Computer Science
Press, Oct. 1981, pp. 285-295.

41. S. Todd, • 'Algorithm and Hardware for a Merge Sort Us-
ing Multiple Processors," IBMJ. Research and Develop-
ment, Vol. 22, No. 5, 1978, pp. 509-517.

42. C. E. Leiserson and J. B. Saxe,''Optimizing Synchronous
Systems," Proc. 22nd Annual Symp. Foundations of
Computer Science, IEEE Computer Society, Oct. 1981,
pp. 23-36.

43. C. A. Mead et al., "128-Bit Multicomparator," IEEE J.
Solid-State Circuits, Vol. SC-11, No. 5, Oct. 1976, pp.
692-695.

14



On Supercomputing with
Systolic/Wavefront Array Processors

SUN-YUAN KUNG, SENIOR MEMBER, IEEE

Invited Paper

In many scientific and signal processing applications, there are
increasing demands for large-volume and/or high-speed computa-
tions which call for not only high-speed computing hardware, but
also for novel approaches in computer architecture and software
techniques in future supercomputers. Tremendous progress has
been made on several promising parallel architectures for scientific
computations, including a variety of digital filters, fast Fourier
transform (FFT) processors, data-flow processors, systolic arrays, and
wave front arrays. This paper describes these computing networks in
terms of signal-flow graphs (SFG) or data-flow graphs (DFG), and
proposes a methodology of converting SFG computing networks
into synchronous systolic arrays or data-driven wavefront arrays.
Both one- and two-dimensional arrays are discussed theoretically,
as well as with illustrative examples. A wavefront-oriented program-
ming language, which describes the (parallel) data flow in
systolic/ wavefront-type arrays, is presented. The structural property
of parallel recursive algorithms points to the feasibility of a
Hierarchical Iterative Flow-Graph Design (HIFD) of VLSI Array
Processors. The proposed array processor architectures, we believe,
will have significant impact on the development of future super-
computers.

I. INTRODUCTION

The increasing demands for high-performance signal
processing and scientific computations indicate the need
for tremendous computing capability, in terms of both
volume and speed. The availability of low-cost, high-den-
sity, fast processing/memory devices will presage a major
breakthrough in future supercomputer designs, especially in
the design of highly concurrent processors.

Current parallel computers can be characterized into three
structural classes: vector processors, multiprocessor systems,
and array processors [13]. The first two classes belong to the
general-purpose computer domain. The development of
these systems requires a complicated design of control
units and optimized schemes for allocation of machine
resources. The third class, however, belongs to the domain
of special-purpose computers. The design of such systems
requires a broad knowledge of the relationship between
parallel-computing algorithms and optimal-computing
hardware and software structures.

It is this last class that we shall focus upon, since it offers
a promising solution to meet real-time processing require-
ments. Especially, locally interconnected computing net-
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The author is with the Department of Electrical Engineering,
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works, such as systolic and wavefront arrays, are well suited
to efficiently implement a major class of signal processing
algorithms due to their massive parallelism and regular data
flow [15], [17]. Such architectures promise real-time solu-
tions to a large variety of advanced computational tasks.

This paper first discusses some important design consid-
erations for massively parallel VLSI array processors and the
algorithmic background of these array processors. This will
lead to a systematic software/hardware design approach.
Specifically, we discuss the methodology of imposing sys-
tolic architectures and/or data-flow computing onto sig-
nal-flow graph computing networks. The concept of com-
putational wavefronts, which leads to systolic-type and
wavefront-type architectures, is reviewed. A wavefront pro-
gramming language is proposed to broaden the applications
of the wavefront/systolic type arrays.

A. Architectural Considerations in Array Processor Design

There are many important issues in designing array
processor systems, such as processor interconnection, sys-
tem clocking, and modularity [19].

Interconnection in massively parallel array processors is
the most critical issue of the system design, since communi-
cation is very expensive in terms of area, power, and time
consumption [26]. Therefore, communication has to be re-
stricted to localized interconnections. To avoid global inter-
connections, local and regular data movements are strongly
preferred. This is the most salient characteristic of systolic
and wavefront arrays.

The clocking scheme is also a very critical issue. In the
globally synchronous scheme, there is a global clock net-
work which distributes the clock signal over the entire
array. For very large systems, the clock skew incurred in
global clock distribution is a nontrivial factor, causing un-
necessary slowdown in the clock rate [18], [10]. Under this
circumstance, the self-timed scheme is more preferable.

Large design of layout costs suggest using repetitive mod-
ular structures, i.e., a few different types of simple (and
often standard) cells. Thus we have to identify the primi-
tives that can be implemented efficiently and optimally
realize the potential of new device technologies.

Programmable processor modules (as opposed to dedi-
cated modules) are favored due to cost-effectiveness con-
siderations. The high cost of designing such modules may
be amortized over a broader applicational domain. Indeed,
a major portion of scientific computations can be reduced
to a basic set of matrix operations and other related algo-

Reprinted from Proceedings of the IEEE, pp. 867-884, July 1984.
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rithms. These should be exploited in order to simplify the
hardware module.

B. Mapping Parallel Algorithms onto Locally
Interconnected Computing Networks

There are quite a few software packages for scientific
computation and image/signal processing algorithms avail-
able today. For example, LINPAK [9] and EISPAK [29] are
popular packages for many scientific computations, espe-
cially those using various types of matrix operations (such
as). However, the execution time of these algorithms, run-
ning on conventional computers, is often too slow for
real-time applications. Fortunately, VLSI and other new
techniques have made high-speed parallel processing eco-
nomical and feasible. When mapping these algorithms onto
parallel processors, typical questions often raised are: "How
to fully utilize the inherent concurrency in these algo-
rithms?" "How are these algorithms best implemented in
hardware?" "What kind of array processor(s) should one
turn to for a specific application?"

After examining most of the algorithms collected in the
aforementioned packages, some prominent traits surface,
such as localized operations, intensive computation, and
matrix operands. The common features of these algorithms
should be exploited to facilitate the design of array pro-
cessors for signal processing applications.

An array processor is composed of an array of processor
elements (PE) with direct (static) or indirect (dynamic) inter-
connections, including linear, orthogonal, hexagonal, tree,
perfect-shuffle, or other types of structures. The most criti-
cal issue is communication, i.e., moving data between PE's
in a large-scale interconnection network.

Correspondingly, a communication-oriented analysis on
parallel algorithms will be most useful for mapping algo-
rithms onto the arrays. To conform with the constraints
imposed by VLSI, this paper will emphasize a special class
of algorithms, i.e., recursive and locally dependent algo-
rithms.1

For proper communication in an interconnected comput-
ing network, each PE in the array should know

a) where to send (or fetch) data, and
b) when to send (or fetch) data.

When mapping a locally recursive algorithm onto a com-
puting network, it allows a simple solution to the question
"a) where to send the data?" because the data movements
can be confined to nearest neighbor PE's. Therefore, locally
interconnected computing networks will suffice to execute
the algorithm with high performance.

The conventional approach to the second question "b)
when to send the data?" is to use a globally synchronous
scheme, where the timing is controlled by a sequence of
"beats" [30]. A prominent example is the systolic array [16],
[15] However, locality can have two meanings in array
processor designs: localized data transactions and/or local-
ized timing scheme (i.e., using self-timed, data-driven con-
trol). In fact, the class of locally recursive algorithms permits
both locality features; these should be exploited in the

architectural designs. An example for such a design is the
wavefront array [17].

II. SIGNAL-FLOW GRAPH (SFG) COMPUTING NETWORKS

The most useful graphical representation for scientific
and signal processing computations is the signal-flow graph
(SFG). While the graphical representations are most popu-
larly used for signal processing flow diagrams, such as FFT
and digital filters, etc., the SFG representations in fact cover
a broad domain of applications, including linear and non-
linear, time-varying and time-invariant, and multidimen-
sional systems. For convenience, this paper will treat only
time-invariant SFG systems.2

Notations: In general, a node is often denoted by a
circle representing an arithmetic or logic function per-
formed with zero delay, such as multiply, add, etc. (cf. Fig.
1(a)). An edge, on the other hand, denotes either a function

(a)

X(n) X(n-l) X(n) aX(n)

(b) (c)

Fig. 1. Examples of SFG graphical denotations, (a) An oper-
ation node with (two) inputs and (two) outputs, (b) An edge
as a delay operator, (c) An edge as a multiplier.

or a delay. Unless otherwise specified, for a large class of
signal processing SFGs, the following conventions are
adopted for convenience. When an edge is labeled with a
capital letter D (or D', ID', etc.), it represents a time-delay
operator with delay time D (or D', ID', etc.) (see Fig. 1(a)).
On the other hand, if an edge is labeled with a lower case
letter, such as a,aifbif it represents a multiplication by a
constant a,aif b} (see Fig. 1(b)).

When the concept of the SFG was originally conceived,
there was little consideration given to the locality prefer-
ences in parallel-computing network design. Hence this
paper addresses the issue of systematic approaches of map-
ping SFGs into locally interconnected parallel-array proc-
essors.

There are two major classes of SFGs: those with local
interconnections, and those with global interconnections.
A typical example of a global SFG is one representing the
FFT algorithm. The principle of the (decimation-in-time)
FFT is based on successively decomposing the data, say
{* ( / ) } , into even and odd parts. This partitioning scheme
will result in global communication between PEs. More
precisely, the FFT recursions can be written as (using the
"in-place" computing scheme [27])

nln a recursive algorithm, all processors do nearly identical tasks
and each processor repeats a fixed set of tasks on sequentially
available data.

2This incurs no loss of generality, since any internal time-varying
parameters can be equivalently represented by an (external) input
signal.
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with p,q,r varying from stage to stage. The ''distance" of
the global communication involved will be proportional to
\p - q\. An SFC for the (decimation-in-time) FFT, with space
and time indices properly labeled, is shown in Fig. 2. Note
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x(6)
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Fig. 2. A signal-flow graph (SFG) for the decimation-in-time
FFT algorithm.

that in the last stage the maximum distance is \p - q\ = N/2
(see [27]). For example, the maximum distance will be 512
units for a 1024-point FFT. Thus the FFT algorithm is a
global one, since the recursion involves globally separated
indices. Therefore, FFT computing structures will call for
spatially global interconnections, and cannot be easily
mapped onto systolic or wavefront arrays.

In contrast to the FFT algorithm, most other recursive
signal processing algorithms are local, i.e., the spatial
separations between nodes are within a certain limit. There-
fore, the corresponding SFGs are "localizable." For exam-
ples, the SFGs for FIR and MR filters can be easily imple-
mented with spatially local SFGs. Generally, an MR (infinite
impulse response) filter is defined by the difference equa-
tion

N N
y(k) - £ x(k - m)b(m) + £ y{k - m)a(m). (1)

/T? = 1 m = 1

(Note that FIR filtering, linear convolution, and transversal
filterings are simply special cases when a(m) = 0.)

A popular SFG3 [27] for (1) is shown in Fig. 3.
We note that this SFG has spatially local interconnec-

tions. But it is not temporally local, since according to the
SFG, propagating a datum "X" from, say, the left-most node
to the right-most node uses "zero" time. More precisely,
the SFG imposes the requirement that the datum "X" has
to be broadcast to all the nodes on the upper path. This is
certainly undesirable from a systolic design perspective

3For this section, a node (circle) commonly denotes addition
when there are multiple outputs and single input to the node. It
denotes a branching node if there is one input and multiple
outputs.

^ V i V a " '

D

bN

Fig. 3. Direct form design of ARMA (MR) filter. The SFG is
spatially localized but not temporally localized.

(and unrealistic for a circuit implementation). This will be
the focus point of the next section.

Ml. SYSTOUZATION OF SFG COMPUTING NETWORKS

A. Systolic Array

Systolic processors [16], [15] are a new class of "pipelined"
array architectures. According to Kung and Leiserson [16],
"A systolic system is a network of processors which
rhythmically compute and pass data through the system."
For example, it is shown in [16] that some basic "inner
product" PEs (V <~ Y + A*B) can be locally connected to-
gether to perform digital filtering, matrix multiplication, and
other related operations. The systolic array features the
important properties of modularity, regularity, local inter-
connection, a high degree of pipelining, and highly syn-
chronized multiprocessing. The data movements in a sys-
tolic array are often described in terms of the "snapshots"
of the activities [16].

There are no formal or coherent definitions of the systolic
array in literature. In order to have a formal treatment of the
subject, however, we shall adopt the following definition:

1) Definition: Systolic Array: A systolic array is a com-
puting network possessing the following features:

a) Synchrony: The data are rhythmically computed
(timed by a global clock) and passed through the network.

b) Regularity (i.e., Modularity and Local Interconnec-
tions): The array should consist of modular processing
units with regular and (spatially) local interconnections.
Moreover, the computing network may be extended indefi-
nitely.

c) Temporal Locality: There will be at least one unit-time
delay allotted so that signal transactions from one node to
the next can be completed.

d) Pipelinability (i.e., O(M) Execution-Time Speed-Up):
A good measure for the efficiency of the array is the
following

Processing Time in a Single Processor
Speed-Up Factor =

Processing Time in the Array Processor

A systolic array should exhibit a linear-rate pipelinability,
i.e., it should achieve an O(M) speed-up, in terms of
processing rates, where M is the number of processor
elements (PEs).

We note that a regular SFG, such as the canonic SFG for
ARMA filters, is already very close to a systolic array. The
major difference being that most SFGs are not given in
temporally localized form. Therefore, it is important to be
able to convert them into localized ones. The topic of
imposing temporal locality into a computing network has
been a focus point of several researchers, including a series
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of publications by Fettweis [31], Leiserson [22]-[24], etc.,
and, more recently, the works reported in [20], [25], [14], [2].
The main advantage of the (cut-set) scheme proposed here
(largely based on [20]) lies in its simplicity to use and its
straightforward proof. Our proof is based on a graph-theo-
retical result—the colored arc lemma, which will be dis-
cussed momentarily.

2) Systolic Array for ARMA (IIR) Filter: Before discussing
the general procedure, let us first take a look at an example.
The canonic SFG for an ARMA Filter in Fig. 3 can be easily
converted into a local-type one. Our first step in Fig. 4(a) is
to rescale the time unit by setting D = 2D'. After shifting
one of the two delays from the upper edges to the corre-
sponding lower edges, a modified design can be derived as
in Fig. 4(a).

...-x3-x2-x,-x0=

<0=yo-y,-y2-y3---

D'

D'

(a)

(b)

Fig. 4. (a) A modified SFG for an ARMA filter—a systolized
version, (b) A systolic array for an ARMA (IIR) filter.

To verify that Fig. 4(a) yields the same transfer function as
Fig. 3, one can simply check that the transfer function
remains the same [20]. A more general proof will be dis-
cussed in a moment.

Let us now demonstrate how the modified form can be
trivially converted into a systolic design. To do this, the
operation time for one multiplication, one addition, and
data transfer are merged with the uni-time delay D'. There-
fore, the delay D1, the multiplier, and the adder in each
single section (defined by means of dashed lines) in Fig.
4(a) are all merged into an "inner product" processor. This
leads to an overall systolic array configuration for IIR filter
as shown in Fig. 4(b).

Now we are ready to discuss a general systematic proce-
dure for converting SFGs into systolic arrays. First, we need
a procedure to convert an SFG into a temporally localized
SFG, which contains only nonzero-delay edges between
modular sections.

Definition: Cut-Set:
A cut-set in an SFG is a minimal set of edges which
partitions the SFG into two parts.

B. A Cut-Set (Temporal) Localization Procedure

The localization procedure is based on two simple rules:

Rule (I) Time-Scaling: All delays D may be scaled, i.e.,
D -> OLD', by a single positive integer a. Correspondingly,

the input and output rates also have to be scaled by a factor
a (with respect to the new time unit D') (see Fig. 4(a)).

Rule (ii) Delay-Transfer: Given any cut-set of the SFG,
we can group the edges of the cut-set into inbound edges
and outbound edges, depending upon the directions as-
signed to the edges. Rule (ii) allows advancing k (Df) time
units on all the outbound edges and delaying k time units
on the inbound edges, and vice versa. It is clear that, for a
(time-invariant) SFG, the general system behavior is not
affected because the effects of lags and advances cancel
each other in the overall timing. Note that the input-input
and input-output timing relationships will also remain ex-
actly the same only if they are located on the same side.
Otherwise, they should be adjusted4 by a lag of +k time
units or an advance of - k time units.

We shall refer to these two basic rules as the (cut-set)
localization rules. Based on these rules, we assert the fol-
lowing:

Theorem:
All computable5 SFG's are temporally localizable.

Proof of the Theorem: We claim that the localization
Rules (i) and (ii) can be used to "localize" any (targeted)
zero-delay edge, i.e., to convert it into a nonzero-delay
edge. This is done by choosing a "good" cut-set and apply
the rules upon it. A good cut-set including the "target
edge" should not include any "bad edges," i.e., those
zero-delay edges in the opposite direction of the target
edge. This means that the cut-set will include only i) the
target edge, ii) nonzero delay edges going in either direc-
tion, and iii) zero-delay edges going in the same direction.
Then, according to Rule (ii), the nonzero delays of the
opposite-direction edges can "give" one or more spare
delays to the target edge (in order to localize it). If there are
no spare delays to give away, simply scale all delays in the
SFG according to Rule (i) to create enough delays for the
transfer needed.

Therefore, the only thing left to prove is that such a
"good" cut-set always exists. For this, we refer to Fig. 5., in
which we have kept only all of the zero-delay successor
edges and the zero-delay predecessor edges connected to
the target edge, and removed all the other edges from the
graph. In other words, Fig. 5 depicts the bad edges which
should not be included in the cut-set. As shown by the
dashed lines in Fig. 5, there must be "openings" between
these two sets of bad edges—otherwise, some set of zero-
delay edges would form a zero-delay loop, and the SFG
would not be computable. Obviously, any cut-set "cutting"
through the openings is a "good" cut-set, thus the ex-
istence proof is completed. (The author was later advised
by a colleague that the existence proof discussed above is
in fact a result known as the colored arc lemma in graph
theory.) It is clear that repeatedly applying the localization
Rule (ii) (and (i), if necessary) on the cut-sets will eventually
lead to a temporally localized SFG.

4lf there is more than one cut-set involved, and if the input and
output are separated by more than one cut-set, then such adjust-
ment factors should be accumulated.

5An SFG is meaningful only when it is computable, i.e., there
exists no zero-delay loop in SFG.
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SUCCESSOR EDGES >

A "GOOD" CUT • XJXJXQ—

PREDECESSOR EDGES

TARGET EDGE

Fig. 5. "Openings" between bad edges ensure the ex-
istence of a "good" cut-set. This may be used as a clue for
selecting a "good" cut-set.

C. Systolization Procedure

As we have claimed earlier, a regular SFG is almost
equivalent to a systolic array and can be easily systolized.
The systolization procedure, essentially based on the cut-set
localization rules, is outlined below:

1) Selection of Basic Operation Modules: The choice
may not be unique. In general, the finer the granularity of
the basic modules, the more efficient (in speed) a systolic
array will be. (A comparison of two possible lattice modules
for a systolic array will be discussed in the next subsection.)

2) Applying Localization Rules: If the given SFG is regu-
lar, i.e., modular and spatially local, then regular cut-sets
can be selected and the above rules can be used to derive a
regular and temporally localized SFG.6

3) Combination of Delay and Operation Modules: To
convert such an SFG into a systolic form, we need only to
successfully introduce a delay into each of the operation
modules, such as A + B*C. Combine the delay with the
module operation to form a basic systolic element. All the
extra delays will be modeled as pure delays without opera-
tions.

4) Verification of the Arrays: An SFG representation for
linear, time-invariant systems is directly verifiable by the
Z-transform technique. The correctness of the transforma-
tion to a systolic design is also guaranteed by the cut-set
rules. Therefore, there is no need to display snapshots for
the verification purpose. Nevertheless, one may find
snapshots a simple and useful tool for a better appreciation
of the movement of data.

IV. EXAMPLES OF THE SYSTOLIZATION PROCEDURE

In this section, we shall apply the systolization procedure
to some one- and two-dimensional SFGs.

A. Systolic Lattice Filters

For the one-dimensional case, a very interesting example
is the systolic implementation of a digital lattice filter,
which should have many important applications to speech
and seismic signal processing. For this example, let us now

6 ln order to preserve the modular structure of the SFG (a basic
feature of systolic design), the cut-set localization should be ap-
plied uniformly across the network. Otherwise, the resultant array
may not be systolic.

V i V

(a)

(unit time = D')

(b)

...XJ-XJ-XO-E.

D1

SZ~

(c)

...-x2-xrx0

Fig. 6. (a) An SFG for AR lattice filters, (b) Time-rescaled
SFG for AR lattice filters (type A), (c) "Localized" SFG for AR
lattice filters (type A), (d) Systolic array for AR lattice filters
(type-A).

apply the transformation rules to the SFG for an autoregres-
sive (AR) lattice filter, as shown in Fig. 6(a). There are two
possible choices of basic operation modules for the lattice
array: (A) a lattice operation module/and (B) a multiply/add
(AM) basic module. Note that in each lattice operation
there are two MA operations—implying that the lattice
operation uses twice the time of MA.

1) Lattice Systolic Array (Type-A): By localization Rule
(i), we first double each delay, i.e., D -> ID' as shown in
Fig. 6(b). Apply (uniformly) the cuts to the SFG and subtract
one delay from each of the left-bound edges and, corre-
spondingly, add one delay to each of the right-bound edges
in the cut-sets. This yields Fig. 6(c). Finally, by combining
the delays with the lattice module, we have the final
systolic structure, as in Fig. 6(d). Note that, because of the
time-scaling, the input sequence (x(/)} will be interleaved
with "blanks" to match the adjusted delays. It is clear that
a = 2 and the array can yield an M/2 execution-time
speedup.

2) Lattice Systolic Array (Type-B): By the localization
Rule (i), we first triple each delay; i.e., D -> 3D'. (The
resultant SFG is the same as what is shown in Fig. 6(b), but
substituting ID' by 3D'.) Apply uniform cut-sets to the SFG
as shown in Fig. 7(a). Subtract two delays from each left-
bound edge, and, correspondingly, add two delays to every
right-bound edge in the cut-sets. This yields Fig. 7(a). Now
let us use a cut-set partitioning the upper edges from the
lower edges as shown in Fig. 7(b). Transfer one delay from
the down-going edges to the up-going ones. The result is
depicted in Fig. 7(b). Finally, by combining the delays with

7That is, the lattice operation is now treated as a single module—a
desirable choice of CORDIC implementation.
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Fig. 7. (a) Time-rescaled SFG (and cut-sets) for AR lattice
filters (type-B). (b) Partially localized SFC—first step, (c)
"Localized" SFC—all operations are ready to merge with the
corresponding uni-time delays D'. (d) Systolic array for AR
lattice filters (type-B) with the small squares denoting pure
delays.

the Mult iply-Add Module (cf. Fig. 7(c)), a systolic structure
is obtained as shown in Fig. 7(d). Note that because of time
scaling the input sequence { * ( / ) } will be interleaved with
two "blanks" to match the adjusted rates. It is clear that the
array can achieve a 2M/3 execution-time speedup.8 In
terms of speed, this systolic design is superior to the Type-A
design.

B. Two-Dimensional Systolic Arrays

The systolization procedures can be applied to two-di-
mensional networks. Although the descriptions of two-di-
mensional activities are often cumbersome; fortunately, the
SFG representations of two-dimensional algorithms (espe-
cially, the (temporally) nonlocalized version) are often much
easier to comprehend. With the procedures discussed in
the previous section, the conversion of a two-dimensional
SFG to a systolic array is straightforward.

A typical example used for illustrating a two-dimensional
array operation is matrix multiplication. Let

A = [an] B-[bfJ]

and

C= A X B.

8Note that since the upper and lower MA modules in each PE are
never sfmu/taneous/y active, only one MA hardware module suffices
to serve both functional needs.

Suppose that both A and B are nonsparse N X N matrices.
The matrix A can be decomposed into columns /\, and the
matrix B into rows B} and, therefore,

C=[A,B, +A2B2+-" +ANBN]

where the product A,£, is termed "outer product." The
matrix multiplication can then be carried out in N recur-
sions (each executing one outer product)

c{
i
k/=ci

i
k
j-

])+ a^b^ (2)

a(ik) - aik

for k = 1,2,- • -,/V and there will be N sets of wavefronts
involved.

1) Systolizing an SFG for Matrix Multiplication: The sim-
plest matrix multiplication array design is one letting col-
umns Aj and rows B, be broadcast instantly along the
square array as shown in Fig. 8(a). All outer products will
then be sequentially summed via a loop with single delay.
This design is not suitable for VLSI circuit design since it
needs to use global communication. However, there is a
rapidly growing interest in the developments of optical
array processors, [12], [3]. From an optical interconnection
perspective this SFG may be directly implementable.

If local interconnection is preferred, the proposed proce-
dure in Section III can again be used to systolize the SFG.
Let us apply Rule (ii) to the cut-sets shown in Fig. 8(a). The
systolized SFG will have one delay assigned to each edge
and thus represent a localized network. According to Rule
(ii), the inputs from different columns of B and rows of A
will have to be adjusted by a certain number of delays
before arriving at the array. By counting the cut-sets in-
volved in Fig. 8(a), it is clear that the first column of B
needs no extra delay, the second column needs one delay,
the third needs two (i.e., attributing to the two cut-sets
separating the third column input and the adjacent top-row
processor), etc. Therefore, the B matrix will be skewed as
shown in Fig. 8(c). A similar arrangement can be applied
to A.

2) Multiplication of a Banded Matrix and a Full Matrix:
Let us look at a slightly different, but commonly encoun-
tered, type of matrix multiplication problem. This involves a
banded-matrix A, N X N, with bandwidth P, and a rectan-
gular matrix B, N X Q. This situation arises in many appli-
cation domains, such as DFT and time-varying (multichan-
nel) linear filtering, etc. In most applications, N » P and
N » Q, and this makes the use of N X N arrays for com-
puting C = A X B very uneconomical.

Fig. 9(a) shows that, with slight modification to the SFG
in Fig. 8(a), the same speedup performance can be achieved
with only a P X Q rectangular array (as opposed to an
N X Q array). Now, the left memory module will store the
matrix A along the band-direction (see Fig. 9(a)) and the
upper module will store B the same as before.

Note that the major modification to the array is that,
between the recursions of outer products, there should be
an upward shift of the partial sums. This is because the
input matrix A is loaded in a skewed fashion. The final
result ( O will also be outputted from the I /O ports of the
top-row PEs.

Applying the systolization procedure leads to the data
array as depicted in Fig. 9(b).
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Fig. 8. (a) An SFG for matrix multiplication, (b) The de-
tailed diagram of the processing nodes, (c) A systolic array
for matrix multiplication.

3) Multiplication of Two Banded Matrices: Another in-
teresting case is the situation when both A and B are
banded matrices, with bandwidths P and Q, respectively.
Let us assume that N » Pand N » Q, where Pand Q are
bandwidths for A and B, respectively. Then it is possible to
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achieve full parallelism with only a P X Q rectangular array
(as opposed to an N X N array).

Now, the left- and upper memory modules will store the
matrices A and B (respectively) along the band direction
(see Fig. 10(a)). The delayed feedback edge (with partial
sum of the outer products) will be along the diagonal
direction (to the N-W direction). This is because both A
and B are stored in the skewed version of Fig. 10(a).
Applying the systolization procedure to the cut-sets as
shown in Fig. 10(a) will call for a triple scaling of D -> 3D'.
(This is because each north-west-bound delay edge is "cut"
twice.) The procedure leads to an array configuration de-
picted in Fig. 10(b), which is topologically equivalent to the
two-dimensional hexagonal array proposed in [16], [15].
Similarly to what happens in the hexagonal array, the out-
put data (of the matrix C) are also pumped from the both
sides.

4) Systolizing an SFG for LU Decomposition: In LU
decomposition, a given matrix C is decomposed into

C= A X B

where A is a lower- and B an upper-triangular matrix. The
recursions involved are

C^=C^-1)-a^*fof> (3)
where

aa) = _LrC=-i)
' (k) ''k

for * = 1,2,---,N; * < / < N
k < j < N.

The SFG representation for the above iterations is shown
in Fig. 11. Note that it bears a great similarity to the SFC for
multiplication of two banded matrices. Therefore, by almost
the same systolization procedure as shown in Fig. 10, a
systolic array for LU decomposition can be obtained. The
resultant configuration of the array (not shown here) is very
similar to Fig. 10(b).

C Linear-Rate Pipelinability

Although the above systolization procedure is essentially
complete, it is useful to find out how well the operations of
an algorithm can be pipelined through the array (i.e. the
pipelinability). The answer is rather straightforward:

We assert that the array has a linear-rate pipelinability if
and only if a remains constant with respect to M, where M
is the number of processor elements (PEs). ft is clear that if
the total time-scaling factor is a (i.e., D = aD'), then the
data input rate is slowed down by a. Consequently, in
average only one of a PEs can be active. This implies that
the full processing rate speedup M reduces to a~^M. If a
remains constant with respect to M, then the array is
pipelinable with a linear-rate speedup.

For most practical computational models the scaling fac-
tor a is 1, 2, or 3. For example: in the ARMA and lattice
(type-A) systolic arrays, a == 2, and in the lattice (type-B)
array, a = 3, regardless of how large M is. The same is true
for most two-dimensional graphs, e.g., the SFGs for matrix
multiplications, and LU decomposition, etc. However, there
are examples of SFGs that, when localized, lead to noncon-
stant a. The arrays then cannot exhibit O(M) execution-
time speedups.
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Fig. 9. (a) An SFG for matrix multiplication with one banded matrix, (b) Systolic array for
matrix multiplication with one banded matrix.

1) An Example of Nonpipelinable SFGs: As an example
of a regular but nonpipelinable SFG, let us look at the SFG
shown in Fig. 12(a), which is originally due to Dewilde [8],
[14]. Note that there exist no simple, uniform cuts with
which to proceed the conversion. In fact, applying the
localization rules with nonuniform cut-sets as shown in
Fig. 12(a) (where the numbers in parentheses indicate the
order of the cut-sets to apply the localization rules) will
lead to a temporally localized array as depicted in Fig.
12(b). Note that the final time-scaling factor a turns out to
be linearly proportional to M. This means that the speed

performance of the "parallel" array processor is basically no
different from a sequential computer, because no efficient
pipelining is possible. Therefore, the array is said to be
nonsystolic.

D. Improving Processing Speed and Utilization Efficiency

1) Multirate Systolic Array—Improving Processing Speed
[20]: Note that due to the recaling of time units, the input
data {x,} have to be interleaved with "blank" data (see
Figs. 4, 6, 7), and the throughput rate becomes (aT)~^. This
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Fig. 10. (a) An SFG for multiplication of two banded matrices, (b) Systolic array for
multiplication of two banded matrices.

rate is slower than that of the direct form design (1.07" n),
because the data-transfer operation (X -> X') alone con-
sumes the same time as a multiply-and-add operation, an
unnecessary delay. There are two solutions to this problem:
one is to use a multirate systolic array and the other is to
use a wavefront array based on asynchronous data-driven
computing.

A multirate systolic array is a generalized systolic array,
allowing different operations to consume different time

units. As we have mentioned earlier, the finer the granular-
ity in defining the basic module, the better the efficiency.
For maximal efficiency, the granularity has to go all the way
down to the bit level for a data-transfer operation, while
the arithmetic operation may remain at the word level. For
the ARMA filter design example, we can assign A as the
time unit for a data transfer and T for a multiply-and-add.
Consequently, in the circuit representation in Fig. 4(a), we
replace D' on the feedforward path (for X) by A, and D' on
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Fig. 11. (a) An SFG for LU decomposition, (b) The detailed
diagram of the processing nodes.

the feedback paths (for Vand Z) by A. This means that the
X data are pumped to the right with a delay of A, while the
data Y and Z are transferred (to the left) with a (much
longer) delay T. These modifications lead to a multirate
systolic array as shown in Fig. 13. Since the original ba-
sic delay interval (D) is now replaced by A + 7"; there-
fore, the input/output sequences { x 0 / x 1 / x 2 / - • - , } and
{yOfy^ly2r —,} have to be pumped in and out by an inter-
val ( f + A), and attain a throughput rate of 1/(7"+ A). In
fact, a multirate systolic array is equivalent to a synchro-
nized version of the wavefront array discussed in the next
section.

2) Sharing Operation Modules—Improving Utilization Ef-
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Fig. 12. (a) A nonsystolizable SFG example, (b) Localized
but nonpipelinable SFG.

Fig. 13. A multirate systolic array for ARMA (IIR) filter.

ficiency: It is possible to improve the processor utilization
rate by as much as a times, where a is the time-scaling
factor used in the localization process. The scheme is
straightforward, noting that the interval between data will
have to be a units apart, and therefore only one of a
consecutive processor modules will be active at any instant.
Therefore, a group of a consecutive PEs can share a com-
mon arithmetic unit without compromizing the throughput
rates. Now let us use an example for a better illustration.
Note that, according to the snapshots for the lattice systolic
array (B) as depicted in Fig. 14, only one upper MA module
is active in every three PEs at any time instant, and the same
is true for the lower MA module. Therefore, as shown in
Fig. 14, the three PEs can be combined into a (macro)PE and
share the two common MA modules (one upper and one
lower). A special-purpose ring register (with period = a)
can be designed to handle the resource scheduling.

V. DATA-FLOW PRINCIPLE A N D WAVEFRONT ARRAY [17]

One problem associated with the systolic is that the data
movements are controlled by global timing-reference
"beats." In order to synchronize the activities in a systolic
array, extra delays are often used to ensure correct timing.
However, the price of this is an unnecessary slowdown in
throughput rates. More critically, the burden of having to
synchronize the entire computing network will eventually
become intolerable for very- (or ultra-) large-scale arrays.
The solution to the problem is to substitute the need for
correct " t iming" by correct "sequencing," as is used in
data-flow computers and wavefront arrays. This leads to a
completely different way of tackling the question "b) when
to send data?" as posed in Section I-B. This time the answer
lies in a data-driven, self-timed approach.

A. Data-Flow Multiprocessor

A data-flow multiprocessor [7] is an asynchronous, data-
driven multiprocessor which runs programs expressed in
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Fig. 14. Snapshots and time sharing of three PEs within a (macro)PE. (a) Snapshot at t = /'.
(b) Snapshot at t = / + 1. (c) Snapshot at t = / + 2.

data-flow graph form. Since the execution of its instructions
is ''data-driven/' i.e., the triggering of instructions depends
only upon the availability of operands and resources re-
quired, unrelated, instructions can be executed concur-
rently without interference. The principal advantages of
data-flow multiprocessors over conventional multiprocess-
ors are simple representation of concurrent activity, relative
independence of individual PEs, greater use of pipelining,
and reduced use of centralized control and global memory.
However, for a general-purpose data-flow multiprocessor,
the interconnection and memory conflict problems remain
very critical. Such problems can be eliminated if the con-
cepts of Modularity and locality are imposed onto data-flow
multiprocessors. This idea is the key motivation leading to
concept of Wavefront Arrays.

B. Wavefront Arrays

Definition: Wavefront Array: A Wavefront Array is a
computing network possessing the following features:

1) Self-Timed, Data-Driven Computation: No global
clock is needed, since network is self-timed.

2) Modularity and Local Interconnection: Basically the
same as in a systolic array. However, the wavefront array
can be extended indefinitely without having to deal with
the global synchronization problem.

3) O(M) Speedup and Pipelinability: (Similar to the sys-
tolic array.)

Note that the major difference distinguishing a wavefront
array from a systolic array is the data-driven property. Con-
sequently, the temporal locality condition (see 3 in the
definition of Systolic Array) is no longer needed, since there
is no explicit timing reference in the wavefront arrays. By
relaxing the strict timing requirement, there are many ad-
vantages gained, such as speed and programming simplic-
ity.

C. Incorporating Data-Flow Computing into Computing
Networks

Our main goal here is to demonstrate that all SFG com-
puting networks can be converted into data-driven com-
puting models. Therefore, by properly incorporating the
data-flow feature, every regular and modular SFG can be
converted into a wavefront array.

In a self-timed system, the exact timing reference is
ignored; instead, the central issue is sequencing. Getting a
data token in a self-timed system is equivalent to incre-
menting the clock by one time-unit in a synchronous sys-
tem. Therefore, the delay operators D will be replaced by
self-timed delays, i.e., handshaked "separator" registers.9 In
other words, the conversion of an SFG into a data-driven
system involves substituting the delay D with implicit or
explicit separators, and replacing the global clock by data
handshaking. This process incorporates the data-flow prin-
ciple into SFG's or systolic arrays.

Theorem: (Equivalence Transformation between SFG's
and DFG's)

The computation of any SFG can be equivalently ex-
ecuted by a self-timed, data-driven machine with a data-flow
graph (DFG) identical to the SFG, apart from substituting
every time-delay operator D (controlled by a global clock)
in the SFG with a separator «>) that is locally controlled by
handshaking.

Proof: What needs to be verified is that the global
timing in the SFG can be (comfortably) replaced by the
corresponding sequencing of the data tokens in the DFG.

9A handshaked separator is a device, symbolized by a diamond
<0, which prevents any incoming data from directly passing through
until the handshaking flag signals a "pass."

25

<

Y i

V i\ xk-2

Y ;* I

v2
xk-i

Y"

»r-i»r

*:*



Note that the transfer of the data tokens is now "t imed" by
the processing node. This ensures that the relative "t ime"
between data tokens received at the node is the same as it
was in the SFG, as far as that individual node is concerned.
By mathematical induction, this can be extended to show
the correctness of the sequencing in the entire network.

For convenience, we shall term this trivial transformation
the SFG/DFC Equivalence Transformation.

Example: Linear Phase Filter Design: As an example, let
us now apply the rules to the SFC for a very popular linear
phase filter, as shown in Fig. 15(a).10 By the SFG/DFG
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Fig. 15. (a) SFG for linear-phase filters, (b) Data-driven
model (delta-flow graph) for the linear-phase filter.

equivalence transformation, the data-flow graph is derived
as in Fig. 15(b). Now note that there are two separators
inserted into every middle-level edge with handshaking
(symbolized by "flags") to the branching node immediately
succeeding them. In other words, the transfers occurring in
the two separators are synchronized. In order to ensure the
correct sequencing of data, the W data should propagate
twice as slowly as the Y data do. Note that the separators
play the role of ensuring such a correct sequencing.

Initial States: The general principle is that, all the sep-
arators are assigned initial values (regarded as data token),
which are the same as those assigned to the delay registers
in the corresponding SFC. We note that the initial state
assignment under the SFG/DFG transformation is straight-
forward. This simplicity compares very favorably with the
initial state reassignments in the systolization rule, where
(because of the retiming involved in the systolization pro-
cedure) such reassignments may sometimes become rather
complicated.

10Linear phase filters are very often used in one- and two-dimen-
sional convolutions. They have two key features: one, that they
have a symmetrical impulse response function, i.e., h(n) = h(N - 1
- n), and two, they do not add phase distortion to the signal. Fig.

15(a) shows an SFG which takes advantage of the symmetry prop-
erty, and reduces the amount of multiplier hardware by one half.

For a detailed illustration on the relationship between the
initial states and the correctness of sequencing of data
transfers in DFGs, let us again look into the linear phase
filter example. Note that one initial zero is assigned to the
separator of each V-data edge; and two initial zeros are
assigned to the two separators in each W-data edge. The
" 0 " of the V-data separator, when requested by the V-sum-
ming node, will be passed to meet the Vdata arriving from
the upper node. When the operation is done, a "data-used"
flag will then be sent to the separator, clearing the way for
sending the next Vdata from the right-hand PE. The situa-
tion is similar for the Wsumming node, but only one "0 " is
"used" and the W data are still one separator away from
meeting the "X " data in the summing node. It will have to
wait until the Vdata and the second "0 " meet in the lower
summing node. This explains why the propagation of W is
slower than Y. (This is just what is needed to ensure a
correct sequencing of data transfers.) Note also that there
will be handshaking circuits needed for the nodes in the
upper branches. Since there are no associated delays, there
will be no initial data-tokens for the nodes.

1) Converting SFC's into Wavefront Arrays: The
SFG/DFG equivalence transformation helps establish a the-
oretical footing for the wavefront array as well as provide
more insights towards the programming techniques. The
transformation implies that all regular SFGs can be easily
converted into wavefront arrays, making modularly design-
ed wavefront processing elements very attractive to use.
Furthermore, because there is no concept of (global) time
in a self-timed system, temporal locality is no longer an
issue of concern. Therefore, the procedure of converting an
SFG into a wavefront array is simpler than that of systolizing
an SFG.

Another important feature is that data-flow graphs often
provide useful clues for programming the data-driven wave-
front arrays. An exemplificative program for the wavefront
processing for linear phase filters, written in MDFL—Matrix
Data Flow Language, will be discussed later.

VI. WAVEFRONT ARRAYS AND COMPUTATIONAL WAVEFRONTS

For further illustration, let us apply the SFG/DFG equiva-
lence transformation to several one- and two-dimensional
computing networks, e.g., ARMA and lattice filters, matrix
multiplication, LU decomposition, etc.

A. One-Dimensional Wavefront Arrays

1) Wavefront Array for ARMA (IIR) Filter: Following the
conversion strategy, an asynchronous wavefront model is
derived as shown in Fig. 16. Therefore, at each node in Fig.
16, the operation is executed when and only when the
required operands (data tokens) are available. An im-
mediate advantage of this model is that a data transfer
operation (X -> A") uses only negligible time, A, compared
with the time needed for an arithmetic operation. More
precisely, the throughput rate achieved by the wavefront
array is approximately 1.0(r + A)"1 , i.e., almost twice that
of the pure systolic array in Fig. 4(b).

It is important to note that the pipelining in a wavefront
array is different from the traditional idea of pipelining.
Under the wavefront notion, X(k) is initiated at the leading
PE (n = 0), and then propagated rightward across the
processor array, activating the MA operations in all of the
data-driven PEs. The updated data { Y^\, Z{

n%) in the sum-
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Fig. 16. Wavefront array for ARMA (MR) filter. (Asynchronous, data-driven model, i.e.,
operations take place only on availability of appropriate data.)

ming nodes are fed back leftward, ready for the next wave-
front. In this case, a reflection of the wave plays an interest-
ing role. For convenience, we shall call such reflection a
"ripple" wave. As illustrated in Fig. 17, a ripple from the kih
wavefront in the (n + 1)th PE will be needed (and ex-
pected) by the (k + 1)th wavefront in the nth PE.

"ripple" from kth wavefront

Fig. 17. A "ripple" wave from (n + 1)th PE to nth PE.

2) Wavefront Array for Lattice Filter: In general, the
data-driven model is not only faster (with maximized pipe-
lining) but also has a simpler (self-timed) design, since a
global timing reference is no longer required. For example,
the (data-driven) wavefront model for the AR lattice as
shown in Fig. 18 (compatible with the sytolic array Type-B)
is considerably simpler than its systolic counterpart. Due to
the data-driven nature of a wavefront array, it is guaranteed
that the operation on the X data will have to wait until the
Y data operation is done and the result transferred to the
upper MA module. Therefore, the appropriate delays natu-
rally fall into place, yielding the correct sequencing of the
data. In contrast, in the (Type-B) systolic structure, the two
kinds of signals, X (right-bound) and Y (left-bound), are
propagating at different speeds, as shown in the snapshots
in Fig. 14. Therefore, the (pure) systolic version is more
complex than the wavefront solution, due to the timing of
the complicated "ripple" effect.

B. Pipelining of Two-Dimensional Computational
Wavefronts

From an algorithmic analysis perspective, the notion of
computational wavefronts offers a very simple way to ap-

Fig. 18. Wavefront array for lattice filter.

predate the wavefront computing. The separators are the
handshaking device ensuring that the computational wave-
fronts are orderly following, instead of overtaking, their
previous fronts.11 We shall illustrate the wavefront concept
and the related architecture and language designs with the
matrix multiplication example. The computational wave-
front for the first recursion in matrix multiplication will now
be examined.

The application of conversion rules to the (original) SFG
is fairly straightforward. Basically, imposing handshaking
upon all cut-sets will ensure correct sequencing. To see that
this is true, a general configuration of computational wave-
fronts traveling down a processor array is illustrated in Fig.
19.
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Fig. 19. Propagation of two-dimensional computational
wavefronts.

Suppose that the registers of all the processing elements
(PEs) are initially set to zero

C,f = 0, for all (/,;)

the entries of A are stored in the memory modules on the
left (in columns), and those of B in the memory modules

in ln fact, applying the data-flow concept along uniform cuts will
lead to a self-timed, regular, and locally interconnected array—a
wavefront array. As a matter of fact, the "wavefronts" will corre-
spond to the cuts.

27

...x2Vo

W 2 -

_X_

z,

Y l

b«

ZnJ3

Y3 Yn

XX

b2<s2

* 2

_x_

Y2

xl^>

k+1** wavefront

J M )

Y ( k ' H

nfh PE

s!?" k'h wavefront

> l

n*l$ l PE

a n O

•



on the top (in rows). The process starts with PE (1,1):

is computed. The computational activity then propagates to
the neighboring PEs (1,2) and (2,1), which will executive in
parallel

and

CW-Ctf+a^br
The next front of activity will be at PEs (3,1), (2,2), and
(1,3), thus creating a computational wavefront traveling
down the processor array. It may be noted that wave
propagation implies localized data flow. Once the wave-
front sweeps through all the cells, the first recursion is over
(see Fig. 19).

As the first wave propagates, we can execute an identical
second recursion in parallel by pipelining a second wave-
front immediately after the first one. For example, the (i,j)
processor will execute

Cjp-cp + a^by

and so on.
1) Why the Name "Wavefront Array"?: The principle of

wavefront processing is to successively pipeline the compu-
tational wavefronts as fast as resource and data availability
allow, according to the concept of data-flow computing. As
a justification for the name "wavefront array/' we note that
the computational wavefronts are similar to electromag-
netic wavefronts (they both obey Huygens' principle) since
each processor acts as a secondary source and is responsible
for the propagation of the wavefront. In addition, wave-
propagation implies localized data flow as well as localized
control (handshaking). The pipelining is feasible because
the wavefronts of two successive recursions will never
intersect (Huygens' wavefront principle), thus avoiding any
contention problems. (From the hardware perspective, the
desired "separation" between two consecutive wavefronts
is reaffirmed by the "separators" with proper handshaking.)

In other words, it is possible to have wavefront propagat-
ing in several different fashions. In the extreme case of
nonuniform clocking, the wavefronts are actually crooked.
However, what is important is that the order of task se-
quencing must be correctly followed. The correctness of
the sequencing of the tasks is ensured by the wavefront
principle [17].

2) Wavefront Array for LU Decomposition: By tracing
backwards through the iterations in (3), we note that

C=cf= £ a<k)tfk)=AB (4)
*«1

where A - {amn} = {a^>}, and B= {bmn} - { # "> } are
the outputs of the array.

In comparison with (2) and (4), (3) is basically a reversal
of the matrix multiplication recursions. Therefore, its wave-
front processing should be similar to what is shown in Fig.
19. In fact, by converting the SFG as shown in Fig. 11 into a
DFG, such a wavefront array can be directly obtained.

3) Least Square Error Solution and SVD: In many appli-
cations, we will be faced with solving a least square solu-
tion of an overdetermined linear system, as opposed to an

exact solution of a nonsingular linear system. In this case,
QR decomposition will prove to be much more useful
than LU decomposition. The natural topology associated
with QR decomposition is a square interconnect pattern.
This can be shown by looking into the mathematical itera-
tions and the corresponding SFGs. Similar systolic and
wavefront arrays can be obtained by carrying out the sys-
tolization procedure or SFG/DFG equivalence transform.
The details (omitted here) will be published in a later
report.

The eigenvalue and SVD (singular value decomposition)
problems are considerably more complicated. However, in
[11], [21], it is shown that the notion of computational
wavefronts can be employed to track down the activities in
a square or linear array for computing eigenvalues or singu-
lar values.

VII. WAVEFRONT ARRAY SOFTWARE/HARDWARE (WASH)

A. Programming Array Processors

The actual implementation of systolic or wavefront arrays
can be either dedicated or programmable processors. Pro-
grammable arrays are preferred, due to the high cost of
hardware implementation and the increasing varieties of
application demands. Therefore, it is equally important to
develop a complete set of software packages for most
wavefront/systolic-type processing. For that, a formal algo-
rithmic notation and programming language will be indis-
pensable.

General guidelines for algorithmic notations for array
processors are problem orientation, executability, and
semantic simplicity. More importantly, an adequate lan-
guage criteria must take into account the characteristics and
the constraints of the arrays. Examples for appropriate array
processing notations, which incorporate the language
criteria for systolic/wavefront array processors, are CRYSTAL,
[4] data space notation, [5] and the wavefront language
(MDFL)[17].

B. Wavefront Language and Software Development

The effectiveness of programming in a processor array is
directly related to the algorithm analysis technique. Our
description of parallel algorithms hinges upon the notion of
a computational wavefront. This leads to a special-purpose,
wavefront-oriented language, termed Matrix Data Flow Lan-
guage (MDFL) [17]. This denotation is in many ways very
similar to the data space notation, which is based on the
notion of applicative state transition systems described in
[1], [5]. Among other commonalities shared by the two
notations is, in particular, that they are both based on the
data-flow principle [6].

The wavefront language is tailored towards the descrip-
tion of computational wavefronts and the corresponding
data flow for the class of algorithms which exhibit the
recursion and locality properties. Rather than requiring a
program for each processor in the array, MDFL allows the
programmer to address an entire front of processors. The
wavefront idea can facilitate the description of parallel and
pipelined algorithms and drastically reduce the complexity
of parallel programming. To translate the global MDFL
notation into microinstructions for the PEs, a preprocessor
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is needed. For a wavefront array, the design of such a
preprocessor is relatively easy, since we do not have to
consider the timing problems associated with a synchro-
nous systolic array.

As an example, let us now take a look at the computa-
tion of

C= AX B.

The matrix multiplication can be carried out in N (outer
product) recursions (see (1)). A general configuration of
computational wavefronts traveling down a processor array
is illustrated in Fig. 19. An example of an MDFL program for
the corresponding array processing of the matrix multiplica-
tion is given in Fig. 20. (For the time being, please ignore
the bracketed instructions.)

BEGIN
SET COUNT N;
REPEAT;

WHILE WAVEFRONT IN ARRAY DO
BEGIN

{[FETCH C, DOWN;]}
FETCH A, LEFT;
FETCH B, UP;
FLOW A, RIGHT;
FLOW B, DOWN;

(* NOW FORM C:= C + A X B)
MULT A, B,D;
ADD C, D ; C;

{[FLOW C, UP;]}
END;

DECREMENT COUNT;
UNTIL TERMINATED;
ENDPROGRAM.

Fig. 20. An MDFL program for matrix multiplication.

Note that, initially matrix A is stored (row by row) in the
left Memory Module (MM). Matrix B is in the top MM and
is stored column by column. The final result will be in the
C registers of the PEs. This example illustrates the typical
simplicity of the MDFL programming language.

1) Flexibilities with the Wavefront Programming: To
demonstrate the flexibility of wavefront-type programmabil-
ity, let us look at the multiplication of a banded-matrix A,
N X N, with bandwidth P, and a rectangular matrix B,
N X Q. Only a slight modification to the program in Fig. 20
is needed. First, the data storage in the memory modules
will be the same as in Fig. 16(a). The major modification on
the wavefront propagation is that, between the recursions
of outer products, there should be an upward shift of the
partial sums. (This is because the input matrix A is loaded
in a skewed fashion.) Therefore, the program (see Fig. 20)
remains almost the same, except for the two added brac-
keted instructions to shift partial sums upward.

Another major flexibility offered by the wavefront pro-
gramming technique is that software reconfigurability can
be used to map a linear or bilinear array onto a square array
hardware. Therefore, a (hardwired) square array may be
used for purpose of linear (or bilinear) wavefront array
processing.

2) An Example on Linear Phase Filtering: In order to
demonstrate the simplicity of programming based on the
DFG representation, an MDFL program implementing the
DFG for the linear phase filter (cf. Fig. 15(b)) is shown in

BEGIN
REPEAT;

WHILE WAVEFRONT IN ARRAY DO
BEGIN

FETCH X, LEFT;
FLOW X, RIGHT;
TRANSFER W2 TO W1;
FLOWW1, LEFT;
FETCH W2, RIGHT;
(! NOW COMPUTE V:= (W1 + X) + X H(K))
ADDW1,X,U;
MULTU,H(K),V;
FETCH Y, RIGHT;
(! NOW COMPUTE Y:= Y + V)
ADD Y,V,Y;
FLOW Y, LEFT;

END;
DECREMENT COUNT;

UNTIL TERMINATED;
ENDPROGRAM.

Fig. 21. An MDFL program for linear-phase filter.

Fig. 21 }2 The simple mapping between the DFG and the
programming codes suggests a potentially significant im-
pact of the SFG/DFG equivalence transformation to both
the hardware and software developments of array proc-
essors.

The power and flexibility of the wavefront array and
MDFL programming are best demonstrated by the broad
range of the applicational algorithms suitable for the wave-
front array [17]. Such algorithms can be roughly classified
into three groups:

1) Basic Matrix Operations: such as a) Matrix Multiplica-
tion, b) Banded-Matrix Multiplication, c) Matrix-Vector
Multiplication, d) LU Decomposition, e) LU Decomposition
with Localized Pivoting, f) Givens Algorithm, g) Back Sub-
stitution, h) Null Space Solution, i) Matrix Inversion, j)
Eigenvalue Decomposition, and k) Singular Value De-
composition.

2) Special Signal Processing Algorithms: a) Toeplitz Sys-
tem Solver, b) One- and Two-Dimensional Linear Convolu-
tion, c) Circular Convolution, d) ARMA and AR Recursive
Filtering, e) Linear Phase Filtering, f) Lattice Filtering, g)
DFT, and h) Two-Dimensional Correlation (image match-
ing).

3) Other Algorithms: PDE (partial difference equation)
solution.

Note that, if the communication constraint is relaxed, our
technique for converting an SFG for a given application into
a wavefront array will also work with other global-type
algorithms, such as the FFT algorithm, the Householder
transformation, the Kalman filter network, or other non-reg-
ularly interconnected arrays. The only additional require-
ment lies in routing the physical connections between PEs.

It is worth noting that the cut-set rules can be potentially
very useful for designing fault-tolerant arrays. For systolic
arrays without feedback, it has been shown in [32], [33] that
a retiming along cut-sets allows a great degree of fault
tolerance. The discussion in Section Ill-B should offer a
theoretical basis for improving fault-tolerance of arrays with
feedback via the cut-set retiming procedure. More interest-

12Note that the separators in the DFG are implemented simply by
adding three lines of (internal register-transfer) code to the pro-
gram, as opposed to adding a separate buffer register external to
the PE.
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ingly, with a slight modification, the self-timed feature of
wavefront arrays offers a way of achieving the same fault-
tolerance efficiency without any need of retiming.

In summary, in the first phase of the software develop-
ment project, we 1) define the application/ algorithm do-
main, 2) develop a language tailored to the application, and
3) design a (language-based) wavefront architecture. In order
to maximize the application algorithm domain (with
minimal hardware overhead), the next phase is to develop a
complete software library of all algorithms suitable for
systolic/wavefront-type parallel processing. This software
library, combined with design automation tools such as
silicon compilers, will facilitate the construction of future
VLSI systems design. The success of the project will de-
mand joint and cohesive efforts from all related disciplines.
For this end, we welcome any suggestions from interested
readers and colleagues.

C Hardware Design

In this subsection we will give an overview of the ar-
chitecture of a PE, to be used as a basic module in a
programmable array processor. A typical example will be
the design of a PE to be used in a wavefront array. The basic
wavefront array is either a square array of N X N PEs, a
linear array of 1 X N PEs, or a bilinear array of 2 X N PEs.
The PEs are orthogonally connected and are identical. The
hardware of the PE is designed to support the features of
the Matrix Data Flow Language (MDFL) introduced previ-
ously. Given the current state of the process technology,
with a minimum feature size of 2 fim or less, we estimate
the area of the chip taken by a PE to be 6 X 6 mm2.

1) Architectural Outline: The PE that we have designed
is a special-purpose microprocessor. The functional block
diagram of the PE is shown in Fig. 22. The main functional
blocks are datapath, program memory, I/O control units,
and instruction decoder.

Our design objective is to limit the complexity of the
datapath, preferring a regular and easy layout design. We
have adopted a 32-bit-wide datapath for fixed-point com-
putations. Moreover, the ALU in the PE is designed to
support the operations that are of major importance for
signal processing applications, such as multiplication and
rotation. To speed up the throughput of the PE, we used a
two-level pipelining scheme.

The PE can simultaneously perform data transfers in four
directions. The transfer of data is controlled by an I/O
controller, one for each of the four directions, which han-
dles the two-way handshaking functions.

2) Instruction Set: The instruction set of the PE was
selected to optimize the performance of the wavefront
array as a whole. To reduce the complexity of the control
unit, in a manner similar to that used in the RISC design
[28], we wanted each instruction to take exactly one clock
cycle. This implies that complex instructions should be
decomposed into sequences of simpler (primitive) instruc-
tions. An example is the multiplication instruction, which is
decomposed into three instructions: one for initializing the
processor registers with the correct data, one that does the
main multiplication step, and the last one which transfers
the result back to the register file. The instruction set is
divided into arithmetic instructions, register transfer instruc-
tions, conditional and unconditional jump instructions, and
program loading instructions.

3) Design Specification and Verification: The PE de-
scribed in this section is currently being specified and
verified using the ISPS language. The ISPS language allows
not only the specification of the design of a single PE, but
also the simulation of an entire wavefront array. More
importantly, it facilitates the verification of the correctness
and suitability of the architecture of the PE before design-
ing the lower (logic, circuit, layout) levels of the PE. It will
also be an important tool for the development of the host
interface, the memory units, etc.

VIII. CONCLUSIONS

The rapid advance in VLSI device technology and design
techniques have encouraged the development of massively
parallel-array processors. We have stressed the importance
of modularity, communication, and system clocking in the
design of VLSI arrays. For signal processing applications, a
large number of algorithms possess the properties of re-
cursiveness and locality. These properties naturally led to
the systolic and wavefront arrays.

The two types of arrays share the important common
feature of using a large number of modular and locally
interconnected processors for massive pipelined and paral-
lel processing. However, in several key aspects, the wave-
front array is noticeably distinctive from the systolic array:
First, it uses data-driven computing and thus gets around
the burden of having to synchronize a (potentially ultra-)
large-scale array. [18] Second, it maximizes the pipelining
efficiency and offers a speed achievable only by multirate
systolic arrays. Third, the data-flow principle allows a sim-
pler language design facilitating a formal description of the
activities. Finally, it can easily cope with the variations of
communication delays in dynamically interconnected sys-
tems, such as reconfigurable waferscale integration designs.

In conclusion, we have shown that both the systolic and
data-flow principles will play a major role in future super-
computing, especially for number crunching problems. Most
computing networks described in signal-flow graphs (SFGs)
can be systematically converted into systolic or wavefront
arrays, following the procedures proposed. This should en-
courage more practitioners to develop advanced hardware
and software for massively parallel-array processors. The
impacts of the novel architectures upon future super-
computer designs cannot be overestimated.
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Wafer-Scale Integration and Two-Level Pipelined
Implementations of Systolic Arrays*'f

H. T. KUNG AND MONICA S. LAM

Department of Computer Science, Carnegie-Mellon University,
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Two important issues in systolic array designs are addressed: How is fault toler-
ance provided in systolic arrays to enhance the yield of wafer-scale integration
implementations? And, how are efficient systolic arrays with two levels of pipelining
designed? (The first level refers to the pipelined organization of the array at the
cellular level, and the second refers to the pipelined functional units inside the cells.)
The fault-tolerant scheme proposed replaces defective cells with clocked delays. This
has the distinct characteristic that data can flow through the array with faulty cells at
the original clock speed. It is shown that both the defective cells under this fault-
tolerant scheme and the second-level pipeline stages can simply be modeled as
additional delays in the data paths of "generic" systolic designs. The mathematical
notion of a cut is introduced to solve the problem of how to allow for these extra
delays while preserving the correctness of the original systolic array designs. The
results obtained by applying these techniques are encouraging. When applied to
systolic arrays without feedback cycles, the arrays can tolerate large numbers of
failures (with the addition of very little hardware) while maintaining the original
throughput. Furthermore, all of the pipeline stages in the cells can be kept fully
utilized through the addition of a small number of delay registers. However, adding
delays to systolic arrays with cycles typically induces a significant decrease in
throughput. In response to this, a new class of systolic algorithms has been derived
in which the data cycle around a ring of processing cells. The systolic ring architec-
ture has the property that its performance degrades gracefully as cells fail. Use of the
cut theory and ring architectures for arrays with feedback gives effective fault-
tolerant and two-level pipelining schemes for most systolic arrays. As a side effect
of developing the ring architecture approach, several new systolic algorithms have
been derived. These algorithms generally require only one-third to one-half of the
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number of cells used in previous designs to achieve the same throughput. The new
systolic algorithms include ones for LU-decomposition, QR-decomposition, and the
solution of triangular linear systems.

Contents. 1. Introduction. 2. Fault tolerance and two-level pipelining for
unidirectional linear arrays. 3. Systolic arrays without feedback cycles. 3.1. The cut
theorem. 3.2. Linear arrays without feedback. 3.3. Two-level pipelining for two-
dimensional systolic arrays. 3.4. Two-level pipelining for FFT processor arrays. 3.5.
Systolic fault-tolerant schemes for two-dimensional arrays. 4. Systolic arrays with
feedback cycles. 4 .1 . Computation of simple recurrences—an example of cyclic
systolic arrays. 4.2. Fault-tolerant systolic rings. 4.3. Two-level pipelining for sys-
tolic rings. 4.4. Other examples of systolic ring architectures. 4.5. General remarks
on systolic rings. 5. Summary and concluding remarks.

1. INTRODUCTION

In recent years many systolic algorithms have been designed and several
prototypes of systolic array processors have been constructed [1-4]. Major
efforts are currently devoted to building systolic arrays for large, real-life
applications. In this paper, we consider two implementation techniques for
building high-performance systolic arrays: wafer-scale integration (WSI) and
fabrication u§ing pipelined components.

Fabrication flaws on a wafer are inevitable. It is necessary for a WSI circuit
to be "fault tolerant" so that wafers with defective components can still be
used. A common approach is to include redundant circuitry in the design and
avoid defects by programming the interconnection of the constituent ele-
ments. In particular, the laser-programming technology has been applied
successfully to program the redundant circuitry in VLSI RAMs as a yield
enhancement measure [5]. The MIT Lincoln Laboratory [6] has also been
experimenting with the use of laser-programmable links to build wafer-scale
processor arrays.

Systolic arrays are well suited to the application of wafer-scale integration.
They consist of large numbers of small and identical (thus interchangeable)
cells and their regular and localized interconnections greatly simplify the
problem of routing around defective cells. On the other hand, systolic archi-
tectures guarantee full exploitation of their constituent cells to achieve max-
imum parallelism. The more cells an array has, the more powerful it is.
Wafer-scale integration has the potential to provide a very cost-effective and
reliable way of implementing high-performance systolic systems.

Before WSI systolic arrays can become a reality, we must solve the prob-
lem of how to construct fault-tolerant arrays. After the cells are tested (by
wafer probing, for example), how do we route around the defects to build a
functional array? (See Figure 1.1a.) This paper describes a systolic approach
which provides fault tolerance at a very low cost and admits of a graceful
degradation in performance as the number of defects increases.

The use of pipelined components for implementing cells of systolic arrays
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(a)

FIG. 1.1. Two problems addressed in the paper: (a) fault tolerance for arrays with faulty cells,
and (b) two-level pipelining.

is especially attractive for applications requiring floating-point operations.
Commercially available floating-point multiplier and adder chips can deliver
up to 5 MFLOPS per device. To achieve such high throughput, they typically
have three or more pipeline stages [7]. These components, when used to
implement systolic cells, form a second level of pipelining [8], the first being
the pipelined organization of systolic arrays at the cellular level. While this
additional level of pipelining can increase the system throughput, it consid-
erably complicates the design of systolic array algorithms. Our solution to this
problem is to devise a methodology to transform existing systolic designs
which assume single-stage cells to arrays consisting of pipelined cells.

We will show that both the "fault-tolerance" and the "two-level pipelining"
problems can be solved by the same mathematical reasoning and techniques.
Our results imply that once a "generic" systolic algorithm is designed, other
versions of the algorithm (for execution on arrays with failed cells, or for
implementation using different pipelined processing units) can be system-
atically derived. The techniques of this paper can also be applied to other
computation structures, such as FFT processor arrays.

In the next section we introduce our approach to the problems, using as an
example the simplest type of systolic arrays—unidirectional linear arrays. As
we will see, systolic arrays without feedback admit of a much simpler solution
and they are discussed in Section 3. In Section 4, we propose a new architec-
ture, the "systolic ring," which can be used in place of many systolic arrays
with feedback cycles and are much more amenable to fault-tolerant measures.
Section 5 includes a summary and some concluding remarks.
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2. FAULT TOLERANCE AND TWO-LEVEL PIPELINING
FOR UNIDIRECTIONAL LINEAR ARRAYS

Figure 2.1 depicts a systolic array [9] for the convolution computation with
four weights wu . . . , w4. In this array the data flow only in one direction;
that is, both xt and yt move from left to right (with xt going through an
additional "delay register" following each cell). This is an example of a
systolic array without feedback cycles—an array where none of the values in
any data stream depends on the preceding values in the same stream. (For an
example of an array with feedback cycles, see Figure 4.1a.)

Depicted in Fig. 2.2a is an example of a 5-cell array with one faulty
element. The defective cell in the middle is replaced with two "bypass"
registers (drawn in dashed lines)—one for the x-data stream and one for the
j-data stream. It can easily be shown that this array correctly solves the same
problem as the array of Fig. 2.1. For example, y\ picks up vv4 • JC4, w3 • JC3,
and w2 • x2 at the first, second, and fourth cell, respectively. The degradation
in performance due to the defect is slight. The maximum convolution com-
puted by this array in one pass can have only 4 rather than 5 weights, and the
latency of the solution is increased by one cycle. However, the computational
throughput, often the most important factor in performance, remains the same
at one output per cell cycle. Figure 2.2b depicts the cell specification for this
fault-tolerant scheme, using reconfigurable links. Note that the input/output
register in a systolic cell can be used as a bypass register in case the cell fails.
Therefore no extra registers are needed to implement this fault-tolerant
scheme.

A basic assumption of this paper is that the probability of the inter-
connecton links and registers failing is very small and thus negligible. This
is reasonable because these components are typically much simpler and
smaller than the cells themselves. Furthermore, they can be implemented
conservatively and/or with high redundancy to increase the yield.

In the proposed scheme data move through all the cells. At failed cells, data
items are simply delayed with bypass registers for one cycle, and no com-
putation is performed (Figure 2.3a). We call fault-tolerant schemes of this
type systolic in view of the fact that data travel systolically in a defective array
from cell to cell, at the original clock speed.

For unidirectional linear arrays, the systolic fault-tolerant scheme proposed
here has the advantages that it utilizes all the live cells and maintains the

x 5 x4

V2 Yi

FIG. 2.1. Unidirectional linear systolic array for convolution.
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FIG. 2.2. (a) Defective cell replaced with registers, and (b) cell specification.

throughput rate of a flawless array (Figure 2.3a). As illustrated in Figure
2.3b, other fault-tolerant schemes previously proposed in the literature either
suffer from low utilization of live cells [10-13] or reduced throughput due to
a slower system clock required by the fact that the communication between
logically adjacent cells can now span a large number of failures [14-17].
Moreover, as will be shown in the next section, our systolic fault-tolerant
technique can be generalized to two-dimensional arrays.

We now examine more carefully the idea behind our fault-tolerant scheme
for the linear array of Fig. 2.2. Because of the unit delay introduced by the
bypass registers, all the cells after the failed one receive data items one cycle
later than they normally would. Since both the x- and y-data streams are

(a)

«—, o | n o I

(b)

Unused cells

Tm

Long connection

FIG. 2.3. (a) Systolic and (b) previous fault-tolerant schemes for unidirectional linear arrays.
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FIG. 2.4. Two-level pipelined systolic array for convolution, using pipelined arithmetic units
of Fig. 1.1b.

delayed by the same amount, the relative alignment between the two data
streams remains unchanged. Thus, all the cells after the third one receive the
same data and perform the same function, with a one-cycle delay, as would
the cell preceding it in a normal array. For this reason, an w-cell, uni-
directional, linear array with k defective cells will perform the same com-
putation as a perfect array of n — k cells.

The above reasoning also implies that the correctness of a unidirectional
linear array is preserved, if the same delay of any length of time is introduced
uniformly to all the data streams between two adjacent cells. This result is
directly applicable to the implementation of two-level pipelined arrays. We
can interpret the stages in a given pipelined processing unit as additional
delays in the communication between a pair of adjacent cells.

Consider, for example, the problem of implementing the systolic array of
Fig. 2.1 using the pipelined multiplier and adder of Fig. 1.1b. Since the adder
is now a three-stage pipeline unit instead of a single-stage unit, two additional
delays are introduced in the y-data path. Thus each cell requires a total
number of four delay registers be placed in the x-data path—one is implicit
in the original cell definition, the second is the delay register in the original
algorithm design, and the last two are to balance the two new delays in the
j-data stream. The resulting two-level pipelined array is depicted in Fig. 2.4.
This design has been proposed previously [8], but it is reproduced here as a
special example of a general theory.

3. SYSTOLIC ARRAYS WITHOUT FEEDBACK CYCLES

From the previous section we see that both the defective cells in a fault-
tolerant array and the pipeline stages in systolic cells can simply be modeled
as additional delays in the data paths. Thus by solving the one problem of
how, if possible, to allow for additional delays in systolic designs, we can
transform generic systolic designs to fault-tolerant or two-level pipelined
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designs. A general theory of adding and removing register delays to a system
has been proposed by Leiserson and Saxe [18] in the context of optimizing
synchronous systems.

3.1. The Cut Theorem

We model a systolic array as a directed graph, with the nodes denoting the
combinational logic and the edges the communication links [19]. The edges
are weighted by the number of registers on the links. We say that two designs
are equivalent if, given an initial state of one design, there exists for the other
design an initial state such that (with the same input from the host, i.e., the
outside world) the two designs produce the same output values (although
possibly with a constant delay). In other words, as far as the host is con-
cerned, the designs are interchangeable provided the possible differences in
the timing of the output are taken into account.

We define a cut to be a set of edges that "partitions" the nodes in a graph
into two disjoint sets, the source set and the destination set, with the property
that these edges are the only ones connecting nodes in the two sets and are
all directed from the source to the destination set.

We say that a systolic design is a "delayed" system of another design if the
former differs from the latter by having additional delays on some of the
communication links. Thus the graph representations of the two designs are
the same except for the weights on the edges that correspond to the commu-
nication links with additional delays.

THEOREM 1. (Cut Theorem). For any design, adding the same delay to
all the edges in a cut and to those pointing from the host to the destination
set of the cut will result in an equivalent design.

Proof. Let S be the original design partitioned by a cut into sets A and B,
the source and the destination set, respectively. Let S' be the same as 5 (with
its corresponding sets A' and B'), with the difference that d delays are now
added onto the edges in the cut. We will show that by properly initializing S'
(at f0), the output values from A and A' will be identical and that the output
values from B are the same as those from B', but lagging behind by d clock
cycles.

We define the initial state of A' to be identical to the state of A at time t0.
Since none of the edges in the cut feed into A', directly or indirectly, nodes
in A' behave exactly the same way as the corresponding ones in A and thus
produce the same outputs.

Let rx{e'), . . . , rd(e') be the delay registers on any edge in the cut, e\
with rx{e') being closest to the source node and rd(e

f) closest to the desti-
nation node. First, we assign the initial state of B' to be identical to the state
of B at time t0 - d. We then initialize the registers rx{e'),..., rd(e') with
the values of the data on the corresponding edge in S at time t0 — 1,
tQ - 2, . . . , t0 - ^respectively. In this way, the input data received by the
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nodes in set B' from time to to to + d — 1 are identical to those received by
B from to — d to t0 — 1 and so the configuration of B' at t0 + d and that of
B at f0 are identical. Since the outputs from A' are the same as those from A,
all the inputs arriving at B' starting from time t0 4- d are the same as those
arriving at B, except that they lag behind by d cycles due to the additional
delay registers. Therefore the nodes in B' will behave the same way as the
corresponding ones in B with a d cycle delay. •

We say that a delayed system 5 ' is derivable from S if there exists a set of
cuts C\, C2, . . • , Cn with their cut delays d\, d2, . . . , dn, such that

V e' E S", number of additional delays one ' = T̂ d,.
{ik'GQ}

Since equivalence is associative, the cut theorem implies that if a "delayed"
design is derivable from the original design then the two designs are equiv-
alent.

Since a cut partitions the nodes of a graph into two sets with data flowing
unidirectionally between them, it cannot cross any feedback cycle. On the
other hand, for any given edge not in a feedback cycle, we can always
construct a cut set that contains it. Therefore any number of delays on the data
paths in a graph without feedback can always be incorporated if we have the
option of inserting other delays into the system.

3.2. Linear Arrays without Feedback

We will now apply the above results to the examples we discussed pre-
viously. As depicted in Figure 3. la, the edges between any two adjacent cells
of a unidirectional linear array form a cut. Hence by the cut theorem, we can
see immediately that both the defective array of Fig. 2.2a and the two-level
pipelined array of Fig. 2.4 are equivalent to the original array of Fig. 2.1.
Figure 3.1b depicts a less obvious cut, consisting entirely of all the output
edges from the multipliers. This implies that the convolution array will
function correctly regardless of the number of pipeline stages present in the
multipliers (provided the number is the same for all the multipliers in the
array). For instance, if all the four-stage multipliers in Fig. 2.4 were replaced
with ten-stage multipliers, the resulting systolic convolution array would still
be correct.

3.3. Two-Level Pipelining for Two-Dimensional Systolic Arrays

It is just as simple to apply the cut theorem to two-level pipelined arrays
of two dimensions. Let us consider the example of a hexagonal systolic array
that can perform band matrix multiplication [20] (Fig. 3.2a). Two results
follow directly from the cut theorem:

1. The edges under each dashed line in Fig. 3.2a define a cut. All vertical
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FIG. 3.1. Two types of cuts for a unidirectional linear systolic array for convolution.

edges, each representing an adder's output (Fig. 3.2b), intersect two dashed
lines while all the other edges intersect only one. Thus by the cut theorem,
if the number of pipeline stages in all the adders is increased by 2k, then for
each cell, k delays must be added to the other data paths. Figure 1.1b depicts
the case when k = 1.

2. Consider the output edges of all the multipliers in the array. Like those
in the unidirectional linear convolution array (Fig. 3.1b), these edges define
a cut since none of the outputs from the adders are fed back into the multi-
pliers. By the cut theorem, we conclude that these systolic cells can be
implemented using pipelined multipliers of any number of stages without any
further modification, provided the number of stages is the same for all the
multipliers.

FIG. 3.2. (a) Hexagonal systolic array without feedback loops, and (b) original cell definition.
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3.4. Two-Level Pipelining for FFT Processor Arrays

The cut theorem can be applied to two-level pipelined designs for any
processor arrays without cycles. We consider here, as an example, the well-
known processor array for computing fast Fourier transforms (FFTs). For an
n-point FFT, the array has log2 n stages of nil processors for performing
butterfly operations. The data are shuffled between any two consecutive
stages according to a certain pattern [21, 22]. Figure 3.3 depicts the so-called
constant geometry version of the FFT algorithm (for n = 16), that allows the
same pattern of data shuffling to be used for all stages. In the figure the
processors for butterfly operations are represented by circles, and the number
h by an edge indicates that the result associated with the edge must be
multiplied by (oh, where a) is a primitive nth root of unity.

A butterfly operation,

involves four real multiplications and six real additions. Figure 3.4a depicts
a straightforward processor implementation for the butterfly operation using
four multipliers and six adders. The time that the processor takes to perform
a butterfly operation is the total delay of one multiplier and two adders.

To increase the throughput for calculating butterfly operations, we imple-
ment the processors with pipelined multipliers and adders. Suppose that these
functional units each have five pipeline stages, as in the case of some recent
floating-point chips [7]. By the cut theorem, the pipeline delays on the bKal

and feimag data paths have to be balanced by the same number of delays on the

FIG. 3.3. Constant geometry version of the FFT algorithm.
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FIG. 3.4. (a) Processor for the butterfly operation, and (b) corresponding two-level pipelined
processor.

arcai and aimag input lines. The two-level pipelined design of the processor is
shown in Figure 3.4b.

3.5. Systolic Fault-Tolerant Schemes for Two-Dimensional Arrays

Let us consider as an example the rectangular array of Figure 3.5a, where
the data move forward and downward. Among many other applications, this
array can perform matrix multiplication with either an operand or the partial
result matrix stored in the array during the computation. We will first discuss
the constraints that a correct implementation must satisfy and then we will
study several redundancy schemes.

3.5.1. The Local Correctness Criterion

By exploiting the regularity in systolic arrays, the following theorem re-
duces the problem of establishing equivalence between two designs to smaller
problems which can be solved using only "local information".
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FIG. 3.5. (a) Rectangular systolic array without feedback loops, and (b) local correctness
criterion.

THEOREM 2. Let S be a mesh-connected systolic design without feedback
and Sf be a "delayed" version. S' is equivalent to S if for each square of
adjacent cells in the grid, the number of delays on each of the two paths
joining the two diagonally opposite corners is the same.

Proof. Let Vt and E{ be the nodes and (vertical) edges in the ith column
in grid S'. We form two subgraphs G{ and G{, such that G{ contains all the
nodes and edges to the left of the ith column and G{ contains all those to the
right, and in addition, they each contain V, and Ex. We will first show that
graph S' is derivable from S if subgraphs G{ and G{ are derivable from the
corresponding subgraphs in 5, Gx and G2, respectively.

Let C be a cut in subgraph G{. If C does not intersect Ei9 all the nodes in
Vt must belong to the destination set of the cut. Since there are no direct links
between any nodes in the source set and the nodes in S' — G{, C is also a
cut in S'. By the same token, any cut in subgraph G{ that does not contain
any edges in E{ is a cut in 5 ' .

It is obvious that a cut can have at most one edge in Et. Suppose the cuts
C\ in G{ and C2 in G2 both contain the same edge e in E{. For both subgraphs,
all the nodes in V( that are above e belong to the source set and those below
belong to the destination set. We observe that Cx U C2 partitions the nodes
of S' also into a source set and a destination set with the former being the
union of the source sets in the two subgraphs and the latter the union of
destination sets. Therefore, Cx U C2 is a cut in S'.

Without loss of generality, let the delay associated with all the cuts be 1.
(A cut with d delays is equivalent to d identical cuts, each with 1 delay.) If
G{ and G{ are derivable from Gx and G2, respectively, then for each edge
e G Ei with d(e) delays, there exist exactly d(e) cuts containing e in each of
the two subgraphs. Therefore all the cuts containing edges in Et in the two
subgraphs can be paired up to form cuts in S'. We have already shown that
the cuts in the subgraph that do not contain any edges in Et are also cuts in
S'. Therefore if G{ and G2 are derivable from Gx and G2, respectively, then
S' is also derivable from 5.
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The above result implies that we can cut up the grid S' into vertical strips
and show that S' is equivalent to S by proving the equivalence of each of the
strips. By applying the same argument on the horizontal links, we can further
subdivide the strips into squares, each containing only four cells. The equiv-
alence problem is now reduced to solving the equivalence for each of the
squares. An edge from each of the two paths that connect the two diagonally
opposite corners constitutes a cut. Therefore if the number of delays on each
of the two paths of a square is the same, then the square is derivable from its
counterpart in S. If this condition holds for each square, then S' is derivable
from, and thus equivalent to, S. I

The criterion for correctness as derived from this theorem is represented
graphically in Figure 3.5b.

This theorem can be generalized to any array where we can find paths that
partition the graph representing the array into disjoint subgraphs. For exam-
ple, in the case of a hexagonal array without feedback cycles (Fig. 3.2a), the
constraints for equivalence are simply reduced to the local criterion that for
each unit triangle of three adjacent cells, the number of delays on each of the
two paths connecting two of the corners of the triangle has to be the same.

3.5.2. Redundancy Schemes

The utilization of live cells for the rectangular systolic array of Fig. 3.5a
depends on the availability of two hardware resources: delay registers in the
live cells and the channel width. The results of Section 3.1 imply that if
sufficient delay registers are available in the cells, the "systolic" approach can
fully utilize all the live cells without any penalty to the throughput rate of the
system. In general, a lower utilization can be expected with a smaller number
of delay registers. The other factor that might decrease the utilization is the
channel width. If there are not sufficient tracks in the channels, we might not
be able to implement the interconnection desired.

We have conducted several experiments to study the trade-off between the
utilization of live cells and the required hardware resources. We implemented
four heuristic programs modeling different redundancy schemes. We ran
Monte Carlo simulations on three different array sizes and cell failure rates
ranging from 5 to 65%. The distribution of defects is assumed to be identical
for all the cell locations on the wafer. The different schemes are described in
the following and their examples are illustrated in Fig. 3.6.

1. No additional hardware. Because of the limitation in routing, we
resort to a simple scheme where for each defective cell, we skip either the row
or the column that contains the cell. The criterion of correctness is trivially
satisfied. A greedy algorithm is used here; the row or column containing the
most failures is eliminated first.

2. No delay register and unlimited channel width. In this scheme, all the
cells in the final array are chosen so that the links only point in the forward

45



SCHEME 1:D = 0,C = 0

° Delay Register

FIG. 3.6. (a) Live cells (72 out of 100 cells), and (b) array configurations under different
redundancy schemes (D represents number of delay registers and C the redundant tracks in
channel).
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or downward direction. This guarantees that the number of delays on each
link is equal to the manhattan distance between the two endpoints of the link,
and thus the local correctness criterion is satisfied for each unit square of the
array. Our basic strategy is to build the array row by row, picking as the next
cell the one that satisfies the criterion and excludes the least number of live
cells from being used. A simple maze runner is also implemented to deter-
mine the number of tracks required for interconnection.

3. One delay register per data path and unlimited channel width. The
additional delay increases the flexibility in the assignment scheme, but it also
complicates the algorithm of the program. We modified the program in
scheme 2 such that if necessary, a delay register may be added to the new
edges being created and to the old edges that are in the same row or column
as the new ones, provided, of course, they do not have delay registers on them
already.

4. Unlimited delay registers and unlimited channel width. How many
delay registers are necessary to achieve 100% utilization? The scheme we
chose requires delay registers be placed only on the logically vertical con-
nections and none on the horizontal ones. The n live cells are partitioned into
horizontal strips, each containing Vn cells. The cells in each strip are con-
nected to form the rows and then connected to the corresponding cells in their
neighboring rows. Delays are then assigned only to the logically vertical
connections to satisfy the correctness criterion.

The empirical results are shown in Fig. 3.7. Each data point represents the
average value over 100 trials. These results indicate that unless the cell yield
is exceptionally high, redundancy is essential (see Fig. 3.7a). The channel
width is generally not a bottleneck. While low yields and poor utilization
increase the length of the path between two logically neighboring cells, they
also open up more space for routing. For the range of array sizes and cell
yields in our simulations, three redundant tracks are found to be sufficient for
schemes 2 and 3, and five for scheme 4.

The expected utilizations with zero and one delay register are shown in
Figs. 3.7b and c. The larger the array is, the more hardware delay registers
are needed to get the same utilization. This is obvious since the set of
constraints that has to be satisfied by a larger array is a superset of those
satisfied by a smaller array. We have to bear in mind, however, that the cells
in a larger array are typically smaller and thus have lower failure rates. From
Fig. 3.8, we see that the maximum number of delay registers required on the
logically vertical links to achieve 100% utilization is approximately equal to
the number of cells on a side of a wafer. We note that for systolic arrays
composed of programmable cells such as the CMU Programmable Systolic
Chip (PSC) [23, 24], implementing programmable delay is straightforward
and requires no extra circuitry.

These experiments give us a general idea of the expected efficiency of the
different redundancy schemes using the systolic approach. In-depth studies
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FIG. 3.7. Utilization under different redundancy schemes (D represents number of delay
registers and C the redundant tracks in channel).
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FIG. 3.8. Maximum number of delays required by 98% of the trials to achieve 100%
utilization using scheme 4.

using a more precise model are necessary to determine the optimal or near-
optimal redundancy scheme for any particular application. Probabilistic anal-
yses [16, 17] have been performed for other fault-tolerant schemes where
utilization is limited by the maximum length of interconnection allowed.

4. SYSTOLIC ARRAYS WITH FEEDBACK CYCLES

In this section we describe a new technique for treating systolic arrays with
feedback cycles. Such arrays include systolic designs for LU-decomposition
[25], QR-decomposition [26], triangular linear systems [25], and recursive
filtering [27].

4.1. Computation of Simple Recurrences—An
Example of Cyclic Systolic Arrays

To illustrate the basic ideas, we consider the computation of the following
simple recurrence of size n — 1:

given: the initial values {y-n+2, y~n+\, • • • » Jo}
n-\

compute: the output sequence {yu y2, . . .} as defined by v, = ^ ?<-;

Although summation is used here, the computation structure presented below
generalizes to any associative operator. An n-cell systolic array with feedback
cycles [27] is capable of performing this simple recurrence computation of
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FIG. 4.1. Linear array with feedback: (a) original array, (b) reduced throughput, and (c) single
failure.

size up to n - 1. Depicted in Fig. 4.1a is such an array where n - 6. The
partial sums, y4

f, y5', y6', move down the array from left to right picking up
the completed sums that are moving in the opposite direction, yuyi9y$. The
computation of each sum is completed when it reaches the end of the array.
Note that this is a 2-slow [19] system, in the sense that only half its cells are
active at all times.

A naive attempt at achieving fault tolerance involves slowing the system
down even further. In the array of Fig. 4.1b data pass through an extra register
per cell. This is a 4-slow system, performing the same computation as the
2-slow version, but at half its throughput. Suppose that the third cell from the
left were to fail. The original function of the array could be preserved by
simply allowing cells 2 and 4 to communicate through a bypass register (as
illustrated in Fig. 4. lc). A drawback of this approach is that the performance
of the array degrades rapidly with respect to the number of consecutive failed
cells that need to be tolerated. Note that systolic arrays with feedback cycles
are initially 2- or 3-slow in general, and in order to tolerate k consecutive
failures, the throughput must be further decreased by a factor of k + 1.

The recurrence of size n — 1 computed by an n-cell bidirectional linear
array (illustrated in Fig. 4.1a) can also be implemented on an w/2-cell ring
with unidirectional data flow (as in Fig. 4.2a). The systolic ring works as
follows. The nil most recently computed results are stored in each of the nil
cells, while the next nil partial sums travel around the ring to meet these
stored values. Every two cycles, a sum is completed and a new computation
begins. For example, at time 0 in Fig. 4.2a, yl is ready to pick up its last term
;y3 while yl is ready for its first term yx. The final value of y$ then travels to
cell "a" to replace y{. At time 2, y$ and yj will pick up their last and first
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FIG. 4.2. (a) Four consecutive snapshots of a systolic ring, and (b) its unrolled structure.

terms, respectively. Like the bidirectional systolic array of Fig. 4.1a, this
systolic ring has a computational rate of one output every two cycles. How-
ever, all its cells are active at any time; therefore only half as many cells are
needed.

42. Fault-Tolerant Systolic Rings

Systolic rings require not only fewer cells than other designs solving the
same problems; they also degrade gracefully as the number of defective cells
increases.

Each cell in the systolic ring computes with a stored result for a period of
2n cycles before the result is replaced by a new value. The ring can be
unrolled to form a linear array where each cell stores only one result in its
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whole lifetime, as shown in Fig. 4.2b. This transformation reduces the ring
structure to one without feedback, and thus allows us to analyze its fault-
tolerant behavior using the results of the preceding section.

Figure 4.3a shows an example of a 4-cell systolic ring with one defect and
Fig. 4.3b shows its unrolled version. A defect in the ring of m cells translates
to a defect in every block of m cells in the linear array. Recall that in an array
without feedback, the bypass registers corresponding to the defects will cause
a delay in the action of the cells but not the functionality of the array. It is
therefore the case that the defective ring computes the recurrence correctly.
However, due to the delay through the defective cell, the m — 1 live cells
produce results at a reduced rate of m — 1 outputs every 2m — 1
( = 2[m - 1] + 1) cycles.

Although a defective systolic ring solves problems at a slower rate than a
flawless ring with the same number of live cells, it can solve larger problems.
The additional delay through the defective cell means that the live cells have
an extra clock cycle before they have to store a new result. This cycle can be
effectively used to compute with one more recurrence term. Figure 4.3a
shows the ring of m - 1 live cells solving a maximum size problem with
2m - 2 ( = [2(m - 1) - 1] + 1) recurrence terms. The following theorem
summarizes the result of this section.

THEOREM 3. A perfect ring of size m can solve recurrences of sizes up to
2m — 1 at a throughput rate of\.lfk cells fail, it can solve problems of sizes
up to 2m — k — 1 at a throughput rate of (m — k)/(2m — k). In other
words, the reduction in throughput due to the k failures is only k/(2m — k)
of the original.

4.3. Two-Level Pipelining for Systolic Rings

By going through an argument similar to that above for the two-level
pipelined array, we can obtain the following result:

THEOREM 4. A systolic ring ofmp-stage pipelined cells can solve recur-
rences of sizes up to (p + l)ra — I at a throughput rate of l/(p + 1). Jfk
of the m cells fail, this ring can solve problems up to size
(p + \)m — pk — I at a throughput rate of(m — k)/[(p + X)m — pk]. In
other words, the reduction in throughput is only k/[(p + \)m — pk] of the
original.

4.4. Other Examples of Systolic Ring Architectures

We have shown in the previous section that the ring structure is suitable for
solving simple recurrences where each result is dependent on a fixed number
of previous results. This characterizes many of the problems solved by sys-
tolic arrays with feedback. We describe some of the examples in this section.
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FIG. 4.3. (a) Four consecutive snapshots of a systolic ring with one failure, and (b) its unrolled
structure.

4.4.1 Solution of Triangular Linear Systems

Let A = (ay) be a nonsingular n x n band, lower triangular matrix with
bandwidth q. Suppose that A and an n-vector b = {b\ bn)T are given.
The problem is to solve Ax = b for x = (xu . . . , xn)T. This can be viewed
as a recurrence problem of size q—l.A ring of q/2 cells is sufficient to solve
the problem at a throughput of one result every two cycles. As a comparison,
the previous bidirectional linear systolic array [25] has the same throughput,
but it uses twice as many cells. The ring is also more robust—with k failures
in a ring of m cells, the throughput is only reduced from j to
(rn - k)/{2m - k).

Figures 4.4 and 4.5 illustrate the data flow pattern of a perfect 3-cell ring
and a 4-cell ring with one failure, respectively, when solving a triangular
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FIG. 4.4. Systolic ring for solving triangular linear systems.

linear system with bandwidth q = 6. While this problem size is the largest the
former ring can handle in one pass, the latter can solve linear systems with
bandwidth up to q = 7. As a result, the cells in the defective ring of Fig. 4.5
are idle one-seventh of the time. In the figure, a cell is assumed to be idle for
one cycle if the input has a "don't care" value, denoted by X.

The final step in the computation of each result (xt) involves a subtraction
(from bi) and a division (by an). This needs to be performed by every cell.
To avoid having to provide each cell with a division capability and an external
data path, we precompute the reciprocals of the diagonals outside the ring and
send the additional input (bt) to the cells via a systolic path.

The layout of a ring of processors is very straightforward, as shown in Fig.
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FIG. 4.5. A single failure in a systolic ring for solving triangular linear systems.

4.6. Similar to the unidirectional one-dimensional array, defects on a wafer
can simply be bypassed via the cells' input/output registers.

4.4.2 Triangularization of a Band Matrix

The usefulness of the systolic ring approach is not limited to linear array
solutions—Fig. 4.7a depicts a two-dimensional ring structure for trian-
gularizing a band matrix A, with bandwidth w = 6 and q = 3 subdiagonals.
This ring structure can perform the QR-decomposition, an important com-
putation for linear least-squares approximation, and it can also solve linear
systems using the stable computational technique of neighbor pivoting [28].

Each ring in the structure of Fig. 4.7 eliminates a subdiagonal, with the
t
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FIG. 4.6. Layout of a systolic ring.

bottommost ring handling the bottommost subdiagonal. The operations of a
ring are illustrated by Fig. 4.7b. The parameters needed for performing the
elimination (e.g., Givens rotations for QR-decomposition) pass around the
ring after they are generated. Suppose p( is the parameter generated by the
element eliminated in row i and the element above it. If the data input a{j is
not on the subdiagonal to be eliminated, it is updated on the arrival of /?,. It
stays in the cell for one cycle to compute with/?, + i and then moves on to the
next ring. If ay is to be eliminated, it is computed with the stored value, at _ i;,
to get/7,, which is then passed down the ring. The output of each ring is the
result obtained by eliminating the last subdiagonal of the input array. The
uppermost ring outputs the entries of the triangular matrix that we want to
compute. Note that corresponding to the elimination of each subdiagonal, a
new superdiagonal is created. In the systolic ring, the new elements for this
superdiagonal take the place previously occupied by the elements of the
eliminated subdiagonal.

Unlike the data values circulating the rings in the previous examples, the
Pi, are computed before they are passed around. However, they have the same
property that they are produced every two cycles and need to meet with w — 1
input values before they can be discarded. Therefore, from our previous
analysis, q rings of vv/2 cells each are required for triangularizing a band
matrix with bandwidth w and q subdiagonals. This architecture requires about
half the amount of hardware and achieves the same throughput of a previous
solution of QR-decomposition [26]. An efficient layout of this ring architec-
ture is shown in Fig. 4.8a. Every two consecutive rows correspond to one
ring.

The analysis of the fault-tolerant behavior of this ring structure is very
similar to that of the one-dimensional ring. A system with n rings can be
unrolled to form a mesh-connected acyclic array with n cells on one side and
an "unbounded" number on the other. The throughput rate is reduced from \
to n/(2n + A;) if & defects are tolerated in each of the n rings in the final array.
Also, by applying Theorem 2, we can simplify the correctness constraints on
the final configuration to get a local criterion that has to be satisfied by each
unit square in the logical grid. This criterion is depicted in Fig. 4.8b.
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FIG. 4.7. (a) Two-dimensional systolic ring structure for matrix triangularization, and (b) two
snapshots of the bottommost ring.
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FIG. 4.8. (a) Layout of the two-dimensional ring structure for matrix triangularization, and
(b) the local correctness criterion.

4.4.3. LU-Decomposition of a Band Matrix

Figure 4.9 depicts a two-dimensional systolic ring architecture for the
LU-decomposition of a band matrix, A = LU. For a given matrix A with
bandwidth 2q - 1 we need to use q/3 rows of cells, with q cells in each row.
The q/3 most recently computed rows of ut/ s are stored in the cells as they
are generated, while the /,/s are passed down the rows. Figure 4.10 shows the
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FIG. 4.11. (a) Two-dimensional ring architecture for LU-decomposition, (b) its layout, and
(c) the local correctness criterion.

snapshots of this structure at various stages in the computation. By viewing
this structure as an array of rings, its performance can be analyzed using the
result of Theorem 4 with parameter p = 2. The throughput of this array is the
same as that of the previous design [25], which, however, uses three times
as many cells.

This two-dimensonal ring architecture admits of a surprisingly efficient
layout. See Figure 4.1 lb. The numbers on the cells indicate the original row
the cells are in. This layout can be obtained by the following method. Starting
with the original architecture (Fig. 4.1 la), we first bring the top and bottom
rows together and get a cylindrical structure. We then expand the space
between rows by one cell length, so that if we flatten out the cylinder, the
consecutive rows in the "front" and "back" surfaces will be interleaved. But
before we flatten out the cylinder, we first "twist" it by one cell length per row
in the direction that results in shorter inter-row links.

By going through the analysis of the unrolled structure, we get the foliow-
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ing results. If k faults are bypassed in the communication links in each of the
column of connections in Fig. 4.1 lb, then the throughput is reduced from 3
to n/(3n + k), where n is the number of rows in the final array. Also, the
local criterion that has to be satisfied by each group of four cells is illustrated
in Fig. 4.11c.

4.5. General Remarks on Systolic Rings

The systolic ring architecture has some disadvantages over other systolic
architectures, but they are compensated for by its superior fault-tolerance
performance. One of the possible disadvantages is that we need to provide an
additional data path to unload the values during the computation, as the
computed results are continuously stored in the ring. This, however, is not the
case for the triangularization schemes of Section 4.4.2.

In many of the conventional cyclic algorithms, only one or a few boundary
cells may require special processing capability and extra input/output band-
width. However, with some ring architectures, every cell is required to
assume the role of a boundary cell. Algorithm-dependent methods can some-
times be used to alleviate the problem of having to provide each cell with
special functionality. For instance, in the previous example of solving trian-
gular linear systems, instead of providing each cell with the capability to
divide, we precompute the reciprocals of the diagonals.

5. SUMMARY AND CONCLUDING REMARKS

The fault-tolerant approach proposed in this paper is tailored to systolic
arrays. By using the additional information about systolic data flows we are
able to design schemes that are usually more effective than other schemes
designed for general processor arrays. Our systolic fault-tolerant scheme has
the characteristic that the maximum interconnection length is not increased.
This eliminates a source of inefficiency, such as increased system cycle time
or driver area, common to most other approaches.

For unidirectional linear arrays, our systolic fault-tolerant technique
achieves 100% utilization of live cells, without extra registers or inter-
connection links. For two-dimensional arrays without feedback cycles, the
utilization of live cells on a wafer increases with the number of redundant
channels and delay registers available in the cells. The number of delay
registers needed to achieve the same utilization also increases with the cell
failure rate and the size of the original array on the wafer. Our empirical
studies indicate that for a wafer with n x n cells, approximately n delay
registers per cell are needed to achieve 100% utilization.

Although many systolic algorithms with feedback have been proposed,
some of the same problems which these algorithms address can also be solved
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by systolic arrays without feedback. Examples of such problems include
convolution, graph connectivity and graph transitive closure [9, 29, 30].
Acyclic implementations usually exhibit more favorable characteristics with
respect to fault tolerance, two-level pipelining, and problem decomposition
in general.

For problems that have been solved exclusively by systolic arrays with
feedback cycles, this paper introduces a new class of systolic algorithms
based on a ring architecture. These systolic rings have the property that the
throughput degrades gracefully as the number of failed cells in the rings
increases. Furthermore, as a byproduct of the ring architecture approach, we
have derived several new systolic algorithms which require only one-third to
one-half of the cells used in previous designs while achieving the same
throughput.

We have shown that the two-level pipelining problem in systolic arrays can
be solved by the same techniques used to solve the fault-tolerance problem.
An important task left for the future is the development of software to solve
both problems automatically.
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On the Design of Algorithms for
VLSI Systolic Arrays

DAN I. MOLDOVAN, MEMBER, IEEE

Abstract-This paper is concerned with the mapping of cyclic loop
algorithms into special-purpose VLSI arrays. The mapping procedure is
based on the mathematical transformations of index sets and data de-
pendence vectors. Necessary and sufficient conditions for the existence
of valid transformations are given for algorithms with constant data
dependences. Two examples of different algorithms are given to illus-
trate the proposed mapping procedure; first is the LU decomposition of
a matrix which leads to constant data dependence vectors, and secondly
is the dynamic programming which leads to dependences which are
functions on the index set and are more difficult to be mapped into
VLSI arrays.

I. INTRODUCTION

THE TECHNOLOGY available to produce central pro-
cessor units (CPU) and computer memories has always
influenced the architecture of computers. Improvements

in technological processes resulted in higher computer perfor-
mances. The present semiconductor technology has reached
already the level of maturity beyond which no significant
breakthroughs are expected for switching speeds. The level of
integration, however, continues to grow and in the next ten
years it will be possible to incorporate one million logic gates
on a die of a chip. This very large scale integration (VLSI) is a
new technological environment which requires new ideas in
computer organization, theory of computing, and other related
fields.

In this paper we are concerned with the development of
algorithms for special-purpose VLSI arrays. As will be seen
below, while the VLSI technology offers remarkable advant-
ages to the system designer, it also imposes restrictions on the
design of algorithms. The most important of these restrictions
is the necessity for reduced communication complexity.

The paper is organized as follows: in Section I we discuss the
implications of the VLSI technology on computer architec-
tures and algorithm design. Sections II and III contain the
main results of the paper; first, a technique is proposed to
transform algorithms with loops into highly parallel forms
suitable for VLSI devices; then, a procedure is proposed to
map these transformed algorithms into VLSI systolic arrays.
In Section IV, algorithms for the LU decomposition of a ma-
trix and dynamic programming are used as examples to show
how previously proposed architectures can be formally derived
using appropriate algorithm transformations.

A. VLSI Algorithms and Architectures

The main advantages offered by the VLSI technology are:
large amount of hardware available at very low cost, reduced
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Fig. 1. Organization of a computer system containing several special-
purpose VLSI processor arrays, interconnection network, host proces-
sor, and main memory.

power consumption and physical size, and increased reliability
at the circuit level. Additionally, the high level of integration
can conceivably eliminate the need to physically separate pro-
cessors from memory, thus eliminating the bottleneck between
them. Parallelism and pipelining are two classical concepts
without which the efficient utilization of the large hardware
resources offered by VLSI is not possible. Parallelism implies
the operation of many units at the same time. Pipelining also
requires a multitude of resources, but in contrast with parallel-
ism, the resources work in a chain allowing data to flow only
from one unit to the next one. Both, parallelism and pipe-
lining, can be seen at different logic levels. The first level of
parallelism is offered by partitioning a computational task into
smaller computational modules. The second level of parallel-
ism is found within each computational module. The last level
of paraDelism is offered by the simultaneous processing of all
the bits in a word; and this level is present in almost all com-
puters. The focus of this paper is the parallelism at the second
level.

The exploitation of parallelism at the first level is often
necessary because computational problems are larger than a
single VLSI device can process at a time. If a parallel algorithm
is structured as a network of smaller computational modules,
then these modules can be assigned to different VLSI devices.
The communications between these modules and their opera-
tion control dictates the structure of the VLSI system and its
performances. In Fig. 1, a simplistic organization of a com-
puter system consisting of several VLSI devices, main memory,
and an interconnection network are shown. Each VLSI device
has a number of processors working in parallel.

The I/O bottleneck problem in VLSI systems presents a
serious restriction imposed on the algorithm design. The
challenge is to design parallel algorithms which can be parti-
tioned such that the amount of communication between mod-
ules is as small as possible. Moreover, data entering the VLSI

Reprinted from Proceedings of the IEEE, pp. 113-120, January 1983.
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device should be utilized exhaustively before passing again
through the I/O ports.

Another potential problem which can deteriorate the per-
formance is the data communication within the VLSI device.
The interconnections between logic gates are as expensive as
the logic itself and the signal propagation is comparable with
the logic switching time. An efficient utilization of silicon
area, time, and energy is achieved only if the hardware contains
local interconnections. The solution to this problem is to
design algorithms which, when mapped into VLSI hardware,
require only local data transfers. In the next two sections it is
shown that some algorithms can be transformed to meet these
requirements.

Systolic array architectures have been proposed by Kung [ 1 ] ,
[2] and others as a possible solution to these VLSI problems.
In the systolic concept, VLSI devices consist of arrays of inter-
connected processing cells with a high degree of modularity.
Each processor operates on a string of data that flow regularly
through the network. If the I/O problem is ignored, the
throughput of such computational structure is proportional
to the number of cells.

In order to match better the characteristics of algorithms
with the characteristics of computer architectures, and con-
sequently to increase the efficiency of computation, a care-
ful mapping of the computational problem to the machine is
necessary. The mapping of algorithms into systolic arrays is
different than the mapping of algorithms into architectures
with fixed number of processors and interconnections. In the
case of systolic arrays, one has to deal with issues ranging from
the organization of the network of cells to the detailed op-
eration of the cells. In fact, the mapping is nothing but the
design of the VLSI array according to the properties of the
algorithm and a set of design goals.

A number of special-purpose VLSI architectures have been
proposed in the last few years. Kung's early work in parallel
algorithms for VLSI has stimulated a considerable interest. He
proposed systolic arrays for matrix-vector and matrix-matrix
multiplications, LU decompositions, recurrence evaluations,
etc., [ 1 ] , [ 2 ] . The VLSI implementation of some combina-
tional algorithms has been investigated by Guibas et al. [ 3 ] .
Algorithms for solving systems of equations have been pro-
posed by Kung [ 4 ] , Hwang and Cheng [ 5 ] , and Preparata [ 6 ] .
The special-purpose VLSI computing structures have found
immediate application in signal processing where many algo-
rithms have regular structures [ 7 ] , [ 8 ] .

B. A VLSI Model of Computation

A model of the VLSI computing structure is needed in order
to relate the features of an algorithm to the realities of the
hardware. Tradeoffs are possible between various parameters
of the VLSI device in order to improve one performance or
another. The approach taken here is to distinguish between
the operation of the systolic system at the array level and the
activities taking place inside the processing cells. The array
level is called the global level, and the processor level is called
the local level. At both levels, the operation should be ex-
amined in time and space. Fig. 2 shows the main steps involved
in the design of a special-purpose VLSI chip.

In this paper, we will focus only on the step from the parallel
algorithm to the global model. A model of the processing cell
and the transition from the global model to the local model
can be found in [9) . The organization and the operation of
the VLSI array can be described by the network geometry G,
the functions F performed by the processing cells, and the net-
work timing T.
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Fig. 2. Main steps in the design of a special-purpose VLSI device.

The assumptions about the VLSI systolic network are as
follows:

a) The network consists of a planar mesh connected network
of processing cells.

b) The cells can be of different types and perform different
functions.

c) The interconnections between cells are buses which trans-
fer parallel words.

d) The operation of the network is synchronous.
The network geometry G refers to the geometrical layout of

the network. The position of each processing cell in the plane
is described by its Cartesian coordinates. By choosing the grid
arbitrarily small it is possible to represent these coordinates by
integers. Then, the interconnections between cells can easily
be described by the position of the terminal cells. These inter-
connections support the flow of data through the network; a
link can be dedicated only to one data stream of variables or it
can be used for the transport of several data streams at differ-
ent time instances. A simple and regular geometry is desired.

The functions F associated to each processing cell represent
the totality of arithmetic and logic expressions that a cell is
capable to perform. We assume that each cell consists of a
small number of registers, ALU, and control logic. Several
different types of processing cells may coexist in the same net-
work; however, one design goal should be to reduce the num-
ber of cell types.

The network timing T specifies for each cell the time when
the processing of functions F occurs and when the data com-
munications take place. A correct timing assures that the right
data reach their destination at the right time. The speed of the
data streams through the network is given by the ratio between
the distance of communication link over the communication
time. Networks with constant data speeds are preferable be-
cause they require a simpler control logic.

In summary, the global model of the VLSI array can be
formally described by a set of 3-tuples (G, F9 T). The more
regular the network is the simpler these functions become.
This model is quite general and it is sufficient for the purpose
of this paper of developing a methodology for designing VLSI
algorithms.

In the next section, a technique is developed to study and to
modify computational algorithms for the purpose of mapping
them into VLSI processing arrays. While any algorithm can be
analyzed using this technique, only some algorithms can be
mapped directly into simple systolic arrays.

II. TRANSFORMATIONS OF ALGORITHMS FOR VLSI
SYSTEMS

A. Data Dependences

The intention of mapping computational algorithms into
VLSI circuits implies first a transformation of algorithms into
equivalent but more appropriate forms for VLSI. The basic
structural features of an algorithm are dictated by the data and
control dependences. These dependences refer to precedence
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relations of computations which need to be satisfied in order
to compute the problem correctly. The absence of depen-
dences indicates the possibility of simultaneous computations.
These dependences can be studied at several distinct levels:
blocks of computations level, statement (or expression) level,
variable level, and even bit level. In this paper, since we con-
centrate on algorithms for VLSI systolic arrays, we will focus
only on data dependences at the variable level which is the
lowest possible level before the bit level.

The analysis of data dependences in high-level language
(HLL) programs for the purpose of detecting concurrency
of operations has received considerable attention in the last
decade. Muraoka [10] and Kuck et al. [11] have studied the
parallelism of simple loops and have introduced the notion of
dependence relations between assignment statements. Towle
[12] , Banergee [13 ] , and Banerjee et al [14] extended the
methodology of transforming ordinary programs into highly
parallel forms. Based upon dependences between statements,
they have provided algorithms for exploiting parallelism in
loops. Techniques such as loop freezing, wave from method,
the splitting-lemma, and loop interchanging have been intro-
duced. Recently, Kuhn [15] has proposed a methodology to
analyze data dependences using transformations on convex
index sets. Results on program transformations were also
reported by Lamport [16].

All these results were aimed mostly towards program speed-up
and compiler design. Although the program transformations
proposed before contain many basic results, they are not
adequate enough for VLSI implementations. In addition to a
high degree of parallelism, VLSI arrays suggest pipelining and
reduced communication distance and time.

Previous work in algorithm transformations has focused on
deciding whether a pair of occurrences is dependent or not.
The present approach is based not only on the detection of
dependences but also on their modification. The very struc-
ture of algorithm interconnections has to be modified in order
to increase the "locality" of communications and to meet
other VLSI requirements.

In what follows, algorithms written in HLL are considered.
Other forms to express algorithms are possible, but the results
would be similar. Consider a Fortran loop structure of the
form

DO 10 I1 = / 1 , w 1

DO 10 I2 =l2,u2

DO 10 /"=/",«"
Siil) (1)
S2(I)

SN(I)
10 CONTINUE

where / ' and it* are integers value linear expressions involving
7 1 , - - • , / ' ' - * and/ = ( / 1 , / 2 , • • • , / * ) . SuS2,-~, SN are as-
signment statements of the form X = E where X is a variable
and E is an expression of some input variables.

Let ? denote the set of all integers and ? n denote the set of
/i-tuples of integers. The index set of loop (1) is a subset of
5" and is defined as

.£"(/) = {(Z1, • ' • , / " ) : I1 <Il <u\ • • • , / " < / " < / } .

When loop (1) is executed, the elements of £n are ordered in
a lexicographical ordering. This is an induced ordering which
is not essential and can be modified. Let / and g be two integer

functions defined on the set £n. Denote X and Y two vari-
ables whose indices are / a n d g \ we write X(f(I)) and Y(g(I)),
Variables X and Y are generated in statements S(Ix) and S(72),
respectively. Variable Y(g(I)) is said to be dependent on
variableX(f(I)) and write X(f(I)) -> Y(g(I)) if

a) Ii < I2 (throughout the paper "<" means "less than"
in lexicographical sense)

b) /C7i)j*0a)
c) X(f(I)) is an input variable in statement S(I2).

The vector d = 72 - Ix is called the data dependence vector.
An algorithm has a number of such dependence vectors. In
general, the dependence vectors are functions of the elements
of set £n, Le., d = d(I)t as will be seen in Section III-B. There
is, however, a large class of algorithms with fixed, or constant
data dependence vectors.

B. Transformation of Index Set and Data Dependences

Denote the ordering imposed by the data dependences on set
£n with R. The elements of £n and ordering./* form together
a well-defined algebraic structure (£n, jR>. We seek now a trans-
formation T such that

T: (£n
yR)-+(£%tRT) (2)

with the following properties:

a) T is a byection and a monotonic function (2a)
b) The data dependences of the new structure <££, RT)

can be selected by us. (2b)

Since T is a bijection, the two structures are said to be isomor-
phic, and since T is monotonic with respect to R and R?>

d>Q-+8=T(d)>0.

It simply means that the transformation T preserves the sense
of the data dependences. The meaning of the second condition
will soon become clear. The transformation T is partitioned in
two functions as follows:

r - [ " } <3)

The mapping II is defined as

II: £"->££, n>k

Wl,i2r~,in)-Vx,J2,-~,Jk), with/ex?,
The mapping S is defined as

S: £n -> £$~k

s ( / \ / V - ^ / " ) = (/*+S/*+ 2 , • • • , /" ) .
The dimensionality of functions II and S is marked by k\ and
k is selected such that II alone establishes the ordering RT-
The first k coordinates of elements J E£% can now be related
to time and the last n - k coordinates be related to the geo-
metrical properties of the algorithm. In other words, the time
is associated Jto the new lexicographical ordering imposed on
the elements / and this is given only by their first k coordinates.
The last n - k coordinates can be chosen by us to satisfy our
expectations about the geometrical properties of the algorithm.
For all elements /_€ jC1 for which II(/) = constant, the first
k coordinates of / ( / ) are also constant. It follows that all
such I E £n can be processed concurrently. 11(7) = constant
represents hypersurfaces with property to contain elements
which are not data dependent.
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The freedom of selecting ( / * + \ •" " , / " ) can be used advan-
tageously to satisfy property (2b); that is, to localize the data
communications in the VLSI system.

Consider the case when an algorithm of form (1) with n
loops provides m constant data dependence vectors. These are
grouped in a matrix D = [dud2i • • -^dm] ,Z> ERnXm. A
linear transformation T js sought, i.e., / = T • / . Since T is lin-
ear T(I + dj) - T(I) = Tdj = bj for 1 < ; < m. These equations
can be written as

TD = A (4)

where A = [ 5 1 , 6 2 , " " , 8 O T ] . The matrix A represents the
modified data dependences in the new index space JC", and
according to the requirements (2b) they are assumed known.

The interesting question now is under what conditions can
such T exist? System (4) represents n X m diophantine equa-
tions with n2 unknowns. T exists if system (4) has solution
and the solution consists of integers. The following theorem
indicates the necessary and sufficient conditions for valid linear
transformations and it can be used as a tool to preselect A.

Theorem 1: For an algorithm with a constant set of data
dependences D, the necessary and sufficient conditions that a
valid transformation T exists are as follows:

i) The new data dependence vectors bj are congruent to the
dependences dj modulo cy, where cy isjthe greatest
common divisor (gcd) of the elements of dj

d = dj(modcj). (5)

ii) System (4) can be solved for T. __
iii) The first nonzero element of vector 8j is positive.

Proof: Sufficient: Condition i) indicates that the elements
of dj are multiples of the gcd of the elements of respective dj.
This is a necessary and sufficient condition that each of the
n X m diophantine equations can be solved for integers [17] .
According to ii) system (4) has solution. Since the first non-
zero elements of dj are positive it follows that IIdj > 0, thus
T is a valid transformation. Necessary: Transformation I1 is a
bijection and consists of integers, hence i) and ii) are required
conditions. Because T preserves the ordering JRy, dj > 0 and
this implies that the first nonzero element is positive. QED

In the selection of A one should choose the smallest possible
integers for its elements. In this way, the processing time and
the communication requirements of the transformed algorithm
are being optimized.

C. Mapping Algorithms into Hardware

The transformation of the index sets described above is the
key towards an efficient mapping of an algorithm into a special-
purpose VLSI array. It is shown in what follows how the
global model of the VLSI device introduced in Section I can
be derived directly from the transformed algorithm.

The functions F performed by the cells are derived directly
from the mathematical expressions indicated in the algorithm.
An algorithm of form (1) contains assignment statements in
one loop body which is executed repeatedly for all iteration
points in set £n. This implies that all the processing cells can be
made identical. The peripheral cells performing input/output
operations are, of course, different than the rest. If the mathe-
matical expressions inside the loop involve too many com-
putations, the loop can be split into several simpler loops.
Algorithms with several distinct loop bodies normally require
different processing cells.

The network geometry G refers to the physical underlying of
the network, and it is derived from the mapping S: £n -* £f~k.
A processing cell is assigned to each distinct element of £%rk.
Assuming that in algorithm (1), ut - lt = O(N) for all / = 1, 2,
" - tn where N is the size of the problem, it follows that the
total number of processing cells is O(Nn~k). The position,
or the identification number of each cell is given by S(I) =
(/ f c+1 , • • • , / n ) . The interconnections between cells necessary
for the data communication are derived directly from the last
w - k components of the modified data_ dependence vectors
bf = S(I + dj) - £ ( / ) , which becomes Sdj for linear transfor-
mations. For each cell, the vectors bf indicate the relative des-
tination of the variable associated to that dependence vector.
These interconnections are then replicated to the entire net-
work. Although three-dimensional and multilayer VLSI net-
works may be attempted, the most practical is the planar
arrangement. If n - k > 2, an additional one-to-one mapping
$' is necessary S': .Cf* -* £\.

The network timing T is derived from the mapping II: £n ->
£7-. The exact time when the processing related to an element
J E JC" occurs is simply 11(7). The communication time for a
data stream associated with a dependence vector d is given by
11(7 + d) - 11(7), which in the case of a linear transformation
reduces to Tld. The total running time for VLSI algorithm is
[max 11(7) - min 11(7)]. It can be seen that linear transforma-
tions yield a running time 0{Nk), while higher order mappings
II will normally lead to higher order processing times. Notice
that the running time includes only the computation' time
and the communication time and not the input/output time.
Another observation is that keeping k as small as the transfor-
mation permits should be one goal in designing VLSI algo-
rithms. This will increase the concurrency of operations at the
expense of the number of processors.

It remains to demonstrate that indeed the VLSI model exe-
cutes the algorithm correctly. Since we consider here only the
global model, it will be sufficient to show that the data flow
through the VLSI network is correct. We say that the data
flow through the network is correct if all the variables neces-
sary to compute the mathematical expressions of the algorithm
are available at the proper time at the proper cell. The follow-
ing theorem refers to linear transformations.

Theorem 2: A transformation

•El
of an algorithm which satisfies Theorem 1 maps that algorithm
into a systolic array in which the data flow is correct.

Proof: Consider a typical assignment statement* = E(vl9
U 2 , ' ' ' > vr) executed at / E £n. From the definition of data
dependence vectors we have

/ = J, + 1 , = / 2 + d2 = • • • = Ir + dr (6)

where /,- € £n and dt correspond to the generation of variables
vh Apply the linear operators II and S to (6)

n/ = n/i + nJj = ni2 + n J2 = • • • = n/r + ndr a)

SI = Six + Sdx =SI2+Sd2 = • . . = sir + Sdr. (8)

If the computations at It E £n produce correctly vu then it
follows from (7) and (8) that all the input variables will be
available for / E £n at the same time and at the same process-
ing cell. For each vt it corresponds a dt and A can be selected
as desired. It follows that there is no overlap in the flow of
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(a) (b)

Fig. 3. (a) Broadcasted variables, (b) Pipelined variables.

the data streams and no cell is required to perform more than
one operation at any one time. QED

D. Procedure for Mapping Algorithms into VLSI Systolic
Arrays

In this subsection, a procedure is proposed which summarizes
the technique introduced above. This procedure will then be
used in the next section to discuss some examples.

Step 1) Pipeline all variables in the algorithm.
Step 2) Find the set of data dependence vectors.
Step 3) Identify a valid transformation for the data depen-

dence vectors and the index set.
Step 4) Map the algorithm into hardware.
Step 5) Prove correctness and analyze performances.

Explanation: The role of the first step is to eliminate all pos-
sible data broadcasts which may exist in the original algorithm.
Consider, for example, that a variable v is generated at some
element / 0 £«£w and used at several other elements / / E J C " ,
i = 1, 2, • • • , r. There are r data dependence vectors for vari-
able u, as shown symbolically in Fig. 3.

The highest parallelism for variable v is achieved when all the
use statements 5(7/), * = 1, 2, • • •, r, are performed in parallel,
provided that there are no other restrictions; thus the gener-
ated variable v needs to be broadcasted at once. However, it is
likely that in the VLSI implementation, this algorithm will be
communication saturated. The goal is then to reduce the num-
ber of the original data dependences. The solution to this
problem is to pipeline the propagation of variable i; for the
r usage statements, as shown in Fig. 3(b). New data depen-
dences have been created by arbitrarily ordering the usage
elements. If the new arrangement offers fewer dependences,
then this will eventually translate into fewer communication
requirements.

Typically, broadcasts are signaled by missing indices of vari-
ables in the loop. In order to avoid broadcasts and to increase
pipelining we first complete all the missing indices and intro-
duce new artificial variables such that for each generated vari-
able there is only one destination.

Example: Consider the following loop which implements a
matrix multiplication C = AB, where A, B G Rn x ".

DO 10 fc= 1 ton
DO 10 i = l ton
DO 10 / = 1 ton
c(i>n = c{ij)+a(iyk)'b{kj)

10 CONTINUE.

(9)

This loop can be written in an equivalent form in which vari-
ables a, b, and c are pipelined

DO 10 fc= 1 ton

DO 10 * = 1 to 72

DO 10 / = 1 to/I

Si : « / + 1(*,*) = «'(*,*) (10)

S2: * ' + 1 (* , / ) = *'(*, /)
$3 : c*+1(f, /) = c*{i, n+a'(i, k) • b\k, 7)

10 CONTINUE.

The data dependence vectors of the algorithm can now be
found using their definition. All possible pairs of generated
(output) and used (input) variables are formed andJtheir indices
are equated. This is equivalent to_writing Ix + d = / 2 , from
which the data dependence vector d can be found directly. It
is possible that two different pairs of variables lead to the same
data dependence vector. Caution should be exercised to iden-
tify only valid generated-used pairs of variables.

As an example, consider loop (10). For variable c, 53 is
both the generate and the use statement. The pair (ck+1(i, 7),
ck(iyj)) is formed (in this example we use ' for the indices of
the generated variable). This yields a dependence vector dx =
( * - * ' , * - * ' , / - / ' ) ' = (1,^0, 0)f

The generated variable ai + 10'\ k') in Sx is used in Sx and S3.
However,, only one distinct pair can be formed for variable
0, i.e., (aJ +1 (f', k')y aj(i, k)). It follows that d2 = (k - k\ i - /',
/ - / ' ) ' = (0 ,0 , 1)*. Similarly, the data dependence vector is
found for variable b, d3 = (0 , 1,0)*. For the matrix multi-
plication algorithm pipelined as in_loop (K)), there are only
three data dependence vectors di,d2t and d3 . Note that these
vectors are independent of the index set.

Steps 3) and 4) have been discussed only for the case of linear
transformations. As will be seen in the next section, the
dynamic programming algorithm requires a more complex
transformation. Step 5) is necessary in order to validate the
mapping process and to ensure that the performances obtained
are satisfactory.

III. EXAMPLES

A. LU Decomposition of a Matrix A

Consider a matrix A which can be decomposed into a lower
and upper triangular matrices by Gaussian elimination without
pivoting. VLSI computing structures for the LU decomposi-
tion problem have been proposed by Kung [1] , Kung [4 ] ,
Hwang and Cheng [ 5 ] , and others. In this example it is shown
that previously proposed architectures can be formally derived
by using appropriate algorithm transformations.

The algorithm for the LU decomposition of a matrix A = [ay]
is expressed by the program written in Pidgin ALGOL

for k «- 0 until n - 1 do
begin
"fcfc <" I/***
for/«-fc+ 1 until 72 - 1 do

forz«-fc+ 1 until 72- 1 do (11)

foii+-k + l until72 - 1 do
for/*-fc+ 1 until n - 1 do

aij*~aif~lik 'ukf
end.

This program can be rewritten into the following equivalent
form in which all the variables have been pipelined and all the
data broadcasts have been eliminated.
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DATA DEPENDENCES
TABLE I

FOR LU DECOMPOSITION

The pairs of generpted-used
variables

<>y • # >

<*>. ' tf >

ALGORITHM

Date dependences
k-k1

(1

(0

(0

i-i1

0

1

0

o)T

" d i

for k «- 0 until n - 1 do

begin

1: i«-fc;

f o r / « - * + 1 until n - 1 do
2: begin

end

for i <- k + 1 until n - 1 do
3: begin

/ • - * ;

4^4'MW
end

for i «- it + 1 until n - 1 do
for/ •*- k + 1 until n - 1 do

4: begin

(12)

lik 'lik

4-4~1-«1

end
end.

This algorithm is similar to the matrix multiplication (9).
Indeed, both algorithms yield the same data dependences. The
only three distinct pairs of generate and use variables and their
respective data dependence vectors are summarized in Table I.

The data dependences for this algorithm have the nice prop-
erty that D = [d1d2d3} = /. There are several other algorithms
which lead to these simple data dependences, and they were
among the first to be considered for the VLSI implementation.

Following the methodology of Section II, the next step (step
3) is to identify a linear transformation of form (3). This trans-
formation must have the following properties: 115"/ > 0, it
offers the maximum concurrency, and T is a bijection. Accord-
ing to Theorem 1, T exists, and furthermore, T = A. Denote

*11 *12 ?13

Fig. 4. VLSI array for the LU decomposition algorithm,

geometries. We choose

1

0

0

1

1

0

1

0

1

i = r
V

i

hi t22 ?23
^ 3 i t32 r33

In this case, it is possible to have k = 1, thus 115/ = tu > 0.
The smallest possible positive integers are tn = r12 = tl3 = 1.
The first two conditions are satisfied; and II is unique. In the
selection of mapping S we are now restricted only by the fact
that T must be a bijection and consists of integers. A large
number of possibilities exist, each leading to different network
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(13)

The original indices kt i9 j are transformed by T into k, ?t f.
The organization of the VLSI array, for n = 5 generated by the
transformation (13) is shown in Fig. 4.

In this architecture variables at do not travel in space, but
are updated in time. Variables /£. move along the direction
/ (cast) with a speed of one grid per time unit, and variables
u.. move along the direction ? (south) with the same speed.
The network is loaded initially with the coefficients of ,4, and
at the end the cells below the diagonal contain L and the cells
above the diagonal contain U.

The processing time is Ilmax - n m i n = 3n - 5. All the cells
have the same architecture. However, their functions at one
given moment may differ. It can be seen from the program
(12) that some cells may execute loop 4, while others execute
loops 2 or 3. If we wish to assign the same loops only to
specific cells, then the mapping S must be changed accordingly.
For example, the transformation

" i l l "

-1 1 0

-1 0 1_

introduces a new data communication link between cells, to-
ward north-west. These new links will support the movement
of variables a*.. According to this new transformation, the
cells of the first row always compute loop 2, the cells of the
first column compute loop 3, and the rest compute loop 4.
The reader can now easily identify some other valid transfor-
mations which will lead to new organizations. By applying
Theorem 2 to this example, one can prove the validity of an
architecture.

In the next example, we will see data dependences which are
no longer fixed, and this presents a challenge for finding a
proper transformation.

B. Dynamic Programming

Many problems in computer science and engineering can be
solved by the use of dynamic programming techniques. We
consider here the VLSI implementation of an optimal paren-

r =

r =

* « - * ;

4,«-4

/*-*;
"Sy- 1/4



TABLE II
DATA DEPENDENCES FOR THE DYNAMIC PROGRAMMING ALGORITHM

Pairs of generated-used
variables

x-i >
+1, i ' + l' ' Hc+l#i+i

, i f + X ' , "£+1 , i+X >

Data
l-l'

( 1

( 1

( 1

( 1

dependences
i - i 1 K-k1

0

- 1

0

- 1

0 , T

0 ) T

f ) T

thesization algorithm based on dynamic programming,
string of n matrices are multiplied

M = MX XM2 X XMn.

Let ro»ri > * * * » rn be the dimensions of the n matrices with
/",-_! and r,- dimensions of Jiff. Denote by my the minimum
cost of computing the product Mi • Mi+l • • • Mj. The algo-
rithm which finally produces mln is written as follows [ 18]:

-0

(14)

for i <- l to n dom^'
for / <- 1 to n - 1 do

for i «- 1 to n - Z do
begin

m««- MIN (»!/* +/HJfc+1,/+r/_1rJfcr/)

end.

Following the methodology of Section II, this program is trans-
formed into the following equivalent form:

for/-*- 1 to n domjf 4-0.
for / 4- l to 7i - 1 do

for / «- 1 ton-I do
for k <- / to z + / -1 do

begin

J

(15)
«-!!! / - I

mfc+lff+I4"/IIfc+1l,/ + /

end.

We will assume that the input data r are loaded on the network
before the computations start, so we can neglect the depen-
dences caused by the constant data r. This assumption is made
only for the purpose of simplifying the explanation; in fact,
the dependences caused by data r are similar to those generated
by variable terms.

The data dependences derived from the above algorithm are
shown in Table II. There are only four possible distinct pairs
of used-generated variables.

The data dependence vectors for the first two pairs of gen-
erated-used variables are easily derived in the same manner as
for the previous examples (see Table II). The last two depen-
dences, however, require more attention. Consider, first, the
pair <mj! / / + r , m^1); it yields that / - /' = 1, i - i' = 0, and
k = i' +1'\ Form program (15), k' takes values between /' and
/' + /' - 1. It follows that k- k' = l- 1,1'- 2, • •• •, 1. Similarly,
the pair<mji f» + /», mfc+\,/+P yields/- /' = 1, i' +/ ' = i +/ , and
i - k + 1. Î rom the first two equalities it results that i - /' =
- 1, and finally, since k* - i', * ' * , i' + /' - 1 it follows that
k - k' = - 1 , ~2, - • - , - / + 1. Therefore, for both d3 and d4 ,

Fig. 5. Data dependence for the dynamic programming algorithm
(n = 6). The encricled numbers correspond to elements of the index
set / i k.

k-k' can take many possible values

/ = / - 1,7- 2 , - - - , l

£ = - 1 , - 2 , - •• , - / + l .

The difference k - k' is not fixed because the order in which
the minimization in loop k is performed is not specified. For
instance, in program (15) if ml

( i+l is generated when k takes
the largest value, then / = 1 and g = -1 + 1. Notice that, if the
minimization procedure in loop k is performed sequentially,
then either / or g will depend on the value of /. This fact con-
stitutes an obstacle in finding a linear transformation for the
dynamic programming problem. Fig. 5 shows the dependences
between the iteration elements for n = 6. Each column corre-
sponds to a different value of / and each group in the column
corresponds to a different loop ky in which the order is not
specified yet. For example, element 512 receives data from
elements 412 and 422, but element 511 receives m26, the re-
sult of elements 422, 423, 424, and 425.

The following mapping II is proposed for the dynamic pro-
gramming algorithm:

fn1(Z,iffc) = 2Z + / - f c
n(Z,z,fc) = max^

\ n 2 a , / f f c ) = / - i + fc+i.

The index set, which constitutes the domain of the mapping
function II, is separated into two disjoint sets, one for IIx and
the other for n 2 . This mapping II has the advantage that by
exploiting possible concurrencies within loop k, it provides a
processing time O(n). The first half of any loop k uses Hi and
the second half uses II2. Because of this new concurrency
between the_ first and the last index elements of loop k, the de-
pendences d3 and cf4 are transformed respectively in (1 0 _ l ) f

and (1 -1 -1)*. This is possible because II x applies to d4 's
while II2 applies to d3 's. The only inconvenience created by
mapping II is that the data flow in data streams does not have
a constant speed. This_is easily seen from the fact that Uidl =
2 =£ U2dl = 1 and Uld2 = 1 =£ Il2d2 = 2.

The mapping S is selected such that the resulting VLSI archi-
tecture will be simple and regular.

S •[dxd2d3d

[0 -1 0j

ri o i oi
4 i i o i o ij-

71

mu+/^MIN(m;-fc1+mfcVi,/+z+/-f-irfcr/+/)

A

dt

d,"?.J

N-U • i . V
d,

d >

°Td7

d.m,,

m23 <v
_d3

d4mJ4

><^2<

i»
d

d .
^ 3

m*i
<*,

"V
sd^

• ^

V. 1 3 '

^ ;

i i
m 4 6 dis

d

d 3 |

^ .
^3

TJ5

4 Vd1

d7

d 2

m 3 6

dA

Jr i >

<
d4

4i
d2

d2

>m,it

^ d 3

m i 6

1 1 0'



™I6

ms6

Fig. 6. VLSI array for the dynamic programming.

The mapping II together with the mapping S form a transfor-
mation T: (/, i, k) -* (f, t k)

Y ] r"max(2/ + z - A : , / - / + A:+ i f
T: T = / + *

JU U
This transformation leads to the VLSI architecture shown in
Fig. 6. This architecture was first proposed by Guibas et al.
[ 3 ] . All the processing cells perform the same functions, and
no memories are required. There are O(n2) cells. The opera-
tion of this network and the proof of correctness become now
particular cases of Theorem 2.

IV. CONCLUSIONS

The design of special-purpose VLSI devices is a multistep
process (see Fig. 2). In this paper we have concentrated only
on the step concerned with the mapping of linear cyclic algo-
rithms into high-level VLSI models. The VLSI devices are
assumed to be two-dimensional array processors with local
communications. The model resulting from the mapping pro-
cedure specifies the complexity of processors, interprocessor
connections, and the timing of the data flow. Although we
have concentrated in this paper only on a class of algorithms,
the methodology proposed here can constitute the foundation
of a unifying approach to the design of VLSI algorithms.

Perhaps the most important information about an algorithm
is contained in its data dependences because they determine
the algorithms's communication requirements. The basic idea
of this paper is to modify the data dependences vectors such
that the new algorithm satisfies the VLSI requirements, while
remaining input/output equivalent to the original algorithm.
Transformations of other classes of algorithms into parallel
forms constitute a further research topic.

An important feature of the technique proposed in this paper
is that the idea of data dependence vectors can be extended to
the next step of the VLSI design, that is, the actual design of
the processors. This is achieved by studying the dependences
at the register level and the bit leveL

The design of algorithmically specialized VLSI devices is at
its beginning. The development of specialized devices to re-
place mathematical software is feasible but is still costly.
Several important technical issues remain unresolved, and
deserve further investigation. Some of these are: I/O com-
munication in VLSI technology, partitioning of algorithms to
maintain their numerical stability, and minimization of the
communication among computational blocks. Also, a better
understanding of the design of parallel algorithms starting
directly from the computational problem is necessary.

Finally, the concepts introduced in this paper are not re-
stricted only to VLSI systems; they can also be used for map-
ping algorithms into some other fixed parallel computer ar-
chitectures.
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Regular Iterative Algorithms and their
Implementation on Processor Arrays

SAILESH K. RAO AND THOMAS KAILATH, FELLOW, IEEE

In this paper, we summarize some recent results concerning a
class of algorithms known as Regular Iterative Algorithms, partic-
ularly with respect to their implementations on processor arrays.
Regular Iterative Algorithms contain all algorithms executed by sys-
tolic arrays as a proper subclass and are therefore of considerable
importance in real-time signal processing applications.

I. INTRODUCTION

The advent of VLSI has encouraged research into the
design and development of special-purpose processor
arrays for use in various applications, notable in signal pro-
cessing. Such research was given a major impetus by the
work of Kung and Leiserson [1], especially when it was
reproduced in the pioneering textbook of Mead and Con-
way [2] on VLSI design. Kung and Leiserson introduced a
class of parallel/pipelined arrays that they dubbed with the
attractive name of ''systolic" arrays. Since then systolic
solutions have been derived for various problems: notably,
in signal processing, numerical linear algebra, and in graph-
theoretic applications. This intense research activity was
motivated by the apparent simplicity of the hardware
design: one merely patterns the layout for a single pro-
cessing element in the array and replicates this pattern
appropriately.

It may be noted that the idea of using a "regular iterative"
array of processors for solving various problems actually
dates back to the late 1950s and the early 1960s (see, e.g.,
Unger [3], [4], McCluskey [5], Hennie [6]). Moreover, such
iterative layout patterns have already been effectively used
for silicon memories, array multipliers, transversal filters,
etc. The important contribution of Kung and Leiserson was
in pointing out the applicability of these layout strategies

Manuscript received August 31,1986; revised June 25,1987. This
work was supported in part by the Joint Services Program at Stan-
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for problems in signal processing, numerical computing,
graph theory, and other areas.

However, despite fairly intense research activity in this
field, the design of systolic arrays is still largely done on a
heuristic and intuitive basis. This can be illustrated by dis-
cussing a set of natural questions that arise in this field:

Question 1. Given an algorithm, is there a systolic array
implementation for it? The current answer is maybe, or
maybe not. One has to try to find a systolic implementation
by some means or other. If this can be done, then the
answer, of course, is yes. On the other hand, one can hardly
say no for any particular problem, because some more skill-
full designer might find a systolic implementation. For
example, in their original work, Kung and Leiserson [1] pre-
sented a systolic array for solving linear equations of Gauss-
ian elimination, but without pivoting. Of course, pivoting
is essential for obtaining meaningful numerical results for
most problems, with the notable exception of equations
with positive-definite coefficient matrices. However, no one
has yet succeeded in finding a systolic array for Gaussian
elimination with pivoting. It would be nice to have a test
for whether a particular algorithm has a systolic imple-
mentation or not without having to first find an actual
implementation. A reason that such a test has not been
available so far is that the existing "definitions" of systolic
arrays have been too qualitative. For example: "A systolic
array is a one- or two-dimensional array, the body of which
is composed of identical functional modules arranged in
a geometric lattice each interconnected to its nearest neigh-
bors and utilizing common control synchronous timing."
The problem with such a definition is that it is not too hard
to find examples of arrays that meet all of the stated require-
ments but that most people would refuse to accept as sys-
tolic, because they failed to have some property (e.g., effi-
ciency) not explicitly stated above. We could elaborate on
this theme further, but let us continue with our questions.

Question 2, If the answer to Question 1 is yes, is there
more than one systolic implementation? More specifically,
how many different implementations are there, really? As
an example, a much studied problem is that of matrix mul-
tiplication, and by now about four or five different systolic
implementations have been presented [1], [7]-[9], Are there
more? The point, of course, is that these alternative imple-
mentations might have better properties of one kind or

Reprinted from Proceedings of the IEEE, pp. 259-269, March 1988.
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another, e.g., higher throughput, lower latency, fewer pro-
cessors, etc.

Question 3. Following up Question 2, the big question is
whether there are systematic procedures for finding one
or all systolic implementations? There are some partial
answers to this question [10]-[19], but many gaps still
remain, including, in particular, whether some "reason-
able" generalization of the concept of systolic arrays might
exist that would still be appropriate for VLSI technology.

In our recent efforts [9], [20]-[22], we have begun to find
some satisfactory answers to the above questions. For
example, a mathematical formulation has been obtained
that shows, /nfer alia, that there is no true systolic imple-
mentation for Gaussian elimination with pivoting, but that
there is an array of identical processors together with reg-
ister pipelines and Last-In-First-Out (LIFO) buffers that can
implement the pivoting algorithm. We have called such
more general arrays Regular Iterative Arrays (RIAs) and have
shown that systolic arrays, precisely defined, form a proper
subclass.

In this paper we shall briefly describe the general theory
we have developed for RIAs and point out their relation-
ships to earlier work, especially a seminal paper of Karp,
Miller, and Winograd [23].

In Section II, some general concepts concerning the
design of parallel architectures will be introduced and the
importance of devising special techniques that exploit any
available structure in the algorithm will be highlighted.

Section III contains a generic description of the existing
methodologies for the systematic design of systolic arrays.
Using some simple examples, the limitations of these meth-
ods will be brought out.

In Section IV, a formal methodology is proposed that
overcomes the difficulties in the existing procedures. This
methodology is based on some fundamental concepts and
results contained in [23].

Finally, Section V contains the concluding remarks.

II. O N THE EXPLOITATION OF PARALLELISM IN ALGORITHMS

An algorithm takes concrete form only through the lan-
guage expressing it. It has been recognized for some time
that for the purpose of extracting the parallelism in an algo-
rithm, standard sequential programming languages such as
Fortran and Pascal are ill-suited vehicles for expressing the
algorithm. An algorithm written in these languages has a
built-in ordering of the computations which most often
obscures any parallelism present in the algorithm. Fur-
thermore, ever since the days when core memory was a
costly resource to be sparingly used, one has been con-
ditioned to think in terms of minimizing the storage
required by the program, and hence encouraged to over-
write on variables as much as possible. Such overwriting
further compounds the problem of extracting the paral-
lelism from the program.

The so-called Single Assignment Language [24], for exam-
ple, provides the means for overcoming the difficulties
mentioned above by requiring that every variable defined
in the program take on a unique value during the course
of thecomputation.Thusassignment statements of the form
"(a: = a + b)" are not allowed since a appears on both sides
of the statement. If an algorithm is expressed as a Single
Assignment Algorithm, viz., as a program in the single

assignment language, then one can conceive of automated
procedures for extracting the parallelism in the algorithm,
with no further effort required of the user.

Given a single assignment algorithm, it is possible to cap-
ture the information regarding the parallelism in the algo-
rithm by means of a dependence graph. This graph has one
node for each of the variables in the algorithm and a directed
arc from node x to node y if and only if variable y is com-
puted using the value of x in the algorithm. The depen-
dence graph of a single assignment algorithm specifies a
partial ordering among the computations in the algorithm;
that is, if there is a directed path in the dependence graph
from node x to node y, then the computation represented
by node y must be executed after the computation repre-
sented by node x is completed, no matter how many pro-
cessors are brought to bear upon the problem. In such a
case, one would say that y is dependent upon x, and if a path
from x to y is an edge, this dependence is direct. From this
observation, one can infer that the length of the longest
path in the dependence graph is a lower bound for the total
time required for executing the algorithm, independent of
the number of processors used in this execution.

Suppose that one wishes to obtain an implementation of
the algorithm that is optimal with respect to the total time
required for executing the algorithm. One simple and brute-
force method for achieving this objective is to use a distinct
processor for executing the computation represented by
every node in the dependence graph. This, in general, leads
to a very inefficient use of the computational resources,
since each processor is active only for a constant period of
time, which could be a minute fraction of the time required
forcompletingthe algorithm. To achieve a better utilization
of these resources, it is necessary to reuse the same pro
cesor for handling a large number of computations. I n gen-
eral, the set of computations can be arbitrarily partitioned
and assigned to different processors.

In determining an implementation for the algorithm, one
must not only specify the processor at which each com-
putation is to be performed, but also assign a time at which
it is to be executed by the processor. This mapping of com-
putations into time slots is referred to as the construction
of a schedule for the computations. A schedule must satisfy
the precedence constraints imposed by the dependence
graph of the algorithm and must also be such that no two
computations assigned to the same processor are expected
to be executed at the same time. A schedule must also take
into account the communication constraints among the
processors. That is, if variable x is computed by processor
px and if x is required as an input to the computation of
variable y at processor pyf then the schedule for the exe-
cution ofy must include the time required to communicate
the value of x from pK to py. if the processors are arranged
in a general-purpose communication fabric, such as a cross-
bar switch, then the time required for this communication
will also depend upon the prevalent congestion in the
switch. Clearly, for different partitions of the nodes in the
dependence graph, the interprocessor communications
required will differ in general.

The problem of determining an optimal schedule, i.e.,
one that minimizes the total time for the execution of the
algorithm, is extremely hard even if the interprocessorcom-
munication among the processors is assumed to be instan-
taneous. Indeed, it has been proved to be NP-completeeven
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in the presence of many simplifying assumptions (see, e.g.,
Ullman [25]). If communication constraints have to be taken
into account as well, then the problem becomes even more
intractable, thereby forcing one to seek ways of exploiting
any available structures in the algorithm.

Regular Iterative Algorithms (RIAs) are a special subclass
of single assignment algorithms for which many of these
difficulties can be successfully overcome. Indeed, for a Reg-
ular Iterative Algorithm, one can ensure that all compu-
tations assigned to the same processor can be described
by the same simple instruction. For instance, if this instruc-
tion is a multiply operation, then one can replace this pro-
cessor by a simple serial multiplier element. Furthermore,
for a Regular Iterative Algorithm, one can ensure that the
interprocessor communication required isfixed and can be
implemented using a few dedicated links. A further attrac-
tion of this class is that the schedule for the algorithm can
be constructed to be "periodic" so that the necessary delays
on the interprocessor links can be implemented using shift
registers and Last-In-First-Out buffers alone, without any
additional control circuitry. Finally, Regular Iterative Algo-
rithms form an extremely useful subclass of single assign-
ment algorithms, in so far as signal processing applications
are concerned, as shown in [9].

III. AN INFORMAL DESCRIPTION OF RIAS AND THEIR

IMPLEMENTATIONS

A formal definition of Regular Iterative Algorithms is given
in [9] (see Appendix). For the present discussion, it is best
to explore the various features of an RIA by means of some
simple examples.

Example 7

An urn contains N red balls and N green balls. The fol-
lowing experiment is conducted repeatedly until either the
urn is empty or exactly one ball remains:

Two balls are picked at random from the urn. If they are
of the samecolor, then one of these is replaced in the urn.
If they are of different colors, then both are discarded.

To determine the probability that the urn is empty at the
end of the experiment, one can derive a recursive algo-
rithm, using elementary counting arguments. Let p(/, /)
denote the probability that the urn becomes empty if there
are / red balls and / green balls to begin with. Then

pfc/>
/(/ - 1) p(i - 1, /) + j{j - 1) p(i, / - 1) + 2ijp(i - 1 , ; - 1)

(/ + /)(/ + j - 1)
1 s /, j =s N

with p(0, 0) = 1, p(/\ 0) = 0 for all / > 0 and p(0, /) = 0 for
all / > 0.

Example 2

Consider the following simple sorting algorithm referred
to as selection sort [26]. Given a list of N numbers {x(/)}, f i rst
determine the largest number in the list and delete it from
the list. Then, from the (N - 1) numbers in the remaining
list, delete the largest number and soon iteratively until the
list is empty.

To write this algorithm in single assignment form, let the

(1)

and the output of the filter is obtained as

y(N + l.j.k) = yjk. (7)

All the algorithms described in the above examples are
Regular Iterative Algorithms because they have the follow-
ing features:

i) They can be easily verified to be in the single assign-
ment format.

ii) Each variable in these RIAs is identified by a label (p
in Example 1, for instance) and an index vector {k = [/, j]T,
in Example 1). The range of the index vector, which in gen-
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/th instance of the list be given by {x(/, / ) } , where / ranges
from 1 to (N - / ) . In addition, let m(i,j) be the largest num-
ber in the segment {x(/c, / ) , * - 1 to /} of the list. Then

fx(;,/), if # = 1
md,j) = j

Cmax {m(i - 1, / ) , x{i, j)}, otherwise
(undefined if / = 1

x(i - 1 , / + 1) - j
Cmin {m{i - 1, / ) , x(/, / )} , otherwise

(2)

where the first equation follows from the definition of
m(i,j) and the second equation creates the (/' + 1)th instance
of the list from the/th instance. The calculations in (2) must
be carried out for / = 1 to N - 1, and / = 1 to {N - / ) .

Example 3

Given an image represented by the(N + 1 x N + 1) matrix
U, find the filtered image Y such that

n n

Yn == fcS akYi_kti_k + j£o bku^k^k. (3)

Many possible RIAs can be obtained for solving this prob-
lem, by applying a simple transformation on known one-
dimensional filtering algorithms. However, most of these
RIAs are known to be numerically unstable and can thus be
ignored. Among the numerically stable algorithms, the ones
due to Deprettere and Dewilde [32], Vaidyanathan and Mitra
[33], and Fettweis [34] can be written in the form:

For / = 0 to n do

For j,k = Oto N do

x(i, J + 1, k + 1) = fXii{x(i, j, k), y(i, j, k), w(/, j, k))

y{i + 1, /, k) = fYii(x(i, j, k), y{if j, k), w(/, /, k))

w(i - 1, /, k) = fWii(x(i, j, k), w{i, /, k)) (4)

where fxh fy>u fwi are some linear functions that are deter-
mined by a synthesis procedure.

This set of equations is initialized with

x(i, 0, k), x(/, /, 0) and w(N, j, k) = 0, for ail /, k. (5)

The actual inputs are made available as

y(0, /, A:) - ujk (6)



eral can be S-dimensional with S ^ 1, is known as the index
space. For instance, in Example 1, the index space is two-
dimensional and is described by an (N x N) square grid
(Fig. 1), whereas in Example 2 it is triangular (Fig. 2). At each

Fig. 2. The index space for the RIA in Example 2.

integer point in the index space, a set of V labels is used to
denote the distinct variables (V = 1, 2,3 for Examples 1-3,
respectively). The number of integer points in the index
space in the above examples is governed by the size param-
eter N (though in general, there may be several such size
parameters).

iii) Finally, the main feature of these algorithms is the
regularity of the direct dependences among the variables
with respect to the index points. That is, if x(k) is computed
using the value of y(k - d), then the index displacement
vector d, corresponding to this direct dependence, is the
same regardless of the index point k. In Example 1 for
instance, p(/,/) is directly dependent on, say,p(/ - 1,/) irre-
spective of the particular value of / and /'. As a consequence
of this regularity, the dependence graph of an RIA has an
iterative structure, which can be clearly demonstrated by
drawing the dependence graph within the index space (see
Figs. 3 and 4). Each node in this dependence graph can be
identified as (x, k) to represent the variable x{k) and is (phys-
ically) located at the point k in order to exhibit this regu-
larity.

Though the direct dependences among the variables in
an RIA are required to be iterative, the actual computations
carried out to evaluate these variables can depend upon the
index point. This is reflected in the above examples, both
through the use of conditional expressions and through the
use of values of / and / in the instructions.

Fig. 3. The dependence graph of the RIA in Example 1.

Fig. 4. The dependence of graph for the RIA for sorting in
Example 2. While the main figure shows only the index-dis-
placement vectors, the inset alongside reveals the fine struc-
ture of the dependence graph.

Implementations of RIAs

We shall now review, in our language, the present status
of systematic methods for parallel implementation of the
above algorithms. The three examples given above have
been chosen to successively illustrate some of the limita-
tions of the present methods.

Given an RIA, suppose that one wishes to exploit the
maximum available parallelism inthe RIA, while at the same
time minimizing the computational resources used in the
implementation. To achieve this globally optimal imple-
mentation, in general, the set of computations assigned to
distinct processors might have to be arbitrary disjoint sub-
sets of the set of all computations. However, the problem
of optimally scheduling the computations that are assigned
to a given processor becomes extremely hard if the parti-
tioning is arbitrary. Hence, to renderthis problem tractable,
one can restrict attention to linear partitions. Here, a set of
parallel lines is drawn through the index space, so that all
computations that correspond to index points that lie on
the same line are handled by the same processor. In this
manner, the processor array (including the interprocessor
communication links) itself can be obtained by projecting
the embedded dependence graph of the RIA along these
lines on to a lower dimensional lattice of points known as
the processor space (see Fig. 5). The direction along which
this projection is made is represented by an integer vector
u, and is defined as the iteration vector.

Once the processor space is decided upon, one must
attempt to schedule the computations that are mapped on
to a given processor, i.e., assign some "time slot" for each
variable (with respect to a global reference frame) during
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Fig. 5. A processor array obtained for the RIA in Example
1 using the projection method.

which its computation is performed by the processor. As
noted before, the choice of the schedule is constrained both
by the dependences in the algorithm and by the choice of
the processor space. Once again, determining this sched-
ule appears to be difficult, unless one imposes further
restrictions on its nature. I n keeping with the use of a linear
projection to determine the processor space, one can
attempt to determine a schedule that is linear with respect
to the index vectors. In a linear schedule, a set of (5 - 1)-
dimensional parallel hyperpianes must be drawn through
the index space so that all computations that correspond
to index points that lie on the same hyperplane are exe-
cuted at the same time (necessarily, by different proces-
sors). Thus a linear schedule corresponds to isotemporal
hyperpianes that are drawn through the index space, so
that the progression of time is along the direction normal
to these hyperpianes. For Example 1, 5 is two, and hence
the linear schedule consists of a set of parallel isotemporal
lines as shown in Fig. 6.

Fig. 6. A linear schedule for the RIA in Example 1, appli-
cable to the processor array in Fig. 5.

Next, we note that a linearly scheduled RIA must be such
that all edges in its dependence graph are oriented in direc-
tions along which time strictly increases. Thus if the normal
to the isotemporal hyperpianes is given by the S-dimen-
sional vector X., then every distinct index displacement vec-
tor d in the RIA must satisfy XJd > 1. Furthermore, in order
to ensure that all computations assigned to the same pro-
cessor are scheduled at different times, X.Tu must be
required to be nonzero. Any vector Xrthat satisfies these
constraints simultaneously, defines a valid linear schedule
for the algorithm. This approach can be successfully applied
for the RIA in Example 1 and the resulting linearly scheduled
implementation is illustrated in Fig. 7.

(a)

Fig. 7. The RDGs for the RIAs in Examples 1-3, displayed
as (a), (b), and (c), respectively. In (c), ail edges without any
weights explicitly displayed have zero weight

The procedure informally described above has been
independently derived by several authors both in the geo-
metric framework used here [10] and as an algebraic meth-
odology [11H19J. Though it is intuitively appealing, it has
some very serious drawbacks that severely limit its appli-
cability. Consider, for instance, the RIA in Example 2, for
which the distinct index displacement vectors are given by

<- - Q < - - Q d - - C] d« - n (a)

Surely, it is impossible to find a linear schedule for this RIA,
since there exists no vector X that can satisfy the constraint
imposed by the first index displacement vector displayed
above. One can, of course, overcome this difficulty simply
by introducing the change of variables

Mb /) = m{i - 1, /) (9)

since in the new domain, the index displacement vectors
are given by

«- - ci«- - Q ** - n " - - I T a o )

and "k7 = [1 2] is a valid schedule for the algorithm. But
then, how does one determine the necessary change of var-
iables in general? Among the references listed above, only
Quinton [12] recognizes the need for such modifications in
the description of the RIA, but the subclass of RIAs studied
by Quinton does not include the one in Example 2. Indeed
the Uniform Recurrence Equations (UREs) of Quinton are
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RIAs in which all variables except for a distinguished one,
are computed using an assignment statement of the form

xfltr) = x(k - d) (11)

and hence the RIA in Example 2 is not an URE.
The difficulty in this approach is even more serious in the

case of the RIA in Example 3. Here, there are two distinct
self-loops for which the index displacement vectors are the
negative of each other, and thus any choice of the linear
schedule, i.e., \T, will violate the constraints imposed by at
least one of these vectors. It can be easily verified that in
this case, a simple change of variables as suggested above
cannot be used to overcome this difficulty.

The failure of the above procedure in these two examples
may be traced to a certain implicit assumption that it is based
upon: all computations that belong to the same index point
in the RIA can be scheduled to begin at the same time. This
may not be possible in general. What if there are directed
paths in the dependence graph from some node at a par-
ticular index point to some other node at the same index
point? Surely then, one cannot schedule these two com-
putations at the same time and hence the second assump-
tion can never be satisfied. Next, what if the coarse version
ofthedependence graph obtained by coalescing all distinct
nodes in the original graph at every index point, is cyclic?
Then also, the procedure is not applicable.

To rescue the above procedure, one must therefore pay
attention to the fine structure at every index point in the
dependence graph of a multivariable RIA {V > 1). Most sys-
tematic methodologies proposed thus far fail to take this
into account, thereby implicity treating a multivariable RIA
as a single-variable one. It must, however, be noted that as
part of their analysis procedures, Karp, Miller, and Wino-
grad [23] clearly pointed out this important distinction
between single-variable RIAs and multivariable RIAs.
Indeed, one must truly credit these authors for first point-
ing out the fact that single-variable RIAs can always be lin-
early scheduled as shown above and that this need not be
the case for multivariable RIAs.

IV. A FORMAL APPROACH TO THE DESIGN OF PROCESSOR

ARRAYS

In a multivariable RIA, each indexed variable defines a
lattice of points by itself within the index space. Before
defining the isotemporal lines within the index space, one
may have to translate each of these lattices to a different
origin, independently. Sometimes, mere translations may
not suffice and one may also have to rotate each of the lat-
tices independently. In the extreme case, translations and
rotations may not suffice by themselves, at which point our
geometrical interpretation breaks down. It must be noted
here that this extreme case includes many useful, numer-
ically stable algorithms [22], and is hence, not just of aca-
demic interest.

While the geometric approach is not powerful enough
for our purposes, a formal algebraic framework has been
proposed that can deal with any well-posed RIA and gen-
erate an optimal implementation for it [9]. Though this
framework was developed recently, it is based on some fun-
damental concepts and techniques that were reported two
decades ago in the seminal paper of Karp, Miller, and Win-
ograd [23].

The fine structure in the dependence graph of an RIA is
concisely captured in the concept of a Reduced Depen-
dence Graph (RDC)1 that was introduced in [23]. In general,
the RDG of an RIA has V nodes, one for each of the indexed
variables in RIA; it has a directed arc from node x to node
y, if y(k) is computed using the value of x{k - d) for some
d; finally, each directed arc is assigned a vector weight rep-
resenting the displacement of the index point across the
direct dependence. Thus in the above example, the arc from
x to y has weight d.

The RDGs for the RIAs in Examples 1-3 are shown in Fig.
7. Karp, Miller, and Winograd used this notation of an RDG
representation in their study of RIAs defined over a semi-
infinite index space. In their case, since the indexspace was
assumed to be the set of all nonnegative integer vectors and
was hence known to begin with, the RDG constituted a
complete description of the dependence graph of the RIA.
However, for many of our problems, the index space will
naturally be finite, and hence the RDG together with the
specification of the index space, will combine to form a
complete description of the dependence graph. (The dis-
tinction between finite and semi-infinite index spaces is a
nontrivial one; the latter assumption forces one to impose
certain "causality" constraints on the dependence graph
that cannot be met in several numerical algorithms.)

Given the RDG and a specification of the index space, one
has all the information necessary to determine an efficient
implementation for the RIA. Before developing the nec-
essary algebraic framework, however, let us attempt to
translate the geometric procedure informally described in
the previous section into a more formal setting. Once this
formalization is in place, one can then try to generalize it
so as to be able to overcome the difficulties mentioned ear-
lier.

The S-dimensional iteration vector u, introduced earlier,
defines the topology of the processor array completely: the
computations at two index points k-t and k2 are mapped on
to the same processor if and only if

ki — k2 = ocu (12)

where a. is some scalar integer. (Interpretation: This means
that rti and *2map on to the same point when the index space
is projected along the direction defined by u.) Let P be any
(S - 1 x 5)-dimensional integer matrix of rank (5 - 1) that
is orthogonal to u, i.e.,

Pu = 0. (13)

Then, the processor array is defined by the lattice of points
obtained by mapping the index space according to

p = Pk, k e index space (14)

where p defines the location of the processor that carries
out the computation at the index point k. Indeed, in the
above mapping, two index points k, and k2 are mapped on
the same processor (i.e., the same p vector) if and only if
they satisfy (12). The necessary interprocessor communi-
cation links are then defined by the vector weights on the

1This is our terminology. Karp, Miller, and Winograd refer to the
RDG as the "dependence graph/'which might cause considerable
confusion at the present time. Incidentally, Waite [27] also inde-
pendently introduced the RDG concept In a somewhat different
setting in the same journal.
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edges in the RDG: ify<lf) is dependent on x{k - d), then there
must be a directed link in the array from

P{k - d) - Pk (15)

for all k.
It must be noted here that while some authors use the

iteration vector u, in order to derive the processor array (e.g.,
Cappello and Steiglitz [10]), many prefer to use the trans-
formation matrix Pas originally proposed by Moldovan [11],
[13], Both these techniques are equivalent: given u, one can
determine the equivalent transformation matrix Pto be any
(S - 1 x S) matrix that forms a basis for the null space of
u; conversely, given P, the corresponding iteration vector
is the unique right null vector for P. However, one must be
careful in the latter case, since two matrices P, and P2 rep-
resent the same processor array if they have the same row
space. Of course, the same consideration applies to the for-
mer technique if one is dealing with multidimensional iter-
ation spaces, rather than a one-dimensional iteration vec-
tor.

Once the processor array is obtained as above, one must
now schedule the computations. If the processor array is
to be implemented in a globally synchronous fashion, then
this schedule might consist of specifying during which cycle
of the global clock a particular computation must be started
at the processor. But this requires a detailed knowledge of
the capabilities of the processor—whether it is bit-serial or
bit-parallel and whether it can begin several computations
simultaneously or not. To avoid having to knowthese details
and still be able to derive useful results, one can conceive
of a schedule that partitions the computations into global
steps with the following restrictions:

i) If variable y(k) is computed using variable x(k - d),
then the step Sy{k) at which yik) is computed must be strictly
larger than the step sx(k — d) to which x{k — d) is assigned,
i.e.,

sy{k) * sx(k - d) + 1. (16)

ii) All computations at step T are completed by every
processor in the array before step (r 4- 1) is begun.

iii) At each step, each processor must be assigned a
"small" number of computations.

The second restriction is only conceptual: a processor
may begin step (r + 1) when all its neighbors (from which
it receives input values) have completed step r without wait-
ing for the rest of the processors in the array. Hence, even
asynchronous implementations can be devised using this
schedule. The third restriction needs to be clarified some-
what: we shall assume that a "small" number of compu-
tations is assigned at each step to every processor if and
only if at most one of each of the Vindexed variables in the
algorithm is assigned to be computed at the processor. This
restricts the number of computations to be at most V per
step per processor.

In a linear schedule, as assumed in the previous section,
the variable x(k) is assigned to step XTk for some constant
vector X. that is independent of x(Jr). That is

sx(k) = }Jkt for all x (17)

which, as we demonstrated earlier, is not general enough
to handle several interesting problems. Indeed, in this case,
if y{k) is computed using x{k - d), then from (16), we must

have

i.e.,

%Jk ;> yJ{k - d) + 1

XTd ;> 1.

(18)

(19)

This must be true for every distinct index displacement vec-
tor d in the RIA, which may or may not be possible for the
given RIA. In the sorting example, a zero index displace-
ment vector exists for which it is impossible to satisfy (19).2

A natural generalization of the above linear scheduling
strategy is a uniform affine schedule. Here, we hypothesize
that

sx(k) = )Jk + yK (20)

where X is a constant vector, independent of x, whereas 7X

is a scalar that is specific to x. Then, (16) translates into

yy - 7x + M > 1 (21)

and this must be true for all such dependences, i.e., for every
directed edge in the RDG. When compiled together in
matrix form, these constrains can be written as

YrC 4- XJD > [1 1 1] (22)

where
i) C is the familiar edge-vertex incidence matrix or the

connection matrix, commonly found in many circuit anal-
ysis text books [28]. It has E columns, one for each of the
edges in the RDG, and V rows, one for each of the nodes
in the RDG. The (/,/)th element of Cis +1 if edge/ terminates
in node /, is - 1 if edge/ originates from node / and is zero
otherwise (if edge/ both originates and terminates at node
/', then also c,,- is zero). For example, the RDG for the RIA for
sorting has a connection matrix given by

C =
ro o -1 i i

Lo o 1 -iJ"
(23)

ii) D is the (S x £)-dimensional index displacement
matrix, in which the/th column is the vector weight on the
/th edge in the RDG. For the sorting example

D = [1 " 1 O a l -
Lo 1 o 1J

(24)

iii) y isthe vector obtained by stacking {7X} intheappro-
priate order, consistent with the arrangement of the rows
in the connection matrix.

Before proceeding to attempt to solve the set of con-
straints in (22), a third restriction that a schedule must meet
must be taken into consideration. If x(Ar-t) and x(k2) are com-
puted by the same processor, then they must not be
assigned to the same step in the schedule. This implies that

7 x + X% * yx + \Tk2, for all (*-, - k2) = otu (25)

which simplifies to

XTu * 0 (26)

2As noted earlier, a shift in a particular index can be used to over-
come this difficulty in the sorting example. However, no such trick
exists for the problem in Example 3.
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an additional constraint that is dependent upon our choice
of the iteration vector u. Fortunately, though, from ele-
mentary linear programming considerations, it can be
shown that if there exists a feasible solution to the set of
constraints in (22), then there always exists a feasible solu-
tion that meets the additional constraint in (26) as well [9],
[20] (see Appendix).

An affine schedule exists as defined above if and only if
the set of constraints in (22) has a feasible solution. Indeed,
for the sorting example,

yT - to 1]

constitute a valid set of scheduling functions for the RIA in
this example; these scheduling functions are also affine, but
for each x, the X vector is different, i.e.,

X7" = [1 2]

is a valid solution that is consistent with the choice

uT = [0 1]

(27)

(28)

which results in the processor array shown in Fig. 8. Note
the need for a nonzero vector y T. In reference to our earlier

Fig. 8. The processor array for sorting obtained by proj-
ecting the dependence graph along the/ direction.

remark concerning "change of variables," it can be easily
verified that a nonzero yT specifies such a change of var-
iables. Indeed, pick any integer vector rT such that yTr =
1. Then, consider the change of variables

x(k) -> x(k - yxr) (29)

for all x. Then, in the transformed domain, the RIA can be
linearly scheduled simply because the corresponding
transformation of the scheduling functions is given by

yx + X7* - yx - yx(X
Tr) + X7* = X7*. (30)

It can be shown that every systolic array, properly defined,
executes an RIA for which a uniform affine schedule can be
found as described above. Conversely, every such RIA can
be implemented on a systolic array [9], [20] (the Appendix
contains a partial exposition on this result).

What if, for the given RIA, there is no solution to the set
of constraints in (22)? In this case, of course, one must fur-
ther relax the restriction on the scheduling functions. It is
easy to show that the RIA in Example 3 falls in this category,
for which one must work harder in order to obtain a sched-
ule. The interested reader can verify that

SXV, h « = "/ + k

Sx(k) = XT
xk + 7* (32)

Sy(i, I, k) = i + nj + k

SJi, /, k) = - / + nj + k (31)

Due to space limitations, we will not discuss this case, but
we must mention here that it has been proved that every
RIA can be scheduled using affine scheduling functions,
provided the X-vectors are allowed to be different for dif-
ferent variables. Furthermore, the parameters {Xx/ yx] must
be allowed to depend upon the finite extent of the index
space [9]. In addition, these affine scheduling functions can
also be obtained by solving a series of integer linear pro-
gramming problems defined on some specific subgraphs
of the RDC of the RIA.

V. CONCLUDING REMARKS

With the brief overview presented in this paper, we wish
to leave the reader with a list of the various issues that must
be addressed in order to provide a complete theoretical
framework for the design of processor arrays, from a given
RIA description. While these issues have been fairly well
resolved for the case of RIAs defined over a finite index
space [9], many of them are as yet unsolved for the semi-
infinite case, though some partial results can be found in
[23].

Analysis Issues

a) Is the given RIA computable, that is, is there some vari-
able in the RIA that is circularly defined? If there is such a
variable, then the algorithm cannot be executed in the man-
ner proposed, and hence must be discarded (this problem
was completely solved in [23]).

b) Given a computable RIA, what is the minimum achiev-
able execution time for completing the algorithm? This
information is crucial for the designer as it lets him decide
how many processors should be used for executing the
algorithm. For instance, if the algorithm requires O(/V3)
computations and the minimum achievable execution time
is O{N), then one would wish to use O(N2) processors, each
working on disjoint sets of O(N) computations, to complete
the algorithm in O(N) time. On the other hand, if the min-
imum achievable execution time is O(N2), then a collection
of O{N) processors must be sought in order to achieve max-
imum utilization. (The iteration vector may now have to be
generalized to an iteration space.)

c) How much storage should be provided for executing
the algorithm? This would provide an indication of how
much local memory should be associated with each pro-
cessor in the array.

Implementational Issues

a) Given a computable RIA, how should one choose the
processor space? Is this choice restricted by some prop-
erties of the RIA?

b) Once the processor space is chosen, how should one
determine the schedule? Is it possible to choose the sched-
ule so that every processor is active most of the time?

Synthesis Issues

a) Given a problem, is it possible to find an RIA for solv-
ing it? Is there a theoretical basis for determining such RlAs?
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b) Presuming thatthere area lot of RIAsfor solving agiven
problem, is there some systematic method for weeding out
the inefficient ones?

This paper has attempted to provide some insight into
these issues, and to show the virtues of a formal analytical
approach. While only an outline has been given here, a
detailed presentation can be found in a forthcoming mon-
ograph [29]. However, as a partial indication of the for-
matization that is possible, the Appendix gives the formal
description of systolic arrays and some deductions there-
upon.

While RIAs themselves form a useful class of algorithms,
some attempts have been made in [35], [36] to generalize
this class. However, it can be shown that the so-called
a the recurrence equations, defined therein, can be sys-
tematically transformed into an RIA format, and thus can
be handled using the techniques outlined above [38],

Another question that has not been addressed in this
paper is that of "optimality." First, there are many different
criteria for optimality of the array that are not necessarily
synergistic. Secondly, even if one were to fix upon some
cost function for defining optimality, the best known tech-
niques rely essentially upon exhaustive searches.

APPENDIX

This Appendix contains some formal definitions of the
relevant concepts introduced in the paper and some deduc-
tions thereupon.

A Regular Iterative Algorithm is defined by the triple {/,
X, F) where

/ is the index space which is the set of all lattice points
enclosed within a specified region in S-dimensional
Euclidean space,

X is the set of V variables that are defined at every point
in the index space, where the variable x; defined at the
index point A: will be denoted as Xj{k) and takes on a unique
value in any particular instance of algorithm, and

F is the set of functional relations among the variables,
restricted to be such that if x,(Jr) is computed using
Xf(k - dp), then

dfi is a constant vector independent of k and the extent
of the index space, and for every I contained in the
index space, x,(£) is computed using x,{t - d/7) (if
Xjit - dfi) falls outside the index space, then this is an
external input to the algorithm).

Note that the functional relations among the variables in
Fcan involve conditional branches. However, in this case,
the model essentially assumes that the dependence
includes all the variables in every branch of the condi-
tionals. While this assumption is a limitation in certain
cases, it is not restrictive at all for a majority of useful algo-
rithms.

5ome related concepts can now be formalized as follows:
An index vector is any integer vector that represents a lat-

tice point within the index space.
The dependence graph of an RIA is a directed graph in

which the node set is defined by the ordered pair (xjt k)
where xyeXandHr€/and the edge set consists of all directed

edges drawn from node (xy, k - c//7) to node (xh k) if and only
if x&k) is computed using Xj(k - dff) in the RIA.

The Reduced Dependence Graph of an RIA is a directed,
vector edge-weighted graph g = {V, £, D] where

V is the set of V nodes in the graph, one for each of the
indexed variables in the RIA,

£ is the set of directed edges in the graph, such that a
directed edge exists from node / to node / if and only if
Xj{k) is computed using xffc - cf/;) for some d-,if
D is the set of index displacement vectors defined on the
edges in the graph so that the edge from j to / above has
an index displacement vector of djh

With these definitions in place, we now turn to the def-
inition of a systolic array. Unfortunately, though, there is
considerable confusion in the literature as to what exactly
is a systolic array. Some authors, for instance, Leiserson,
Rose, and Saxe [37], consider every synchronous circuit to
be a systolic array, while others, e.g., Kung [30], define sys-
tolic arrays as a restricted class of processor arrays with cer-
tain attributable properties. The following formal definition
is consistent with the four properties (modularity, spatial
locality, temporal locality, and efficiency) qualitatively
described in [30]. Based on this definition, one can then eas-
ily characterize the algorithm executed by a systolic array
as a member of a proper subclass of Regular Iterative Algo-
rithms.

Definition of a Systolic Array: A systolic array is charac-
terized by the sets {P, T, X, Dp, F} where

P is the processor space which is the set of all lattice points
enclosed within a specified region in p-dimensional
Euclidean space,
T represents the beats of the systolic clock,

X is the set of V variables that is computed by every pro-
cessor in the processor space and at every beat of the
systolic clock during the execution of the array,

Dp is the set of processor displacements that defines the
interconnecting links in the processor array so that

if d is a member of Dp, then there is an interconnecting
link from the processor at location p to the processor
at location (p + d) irrespective of the particular value
of p, and

if variable xcomputed at beat r by the processor at loca-
tion p is transferred across the link to the processor at
location (p + d), then this data transfer occurs regard-
less of the particular values of k and p, and

Fis the set of functional dependences that relate the com-
putation of a variable x at processor p during beat r, as
a function of the variables computed during the previous
beat at the neighboring processors.

Once again, it must be noted that the functional depen-
dences in Fcan involve conditional branches. Sometimes
these conditional branches may be such that some of the
data transfers involved in D may be unnecessary.

A detailed justification for this model can be found in [9],
[20], [29J. For the present, we shall only be interested in char-
acterizing the algorithm executed by a systolic: array.

With these formalizations in place, any algorithm exe-
cuted by a systolic array can be characterized as follows.
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Theorem: A systolic array executes a Regular Iterative
Algorithm that has a uniform affine schedule. Conversely,
every Regular Iterative Algorithm with a uniform affine
schedule can be implemented on a systolic array.

Proof: To show that a systolic array executes a Regular
Iterative Algorithm, we define the index space to be

/ = } £ = \, p e P, T = systolic beat j .

Next, let the variable x computed by the processor at loca-
tion p at beat r be denoted as x(k). Then, by the definition
of a systolic array, if x(k) is computed using y(t), then

k- t I:J
which is independent ofilrand theextentofthe index space.
Moreover, the systolic array operates according to the uni-
form affine schedule

7 = fO 3LT] = I 0 0 - - - 1 ] .

To prove the converse statement, let {y, X.} constitute the
parameters of a uniform affine schedule for the RIA. Then,
if C be the connection matrix of the RDG of the RIA and D,
its index displacement matrix, one must have

yTC + XTD > [1 1 • • • 1J.

Therefore, it must be possible to determine X such that the
greatest common divisor of its elements is 1. This implies
(by the Bezoutian identity [31]) that there exists a vector u
such that

kTu - 1.

Next, each indexed variable x can be redefined to be

x(k) = x * + yxu).
Then, the displacement matrix in the new domain can be
written as

D = D + uXrC.

Choose u to be the iteration vector and define the processor
space according to

P = {p:p = pk]

where P is defined as in (13). To complete the systolic array
implementation, define

so that x(k) is computed by the processor at location Pk dur-
ing the rth beat of the systolic clock.

The class of systolic algorithms, as characterized in the
above theorem, is precisely the subclass of Regular Iterative
Algorithms that have O(N) I/O latency and constant storage
requirements at each processor [29]. For instance, the RIA
in Example 3 is not a systolic algorithm, since it does not
meet the latency bound. In this case, one can show that the
schedule given in (31) is "tight" and that the number of steps
required to execute the RIA is at least nN regardless of the
number of processors used. Thus the latency here has to
be a polynomial of degree 2 in the size parameters n and
N. Similarly, the RIA for Gaussian elimination with partial
pivoting [22] is not systolic since it requires O(N2) time for
its execution, no matter how many processors are used in
its implementation.
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Abstract. The parallelization of many algorithms can be obtained using space-time transformations which are
applied on nested do-loops or on recurrence equations. In this paper, we analyze systems of linear recurrence
equations, a generalization of uniform recurrence equations. The first part of the paper describes a method for
finding automatically whether such a system can be scheduled by an affine timing function, independent of the
size parameter of the algorithm. In the second part, we describe a powerful method that makes it possible to transform
linear recurrences into uniform recurrence equations. Both parts rely on results on integral convex polyhedra.
Our results are illustrated on the Gauss elimination algorithm and on the Gauss-Jordan diagonalization algorithm.

1. Introduction

Designing efficient algorithms for parallel architectures
is one of the main difficulties of the current research in
computer science. As the architecture of super-computers
evolves towards massive parallelism, it becomes neces-
sary to design smart compilers that not only look for
efficient vectorized programs, but also try to optimize
the distribution of the algorithm among the processors.
In order to obtain good performance, the distributed
algorithm must minimize as much as possible the amount
of communications between remote processors and bal-
ance the computational and the communication power of
the processing units. One very promising methodology
involves describing the algorithm using abstract specifi-
cations such as recurrence equations, as it was suggested
by Karp, et al., [1] in 1967. The algorithm to be mapped
is specified as a set of equations attached to integral
points, and mapped using a regular scheduling and allo-
cation scheme on the architecture. A similar approach
was used later by Lamport [2] for the parallelization
of do-loops, and became the basis of many studies on
the synthesis of systolic arrays [3]-[ll]. The main prob-
lems that were tackled were the scheduling of the com-
putations, the mapping of the computations on regular
architectures, partitioning schemes, and optimal organ-
ization of multistep algorithms.

This work was partially funded by the French Coordinated Research
Program C3 and by a Grant from the SOREP company

In this paper, we address the analysis and mapping
of linear recurrence equations on parallel architectures.
In Section 2, we recall informally the principles of
recurrence mapping, on the example of the matrix mult-
iplication. Section 3 is devoted to a formal definition
and presentation of linear recurrences and algorithms.
After defining a normal form of recurrence equations,
we give a constructive necessary and sufficient condi-
tion for the existence of a linear timing function for
such equations. This result extends the previously known
results on uniform recurrence equations and makes it
possible to relax the hypothesis that the target architec-
ture is only locally connected. Our results are illustrated
by the analysis of Gauss and Gauss-Jordan algorithms.
Section 4 tackles the problem of transforming linear
recurrence equations into uniform recurrence equa-
tions. Such a transformation is mandatory when the
target architecture is locally connected, for example,
a systolic array.

2. Principle of Recurrence Mapping

Consider the multiplication C=AB of NxAf matrices. De-
note a(i, j), b(i, j), and c(i, j) the elements of matrices
A, B and C respectively. We can use the following sys-
tem of recurrence equations to describe this algorithm:

l < / < # , l<j<N, \<k<N -> (1)
C(i, j , k) = C(i, j , k - 1) + a(i, k) x b(k, j)

Reprinted with permission from Journal of VLSI Signal Processing, P. Quinton and V. Van Dongen, "The Mapping
of Linear Recurrence Equations on Regular Arrays," Vol. 1, No. 2, pp. 95-113, 1989. © Kluwer Academic Publishers.
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l< i<W, l<jf<JV, k = O-+C(i,j, k) = 0 (2)

l < i < N , l<jf<JV-*c(i, 7) = C(/, y, AO. (3)

Each one of these equations represents a set of
unique assignment statements attached to an integral
point of the space. Equations (1) and (2) are attached
to integral points of a cube of size N in Z3, and define

N

an iterative calculation of the expression T] a(i, k)
k = I

b(k,j), using an intermediate variable C. Equation (3)
has indexes in Z2 and simply renames the results of
the recurrence as c. Of course, many other recurrence
forms would give the same result, and the choice which
is made here, although reasonable, is arbitrary.

The mapping procedure, as it was described in [9]
or [12], amounts to perform an index transformation,
usually referred to as space-time transformation, that
affects each statement to an instant of time and a proc-
essor location. Such a transformation must satisfy basic-
ally two conditions:
1. if a statement depends on the result of another state-

ment, it should be executed after the result itself is
available;

2. two statements allocated to the same processor
should not be scheduled at the same instant of time.

If we restrict ourselves to the case when the index
transformation is linear, it appears that the above condi-
tions can be equivalently expressed as a linear program-
ming problem, when one considers uniform recurrences.
Linear transformations have proved to be very effective
in order to design locally connected architectures such
as systolic arrays. These are the main reasons why
research in this domain has mainly focused on uniform
recurrences and linear transformations.

Before discussing the limitations of uniform recur-
rences, let us recall informally the principles of the
mapping procedure, in the case of uniform recurrence
equations, on the matrix multiplication example. The
following development is based on results that appeared
in many papers including [9], [12].

First, we transform the equations in order to obtain
uniform recurrences. Equation (1) is not uniform, as
the indexes of variables a and b are not translations of
(/, j , k). In this particular case, the index mapping is
a projection and corresponds to the broadcasting of data
a and b. Using a well-known technique called pipelin-
ing, we can replace equation (1) by:

\<i<N, \<j<Ny l<A:<Ar-> (4)
C(i, j , k) = C(i, j , * - 1) + A(i, j , k) X B(i, j , k)

1</<N, l<j<N, l<k<N ->
A(i, j , k) = A(i, j - 1, k)

\<i<N,j = 0, l<fc<7V ->
A(i, j , k) = a(i, k)

1 </<:#, l<7<Af, l<]fc<JV->
B(i, j , k) = B(i - 1, j , k)

i = 0, l<s /<#, \<k<N ->
B(i, j , k) = b(k, j).

(5)

(6)

(7)

(8)

The detail of this transformation will be explained in
Section 4.4. The new system is composed of equations
(2) to (8). Equations (4), (5), and (7) are said to be
uniform, since the index functions of all the variables

Cij

O-ik

a)

B

b)

Fig. I The matrix muliplication dependence graph, and the systolic
array obtained by a projection along the k axis.

85

A C

i

j

k

bk3



are translations of (i, j , k). The other equations of the
system are not uniform, but as far as the timing analysis
is concerned, they can be ignored because they only
serve defining inputs (equations (2), (6), (8)) or outputs
of the system (3). The dependence graph that corre-
sponds to this system is depicted in figure la for N = 3.
The nodes of this graph are the points of the cube of
Z3 of size 3, and edges represent dependences between
the variables.

The next step of the mapping procedure is to find an
affme schedule for the system, that is to say, a mapping

t: VxZ3 -> Z

(V,(i,j, *)) "> Xji + Xtf'+Aafc+av

(9)

(10)

where V denotes the set of variables of the system. The
mapping t must be such that if computation of variable
V(i,j, k) depends on variable V'(i',j', k'), then t(V,(i,

j , k)) > t(V',(i',j', t1)) + 1, assuming that the execution
of any statement takes exactly one step of time. However,
as the equations are uniform, this condition can be
replaced by a finite set of linear inequalities. Indeed,
as C(i, j , k) depends on C(i, j , k — 1), we must have:

t(C,(i,j, k))>t(C,{i,j, k - 1)) + 1

which gives

\ 3 > 1

Applying the same treatment to the other dependences,
we obtain:

ac ~ « A ^ 1 ; ac ~~ a ^ l fr°m equation (4)
X2>1 from equation (5)
X t>l from equation (7).

A solution to this system of linear contraints is X! =
X2 = \ 3 = 1, Q^ = a 5 = 0, and a c = l . Therefore,
a valid schedule for the system is that C(i, j , k) be com-
puted at time / + j + k + 1, and A(i, j , k) and B(i,

j , k) transmitted at time / + j + k.
The final step of the mapping procedure is to allocate

the computations on a locally connected architecture.
Basically, the method amounts to finding a linear map-
ping a from Zn to Zn ~ l , called the processor alloca-
tion Junction, such that a(z) is the number of the proces-
sor that executes the calculations attached to point z. The
mapping a must be chosen in such a way that a proc-
essor has no more than one calculation to perform at
a given instant. If a is chosen to be a projection of the
space along a direction defined by a vector w, the only
constraint on the choice of u is that u must not be parallel
to the planes i +j + k = ^defined by the timing-function.
In other words, \{ui + X2w2 + X3w3 must be non-zero.

In the case of the matrix multiplication, the pro-
jection of the equations along the direction (0, 0, 1)
produces the systolic architecture shown in figure lb.

The interconnection pattern of the architecture is
readily obtained by looking at the way the edges of the
dependence graph are projected. Here, the elements of
A and B enter the matrix, in a skewed fashion, respec-
tively from the left and from the bottom of the array,
and the partial results remain in the cells. Other archi-
tectures can be derived. For example, by projecting the
dependence graph along (1, 1, 1), we obtain an array,
similar to the well-known systolic array first proposed
by Kung and Leiserson ([13]), where both data and partial
results are moving. Moreover, the control of the cells
of the systolic array is simple and can be derived auto-
matically. The only difficulty is that a given cell may
have to perform different calculations at different instant
of time, as the equations are defined on subdomains.
However, in his thesis, Rao ([11]) shows how one can
replace conditions involving linear combinations of in-
dexes by new boolean variables which are tested by the
cells in order to decide which equation is to be applied.
We will not develop this step further (see [9], [12], [14]
for example).

Uniform recurrence equations present several limita-
tions which call for an extension, at least to linear recur-
rences, as we shall see in the next section:
1. it is recognized that specifying an algorithm using

uniform recurrences is often a difficult and tedious
task. This task becomes much simpler if linear
recurrences are allowed;

2. using uniform recurrences is somehow mandatory
when one wants to implement an algorithm on a lo-
cally connected architecture, such as a systolic array.
It is not possible to implement non-local communi-
cations in one instant of time. However, a lot of paral-
lel architectures provide communication facilities via
richer topologies: for example, hypercubes, shuffle-
exchange networks, broadcast by bus, etc. Therefore,
it is tempting to consider more complex recurrences,
such as linear ones (other index functions would also
be interesting).

3. in some cases, it is very difficult to replace linear
dependences by uniform ones, especially when the
calculations done by the algorithm depend recursively
on its results. For example, this is the case in the
recursive convolution or in the dynamic programming
algorithm. Most of the recent work on the subject
tries to overcome the problem, more or less formally.
Therefore, it is interesting to try to solve this diffi-
culty in its full generality.
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In the following section, we study the scheduling of
linear recurrences. For the sake of illustrating the paper,
we will use, when necessary, results on allocation func-
tions that were presented informally in this section.

3. Linear Recurrence Equations and Algorithms

3.1. Statement of the Problem

Definition 1. A linear parameterized recurrence equa-
tion is an equation of the form

zeD - U(Z) =f[V(l(z)),...] (11)

where:
1. z is a point of Z", where Z denotes the set of

integers,
2. p = (pu p2, . . •, pm) is a point of Zm named the

size parameter of the equation. We assume that p
belongs to a convex polyhedron P C Zm (in most
cases, P = Nm , where N denotes the set of non-
negative integers).

3. Dp is the set of integral points belonging to a con-
vex polyhedron of Zn, called the domain of the
equation1. We assume that Dp is bounded2 and is
defined by a finite set of linear inequalities involving
z and p.

4. / is an affine mapping from Zn to Zl called index
mapping; I has the form

I(Z) = A.Z + B.p + C

where the constants A, B and C are integral matrices,
AOl X Zn, BOl X Zm, and COl.

5. U and V are variable names belonging to a finite
set V. Each variable is indexed with an integral in-
dex, whose dimension (called the index dimension
of the variable in the following) is constant for a
given variable. The variable U(z) is called the result
of the equation and V(I(z)) is an argument.

6. / i s a single-valued function that depends strictly on
its arguments; we assume that the function /
has complexity 0(1).

7. the '... ' means that there can be other arguments
of the same form as V(I(z)).

8. the domains of two equations having the same vari-
able as result are disjoints. This hypothesis ensures
that a variable is not defined twice.
For a given p, equation (11) represents a finite set

of equation instances, each one of which is associated
with a particular point z of Dp.

A system of linear recurrence equations is a finite
set of equations such as (11), having the same parameter

set. Note that all equations need not be indexed in the
same subspace, i.e., n is not necessarily the same for
all equations.

We call variable instance of the system any term U(t)
that appears in an equation instance. The index domain
of a variable is the set of indexes of the instances of
the variable. Note that the index domain of a variable
is not necessarily a convex polyhedron, but is a finite
union of convex polyhedra. A variable instance that ap-
pears only in the left-hand side of an equation is called
an output. Similarly, a variable instance that appears
only in the right-hand side of an equation is called an
input. Variable instances that are neither outputs nor
inputs are called intermediate data. Variables whose in-
stances are all inputs (respectively, outputs or intermedi-
ate data) are called input variables (respectively, output
variables or intermediate variables).

A particular case of linear recurrence equations is
when the index mapping reduces simply to a transla-
tion. The equation is then said to be uniform. The im-
portance of uniform recurrence equations for expressing
parallel computations was first noticed by Karp, et al.
[1]. Our definition of uniform equations is, however,
less restrictive than the definition in [1] which makes
the assumption that all the equations of a system have
the same domain.

3.2. Normal Form of a System of Equations

The purpose of this subsection is to show that one can
replace a system of linear recurrence equations by a
new equivalent system, which is more convenient for
the analysis of the dependences. The goal is to separate
clearly the inputs, the outputs, and the intermediate
data, since only the dependences between intermediate
data have to be considered for studying the schedule
of the equations. Moreover, it is necessary that all equa-
tions be attached to integral points of the same space.

We say that the argument of the equation is fully
indexed, if its index dimension is the same as the index
dimension of the result of the equation. An equation
is fully indexed if all its arguments are fully indexed.
For example,

1 </<>*, 1<7<« -> U(i,j) = V(i,j - 1)

is fully indexed, but

l < / < n , l < 7 < n -> U(i,j) = V(i)

is not, because V(i) is not fully indexed.
An equation is an input equation if / is the identity

function, and the only argument of the equation is an
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input variable. Similarly, an equation is an output equa-
tion it / is the identity function and U is an output
variable. Finally, an equation is a computation equa-
tion if its result and arguments are all intermediate
variables.

Definition 2. A system of linear recurrence equations
is said to be in normal form if:
1. all the variables are either input, output, or inter-

mediate variables,
2. all equations are either input, output, or computation

equations,
3. all the computation equations are fully indexed and

have the same index dimension.
The following theorem holds:

THEOREM 1. For any system of linear reucrrence equa-
tions, there exists an equivalent system which is in nor-
mal form.

A formal proof of the theorem can be found in [15].
Basically, it involves successively applying three trans-
formations to the initial system of equations. Rather than
describing formally these transformations, we illustrate
them on examples.

Example 1. The first transformation, called variable
normalization, modifies the system in such a way that
only input, output, or intermediate variables remain.
To illustrate this, consider the equation:

\<i<N -» A(i) = A(i - 1).

The variable A has one input instance ^4(0), one output
instance .4(AT), and intermediate instances A(i), when
1 </<Af - 1. Therefore, A is neither an input, an out-
put, or an intermediate variable. We can rewrite this
equation in the following way:

2<i<N - 1 -> A{(i) = Ay(i - 1)

i = l - Ax(i) = A2(0)

i = N -> A3(i) = Ax(i - 1).

The domain of A is partitioned into three new domains,
each one of which corresponds respectively to the inter-
mediate, input, and output instances of A, renamed
respectively Ax, A2, and A3.

Example 2. The purpose of the second transforma-
tion, called input and output separation, is to make in-
put (respectively output) variables appear only in in-
put (respectively output) equations. Consider, for ex-
ample, the system

l < i < # ~> A(i) = A(i - 1) + B(3i) (12)

/ = 0 -> A(i) = x(i)

i = N -+ C'(i) = A(i).

In this system, the input variable B appears in equation
(12) which is not an input equation. However, the prop-
erty holds when equation (12) is replaced by

1</<N -> A(i) = A(i - 1) + B'ii)

1 </<#-> B'(i) = B(3i).

Example 3. Finally, the last transformation, calledyw//
indexing, aims at obtaining a fully indexed system. Con-
sider the following system of equations, which is a
somewhat simplified version of the dynamic program-
ming algorithm:

\<i<j<N, i<k<j
(13)

C(i, j , k) = f[C(i, j , k + l),c(z, *)]

1 <z, i +\<j<N, k =j-> C(i, j , k) = w(i, j) (14)

1 </, i + 1 <j<N-+ c(i, j) = C(i, j , i + 1) (15)

1 </, j = i+l,j<N-+ c(i, j) = w(i, j). (16)

A straightforward method to obtain fully indexed com-
putation equations is to change the index dimension of
c, by adding a 0 as a third component. We then obtain
the new system:

\<i<j<N, i<k<j ->

C{i,j,k) =f[C(i,j,k+l),c(i,k,O)]

1 <i, i + Kj<N, k =j-+ C(i, j, k) = w{i, j)

1 <i, i + 1 <j<N, k = 0-+ c(i, j, k) = C(i, j, i + 1)

1 <i, j<N, j = i + 1, k = 0 -> c(i, j, k) = w(i, j).

However this transformation is far from being optimal,
in the sense that it amounts to place variables c(i, j)
arbitrarily in the index space, which may have conse-
quences on the schedule of the equations.

In this particular example, a much better method is
to substitute c(i, k) in (13) by its definition. We obtain
the new system:

\<i<j<N, i+l<k<j-+ (17)
C(i, j , k) =f[C(i, j , * + 1),C(«\ k,k+ 1)]

\<i<j<N, i+l=k<j-+
C(i, j , k) =f[C(i, j , k+ 1), w(i, k)]

(18)

1</, i+Kj^N, k=j^C(i,j, k) = w(i,j) (19)

1 </, 7 = 1 + 1, j<N-+ c(i, j) = C(i, j, i + 1) (20)
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1 <i, j = 1, j< JV- c(i, j) = w(i, j) (21)

where (17) is fully indexed.
The substitution method cannot always be used, in

particular when the substituted variable depends on it-
self. In this case, the substitution creates a number of
equations that depend on the parameter p. The problem
of finding an index transformation which merges opti-
mally several index spaces is therefore still open.

In the remaining of this paper, we will consider nor-
mal form systems. We define the domain 3) of a (normal
form) system of equations as the convex hull of the
union of the domains of its computation equations (in-
put and output equation domains excluded).

3.3. Dependence Vectors

Assume that V(I(z)) is an intermediate variable instance.
Then, V(I(z)) is defined by another equation, attached
to point I(z). In a normal form system, the intermediate
variable instances are fully indexed, and both z and I(z)
belong to Zn. Hence the vector z — I(z) is defined and
is called dependence vector. Dependences with results
or data are not considered, as they do not correspond
to effective computations. Given an argument V(I(z))
of an equation, we denote by Oy(i(z)) (o r simply 9
when there is no ambiguity) the dependence vector z
— I(z). More formally, &v(i(Z)) *s a function from Zn+m

to Zn which maps a pair (z, p) to z — I(z). In the fol-
lowing, we shall denote by Range (Ov(i(Z))) t n e range
of 0K(/(z» when /?€P and z€Dp.

The following proposition is a key result of our study:

Proposition 3.1. Range (BF(/U))) is a convex polyhe-
dron of Zn.

Proof. As / is linear in z and p, the dependence vec-
tor is an affine mapping:

fc p) -> z - I(z) = (0 - A)z ~ Bp - C

where tf is the identity matrix. Clearly, J is affine. More-
over, for all p, Dp is a convex polyhedron, which de-
pends linearly on p, and p itself belongs to a convex
polyhedron of Zm. Therefore, the set {(z, /?)|/?€P, z€Dp}
is a convex polyhedron of Zn + m. It results that Range
(0K(/(z)))» being the image of a convex polyhedron by an
affine mapping, is also a convex polyhedron of Z".

As a consequence of proposition 3.1, any dependence
vector Ov(i(z)) c a n ^ e expressed as the sum of a convex

combination of the vertices of the convex set Range
(©P(/(Z»), of a positive combination of its external rays,
and of a linear combination of its lines.3

3.4. Computability and Scheduling

The scheduling problem is to find a function that assoc-
iates each variable instance U(z) with a given instant
of time ?, in such a way that the arguments needed for
the calculation of U(z) are already calculated at time
t. If such a mapping exists, the system is said to be ex-
plicit or computable. This is not always the case, as
shown by the following equations:

A(i) = \<i<n -> A(i - 1) + B(i - 1)

B(i) = l < / < n -> A(i + 1).

Here, A(i) depends on itself.
The property of computability has been investigated

by Karp, etal. [1], Rao [11], Yaacoby and Capello [16],
and Delosme and Ipsen [5]. Karp, et al., have shown
that this property can be checked, when all the equations
are uniform, have the same (possibly infinite) domain,
and use only strict functions. These assumptions ex-
clude the case when equations are defined on subdo-
mains, as described here. In his thesis, Rao [11] gives
a procedure to check the computability of recurrence
equations defined on different domains, but his proce-
dure is based on the fact that all equations are extended
to the same domain.

Depending on the assumptions that are made, differ-
ent results which are summarized here can be obtained:
1. if the domains of the equations are bounded and not

parameterized, it is obvious that this property can
be checked by testing whether the dependence graph
is acyclic or not.

2. if the domains of the equations are not bounded, and
all equations are defined on the same domain, and
the functions/are strict, then the computability can
be checked (result of Karp, et ai).

3. concerning equations defined on unbounded domains,
when the domains are not the same for all equations4,
it has been shown by Joinnault [17] that the computa-
bility of a system of uniform recurrence equation
is undecidable. The proof amounts to show that any
Turing machine can be encoded as a uniform recur-
rence system of equations and to show that the com-
putability of uniform recurrence equations reduces
to the termination of a Turing machine.

4. an interesting question is to find out whether a
parameterized system of recurrence equations is
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computable. In other words, when the domains of the
equations depend on an integral size parameter, is
it possible to check the computablity of all instances
of the system? Recently, Saouter and Quinton ([18])
have shown that this property is also undecidable.
The last result shows that it is hopeless in general

to find out if there exists an ordering of the calculations
compatible with the dependences. However, as we shall
see in the next section, results can be obtained in the
special case of a linear ordering, which is of practical
interest.

3.5. Linear Timing Functions

A particular case of ordering on the calculations is
called an affine timing Junction [9], [10]. If such a func-
tion can be found, of course, the system is computable.
As we shall see, we can determine automatically
whether there exists such a timing function, all at once
for a parameterized system of equations.

Consider a variable instance U(z)9 and define for each
variable a function t(U, z) from V X Z" to Z of the
form:

t(U, z) = \{zi + . . . + \nzn + ay

where \x,. . . , \n are integers independent of U. Denote
\'z = XiZi + . . . + \nzn.

Assume that the evaluation of each function of the
system takes at least one unit of time. The following
result gives a conservative means for obtaining the func-
tion t:

THEOREM 2. The numbers Xl? . . . , \n, av, U€\

define a timing function for all p if:
(i) for all vertex a of the dependence sets Range

(9K(/(Z)))> X° + <*u - oiV>0,
(ii) for all extremal ray p of the dependence sets Range

(GW))), X'p>0
(iii) for all line v of the dependence sets Ranged V{l{z))),

V = 0.

Proof. 1 => 1 We have to prove that for all p and all
z£Dp, t(U, z) - t(V, /(z))>l, i.e.

\\z - I(z)) + OLV - av>\

As Ov(i(z)) = z - I(z) belongs to Range (0^/fe))), it can
be decomposed using the vertices, rays, and lines of
RangeQvm)) as

9(K(/(z)) == ^aa + ^A° + *Lbv.

Using the hypotheses, we obtain:

t(U, z) - t{V, UdD^VZoto + OLU - av

and as La = 1, we have

t(U, z) - t(V, /(z))>£a[X'(j + av - av]
>1.

| <= 1 Conversely, assume that X1? . . ., \n, aU9 f/€V
define a timing function for all/7. Consider a vertex a of
Range (Ov(i(Z)))- There exist/? and z€Dp and an equation

zWp -+ U(z) =f[V(I(z)), . . . ]

such that z ~ I(z) = o. Therefore we must have:

Wo + au — a ^ > l

which proves (i).
Let p be the ray of Range ( 0 T O ) ) . Assuming that

(ii) is not true, it is simple to show that there exists
an equation such that t(U, z)<t(V, I(z)). A similar
reasoning applies for (iii).

Note that Theorem (2) is a generalization of a result
given by Rajopadhye and Fujimoto [19] to the case of
parameterized recurrence equations. A similar condition
was also presented, independent of ours, by Irigoin and
Triolet [16], in the framework of Nested Loops analysis.

3.6. Gaussian Elimination and Gauss-Jordan
Diagonalization

In the following, we shall use the Gaussian elimina-
tion and the Gauss-Jordan diagonalization as examples.
We first present the Gauss-Jordan algorithm, from
which the Gaussian elimination can be deduced imme-
diately by removing one equation.

Let A be a N X N matrix and b be a TV X 1 vector.
The problem is to solve the linear system Ax = b, by
the Gauss-Jordan elimination algorithm. For the sake
of commodity, we assume that A is an Af X (N + 1)
matrix whose last column is b. Elements of A are
denoted a(i, j). The basic step of the algorithm is as
follows: at step k, element a(k, k) is taken as the pivot,
and is used to zero out elements a(i, k), l<i<N,ii±k.
At the end of the algorithm, i.e., when k = N, matrix
A is the identity matrix and b is the solution x of the
system. Let A(i, j , k) denote the value of element (/,
j) of matrix A at step k. The algorithm can be precisely
specified by the following equations:

Input Equations:

k = 0, l<i<iV, l<j<N ->
A(i, j , k) = fl(i, J)

k = 0, l<i<N,j = N 4- 1
A{i, j , k) = b(i)

(22)

(23)
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Computation Equations:

\<k<N, k<j<N + 1, i = k -> (24)
^(i , 7, Jfc) = A(i, j , k - 1)/A(k, k, k - 1)

! < £ < # , k<j<N + 1, l<si<£* -> (25)
4(i, y, it) - A(i, j , k - 1) - 4(i, AT, ifc — 1)/
A(k, k, k - l)xA(k,j, k - 1)

l < k < M * < j < N 4- 1, k>i<N -• (26)
4(i, 7, A:) = 4(i, 7, it - 1) - 4(i, A:, A: - 1)/
4(ik, k, k - l)xA(k,j, k - 1)

Output Equations:

l < j < t f -> JC(I) = 4(i, N + 1,N) (27)

It can be readily seen that the system is in normal form.
The Gauss-Jordan domain is shown in figure 2 and is:

£> = {(i,j,k)\l<:i<iN,k<j<N+ 1, l<fc<N}.

( l , n + l ,n) (ra,n + l ,n)

(n,n + l , l )

(1,1,1) ( n , l , l )

F/g. 2. Domain of the Gauss-Jordan elimination algorithm.

Table 1.

Equation

(24)

(25)

(26)

Dependences

From

A(i, j , k)
A(i, j , k)

A(i, j , k)
A(i, j , k)
A(k, j , k)
A(k, j , k)

A{i, j , k)
A(i, k, k)
A(k, k, k)
A(k, j , k)

in Jordan-Gauss elimination.

To

A(i,j,k-l)
A(k, k, k - 1)

A(iJ, k-\)
A(k, k, k - 1)
A(i,j, k-\)
A(k, k, k - 1)

A(i,j, k-l)
A(k, k, k-l)
A(i,j, k-l)
A(k, k, k-l)

Vector

(0, 0, 1)
( 0 , 7 - * , l)

(0, 0, 1)
(0,7- i t , 1)

(i-k,j-k, 1)
(i - k, 0, 1)

(0, 0, 1)
( 0 , 7 - * . 1)

(i-kj-k, I)
(i ~ k, 0, 1)

Note

i = k, j>k

i<k
i<k

j^k
i>k
i>k

The Gaussian elimination differs from the Gauss-Jordan
diagonalization in that elements above the pivot are not
zeroed. Therefore, equation (25) has to be removed.

At the end of the algorithm, matrix A is upper
triangular, and it remains to perform a back substitu-
tion in order to solve the system.

Consider the Gauss-Jordan algorithm. Table 1 sum-
marizes the dependences of the algorithm. Let us apply
Theorem 2. Consider for example the dependence vector
(0,7 - k, 1) from equation (24). When Af ranges over
N, this vector belongs to the half-line 0 whose origin
is (0, 0, 1) and direction is (0, 1, 0). In other words,
9 is a convex polyhedron with vertex (0, 0, 1) and (ex-
tremal) ray (0, 1,0). Therefore, we must have:

A3>1 and \ , > 0 .

Applying the same analysis to the other dependence
vectors gives the final set of constraints:

Xj>0, \ !<0 , A2>0, A3>1.

Therefore, a possible timing function is r(4, (/, j , k))
= k. Notice that r(4, (/, j , k)) = j: + k is also valid,
but the coefficient of i has to be 0. This is because the
domain for the possible values of X contains the line
j = k = 0.

On the other hand, if we analyze the Gaussian elim-
ination algorithm, the constraints are

Xi>0, X2>0, X3>1

and t(A, (/, j , k)) = i + j +• k is now a valid schedule,
as / is not constrained to be 0. This comes directly from
the fact that equation (25) has been removed and, there-
fore, the constraint \x <0 is not necessary.

4. Uniformization

Unless it is uniform, a system of recurrence equations
cannot be mapped directly on a systolic array. Indeed,
as the dependence vectors are not constants, processors
may have to communicate with an arbitrary large num-
ber of other processors, and this is not possible in a
systolic array, where the processors are only connected
to their neighborhood.

This Section is concerned with uniformization, that
is to say, the transformation of linear recurrences into
uniform ones. The uniformization problem has not yet
received a full answer. It is tackled by Fortes and Mold-
ovan [20], Wong and Delosme [21], Kuhn [22], Gachet,
et ah [23], Van Dongen and Quinton [24], Joinnault
[17], Rajopadhye [19], and others (see section 5). We
begin by explaining informally the principle of our
method (subsection 4.1). Then we precisely describe
the uniformization method (subsection 4.2). In subsec-
tion 4.3, we sketch how the method can be applied in
the case of the Gauss-Jordan algorithm.
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a)

b)

Fig. 3. The dependence (i - k, D, 1) before and after uniformization.

4.1. Informal Description of the Uniformization Method

Let us briefly illustrate the uniformization process with
the Gaussian elimination algorithm. Consider the non-
uniform dependence (i - k, 0,1) between A(i, jy k) and
A(kJ, k — 1) in equation (26) (figure 3). As explained in
section 3.6, the associated domain Range (&v(i(Z))) *s

infinite; it has one vertex (1, 0, 1) and a ray (1, 0, 0).
To solve the uniformization problem, we express the

dependence vector as a non-negative integral linear
combination of these vectors, called uniformization vec-
tors. A solution is:

(/ - k, 0, 1) = (i - k - 1).(1, 0, 0) + (1, 0, 1). (28)

The uniformization method involves rewriting the vari-
able instance A(k, j , k - 1) using a new variable A\
which is defined by a (uniform) equation of the form
A'(i,j, k) = A\i — l,j, k), where the dependence vector
is (1, 0, 0). The same transformation is repeated for all
vectors of the decomposition, until the non-uniformity
is removed. In our example, this transformation gives
the uniform dependence graph of figure 3b.

The main difficulty of the method is to choose the
uniformization vectors in such a way that the resulting
uniform system of equations has a linear timing func-
tion. As we shall see, the choice of the uniformization
vectors depends on several factors, among which the
dimension of the domain of the initial equation, the
dimension of its image by the index mapping /, and the
value of the vectors of the decomposition.

4.2. Automatic Synthesis of the Uniformization Vectors

Given a set of linear recurrences in its normal form,
we only consider here the uniformization of dependences
resulting from the computation equations. The case of
input equations will be solved in Section 4.4.

The organization of this section is the following. In
subsection 4.2.1, we consider the case where pipelining
vectors are needed, that is to say, when the null space
of / and the linear space generated by the domain D
of the equation where / appears to have a non-empty
intersection. Then, in subsection 4.2.2, we consider
the case where no pipelining is needed. Finally, we
summarize the method in subsection 4.2.3.

4.2.1. Pipelining Vectors Consider an equation:

z€D-> U(z) = / ( . . . , K(/fe)),...). (29)

Definition 3. Given a convex polyhedron D, we note
Vect(D) the linear space parallel to D, that is to say the
direction of the affine hull of D5. We say that a vector
A is parallel to D if A£Vect(D). We note dim{D) the
dimension of Vect(D). Given an affine mapping /, we
note Null(I) the null space of the linear part of /.

In the remainder of this section, we will assume that
the system of linear recurrence equations where equa-
tion (29) appears has a timing function and, moreover,
that the ranges of all dependence vectors do not contain
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the vector 0 and are enclosed in a pointed cone, named
9* This excludes the case when the range of one of
the dependence vectors contains a line.

Definition 4. A vector </> =£0 is said to be a pipelin-
ing vector if <j>£NuU(f)nVect(D).

Proposition 4.1. If 0 is a pipelining vector, then the
following system is equivalent to equation (29):

zW -> U(z) = / ( . . . , V'(z), . . . ) (30)

ztDj - V\z) = V\z - 0) (31)

zW2 -> V\z) = V(I(z)) (32)

where V is a new variable and

Dx = {z£D\z ~ 0€D}

D2 = D\D{.

Moreover, the domain D2 can be partitioned into a
finite number of convex polyhedra of dimension dim
(D) — 1, and for all point z€D2, z — I(z) belongs to
the dependence set Range (Qv(i(z))) °f equation (29).

Proof. For all z€D, by repeated use of (31), there ex-
ists k€N such that:

U(z) = / ( . . - , V\z - **), . . . )

and z - k£D2. Then, using (32),

t/(z) = / ( . . . , V(I(z - * « ) ) , . . . ) •

However, as <£ is a pipelining vector, I(z - k<j>) = I(z).
Therefore,

tf(z) = /( . . . ,F(/(z)) , . . . )

which proves the equivalence between (29) and the
above system of equations. Since D2 = {z€D\z — <t>iD},
it can be partitioned into a finite number (independent
on p) of convex domains of dimension dim(D) — 1.
Finally, as D2CD, the set {Qv^z))\z^D2} is included
i n {^v(i(z))\^D}.

Example 4. In the case of the Gaussian elimination,
equation (28) gives an integral decomposition of the
dependence vector (i — k, 0,1) on the vectors (1, 0, 0)
and (1, 0, 1). In fact, vector (1, 0, 0) belongs both to
the null space of / and to Vect(D) and is therefore a
pipeline vector. The pipelining transformation, when
applied to equation (26), yields:

!<*;<#, k<j<N + 1, k<i<N -> (33)
A(i, j , k) = A(i, j , k - 1) - A(i, k, k - 1)/
A\i, j , k) x A(k, j , k - 1)

Fig. 4. Case when a pipeline vector does not belong to 0*

l<k<N,k<:j<:N + 1, k + 1</<N ->(34)
A'{i, j , k) = A'(i - 1, j , k)

\<k<Ny k<j<N + 1, i - k 4- 1 ->(35)
A'{i,j, k) = A(k,j, k - 1).

One can check that the domain of equation (35) has
dimension 2, one less than domain of (33).

When Null{I) H Vect(D) ^ {0}, it is necessary to
propagate the data along pipelining vectors first, using
Proposition 4.1. However, the pipelining vectors do not
always belong to 9*, as shown by the following example.

Example 5. Consider the following system of equa-
tions, whose dependence graph is shown in figure 4,
for p = 3.

1 <j</?, i>j - 1, i<2 / - 1 -• A(it j) = B(j - 1, 0).

In this case, the domain of the dependence vector is
the cone whose extremal rays are (1, 1) and (0, 1). On
the other hand, the vector (1,0) is a pipelining vector
and does not belong the the cone generated by the
dependence vectors.

The following proposition shows that one can choose
the pipelining vectors in such a way that the dependence
vectors of the system after transformation still belong to
a pointed cone. As a consequence, we will be guaranteed
that a timing function still exists after transformation.

Lemma L Given a pointed cone C, and a linear space
V, there exists a pointed cone C' which contains C and
a basis of V.

Proof Let {vy} x <q<n be a basis of V. We shall prove
that there exists a set of values {e, = ±\}\<q<n

 s u c n

that {e/V,} j <q<n and C generate a pointed cone C". Let
{ck)i<k<K be the set of extremal rays of C. Suppose
first that the basis has one single vector v. Denote Cv
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the cone generated by C and v. If Cv is pointed, the
problem is solved with e = 1. Suppose that Cv is not
pointed. Let us call separating hyperplane of C any
hyperplane Hz = 0 such that Hck>0 for all extremal
ray ck of C. As C is pointed, such an hyperplance ex-
ists. Moreover, as Cv is not pointed, for all separating
hyperplane of C, Hv<0. If there exists such a hyper-
plane for which Hv>0, then -htv>0, and C_V is a
pointed cone, and the proposition holds. If not, then
h'y = -Hv = 0, and -v€Cv. Therefore, - v can be
written as a positive combination of the extremal rays
of C and of v, i.e:

~v = £ fikck + w

where J>>0. A simple calculation shows then that
K

V>\£k

t = \ 1 + J>

and therefore, - v is a positive combination of the ex-
tremal rays of C, which implies that — v€C Again,
C_v is a pointed cone. The case when q>\ is solved
by applying the same idea successively to all the vectors
of the basis.

Using Lemma 1, we have directly the following
proposition:

Proposition 4.2. If 9* is a pointed cone, and if Null(l)
PI Vect(D) *= {0}, there exists a basis of Null{T) H Vect(D)
which, together with 0*, generates a pointed cone.

As a direct result of the above development when
Null(I) DVect(D) =fr {0}, we can replace equation (29)
by an equivalent system of equations, where none of
the remaining non-uniformities involve pipelining vec-
tors any more, the dependence vectors still belong to
6* and the dimensions of D and of I(D) are the same.

4.2.2. Routing Vectors We now consider the case
when no pipelining vector exists. In the following, we
shall say that a dependence vector 0 T O ) has an in-
tegral decomposition on a set of vectors {^}i</<^ in
the domain Dp, if there exist q linear mappings a,-(z, p)
such that for every p€P, and every z€Dp

eV(Kz)) = 12 aM> P)'Aj
j = 1

(36)

and oii{z, /?)€N. Vectors At will be called routing vec-
tors in the following.

To obtain such a decomposition, the idea is to use
the extremal rays of the cone 0* as uniformization

vectors. The following result, which is due to Delsarte
([8]), ensures that we can always find and compute such
an integral decomposition:

Proposition 4.3. Given a rational convex polyhedral
pointed cone C of dimension n, there always exists a
pointed cone F whose extremal rays R{, . . ., Rn form
a unimodular basis, such that C c F .

Proof. We assume that the number of rays of C is
m > n (If m > n, one can transform the problem into one
in Zm.) The polar cone C° of C, is the pointed cone
defined as

C° = {ytZn\x?.y<z0, VJC^C}.

We must find a pointed cone F° of extremal rays RPU

. . . /^ such that F°C C°. Indeed, if such a cone exists,
the polar cone F of F° solves the problem, as C c F ,
and the extremal rays Rh .. .,Rn of F are such that

( « „ . . . , * „ ) = - ( ( * ? , . . . , ^ ) ' 1 ) r .
Let M be the non-singular matrix (Mx, . . . , Mn) of
the extremal rays of C°. It can be shown that there
always exists a rational positive upper triangular matrix
P such that

M.P = U (37)

where U is unimodular. Because of (37) and because
P is positive, the unimodular U defines the extremal
rays of F°, i.e., U = (#?, . . . , / # ) .

The direct consequence of Proposition 4.3 is that
the pointed cone 0* which contains the ranges of all
the dependence vectors can be enclosed in another
pointed cone F, whose extremal rays form a unimod-
ular basis. Therefore, all the dependence vectors have
an integral decomposition on the rays of F, which
is simply their (unique) linear decomposition on the
vectors of the unimodular basis. A simple change of
basis provides the linear mappings afc, p) which
are sought.

It remains to show that we can remove the non-
uniformities of the system of equations, using elemen-
tary transformations involving the routing vectors. We
consider successively two cases depending on whether
the routing vector belong to Vect(D) or not.

Proposition 4.4. If A; is a routing vector which does
not belong to Vect(D), there exists an affine mapping
/ ' such that the following system of equations is equiv-
alent to equation (29).
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z t D - > U(z) = / ( . . . , V'(z)9 . . . ) ( 3 8 )

z£Dx -+ V\z) = V\z - At) (39)

z<ED2 -> V\z) = K(/'(z)) (40)

where F' is a new variable and

Dx = {z€D|z€DA0<Jfc<aI-(z,/?)}

D2 = {z€Z)|z€DAfc = a,-fc />)}

Proof. Clearly, if A{ is not parallel to D, then for all
pair of points z and z' of D, and for all pair of integers
k and fc', z-kAi ± z' - k'At. Therefore, DxflD2 = 0,
and each variable V is defined only once. Moreover,
the (linear) function which maps z to z - a^z, p)A(

is one-one, and there exists, therefore, an affine mapping
J such that z = J(z - a,-(z, p)At). By taking /'(z) =
I(J(z)) in equation (40), we obtain an equivalent system.

It remains to solve the case when a routing vector
A is parallel to D. Before giving the solution, we show
an example for which the above method fails.

Example 5. Figure 5 illustrates what happens when
the routing vector is parallel to D. The equations are:

0</</? -> U(i) = U(i + p).

When p ranges over N, the dependence vector —p
belongs to the half-line generated by —1. The transfor-
mation described by Proposition 4.4 gives the following
system of equations:

0</<p -> U(i) = U'(i)

0<=i<2p - 1 -• U\i) = U\i + 1)

p + 1 < I < 2 / ? - • U ' ( i ) = W ) .

It is clear that U'(i) is defined twice for p + 1 </<
2p- 1.

To solve the problem, we will show that we can aug-
ment the pointed cone 9* so that A is replaced by two
other vectors which, together with 0* generate a
pointed cone.

O p 2p

Fig. 5. An example where the routing transformation is not valid.

Proposition 4.5. If A is a routing vector which belongs
to Vect(D), and if dim (D)>n, then there exist vectors
u and v such that:

• neither u nor v belong to Vect(D)
• 0*, u and v generate a pointed cone.

Proof. We assume that A is an extremal ray of 0* (If
it is not the case, we can beforehand replace A by a
positive combination of extremal rays of 0*) As we
have supposed that there are no pipelining vectors,
dim(D) = dim(I(D))>n. Therefore, the supplementary
linear space S of Vect(D) f! Vect(I(D)) is not reduced to
0. Let v be a non-zero vector of S. By Lemma 1, either
0* and v or 0* and - v generate a pointed cone.
Assume that this is true for v. We claim that 0* v and
A — v still generate a pointed cone. Indeed, as 0* and
v generate a pointed cone, and as v and A are not col-
linear, there exists a separating hyperplane Hz = 0 of
0* such that htA>htv. Therefore, ti(A - v)>0, and
Hz — 0 is also a supporting hyperplane of the cone
generated by 0* v and A — v. The vectors v and A — v
are the new vectors we seek in order to replace A, as
none of these vectors belongs to Vect(D).

The consequence of Proposition 4.5 is that one can
replace a routing vector by two new vectors, in such
a way that the transformation of Proposition 4.4 is
possible and the new system still has a timing function.
The following example illustrates this situation.

Example 6. Consider the following system of equa-
tions (see figure 6):

i = 0, 0<7<w, 0<k<n -+ (41)
A(i, j , k) = A'(k, j + n, 0).

In this example the cone 0* has the extremal rays
(0, 1, 0) and (1, 1, -1). The dependence vector is
(-it, - / i , k) = (-n - *)(0, 1, 0) - jfc(l, 1, -1). How-
ever, as the first ray is parallel to D, the transformation
using the routing vector (0, 1, 0) is incorrect. One can
avoid the problem by replacing the first vector by a com-
bination of the second one and the first one. Here we
rewrite (0, 1, 0) = (1, 1, -1) + ( -1 , 0, 1). The new
routing (see figure 6b) is done by (-k, -n, k) =
-(n 4- jfc)(-l, 0, 1) - (w + 2Jfc)(l, 1, -1).

4.2.3. Summary of the Uniformization Method In sum-
mary, the uniformization method works as follows:
• First case: Null(I)C\Vect{D) = {0}.

— Assume first that dim(D)>n. We do not need
pipeline vectors. Using Proposition 4.3, we find
out a set at most n vectors At which form a uni-
modular basis generating a pointed cone enclosing
0*. Then, we process successively all the vectors
At. If Aj is not paralled to D, then we apply the
transformation defined in Proposition 4.4, which
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B ' '

a ) b)

Fig. 6. Case when a uniformization vector is parallel to D.

gives a new domain D. If /4, is parallel to D,
using Proposition 4.5, we replace At by two new
vectors in such a way that these vectors still gen-
erate a pointed cone.

— If dim(D) = n, our method does not make it possi-
ble to obtain a uniform system in Zn. However,
it is always possible to re-index the variables in
Zn+l and to apply the above theory. Indeed, the
new system will need more processors, as the
allocation function will map the system to Zn in-
stead of Z""1. This is however not surprising: the
case when dim{D) = dim(I(D)) = n represents
a bad situation when the dependence vectors are
dense in Z \

• If Null{I) fl Vect(D) * {0}, then we can find an inte-
gral basis $ = {0/}i</<?<w of iVw//(/)nVect(D)
such that $ and 0* still generate a pointed cone 0 + .
Then, by applying Proposition 4.1 successively to each
vector of $, we eventually obtain a finite set of equa-
tions, whose domain has dimension dim(D) — q, and
whose dependence vectors are still in 0 + . We are
back to the previous case.
All this discussion is summarized by the following

theorem:

THEOREM 3. Given a set of linear parameterized recur-
rence equations whose dependence vectors are non-null
and belong to a pointed cone, there exists an equivalent
system of uniform recurrence equations which has a
timing function.

It should be noted that although the above transfor-
mations involve solving some problems for which no

efficient algorithms exist (such as, for example, the
computation of the generating system of a convex poly-
hedral domain), our experience has shown that, in prac-
tice, the systems we handle lead to small-size problems
which can be solved in a reasonable amount of time.

We also emphasize that our method has no preten-
tion to be optimal. Clearly, at several steps, some
choices may result in more or less efficient transfor-
mation. At least, however, we know that the resulting
system can be scheduled.

4.3. Multistep Algorithms

The method described in the preceding section applies
when 0* is pointed. We illustrate here what may be
done when 0* is not pointed.

Consider the uniformization of the dependence (i
- k, 0, 1) (as above) in the Gauss-Jordan elimination
algorithm. The set of dependences is defined by the line
k = 1 (see 3.6). Hence, 0* is a cone defined by A;>0,
j = 0 (a half-plane). This cone, shown in figure 7, is
degenerated since it contains the line k = 0; one may
verify that (1, 0, 0), ( -1 , 0, 0) and (0, 0, 1) form an
integral unimodular basis for this cone. The resulting
uniform dependence graph is shown on figure 8. How-
ever, after uniformization, this algorithm has no timing-
function, as there are opposite dependence vectors.

We now present an ad-hoc method for solving this
problem. The opposite vectors were used in the unifor-
mization of A(k, k, k — 1) and of A(k, j , k — 1). By
looking at the recurrence equations, one observes that
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1 (0,0,1)
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Fig. 7. A degenerated cone 0* (it contains the line k = 0) and a
possible minimal basis.

Fig. 8. A uniform dependence graph for Gauss-Jordan which cannot
be mapped on a systolic array.

these two partial results are computed in the part of
the domain where / - k > 0. Hence, the Gauss-Jordan
algorithm can be considered as a two-step algorithm.
In the first step, when i - £>0, both A(k, k, k - 1)
and A(k,j, k - 1) are computed. In the second one, both
variables are used only as inputs.

Both steps can be uniformized independently with
the above uniformization method. Then the two steps
can be put together as described in [5] and [25]. By
looking at the time cones of the two algorithms, one
can compute a re-indexing transformation which gives
a maximal global time cone. Finally, the translation of
the second step can be computed by expressing the fact
that all external dependences must be positive along
the time. Figure 9 shows the resulting uniform depend-
ence graph. The two steps of the algorithm are shown;
one of them was translated from / to / + N

With this uniform dependence graph defined, one
can now map it on various systolic arrays. Let us choose
for example the mapping a(i, j , k) = (i, k), i.e., a pro-
jection along axisy. This allocation function is author-
ized, as the direction (0, 1, 0) of the projection is not
orthogonal to the vector X, therefore, ensuring that two
computations allocated to the same processor are not
executed at the same instant of time (see [10]). The
resulting architecture is shown in figure 10, and is
described independently by Robert and Trystram [26]
and Lewis and Kung [27]6. The movement of the A coef-
ficients is as follows: they enter the architecture in the

Fig. 9. A uniform dependence graph for Gauss-Jordan, when considered as a two-step algorithm. The edges of the domains of each step are
in dashed lines.
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bottom row, then they are reflected by the left diagonal,
move rightward to the right diagonal, where they are
reflected again to the top. This movement is the projec-
tion of the path of the coefficients in the domain of
figure 9.

4.4. Uniformization of the Input Equations

We now consider the uniformization of the input equa-
tions. The difference with what we saw previously is
that there is a priori no location associated to the data:
initially, a data can be anywhere. It can be considered
as the transformation of data broadcasting into pipe-
lining. Such a problem has been tackled already by
several authors [17], [19]-[21]. We briefly present a
method that uses some of the theory developed before.
The way we solve the problem is illustrated on the input
equation

A(i, j , k) = a(i, k) (42)

of the matrix multiplication algorithm. The first step
consists of defining the set of points (i, j , k) that will
use a particular data a(i0, k0). This is done by com-
puting the kernel of the affine transformation that maps

(/, j , k) on (70, k0) and by intersecting this kernel with
the domain of the index points (i, j , k). The kernel is
the solution of the system

Hence, the kernel is (i,j, k) — (ioJo, k0) + k.(0, 1, 0).
The intersection with the domain of the indices gives

(ij, k) = do, 0, k0) + fc(0, 1,0) (44)
with fc€[l, N].

The resulting domain is a convex polyhedron, whose
vertices are do, 1, &o) a nd do> N, k0). The second step
is to choose an initial location in this convex, which
defines where the data is first. In the systolic model,
this location must be a vertex of the domain (otherwise
there would be no affine schedule). Of the two possi-
bilities, we arbitrary choose d0, 1, k0). Equation (42)
can now be rewritten, with the use of a new variable
Un, as

^0o> j , k0) = Ua(i0, 1, k0)

UJIQ, 1, kQ) = a(i0, kQ).

(45)

(46)
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Equation (45) being fully indexed, it can be transformed
into a set of uniform recurrences with the method de-
scribed before. Equation (46) is a new input equation.
Yet, its kernel only contains one point; hence, nothing
needs to be broadcasted and uniformized.

5. Related Work

In [16], Yaacoby and Capello are interested by the
scheduling of afflne recurrences. They give a sufficient
condition for an affine recurrence to be computable,
a necessary and sufficient condition for the existence
of an affine schedule, and a constructive means for find-
ing the affine schedule.

In [28], Mongenet and Perring present a method-
ology for the mapping of inductive problems on systolic
arrays. In these problems, routing need to be performed
for the partial results that are further used as data. Work
in this direction was recently made by Clauss [29]. In
their approach, they decompose non-uniform depend-
ences into two sets of vectors, namely the generating
vectors (in our terminology^ the pipelining vectors) and
the dependency vectors (some of which are the routing
vectors). These vectors are automatically computed
by looking at the domain of the dependences. Their
approach, however, is restricted to inductive problems,
a sub-class of linear recurrences. Also, because they
do not consider the size parameters in the construction
of their dependence domain, their resulting architecture
may be non-modular.

In [30], Guerra and Melhem consider the synthesis
of another class of affine recurrences, where the non-
uniform dependences are of the form # = (au . . .,
#,_!, i—j, at+i, . . ., an), a{ are constants, and / and)
are indices of the problem. Their synthesis is in two
steps. First, they determine a coarse timing function by
analyzing the set of dependence vectors (note that size
parameters are not taken into account). In the second
step, they perform a time-space index transformation,
compatible with the coarse timing. They illustrate their
methodology on the dynamic programming algorithm.

In [31], Chen presents a methodology for the deriva-
tion of systolic algorithms and architectures in a unified
framework based on the language Crystal. First, the
naive algorithm is transformed into a bounded order
and bounded degree program (with bounded fan-in and
fan-out degree). Then, it is further transformed by means
of a space-time mapping. The method is illustrated with
the dynamic programming algorithm. Clearly, the aim
of fan-in and fan-out reductions is to uniformize the

algorithm. The fan-in reduction is something we have
not considered here. This problem occurs when a naive
algorithm makes use of a census function (which is ap-
plied on a set of data). In a linear recurrence equation,
this cannot be the case. The fan-out reduction is achieved
by means of additional recurrence equations whose con-
stant dependence vectors are, what we call, the uniform-
ization vectors. For the dynamic programming algo-
rithm, this reduction is quite simple.

In [20], Fortes and Moldovan discuss how and
whether data broadcasts in an array processor with a
given interconnection structure can either be eliminated
or reduced by choosing an adequate linear schedule.
They consider the class of linear recurrences whose var-
iable instances V(Az + B) are such that A is rank defi-
cient. In order to have broadcast, the rank of A must
be strictly less than n, the dimension of the index z.
Also, the associated computations must be scheduled
at the same time. For a given schedule, necessary con-
ditions are given on the processor allocation so that no
broadcast is required and the array interconnections
support the necessary data communications, Finally,
they discuss how linear schedules can explore the lim-
ited broadcasting capability offered by the array inter-
connections to implement large broadcasts. In the ap-
proach of Fortes and Moldovan, the interconnection
structure of the array is fixed. In this paper, we do not
consider this because the resulting array is more likely
to be designed on a VLSI chip. It would be useful for
us to extend the presented methodology to the case where
the interconnection structure is fixed. It seems that such
a problem can be solved by adding additional con-
straints related to this structure, as explained in [20].

In [21], Wong and Delosme also consider the elimi-
nation of broadcasting. Hence, as in [20], they consider
dependences whose index matrix is rank deficient. Sim-
ilar to our approach, they are interested by the synthesis
of systolic arrays and they do not make a priori restric-
tion on its interconnection structure. Their problem is
similar to ours; non-uniform dependences must be ex-
pressed as a linear combination of a finite set of unifor-
mization vectors. Their approach is different in the
sense that no affine schedule is required on the resulting
dependence graph. Thus, dependences can be opposite
as in the graph of figure 9. First, the canonical vectors
are chosen as candidates for the uniformization. They
give a necessary and sufficient condition for the accep-
tance of such a canonical propagation. Secondly, it is
generalized to allow the inclusion of non-canonical vec-
tors. They show that all broadcasts are transformable
when using these general propagations. This approach is
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different since the schedule is not a priori taken into
account. In the method that we present, the uniformiza-
tion vectors are minimal in terms of the associated set
of constraints on the affine schedule.

In [19], Rajopadhye and Fujimoto also consider the
transformation of broadcasting into pipelining; hence,
the index matrix A of the linear dependence is rank defi-
cient. The pipelining vectors are also found by comput-
ing the null space of A. They show how to transform
the linear recurrence into a set of conditional uniform
recurrences, and how to propagate the control signals
in the resulting architecture. They also illustrate their
methodology on the dynamic programming algorithm
(for optimal string parenthesization).

In [17], Joinnault considers both the pipelining prob-
lem and the routing problem. The first is solved by
looking at the null space of the index matrix (as in [19],
[20]). To solve the second problem, the non-uniform
dependence is written in terms of n transvections and
one translation. Yet, no systematic method is provided
to find them.

In conclusion, several papers deal with the mapping
of linear recurrences on regular arrays. Yet, they differ
in the form of the linear recurrence equations, and on
the requirements imposed on the uniformization vectors
(existence or not of an affine schedule). Thus, compar-
ing the results must be done with great care!

6. Conclusion

We have described the basics for the analysis of systems
of linear recurrence equations and the principles of the
mapping of such equations on parallel architectures.
We also pointed out a few problems that still need to
be solved. Once overcome, it will be possible to imple-
ment such methods into software packages that will pro-
duce efficient code. Some of the techniques presented
here are already being used in prototype tools for sys-
tolic array design ([32], [33]). The presented approach
is very promising as it makes it possible to apply safe
transformations on the recurrence equations that would
otherwise be very difficult to use. A complete method-
ology should probably include the results of several
other methods, such as the ones presented in section 5.
For example, a complete uniformization method should
include automatic re-indexing transformations as the
folding operation, which can be used for some particu-
lar types of affine function.

The material that we have presented in this paper
has some commonalities with the work that has been
done on restructuring compilers for super-computers.
Merging both fields will probably provide new fruitful
research ideas.
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Notes

1 The reader is referred to [34] for an introduction to convex
polyhedra.
2 This hypothesis is not compulsory, but simplifies the following
presentation. In particular, it can be useful to assume that the domain
has one infinite direction, in order to represent algorithms such as
the convolution. All the results in this paper can be extended to cover
such a case.
3 Recall that a vertex of a convex polyhedron is an extremal point
of the polyhedron, a ray is the direction of an infinite half-line of
the polyhedron, and a line is the direction of a line of the polyhedron.
Any convex polyhedron can be generated by a finite set of vertices,
of rays and of lines. Again, the reader is referred to [34] for definitions.
4 This is the assumption we have made in this paper.
5 Given a set D, the affine hull of D is the smallest affine space which
contains D. The direction of an affine space A is the unique linear
space L such that A is a translation of L [35].
6 Both papers deal with the Algebraic Path Problem, which covers
as a particular case the Gauss-Jordan elimination.
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The Use of Data Dependence Graphs in the Design
of Bit-Level Systolic Arrays

JOHN V. McCANNY, JOHN G. McWHIRTER, AND SUN-YUAN KUNG, FELLOW, IEEE

Abstract—The use of bit-level systolic array circuits as building
blocks in the construction of larger word-level systolic systems is in-
vestigated. It is shown that the overall structure and detailed timing of
such systems may be derived quite simply by using the dependence
graph and cut-set procedure developed by Kung. This provides an at-
tractive and intuitive approach to the bit-level design of many VLSI
signal processing components. The technique may be applied to ripple-
through and partly pipelined circuits as well as fully systolic designs.
It therefore provides a means of examining the relative tradeoff be-
tween levels of pipelining, chip area, power consumption, and
throughput rate within a given VLSI design.

I. INTRODUCTION

THE USE of systolic arrays in the design and imple-
mentation of high performance digital signal process-

ing equipment is now well established. Most of the re-
search to date has concentrated on word-level systems
where the typical processor is of single chip complexity
(at least). Systolic arrays of this type have now been built
at various laboratories throughout the world [l]-[3]. The
systolic array concept can also be exploited at bit level in
the design of individual VLSI chips and a number of com-
mercial components have now been successfully devel-
oped using this design philosophy [4]. These include a bit
slice correlator [5], a bit serial FIR filter [6], a chip for
performing the Winograd Fourier transform [7], [8] and
a rank order filter chip [9]. Bit-level systolic arrays ex-
hibit a number of attractive features:

1) the basic processing element is small (typically a
gated full adder) and an entire array of these may be
integrated on a single chip;

2) the computation time for a single cell is small (typ-
ically 3-4 gate delays) and so the overall throughput
which may be achieved using a given technology is
very high;

3) the highly regular structure of the circuits renders
them comparatively easy to design and test.

In a recent paper [10] we considered how bit-level sys-
tolic array circuits might be used as building blocks in the
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construction of world-level processing systems. Vector
constraint equations were used to describe bit-level sys-
tolic arrays and it was shown that overall regularity could
be achieved if the pattern of data flow within a bit-level
building block is compatible with that required at the word
level. We also suggested that the cut theorem [11] could
be used to establish correct timing for this type of pipe-
lined system but no attempt was made to justify that com-
ment. In this paper, we develop the idea by showing how
an approach developed by Kung [12] may be exploited in
the systematic design of bit-level systolic building blocks.
Suitable architectures are deduced by the projection of de-
pendence graphs, and the detailed timing required for a
pipelined implementation is then derived using a tech-
nique based on the cut set procedure. As in the previous
paper, we consider the computation of inner products at
the bit level (Sections II and 111) and show how a variety
of architectures may be derived for this purpose. We then
describe how the ideas may be extended to matrix x ma-
trix multiplication (Section IV) and discuss some of the
systolic array structures which may be implemented using
bit-level systolic building blocks. The advantages of this
design approach are discussed in Section V and compared
with the technique described in our previous paper.

II. COMPUTATION OH INNER PRODUCTS AT THE BIT

LEVEL

Numerous parallel processing architectures have been
proposed for computing the inner product

s = S cikbk :D

of two vectors a = {ak} and b = {bk} (k = 0, 1, • • - ,
N — 1). By way of example we will consider first the use
of a simple word-level systolic array of the type illustrated
schematically in Fig. 1. It is assumed in this case that
the numbers ak reside on fixed processing sites while the
numbers bk are input in a staggered manner from the right
with each of the black dots representing a delay. One pair
of numbers is multiplied on each processing element and
their product is added to the accumulating result which
propagates vertically as indicated. This corresponds to a
simple recursion of the form s «- s + a^b^.

A. Multiply and Accumulate at the Bit Level

In order to generate an efficient VLSI design for the
type of processing system illustrated in Fig. I (as opposed

Reprinted from IEEE Transactions on Acoustics, Speech, and Signal Processing, pp. 787-793, May 1990.
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Fig. 1. Word-level systolic array for inner product computation.

to using an off-the-shelf multiply and accumulate chip for
each node) it is essential to decide how the calculation is
to be organized at the detailed bit level. One systematic
approach is to employ the techniques developed by Kung
[121 based on the use of dependence/signal flow graphs.

If ak and bk are both n bit binary (positive) numbers and
sk denotes their product, then the pth bit of sk (denoted by
skp) is computed according to the equation

(2)sk.p = S Q ak^bkmP-q + carry bits

where akq and bkq denote the qth bit of ak and bk, respec-
tively. Following the approach adopted by Kung, this
computation is expressed in single assignment form; i .e. ,
a form such as that given in (3) where every variable is
assigned one value only during the computation:

(3a)si,, = 0
(I (I — 1

sip = 4.p
sk.p = sk.p •

+ <*k.qbkmp-H + carries (3b)

(3c)

The computation can then be represented using a depen-
dence graph of the type shown in Fig. 2 where, for sim-
plicity, we have omitted the subscript k. In this represen-
tation the indices of the single assignment algorithm have
been mapped onto a two-dimensional index space, as il-
lustrated. For the purposes of Fig. 2, it has been assumed
that both inputs are 3-b numbers and so a 3 X 3 array of
index points is required. Each dependence relation then
corresponds to an arc between the associated variables
within the index space of the dependence graph. For ex-
ample, in Fig. 2 we assume that each bit of the word a is
common to all points having the same q index, i.e., in the
same row of an array. Similarly, each bit of b is common
to all points within a single column and so it interacts with
each bit of a as required for binary multiplication. It is
assumed that at each point of intersection (i.e., each index
point) a computation occurs and this is represented by the
open circle. The computation required in this example is
the multiplication of two individual bits a and b followed
by addition of the resulting partial product to the accu-
mulating result s and an input carry bit. This may be ac-

5,

i delay

(a) (b)

Fig. 2. Dependence graph for binary multiplication. For simplicity we have
omitted the subscript k from the words a and b. The subscripts refer to
individual bits within these words, (a) Graph derived by projecting de-
pendence graph onlo vertical axis, (h) Linear array derived by projecting
dependence graph onto the horizontal axis.

complished in terms of logic circuits using an AND gate
and a FULL ADDER. It should be noted that carry bits
emerging from the third column of cells must be added to
accumulating results of a higher significance. This is done
by feeding them into the sum inputs of the cells in the row
immediately above, as illustrated. It is worth noting that
apart from the need for carry bits (which must propagate
from the least to the most significant bit positions) the
dependence graph in Fig. 2 also represents the process of
convolving two 3-element sequences of binary digits.

An obvious way to map the computation represented in
Fig. 2 onto physical hardware is to assign a separate pro-
cessing element to each node in the dependence graph and
allow the data bits to ripple through the resulting circuit
as indicated. This corresponds to using the type of 4'rip-
ple-through" parallel multiplier [13] which has become
quite common in the design of signal processing equip-
ment. The computation rate of a ripple-through circuit can
be enhanced through the use of pipelining. A number of
pipelined circuits can be derived from the graph in Fig. 2
by applying the cut-set procedure described by Kung [12].
A valid cut through a dependence graph is one which does
not involve zero delay edges where computational param-
eters move in opposite directions. The number of valid
cuts which can be applied to the graph in Fig. 2 is limited.
One obvious cut is shown in Fig. 3 and referred to as cut
1. The effect of such a cut is to introduce delays (i.e.,
latches) along the data lines which have been cut. The
resulting circuit then constitutes a pipelined shift and add
multiplier where each bit of a is broadcast along one of
the rows, the bits otbk and the accumulating sum bits are
clocked through latches from row to row and the carries
ripple to higher significant bit positions within a given
row.

The circuit can be fully pipelined (and thus takes the
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Fig. 4. An alternative dependence graph tor binary multiplication.

b 0 b< b 2

Fig. 3 . The application of cuts to the dependence graph shown in Fig. 2.

form of a bit-level systolic array) by applying a second
(diagonal) cut as shown in Fig. 3. This imposes a second
delay on each bit of b as it passes from row to row and
corresponds to a carry-save design of the type proposed
by a number of authors including Myers [14], Sheeran
f 15], and Hoekstra [16].

So far. we have only considered bit parallel multipli-
cation. Serial/parallel architectures may be obtained by
projecting the dependence graph in Fig. 2 onto one di-
mension. For example, the linear array in Fig. 2(b) is de-
rived by projecting the dependence graph onto the hori-
zontal axis. The detailed timing of the resulting signal
flow graph can then be derived by noting that on succes-
sive cycles this linear array must perform the computa-
tions assigned to successive rows within the two-dimen-
sional array. The signal flow graph shown in Fig. 2(a) has
been derived by projecting the dependence graph onto the
vertical axis. In this case the timing has been derived by
considering the computations required by successive
groups of nodes which lie along the diagonals in the de-
pendence graph. Fully systolic architectures can then be
derived from these and similar signal flow graphs by ap-
plying cuts perpendicular to the line of processors. A
number of well-known serial/parallel architectures may
be derived in this way including those studied in detail by
Danielson [17] and the ones proposed by Lyon [18] (Fig.
2(a)).

B. Alternative Multiply and Accumulate Architectures

The dependence graph in Fig. 2 represents a multipli-
cation which starts by forming the product of the two least
significant bits a0 and b0. An alternative dependence graph
is stiown in Fig. 4 corresponding to a single assignment
computation of the form:

sir = ° (4a)
4.P = 4~P

{ + a * . , , - 1 - < A - . / > - " + !+</ ( 4 f c ) )

**.„ = * * ; ' • ( 4 c )

In this case, the partial products are summed in the op-
posite order to that defined in Fig. 2 as indicated by the
reverse direction of the diagonal arrows in Fig. 4. One
consequence of reordering the computation in this way is

that an extra triangular array of processing nodes (in the
form of half adders) must be added to the dependence
graph to ensure that all carry bits which emerge from the
right-hand column are included in the final result. It is
also necessary to apply different cuts to the dependence
graph as illustrated in Fig. 5. For example, a vertical or
horizontal cut will produce a semisystolic circuit. Alter-
natively, application of a cut at 45° (equivalent to a hor-
izontal plus a vertical cut) yields the systolic multiplier
which was described by McCanny and McWhirter [19].

C. Application to the Computation of Inner Products

One approach to designing an inner product processor
at the bit level is to embed an appropriate bit-level depen-
dence graph into each processing node of the preferred
word-level circuit diagram. The resulting diagram can
then be cut and/or projected as required to represent a
wide range of alternative circuit implementations. In or-
der to design a highly regular, pipelined circuit, it is nec-
essary to align the flow of data in the bit-level dependence
graph with that dictated by the overall word-level archi-
tecture. In Fig. 6, for example, we show how the data
dependence graph of Fig. 2 may be embedded into a two
stage inner product array of the type illustrated in Fig. 1.
The dependence graphs have been rotated so that the bit-
level computation flows in the direction required for the
circuit architecture in Fig. 1. It will be noted that an extra
column of three cells has been added to each of the de-
pendence graphs in this figure. This is necessary to allow
carry bits which are generated at the top left-hand edges
of each array to be added to accumulating sum bits. Fig.
6 represents a word-level systolic array whose processing
elements have been implemented using straightforward
ripple-through parallel multipliers. However, by applying
the type of cut illustrated in Fig. 3, it is possible to rep-
resent circuits which are pipelined at the bit level. A fully
systolic circuit which uses the cuts in Fig. 3 is illustrated
in Fig. 7. Note that the bits of bi are delayed relative to
those of b0 before being input to the array as one might
expect in a systolic implementation.

The inner product processor array in Fig. 1 could also
be implemented using serial parallel multipliers and var-
ious architectures of this type may be obtained by pro-
jecting the bit-level dependence graph of Fig. 6 onto one
dimension. For example, a signal flow graph representing
a linear chain of serial parallel multipliers of the type il-
lustrated in Fig. 2(a) may be obtained by projecting Fig.
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Fig. 6. Dependence graph lor inner product computation based on Fig. 2.

6 in the corresponding direction, This projection allows
the bits of each number ak to remain on a fixed processing
site as implied by the word-level diagram in Fig. 1. Cuts
can then be applied perpendicular to the data lines in this
graph to eliminate broadcasting if required.

III. AN ALTERNATIVE APPROACH

In the last section we assumed, in effect, that the inner
product computation would be implemented using an ar-
ray of multiply/accumulate processors. These were sub-
sequently pipelined at the bit level to increase the overall
throughput rate. This approach is often referred to in the
literature as "two level pipelining"! 11]. An alternative
method is to consider the entire problem at bit level from
the outset. This leads to some novel architectures and, in

Fig. 7. Application of the cuts shown in Fig. 3 to Fig. 6.

fact, many of the bit-level systolic arrays proposed to date
have been designed in this way.

Consider the computation in (1). Thepth bit of the re-
sulting inner product may be expressed in the form

N~\ n-\

sp = S S akmlt b^p-q + carries.
* - o </ = o

(5)

The traditional approach described in Section 11 corre-
sponds to summing first over the index q and then over
the index k. An alternative architecture may be obtained
by reversing the order of summation and expressing the
computation of partial product sums

N- I

(6)**•"-" - *?o ^k.ii bk.p-t,

in the single assignment form

*V/> - </-„ = 0

4-/» -7 = Ar-'i + a*</ bk.r-ii + c a r r i e s

(7a)

(7b)

(7c)

The entire computation may then be represented by means
of a three-dimensional dependence graph with axes (p, q,
k) as illustrated in Fig. 8. Each horizontal plane of this
graph represents the interaction of bits between one pair
of numbers ak and bk. However, there are no diagonal
connections within each plane in contrast to the graph in
Fig. 2. Instead, there are connections in the vertical di-
rection corresponding to the partial product summation in
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Fig. 8. An alternative dependence graph for inner product computation.

(6). In order to form each bit in the final result, all partial
product sums of the same significance must be added to-
gether. This is represented by the bottom plane in the de-
pendence graph where the diagonal interconnections cor-
respond to the summation over q in (5). The arrows in
Fig. 8 imply a specific ordering of the computation in ac-
cordance with (7). Other orderings may of course be de-
rived by writing the basic recurrence in a different form.
This will lead, in turn, to modified dependence graphs
with arrows pointing in different directions from those in
Fig. 8 and will thus give rise to different processor archi-
tectures.

Direct implementation of the dependence graph in Fig.
8 would of course require a three-dimensional VLSI cir-
cuit technology. A range of two-dimensional signal flow
graphs can, however, be generated by projecting Fig. 8
onto various planes. The resulting diagrams can then be
cut as required to produce circuits which are fully pipe-
lined and systolic at the bit level. For example, if the axes
in Fig. 8 are denoted (p, q, k) and we project onto the
plane (1, 1, 0) the resulting signal flow graph can then
be cut in the horizontal and vertical directions to produce
the bit-level systolic array design shown in Fig. 9 where
the bits of ak and bk move in opposite directions (Mc-
Canny et al. 120J). For simplicity, we have omitted the
bottom row of cells from Fig. 9. These constitute a simple
accumulator which is defined by applying the same pro-
jections and cuts to the bottom plane in Fig. 8.

Fig. 9. Bit-level systolic array lor the computat ion oi inner products latter
Me Canny ct al. (20]) .

It is also possible to define an array in which the bits of
one set of numbers remain on fixed processing sites by
projecting onto either the (1, 0, 0) plane (for fixed a) or
the (0, 1, 0) plane (for fixed b). An architecture of this
type is shown in Fig. 10 and corresponds to the circuit
design reported by Urquhart and Wood 121]. It is inter-
esting to note that the dependence graph in Fig. 8 (omit-
ting the bottom accumulator plane) is equivalent to a
word-level dependence graph for matrix x matrix multi-
plication provided that the individual bits are interpreted
as numbers and the processing elements are defined ac-
cordingly. Not surprisingly then, the bit-level systolic cir-
cuits which can be generated from Fig. 8 have direct an-
alogs with the systolic array circuits generated from ma-
trix x matrix multiply dependence graphs by authors such
as Frison et al. [22] and Kung [12].

I V . EXTFNSLON TO MATRIX X MATRIX

MULTIPLICATION

These ideas discussed above may be extended in a num-
ber of ways to other operations such as matrix x matrix
multiplication. One approach is to take an established
word level architecture such as shown in Fig. 11 (in which
the matrices X and Y are multiplied to form the product
matrix Z and represent each processing element by a bit-
level dependence graph of the type shown in Fig. 2, for
example. In this case, each column of Fig. 11 (which per-
forms an inner product computation) would be repre-
sented again by the dependence graph in Fig. 6 and sim-
ilar projections and cuts may be applied to the entire
diagram to define the various hardware structures. This
procedure serves to define all delays which are required
to ensure that the movement of every bit in each element
of the X and Y matrices is properly synchronized no mat-
ter what level of pipelining is incorporated. Note that the
graph in Fig. 11 represents an orthogonal array but has
been deliberately skewed for consistency with the bit-level
inner product computation array described in Fig. 1.

An alternative approach, once again, is to start with a
dependence graph which describes the entire computation
at bit level before introducing any form of pipelining. For
example, Fig. 12 depicts word-level dependence graph
required for matrix x matrix multiplication. If each col-
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Fig. 11. Word-level systolic array for matrix x matrix multiplication.

Ix.i yij

^C

Fig. 12. Dependence graph for matrix x matrix multiplication imple-
mented at word level.

Fig. 13. Dependence graph for matrix X matrix multiplication imple-
mented at bit level. In this figure we assume that each column of nodes
in Fig. 12 has been replaced with the bit-level dependence graph shown
in Fig. 8.

umn of this graph (which represents the inner product of
two vectors) is replaced by the dependence graph in Fig.
8 then a rather complex three-dimensional graph is ob-
tained which describes both the word-level and bit-level
data interactions (Fig. 13). Similar projections and cuts
to those described for Fig. 8 can be applied to this graph.
Projecting onto the (1 ,1 ,0) plane and cutting the result-
ing signal flow graph both vertically and horizontally leads
to the bit-level matrix x matrix multiplier proposed by
McCanny ex al. [20]. This is simply an expanded version
of Fig. 9 in which more than one set of inner product
computations occurs simultaneously. Projecting the graph
onto the (0, 1, 0) or (1, 0, 0) planes leads once again to
an array in which one set of coefficients remains static. In
this case, the resulting matrix multiplier takes the form of
a cascade of inner product arrays of the type shown in
Fig. 10 and corresponds to the architecture described by
Urqhart and Wood [21].

V. DISCUSSION

As illustrated in the previous sections, the dependence
graph and cut-set procedure developed by Kung [12] for
describing systolic arrays at the word level can readily be
extended to computations at the bit level. This approach
is both simple and intuitive to use with the advantage that
it allows many types of bit-level circuit to be described
using the same graph. No supposition is made initially as
to whether a design will be ripple through, partly pipe-
lined, or fully systolic. It therefore provides a general tool
which enables the VLSI chip designer to examine the rel-
ative tradeoffs between levels of pipelining, chip area,
power consumption, latency, and throughput rate for a
given application. It is important to retain this degree of
flexibility within the design process since, for example,
the effect of introducing pipeline delays is to increase the
latency of a given circuit and this may be unacceptable
for some applications even in signal processing. The ap-
proach developed in this paper may be also used to map
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a specificied function onto other types of processor where
computations are performed at the bit level. Examples in-
clude SIMD architectures such as the ICL DAP or the
NCR GAPP machine.

Finally, it is interesting to compare this approach to bit-
level systolic array design with the technique which we
discussed in a previous paper based on the use of vector
constraint equations as proposed by Li and Wah [23]. One
advantage of the latter method is that the constraint equa-
tions, being vectorial in nature, do not imply a preferred
ordering of computation and therefore describe a broader
range of systolic architectures. One the other hand, de-
signs generated using the dependence graph and cut-set
procedure are highly dependent on the order of compu-
tation defined within the initial dependence graph. One
disadvantage of the constraint equation approach is that it
applies only to systolic circuits and not to corresponding
ripple-through or partly pipelined circuits. Furthermore,
it may be difficult to find all the solutions to the constraint
equations and thus explore the range of architectures
which may be derived.
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M atrix computations, character-
ized by having matrix operands
and/or results, are a frequently

used mathematical tool in modern scien-
tific and engineering applications. For
example, in a review of parallel-pro-
cessing algorithms and architectures for
real-time signal processing, Speiser and
Whitehouse1 indicated that the major com-
putational requirements for many impor-
tant real-time signal-processing tasks
(such as adaptive filtering, data compres-
sion, beam-forming, and cross-ambiguity
calculation) can be reduced to a common
set of basic matrix computations. This set
includes matrix-vector multiplication,
matrix-matrix multiplication and addition,
matrix inversion, solution of linear sys-
tems, eigensystems solution, matrix de-
compositions (LU-decomposition, QR-
decomposition, and singular-value decom-
position [SVD|), and the generalized SVD
algorithm.

Matrix operations of the type mentioned
above are computation intensive. Conse-
quently, they require high computing rates
to achieve acceptable execution speed and
to meet the time constraints of many appli-
cations. Thus, parallel algorithms and

Systolic-type arrays use
both the fine-grain
parallelism and the
regularity of matrix

computations effectively.
The multimesh graph
method for deriving

these arrays is
systematic, flexible, and

easy to use.

architectures are often needed.2 As Figure
1 shows, several classes of parallel archi-
tectures have been used for matrix compu-
tations. Vector computers, for example,
exploit parallelism through vector instruc-

tions, extracted from sequential programs
by vectorizing compilers. Array comput-
ers use a similar type of parallelism. Multi-
processor systems, on the other hand,
exploit parallelism at several levels, in-
cluding vector operations, concurrent exe-
cution of several loop iterations, and block
methods. Because of their importance,
matrix computations have become one of
the preferred benchmarks for parallel
architectures.3

Although the above-mentioned parallel
architectures have demonstrated their ef-
fectiveness for executing matrix computa-
tions, they suffer from several degradation
factors. These arise from the relative gen-
eral-purpose character of the machines and
from the need to adapt the algorithms to the
specific hardware. Moreover, their gen-
eral-purpose nature makes it necessary to
include features that increase cost (for
example, complex memory-addressing
schemes) and also make the architectures
less suitable for very large scale integra-
tion (VLSI) and wafer-scale integration
(WSI) technology (broadcasting or com-
plex interconnection networks, for ex-
ample). These drawbacks led to the intro-
duction of application-specific architec

Reprinted from IEEE Computer, pp. 32-51, April 1990.
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tures and, in particular, of systolic-type
arrays, which are natural for matrix com-
putations because they match the fine
granularity of parallelism available in the
computations and have very low overhead
in communication and synchronization,
(This contrasts with dataflow computers,
which also use fine-grain parallelism but
have high overhead.) In addition, the regu-
lar nature and nearest-neighbor connec-
tions of systolic-type arrays meet the re-
quirements for effective use of VLSI and
WSI.4

This article focuses on the execution of
matrix computations on systolic-type ar-
rays in an application-specific environ-
ment. We first present an extension to the
concept of a systolic cell by incorporating
a small, fixed amount of storage inside the
cells, and we discuss the trade-offs this
storage gives rise to. Then we review dif-
ferent approaches to decomposing (parti-
tioning) large problems, highlighting their
bandwidth requirements and their capa-
bilities for using the storage in the cells.
Finally, we discuss the basic characteris-
tics of methods for the design of systolic-
type arrays, describe the multimesh graph
(MMG) design method, and illustrate its
application to the transitive closure algo-
rithm. Other examples, including LU-de-
composition, QR-decomposition, and the
Faddeev algorithm, are given elsewhere.5

Although applying the MMG method to
the examples indicated above has pro-
duced arrays whose cells are simpler and
better utilized than those in previously
proposed structures for the same algo-
rithms, this article concentrates on the
method's capabilities rather than on the
arrays obtained.

Algorithms and
systolic-type arrays

Several algorithms may exist for a given
computation. Some of these algorithms
are suited for sequential execution (that is,
in a single processor), while others are
better suited for particular types of parallel
architectures. Matrix computations have
properties that make them attractive for all
the architectures mentioned earlier, and
many algorithms have been developed for
the different classes. For execution in
systolic-type arrays, the algorithm should
exhibit sufficient fine-grain parallelism.
This is often characteristic of traditional
algorithms used in sequential computers,
hut in other cases special algorithms have
been developed.6

Vector
computer

Systolic-type array

Array
computer

Figure 1. Parallel architectures for matrix computations.

Depending on their range of applicabil-
ity, there are two types of application-
specific arrays: algorithm specific and
class specific. Algorithm-specific arrays
can execute only one particular algorithm.
As Figure 2a illustrates, these structures
may be the most appropriate solution for
some applications because they offer the
possibility of matching an array to a given
algorithm and of fulfilling specific im-
plementation requirements (such as speed,
size, and power consumption). If the appli-
cation consists of the matrix operation and
other computations, the array should be
combined with other modules to perform
the complete task, composing a heteroge-
neous system. In addition, such an array is
usually connected to a host that performs
I/O and control functions. The realization
of an algorithm-specific array consists of
determining

• the topology of the array (triangular,
linear, rectangular, etc.),

• the functionality of each processing
element,

• the schedule of operations and data
transfers, and

• the I/O schedule.

By contrast, in some situations the set of
matrix computations is varied and not even
predefined. In these cases a better solution
is a class-specific array, that is, a general
array that can be adapted (programmed)
for a class of matrix algorithms, as Figure
2b illustrates. Programming a class-spe-
cific array consists of determining

• the assignment of operations to cells,
• the schedule of operations and data

transfers, and
• the I/O schedule.

Figure 2. Classes of application-specific arrays for matrix computations: (a) al-
gorithm specific, (b) class specific.
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Glossary
Matrix computation — A computation having matrix operands and/or results.
Fine-grain parallelism — Parallelism at the level of basic (arithmetic) operations.
Array processor — A network of processing elements (PEs) that execute the same operation, synchronously, on different

data elements; the operation is broadcast to all PEs.
Array (processor array) — A hardware network of processing elements with nearest-neighbor communication (no broad-

casting).

Cell — A processing element.
Systolic-type array — A two-dimensional processor array with cells of similar complexity connected in regular nearest-

neighbor manner, synchronized dataflow, and external I/O only at boundary cells.
Mesh array — A systolic-type array with cells connected by unidirectional orthogonal nearest-neighbor links.
Systolic cell — A cell with no local storage.
Pseudosystollc cell — A cell with a small, fixed amount of local storage.
Local-access cell — A cell with storage proportional to the size of problems.
Pipelined cell — A cell capable of performing several operations simultaneously by pipelining execution of operations

through several computing stages within the cell.
Stage time — The time taken by a stage of a pipelined cell.
Optimal utilization of cells — A new operation is initiated in every computing cycle.

Application-specific array — An array designed for specific purposes (in contrast with general-purpose architectures,
which are designed for [almost] any purpose).

Algorithm-specific array — An array designed for one algorithm.
Class-specific array — An array suitable for a class of selected algorithms.

Realization of an array — The design of an application-specific array for a given algorithm or class of algorithms (topol-
ogy, functionality of cells, scheduling, data transfers, data I/O).

Mapping onto an array — Determining the execution of an algorithm on a predefined array (operations per cell, schedul-
ing, data transfers, data I/O).

Partitioning — Decomposing a large problem for execution on a small array.

Both algorithm-specific and class-spe-
cific cases should meet the requirements of
a particular application and should opti-
mize relevant criteria. Consequently, the
design of an algorithm-specific array and
the programming of a class-specific struc-
ture have many aspects in common, and
similar techniques can be used for both
activities. We refer to these tasks as reali-
zation and mapping, respectively. In this
article we concentrate on the realization of
application-specific arrays for matrix al-
gorithms. Mapping is discussed exten-
sively elsewhere.s

Systolic and
pseudosystolic
mesh arrays

Let's examine the properties of an archi-
tectural model consisting of a mesh of

processing elements (cells) with unidirec-
tional orthogonal links. We refer to this
architecture as a mesh array (see examples
in Figure 3). These arrays are hardware
networks of processing elements with the
following basic characteristics:

• linear or two-dimensional structures
with cells connected in nearest-neigh-
bor manner (a linear array with K cells
is a mesh of dimension K by 1);

• external I/O from a host only at the
boundaries of the array;

• unidirectional communications be-
tween cells, that is, dataflow from cell
to cell in one direction only, without
data counterflow; and

• local communications only, that is, no
capability for broadcasting or routing
data through cells without using that
data.

Analysis of a large class of matrix algo-

rithms has shown them to consist of primi-
tive operations with up to three operands
and up to two results, as Figure 4a illus-
trates. Since cells of linear and two-dimen-
sional mesh arrays have only two input and
two output ports, the third operand is ob-
tained from a feedback loop within the cell
(Figure 4b). So, for ternary operations
(those requiring three operands), two
sources of data are off-cell and the third
source is a feedback loop within the cell.
On the other hand, the outputs from a cell
can be either results computed within the
cell or operands used in the cell and passed
through without modification (that is,
transmitted data1).

We assume that the execution time is the
same for all operations and that the stage
time is the same in pipelined cells. These
assumptions, customarily used for the de-
sign of application-specific arrays, are
highly implementation dependent.

In terms of the communication band-
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Figure 3. Examples of mesh arrays.

Figure 4. Primitive operation (a) and cell (b).

width, we consider three types of cells:

(1) Systolic cell — a cell with no local
storage except for registers used to latch
input operands (Figure 5a). Data flows
through cells, so every operation in each
cell requires one data transfer per data
source. Consequently, the communication
rate is the same as the computation rate of
cells.

This type of cell is suitable for imple-
mentation in wafer-scale-integration tech-
nology because an entire array can be
placed on a single wafer and there is no
need to go off-wafer for communicating

between cells. This is in contrast to very
large scale integration technology, where
only a few cells are placed on a chip, so that
it is necessary to go off-chip to communi-
cate between cells. The off-chip transfers
degrade speed because of the lower band-
width.

(2) Pseudosystolic cell — a cell with a
small, fixed amount of storage (the amount
of storage is independent of the size of
problems to be solved in the array). This
storage comprises two separate FIFO buff-
ers, one for the vertical flow and the other
for the horizontal flow of data through the
array. Figure 5b depicts a pseudosystolic

cell with its ports and buffers. The ports
and/or local storage provide two sources of
data for every operation; the third source is
a feedback loop within the cell.

Since the size of the FIFO buffers is
fixed and small, we assume that access
time to this local storage matches the exe-
cution rate of the functional unit (that is,
cell pipeline stage time or functional unit
time) and that it is shorter than the time
needed to transfer data between cells. This
property is exploited by performing suc-
cessive operations with data from the buff-
ers, without accessing the ports. Conse-
quently, pseudosystolic cells need not
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Figure 5. Different types of cells: (a) a
systolic cell, (b) a pseudosystolic cell,
(c) a local-access cell.

receive data through the ports at every
cycle, so the communication bandwidth of
pseudosystolic cells is lower than their
computation rate. This lower communica-
tion rate is adjusted to the cell computation
rate by FIFO queues attached to the ports.

Pseudosystolic cells are suitable for
implementation as one cell per chip be-
cause they have only a small amount of
local memory and the off-chip communi-
cation rate is lower than the on-chip com-
putation rate. The amount of storage deter-
mines the relation between these rates, as
we'll see later.

(3) Local-access cell — a cell with stor-
age space proportional to the size of prob-
lems to be solved in the array (Figure 5c).
Operations are performed in each cell with
up to two operands obtained from local
storage, so that data received from neigh-
bor cells is stored before it is used. Another
source of data is the feedback loop within
the cell.

Local-access cells have sufficient
memory to store a large portion of the data
locally and to reduce communications
between cells. Consequently, the commu-
nication rate is much lower than the com-
putation rate (much less than one word per
port per time-step). Local-access cells are
suitable for implementation at the board
level because they require a large local
memory.

The remainder of this article will focus
on systolic and pseudosystolic cells. A
discussion on the use of local-access cells
in arrays for matrix computations appears
elsewhere.5

The model of computation used in mesh
arrays consists of the synchronized flow of
data through cells (Figure 6a), with opera-
tions performed in each cell. At each time-
step, a cell reads operands from input ports,
local storage, and/or the feedback loop;
performs an operation; and delivers results
to output ports, local storage, and/or the
feedback loop. For pipelined cells the
model of computation is similar, except
that the results delivered to ports, the feed-
back loop, and local storage are from an
operation previously initiated in the pipe-
line.

Size of problem
and array

The relative size of the matrices and of
the array significantly affects the design
and operation of the computing structure.
Two different cases can be identified.
When the matrix size is fixed, the array can
be designed to use the maximum parallel-
ism achievable. When the matrix is much
larger (its size may not even be predefined)
than a cost-effective array, the computa-

tion is partitioned into subproblems, which
are executed in sequence on the array (par-
titioned problems'*). Consequently, the
array is used many times while operating
to solve a single large problem.

The model of computation described
earlier is suitable for fixed-size algorithms
executed repeatedly with different sets of
input data (multiple-instance algorithms)
or for partitioned algorithms. In either case
an instance (or subproblem) can use a cell
during several time-steps, and various
instances (or subproblems) can execute
concurrently throughout the array. Figure
6b depicts the flow of several instances
through a mesh array.

There are different approaches to parti-
tioning a problem, depending on the type
of cells used. The approach suitable for
systolic and pseudosystolic cells is a two-
level scheme wherein the algorithm is
decomposed into subproblems and each
subproblem is decomposed into compo-
nents, A subproblem is mapped onto the
entire array, and each component is
mapped onto a different cell. Subproblems
are executed in pipelined fashion, accord-
ing to a certain schedule. This sequential
execution requires feedback of data and
memory external to the array, but little or
no storage inside the cells (depending on
the components of the subproblems, to be
described later). This approach produces
good load balancing.

As an example, Figure 7 illustrates an
algorithm partitioned into subproblems
whose components exhibit a rectangular
communication pattern (except at the
boundaries of the algorithm). Conse-
quently, subproblems are executed in a
rectangular array. This type of partitioning
is known as cut-and-pile? It has also been
referred to as locally parallel globally
sequential partitioning.1

On the other hand, the approach suitable
for local-access cells partitions the entire
algorithm into a number of subproblems
equal to the number of cells in the target
array, and it maps each subproblem onto
one cell. As a result, the dependencies
among the subproblems should match the
interconnection structure of the array, cells
must have a large amount of local storage
(enough to store all data for the corre-
sponding subproblem), and cells need low
bandwidth. However, this scheme requires
a careful selection of subproblems to
achieve good load balancing.

Figure 8 shows this technique, wherein
an algorithm is partitioned into a number
of communicating subproblems that are
mapped onto the array. This type of parti-
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Figure 9. Partitioning through decomposition into subalgorithms.
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Algorithm

Derivation of
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Regularized
algorithm Array

Figure 10. The stages in a design method.

tioning is known as coalescing* It has also
been referred to as locally sequential glob-
ally parallel partitioning ?

A different partitioning strategy, shown
in Figure 9t was proposed by Navarro et al.8

In this case an algorithm with large, dense
matrices is transformed into an algorithm
with band matrices and computed in an
array tailored to the band size. This ap-
proach has the potential for high perform-
ance when applicable but is less general
than the schemes discussed above, because
the decomposition depends on the algo-
rithm.

Characteristics of
array design methods

Several techniques have been proposed
for the design of arrays, as reviewed by
Fortes et al.9 The most successful approach
has been a transformational paradigm,
wherein the description of an algorithm is
successively transformed and made suit-
able for implementation. Let's examine
some of the important issues regarding
transformational methods for the design of
application-specific arrays.

Stages in a transformational method.
We identify two stages in the application
of a transformational design technique:
regularization, and derivation of arrays
(see Figure 10).

Regularization is the derivation of a
regularized representation of an algorithm
from an initial admissible form. This regu-
larized form must provide an implicit or
explicit description of parallelism in a
manner suitable for implementation in
arrays. Moreover, the regularized repre-
sentation must be in a form suitable for ma-
nipulation in the remaining steps of the
method.

The second stage, derivation of arrays,
uses the regular description obtained
above and determines the topology and
structure of the array, as well as the charac-
teristics of cells, the flow of data, and the
I/O.

The requirements and characteristics
associated with each stage allow us to
precisely define and compare the capabili-
ties of different techniques. Within this
framework the features of a design method
can be stated in terms of specific factors. In
the regularization stage these factors are

• the class of algorithms to which the
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method can be applied, that is, the
generality of the initial admissible
form of the algorithms;

• the completeness and simplicity of the
transformations used to produce a
regular description; and

• the effectiveness of the regular de-
scription in conveying the properties
of an algorithm in a form suitable for
implementation in arrays.

In the derivation-of-arrays stage these
factors correspond to the capabilities and
simplicity of the transformations used to
derive an array from the regularized form.
In particular, they include the capabilities
of the transformations to

• incorporate implementation con-
straints and restrictions, such as lim-
ited local storage and limited band-
width, into the design;

• incorporate different attributes of the
processing elements, such as pipelin-
ing, nonconventional arithmetic, and
specialized functional units;

• perform optimization of specific per-
formance measures as part of the de-
sign process;

• design arrays for fixed-size data and
partitioned problems; and

• realize algorithm-specific arrays and
map algorithms onto class-specific
arrays.

An additional factor, applicable to both
stages, is suitability for automation.

Representation of regularized algo-
rithms. Transformational approaches dif-
fer. Among these differences are the way a
regularized description is obtained and
represented and the capabilities associated
with the description. In other words, meth-
ods differ in the notation used to represent
a regularized form and in the suitability of
the notation to perform transformations to
derive an array. This notation determines
the simplicity of the methods as well as the
guidance provided to select suitable trans-
formations, as discussed below.

Abstract notations and/or lack of simple
systematic transformations produce tech-
niques that hide important properties of
algorithms and implementations, in many
cases leading to inadequate conclusions
regarding an algorithm's features and their
suitability for a particular array. An ex-
ample is the use of algebraic expressions in
H.T. Kung's pioneering work on systolic
arrays.6 Kung concluded that "LUdecom-
position, transitive closure, and matrix

multiplication are all defined by recur-
rences of the same 'type.' Thus, it is not
coincidental that they are solved by similar
algorithms using hexagonal arrays."
Moldovan10 made a similar statement
when describing an algebraic design ap-
proach. However, it has been shown that
the algorithms for these computations have
quite different dependency structures, so
that they are mapped efficiently only onto
different arrays/

The two most popular types of represen-
tation are algebraic expressions and gra-
phical descriptions.9 In algebraic-based
methods the regularized description is
given as a set of algebraic expressions, and
transformations are applied to these ex-
pressions to obtain an implementation.
Research by Rao and Kailath" provided a
unifying framework for many of the alge-
braic-based approaches, which basically
are all techniques derived from Karp,
Miller, and Winograd\s work.12

A different line of research uses graphi-
cal notations to describe an algorithm.
Examples are the signal flow graph
method7 and our multimesh graph
method.s Graph-based methods start by
representing an algorithm as a graph.
Transformations are applied on the graph,
as part of the regularization stage, to render
it more suitable for later design steps. The
regularized graph is then mapped (pro-
jected) onto an array either directly or
through other intermediate representa-
tions.

Many design techniques — algebraic-
based approaches in particular — have not
provided specific tools to obtain the corre-
sponding regularized representation. In-
stead they have assumed that this represen-
tation is already available. In cases where
some attention has been given to the regu-
larizing process, the proposed techniques
are either ad hoc or heuristic, and the re-
sults obtained are not satisfactory. In other
words, proposed methods have addressed
only the second design stage and have
largely ignored the first.

For some simple algorithms, such as
matrix multiplication, finding the regular-
ized version (for example, a regular itera-
tive algorithm" or a uniform recurrence
equation1*) is straightforward, so that the
lack of a systematic procedure is not an
issue. However, simple algorithms are
relatively few; most matrix algorithms of
importance (LU-decomposition, QR-de-
cornposition, transitive closure, Gaussian
elimination, and the Faddeev algorithm,
for example) are not easily described in
those regularized forms. Moreover, the

regularized form is often more complex
than the original algorithm, perhaps hav-
ing additional operations. Specific ex*
amples of these issues are given else-
where.5

Limitations of methods in the deriva-
tion of arrays. Each of the previously
proposed methods has certain limitations
regarding the derivation of arrays. A
method may

• be oriented toward the design of sys-
tolic arrays only, that is, arrays of cells
with no local storage and high band-
width;

• assume that all cells in an array are
identical;

• have predefined characteristics of
cells and therefore be unable to incor-
porate other implementation con-
straints or restrictions, such as type of
cells and I/O bandwidth, into the de-
sign;

• be unable to analyze trade-offs among
implementation parameters such as
amount of local storage and communi-
cation bandwidth of processing ele-
ments; or

• produce arrays with suboptimal cost
and/or performance.

The limitations in regularization and
realization discussed above motivated
development of the multimesh graph
method.

The multimesh graph
method

The class of matrix algorithms suitable
for the multimesh graph (MMG) method is
described recursively by an outermost loop
and a loop body that contains scalar, vec-
tor, and matrix operators, as well as other
matrix algorithms (see Figure 11). A se-
quence of these algorithms is also a matrix
algorithm. The operators have the follow-
ing characteristics:

(1) Scalar, or primitive, operators (such
as add, multiply, rotation, and sine) are
basic unary, binary, or ternary operations
that can produce up to two outputs and
whose computation time is data independ-
ent. In practice, scalar operators produce a
single result, except in cases such as rota-
tion of a pair of elements, which produce
two outputs.

(2) Vector operators have up to two
vector operands and produce up to two
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Figure 12. Dependency graphs of vector operator (a) and matrix operator (b).

vector results. The same primitive opera-
tor is applied to each element of the vector
operands to produce the vector results. An
additional scalar operand is common
(broadcast) to all instances of the primitive
operator. Figure 12a shows the depend-
ency graph of a vector operator.

(3) Matrix operators have up to one
matrix operand, one vector operand com-
mon to rows of the matrix operator, and a
second vector operand common to col-
umns of the matrix operator. A matrix
operator produces a matrix result by apply-
ing the same primitive operator to each
element of the matrix operand (and associ-
ated elements from the vector operands).
Figure 12b shows the dependency graph of
a matrix operator.

The discussion above shows that vector

and matrix operators consist of primitive
operations tied together by the common
operand(s). Such an operand(s) corre-
sponds to the broadcasting of data through-
out the elements of the vector/matrix. To
implement these operators in mesh arrays,
we must eliminate the broadcasted data,
which is accomplished by applying a trans-
formation (replacing data broadcasting
with transmitted data).

Since primitive operators can be unary,
binary, or ternary, matrix and vector opera-
tors need not have all the operands indi-
cated above. For example, the addition of a
constant to each element of a vector does
not use a second vector operand. On the
other hand, the properties of matrix and
vector operators rule out performing op-
erations with two matrices or with three
vectors (that is, adding two matrices or

rotating elements of two vectors by corre-
sponding angles contained in a third vec-
tor). These operators are not suitable for
implementation in arrays, because they
require external data input to inner cells
(there is no common [broadcasted] data
that is transferred through cells). For our
purposes, such cases correspond to sets of
scalar operations.

Limitations in the number of inputs and
outputs to/from the operators in a matrix
algorithm, as described above, arise from
the objective of realizing those algorithms
in mesh arrays. Since cells of arrays have
only two input and two output ports, plus
an internal feedback loop, an operator
cannot have more than three operands.
Moreover, since the arrays have only near-
est-neighbor connections and external I/O
only at the boundaries, it is necessary to
transfer broadcasted data through the cells
(as transmitted data). Consequently, the
maximum number of input operands is
three, and the combined number of com-
puted results and transmitted data output
from a eel! is also limited to three.

The form of a matrix algorithm, as de-
scribed above, does not place any require-
ments on the way loop indices are used to
reference the elements of matrices and
vectors. Two types of references have been
considered: uniform and affine. With uni-
form references, each loop index used to
address a variable appears in the form
(/-/0) (the index plus/minus a constant).
Affine references use the more general
form (/' +j +...+ k0) (a linear combination of
indices and a constant). Uniform refer-
ences are the more common type and ap-
pear in most matrix algorithms — for
example, LU-decomposition, QR-decom-
position, SVD, and transitive closure, to
name just a few.

Using uniform or affine references to
access variables does not imply that the
algorithm must be a uniform or an affine
system of equations, as required by other
methods (particularly algebraic-based
techniques), such as those described by
Rao and Kailath11 and by Quinton.13 The
form of admissible algorithms given here
is more general than in those cases. For
example, the MMG method can use the
transitive closure algorithm as originally
expressed in Warshall\s algorithm, while
Rao's method requires that the algorithm
be represented as an RIA (regular iterative
algorithm). Similar situations arise with
the other methods and algorithms, such as
LU-decomposition, Gaussian elimination,
and convolution.

The canonical form of matrix algorithms
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shown in Figure 11 and described in the
previous paragraphs is quite general; for
instance, it directly accepts the important
class of matrix algorithms appearing in
areas such as real-time signal processing.1

Moreover, algorithms in this class match
well with implementations as mesh arrays.
Other representations are also allowed
with the MMG method, as long as they
have the type of operators listed earlier and
are amenable to the transformational pro-
cess.

Transformational process. The MMG
method uses a transformational paradigm.
First, a fully parallel data-dependency
graph (FPG), in which nodes represent op-
erations and edges correspond to data de-
pendencies, is derived from the algorithm.
We use an FPG because this notation ex-
hibits the intrinsic features of an algo-
rithm. This graph could be used to directly
derive an implementation by assigning
each node to a different processing ele-
ment (PE) and by adding delay registers to
synchronize the arrival of data to PEs. The
resulting structure (a pipelined realization
of the graph) exhibits minimum delay
(determined by the longest path in the
graph) and optimal throughput (for mul-
tiple-instance computations), but it might
require nonneighbor and varying-distance
connections, large I/O bandwidth, and
many units. The MMG method deals with
these problems while preserving the fea-
tures inherent in the data-dependency
graph.

The two design stages, regularization
and derivation of arrays, and the steps
within them are depicted in the high-level
description of the MMG method (Figure
13). The method is described below, where
we also indicate the suitability for automa-
tion of the different steps involved. More
details regarding this method and its theo-
retical backing are available.5

The regularization stage. The regulari-
zation stage produces a three-dimensional
graph, which we call a multimesh depend-
ency graph. This graph has the following
characteristics:

• unidirectional and nearest-neighbor
dependencies,

• edges parallel to axes of the three-
dimensional space, and

• nodes at integer values of the axes.

This regularized form is suitable for the
derivation of arrays because in addition to
preserving all the information present in

Figure 13. The MMG design method.

the FPG, it has the regular properties that
characterize mesh arrays. Moreover, as we
will show, the multimesh dependency
graph makes it easy to obtain the character-
istics of an array, the schedule of opera-
tions and I/O, and the data transfers.

Some researchers have regarded the de-
pendency graph of a matrix algorithm as
multidimensional instead of three dimen-
sional. Such a conclusion was reached by
representing in a graph the index depend-
encies in the algorithm. In other words, the
dimensionality of the graph was defined by
the number of indices appearing in an algo-
rithm. In those approaches every variable
is required to have all indices, so that each
instance of a variable is associated with a
point in the multidimensional index
space.101113 In contrast, the dimensional-

ity of the data-dependency graph in the
MMG method is determined by the maxi-
mum of three inputs and three outputs per
primitive node. A comparison of data
dependencies and index dependencies, and
their suitability for a design method, is
available.5

The regularization stage in the MMG
method is performed in two steps. First, we
obtain the fully parallel data-dependency
graph (FPG) of the algorithm. This graph is
obtained by tracing the execution of the
algorithm (the outer loop and loop body).
This means that we symbolically execute
the algorithm, tracking which variables are
used and when, and we allocate operations
to nodes of a graph and data references to
its edges. In other words, the FPG corre-
sponds to an unfolded dataflow graph. As
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Figure 14. Symbolic execution of Warshall's transitive closure algorithm.

an example, Figure 14 depicts the sym-
bolic execution of the transitive closure
algorithm; the resulting FPG is shown in
Figure 20. The FPG of a small problem (for
example, n = 4,5) is sufficient to capture
the features of an algorithm. In addition,
the FPG consists of several subgraphs with
the same dependency structure but perhaps
different in size.

Second, we transform the fully parallel
data-dependency graph into a three-di-
mensional multimesh graph, like those in
Figure 15. To do this, we perform transfor-
mations on the FPG to remove properties
not allowed in MMGs. The complete set of
such properties consists only of

• data broadcasting, which is replaced
by transmitted data;

• bidirectional dataflow, which is elimi-
nated by moving dependent operations

to one side of the data source; and
• nonregular dependencies, which are

removed by adding delay nodes in the
nonregular part.

A detailed discussion of these transforma-
tions is available.5 They are illustrated in
the next section through their application
to the transitive closure algorithm.

Derivation of arrays. To perform the
second stage in the MMG method, we
collapse the MMG onto a two-dimensional
G-graph. We do this by grouping prisms of
primitive nodes — of base size p by q —
onto G-nodes (see Figure 16). These
prisms extend along one complete axis of
the MMG. Grouping prisms parallel to
axes of the three-dimensional space leads
to simpler and more efficient implementa-
tions, so that the direction of collapse can

be limited to three alternatives, one along
each axis.

Selecting prisms of base size I by 1
leads to systolic arrays. This particular
grouping corresponds to projecting the
MMG onto a two-dimensional G-graph.

Next we schedule the order of execution
for primitive operations that compose a G-
node.

The size and schedule of prisms deter-
mine such cell properties as size of local
storage, communication bandwidth, and
cell pipelining. Scheduling operations by
following the flow of transmitted data (see
Figure 17) permits efficient use of pipe-
lined cells. Scheduling by meshes of primi-
tive nodes of size p by q, also depicted in
Figure 17, minimizes the local storage
required. (With prisms of base size 1 by 1,
the only schedule possible is determined
by the dependencies.) The cell bandwidth
is determined by the number of edges that
intersect a prism's side (the difference
between cell bandwidth and functional unit
bandwidth is adjusted by the queues at-
tached to pcrts). Consequently, trade-offs
make it possible to select prism size ac-
cording to specific implementation re-
quirements. Moreover, grouping is driven
by the target implementation, which can be
an algorithm-specific array for fixed-size
data, a partitioned implementation, or a
mapping onto a class-specific array. Con-
sequently, the two steps above make it
possible to optimize specific measures on
the basis of implementation constraints.

For problems with fixed-size data on

Figure 15. Examples of multimesh graphs: (a) complete multimesh data-dependency graph; (b) incomplete multimesh
data-dependency graphs.
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Figure 16. Collapsing an MMG onto a G-graph.

two-dimensional structures, we realize the
G-graph obtained above as an array by
allocating each G-node to a different pro-
cessing element and each edge to a differ-
ent communication link.

For problems with fixed-size data on
linear arrays, we apply cut-and-pile to the
G-graph. Each partition corresponds to a
complete horizontal or vertical path of the
G-graph. Nodes in a partition, or a cut, are
executed concurrently, while different
partitions are scheduled (piled) for pipe-
lined execution in the array. Each G-node
in a cut is allocated to a different process-
ing element and each edge to a different
communication link.

For partitioned problems we first divide
(cut) the G-graph into sets of neighbor G-
nodes (G-sets), with each G-set having as
many nodes as there are cells in the array.
Nodes in a G-set are structured in a linear
or two-dimensional manner, depending on
the desired array topology, and they are
executed concurrently in the array. Figure
18 illustrates this process and the corre-
sponding arrays. Data flowing between G-

Figure 17. Scheduling primitive nodes within a prism, or G-node.

sets is stored in and retrieved from memo-
ries external to the array, as Figure 18
shows.

Next we schedule (pile) G-sets for exe-
cution. G-sets are executed in an over-
lapped (pipelined) manner, as Figure 19
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Figure 18. Applying cut-and-pile to the G-graph and corresponding arrays: (a) a linear array; (b) a two-dimensional array.

Figure 19. Overlapped execution of G-sets in a linear array.

shows for a linear array. While one set is
executing, the input data for the next set is
transferred from the host through the I/O

structure shown at the top of the array in
Figure 18. At the same time, the results
from the previous G-set are returned to the

host through the same structure.
For mapping onto class-specific arrays,

we first divide (cut) the G-graph into sets
of neighbor G-nodes (G- sets) whose char-
acteristics (number and topology of nodes)
are determined by characteristics of the
specific array. Then we schedule (pile) G-
sets for execution.

In all of the above cases, the array I/O
schedule is determined by the schedule of
the G-sets (if applicable) and by the arri-
val/departure of data to/from G-nodes. In
particular, large partitioned problems lead
to scheduling of G-sets in the same man-
ner, so that the arrays depicted in Figure 18
correspond to canonical architectures for
partitioned execution of algorithms.

The steps in the regularization stage and
in the derivation of arrays can be per-
formed automatically. However, implem-
entation of certain steps might be simpli-
fied by capitalizing on the graphic charac-
teristics of the method in an interactive
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Figure 20. The fully parallel graph for the transitive closure algorithm.

CAD tool (for example, it is easier to visu-
alize broadcasted data in a graph represen-
tation than to determine it automatically).

Performance and cost measures.
There is no single suitable measure of
performance and cost for application-spe-
cific implementations. In some cases the
number of cells may be important, while in
others the stress may be on throughput or
utilization of cells. Therefore, to deter-
mine the performance of arrays derived
with the MMG method, we use the follow-
ing set of measures (where N is the number
of operations in the algorithm):

T Throughput
K Number of cells
U Utilization (U = N/KT])

AIIO Input/output bandwidth
Cw Storage per cell
C*BW Cell bandwidth

Other measures can also be defined by a
designer, depending on the requirements
of particular applications. The measures
are computed with information obtained
from the dependency graphs, both the
original fully parallel graph and the trans-
formed graphs. Moreover, transformations
used in the method affect such measures,
so that one can study the impact of a par-
ticular transformation on the resulting
array's cost and performance while carry-
ing out the transformation. The next sec-
tion provides examples of these issues as
the MMG method is applied to a specific
algorithm.

Example application
of the MMG method

We can observe the MMG method
through the derivation of mesh arrays for
the transitive closure algorithm.

The regularization process. Figure 14
shows Warshall's algorithm to compute
the transitive closure. It consists of three
nested loops and a single-assignment state-
ment. Although it looks very similar to
matrix multiplication, the order of the loop
indices is reversed, so that the dependen-
cies are different.

Figure 20 depicts the fully parallel graph
for a problem of size n = 4, obtained from
the symbolic execution of Warshall's algo-
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Figure 21. Replacing broadcasting with transmitted data.

rithm. This FPG is characterized by many primitive operations AND and OR, is plementation (that is, if it simplifies the
broadcasted elements and many superflu- dependent on the specific algorithm, but it resulting array),
ous operations (highlighted in the figure) illustrates the capabilities of an explicit

description. Superfluous operations can bewhere the result is equal to one of the input
operands. This property, a consequence of removed if it is advantageous for an im-
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Figure 22. Removing bidirectional transmitted data: (a) removal along x axis; (b) removal along z axis.

Warshall's algorithm. At each level there
is global and local broadcasting. Global
broadcasting corresponds to data that is
broadcast throughout the entire level,
while locally broadcast data reaches only a
portion of the level. Sources of broadcast-
ing change from level to level; at the kth
level of the graph the Ath row of matrix
data, as well as the kth element of each row,
is broadcast.

As indicated earlier, regularizing the
graph in Figure 20 consists of replacing
data broadcasting with transmitted data,
drawing the graph as a three-dimensional
structure, removing bidirectional flow of
transmitted data, and adding delay nodes
to make sure that all dependencies are
among nearest-neighbor nodes (in other
words, regular). Let's examine this pro-
cess.

First we transform the FPG by replacing
data broadcasting with transmitted data.

Globally broadcast data is drawn orthogo-
nal to the flow of locally broadcast ele-
ments, in a three-dimensional structure.
The resulting three-dimensional graph,
shown in Figure 21, does not fulfill the
requirements of an MMG, because it ex-
hibits bidirectional flow of transmitted
data. This graph has the same dependency
structure as the one used in the signal flow
graph (SFG) method.8 However, the graph
derived with the SFG method requires re-
writing the algorithm in a single-assign-
ment form, which is not necessary with the
MMG method. Moreover, nodes in the
graph derived with the MMG method
compute only one variable, whereas the
single-assignment form produces nodes
that compute three variables.

Bidirectional transmitted data can be
eliminated if all nodes at one side of the
data source are part of a movable sub-
graph.5 The graph in Figure 21 fulfills this

requirement, so that nodes are moved to
one side of the transmitted data sources in
two steps:

(1) Nodes to the left of sources of hori-
zontal transmitted data are moved to the
right end of each level of the graph, as
Figure 22a shows; application of this
transformation leads to the graph in Figure
23.

(2) Nodes in front of sources of trans-
mitted data along the z axis are moved to
the end of this axis, as Figure 22b shows,
resulting in the graph of Figure 24.

Figure 24 still exhibits one characteris-
tic not allowed in a multimesh depend-
ency graph: Dependencies between nodes
at the boundaries of the three-dimensional
structure are not between nearest neigh-
bors. This irregularity is eliminated by
adding delay nodes in the vacant posi-
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Figure 23. Bidirectional transmitted data along x axis removed.

Figure 24. A unidirectional dependency graph.
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Figure 25. A multimesh dependency graph.

tions, leading to the multimesh depend-
ency graph shown in Figure 25. In this
figure we have also replaced superfluous
nodes with delay nodes.

From this example we can infer that the
MMG is advantageous in describing an
algorithm because it provides information
on all operations and dependencies with-
out imposing constraints on the
algorithm's form. Moreover, an algorithm
described by an FPG is transformed into a
regular MMG in a simple and systematic
manner by using a set of predefined trans-
formations and taking advantage of the
graphics capabilities offered by the data
dependencies.

Derivation of arrays. To simplify the
discussion, we consider grouping by
prisms of base size 1 by 1 (that is, grouping
for systolic arrays). In Figure 26 we project
the MMG of transitive closure along the
three axes, producing three G-graphs.
(Literature is available describing the more
general case of grouping by prisms.5)

For problems with fixed-size data, the
G-graphs are directly realized as arrays.
Three structures are obtained; Table 1
summarizes their performance and cost
characteristics. These measures are ob-
tained from the MMG and the correspond-
ing G-graph. For example, the number of
cells is equal to the number of G-nodes,

throughput is given by the largest number
of operation nodes grouped into a single G-
node, and utilization of cells is related to
the length of paths in the MMG (or the
number of primitive nodes per prism).

The graphs also allow us to compare the
performance and cost of the different re-
sulting structures. For example, grouping
prisms parallel to the y axis is not conven-
ient, because paths have different lengths,

Figure 26. Projecting the multimesh graph onto G-graphs.
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Table 1. Cost and performance measures of arrays for transitive closure.

Array

X-grouping
K-grouping
Z-grouping

Rao's method
SFG method

Throughput

l//i

Opers.

per cell

1
1
1

3

3

Number of

cells

# i ( / i - 1 )

3/r-5/i+2

«3/r
n2

Number of
regs

(w-l)
(4//-2)
2//

Links

per cell

4
4
4

4
8

leading to nonoptimal utilization of cells.

On the other hand, grouping parallel to axis
x or z collapses paths of the same length,

with the associated benefits in utilization.
Complete details on the performance of

these arrays are reported elsewhere, as is a
comparison with other arrays previously

proposed for the same algorithm.5 Table 1

also summarizes the data corresponding to

arrays derived with two other methods.

As indicated earlier, partitioned prob-

lems lead to the canonical structures de-
picted in Figure 18. For partitioning, the G-

graphs derived by grouping prisms parallel

to axis A* or z are more convenient because

both resulting graphs have G-nodes with

the same computation time.

T he MMG method incorporates
features not available in other
previously proposed techniques.

These features include a general class of
admissible algorithms; transformations to
regularize algorithms; and transformations
to derive arrays, given implementation
constraints. This method is applicable to a
large class of frequently used matrix com-
putations, including the algorithms de-
scribed by Speiser and Whitehouse.1

Derivation of arrays in the MMG
method is systematic, flexible, and suited
for obtaining mesh structures, taking into
account architectural features, implemen-
tation constraints, and performance and
cost measures. Moreover, the method has
resulted in application-specific arrays with
fewer, simpler, and better utilized cells
than arrays previously proposed for the
same algorithms. •
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Optimization of Computation
Time for Systolic Arrays
Yiwan Wong, Member, IEEE, and Jean-Marc Delosme

Abstract—The time performance of a systolic array imple-
mentation of an algorithm is measured by the product of two
quantities: the number of systolic cycles required to complete the
computations, nsys, and the cycle time, tsys. Yet earlier works
on systolic array synthesis have exclusively sought schedules that
minimize nsys, an approach justified only when the processors
have a single functional unit. This paper deals with the general
case of processors with multiple, possibly pipelined, functional
units that operate concurrently and presents a method for the
minimization of the actual computation time n8ys x tsys. The
selection of a linear scheduling function which minimizes nsys x
tsys is formulated as a combinatorial optimization problem,
which is shown to have a bounded search space. An efficient
branch-and-bound method for the solution of that problem is
proposed and applied to several examples.

Index Terms—Branch-and-bound method, combinatorial opti-
mization, computation time, cycle time, linear scheduling, retim-
ing, systolic array synthesis, uniform recurrence equations.

I. INTRODUCTION

THE insatiable demand for higher computational speed in
scientific computing and information processing has led

to an extensive search for parallel architectures and program-
ming techniques that can effectively exploit the parallelism
inherent in these applications. For problems in these areas it
is common to find among the algorithms with lower operation
counts algorithms that can be effectively implemented using
only local communications on parallel systems with distributed
memory. When, in addition, the distribution of the operations
and the data transfers are highly structured throughout the
algorithm the implementations exhibit a high degree of regu-
larity and only call for simple control. The cost to design and
build dedicated hardware that executes these algorithms with a
performance comparable to that achieved on general purpose
parallel architectures is then relatively low. If the algorithm
must be executed routinely the design and use of specialized
hardware may actually become cost effective. The economic
incentive for such a solution is enhanced if a computer-aided
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design technique is developed that optimizes performance for
a given hardware cost. Such a technique is presented here.

The systolic array model, introduced by Kung and Leiserson
[12], is a powerful model for special purpose architectures,
well-suited to the implementation of numerous algorithms for
matrix computations, real-time signal and image processing,
string manipulations, etc. [13]. A systolic array is a collection
of globally synchronized processing elements (PE's) of a few
types, interconnected locally and in a regular pattern. Each
PE is connected to a small number of PE's in its vicinity
with which it can communicate directly. According to the
operations to be performed and the target performance, a
PE can be as simple as a bit-serial adder and some shift
registers, or as complex as a modern microprocessor data path,
with multiple pipelined functional units. The operation of a
systolic array resembles that of an assembly line—data travels
rhythmically in a pipelined fashion and the results are built up
incrementally from these data values.

The time performance of a systolic implementation of an
algorithm is measured by the product of the number of systolic
cycles required to complete the computations, nsys, and the
maximum duration of a systolic cycle, the cycle time tsys.
Both quantities depend on the schedule chosen to order the
computations in the algorithm and are thus related. For a
given (valid) schedule, nsys is a function of the size of
the problem the algorithm solves, and tsys depends on the
complexity of the computations performed within a systolic
cycle, the precedence among these computations, and the
amount of hardware resources available on the PE's. There
is a tradeoff between these two quantities as the following
example demonstrates.

Example 1: Given a nonsingular N x N lower triangular
band matrix A of bandwidth p, and a column Af-vector y9 the
solution x of the system of equations Ax = y can be found
by forward-substitution

for i = 1 to TV do

x% = (yi- Yl aiixj)/aa
k<j<i

where k = MAX(0,i — p). To find an efficient parallel
implementation, the algorithm is first rewritten in a function-
ally equivalent form in which the order of computation is
defined implicitly by the data dependences in the algorithm.
The form adopted in this paper is the Regular Iterative
Algorithm (RIA) [26], which is basically a set of recurrence
equations with regular dependence structure (see Section II-
A for more details). With proper transformations [29] the

Reprinted from IEEE Transaction on Computers, pp. 159-177, February 1992.
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forward-substitution algorithm can be expressed as a RIA of
five recurrences

{ Vij if j = k

8ij if j ^ k and i > j
qij ifj^kandi=j

Sij =Uij-i -Vij
Pij = aijul~i,j W

= fuij-i/dij if i = j
lj I undefined otherwise

lJ I tiij otherwise

where y^ = 2/*» defined upon the set of index points {(z, j ) |
1 < z < N, MAX(0, z - p) < j < i}. The final outputs are
X{ = M^, i = 1 • • • n.

Now, assume that each PE on the array has a multi-
plier/divider and an adder/subtractor which can operate in
parallel, and some registers for storage. Furthermore, let Tx

and T+ be, respectively, the computation delay of the mul-
tiplier/divider and of the adder/subtractor. Two systolic array
implementations of this algorithm (for p = 3) are shown in
Fig. 1. Array (/) is the design that requires the minimum
number of systolic cycles to compute the RIA; the overall
computation time is

nSys x tsys = (2N - 1) x (T+ + Tx) .

Array (II) requires more systolic cycles but its cycle time is
shorter,

nSys x tsys = (3JV - 1) x MAX(T + , r x ) .

For example, when N = 20, T+ = 6, and Tx = 9, array (I)
requires 585 time units to compute the results while array (II)
requires only 531 time units, a close to 10% improvement
in computation time. Thus, the implementation with best
overall time performance does not necessarily minimize nsys.
It depends on the relative magnitudes of the computation
delays of the functional units. •

Previous works in systolic array synthesis, e.g., [3], [9], [20],
[22], [25], [26], focus exclusively on the minimization of nsys,
instead of the actual computation time. Such a model, which
does not take tsys into account, is valid when each PE in the
array has a single functional unit. Then the cycle time is equal
to the time needed to perform sequentially the computations
assigned to a PE within one systolic cycle. However, the above
example indicates that this simple model is not satisfactory
even for the case of two functional units per processor.

When implementing a RIA on a systolic array the com-
putations are sequenced according to a schedule typically
constrained to be a linear function with integer coefficients of
the indexes of the RIA variables (a linear schedule, see Section
II-C). This constraint leads to simple control and, often, the
minimal nsys under that constraint is equal to the absolute
minimum or exceeds it by just a small number of cycles.
Rao [26] and Delosme and Ipsen [6] show that the integral
linear schedules which minimize the total number of systolic
cycles nsys can be determined by solving an integer linear
programming problem (ILP). In order to solve these ILP's,
Lisper [21] and Van Dongen [28] consider the use of enumer-

ative procedures while Li et al. [20] propose a combination
of linear programming and heuristics that finds feasible but
not necessarily optimal solutions. Li and Wah [19] minimize
nsys by means of an incremental enumerative search procedure
based on the speeds of the data flows on a systolic array
implementation. Fortes [9] formulates an optimization problem
in which the assignment of computations to processors is
taken into account and develops an enumerative procedure for
selecting an integral linear schedule that minimizes nsys under
constraints on the array interconnections.

Instead of linear schedules, with integer coefficients, Quin-
ton [25] considers schedules derived from linear functions with
rational coefficients. Because the systolic cycles are discrete
quantities, the systolic cycle values are obtained by rounding
the values of these functions down (or up) to the nearest
integer. The resulting schedules are not linear and, often, they
assign more than one set of computations to a PE during a
single systolic cycle. If each PE possesses only one set of
functional units, the cycle time of the array is increased by a
factor equal to the maximum number of sets of computations
assigned by the schedule to a PE in one systolic cycle. On
the other hand, if each PE contains multiple sets of functional
units, the control and communication requirements are greatly
complicated. Hence, unless these implementation issues are
resolved, it is not practical to consider such schedules. Karp
et al. [10] use linear programming to find optimal rational,
piecewise linear, functions from which schedules may be
obtained by rounding; they show under which conditions
these schedules are close to the fastest possible schedules.
Unfortunately these theoretically important schedules lead to
even more delicate implementation issues than Quinton's.

Leiserson et al. [18] and Fettweis [8] present a procedure,
called retiming in [18], that reduces the clock period of general
synchronous circuits by just rearranging their clocked register
elements. Furthermore, Leiserson et al. develop a polynomial
time algorithm to find a rearrangement that minimizes the
clock period of a given circuit. It will be shown in Section II-
D that once an integral linear schedule has been selected, the
minimum value of tsys (with respect to the selected schedule)
can be determined with the retiming procedure.

In this paper, the linear schedule which minimizes the prod-
uct nsys x tsys is shown to be the solution of a combinatorial
optimization problem whose solution space is bounded. An
efficient branch-and-bound method is developed to find that
solution. To avoid the task of resource allocation, which is
NP-hard [24], the PE's on the array are assumed to contain a
"sufficient" number of functional units to achieve the required
level of parallelism. This assumption is valid for Very Large
Scale Integration (VLSI) and Wafer Scale Integration (WSI)
implementations of systolic arrays. In the final section, the
difficulties that arise in trying to adopt a similar method when
the PE's on the array have a fixed number of functional units
are discussed.

The paper is organized as follows. The next section intro-
duces the necessary background for the formulation of the
optimization problem. In Section III that discrete optimization
problem is shown to have a bounded solution space and
hence to be solvable by exhaustive enumeration. A branch-
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Fig. 1. Two systolic array implementations of the forward-substitution algorithm. The thin rectangular boxes in the PE's denote clocked register elements.

and-bound method, which locates the optimal solution more
efficiently, is devised in Section IV. That method is extended
in Section V, to cover the case when some of the functional
units on the PE's are pipelined. Furthermore, the optimization
problem is shown there to be simplified if all the functional
units in a PE are pipelines with at least two stages; it reduces
then to two ILP's. Performance results of the branch-and-
bound method are reported in Section VI. The concluding
section discusses other extensions of the computation time
optimization problem.

II. PREAMBLE

To facilitate the presentation, the forward-substitution algo-
rithm presented in Example 1 will be used throughout this

section as an illustration.
Some terminology from graph theory [2] is needed for the

rest of the discussion. Let G = (V, E) be a directed graph. A
path from node v\ to node vp in G is a nonnull sequence of
directed edges v±V2, ̂ 2^3? • * •> Vp-ivp. A circuit is a closed
path whose end points coincide. A circuit is elementary (an
elementary circuit, or EC for short) if no two of its nodes,
except for the end points, coincide. Let ec\ • • • ecm denote
the elementary circuits in G. An edge which does not belong
to any EC is called an exterior edge, otherwise, it is called
interior. For convenience, the interior edges are numbered as
ei to e&. Define the EC-edge matrix for G as the Boolean
matrix C of size m x k where C{j = 1 if and only if edge
ej belongs to ec{. An edge is called a zero-edge if its weight
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is zero (or is null, if the weight is a vector quantity). A zero-
path (respectively, a zero-circuit) is a path (a circuit) which
contains only zero-edges. The vertices in V can be partitioned
into equivalence classes Vi, 1 < i < r, such that vertices vi
and Vj are equivalent if and only if there is a path from V{ to Vj
and a path from Vj to V{. The strongly connected components
of G are the graphs (3; = (V*,i?»), where JE?» is the set of
edges connecting pairs of vertices in Vi.

A. Algorithm Model

Rao has shown [26], [27] that an algorithm amenable to sys-
tolic array implementation can be expressed in a form called
Regular Iterative Algorithm (RIA), which is a generalization
of the Uniform Recurrence Equation (URE) model introduced
by Karp et al [10]. Informally, an n-dimensional RIA is a set
of recurrence equations

UQ = MuQ-duui ' wQ-duw
 xQ-dux^ *' zQ-duz)

)WQ = fw (vQ-dwu' ' wQ-dww' xQ-dwx >'•', zQ-dwz

defined on a set of index points {Q}, called the range of
computation and denoted by !T2; f2 is a subset of the n-
dimensional index space. In general, the range is assumed to be
an n-dimensional polytope with integral vertices (an integral
polytope). This set of recurrences defines the evaluation rules
for the computed variables, {u • • • w}, of the RIA. The rest of
the variables, {x- • • z}, which appear only on the right-hand
side of the recurrences, are input variables; they represent
data values supplied from external sources. Each recurrence
specifies a /c-ary, single-valued function (fu, for example) and
the set of k data values (parameters), UQ_(JL • • • ZQ-<L •>
required for computing the value of UQ. The value of k, which
is a constant independent of the size of the problem solved by
the RIA, depends on the variable (u in the example) computed
by the recurrence. Note that a particular variable may appear
more than once, or may not appear at all, on the right-hand
side of a recurrence.

The constant integral vector duv, called dependence vector,
represents the dependence of the computation of u at an index
point Q in ft on the value of v computed at index point
Q - duv- This data dependence is also denoted by

uQ^vQ-duv

The data dependence vectors in the forward-substitution algo-
rithm are

duy=duS = duq = (0 0),dsu = (0 l),dsp = (0 0),
dpa = (0 0 ) , ^ ! = (1 0),dqu = (0 l),dqa = (0 0)
duiui = (1 0 ) , ^ ! ^ = (0 0).

The dependence structure in a RIA can be depicted by a Full
Dependence Graph (FDG) in which the nodes form an integral
lattice representing the index points in ft, and the directed
edges represent the data dependences. The Full Dependence
Graph (FDG) of the recurrences in (1) (N = 8, p = 6)

is shown in Fig. 2, with the dependences due to the null
dependence vectors left out.

The computation of a RIA involves the evaluation of the
set of recurrence equations at every index point Q in ft; each
index point in ft can be treated as a unit of computation of
the RIA. The final results of the computation are given by the
values of one or more of the computed variables on a subset
of index points in f2. In the forward-substitution algorithm, the
range of computation is given by

ft = {(hj) I 1 <i < N,MAX{0,i-p) <j<i}

and the final results are the values of u found on the subset
of index points

{{i,i)\i = l-"N}.

The uniform dependence structure in a FDG can be captured
by a compact representation called a dependence graph (DG)
[5], [10], [26] in which there is a node for each of the variables
defined or used in the RIA, and the directed edges correspond
to the dependences among the variables (Fig. 3). The weight of
any of the directed edges in the DG is equal to the dependence
vector between the two variables the edge connects. There may
be multiple edges (with different weights) between a pair of
nodes.

B. Reindexing

The dependence vectors in a DG can be modified, while
preserving the functionality of the computations the DG rep-
resents, by a process called reindexing [6]. Let {5.} be a set
of integral n-vectors, one 6U for each variable u in the RIA.
To reindex is to offset by 8U the set of index points in ft
upon which the variable u is computed. Hence, an instance of
a variable u which is originally computed at index point Q
will be computed at index point (Q - 8U) after reindexing. If
variable u depends on variable v with dependence vector duv
then, after reindexing, the dependence becomes

U(Q-6U) ~* V(Q-duv-t>v)

Thus, through reindexing, the dependence vector duv becomes
duV where

duv — duv + 8y — 6u-

For example, picking Sp = (1 0) and null vectors for the other
6's, the DG in Fig. 3 is transformed after reindexing into the
one depicted in Fig. 4. The new DG corresponds to rewritting
the recurrences for s and p in (1) in the following way:

S{j = Uij — i — Pi—ij

Pij =ai+l,3U\j'

It can be verified that these new definitions do not affect the
functionality of the RIA.

Let ec\ • • • ecm denote the elementary circuits (EC's) in the
DG and Sj be the sum of the dependence vectors in ecj,
j = l . . . m. Then, obviously, the values of Si • • • 5 m are
independent of reindexing.
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Fig. 2. The Full Dependence Graph (FDG) of the forward-substitution
algorithm. The dependences due to the null dependence vectors are not
displayed.

(0 1;

(1 0)

Fig. 3. The Dependence Graph (DG) of the forward-substitution algorithm.
All unlabeled edges have null weights.

(i 0)

(1 0)

Fig. 4. The DG of the forward-substitution algorithm after reindexing. The
reindexing process is equivalent to subtracting the vector (1 0) from the
outgoing edges of node p and adding it to the incoming edge of that node.

Reindexing modifies the shape and the size of the com-
putation range; the overall range is the union of the shifted
computation ranges of the variables. Since the magnitudes of
the offset vectors {£.} are independent of the size of Q (N and
p in the example), the increase in size of Q due to reindexing
can often be considered as insignificant. The notation Cl is used
to denote the range of computation after reindexing. For exam-
ple, the number of index points in Q is increased by N (Fig.
5) through the reindexing transformation presented above.

C. Linear Scheduling

A valid schedule for a reindexed RIA with dependence
vectors {duv} is an ordering of the index points in f2 such
that the precedence relationships induced by these dependence

r

Fig. 5. The FDG of the reindexed forward-substitution algorithm. Empty
circles are the extra index points and broken edges are the data dependences
introduced by the reindexing. In particular, the curved broken edges denote
the dependences due to dpa-

vectors are observed. Due to the uniform dependence structure
among the index points linear schedules are easily derived.
More importantly, linear schedules, accompanied by linear
PE allocation schemes, preserve the regularity of the data
dependences and, hence, the resultant parallel implementa-
tions only need regular interconnections and homogeneous
control—thus making the design and construction of hardware
more tractable. However, time performance is sometimes
traded for that simplicity: the fastest schedule possible is not
always a linear schedule. For a given FDG with uniform
dependences (the computations in a set of URE's) Karp et al
essentially show that, in general, to be able to approximate the
time performance (total number of computation cycles) of the
fastest schedule, linear schedules are inadequate and piecewise
linear functions with rational coefficients must be considered
[10], [7]. Fortes explored that issue experimentally [9]; for all
of 25 algorithms tested the linear schedule minimizing n sys

did not exceed the fastest schedule by more than a cycle.
A linear schedule is specified by an integral column n-vector

r whereby the computations at an index point Q in Cl are
scheduled for execution at systolic cycle Qr. Geometrically,
r is normal to a set of (n-l)-dimensional parallel hyperplanes
which "slice" Q, so that index points on the same hyperplane
will be scheduled for execution at the same systolic cycle
(see Fig. 6); that is, each of these hyperplanes represents
one systolic cycle. The value of nsys, which is the number
of cycles between the first and last systolic cycle at which
computation occurs, is therefore given by the total number
of such parallel hyperplanes necessary to cover all the index
points in Q. Mathematically, the value of nsys is related to
r by

nsys = 1 + M A X Q I ) Q 2 ^ ( Q 1 - Q2)T. (2)

Since the range is an integral polytope, the above expression
can be simplified to

nsys = 1 + MAXViy2eV^)(V1 - V2) (3)

where V(Q) is the set of vertices of fl.
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Fig. 6. The "slicing" hyperplanes defined by the linear schedule r = (1 1 ) T .
Each hyperplane represents one systolic cycle. Note that all the directed edges
point from a hyperplane of larger systolic cycle value to a hyperplane of lower
systolic cycle value.

The computations at a particular index point can only be
executed when all the required data are available. Thus, r
has to be chosen such that the dependence vectors among the
index points in & do not point from a hyperplane of lower
cycle value to one of a higher cycle value. Formally, a valid
linear schedule r has to satisfy the constraints

Qr>{Q-duv)r VQeft,

if variable u depends on variable v with dependence vector
duv- In other words, r is a valid linear schedule for the RIA
if

davT > 0 Vduv- (4)

The value of the inner product duvf can be interpreted as the
number of systolic cycles that elapse from the time the value
of v at index point (Q - duv) is computed to the time it is
used for computing u at index point Q. In particular, a zero
value for the inner product implies that the computations of
v at (Q — duv) a nd of u at Q occur sequentially within the
same systolic cycle (but not necessarily within the same PE)
and hence, the cycle time must be increased.

The relationship between a chosen linear schedule r and the
resultant cycle time of the implementation can be observed
from the associated Register Graph (RG), which is derived
from the DG and r with the following procedure:

1) associate to each node of the DG an integer value equal
to the computation delay of the functional unit that
computes the variable the node represents, and

2) reverse the direction of the edges and, on each edge,
replace the weight, duv say, with the integer value
wvu — duvT-

Each node in the RG represents a functional unit and the
directed edges denote the direction of data flow among the
functional units. The edge weights in a RG stand for the num-
ber of synchronization delays among the inputs and outputs
of the functional units. Hereafter, for ease of discussion, the

edge weights in the RG are called "registers" and the nodes in
the RG are addressed by the names of the variables the nodes
represent in the DG.

For the DG shown in Fig. 3, let r = (1 1)T; the associated
RG is shown in Fig. 7. The symbols TA and T= denote respec-
tively the computation delay of a register and of an assignment
of the form u = v. In most cases, TA and T= are assumed
to be zero. There is a one-to-one correspondence between
the connectivity structure of this RG and the interconnections
among the functional units in array (7) (depicted in Fig. 1),
which is a physical realization of the RG. Clearly, a register-
free path in the array is represented by a zero-path in the RG.
Since the cycle time tsys of the array is given by the maximum
sum of computation delays along the register-free paths, if a
functional unit by itself is also treated as a "register-free" path
(correspondingly, each node in the RG is taken to be a zero-
path of zero length), then the cycle time associated with a
physical realization of a RG is given by

tsys = MAX e v e r y z e r o . p a th in RG( s u m o f computation

delays on the zero-path). (5)

However, if r is chosen such that the RG contains a zero-
circuit, the corresponding realization exhibits computation
rippling: a sequence of computations, whose length depends
on the size of Cl, is scheduled to be computed sequentially (due
to data dependences) within the same systolic cycle. Hence,
the cycle time of the resultant schedule is proportional to the
size of the range, which can be arbitrarily large.

For example, if the schedule r = (1 0)T is chosen for the
DG shown in Fig. 3 the resultant RG will contain a zero-circuit
between the nodes which compute variables s and u. Consider
the computation of variable s at a particular index point (i,j).
Tracing the data dependences between variables s and u from
the DG in Fig. 3 gives

Sij -> Uij-i —> *i,j_i —• t*i,j-2 -* si,j-2 —> • • •

but, according to the schedule chosen, the computations of all
these instances of u and s are to occur within the same systolic
cycle, cycle i. Thus, the cycle time associated with the given
r must be proportional to p (the bandwidth of the matrix), a
size parameter of 0,, and is not bounded as p increases. The
definition of tsys in (5) is consistent with this observation since
a zero-circuit in the RG results in tsys = oo.

Assuming one of the nodes in ecj represents the variable u,
then the computation of UQ has the data dependence

UQ uQ-s3
uQ-2Sj

The inner product SJT is the total number of registers on ecj
in the RG and therefore must be nonnegative. If SJT = 0,
then the computations of all these instances of variables on
the dependence path have to occur within the same systolic
cycle, QT. Equivalently, when SJT = 0, there is a register-
free feedback path around the functional unit for computing
variable u. Therefore, in order to avoid computation rippling,
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Fig. 7. The Register Graph (RG) derived from the DG in Fig. 3 with
r = (1 1)T. This RG is a graphical representation of the interconnections
among the functional units in array (/) depicted in Fig. 1. For example, the
output from the multiplier is fed directly into the input of the adder without
buffering. Correspondingly, there is a directed edge with zero weight from
the multiplier node to the adder node in the RG.

a valid linear schedule T £ Zn has to satisfy the additional
constraint

SjT = lj>l, j = l' • m (6)

where Sj is the sum of the dependence vectors (or the edge
weights) on the jth elementary circuit ecj in the DG and lj
is an integer.

As mentioned in Section II-B, the values S± - - - 5 m are
independent of reindexing. Moreover, it is shown in [6] that
(6) alone is a necessary and sufficient condition for r to be a
valid (rippling-free) linear schedule; that is, for each r which
satisfies (6), there is a reindexing such that (4) holds, and
vice versa. Hence, it is not required that a suitable reindexing
be known a priori in order to find a valid linear schedule
for a RIA. Suppose the set of vectors {£.} is the appropriate
reindexing for the given schedule r, then the expression for
the total number of systolic cycles in (2) is equivalent to

nsys - 1 + M A X Q Q eQ(Q1-Q2)T + MAXu,v(6u-Sv)r

(?)
where the last term reflects the increase in number of systolic
cycles due to reindexing. As will be shown next, the appropri-
ate reindexing, as well as the increase in number of cycles,
are determined implicitly by the cycle time minimization
procedure.

D. Retiming

Given a register graph RG, the cycle time tsys deter-
mined with (5) is not necessarily the minimum achievable
for the given r. Leiserson et al [18] show that with proper
rearrangement of the registers in the RG, the cycle time
can be minimized. A particular reallocation (following some
rules) of the registers in the RG is called a retiming. The
retiming procedure is in fact the one-dimensional version of
the reindexing transformation discussed in Section II-B. To
each node u in the RG is assigned an integer value, ru, called
a label. An edge which extends from node v to node u with
weight wyu m the RG will have weight

wvu = wvu + rv — ru

after retiming. Originally, the computation of variable v leads
(algebraically) that of variable u by wvu cycles. After re-

timing, the lead is wvu cycles. Since the values of the labels
always occur in pairwise differences, it is assumed without loss
of generality from now on that {r.} is a set of nonnegative
integers and that the smallest element in the set equals zero.
Equivalently, the retiming process can be viewed as shifting
the registers along the interconnections among the functional
units with the following rule [8]:

"Shifting" r registers from the input stage to the
output stage of the functional unit that computes
variable u is equivalent to subtracting r from the
weight of every incoming edge of node u in the
RG and adding r to the weight of every outgoing
edge of that node.

It is shown in [8] and [18] that such shifting of registers
preserves the functionality of the computations represented by
the RG.

A legal retiming is a set of labels {r.}, one label for each
node in the RG, such that all the edges in the retimed RG
have nonnegative weights; a legal retiming is optimal if the
cycle time of the retimed RG is the minimum among all the
legal retimings. A necessary and sufficient condition for a RG
to have a legal retiming is that the sum of edge weights in
any EC in the RG (i.e., SJT or lj) is strictly positive [18].
Hence, from (6), a RG derived from a valid schedule r always
possesses a legal retiming. Since retiming is a special case of
reindexing, the total number of registers [lj in (6)] in any EC
in a RG is independent of retiming.

The relationship between retiming and reindexing is simple.
Suppose r is the valid linear schedule from which the RG
is derived, then a retiming of the RG with labels {r.} is
equivalent to a reindexing of the DG with offsets {5} where

ru = Sur V6W.

Since, from the definition of reindexing,

duv == duv + $v — Sui

with this set of offsets,

duvT = WVU 4- Ty ~ TU = WVU > 0,

hence the reindexing and r satisfy (4). Knowing r and an
optimal retiming, an appropriate reindexing can be determined
accordingly. Expression (7) can be rewritten as

nsys = 1 + MAXQiQ2eQ(Q1 - Q2)r + rmax (8)

which is equivalent to

nsys = 1 + MAXyiy2eV(Q)(V1 - V2)r + rmax (9)

where V(Q) is the set of vertices of ft and rm a x is the
maximum among the labels in {r.},

^max = MAXU r t t . (10)

Given a RG, the minimum cycle time achievable with
retiming is given by

tsys = op_retime(RG). (11)
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Fig. 8. With the retiming ra = rp = 1 and r = 0 for the other variables the cycle time of the RG, which is derived from the DG with r = (2 1) T ,
is reduced from 15 to 9 time units.

To implement the op_retime function, Leiserson et al [18]
formulate the optimization problem as a shortest-path prob-
lem whose solution successively employs the Floyd-Warshall
algorithm and the Bellman-Ford algorithm [17].

For example, if r = (2 1)T is the schedule chosen for
the forward-substitution algorithm, the corresponding RG is
as shown in Fig. 8. With the retiming where ra and rp equal
1 and the rest of the labels equal 0 the cycle time is reduced
from 15 to 9 time units.

Two different retimings which result in different register
assignments on the edges of the RG may give the same cycle
time; such retimings are called equivalent. The op_retime
function returns only one of the (possibly many) equivalent
optimal retimings. Additional criteria may be used to select a
particular optimal retiming. For example, the optimal retiming
which minimizes the value of rm a x defined in (10) can be
found by solving a linear program [29], which may be done
in polynomial time; the same applies to finding the optimal
retiming which minimizes the total sum of edge weights (the
total number of registers) [18].

E. Problem Formulation

Combining the results from the previous discussion, the
determination of a computation-time-optimal linear schedule
for a RIA can be formulated as a discrete optimization
problem

minimize nsys x tsys

subject to SjT > 1, j = 1 • • • m
nsys = 1 + M A X y i y a € V ( n ) ( V i - V2)T

"("'"max

tsys = opretime(RG)
r€Zn.~

(12)
Since the quantities tsys and rm a x do not have a simple closed-
form expression (in terms of r), "smart" enumeration, i.e.,
branch-and-bound, is the only viable solution method for the
optimization problem. However, a direct enumeration on r
may not terminate since the constraints on r in

SjT > 1, j = 1 • m

form an affine cone [23], which admits infinitely many feasi-
ble solutions. An alternative formulation of the optimization
problem must be sought.

Consider making /i • • • /m, the number of registers in the
EC's of the RG, the decision variables of the optimization
problem. From (6), the value of lj constrains the choice of r
such that there are exactly lj registers in ecj in the resultant
RG. The choice of the set of values {/.} affects the values of
tsys and nsys indirectly. A set with large values could decrease
the value of tsys since the existence of a long zero-path in
the RG is then less likely. On the other hand, a set with
small values could lead to a r of smaller magnitude and may,
therefore, reduce the value of nsys.

For a given set of values {/.} the valid choices of r , if any
exists, are the integral solutions of the set of equalities

SjT = lj, j = l- • ra. (13)

The following theorem establishes that the minimum cycle
time of a RG achievable with retiming is totally determined
by the set of values {/.}.

Theorem 1: Given a RG, there always exists an optimal
retiming such that all the exterior edges have nonzero weights.

Proof: Suppose there are exterior edges with zero weights
after the RG has been optimally retimed. Collapse each
strongly connected component of the RG into a single node. By
definition, the collapsed graph is acyclic and the edges in this
graph are the exterior edges in the original RG. Now merge all
the nodes which have zero indegree in the collapsed graph into
a single node, JV0. Finally, apply the single source longest path
algorithm to this graph with NQ as the source node and length
(distance from NQ) being defined as the number of edges on
the path. Subtracting these distances from the labels of the
original optimal retiming (nodes that were collapsed together
have the same distance from No), then offsetting these label
values such that the minimum label value equals 0, gives a
new retiming. The new set of labels guarantees that all exterior
edges will have nonzero weights. Furthermore, since the labels
of all the nodes in a strongly connected component receive the
same adjustment (with respect to the original set of labels), the
register assignments in the EC's are preserved. The new set
of labels thus preserves the cycle time of the RG and hence it
represents an equivalent optimal retiming. •

Since the cycle time of a RG depends on the zero-paths, the
above theorem implies that the exterior edges do not affect the
minimum achievable cycle time. In other words, the minimum
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where rm a x is the maximum of the label values found by
retiming the RG, which is derived from the DG with the
schedule r obtained from ILP (17). Consequently, if the total
number of consistent register assignments L that need to be
considered is bounded, an optimal solution to the discrete
optimization problem (12) can be found in a finite number
of iterations.

The number of different L's that need to be considered
is shown in the next section to be indeed finite. An effi-
cient branch-and bound method is then devised to locate the
assignment L which minimizes the value of nsys x tsys.

III. BOUNDED SEARCH SPACE

Let Xj be the number of edges in ecj, j = 1 • • -ra. An
elementary circuit ecj in the RG associated to a valid linear
schedule is said to be register-sufficient (a register-sufficient
EC) if there are at least Xj registers in the EC, else it is said
to be register-deficient (a register-deficient EC). An edge is
said to be free if it is shared only by register-sufficient EC's,
otherwise, it is said to be bound.

The following theorem establishes that the minimum cycle
time of a RG under retiming is independent of the actual
number of registers in the register-sufficient EC's.

Theorem 2: Let RG\ and RG2 be two register graphs where
RG2 is obtained from deleting all the free edges in RG\.
Then, RG\ and RG2 have the same minimum cycle time
under retiming.

Proof: Let tlys and t2
ys be the respective minimum cycle

times of RG\ and RG2, and {r1} and {r2} be the respective
optimal retimings chosen. Moreover, from Theorem 1, all the
exterior edges in the two graphs are assumed to have nonzero
weights after retiming.

Since RG2 is a subgraph of RGi, an optimal retiming for
RGi must also be a legal retiming for RG2. Hence,

t1 > t2

6sys — 6sys*
(18)

Now, when applied to RGi, the retiming {r2} is not neces-
sarily legal. If it is legal, then

t1 < r
^sys — ^sys

(19)

and the desired result follows.
If it is illegal, then retiming RGi with the labels {r2} must

result in negative edge weights. Call this retimed graph RG%.
If a legal retiming for RG3, {r3}, such that the cycle time of
the retimed RG3 does not exceed t2

ys could be constructed,
then, by adding the labels {r3} to {r2} and offsetting the
resultant labels such that the minimum label value equals 0, a
legal retiming for RGi such that the cycle time of the retimed
RG± does not exceed t2

ys would ensue, (19) would hold, and
the proof would be completed. It remains to construct the set
of labels {r3}.

Since RG2 is a subgraph of RG3 and {r2} is a legal
retiming for RG2, the edges in RG$ whose weights are
negative must belong to the set of free edges. Given a node s
in RG3 with an incoming edge that is free and has nonpositive
weight, the procedure RELABEL(s) defined in Fig. 9 returns
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cycle time of the RG under retiming depends only on the
number of registers in the EC's of the RG, {/.}.

Let L — (l\ • • -Im) be an integral ra-vector with positive
components, called a register assignment. A register assign-
ment L is consistent if the system of diophantine equations

Cw = LT, we Zm

where C is the EC-edge matrix of the DG, has a solution.
Suppose L is consistent and let w b e a particular solution of
the system of diophantine equations. Let RG be the directed
graph that results from deleting all the exterior edges in the
DG, replacing the node labels with the computation delays of
the appropriate functional units, reversing the direction of the
edges, and setting the edge weights equal to the corresponding
component values of vector w. Then, from Theorem 1, the
minimum cycle time of the RG derived from the DG with any
r which satisfies

SjT = l j , j = l'.-m (14)

must be equal to the minimum cycle time of RG. Hence, for
a given L, the minimum cycle time tsys is fixed,

cycle time(L) = ( °P_retime(RG) if L is consistent
100 otherwise.

Therefore, for a given consistent register assignment L, the
computation-time-optimal linear schedule r can be determined
by solving the integer programming problem

{ minimize nsys = 1 + MAXViy2eV{Q)(V1 - V2)r
T?*max

subject to SJT = lj j = 1 • • • m
TGZn.

(16)
However, the objective function still contains rm a x , which
does not have a simple closed-form expression in terms of
r. By observing that rm a x is independent of the size of ft and
recalling from Section II-D that its value can be minimized
easily, it is justified to assume that

MAXViy2eV{Q)(V1 - V2)r > rmax.

This assumption may not hold only if ft is small, but then a
systolic array implementation is probably not needed. Exam-
ples will be provided in Section IV to show that the assumption
holds in practical cases. Therefore, a feasible solution of (16)
which minimizes

is also an optimal solution of (16). Hence, for a given
assignment L, the computation-time-optimal linear schedule
r is given by the solution of the ILP:

r minimize MAXyiy2eV{Q)(V1 - V2)r
s subject to SJT = lj j = 1 • • • m (17)
I reZn.

The number of systolic cycles associated with a particular
register assignment L is

( 1 + MAXyiy2eV{Q)(V1 - V2)r + rmax

ncycle(L) = < if (17) has an optimal solution
v 00 otherwise.



a retiming of RG3 such that the weight of this edge increases
by 1.

Let eo be a free edge with nonpositive weight. Suppose eo
extends from node v to node u in RG3. Collapse each strongly
connected component in RG% which does not contain eo into a
single node. Call the new graph RG3. Define the variable label
for each node in RG$. For each edge e in RG3, let e.weight
be the weight of e and let e.head.node and e.tail.node be,
respectively, the nodes associated with the head and tail of e.
If two or more edges go from one node to another then only
the edge with the minimum weight is used; the other edges
are deleted from the graph. Set u.label to 0 and the labels of
the remaining nodes in RG3 to 1. Then the values of label
set by the call

RELABEL(u)

make up a retiming for RG3 if nodes that are collapsed into a
single node in RG3 are assigned label values equal to the label
value of the corresponding collapsed node. With this retiming,
the weight of e0 is increased by 1,

eo.weight <— eo.weight-\-v.label—u.label = eo>weight+l—O.

Furthermore, as will be proved later on, the retiming does
not increase the number of edges with nonpositive weights
nor the number of bound zero-edges and it does not decrease
the values of the nonpositive edge weights in RG3. Hence,
by updating the edge weights in RG3 with this set of labels
and repeating the procedure an appropriate number of times,
the weight of eo eventually becomes 1. If that procedure is
applied to all the free edges with nonpositive weights in RG3,
eventually all the free edges in RG3 have positive weights.
Since no bound zero-edge is introduced by the procedure and
all the free edges have nonzero weights at the end, the zero
paths in the final retimed RG$ must be a subset of those in
RG2 and hence, the cycle time of the final RG% cannot be
greater than t*ys.

To prove that procedure RELABEL indeed returns a retim-
ing with the above mentioned properties, it is only necessary
to show that, for any pair of nodes s and q in RG% connected
by an edge e directed from s to g, the labels returned by

procedure RELABEL satisfy the condition

j e.weight + s.label — q.label > e.weight if e.weight < 1
\ e.weight 4- s.label - q.label > 1 if e.weight > 1.

(20)
The condition ensures that the values of the nonpositive edge
weights in RG3 are not decreased by the labels (first case with
e.weight < 0) and that no extra bound zero-edge is introduced
(first and second case with e.weight > 1).

Termination: Clearly, the procedure RELABEL terminates
after a finite number of iterations since the number of nodes
in RG3 is finite and once a label has been set to 0 in one
iteration it is left unaltered.

Correctness: For the case e.weight > 1, condition (20) is
automatically satisfied by the labels returned from procedure
RELABEL since these labels can only have the values 0 or 1.
For e.weight < 1, the labels fail to satisfy (20) only if s.label
is 0 and q.label is 1. This is, however, impossible because if
s.label was set to 0 at line (*) in the procedure then, since q
is the head node of an outgoing edge (with weight < 1) of s,
the next recursive call of RELABEL on node s would have
set the value of q.label to 0 at line (*). Once set to 0, this
label cannot change any more. Therefore, if the final value of
s.label is 0 the final value of q.label must also be 0. Thus, the
labels returned by procedure RELABEL satisfy condition (20).

Abnormal termination: Suppose abnormal termination oc-
curs at node q, then there is an edge e from q to v with
e.weight < 1, and q.label is equal to 0. Now, q.label is set
to 0 only if there is an edge with weight < 1 incoming at q
and originating from another node, s say, with s.label already
0. Repeating this argument and noting that the RELABEL
procedure visits the nodes in RG3 in a depth-first ordering
starting from node u (see Fig. 10), there must exist a path
from u to v, which contains nodes s and q, whose edges all
have weights < 1. With the edge e0, which has nonpositive
weight, this path forms a register-deficient elementary circuit
and therefore eo cannot be free. •

With this result, all the free edges in a RG can be deleted
without affecting the minimum cycle time. The rest of the
graph is totally represented by the register-deficient EC's in
the original RG. Hence, the minimum cycle time of a RG
under retiming is determined solely by the number of registers
in the register-deficient EC's, that is, by the set of values
{lj I lj < Xj}. Consequently, it suffices to consider the set
of register assignments {L | 1 < lj < Xj, j = l - - - r a} ,
where lj = Xj is to be construed as meaning that there are
at least Xj registers in ecj, and the functions cycle Jime and
ncycle are redefined in the following manner.

Without loss of generality, suppose L is such that the
first i elementary circuits, ec\ • • • eci are register-sufficient
and the remaining ones are register-deficient, that is, L =
(li • • • lik+i... lm) where lj = Xj, j = 1 • • • i, and lj < Xj,
j — i + l •.. m. Register assignment L is said to be consistent
if the system of diophantine equations

Cw = {li+1---lm)T

where C denotes the matrix formed by the last m — i rows of
the EC-edge matrix of the DG, has a solution. The value of
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Procedure RELABEL(s)
Begin

for each outgoing edge e of s do
let q <— e.head.node ;
if q.label = 1 and e.weight < 1 then

Begin
if q = v then

begin
Error: e0 is not free!
STOP;

end;
q.label <- 0; (*)
RELABEL(q);

end;
end,

Fig. 9. Procedure RELABEL.



(a) (b) (c)

(d) (e)

Fig. 10. Snapshots of the procedure call RELABEL(M) with the nodes and
edges being operated on (nodes s, q, and the edge e in Fig. 9) highlighted:
(a) Since e.weight < 1, the value of w.label is set to 0 and the recursive
procedure call RELABEL(tu) is invoked, (b) Now e.weight > 1 and the
label of the node v is unaltered, (c) Backtrack to the next outgoing edge of
node u. Since e.weight < 1, the value of x.label is set to 0. (d) Similarly,
y. label is set to 0. (e) An error condition arises because e. weight < 1 and the
e.head.node is v. Indeed, edge eo is part of the register-deficient elementary
circuit containing the nodes {v,«, x,y}.

cycle-time(L) is oo if L is inconsistent, else it is given by

cycle_time(L) =

• delete all the edges which are not part of

any of eci+i • • • ecm in the DG

• form RG : set edge weights according to w

• return op time(RG)

and the value of ncycle(L) is (1 + Y + rm a x) where Y is
obtained from solving the ILP

minimize Y
subject to Y-{Vi- VJ)T > 0,

SJT = \3, j -l-.-i
SjT = lj, j = i + l-
reZn

VV^VjGViSl)

• m

(21)
and rm a x is the maximum among the labels returned from
retiming the RG, which is derived from the DG with the
solution r of the ILP. The constraints SJT > AJ, j = 1 • • • i,
in the above ILP ensure that the solution r is chosen such
that the elementary circuits ec\ • • • ec; in the RG are indeed
register-sufficient. The actual numbers of registers in the
register-sufficient EC's are determined by the chosen schedule
r.

The set of values

{cycle_time(L)\l < lj < Aj, j = 1 • • • m}

represents all possible minimum cycle time values of the RG's
derived from the given DG with any valid schedule. With the

functions ncycle and cycle-time defined above, the register
assignment L (and hence the r) which minimizes the product
^sys x £Sys can be determined with exhaustive enumeration
on all the possible L's. Such enumeration scheme requires a
maximum of YT^=1 ̂ j iterations.

IV. BRANCH-AND-BOUND METHOD

To find the time-optimal schedule r with exhaustive enu-
meration is computationally expensive because, apart from the
large number of L vectors that need to be considered, the
function ncycle(L) calls for the solution of an ILP (21) which
is, in general, hard to solve. In this section, it is shown that a
decision tree of m levels can be used to construct the optimal
L vector incrementally. An efficient branch-and-bound method
is devised to prune the decision tree to speed up the process.
The performance of this approach depends on the quality of
the initial solution and on the lower bounding function used.

Each level of the decision tree represents one component of
L: the first level contains Ai nodes with labels 1, • • •, Ai; to
each node with label l\ at the first level correspond A2 nodes
at the second level with labels l\l to /iA2, and so on (Fig. 11).
Nodes at the zth level of the decision tree have labels of length
h hh • • 'k, and therefore, the labels of the leaf nodes on the
tree correspond to the full L vectors.

Let Li, called a partial register assignment, be the label
of a node, nodei, at the zth level. Define the two functions
Ib-cycle-time(Li) and ib-ncycle(Li) as

lb_cycleJime(Li) =

• delete all edges which do not belong

to any of ec\ • • • eci

• delete all edges shared only by

{ecj\lj = \j , j = l-"i}

• form RG if Li is consistent

• return opJime(RG) if Li is consistent else

return oo

and ibjncycle(Li) = 1 + Y if the linear program (LP)

minimize Y

subject to Y - (Vi - Vj)r > 0, Wi, Vj G V(Q)

SJT — / j , if lj < Aj, j — 1 • • • i (register_deficient EC)

SJT > Aj, if lj = Aj, j = 1 • • • z(register_sufficient EC)

SJT > 1, j = i -f 1 • • • m (lj not yet assigned)

r € Qn (rational n-vector)
(22)

is feasible, else ib-ncycle(Li) = oo.
Clearly, the label of any leaf node in the subtree that roots

at nodei is of the form L — (Li
(Zi+i • • -lm), and

ii+i • • • lm) for some

lb_cycle_time(Li) < cycleJime(L)

ibjncycle(Li) < ncycle(L).
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Fig. 11. The structure of the decision tree used by the branch-and-bound method.

Thus, if the value of ib-ncycle(Li) x Ib-cycle-time(Li) is
already larger than that of the incumbent solution then the
subtree at nodei should be pruned. This provides a bounding
function for the branch-and-bound method:

lb(Li) = ibjtcycle(Li) x lb_cycle_time(Li).

The computation cost of the bounding function is low (poly-
nomial time) : ib.ncycle(Li) involves a linear program which
can be solved in polynomial time, and Ib.cycle-time(Li) can
be computed with the procedure detailed in [18] which has
polynomial time complexity. At the leaf level, however, the
lb-ncycle function has to be replaced by the ncycle function
to produce an integral solution r . Due to the interaction among
elementary circuits which share part of their edges, many
partial register assignments L{ are either inconsistent or the
constraint set in the LP (22) is infeasible. The subtree that roots
at a node with such a label Li can be pruned. To take advantage
of this property, elementary circuits which share edges should,
if possible, be numbered consecutively. An ordering heuristic
similar to the one proposed in [4] could be used for that
purpose.

An initial incumbent solution for the branch-and-bound
method is chosen between the schedules that minimize one of
the two objectives: nsys and tsys. The schedule that minimizes
nsys is found by solving the ILP:

{minimize Y
subject to Y - (Vi - V J)T > 0, VV ,̂ Vj G V(Sl)

SJT>1, j = l...m
reZn.

Having found the schedule r, retiming is performed on the

the value of rm a x . For the second objective, the minimum tsys

is given by the maximum computation delay of the functional
units (or node labels) in the RG. A schedule which achieves
this cycle time is found by solving the ILP:

{
minimize Y
subject to Y - (Vi - Vj)r > 0, VV̂ , Vj e V(il)

SJT>\J, j = l""m
reZn.

Of the above two schedules, the one with smaller nsys x tsys

value should be used as the initial solution of the branch-and-
bound method.

Example 2: Consider one of the steps in the Toeplitz Hyper-
bolic Cholesky Solver (THCS) [6], which can be expressed as
a RIA of six recurrences:

Pj+hj ~ sj+i,j-i/rjj-i sij = Sij-i - q{j

Tij = n-ij-i -pi:j q{j = pij x rj__i,j_i

Pij = Pij X 8^-! pif- = / f t - ^ i f
u ^ ' + 1

(̂  Pij otherwise.

The range of computation is a triangle, defined by the
inequalities 1 < j < i < N, where N is the size of the
Toeplitz matrix. The DG of this RIA is shown in Fig. 12(a).
Let the computation delays of the adder, multiplier, and divider
be 1, 5, and 5 time units, respectively.

The nsys-optimal design has r = (1 1)T and nsys =
2N — 2. The corresponding RG for this choice of r is
depicted in Fig. 12(b). The minimum cycle time is tsys =
11 L a x = 0). Hence, the overall time performance of

associated RG to determine the minimum cycle time £sys and the systolic implementation derived with r = (1 1)T is
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(a) (b)

Fig. 12. (a) The DG of one of the steps in THCS and (b) the corresponding RG derived with r = (1 1) T .

ŝys x tsys = (2TV - 2) x 11 time units. For TV — 10, say, the
value equals 198 time units.

On the other hand, a £sys-optimal design can be obtained
from picking, say, r = (1 3)T. This choice increases the
value of nsys to 4TV - 1 but, with retiming, the value of tsys is
reduced to 5 time units [see Fig. 13(a) and (b)], which is the
minimum achievable. The value of rmax is 3 and the overall
time performance is (47V — 1) x 5 time units. For TV = 10, the
total time required equals 195 time units which is marginally
better than the time of the rzsys-optimal design.

Now, consider the linear schedule, r = (1 2)T. The
corresponding RG is shown in Fig. 14(a). The value of nsys is
37V, and the value of tsys obtained from retiming (rmax = 3)
is 6 [Fig. 14(b)], neither of which is the minimum value
achievable. However, the overall time performance of the
schedule is 37V x 6 time units, which is better than the
previous two schedules for TV > 5. Implementation using
this (optimal) linear schedule requires roughly 10% less time
than the previous two designs to compute the same RIA. This
improvement in performance is essentially independent of the
actual value of TV, provided that TV is larger than 10. •

Example 3: The TV point Discrete Fourier Transform (DFT)
of a data sequence xq, q = 0 • • • TV - 1, is computed from
the formula

N-l

yk = YlxX? k = 0---N-l

q=0

where w^ = exp(—J2TT/TV). Decomposing the complex

multiply into real multiplies and addition/subtractions and
using Horner's rule, the formula can be rewritten as the RIA
shown at the bottom of this page.

The DG is shown in Fig. 15(a); unlabeled edges have (0 0)
as their weights. The range of computation is a rectangle
0 < k < TV - 1, 1 < q < TV. Let the computation delays
of the multiplier and the adder/subtractor be 10 and 6 time
units, respectively. Furthermore, let TV be 256.

The nsys-optimal schedule for the algorithm is found to be
r = (1 1)T and nsys = 27V - 1; the corresponding RG is
shown in Fig. 15(b). The cycle time is tsys = 22 time units
(rmax = 0). Hence, the overall computation time of the DFT
algorithm with this schedule is (2TV - 1) x 22 which equals
11242 time units for the given TV.

The tsys-optimal schedule for the algorithm is given by
r = (1 3)T. The RG's before and after retiming are shown
in Fig. 16(a) and Fig. 16(b), respectively. The cycle time is
tsys = 10 (rmax = 2), which is the minimum value achievable
for any feasible r. The total number of cycles required is
increased to 4TV — 1 and hence, the total computation time
of the algorithm is (4TV - 1) x 10. For TV = 256, this value
equals 10230 time units.

Finally, using the branch-and-bound method, the optimal
schedule is determined to be r = (1 2) r . The RG's before and
after retiming for this choice of r are shown in Fig. 17(a) and
Fig. 17(b), respectively. The cycle time tsys is 12 (rmax = 2)
and the number of cycles required is 3TV. Hence, the overall
computation time is 36TV which equals 9216 time units, a more
than 10% improvement in computation time compared to the
other two schedules. •

yrkq = akq ~ hq

akq = wrkq x ekq

ckq = wrkq x fkq

ekq - Wk,q-i +XTkq

yikq = Ckq + dkq

bkq = wikq x fkq

dkq = wikq x ekq

fkq = !f*fc,g-l + XikV

_ f xrk-i,q iffe#l . f arzfc-i^ ifk^l
xrkq - i Real(xiv_g) otherwise kq |Im(a;;v-g) otherwise

_ jwrfe,g-i if g 7̂  1 . _)wik,q-1 if q ̂  1
wrkq - | R e a l ( ^ ) otherwise wtkq ~ \ lm(wk

N) otherwise
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(a) (b)

Fig. 13. (a) The RG of THCS derived with r = (1 3 ) T before and (b) after retiming. The cycle time is reduced from 11 to 5 time units.

(a) (b)

Fig. 14. (a) The RG of THCS derived with r = (1 2 ) T before and (b) after retiming. The cycle time is reduced from 11 to 6 time units.

(a) (b)

Fig. 15. (a) The DG of the DFT algorithm and (b) the corresponding RG derived with r = (1 l ) r . The cycle time is 22 time units.

Obviously, the choice of schedule which minimizes the
overall computation time depends on the relative magnitudes
of the computation delays of the functional units. For instance,
if the computation delays in Example 3 are such that Tx >
4T+ then the nsys-optimal schedule optimizes the overall
computation time. Note also that the values of rm a x in all
the cases shown in the examples are small compared to the
actual values of n sys—an assumption made in formulating the
discrete optimization problem in Section II-E.

V. TWO-LEVEL PIPELINE IMPLEMENTATION

The throughput of a systolic array can be greatly enhanced

by utilizing pipelined functional units in the PE's. The cor-
responding implementation is called a two-level pipeline [14]
because pipelining is supported at both the inter-PE (array)
and intra-PE (functional unit) levels. A well known example
of such two-level pipelined systolic architecture is the CMU
WARP computer [15] which contains a linear array of ten
PE's where each PE has a pipelined floating point adder and
a pipelined floating point multiplier.

In this section, the objective is to find the linear schedule
which minimizes the value of nsys x tsys when all or some
of the functional units on the PE's are pipelined. Two cases
are considered. First, it is assumed that all the functional units
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(a) (b)

Fig. 16. (a) The RG of DFT derived with r = (1 3 ) T before and (b) after retiming. The cycle time is reduced from 22 to 10 time units.

(a) (b)

Fig. 17. (a) The RG of DFT derived with r = (1 2) T before and (b) after retiming. The cycle time is reduced from 22 to 12 time units.

are pipelined (with at least two stages) and the propagation
delay of each stage, the stage-delay, is the same, equal to
£stage> for all the functional units. This corresponds to the case
where the PE's are built from off-the-shelf pipelined chip sets
whose stage-delays have been carefully equalized. Second, the
more general VLSI/WSI implementation of two-level pipelines
is considered — the stage-delays of the functional units can
differ. Both pipelined and combinational functional units are
allowed in this case.

A. Case 1
Let av be the number of pipeline stages in the functional

unit that computes variable v. This quantity is also commonly
known as the latency of a pipelined functional unit. Suppose
the computation of variable u depends on the value of variable
v, with dependence vector duv Since the functional units are
pipelined, the computation of v at index point (Q — duv) will
now take av systolic cycles to complete. Thus, a feasible r

must be such that

QT > (Q - duV)r + (crv - 1) or duVr > av - 1 Vduv-

This is simply a generalization of condition (4) stated in
Section II-C. Define aj as

<7j = £ to-1)-
nodes u in eCj

Then, the necessary and sufficient condition for r to be a
feasible linear schedule becomes [cf. (6)]

S3T = °j + h v i

where lj is a nonnegative integer. Note that since all the
functional units are assumed to have at least two pipeline
stages, computation rippling cannot occur (because there is
at least one register within each of the functional units) and
hence, lj = 0 is acceptable.

With the assumption that the stage-delay is the same for all
the functional units, the cycle time, tsys, of a two-level pipeline
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systolic implementation can only be either tstage or 2tstdige,
where £stage is the propagation delay of a stage of a pipelined
functional unit. This is because if all the edges on the retimed
RG are nonzero then the cycle time equals tst3ige, otherwise,
the output from one functional unit is used as the input of a
second functional unit within the same systolic cycle and hence
the cycle time must be 2tstage. The cycle time value cannot
be larger because the internal registers within the pipelined
functional units guarantee that there is no accumulation of
stage-delay within the functional units.

To minimize the product of n sys x £sys, only two alternatives
must be considered. First, let tsys = tstdLge (lj > Aj), the
corresponding schedule r that minimizes n sys (= 1 + Y) is
found by solving the ILP:

minimize Y
subject to Y - {Vi - V5)T > 0, VV ,̂ Vj e V(Sl)

SJT > <jj + Aj, j = 1 • • • m
r£Zn.

Then, let tsys = 2£stage (lj = 0), r is obtained by solving

minimize Y
subject to Y - (Vi - Vd)r > 0, W^V, G V(Sl)

SJT > <Jj, j = 1 • • -m
TGZn.

The r which results in the smallest n sys x tsys value is the
appropriate choice.

B. Case 2

The assumptions that all the functional units have the same
stage-delay and that each functional unit has at least two
pipeline stages can be relaxed. In that case, each node u in the
RG can be decomposed into a chain of au subnodes linked
by edges of unit weight (see Fig. 18); each of the subnodes
represents one stage of the pipeline. Since the registers within
a pipelined functional unit are fixed, the weights on the edges
linking consecutive subnodes are not to be altered by retiming.
This is accomplished by imposing an additional constraint

rui = rUl+1

when determining the optimal retiming for the RG [29], where
ui and tii+i denote two consecutive pipeline stages of the
functional unit which computes variable u.

With such modification to the RG, the branch-and-bound
method presented in the previous section can be applied to
determine the time-optimal schedule. The search range of each
lj, j = 1 •• -m, is

MAX(1, <TJ) < lj < MAX(1, aj) + Xj - 1

where Â  is the total number of edges in elementary circuit
ecj prior to the decomposition of nodes into subnodes. Hence,

Fig. 18. A multiplier node with o pipeline stages is decomposed into a chain
of a subnodes linked by directed edges of unit weight.

the introduction of pipelined functional units does not increase
the size of the decision tree nor the complexity of the branch-
and-bound method.

Example 4: Consider the matrix-matrix multiplication al-
gorithm for computing the product of two square matrices,
A and B, of order iV. The algorithm can be expressed as a
RIA shown at the bottom of this page, where aij and bij are
the (z, j ) elements of A and B, respectively. The range of
computation is a cube of size N, with lower left-hand corner
located at index point (1,1,1). The DG of the algorithm is
shown in Fig. 19. Suppose the adder has three pipeline stages
and the multiplier has six pipeline stages. Furthermore, assume
that the stage delay, £stage> is o n e time unit.

For tsys = £stage, the optimal r is determined by solving
the ILP:

' minimize n sys

subject to (0 0 - l ) r > 3
< (0 1 0)r > 1

(1 0 0)r > 1
reZn

which yields the solution r = (1 1 — 3)T . The reindexing
transformation is selected such that

{ [(0 0 0) + 6p - 6c]r > 6

[(0 10) +8a- Sp]r > 1

[(00 -i) + 6b-6p]T>l.

The first inequality ensures proper synchronization of data p,
which is computed by a multiplier of six pipeline stages, and
c. A feasible reindexing transformation is 6C = (0 0 0) , 6p —
&a — fy> — (12 — 1). This is equivalent to a retiming of the
RG with

rCl = rC2 =rC3=0

rPi=TP2= = rP6 =
 l

and therefore,

3

8cr = ]T rci = rc = 0

6

Spr = Y^rPi =rp = 6
i=i

8aT = ra = 6

6hr = rb = 6.

Cijk = Ci.j.fc+l +Pijk Pijk = ai,j-l,k X 6i_l,j,jfc

a_ = fa M _i , f c i f j - l > 0 b ffc-i,j\* if« - 1 > 0
tJ \ dik otherwise *jfc | bkj otherwise
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(0 0 -1)

Fig. 19. The DG of the matrix-matrix multiplication algorithm.

The total number of cycles required equals 57V + 2 and hence
the total time needed is 57V + 2 time units.

Similarly, for tsys — 2tstage, the optimal r is determined
from the ILP:

minimize nsys

subject to (0 0 - l ) r > 2
(0 1 0)r > 1
(1 0 0)r > 1
reZn

which yields the solution r = (1 1-2)T . A feasible reindexing
transformation is 6C = (0 0 0), 8p = 6a = fy = (1 1 - 2).
The total number of cycles required equals 47V + 3 and hence
the total time needed is 2 x (47V + 3) = 87V + 6 time units.

Thus, for the given pipelined functional units, the first
schedule minimizes the overall computation time of the ma-
trix-matrix multiplication algorithm. •

VI. PERFORMANCE EVALUATION

The effectiveness of the branch-and-bound method can be
assessed by the percentage or the number of nodes on the
decision tree it traverses. As mentioned in Section IV, at a
nonleaf node of the decision tree the bounding function can
be evaluated in polynomial time. At a leaf node, however,
one needs to solve an ILP (the ncycle function) which is
computationally expensive. Hence, an alternative measure of
performance for the branch-and-bound method is the number
of leaf nodes that survive the pruning.

The branch-and-bound method has been implemented in
the programming language C on a SUN/3 workstation under
the BSD 4.3 Unix operating system. Shown in Table I are
performance measures obtained when applying the branch-
and-bound method to three test cases: the Toeplitz Hyperbolic
Cholesky Solver (THCS), the Discrete Fourier Transform
algorithm (DFT), and a version of the dynamic programming
algorithm (DP). Only the characteristics of the algorithms
which are relevant to the discussion are provided. In the table,
the number of elementary circuits quoted does not include
the self-loops on the DG, and the CPU time quoted does not
include the time for solving the integer linear programs at the
leaf nodes.

As can be observed, the branch-and-bound scheme is ex-
tremely efficient in pruning the decision trees. For decision
trees of small size (e.g., DFT), however, the percentage of
nodes traversed may be large although the actual number
of nodes traversed will remain small. Thus, the method is
efficient enough for use in an interactive environment to assist

the design of time critical VLSI/WSI systems (e.g., with
standard cells) for applications such as real-time signal/image
processing.

VII. CONCLUDING REMARKS

In this paper, the derivation of time-optimal linear schedules
for algorithms that can be expressed in the RIA model is
formulated as a discrete optimization problem. It is shown that
the solution space of the problem is bounded and an efficient
branch-and-bound method is introduced for determining the
optimal linear schedule. The optimality criterion is based
on two assumptions. First, the number of functional units
on the PE's is assumed unconstrained. Second, uniformity
and regularity in control and clocking is considered to be a
key factor for design cost reduction, thus ensuring the cost
effectiveness of VLSI systolic arrays.

While the first assumption is valid for VLSI/WSI systolic
arrays, it does not necessarily apply to general purpose, fixed
architecture systolic machines. Moreover, for some RIA's,
the number of functional units required to support the time
optimal schedule may be too large to be practical, even for
VLSI implementations. It is therefore of practical value to
consider an extension of the problem in which the number
of functional units on the PE's is fixed. However, a major
complication in this case is that the optimal retiming for a RG
can no longer be determined in polynomial time. In fact, to find
the cycle time of a given RG for a chosen legal retiming under
hardware constraint is equivalent to solving a multiprocessor
scheduling problem—remove all the nonzero edges from the
retimed RG and treat the resultant graph as a task precedence
graph where the computation delay associated to a node is
interpreted as the task processing time—which is known to
be NP-hard. One possibility is to rely on heuristics for the
multiprocessor scheduling problem [11] to determine a close-
to-optimal cycle time of a given (legally) retimed RG. But
even so, to find the close-to-optimal retiming for the RG may
still be intractable because the number of legal retimings that
needs to be considered is exponential.

The second assumption is upheld at more than one place
in the course of development of the discrete optimization
problem. First, the full set of dependence vectors in the RIA
is instantiated at all the index points to make the dependence
structure shift-invariant (i.e., ignoring the conditionals in the
RIA). Second, for a constant global clock period, the cycle
time of the systolic array is taken to be the maximum duration
of a systolic cycle. Obviously, such an approach may degrade
the time performance of the implementation. As an example,
many (systolic) algorithms possess a small set of expensive
computations which are distributed evenly among all the other
computations—such as the division operations in the LU
decomposition algorithm and in Example 1 and 2, and the
square-root operation in the hyperbolic Cholesky factorization
algorithm [1]. Since the maximum duration of a systolic cycle
is taken as the global clock period of the systolic array, the
time performance is severely degraded by this small set of
expensive operations.
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TABLE I
SOME PERFORMANCE RESULTS OF THE BRANCH-AND-BOUND METHOD; m is THE TOTAL NUMBER OF

ELEMENTARY CIRCUITS (EXCLUDING THE SELF-LOOPS) IN THE DG AND AZ IS THE NUMBER OF EDGES IN ec%.

Algorithm

THCS

DP

DFT

Dependence Graph (DG)

No. of f , ^
vertices l J

6 5 4,6,6,4,4

9 4 4,3,4,3

12 3 6,3,3

Decision Tree

_. . No. of nodes N ° : ° f

Tree size A , survivingtraversed , °leaves

3052 84 ( 2.75%) 3

208 17 ( 8.17%) 1

78 21 (26.92%) 2

Run-time

CPU seconds

14.7

7.4

1.9

short cycle

|— long cycle - |

Fig. 20. A global clock with alternatively long and short clock period.

Now, consider the possibility of using a global clock whose
period can vary on alternate cycles (for regularity) to drive
the target systolic array. Then, by choosing the schedule
carefully, it may be possible to arrange for the execution of
the expensive computations at regular clock cycle intervals to
match the pattern of the global clock. Hence, the expensive
computations are only computed during the "long" clock
cycles and the other computations are executed in the "short"
cycles at a much higher rate. For an illustration, consider
the forward-substitution algorithm in Example 1 and suppose
the computation delays of a divider, a multiplier, and an
adder/subtractor are, respectively, 6, 2, and 1 time units. With
the schedule r = (1 1)T , the division operations (which take
6 time units to complete) occur only at cycle 2i, i = 1 • • • N,
i.e., on the even cycles (see Fig. 6). During the odd cycles, a
multiply-and-add operation is needed, that only costs 3 time
units. Using a global clock with clock period which varies
between long and short cycle (Fig. 20), the overall computation
time of the algorithm on the array is

N x 6 + (N - 1) x 3 « 9N time units.

This time performance surpasses that of any other systolic
array implementation which relies on a global clock of fixed
clock period by at least 25%, since the minimum value of nsys

for any valid linear schedule is 2N - 1 and the minimum tsys

is 6 time units. Thus, a slight relaxation of the regularity and
uniformity requirement could pay off handsomely.

The applicability of such a clocking scheme depends on
whether a valid schedule could be found so that the expensive
computations occur at a regular interval. Suppose {R} is
the subset of index points of Q, at which these expensive
computations occur. The additional constraint on r is that there
exist integer constants t0 and k, k > 1, such that

Rr = ak + to, VB

where a is an integer, whose value depends on JR.
Pushing to the extreme, instead of relying on global syn-

chronization, a self-timed variant of the systolic array may
be of interest. This is the so-called wavefront processor array

proposed by S. Y. Kung [16]. However, the hardware and
control overhead necessary for supervising the asynchronous
communication may outweigh the gain in time performance.
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Abstract. A multi-stage algorithm is a computing algorithm consisting of a sequence of nested loop constructs
to be executed sequentially. In this paper, a systematic approach to address the multi-stage systolic mapping problem
is proposed. To reduce the inter-stage data communication overhead, we argue that the adjacent stages should
have matched I/O interface. For this, the conditions of I/O matching between two stage's mappings are established.
A systematic method to derive the I/O matched mapping is also presented. To improve the performance degrada-
tion due to the initiation and conclusion phases of computation in systolic array, a technique called chaining which
tries to overlap part of the computations in successive stages and thus effectively reduces the computation latency
is employed. With these results, the multi-stage mapping problem is formulated as an optimization problem and
a heuristic search based multi-stage systolic mapping (MSSM) tool is developed. Several design examples are pre-
sented to illustrate the potential use of MSSM.

1. Introduction

Many research works focused on the mapping of digital
signal processing (DSP) computing algorithms onto
VLSI systolic architectures. Kuhn [1] and Moldovan
[2]-[4] proposed methods to map a recursive algorithm
with n-level nested loops to a (n — ?)-dimensional proc-
essor arrays. Methods for t = 1 have also been pro-
posed by Miranker and Winkler [5], and Quinton [6],
[7]. Li and Wah [8] derived the optimal mapping based
on vector constraint equations. Chen [9] used a formal
language to describe the recursive algorithms which
enables the proof of the correctness of the systolic
mapping. S.Y. Kung [10] proposed a dependence graph
(DG) based approach and a cut set retiming procedure
which can map an ^-dimensional DG into a (n — 1)-
dimensional processor array. H.T. Kung [11] derived a
canonical matrix representation first for the algorithm
and then applied algebraic transformations to determine
the delay distribution and the I/O periods. Capello [12]
used the concept of geometrical transformation and
transformed the n-tuple indices into (n — 1)-tuple proc-
essor indices and 1-tuple time index. Lee [13] developed
a method of mapping algorithms consisting of an n-level
nested for-loop onto a linear array. Lam and Mostow
[14] adopted the transformational paradigm which con-
sists of a bag of tricks algorithm transformations. The
design process is proceeded in a bottom up manner and
contains the hardware allocation, schedule computation

and optimization phases. A comprehensive survey of
these early works can be found in [15].

Most of these existing methods assume the DSP
algorithm is a Regular Iterative Algorithm (RIA) [16].
An RIA is a nested do loop consisting of a set of uni-
form recurrence equations. Many existing DSP algo-
rithms can be formulated as an RIA. However, there
are also many sophisticated DSP computing algorithms
such as the Kalman filter, which cannot be described
by a single nested loop. Instead, many of them consist
of a sequence of nested loops to be executed sequen-
tially. In this paper, we call such an algorithm a multi-
stage algorithm. The number of the stages is the number
of nested loops. Since successive nested loops are to
be executed sequentially, it is more economical to map
these nested loops onto a single processor array. If each
individual nested loop is itself an RIA, existing mapping
methods can readily be applied to map them to the same
processor array. In this case, the design issue is to better
interface the computations of successive stages. Inade-
quate interface may cause serious performance degrada-
tion and offset the potential parallelism. In the past,
the multi-stage mapping was usually achieved manually
by knowledgeable designers. Despite the early work by
JaJa [17], no systematic mapping procedure has been
reported. Nor are any computer assisted design tools
available.

In this paper, we present a systematic approach to
address the multi-stage mapping problem. To reduce

Reprinted with permission from Journal of VLSI Signal Processing, Y. T. Hwang and Y. H. Hu, "MSSM - A Design
Aid for Multi-stage Systolic Mapping," Vol. 4, No. 2/3, pp. 125-146, May 1992. © Kluwer Academic Publishers.
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data communication overhead, we argue that the adja-
cent stages should have matched I/O interface. For this,
we establish conditions for matching I/O operations be-
tween successive stages and propose a method to derive
the I/O matched mapping. Due to the nature of wave-
front computation, not all the processors in the systolic
array are activated during the initiation and conclusion
phases of computation. We thus employ a technique
called chaining to overlap part of the computations in
successive stages and reduce the performance degrada-
tion. With these results, we then develop a multi-stage
systolic mapping (MSSM) algorithm to search for the
best multi-stage mapping result. We develop the multi-
stage systolic mapping procedure into a software pack-
age, MSSM. Several design examples using MSSM
have shown very encouraging results.

The remainder of this paper will be arranged as
follows: In Section 2, the multi-stage mapping problem
will be formulated and basic terminologies will be
defined. Two interface design issues, I/O matching and
computation overlapping, will be discussed in Sections
3 and 4, respectively. In Section 5, a parameterized
dependence graph is briefly introduced as a unified
representation of the input algorithm for the multi-stage
mapping problem. A best-first search method for solv-
ing the multi-stage mapping problems will also be
described. Several design examples compiled by our
multi-stage systolic mapping tool (MSSM) will be illus-
trated in Section 6.

2, The Multi-stage Systolic Mapping Problem

2.1. Basic Terminologies and Notations

In the conventional systolic mapping problem, the array
design can be derived systematically by applying a stan-
dard space-time transformation method to the comput-
ing algorithm. The algorithm is usually expressed as
a nested loop containing a system of uniform recurrence
equations. It can be described by an index space of the
nested loop and a set of dependence vectors associated
with the recurrence equations. Graphically, it is equiv-
alent to the data dependence graph (DG) proposed in
[18], where each node incorporates one loop iteration
of the computation in the recurrence equation and an
arc connecting two nodes corresponds to a dependence
vector. Each node can be uniquely addressed by its
coordinate (an n-dimensional vector with integral ele-
ments) in the graph. The space-time transformation
consists of two parts: (1) scheduling function and

(2) processor allocation function. Scheduling function
is an n-dimensional integral vector (called scheduling
vector s) which assigns the scheduled time for each
node to be executed. Processor allocation function (or
processor basis [18]) P is an (n - 1) X n integral matrix
of full row rank, that relates each node in the DG to
an (n — l)-dimensional vector representing the coordi-
nate of the processor in the processor domain defined
by P. The processor allocation function can be charac-
terized by an n-dimensional co-prime projection vector
X which spans the one-dimensional null space of P. Any
two processor allocation functions corresponding to the
same projection vector are considered as equivalent.
The readers are referred to [3] and [18] for more details.

In this paper, we adopt the following notation con-
ventions (superscript t denotes vector transpose):

1. s: a column vector
2. l[\ a row vector
3. A: a matrix
4. n(j): a DG node with coordinate vector j
5. x[[\: a variable with /-tuple array index /
6. a (or #') € A: a (or a?) is a column (row) of matrix A
7. e( = [0 . . . 0 1 0 . . . 0]', where " 1 " is the i-th

entry.

We also adopt the following conventions in our dis-
cussion: (1) Without loss of generality, we will use stage
1 and stage 2 to represent two adjacent stages. (2) To
avoid confusion, x and JC' are used to denote the same
variable appeared in two adjacent stages. (3) The proc-
essor array obtained from each stage's mapping will
be called a logical processor array to differentiate it
from the physical processor array (target machine)
where the logical array processors will be realized.
(4) To distinguish the index vectors in different do-
mains, we use the following terms:

1. DG index (j): the coordinate vector of a node in
the DG domain

2. array index (i): the index of an array variable,
3. processor index (r): the index for a processor in

processor array.

The DG index y thus represents a node n{j) in DG, the
array index i represents an element JC[I] of array variable
x and the processor index r represents a processorp{r)
in the systolic array.

2.2. Problem Statement

We define multi-stage algorithm as a numerical com-
puting algorithm consisting of a sequence of nested do
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loop constructs. (For convenience, we shall use stage
and nested loop interchangeably in the rest of this
paper.) Each of these nested loops is an RIA, and there-
fore can be unfolded and described by a shift invariant
DG. In many cases, the sequence of these nested loops
needs to be executed sequentially: the data generated
in the current nested loop will be the input to the fol-
lowing loop. It is therefore more efficient, with respect
to hardware utilization, to map these loops onto a single
processor array. This, however, does not preclude the
possible overlapping of the computations between suc-
cessive stages as long as the dependence constraint is
satisfied. The problem now is to handle the interface
problem between successive stage's mappings carefully
such that the overheads can be reduced.

Several assumptions about MSSM will be made here:

(1) We assume that the DG of each stage has the same
dimension.

(2) We assume only a single systolic processor array
is available. The size and the shape of the array are
to be determined.

(3) We assume the size of the DG can be fitted into
the processor array without partitioning.

Below is an example of a three-stage algorithm
which consists of two consecutive matrix multiplica-
tions, followed by an LU decomposition:

Example 1. A three-stage computing algorithm.

A • B = C first stage

C • D = E second stage

E = L ' U third stage

A variable is an I/O variable if it is computed in one
stage and then used in the successive stage. In this ex-
ample, matrices C and E are I/O (array) variables and
will require inter-stage data communication between
adjacent stage's computations. When I/O variables are
passed from one stage to the next, interface overheads
may arise from two causes: (1) The mismatch of the
data flow sequence or the I/O locations of adjacent
stages. The result is that extra time or storage buffers
will be needed to redirect the data. (2) The lack of com-
putation overlap between adjacent stages due to inade-
quate computing schedules. This leads to longer compu-
tation time and low processor utilization. These over-
heads may severely deteriorate the overall performance
despite the use of systolic pipelined computation in indi-

vidual stage. This can be illustrated with a two-stage
consecutive matrix vector multiplication example:

£nxl = AnXn * bnX\

y_nx\ = ^nXn £nX\

Two possible multi-stage mapping designs (1) and (2)
are depicted in figure 1 and figure 2 respectively. In
design (1), the systolic mappings for each individual
stage are optimal. However, the final design after com-
bining two stages is very poor. In particular, an inter-
stage storage buffer is needed to transform the data flow
pattern from the first stage to the second one. There
is no computation overlap between these stages, either.
In design (2), the I/O interface between successive
stages are perfectly matched. No interstage storage buf-
fer is used, and there is a 50% computation overlap
between the two stages. The total computation time is
also 25% less than that of design (1). Clearly, the sec-
ond design is better.

In summary,

the goal of the multi-stage mapping problem is to
efficiently map a multi-stage computing algorithm
onto a fix-size, mesh-connected systolic processor
array so as to minimize the interface overhead (addi-
tional delay and storage space) between successive
stages.

3. The I/O Matching between Successive Stages

The goal of the I/O matching is to best match the I/O
locations and the data flow between adjacent stages so
that the overhead due to data flow mismatch is mini-
mized. In this first phase design of a multi-stage systolic
mapping tool, several assumptions about I/O matching
are made to simplify the problem. (1) We assume that
the processor allocation function for each stage is prop-
erly selected such that all the communication links
derived after mapping are permissible and hence will
not affect the conditions of I/O matching. The matching
issues thus focus on the data location and data flow only
but not on the communication links. (2) We assume that
only the final value, not the intermediate result, of the
I/O variable x is interesting. The I/O activities will
therefore occur only at the boundary of the DG where
either the initial value of the I/O variable x is imported,
or the final value of x is generated. (3) The recursion
of each variable is no more than one dimension. Al-
though these assumptions seem to be restrictive, many
multi-stage DSP algorithms do satisfy all of them.
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(a) The mapping for the first stage (b) The mapping for the second stage

(c) The I/O mismatched array design for two stages

Fig. 1. An I/O mismatched lousy design.

3.1. Preliminary Discussion

Consider the following pseudo RIA expressed in the
form of a nested do loop:

DOjx =

VOjn = . . .
x \ £ i ( j ) , 8 2 O I , • • > 81U)]

where the vector; = [j\ . . . jn]' denotes an n-tuple
loop index andg(/) = {gxU) . . . gi(j_)Y = FlXn -j_ + b
is an array index Junction mapping the loop index j into
an /-dimensional array index i = gO) . The range of
loop indexy is called the index space of the algorithm.
Each integral pointy within the index space then corre-
sponds to one loop iteration. If matrix Fin array index
function #(•) has a null space vector p such that F • p
= 0 , then we have

sHi + e) = F' Q + P ) + b = F-j + b = guj.

This means the same array elementx[i] with / = g(j)
will be accessed at loop iteration j and all iterations

j' + c • p for any integer c such that j_ + c • p stays
within the index space. Since we assume the recursion
is at most one-dimensional, the null space dimension
of the array index function g is at most one, too. The
dimension / of array index / is thus at least n - 1. Since
each loop iteration (a point in the index space) corre-
sponds to a node in DG, variable x[i] is propagated
from one DG node to another along a straight line de-
fined by the null space vector of array index function.
Among those nodes accessing the same array element
of x[i]9 two extremal nodes at the boundary of DG will
keep the initial and final values of JC[I], i.e., the value
upon entering the DG and the value upon leaving the
DG. The DG index of these two nodes will be denoted
by fi(x[ij) and ff(x[i]) respectively. For I/O match-
ing, the node n(ff(x[i])) producing the final value of
JC[/] in the first stage's DG should be mapped onto the
processor where the node «(/,•(*'[[])) receiving the

151

D

0

A

y4 y3 y2 y1
(cr [c2, (c3 C4.

Lb4jb3Jb2jbL

a44
a43 a34

a42 a33 a24
a4i a32 a23 a14
a31 a22 ai3
a2i a12
an

c4 c3 c2 d

d41

d31 d42

d21 d32 d43

d11 d22 d33 d44

d12 d23 d34

d13 d24

d14



a44

a34 a43

a24 a33 a42

a14 a23 a32 a41

a13 a22 a31

a12 a21

a11

b4 b3 b2 bl

d c2 c3 c4

(a) The mapping for the first stage

d44

d43 d34

d42 d33 d24

d41 d32 d23 d14

d31 d22 d13

d21 d12

d11

y4 y3 y2 y1

(b) The mapping for the second stage
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Fig. 2. An I/O matched good design.

initial value of x'[i_] in the following stage. This is not
a trivial task because the coordinates in two adjacent
stages may not be the same. The following definitions
are given to facilitate the discussion of I/O matching.

DEFINITION 1. Dependence graph. The dependence
graph can be characterized by a two-tuple [IS, D]. IS,
the index space of the DG, is a convex polyhedron
{j | II • j ' < b} for some integral matrix II and integral
vector b. The set of all DG nodes {n(j)} is then equal
to the set of all integral points in IS. D is the depend-
ence matrix with each column vector dt € D, called
dependence vector, describing the read/write depend-
ence between two nodes.

DEFINITION 2. Boundary plane. Let G be a dependence
graph with IS = {j\U-j < b}. The boundary plane
of G can be described by a three-tuple [F, jri9 0] . F
is the index space of the boundary plane (a subspace
of IS) described by U |x{ -y = bt and TT* - j < bk

Vfc 5* / } , where ir\ € II is called the normal vector of
T and points toward the exterior of IS. Q is the lattice
matrix of the boundary plane with all its column vec-
tors as the basis of hyperplane TTJ • j: = 0.

Note that F is also a convex polyhedron with dimen-
sion one less than that of IS. In multi-stage algorithm,
each stage's DG can be partitioned into three regions.
An input region is where the DG nodes taking the input
values of I/O variable from the previous stage. An out-
put region is where the DG nodes sending the final
values of I/O variable to the following stage. An in-
ternal region contains all the DG nodes not in either
input or output regions and does not interface with adja-
cent stages. Both input and output regions contain the
nodes at boundary planes only.

DEFINITION 3. Index mapping vector/matrix. Let x[i]
be an I/O variable. The fc-th input (or output) index
mapping vector of x is defined as uk = fi(x[iiJ) -
ffcttd), (oruk =ff(x[il]) -fj(x[i2])) where ̂  - i2

= ek. The matrix U = [ux u2 • • • w«-i] will be
called an index mapping matrix.

Since the DG of an RIA is shift invariant, uk is a
constant vector as long as i_x — i2 = e_k. The index
mapping matrix can then be used as a mapping from
the array index / to the DG index/ Given the DG in-
dex y0 = fi(*[0]) (or 70 = ff(x[0])), the DG node
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keeping the initial (or final) value of variable element
x[i] will bey = U • i_ + j 0 . If we assume each itera-
tion will modify only one element x[i] of the array
variable, then all the index mapping vectors are linearly
independent. This is because if not all index mapping
vectors are linearly independent, there exists a nonzero
integral vector v such that U • v = 0. In this case, both
x[i] and x[i + v] will be modified at the same iteration
and violate the assumption. The index mapping matrix
U thus has full column rank.

DEFINITION 4. Input/Output plane. An input (output)
plane 0 for I/O variable x is a boundary plane belongs
to the input (output) region of DG with respect to the
I/O variable x. 0 can be equivalently characterized by
a five-tuple [x, T, T, U, JO]» where T and T are the
index space and normal vector of the boundary plane
respectively, f/is the index mapping matrix of variable
x and j 0 = f(x[0]) is a reference node.

The index mapping matrix can also be viewed as
the lattice matrix of the boundary plane if all the nodes
on the boundary plane are in the input/output region.
Since we always consider the I/O matching problem
between an output plane of the current stage and an
input plane of the following stage, for simplicity, we
will use the general terms I/O plane and index map-
ping vector (matrix) without specifying input or out-
put explicitly.

DEFINITION 5. Pattern matrix. Let f/be the index map-
ping matrix for the I/O variable x[i_] in the I/O plane.
Given the processor allocation function P, the pattern
matrix Wfor x is defined as W(B_1)X/ = P(B-i)x«' UnXl.

Since a DG node n(j) will be mapped to processor
index r = P • j , the pattern matrix can be used as a
mapping from die array index i to the processor index
r. Given the reference processor index r0 = P • j 0 , the
processor holding the initial/final copy of variable ele-
ment x[i] has processor index r = W • i_ + r0. Even
though the index mapping matrix U always has full col-
umn rank, after projection, the pattern matrix Wis not
necessarily to be full column rank. The following ex-
ample illustrates these definitions:

Example 2. Consider a two stage consecutive matrix-
matrix multiplication algorithm.

Qx6 - ^4x4 '

£4x4 = Qx6

#4X6

Aix4

Each stage's RIA is a 3-level nested do loop with loop
index (i,j, k). The array indices for the variables are:

stage 1: a[i, k], b[k, j], c[i,j]

stage 2: c'[i, k], d[k, j], e[i,j]

Note that these two stages do not have a unified DG
index system because the array indices of variable c are
different in two stages. The corresponding DGs are
given in figure 3.

The index space of the first stage is 4 X 6 x 4 and
the index space of the second stage is 4 x 4 X 6. Vari-
able c is an I/O variable between two stages. The array
index function of c[i, j] has a null space vector p j =
[0 0 1]', c[i, j] is thus propagated along the index k
direction in the first stage. The array index function of
c'[i, k] has a null space vector p 2 = [0 1 0]', c'[i, k]
is then propagated along the index j direction in the
second stage. The output plane for c\i, j] in the first
stage is described by hyperplane k — 4 and contains
all the DG nodes with DG index f/c[i, j]) = [ij 4]'.
The input plane for c'[i, k] in the second stage is
described by hyperplane j = 1 and contains all the DG
nodes with DG index f,{c'[i, k]) = [i 1 k]'. The out-

<^jB(kj)

A(i,k)
C = A*B

uk=(0 0 1)'

input index vectors

Ui=(KV
E = C * D

GE(ij)

Fig. 3. DGs for 2-stage consecutive matrix-matrix multiplication
algorithm.
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put index mapping vectors of variable c in stage 1 (also
form the basis of the output plane) are w, = [1 0 Of
and Uj = [0 1 0]'. Similarly, the input index mapping
vectors of variable cr in stage 2 (also form the basis
of the input plane) are u t = [1 0 Of and w* = [0 0 1]'.
If the processor allocation function Pj of stage 1 is

p - I " 1 ° ° 1
Pi ~ I o i o J '

the pattern matrix

The I/O matching problem can be divided into three
sub-problems.

1. structure matching: the logical processor arrays of
two adjacent stages should have the same lattice
structure such that both stages can share the same
physical processor array.

2. location matching: the processor allocation for an
I/O variable should be the same in both stages such
that no extra delay in data movement is needed when
passing the value from one stage to the next.

3. dataflow matching: the order in which an I/O vari-
able is computed by one stage should be the same
as the order in which it will be consumed by the
following stage such that the processor idle time can
be minimized.

3.2. Structure Matching

The logical processor arrays of two adjacent stages may
differ in their sizes or shapes because of the discrepan-
cies in their original DGs. The basic lattice structures
of two arrays, however, must be the same to share the
same physical array configuration. Recall that the proc-
essor allocation function P in an (n — 1) X n integral
matrix with full row rank, every valid node in the proc-
essor domain can be expressed as an integral linear
combination of the column vectors in P.

DEFINITION 6. Structural matching of two processor
allocation functions. Two processor allocation functions
Pi and P2 are structurally matched if and only if the
columns of P{ and P2 generate the same lattice, that
is, for any a€ln, one can find a vector b € In such
that Pi ' a = P2 * b and vice versa.

To test whether two processor allocation functions
are structurally matched, we have to transform both Px

and P2 matrices into their Hermite normal form [19].

A matrix of full row (or column) rank is said to be
in column (or row) Hermite normal form if it has
the form

[BO] ([*]]•
where B is a nonsingular, lower triangular, non-
negative matrix, in which each row (column) has
a unique maximum entry, which is located on the
main diagonal of B.

Each matrix of full row (column) rank has a unique
column (row) Hermite normal form. It can be deter-
mined by a series of elementary column operations
using a polynomial time algorithm. [19]

LEMMA 1. Theorem 4.2 in [19]. The columns of two
matrices with full row ranks generate the same lattice
if and only if they have the same Hermite normal form.

LEMMA 2. Two processor allocation functions Pi and
P2 are structurally matched if and only if they have the
same Hermite normal form.

Proof From Definition 6 and Lemma 1.

The structural matching test becomes very simple if
the dense array constraint [20], [21] is imposed on the
selection of processor allocation function. That is, both
Pi and P2 must be extended unimodular. (An m X n
matrix A with m < n is said to be extended unimodular
[20] if the greatest common divisor (gcd) of the deter-
minants of all its m X m submatrices is 1.) If Px and P2

are extended unimodular, then every node in the proc-
essor index subspace is a valid node. It is shown in [20]
that the Hermite normal form of an extended unimodu-
lar m X n matrix is always [Im 0]. According to Lemma
2, two matrices with full row rank are thus structurally
matched if they are both extended unimodular.

3.3. Location Matching

If both processor allocation functions are structurally
matched, the problem next is to check whether I/O
variables in both stages are assigned to the matched
processor locations. Since each element of I/O variable
x[i] will be mapped to processor W • i + r0, where
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W is the pattern matrix and r0 = P • jo is the reference
processor index, the locations of the I/O variable x[i]
on the processor array can be uniquely described by
Wand r0. (Note: j_0 is defined in Definition 4.) The
task of testing two mappings have matched I/O locations
can be accomplished by simply checking the equiva-
lence of two pattern matrices W{ = W2 and the equiv-
alence of two reference processor indices r01 = r02.
Since r01 and r02 are just the reference processor in-
dices of the processor array, they can always be made
equal by adding an index offset vector when performing
the systolic mapping and hence will no longer appear
in the following discussion of I/O matching problem.
In addition to merely examining the conditions of loca-
tion matching between two mappings, a more challeng-
ing task is how to derive I/O matched mapping in the
second stage under the constraint imposed by the first
stage's mapping result. The problem can be formulated
as follows:

Location Matching Problem: Given a pattern matrix
W\ of stage 1 and the index mapping matrix U2 of
stage 2, find a processor allocation P2 such that W{ =
P2. u2 = W2.

The process of finding such a processor allocation
function can be decomposed into the following two
steps:

1. find the projection vector X
2. construct a valid processor allocation function P

from its null space vector X.

The projection vector (null space vector) of P, provided
one exists, can be found using the procedure listed
below:

Procedure 1: To find the null space vector of P

1. Perform the elementary column operation to convert
the Wx matrix into a lower triangular matrix Wx.
That is, to find an (n - 1) X (n — 1) matrix C such
that

Wx • C = W{

2. Denote U2 = U2
m C. Since C is full rank, and U2

has full column rank, U2 must also have full col-
umn rank.

3. If the number of zero columns in Wx is greater than
one, multiple projection is needed to achieve such
a pattern matrix. Return a FAIL message indicating
that a unique single null space vector of the proc-
essor allocation function P2 cannot be found.

4. If there is no zero column in Wx, any projection
vector which is not spanned by the column vectors
of U2 will preserve the rank of U2 and is thus a
potentially valid projection vector.

5. If there is exactly one zero column in Wx, the cor-
responding column in U2 will be derived null space
vector X2 of P2.

Note that null space vector only determines the projec-
tion direction, there are infinite many processor alloca-
tion functions P corresponding to this vector.

DEFINITION 7. Equivalence of two processor allocation
Junctions. Two processor allocation functions P\ and
P2 are said to be equivalent if they correspond to the
same projection vector (null space vector).

Because Px and P2 are both with full row rank and
have the same null space vector, the row vectors of Px

and P2 will span the same space. There hence exists
a nonsingular matrix Tsuch that Px = T*P2. How-
ever, if T is not unimodular, then Px and P2 will have
different Hermite normal forms and cannot generate
the same lattice. Therefore, two equivalent processor
allocation functions do not mean they are structurally
matched. Similarly, two structurally matched processor
allocation functions may have different projection vec-
tors and are not equivalent, either. In the following, we
will apply the dense array constraint and confine the
processor allocation functions to be the extended uni-
modular ones where the strucural matching criterion is
automatically guaranteed. Since different P's will lead
to different pattern matrices, the next step is to construct
the P matrix leading to the desired pattern matrix.

LEMMA 3. Equivalence of two processor allocation
functions. If P and P are two (n — 1) X n extended
unimodular matrices with the same null space vector
X, there exists an (n — 1) X (n — 1) unimodular matrix
T such that P = T • P.

Proof. Because P and P axe equivalent, there exists a
nonsingular matrix T such that T • P — P. Since an
(n — 1) X n extended unimodular matrix has a Hermite
normal form [/n_j 0], we have

T-P-C=P-C

=* r - i / ^ o ] =p-c

=> [TO] = P- C
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Because P • C is integral and the elementary column
operations will preserve the gcd of all order n — 1 sub-
matrices, which is 1 for extended unimodular matrix
P, T thus must be unimodular.

The lemma states: starting with an arbitrary ex-
tended unimodular processor allocation function P, we
can construct any equivalent (with the same projection
vector) and structurally matched (extended unimodular
as well) processor allocation function P by multiply-
ing a unimodular matrix Tto P. In the location match-
ing problem, an arbitrary extended unimodular proc-
essor allocation function P for the projection vector
X is derived first. This will lead to a pattern matrix
W — P • U. We then try to find if there exists a uni-
modular matrix T such that T • W is the same pattern
matrix as the one determined by the previous stage.
The desired processor allocation function of current
stage is then equal to Tm P. If such T cannot be found,
according to the lemma, no other equivalent extended
unimodular processor allocation functions can be found
to yield the matched I/O locations.

Finding unimodular transformation matrix prob-
lem: Given two pattern matrices Wx and W2, to find
if there exists a unimodular matrix T such that
T- W2 = Wx.

Again, we may use the (row) Hermite normal form
to determine if such T exists or not. Since the (row)
Hermite normal form is unique for a matrix with full
column rank, if the pattern matrix Wx does not have
full column rank (which can be determined in the pro-
cedure 1 of finding the null space vector), we will work
on the submatrix Wx of Wx that has a full column rank
k = rank (Wx) instead of Wx. Similarly, we will use
the corresponding submatrix W2 of W2, too.

LEMMA 4. Given two (n - 1) X k (k < n - 1) full
column rank matrices Wx and W2, let Hx = Rx • Wx

and H2 = R2
m W2 be their Hermite normal forms and

Rx, R2 both be (n - 1) x (n - 1) unimodular
matrices. There exists a unimodular matrix T = Rx~

l

- R2 such that T • W2 = Wx if and only if Hx = H2,

Proof. If part:

If Hx — H2, since both Rx and R2 are unimodular,
T = Rx~

1 • R2 is also unimodular.

only if part:

If Hx ^ H2 and assume there exists a unimodular
matrix T such that T • W2 = Wx, then we have

R?1 H, = W,

Since T'• R2
l is unimodular, this means H2 is also a

Hermite normal form of Wx (because H2 can be de-
rived from Wx with elementary row operations) and it
contradicts the uniqueness of Hermite normal form.

Note that Rx and R2 are not unique, either.

Procedure 2: Construct processor allocation function P

1. Perform Procedure 1 to find out the projection vector
X2 of Pi- ^ more than one X2's can be found (the
case in step 4 of Procedure 1), for simplicity, choose
projection vectors from the index directions only.
(Note that the chosen vector cannot be spanned by
the column vectors of U2.)

2. For the given projection vector X2, construct an
arbitrary extended unimodular processor allocation
function P2. Derive W2 = P2 • U2.

3. Apply elementary row operations to derive the row
Hermite normal forms of both Wx and W2, i.e.,
Rx • Wx = Hu R2-W2 = H2. If Hx * H2 then
return FAIL in constructing the P2 matrix. Other-
wise let T = Rx

l • R2.
4. The processor allocation function P2 = T • P2.

If the pattern matrices do not have full column rank,
the found T, which is based on the submatrices Wx and
W2 only, should be checked with full matrix to see if
T • W2 = W2.

3.4. Data Flow Pattern Matching

To facilitate systolic processing, the input and output
data flow patterns between adjacent stages must be
matched such that no extra storage buffer or data re-
routing will be needed.

PROPOSITION 1. Data flow pattern matching. Let Ux,
U2 be two index mapping matrices for an I/O variable
x in two adjacent stages. Both stages have matched data
flow pattern if s[ • Ux = s2 • U2, where si9 i = 1, 2
is the scheduling vector of stage /.

Proof. According to the definition of index mapping
vector, the comuptation of x[[x] and x[i2] in the out-
put plane of stage 1 are scheduled by

TX = S\ ' UX • (l2 - ii)

156



time units apart. In the input plane of stage 2, the cor-
responding JC'S are scheduled by

r2 = s2 • U2 • (i2 - M)

time units apart. If s_\ • Ui = 52 • £/2,
 w e n a v e Ti = T2-

Since, the relative timing for any pair of data in adja-
cent stages remains the same, they must have matched
pattern of data flow.

To conclude the discussion of I/O matching, the con-
ditions for a matched I/O mapping are summarized as
follows:

Conditions for I/O matching: Two adjacent stages are
said to have matched I/O mappings with respect to the
I/O variable x if and only if

(1) structure matching: P{ and P2 have the same Her-
mite normal form.

(2) location matching: W\ = W2

(3) data flow pattern matching: s_\ • Ux = s2 • U2

Example 3: I/O matching. Consider the algorithm given
in example 2 (refer to figure 3 for DG). Assume the
mapping in the first stage is as follows:

*'i = [1H]

" 1
0
0

0 "
1
0

Ux =

' • - [ i ? X ]
* - ' • • « * - [ ; ? ]

STpv&Tvpe avb \odoLTiov jjLaT&riLvy<;(

With

Uo. =
• 1

0
0

0 "
0
1

procedure 1 is first applied to find the null space vector
\ 2 of P2. Since Wx is full column rank and lower tri-
angular, C is thus an identity matrix and from step 4
in Procedure 1, \ 2 can be any vector which is not
spanned by the column vectors of U2. If we choose A2

along the directions of index axes, we have

\ 2 = [0 1 0]f

Next, apply Procedure 2 to construct P2. Choose

n TO 0 1 ]

arbitrarily. Pattern matrix W2 is now

W2 • [ ? i ]
Since Wx is already in its Hermite normal form,
Wx = Hi. W2 can be transformed into its Hermite nor-
mal form H2 by interchanging the two rows, i.e.,

* • [ ! ! ] •
Because H{ — H2, the transformation matrix T is
equal to R2 and P2 is

P2 = T-P2

data flow matching:

Choose sj2 = [1 1 1]:

J l 0 0
|_0 0 1

i i -
" 1

0
0

0 "
1
0

= ^2 = [1 1]

Both stages have perfect I/O matching if P2 and s_2 are
so chosen.

To provide a way in evaluating the mapping result,
the types of I/O matching can be classified into the fol-
lowing three classes.

1. Class A—all three conditions of I/O matching are
satisfied.

2. Class B—all but data flow condition are satisfied.
3. Class C—otherwise.

Each class of I/O matching can then be assigned a value
(design cost) in an ascending order from A to C. It will
be shown later that by properly choosing the values
assigned to each class of I/O matching, those designs
with mismatched I/O operation will have a higher
design cost and are less likely to be selected as a solu-
tion of MSSM.

4. Computation Overlap between Successive Stages

Since not all the processors are activated during the ini-
tiation and conclusion phases of computation, the per-
formance degradation is considerable if the length of
these two phases is comparable to the length of steady
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state phase when all the processors are busy. In MSSM,
we may effectively reduce such performance degrada-
tion by exploring the concurrency of computations be-
tween different stages. The technique presented in this
paper, called chaining, is to overlap the computations
between the initiation/conclusion phases of adjacent
stages.l The computation overlap problem is not inde-
pendent of I/O matching problem. Since it considers
only the computational profiles between successive
stages, it is assumed that either there is no inter-stage
data dependence or the two stages have matched I/O
locations and data flows such that no extra delay needed
in redirecting the data across different stages. If it is not
the case, we can still try to seek the concurrency be-
tween the data rerouting process, called data migration
or data alignment, and the following stage's computa-
tion. This is, however, beyond the scope of this paper.

4.1. Definitions and Terminologies

DEFINITION 8. Pipelining Period [18]. The pipelining
period a = s* • X is the time interval between two
successive computations of a processor, where s and X
are the scheduling and projection vectors respectively.

DEFINITION 9. Logical processor array. The logical
processor array A can be described by a two-tuple
[T, * ] . T is the index space of the processor array con-
fined by a convex polyhedron and ^ = {^y} is the
set of all vertex nodes (processors) of T.

DEFINITION 10. Initial/Final plane. Let G be an n-
dimensional dependence graph, and let X and s be the
projection and scheduling vectors, respectively. The
initial (final) plane $, (<ly) is a boundary plane of G
with normal vector K satisfying either of the following
conditions:

initial plane: Xr • 7r 5* 0 and s_* • TT < 0,

final plane: X' • TT 7* 0 and s* • TT > 0.

$ can be described by a quadruplet [I\ TT, 12, Z],
where r and 12 are the index space and the lattice matrix
of the corresponding boundary plane respectively.
Z = {zi\i = 1 torn} is the set of all vertex nodes of
F with m > n.

Each node on the initial plane will be mapped onto
a distinct processor (since X' • TT 5* 0) and will be exe-
cuted first among all the DG nodes assigned to the same
processor. Similarly, each node on the final plane will

be executed last among all those DG nodes mapped onto
the same processor. For convenience, we will call a
boundary plane an I/F plane if it is either an initial or
a final plane.

DEFINITION 11. Activation vector. Let $ = [F, TT, 0, Z]
denote an I/F plane of a DG with four tuples defined
as before. Given the scheduling vector s and the proc-
essor allocation function P, the activation vector h for
$ is defined as

hf = i-Q • (P-12)"1

Because the projection vector X satisfies X' • TT ^ 0,
X is not parallel to the I/F plane and hence P * 12 is
a full rank (n - 1) X (n - 1) matrix. Consider any
two nodes n(j{) and n(j2) on $ such that y = j 2 ~
j 2 € /". Since y is parallel to the I/F plane $ and 12
is the lattice matrix, y can be expressed as

n-\

*-S
1=1

where the c/s are integers and coz- € 12. The time inter-
val d between the scheduling of these two nodes is

6 = s* • y.

Let Xi and x2 be the processor indices of the two proc-
essors to which the nodes n{jx) and n(j2) allocated,
then

x = x2 — x\ = P 9 y.

Therefore, we have the following relation:

LEMMA 5. ti_ • x = b

Proof.

n-\

hf • x = hf • P • 3; = A' • P -XI ct - «,-
1=1

= h* • P • 12 • c

= sf - 12 • (P • 12)"1 • (P • 12) • c

= s t - Q ' c = s t ' y = 5

The inner product of the activation vector h and the
vector x indicates the relative scheduling of the first
(or the last) computations for two processors separated
by a distance vector x. Similar to the scheduling vector
in describing the equitemporal hyperplane (the set of
nodes which are scheduled at the same time) in the DG,

158

C; * CO/ = 12 # C



the activation vector can be used to describe the first
(or the last) computation wavefront [18] (a hyperplane
as well) consisting of all the processors starting their
first computations (or finishing their last computations)
at the same time. The activation vector is then the nor-
mal vector to this computation wavefront.

DEFINITION 12. Computation overlap period T . Let*,
and f,, i = 1, 2, be the scheduling vector and global
timing offset of two successive stages such that a DG
node n(J) in stage i will be scheduled at f, = s] • j
+ £, where tt is measured with respect to the global
time index. Also let t\ = max{^[ 'jt + ft \jl € /Si}
and t2 = min{s2 "h + b \J2 € IS2} where 7SJ and IS2

are the index spaces of stage 1 and stage 2 respectively.
The computation overlap period T is defined as

T = tt - t2 + 1

Note that tj is the scehduled time instance for the
last node's computation in stage 1. Similarly, t2 is the
scheduled time instance for the first node's computation
in stage 2. The computation overlap period T is then
the period when two adjacent stages perform the com-
putations concurrently. In the worst case, t2 — t\ = 1,
i.e. , r = 0, there is no computation overlap at all. The
above defmitons can be illustrated in the following
example.

Example 4. Computation overlap of two matrix-matrix
multiplications.

Consider die first stage matrix-matrix multiplication
algorithm in example 2

B(kj)

-4x6 = A4x4 B.'4x6

Referring to figure 4, the corresponding DG is a 4 X 6
x 4 cube. There are six boundary planes of DG defined
by hyperplanes 1 = 0; i = 3 ; / = 0; j = 5; k = 0 and
k = 3. Choosing scheduling vector s and projection vec-
tor X to be [2 1 1]' and [0 0 1]' respectively, the boun-
dary plane k = 0 will be an initial plane with normal
vector 7[i = [0 0 —1]' and the boundary plane k = 3
will be a final plane with normal vector i 2 = [0 0 1]'.
The activation vector h = [2 1]'.

4.2. Maximum Computation Overlap Period

The maximum computation overlap period T , ^ is the
longest possible period when two adjacent stages can
perform their computations concurrently. We will first
assume that there is only one I/F plane under a given

A(i,k) [=J>
C = A * B

JjrC(iJ)
(a) initial and final planes of DG

computational wavefront

h=[2 1]t

t = 5

(b) computational wavefront in logical processor array

Fig. 4. I/F planes and activation vector of a matrix-matrix multiplica-
tion algorithm.

projection direction X. The case for more than one I/F
planes will be addressed later. Let T and Z denote the
index space and the set of vertex nodes in the I/F plane
respectively. Because F is convex and X' • ir ^ 0,
where ir is the normal vector of I/F plane, the projection
of F on the logical processor array (denoted as T) is also
convex. In addition, a vertex node z, € Z in the I/F
plane will be mapped onto a vertex processor in f as
well. If T denotes the index space of the logical proc-
essor array then f c T, but bodi share the same set
of vertex processors ^ = { ̂ ;-11£; = P • z7- V z ; € Z}.
The vertex processors of the logical processor array can
thus be determined by the vertex nodes in I/F plane.
Without loss of generality, we may assume that two ad-
jacent stages share the same logical processor array,
i.e., both have the same set of vertex processors ^r. If
this is not the case, we may always construct a sub-
array which is the intersection of two logical processor
arrays. (Note that the intersection of two convex poly-
hedra is also convex.) The processors not in the inter-
section imply diey are activated in one stage only and
can be simply ignored because they will not affect the
computation overlap between adjacent stages.

Condition for computation overlap: Let h, and si5

i = 1, 2 denote the activation vector and scheduling
vector in two successive stages respectively. Also let
rfi be the global timing offeet such that each processor
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with index y will perform its last computation in the
first stage at a global time instance H • y + r\u and
will start its first computation in the second stage at
h*' y + to- Then, for any y in the processor array,
the condition

h\ • y + Vi < Hi * y + to

must be satisfied to ensure no processor scheduling
conflict.

PROPOSITION 2. Simplified condition for computation
overlap. Define hh s_h rjh i = 1, 2 as above. If for
every vertex processor yp_j€ ¥, j = 1 to m, we have

Ar! • ±j + vi < Hi ' ±j + to

then all the processors v's in the logical processor array
will also satisfy the above condition.

Proof. Since the index space T of processor array is
convex, any node v € T can be expressed as

m

7 = 1

where 0 < c, < 1 and ET^ c}• = 1. Hence,

w

#i • 3! + to = *'i # S cj * tj + 1 * ^i
; = i

m

7 = 1

m

< 2 CJ * (*2 ' £y + 2̂) = #2my + 12
7 = 1

We now present a procedure to find the maximum com-
putation overlap period rmax by minimizing the value
b = V2 ~ Vi-

PROCEDURE 3. Maximum computation overlap period.
Let ^ = {\j^j} be the set of vertex processors shared
by two logical processor arrays. Also let h{ and h2 be
the activation vectors of two adjacent stages respectively.

Step 1:

find a minimum constant b such that

h\ • IJ < hf2 -±j + b

for all \j/jS € ^ . & is then equal to

£ = max{(hx - h2y • £,- + 11 v £,- € *}

5^/7 2:
find rt = max{H\ • ^ } and f2 = min{H2 • ^-} for
all / s .

The maximum computation overlap period is then
equal to

w = h - (h + b) + l

The effective computation latency for the z-th stage by
overlapping the computations between the (/ - l)-th
stage's conclusion phase and i-th stage's initiation phase
now becomes Lt = Lt — Tmax, where Lt is the compu-
tation latency of stage i without computation overlap.
If Tmax is equal to zero, no computation overlap be-
tween these two stages is possible.

Example 5. Computation overlap.
Assume two adjacent stages both have the same 4 x 6

rectangle logical processor array, then ¥ = {[0 0]',
[0 5]', [3 0]', [3 5]'} contains 4 vertex processors. Let
h{ = [1 l]'and/*2 = P - l ] r denote the activation vec-
tors in two stages respectively. The maximum computa-
tion overlap period can be found as follows:

Step 1:

b = max{(h!l -rt2)-±j + 1 | V ^ € *}

= max{\, 11, 1, 11} 11

Step 2:

tx = max{tf2 '±j\v ±j} = 8

t2 = mn{h?2 - ±j\v ±j} = -5

The max computation overlap period r ^ then equal to

Tmax = h ~ b ~ t2 + 1 = 3

The procedure for finding the computation overlap
period with more than one I/F planes in each stage is
similar to the one described above. The problem is first
decomposed into a set of subproblems dealing with the
intersection of only one I/F plane from each stage. The
constant b in step 1 of Procedure 3 is now the maxi-
mum of all b's found in each subproblem. Note that
in Procedure 3, the global timing offsets r\2 and rji are
never calculated explicitly because there is only one
I/F plane in each stage and every node will have the
same global timing offset. This, however, is not true
for the case with more than one I/F planes in each stage.
A different approach is adopted here by finding the dif-
ference of two global timing offsets f{ and f2 (both
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defined in Definition 12) first. The maximum computa-
tion overlap period rmax is then equal to

Tmax = max{s\ - j_x\j\ <E IS^

- min{sJ2-j_2\j_2 € IS2} - f + 1

where f = fo ~~ fi- Because DG is convex, to find
either min{^2J2\J2 € ^2} or mflxj^j •y'j [/1 € /Si},
only the vertex nodes in all the I/F planes need to be
checked. The procedure can be summarized as follows:

PROCEDURE 4. Maximum computation overlap period.
Let {$£,1} and {̂ 7,2} denote the set of I/F planes in
stages 1 and 2 respectively.

Step 1:
For any pair of ($k,u */,2)> if m e intersection of the
two logical processor arrays corresponding to the
mapping of $kl and $/ 2 is not empty, then perform
step 1 in Procedure 3 to find constant b.

Step 2:
Choose b to be the maximum of all b's

Step 3:
Pick an arbitrary vertex processor 1// from the logical
processor array. Let z 1 € $£,1 and z2 € $/ 2 be the
corresponding DG vertex nodes in the I/F plane of
two stages, respectively. That is, P{ • Z\ = P2 ' z2

= yj/, where Pt is processor allocation function for
stage i. The global timing difference f is now equal to

f = fc " fi = £1 ' 2i " £2 • ^2

+ (#2 - h\)'± + b

The maximum computation overlap period rmax is
equal to

Tmwc = mo*!^ • zi I21 € Z u V&}

- lfll/!{j£ -Z2 |Z2 ^ Z/>2 V/} - f + 1

where j f is the scheduling vector for stage i and Zmi

denotes the set of vertex DG nodes for I/F plane $mi.

5. Optimization of Multi-Stage Mapping Problem

With the results obtained in previous sections, we are
now able to develop an automated design tool to aid
the selection of projection and scheduling directions
for each stage of a multi-stage algorithm.

5.7. Parameterized Dependence Graph

The algorithm representation adopted in the multi-stage
systolic mapping is called parameterized dependence
graph (PDG). A regular iterative algorithm can be
described by a shift invariant dependence graph. How-
ever, due to different algorithm transformation tech-
niques, more than one DGs may be derived from the
same computing algorithm. The transformation is usu-
ally to convert global broadcasting variables into local
transmittal variables propagated from one processor to
another. Apparently, the transmittal variable can be
propagated in either direction (if the trajectory of broad-
casting is a straight line) without affecting the correct-
ness of the computation. One thus usually chooses any
one of the two possible transmission directions arbi-
trarily and yields different dependence graphs. How-
ever, not all of these DGs exhibit the same property
in parallel computing. For multi-stage systolic mapping,
where the mapping problem is even complicated by the
inter-stage interface problems, committing to any choice
of DG too early may eliminate a better solution pre-
maturely. These options hence should be kept open so
that a more sensible decision can be made in later
design phase.

In a PDG, the dependence vector corresponding to
a propagation direction of a transmittal variable and the
dependence vector corresponding to a recursive variable
of an associative operation are parameterized. The direc-
tions of them are decided by a parameter mt = +1.
The actual value of mt will not be determined until
later mapping phases. In doing so, we are able to col-
lapse all possible DGs into a single, compact represen-
tation. This representation facilitates systematic explora-
tion of those DGs corresponding to the same computing
algorithm. Details on PDGs can be found in [22].

5.2. Optimization Formulation

We model the multi-stage mapping procedure as an op-
timization problem in which the projection directions
and scheduling vectors of every stage will be determined
subject to a design cost function. A design cost func-
tion is a weighted linear combination of several design
measurement variables. Each design measurement var-
iable regards one particular design issue in multi-stage
systolic mapping and is assigned a numerical value to
quantize the merits of mapping design. The design
measurement variables considered in MSSM are
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1. N(: the number of processors needed for the i-th
stage's computation.

2. oil', the pipelining period within the i-th stage.
3. Li', the computation latency of the i-th stage sub-

tracting the computation overlap period between
state i — 1 and stage i.

4. ft: the type of I/O matching between the (/ - l)-th
and i-th stages.

5. b{\ the number of additional communication links
introduced in stage i for each processor.

For a &-stage algorithm, the design cost function is then
expressed as

k

g(') =Yj (Cl ' Ni + C2 " ai + C3 ' U
i = l

+ C4 • ft + C5 ' «,-)

The Cj's are the weighting coefficients associated with
each design measurement variable. The user may supply
different weightings for different design emphases.
Since the assigned values of design measurement vari-
ables are proportional to the design complexity (cost),
the ultimate goal of MSSM is to minimize the design
cost function.

5.3. Best First Search Modeling

Because the design cost function cannot be expressed
in a close form of scheduling and projection vectors,
this optimization problem is solved by searching all the
feasible solutions, i.e., the combinations of mapping
and scheduling vectors at each stage. Without imposing
any constraints, the number of potential solutions can
be very large: Assume a fc-stage algorithm with N nodes
in each stage's DG. In each stage, there will be O(N)
distinct scheduling vectors and O(N) projection vectors.
The total distinct choices of scheduling and projection
vectors for a fc-stage algorithm is (N)2k which becomes
impractically large even with modest values of N and
k. For example, let N = 100 and k = 3, the exhaustive
search space is now (100)2'3 = 1012. To avoid the com-
binatorial explosion of the search space, a best-first
heuristic search procedure is implemented. We first
reduce the potential search space by pruning out least
promising solutions with heuristic rules. Next, we con-
duct an incremental, best first heuristic search to iden-
tify a most favorable solution from this reduced search
space. Because of PDG, in our search model, we first

enumerate all the possible parameter combinations for
each stage (usually a small number). For each different
parameter setting, which corresponds to a different DG
alternative, the projection direction and hence the proc-
essor allocation function is determined first. Then the
scheduling vector within the same stage is chosen next.
We will confine our processor allocation function
heuristically to the following 3 classes:

1. Projections giving minimum number of processors.
2. Projections leading to type A or type B I/O matching.
3. Projections along any coordinate axis.

As for the scheduling vector, only those with highest
throughput rate or with shortest computation latency
will be explored. The algorithm starts from the first
stage's DG and concludes with the last stage's DG.

One special feature arising from this search process
is that often there are a number of equally good, in
terms of the design cost function, partial solutions at
certain stages. Each of them may, however, have differ-
ent impact on later stage's mappings. Our strategy is
to keep all of them in an open queue, and proceed the
design with an arbitrarily chosen one. Later, when it
becomes apparent that this choice is inferior, we back-
track to this current node to make another choice. The
detailed search algorithm is given in Appendix A.

5.4. Program Implementation (MSSM)

MSSM is the prototype implementation of the multi-
stage mapping algorithm described above. It is built on
top of the VLSI Array Compiler System (VACS) de-
scribed by Kung and Jean as an add-in module. VACS
is a graphics-oriented computer aided design package
which accepts a high level algorithmic input in terms
of a dependence graph (DG), and generates (optimal)
VLSI array structures. Several optimality criteria and
design tradeoffs may be evaluated, design correctness
may be verified by simulation, and design errors may
be detected at the earliest possible stage [23]. Since our
design methodology for individual stage mappings is
the same as that used in VACS, it is convenient to use
VACS in finding a feasible set of scheduling and pro-
jection vectors and then develop our multi-stage CAD
package by modifying the VACS program. MSSM will
accept parameterized DGs as an input and then conduct
a best first search to find out the projection vectors,
scheduling vectors as well as the values of the param-
eters for each stage.

162



6. Design Examples

We will now give several examples to illustrate the
multi-stage mapping algorithm.

Example 6. 3-stage matrix multiplication and LU
decomposition.

The algorithm consists of two successive matrix mul-
tiplications followed by an LU decomposition. The
parameterized DGs for the matrix multiplication and
LU decomposition are shown in figure 5(a) and figure
5(b) respectively. The MSSM mapping result is sum-
marized as follows:

3-Stage Algorithm Design

Factor ge 1 Stage 2 Stage 3

Scheduling vector ( 1 1 1 ) ( 1 - 1 1) (1 1 1)
Projection vector (0 0 1) (0 1 0) (0 0 1)
No. of processors 16 16 10
Computation latency 10 10 10
Accumulated cost 160 224 390
Best first search cost 294 294 390

f'
B t?

0«
(a) PDG of the matrix-matrix multiplication algorithm

E

(b) DG of the LU factorization algorithm
Fig. 5. DGs for a 3-stage algorithm.

Note that the accumulated cost in the table entry
means the design cost up to the current stage. In order
not to penalize those nodes with more depth in the

search tree, an adjusted cost, i.e., best first search cost
in the table entry, is used as the cost associated with
each node. It is equal to the sum of accumulated cost
and the estimate cost from the current stage to the last
stage. The estimate cost is the minimum possible cost
that can be obtained based on minimum processor
counts, minimum pipeline period, best I/O matching
and computation overlap. All these terms can be calcu-
lated before the search process begins. The correspond-
ing systolic array design is given in figure 6. The
pipelined computations between the first and second
stages are perfectly matched. We will, however, need
an inter-stage buffer between the second and the third
stage. It can be easily verified that there are at most
two consecutive stages can be matched in this three-
stage algorithm. An architectural model with toroidal
communication links can be used to solve this problem.
According to the MSSM program, there are only 127
nodes visited in the best first search algorithm. This
means the heuristic rules that we used in MSSM can
greatly reduce the search space while preserving the
quality of mapping.

Fig. 6. Array design of a 3-stage algorithm.

As mentioned above, different designs may be ob-
tained by simply changing the heuristic cost functions.
This can be shown by the following example in which
two consecutive matrix-matrix multiplications are
performed.

Example 7. 2-stage consecutive matrix-matrix
multiplications.

Consider the 2-stage algorithm in example 2, with
two different design criteria, the MSSM mapping result
is given below.
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Two

Factor

Scheduling
vector

Projection
vector

No. of
processors

Computation
latency

Accumulated
cost

Best first
search cost

Designs With Different

Design 1

Stage 1

(1 1 1)

(0 0 1)

24

12

408

520

Stage 2

(1 1 1)

(0 10)

24

12

576

576

Design Criteria

Design

Stage 1

(1 1 1)

(0 10)

16

12

352

464

2

Stage 2

(1 1 1)

(0 0 1)

16

12

544

544

In the first design, the weighting factor for the proc-
essor cost is set to zero so that we arrive at a larger array
design but the pipelined computations across two stages
are perfectly matched. In the second design, the weight-
ing factor for the processor cost is set to a much larger
value so that the hardware concern will override the
performance concern. In this case, the number of proc-
essors needed is minimum (16), however, the total com-
putation time will be increased due to I/O mismatch
between two stages.

Example 8. Kalman Filter.
We adopt the recursive formulation by Paige [24]

and try to compare the mapping result with the previous
work on Kalman Filter by [18]. The recursive formula-
tion is to perform the QR decomposition to a block
matrix and make it an upper triangular one.

~R(k) 0 bk '
Q»+1- C(k) 0 yk+l

_ F(k) W(k + 1 ) 0

Rk,k Rk,k+1 bk'
0 R(k + 1) bk+l

0 0 rk _

The formulation can be considered as a 3-stage algo-
rithm. In the first stage, C(k) is nullified by the Given's
rotation. In the second stage, F(k) is nullified subse-
quently and finally in the last stage, the R(k + 1) matrix
is obtained. The DGs for 3 stages are given in figure
7. The MSSM mapping result is summarized as follows
and the corresponding systolic design is shown in fig-
ure 8.

Factor

Scheduling
vector

Projection
vector

No. of
processors

Computation
latency

Accumulated
cost

Best first
search cost

Kalman

Stage 1

(1 1 1)

(0 0 1)

10

10

100

225

Filter Design

Stage 2

(1 1 1)

(0 0 1)

10

10

140

195

Stage 3

( - 1 1 1)

(0 10)

10

7

255

255

In this example, we have exactly the same tri-array
design as the one proposed in [18].

Note : The arrows in the graph stand for dependence vectors

IH input plane ^ output plane

Fig. 7. DGs for the 3-stage Kalman filter algorithm.

Example 9. Singular Value Decomposition.
In [25], a three phase operation for k-ih iteration

of the singular value decomposition is proposed as
follows:

• Phase 1: QR decompositon for Ak = Qk • Rk

• Phase 2: computing the Qk matrix by solving R'k •

Q'k = A'k
• Phase 3: computing Ak+i = Rk • Qk

The SVD can be considered as a multi-stage algorithm
with each phase's operation equivalent to a single stage.
The MSSM mapping result is summarized as follows.
The DG and the corresponding systolic design are
shown in figure 9, and figure 10 respectively.
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Fig. 8. Tri-array configuration for the Kalman filter.

Singular Value Decomposition

Factor Stage 1 Stage 2 Stage 3

Scheduling
vector

Projection
vector

No. of
processors

Computation
latency

Accumulated
cost

Best first
search cost

(1 1 1)

(10 0)

10

10

100

210

(1 1 - 1 )

(0 0 1)

10

10

140

210

(1 1 1)

(0 10)

10

10

225

225

The derived array design by MSSM is the same as
the tri-array design obtained in [25].

7. Conclusion

In this paper, we introduced a more general mapping
problem called multi-stage systolic mapping which con-
siders computing algorithms containing more than one
nested loop constructs to be executed sequentially. Since
a single systolic array is reused for each stage's compu-
tation, the interface problem between successive stages
has now become a dominant factor in performing the

DG for phase 1

DG for phase 2

DG for phase 3

Fig. 9. DGs for 3-stage iterative singular valude decomposition.

multi-stage systolic mapping. Two interface problems,
i.e., I/O matching and computation overlap, have been
described and formulated in this paper. To provide a
framework of systematic approach to these problems,
we established the conditions of I/O matching and pro-
posed a procedure to derive an I/O matched mapping.
We also presented a method to explore the maximum
computation overlap period between two successive
stage's computations. By incorporating these new re-
sults, we developed an automated design tool, called
MSSM, for multi-stage systolic mapping. The MSSM
is built on the top of VACS, which is a graphic oriented
mapping tool for single stage algorithm, and takes
parameterized dependence graphs as the input. In
MSSM, the mapping problem is formulated as an opti-
mization problem subject to a design cost function. A
heuristic best first search algorithm is then proposed
to find the design in each stage. From the several design
examples compiled by MSSM, we are confident that
this design tool is able to produce a multi-stage design
which rivals the existing designs done by human experts.
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Fig. 10. Tri-array configuration for the iterative singular value
decomposition.
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Note

1. Another technique to achieve computation concurrency is called
pipeline interleaving which performs more than one stage's com-
putations in an interleaving manner.

Appendix

Best-First Search Algorithm for Multi-Stage Systolic
Mapping

Given a fc-stage algorithm A, let Yt be the parameter
set associated with the /-th stage. Each different setting
of Yt is denoted by Ytj. Let D(Ytj) be the set of z-th
stage's dependence vectors under the parameter setting
Yij. Let ¥ denote the open node queue with each ele-
ment £ containing four fields: (/*, v, 17, p), where /x

represents the parent node of £ in the search tree, v
is either a scheduling vector s;; or a processor alloca-
tion function Pt for the /-th stage, r; is the accumulative
design cost up to the current node £, and p is the ad-
justed design cost for the entire mapping. The notations
£__pi, £_*>, £_J7, £_p are used to single out the spe-
cific field in the element £. Also let &•(•) be the design
cost function for stage i and T(i) be the minimum accu-
mulative design cost from stage i to the last stage k.
The adjusted design cost is thus equal to £_p = £_r/
+ T(i + 1). r(i) can be calculated by choosing the min-
imum values of all design measurement variables.

1. for i = 2, . . . , k, calculate T(i)
2. Initialization: ¥ <- 0; 1 = 1;
3. for each different parameter setting Yy

use VACS to generate a set of projection vectors
{\\p}; select only those projection vectors
which satisfy at least one of the following criteria:

1) minimum number of processors Nt

2) type A or B I/O matching
3) projection Xz along any coordinate axis

for each different X^
cost = gx(Nl9 d{);
p = cost + T(2);
insert e = (nil, P^, cost, p) into ¥ ;

sort ¥ with key p;
4. repeat

retrieve the first element £ from ¥ ;
if £_*> = st

i = i + 1;
for each different parameter setting Ytj

use VACS to generate a set of projection vec-
tors {X^};
select only those projection vectors which sat-
isfy at least one of the following criteria:

1) minimum number of processors N{

2) type A or B I/O matching
3) projection Xz along any coordinate axis

for each different X^
cost = gi(Nh St) + £_TJ;
p = cost + r(i + 1);
insert € = (£, Pip, cost, p) into ¥ ;

sort ¥ with key p;
else

for the corresponding Ytj of £_*>
use VACS to generate a set of scheduling vec-
tors {sip} which satisfies s'ip • D(Ytj) > 0
and one of the following criteria:

1) minimum aip;
2) minimum computation latency;
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for each different s^ip

<*i = lip ' hiP'^
cost = gi(ah Lh ft) + £_?/;
p = cost + T(i 4- 1);
insert e = (£, sip, cost), p) into ¥ ;

sort • with key p;
until (¥ = <£) or (mapping is done);
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