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Array Processing

Computing Linear Algebra-based Algorithms in VLSI

ECENT developments in modern signal processing rely

heavily on efficient manipulation of linear algebra-based
algorithms. Not only are the complexity and efficiency of
the algorithms of great concern, but the numerical stability and
parallel computation are also key factors. The use of VLSI
provides the design and realization of application-specific
structures and architectures for computationally-intensive al-
gorithms such as those used in linear algebra-based signal pro-
cessing or in efficient solutions of sparse matrices. In fact, a
growing number of important techniques are matrix-based and
historically more closely related to linear algebra than to signal
processing. Many of these techniques are becoming increas-
ingly important in signal processing and need to be blended
with traditional algorithms in a compatible and complemen-
tary way. A signal processing viewpoint brought to computa-
tional problems in linear algebra can potentially lead to new
approaches to those problems.

The goal of this chapter is to present the impact of VLSI on
the computation of numerical algebra algorithms as well as their
application to modern signal processing, in particular in adap-
tive array processing where numerical algebra is a basic tool for
design, analysis, and implementation.

Singular-value and eigenvalue problems have been the key
computational kernel of many signal processing applications
such as statistical spectrum estimation, direction finding and
beamformation, noise cancellation, digital filter design, and im-
age processing [3, 22, 27]. Although they are powerful tools for
many applications, the major hurdle in solving these problems
is the high computational complexity. Thus, parallel processing
for these problems is essential. The paper in [9] is considered
one of the earliest works on this subject. Since then, much in-
terest has been generated for parallel computation of numerical
algebra problems using VLSI processors. It turns out that most
of the algebra-based operations can be efficiently implemented
on systolic array when only local interconnections are allowed.
In [9], parallel Jacobi-like algorithms are presented for comput-
ing a singular-value decomposition (SVD) of an m X n matrix
and an eigendecomposition of an n X n symmetric matrix. A
linear array is proposed for the SVD which can be computed in
O(mnS) time, where S is typically less than 10. A square array
of O(n?) processors, which can compute the symmetric eigen-

value problem in O(nS) time is also considered, where S is the
number of sweeps. The reprinted paper by Hsiao and Delosme
proposes a CORDIC-based parallel SVD using a square array of
processors that can handle complex-valued data in various sig-
nal processing applications. Related material can be found in
[39, 44-46].

The problem with these systolic arrays is that they can per-
form computation on matrices of only a given size. In many sig-
nal processing applications, the dimension of the data matrix
can be very large. As a result, the design of an extremely large-
size array processor becomes impractical and not cost-effective.
One solution is to solve large-size problems on small-size array
processors. The next reprinted paper by Schreiber presents two
modified algorithms and a modified array which solves the size-
matching problem.

The above array processors solve the SVD of a fixed data ma-
trix. Very often, in adaptive signal processing in particular, the
data matrix will grow in time as new rows of data are appended
to it. In order to avoid the high complexity of recomputing the
SVD at each time instant, it is more effective to update the SVD
from previously available decomposition. The following
reprinted paper by Moonen, Van Dooren, and Vandewalle shows
that the mapping of an SVD updating algorithm can be mapped
onto a systolic array with high throughput. Interested readers
can find more discussion on related issued in [2, 41, 75].

Many signal processing data matrices are drawn from certain
delay-and-shift operations so that special structural properties
are displaced explicitly or implicitly. The Toeplitz structure is
one of the most common. The reprinted paper by Kung and Hu
proposes a pipelined lattice structure for linear system equations
of Toeplitz form. A parallel algorithm of O(n) computing time
is proposed to perform on a linear array of O(n) processors,
where n is the dimension of the Toeplitz matrix. The Toeplitz
structure is exploited to derive a fast computing algorithm so
that such a complexity can be achieved. There are many works
that take advantage of the structural properties to develop effi-
cient algorithms and architectures. Interested readers can refer
to examples [6, 8, 16, 32, 40, 64, 83] for more details.

The QR decomposition (QRD) is a powerful tool to solve the
least-squares (LS) problems. We will examine the usefulness of
the QRD in several adaptive signal processing reprinted papers
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in this chapter. Indeed, the above considered SVD problem may
require a preliminary QRD step. However, the existing QRD
arrays in [4, 28, 42, 48, 68] are very different from the above-
mentioned SVD structures. Therefore, interfacing becomes a
serious problem. In Luk’s reprinted paper, a QRD array proces-
sor is proposed so that both QRD and SVD can be computed on
the same mesh-connected processors.

Indeed, there are many ways of computing QRD in array
processors, and there is no best method. For example, in the
above situation, a good QRD array must be compatible with the
SVD array. However, this is not the case for the following adap-
tive beamforming applications. We will see that the require-
ments are different for the computational structures.

The objective of an adaptive beamformer is to select a set of
weights to produce a desired beam pattern so that undesired
noise and jamming signals can be nulled out without hindering
the signals of interest. In most situations, the targets or environ-
ments keep changing so it is necessary to change the weights. A
conventional technique that has been employed for three
decades is the least-mean-squares (LMS) algorithm, which is
a closed-loop gradient descent algorithm. The major drawback
is its slow convergence rate and sensitivity to the condition-
ing of the data matrices. In many modern systems where rapid
convergence and high cancellation performance are essential,
open-loop techniques formulated as a LS minimization prob-
lem have been of great interest [48]. It then becomes a recur-
sive LS (RLS) problem due to its adaptive nature. No surprise,
QRD has been the most popular technique for its numerical sta-
bility and parallel nature. In the reprinted paper by Hargrave,
Ward, and McWhirter, a QRD RLS algorithm implementing the
Gentleman/Kung QRD systolic array [21] is presented. The pa-
per shows that the RLS algorithm can be naturally implemented
on the QRD systolic array using the Givens rotation. Therefore,
the high throughput adaptive beamformer can now be realized
on parallel processors to satisfy high performance requirements.

The kind of beamformer discussed above is called the side-
lobe canceller. Another very popular class of beamformers, called
minimum variance distortionless response (MVDR) beamform-
ing, fixes the output gain toward some directions while mini-
mizing the total output power. Obviously, the noise and jamming
signals will be nullified in the minimization process. The MVDR
problem can be formulated as a linear-constrained RLS problem,
where the desired signal directions can be specified in the linear
constraints so that the gain can be fixed. The solution looks very
different from that of a sidelobe canceller. In the next reprinted
paper by McWhirter and Shepherd, a clever way of implemen-
tating the MVDR on the QRD RLS systolic array is presented.
The key is to avoid back-substitution so that the data flow is con-
sistent enough to fully guarantee pipeline processing by match-
ing the MVDR processing to the QRD RLS formulation. Some
related issues including parallel weight extraction can be found
in [63, 67, 73, 74, 77]. Application of Givens transformation
based on CORDIC rotations implemented on a restructurable
VLSI systolic array architecture for adaptive nulling of interfer-
ing signals in a multielement antenna phase-array radar capable
of performing three billion operations are described in [7, 58]. In

recent years, many adaptive and some nonadaptive beamform-
ing array algorithms and architectures have been proposed for
microwave radar and wireless basestation communication, as
well as acoustic sonar, hearing aid, teleconference, and speech
recognition interference rejection, direction-of-arrival (DOA),
and SNR enhancement applications [1, 11-14, 17, 18, 24, 25, 33,
34, 43, 50, 54-57, 60-62, 65, 69, 71, 76, 78, 80-82, 84].

Householder transformation is well known for its effective-
ness in performing many numerical algebra algorithms, includ-
ing the QRD. It is superior to the Givens rotation both in terms
of complexity and stability. There have been some attempts to
map the Householder transformation onto array processors.
However, due to its vectorized computational nature, the com-
plexity of matrix-vector processing cells are not realizable. In
the reprinted paper by Liu, Hsieh, and Yao, a modified algorithm
is used to perform a two-level pipeline at both vector and word
levels. It is shown that the Givens rotation-based array is a spe-
cial case of the more general Householder array. The block pro-
cessing property can be used to handle higher sampling rates at
the cost of linear complexity increase. Readers can find more
discussion on Householder transformation in [59, 72].

The Givens rotation is a versatile computational tool in many
matrix computations. When it comes to VLSI implementation,
the required square root and division arithemetics will occupy
much silicon area and take many cycles to complete. In [31] all
the existing square root-free algorithms have been unified into
a single family [23, 26]. In the paper by Frantzeskakis and Liu,
a family of square root and division-free algorithms is pre-
sented. Detailed implementations for RLS and constrained RLS
are considered. It is interesting to see that square-root and divi-
sion algorithms are not necessarily good for all cases. In some
cases, a square root-free family can be better.

Given all the algorithms and architectures discussed so far, it
is not difficult to realize that there are many common relations
among them. The reprinted paper by McWhirter takes an over-
all view of this interesting observation and tries to unify these
algorithms and architectures into the framework of what
McWhirter calls “algorithmic engineering.” Additional papers
on numerical algebra and adaptive array processing are given in
[5, 10, 15, 19, 20, 29, 30, 35-38, 47, 49, 51-53, 66, 70, 79, 81].
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Parallel Singular Value Decomposition
of Complex Matrices Using
Multidimensional CORDIC Algorithms
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Abstract— The singular value decomposition (SVD) of com-
plex matrices is computed in a highly parallel fashion on a
square array of processors using Kogbetliantz’s analog of Ja-
cobi’s eigenvalue decomposition method. To gain further speed,
new algorithms for the basic SVD operations are proposed and
their implementation as specialized processors is presented. The
algorithms are 3-D and 4-D extensions of the CORDIC algorithm
for plane rotations. When these extensions are used in concert
with an additive decomposition of 2 x 2 complex matrices, which
enhances parallelism, and with low resolution rotations early on
in the SVD process, which reduce operation count, a fivefold
speedup can be achieved over the fastest alternative approach.

I. INTRODUCTION

ONCURRENTLY with the rapid increase in computing

power over the last two decades, signal processing al-
gorithms based on the computation-intensive singular value
decomposition (SVD) have become increasingly popular. An
international workshop on SVD and Signal Processing has
convened regularly since 1987. Since SVD algorithms con-
sist essentially of the repeated computation of orthogonal
transformations, when very high throughputs are required the
design of the arithmetic units to be used as building blocks
for the parallel computation of the orthogonal transformations
becomes critical as it may provide an order of magnitude
speed-up.

The coordinate rotation digital computer (CORDIC) [34],
[35] provides a good model for such arithmetic units, as it
enables the efficient implementation of plane rotations using
simple hardware components, mainly adders and shifters.
Moreover, if needed, its computations may be accelerated
to some extent with redundant arithmetic techniques [15],
[29], [32]. Thus, much research has been directed toward
integrating the CORDIC arithmetic algorithms and parallel
matrix algorithms to obtain specialized parallel architectures
for basic problems such as QR decomposition [2], [22], [23],
eigenvalue and singular value decomposition [4], [5], [6], [8],
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[20], [37], or for applications such as filtering [14], [24], and
array signal processing [33].

However, when dealing with complex data, the maximal
throughputs of parallel arrays built out of CORDIC units
which process two real numbers at a time are well below
the throughputs achievable for real data sets of equal size.
In order to come close to the real data throughputs, further
parallelism must be revealed. This may be accomplished by
using rotation algorithms extending the CORDIC concept to
vectors in spaces with more than two dimensions. In this paper,
such multidimensional CORDIC algorithms are developed and
employed to speed up the computation of the SVD of complex
matrices.

The paper is organized as follows. In Section 11, the original
two-dimensional (2-D) CORDIC algorithm is generalized to
multidimensional spaces. In Section III, the three- (3-D) and
four-dimensional (4-D) CORDIC algorithms are used for the
parallel computation of the SVD of complex matrices using the
Jacobi—-Kogbetliantz method [17]. An additive decomposition
of complex 2 x 2 matrices is employed to parallelize the two-
sided rotations which make up the core of the method. Speed
and area performances are compared with an architecture
based on 2-D CORDIC’s. In Section IV, we show how to apply
partial resolution CORDIC algorithms to further improve the
computation speed of the parallel SVD. Results of experiments
on various classes of matrices are included.

II. CORDIC ALGORITHMS FOR EUCLIDEAN ROTATIONS

A. Basic Theory

A CORDIC algorithm implements an n-dimensional (n-D)
rotation as a product of elementary rotations selected such
that a vector is rotated using a small number of shifts and
additions. Our starting point is a formula due to Cayley [16]
allowing any n-D rotation R with no eigenvalue equal to —1
to be represented as

R=(I-T)I+T)"! (1)
where I is the n X n identity matrix and 7T is n X n skew-
symmetric (i.e., TT = —T). Since

1

=1

(I - T)Adj(I - T) )

Reprinted from [EEE Transactions on Signal Processing, pp. 685-697, March 1996.
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where |I+ T'| and Adj(I 4 T) denote the determinant and the
adjoint of I + T, the entries of R are represented as rational
functions of the entries of T'.

A rational CORDIC algorithm is defined by a family of
elementary rotations of the general form

R(Sk,te) = (I — Sit)(I + Skte) ™" 3)

where Sy, is a skew-symmetric matrix of signs, whose entries
are either £1 or 0, and the rotation parameter t}, is a negative
integral power of two. Thus the multiplication of a vector by
an unscaled rotation

(I — Syty)Adj(I + Sktr)

calls for a few shifts and additions which can be implemented
combinationally, in parallel, as one CORDIC step or rotation
iteration [9].

What about the divisions by | + Sktx|? Assume that it is
possible for | + Sitx| to be independent of Sj. Then, for any
given set of parameters ¢, the product of the scaling factors

1
I;I [T + Skt

is a constant. By decomposing this constant normalization
factor into the product of several factors such that the multipli-
cation of an n-D vector by each of these factors is implemented
on the same hardware as an unscaled rotation in a single,
scaling iteration, the whole set of divisions is replaced by a
few scaling iterations.

Upon expanding the determinant |I + Sitx| we see that
there are in general many ways to make it independent of
S. For instance, if n = 3, |I + Sktx| = 1 + nxt3, where
ny is the number of nonzero entries above the diagonal of
Sk, hence we only need to fix ny for each k. The families
of elementary rotations considered in this paper are such that
all matrices Sj within a family have a given pattern of zero
entries, independent of k. Outside of this zero pattern, the
entries can take both sign values, +1 and —1. Consider now
the case n = 4 and assume that the entries of S, outside the
diagonal are all nonzero. The determinant |I + Sitx| is not
independent of the sign values but, according to its expansion,
a sufficient condition for independence is that the products
of entries 12 and 34, 13 and 24, and 14 and 23 be constant.
The matrices S, have different sign structures according to the
value, +1 or —1, selected for each one of these products. Here
again, for every family of elementary rotations considered in
this paper, once the sign structure of one matrix S, is selected
that ensures the independence of |I + Sitx| on Sy, the same
structure is imposed on all the other matrices Si. A set of
independent entries of Sj is summed up in a sign vector sy.

For n = 2, t;, = 27 and

_ 0 —Sk
Sk - <Sk 0 )

we obtain the rational CORDIC decomposition of a plane
rotation

b
Ry = H Ry (si) “4)

k=0

where Ray(sr) is an abbreviation for the elementary rotation
Ro(Sk, tr), exhibiting only the free parameter s, = +1, and
is equal to

1 .
m(l — Sitr)Adj(I + Sity)
1
= 72 (I - Sktk)2
k

1 1- ti 2skty )
Tr\ 2tk 117 )

This decomposition has been used to speed up the Jacobi
algorithm for the SVD of real matrices [8], [12], to obtain a
redundant arithmetic rotation algorithm with constant scaling

[32], and to calculate the trigonometric functions sin™!, cos™?!
[28].
Since R2(si) is the square of
1
RY?(sk) = ———=(I — Sit 6
5 "(8k) T ( ktk) (6)

where the numerator entries are simple polynomials in tx, we
also have the square-root CORDIC decomposition of a plane
rotation

b b
. 1 1 Skt
RY*(s),) = ——( ’“’“) 0
L A

where the signs s, are properly selected and the rotation
parameter ¢, is equal to the tangent of the kth elementary
rotation angle 6y, i.e., tx = tan 6. This decomposition is the
basis of the original 2-D CORDIC algorithm [34], [35]. Its
angular resolution is 6, ~ 27°.

Let us use the 2-D square-root CORDIC algorithm to illus-
trate some basic notions. A rotation iteration is implemented
by two parallel shift-and-add operations. For a given value b,
the normalization factor

b

H(1+tﬁ)“1/2

k=0

is approximated off-line by the product of terms of the form
1+2-". As aresult, each scaling iteration also amounts to two
parallel shift-and-add operations [1], [7].

The CORDIC algorithms have two modes, evaluation and
application. In the evaluation mode, a sequence of b + 1
rotations is applied to a vector [z; )T to bring it along the
first canonical axis [+1 0]. The control sign s; depends on
the signs of the components at the previous iteration according
t0 S = $ign(Z1,k—1 - T2.k—1) SO that the accumulated angle

b
Y,
k=0

approximates the desired rotation angle § = tan™!(zy/x;).
There are two different types of CORDIC algorithms depend-
ing on whether the rotation angle ¢ is explicitly calculated or
not. Explicit CORDIC evaluation calculates the angle

9=Zsk9k
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Fig. 1. Architecture of a 2-D CORDIC processor.
by accumulating all elementary angles 6, = tan~!(t;)

to obtain the overall rotation angle #. In contrast, implicit
CORDIC evaluation generates only the control signs s
since they make up a convenient encoding of the rotation
angle f. For many computational problems, including SVD
computations, the explicit evaluation of the rotation angles
can be bypassed [8], [12].

In the application mode, the explicit CORDIC algorithm
decomposes the given angle § into ), s;0; and the signs
8, = *1 are used in the CORDIC rotation iterations. In the
implicit CORDIC algorithm the control signs s; themselves
are given and thus can be used directly to rotate vectors.
These signs are usually available as the result of a preliminary
evaluation. Implicit CORDIC algorithms are advantageous
for multiprocessor array implementations as they enable the
evaluation and application processes to be overlapped [8],
[12]. Furthermore, the implicit form avoids the sequentiality
inherent in the definition of angles in higher dimensions.

Fig. 1 illustrates the architecture of a 2-D CORDIC pro-
cessor. The Z accumulator part (including a register, a ROM
storing the elementary angles 6, and an adder), computes
or encodes the rotation angle. It is used only in the explicit
CORDIC algorithm.

B. Householder CORDIC Algorithms
In high-dimensional CORDIC algorithms, the evaluation

the first canonical axis [+1 0--- 0] via a sequence of
elementary n-D rotations and the application mode consists
in applying the same sequence of elementary rotations to
other vectors. The selection rule for the control signs in the
evaluation mode should be simple. Observing that, to first
order in tj

R, (Sk,tx) = (I — Sktk)(f—}- Sktk)_l ~ [ —2Sit,

and that we want to zero out the last-n — 1 components of the
vector, we choose S of the form

0 —-sl,k
81,k

—8n-1,k

®

Sk

Sn—1,k

and select the control signs s;; according to s, =
sign(T1 k-1 * Tit1k-1)s 1 < @ < n — 1, where z; 5,
denotes the ¢th component of the vector at the beginning of
the kth iteration. According to the first-order approximation
of R, (Sk,tr), the magnitude of the first component always
increases and, if the other components are sufficiently small
with respect to the first component, their increments have signs
opposite to their own. If S}, = 0, this last observation holds
without the restriction on the magnitude of the components
and convergence is then easier to achieve.

With the choice Sp = 0, |I + Stx| = 1+ (n — 1)£2 is
independent of si, as desired. The Householder CORDIC al-
gorithm [22] results, in which the elementary rotation matrices
R, (sk) = Rn(Sk,tx) may be expressed as the product of two
Householder reflections

T T
Ra(si) = (I -254 ) (1 — gk ) )
€1 €1 U, Uk
with
1 1
1 S1ktk
e = and uy = sutk =
0 Sn-1,ktk

For n = 4, the elementary rotation matrices are in (10),
which appears at the bottom of this page.

The Householder CORDIC algorithm consists of a sequence
of elementary Householder transformations. While the use
of sequences of Householder transformations in the context
of VLSI signal processing is not new, see, e.g., [26], the
Householder CORDIC transformations have the distinction of
being “elementary” and hence easily implemented with shifts

mode amounts to bringing an n-D vector [z; -+ z,]T along and adds.
s1k 1-— 31‘% 281, ktk 289 klk 253 ktk 2\
’ 1 —281 kgt 1+¢2 —281 k82 kt2  —281 kS3 Kt
Ry(sk) = Ra(|: S : k 52k ok 83,k 10
a(sk) 4( ;2: ) 1+ 3t2 | —2s2,ktk —289 81 kt2 1+t —232,k5%,kti (10)
’ —283 Ktk —283’k51,kt% —2837k82,kt2 1413 /



C. 3-D Rational CORDIC Algorithm

Other choices for Sy, are possible that also lead to |1+ Syt
independent of s. For instance, for n = 3, the choice

0 —S81,k
S1,k 0

gives the elementary rotation matrices, which are shown in
(11) at the bottom of this page. Factoring out the scaling term
1/(1+3t2) yields an unscaled elementary rotation that can be
implemented by simple arithmetic blocks: shifters, carry-save-
adders (CSA) and adders. For lack of a better name (for the
elementary rotations in the 3-D Householder CORDIC algo-
rithm are also rational in ¢;) we call the associated CORDIC
algorithm the 3-D rational CORDIC algorithm [9], [13].

S, =

D. Quaternion CORDIC Algorithms

For n = 4 one may impose that all the matrices Sy be
equal to either

0 $3k  —S2.k 0 —S3k S22k
=83k 0 81,k or | S3k 0 —81k
Sok  —S1k 0 —Sok  Sik 0

In both cases

[T+ Sit| = (1 + 3t3)*
and
Adj(I + Sgty) = (1 + 3t3)(I — Sit)

so that, in a way similar to the 2-D case, the elementary
rotations are the square of

1

V1+3t;
These “square-root” matrices are unit quaternions, and thus,
we obtain two quaternion, or 4-D square-root, CORDIC algo-
rithms [9], [13] with the two families of elementary rotation
matrices, which are shown in (12) and (13) at the bottom of
this page. The superscripts in Ri/ ®(s) and R, Y 2(sk) merely
indicate that the matrices are square roots of rational matrices.
(Ri/z(sk) is not a square root of R,(sy) and R21/2(sk) is
not the inverse of R};ﬂ(sk).)

I - Sktk)-

The selection of the rotation parameter sequence to ensure
convergence of the 4-D Householder CORDIC algorithm is
tr = 27k asin the 2-D case [22]. For the 3-D rational and 4-D
square-root CORDIC algorithms, convergence is more difficult
because S; # 0 in (8) while the selection rule for the control
signs in the evaluation mode remains

Sik = Sign (T1p—1 - Tig1k-1), 1<i<n—1

Consequently, a few of the values 27* must be repeated,
especially in the early iterations [9], [13].

E. Architecture of Processing Units

A possible architecture for a 4-D Householder CORDIC
processing unit is shown in Fig. 2(a). It comprises four blocks,
each implementing the multiplication of a 4-D vector by
one of the rows of the matrix in (10). For instance, the
block at the top left computes the product by the first row,
[l —2t2 —2 +2t +2t;, =+ 2], by means of two
shifters and a 6-to-2 carry-save-adder array followed by a fast
two-input adder. Both 6-to-2 or 5-to-2 CSA arrays are built
out of 3-to-2 CSA cells. The 3-D rational CORDIC algorithm
described in Section II-C may be implemented using three
blocks identical to the top left block in Fig. 2(a), but with
different shifted data components as inputs. Thus if the 5-
to-2 CSA arrays in Fig. 2(a) are replaced by 6-to-2 CSA
arrays, and further control is added to the routing channels
and multiplexers, a “unified” 4-D CORDIC unit illustrated
in Fig. 2(b) is obtained that can implement not only 4-D
Householder CORDIC operations but also the 3-D and two
2-D rational CORDIC operations. The area of the unified 4-D
CORDIC unit, A4p, unified> is close to A4p, the area of the
4-D Householder CORDIC unit since both units require as
many shifters and adders.

The architecture for a quaternion unit is simpler, with four
shifters implementing multiplication by t;, four CSA arrays
with 4-to-2 CSA cells, and four adders [12].

In the next section, we will use the multidimensional
CORDIC algorithms and the processing units just described
for the parallel computation of the SVD of complex matrices.
In the process we will see some surprising relations among
the above algorithms.

C Tsin 1 1- ti 281kl — 231’k82’1¢t‘,2c 2589 Ktk + 2ti
Ry( [32,’6}) = 1 +———3t2 =281 ktk — 231,k32,kt% 1- t% 281 ktr — 251,k32,kt% (11)
, k —28 kti + 282 ~281 ktr — 281 k82 kt2 1-¢2
S1 - 1 $1,ktk $2,ktk 83,ktk
’ 1 —s1.xt 1 —83 it S it
RY%(s.) = RV2(| s _ 1,5tk 3,klk 2,ktk 12
4 (k) 4 ( si: ) 1 +3tz —82.ktk  S3ktk 1 —81,klk (12)
- —83.ktk  —Saktr Syt 1
1] 1 81,klk 52kl 83 klk
_ _ J 1 —81 .t 1 S3.t —89 kt,
R-Y2(s,) = R7V2(| s )= 1,ktk 3.kt 2,klk 13
a (o) s sz’u) V14362 | —S2,kte —S3.ktk 1 81kt 13
’ =83tk Sokte  —S1ktk 1
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Fig. 2. (a) Four-dimensional Householder CORDIC processor architecture;

(b) 4-D unified CORDIC processor architecture.

III. PARALLEL SINGULAR VALUE DECOMPOSITION

The singular value decomposition of an [ x m (I > m)
complex matrix A of rank r > 0 can be expressed as

A=USVH

where the matrices U (I x [) and V (m x m) are unitary,
VH is the conjugate transpose of V, and the real matrix S
(I x m) is diagonal with r positive singular values. If [ # m,
the SVD is computed in two phases: the QR decomposition
of A is performed, i.e.

=)

where Q is an [ x [ unitary matrix and R is an m X m upper
triangular matrix, and is followed by the SVD of the square

--:J i I =>4 >
Pl] PIZ Pl3 Pl4 PlS
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Fig. 3. Systolic array architecture for the Jacobi SVD algorithm.

matrix R. Readers can refer to [6], [11], [22], [23] for the
implementation of the first phase using CORDIC algorithms.
From now on, we consider the SVD of an m x m. square matrix
A. We shall present parallel implementations of the complex
SVD using a variant of the Jacobi—Kogbetliantz method in
which the basic rotations are realized with 3-D and 4-D
CORDIC algorithms.

A. VLSI Array Architecture for the SVD

The Jacobi method reduces to zero the off-diagonal entries
of an m X m complex matrix A by applying complex plane
rotations both from its left and from its right. The matrix A is
eventually transformed into S, the diagonal matrix of singular
values, while U and V may be obtained as aggregated products
of the applied rotations [17]. The main operation in the method
is the evaluation of the SVD of a 2 X 2 matrix, which can be
expressed as a two-sided rotation

fa b\ o a 0
wea)w-(d)

where R! and R" are the left- and right-side rotations selected
to diagonalize the matrix.

A VLSI array architecture for the parallel SVD of A is
shown in Fig. 3 (for m = 10) where each processor performs
two-sided rotations on 2 X 2 submatrices of A {3]. When m is
large, the above architecture, which is matched to the problem
size, is viewed as virtual and is mapped onto a smaller physical
array, see e.g. [11]. Assume m is even. Initially, processor
Py contains the 2 x 2 submatrix

a
Arr = 271,271
1J a

21.2J-1

a’2l~~1,2J )
a'ZI.ZJ

At each Jacobi step, diagonal processor Pr; performs on
the 2 x 2 submatrix A;; a two-sided rotarion RyAjrR7,



where R} and R7 are selected to zero out the off-diagonal
elements of Ajy. Off-diagonal processor Prj applies the
corresponding two-sided rotation R4 Ay R, with R} from Pr;
and R} from Pj;. Then each processor exchanges matrix
elements with neighbors according to the parallel ordering in
[3]. In particular, the annihilated off-diagonal elements in the
diagonal processors are swapped with off-diagonal elements
from the neighboring off-diagonal processors.

Communications between processors are of two types. One
is the exchange along diagonal links of the matrix elements
at the end of each step. In (m — 1) steps, every off-diagonal
element is brought once into a diagonal processor for evalu-
ation. The other is the propagation along rows and columns
of the parameters representing the rotations evaluated in the
diagonal processors during each Jacobi step. (With implicit
CORDIC algorithms only bits are sent at each step, using
a limited broadcast scheme [8], [11], [12]. This enables the
overlap of the evaluations in the diagonal processors and of
the applications in the off-diagonal processors.)

B. Even-plus-Odd Decomposition of 2 x 2 Complex Matrices

Yang and Bohme [37] have used an additive decomposition
of 2 x 2 real matrices in order to parallelize the evaluation and
application of real two-sided rotations using explicit CORDIC.
The approach has been extended to the real case with implicit
CORDIC in [10] and to the complex case in [12]. Indeed, a
2 x 2 complex matrix M can be decomposed as

a b

=0 a)

_lfa+d b-¢ +1 a—d b+ce

T 2\c—b a+d) 2\b+c d-a
(el ‘32) + (‘31 o2 ) =E+0

—e2 €1 02 —01

where the overbar denotes the complex conjugate, and E and
O are called complex even and odd matrices. The product of
two even matrices or of two odd matrices is an even matrix
while the product of an even matrix and an odd matrix is

an odd matrix, thus justifying the names. A complex plane
rotation can be represented by a complex even matrix

C1 S1
-5

with the constraint ¢;é; + s15; = 1.

(14)

C. Isomorphisms Between 2 x 2 Complex
Matrices and 4 x 4 Real Matrices

To every 2 x 2 complex even matrix

(3, 2)
—€9 €3

_ e{+Je{_ e§+je;?,;
—eh ey €] —gel

_ (€ e er €
I er +7 7 _d
2 € €3 €
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correspond two distinct 4 x 4 real matrix representations

r J r J
€. € €y €3
J r J r
Bo=|"1 a - e
1= —el el e’ _JJ |
,2 2 1 61
J T J r
e} e’ el el
J J
—ey €] € —6
E; = Y RS (15)
—e; —ey €] eh
J J r T
—€ €1 €y €

The matrix £ can be reconstructed from only the first column
of E; or FE,. Similarly, to every 2 X 2 complex odd matrix
O correspond two distinct 4 x 4 real matrix representations
O; and Os. The two 4 x 4 matrices in (15) lead to the two
families of 4-D quaternion CORDIC elementary rotations in
(12) and (13). Ri/ 2(sk), which corresponds to E;, is named
the “standard” representation in [12]. Since a complex plane
rotation can be represented by a complex even matrix with
unit norm, it can be performed by a 4-D quaternion CORDIC
algorithm.

Letting boldface E and O denote the standard 4 x 4 real
matrix representations of the complex even matrix E and odd
matrix O, we observe that

S1,k
first column of ERi/ 2( Sok |)
S$3,k
1/2 1.k
= first column of R, / (|82 | )E
83,k
1/2 51k
first column of OR4/ (s2.%1])
S3,k
1/2 SLk
= first column of R / (|—s2,k |)O. (16)
—S3,k

The above pseudo-commutativity and pseudo-anticommutat-
ivity properties permit to move one of the plane rotations in
a complex two-sided rotation from one side to the other, thus
allowing the combination of the two plane rotations and hence
their concurrent execution.

D. CORDIC Evaluations in the Diagonal Processors

Returning to the array architecture shown in Fig. 3 and
considering the 2 X 2 submatrix in diagonal processor P;j,
we adopt a two-phase approach to evaluate the left and right
rotations R and R that make R} A;; R} diagonal. The even-
plus-odd decomposition of Ajy is

Arr = Err+0Orgr

_ [ enr  exnr 4 (o
—€2 11 e1]r1 09,171
r J
_ ( €11 tJ€1 11
T\ _,r J
€arr T8 11
r v
L (Cvmr oL
o v, — 90
2,71 — JO2 11

02,11 )
—01,171
€501 T3 11 )
et rr — 361,11

0511 + 0% 11 )
—of rr+01 1)



From now on, we consider only the operations on the real 4 x 4
standard matrix representations of the involved 2 x 2 complex
matrices, with the understanding that the final results can be
readily transformed back into the complex matrix space.

First Evaluation Phase: Two sequences of 4-D quaternion
CORDIC elementary rotation matrices with the same control
signs are applied to the left and right sides of A;;. The
computation involved in the kth CORDIC elementary rotation
is expressed as

Arrk+1 = Errkv1 + 011 k41

12 01,k 12 01,k
=R,/ (|o2k |) (Errx+Orrx) R/ (o2 |)
o3k O3k

17

where the dependence of the control signs 01,02k, 03,5 On
the processor index [ is dropped to make the reading easier.
Let err,; denote the first column of Ej; i, and oy denote
the first column of Oy x. Using the pseudo-commutativity and
pseudo-anticommutativity properties exhibited in (16), we get

_ - -
1/2 OLk 1/2 TLk
€yt — R4 ( 02,k )R4 ( 02,k ) €k
_03,k_ __0-3,k:
12 O1,k 172 01,k
0 ki1 :R4 ( 02 k )R4 ( —02,k ) Orr ke
LU3,k_ __0-3,k

Therefore, e,, , is subjected to the kth CORDIC elementary
rotation, which is shown in the first expression at the bottom
of this page, and is the 4-D Householder CORDIC elementary
rotation matrix in (10). Similarly, o,, , is subjected to the kth
CORDIC elementary rotation, which is shown in the second
expression at the bottom of this page, and is a symmetric
permutation of an elementary rotation matrix in the 4-D

! ’
columns of E;; and Oy; are

/ r
el 1 _— _ €111
L ;
0 | RY/? ' R-Y2 ' —e] it
0 = 2 (|o2k VR (| o2k |) —er
k 03,k 03,k okl
0 ) ’ _e]
2,11
(18)
o r
1,11 01,11
Jj 01,k 01,k 5
—0 9 ) —_
1,011 | _ 1/2 -1/2 [¢]
or —HR4 ({o2k | )Ry (| =02 |) Orl’H
?;” k 03,k —03.k f’”
0y 11 09,11
(19)

Reconstructing the 2 x 2 complex submatrix A} ; from e; I
and o;;, we obtain

A= E111+ Orr

‘s
_ (61,11 9 )
T
0 €111

n <0§;U + Joi;n 05:{1 + -705,{1 ) .
0,11 = 9,11 —O%,11 +101 11
The complex even matrix E} 1 is real and diagonal at the end
of that phase.
Second Evaluation Phase: In the second phase of the eval-
uation process, two sequences of 4-D quaternion elementary

rotations with opposite control signs are applied to the left
and right sides of A;;. Consider the kth CORDIC elementary

rotation

7 ’ !
Arrir1 = Err e +Orr e

Householder CORDIC algorithm. 61,k —81 k
The control signs o1k, 092 %, 03 are selected to force to = Ri/Q( b2,k )(EIII,k- + O/H)k)Ri/z( =02k | ).
zero the last three components of e,,. At the end of the first 63,k —03.k
evaluation phase, we have A'I = E} + 0} 1 where the first (20)
o _— 1-— 3t£ 201,kt2k 20’2,ktk , 20’3,ktk \
RY2(| oo VRTV2(|oa ) = iy | 20008 IH G —201k0paly 2000
* " 4 ' 14382 | 2024tk —202,k01 k7 1442 ~209 1,03 1t}
I3,k I3,k ~203 ktk —20'3,k01,kt% —20‘3,k02,kti 14+ ti
- 1+ t,% 201kt —20’1)]40'3’19% 201.k02,kti
R1/2( Zl’k' )R_l/g( _;’k ) = 1 —207 kg 1- 31‘,% —203 itk 209 itk
4 2k 4 2.k 1+3¢2 —201 k03 kt: 203tk 1+t 209 103 kt2
I3,k TO3.k 20’11]‘30'2,]‘-15% "20'2,ktk 2(72,k0'3,kti 1+ t;?;
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In terms of the first columns of Errx, Errk+1 and Ok,
Or1,k+1, We have

! 1/2 61’” -1/2 F—&,H '
Cll.k-+1 R ( 62*’- )R4 ( —62,/6 ) €k (21)
_63.k_ L—‘53,k_

, 61,4 | [ =61,k | ,
0., = B[k DETA(| 82 |) 0,0 22)
L63,k_ L 03,k |

The operations in the above two equations are essentlally the
3-D rational CORDIC elementary rotations. Indeed, e, L I8
rotated by the kth CORDIC elementary rotation, which is
shown in the first expression at the bottom of the next page,
where the 3 x 3 submatrix in the lower right corner is a 3-D
rational CORDIC elementary rotation matrix similar to (11)
if 634 = 61,x is imposed. Similarly, o'M is subjected to the
kth CORDIC elementary rotation (see the second expression
at the bottom of this page). Crossing out the second row and
second column, the remaining 3 x 3 submatrix is another 3-
D rational CORDIC elementary rotation matrix if 61, = 63 k.
The control signs 61, = 63, and 62 x are selected as indicated
in Section II-D to force to zero the third and the fourth
components of 0,1 ,- The zeros of e; , created in the first
evaluation phase are left unchanged.

Thus, at the end of the second evaluation phase, we have
A'III = E;, + O’I'I with the first columns of E’I/I and O,II,
equal to

"
r

T
610” 12, | Bk 1/2 —0uk 0
0 HR/ m R =820 D
0 b3,k —03.k 0
(23)
o
—oj” 1/2 -1/2 ~Buk —ol’
1IT HR 62 JR(] b2 )]
0 03,k 03,k 2,11
0 ’ ol

The computations in (23) may seem superfluous. However they
must be implemented when the resolution of the CORDIC

algorithms is limited—as in the faster version presented in
Section IV—and hence the “zero” entries are not exactly zero.
The reconstructed 2 x 2 complex matrix A’I' ; in the diagonal
processor Pr; becomes

Thus at the end of the two-phase evaluation, the 2 X 2 complex
submatrix A;; in processor Py is diagonal with complex (not
real) diagonal elements.

"

" " " e O
Aip=E;+0= ( 1(,)11 e >
LII
0

!’ j”
4 (on +J01 11
0

r’, j’l
—0y,11 T 7071 11

E. CORDIC Applications in the Off-Diagonal Processors

The off-diagonal processor Py performs on the left and
right sides of Aj; the corresponding CORDIC applications
with the control signs from processors Prr and Py, respec-
tively. After the application process, Ay is transformed into

" 11 1
Ay =E;;+0p,

where E; 1, and O 1y are determined from their first columns
e;; and o” with

5 —81 ]
1/2 —-1/2
eIJ‘—HR/ I R4/( —5élik )
631; _53,1c_
J 7
01k 91k
><]:_[R1/2 ogk YR;V2(|od, |) ers (25
ol ol
3.k 3,k .
" —87
1 2 -1 '
OIJ = HR / 51 )R, /2( 55,1« )
3k 53,k
lk Ule
. , ~ &
XHR/2 Jé’k R41/2( ~03, |) ors (26)
ol _—
3,k 3.k

where the superscripts I and J on the control signs represent
the indices of the processors from which the control signs are
generated. Depending on the 1 values of the parameters, the

1+ 3¢ 0 0 0
1 v 0 1- ti —203 Ktk + 251,k62,kti 269 1t + 251,k62,kti
1+ 3t2 0 2683 ktk + 281 k0o kt2 1—t2 —281 Ktk + 62,103 kt2
0 =262 Ktk + 261 k63 kt2 261 kti + 262,163,513 1-¢2
1- t% 0 269 ktr + 261,k53,kti 263 Kt — 261,k52,kt%~,
LI 0 1+ 3t2 0 0
1+3t2 —282 ikt + 261 103 ik t? 0 11— =201 Ktk — 262,103 kt3
—283 ktr — 261 102 1t7 0 261 ktk — 262,163 kt3 1-#7
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product
a1k B,k
RY*( sk )RZUZ( Bk |)
as g B3,k

is equal, up to symmetric permutations of rows and columns,
to an elementary rotation matrix of either the 4-D Householder
CORDIC algorithm or a slight extension of the 3-D rational
CORDIC algorithm, where the sign in Sy in Section II-C is
independent of the other two signs. Therefore, the CORDIC
applications in the off-diagonal processor Pr; consist of
two consecutive sequences of 3-D rational CORDIC or 4-D
Householder CORDIC elementary rotations applied in parallel
to the first columns of the even and odd matrices /7y and Oy .
Each processor in Fig. 3 consists of two 4-D unified CORDIC
processors, which can perform 4-D Householder CORDIC
operations as well as 3-D rational CORDIC operations. Thus
the area of the diagonal or off-diagonal processor is

.A” = A[J = 2A4D,uniﬁed

where A4p unified denotes the area of a unified 4-D CORDIC
processor in Fig. 2(b). The delay of each Jacobi SVD step is
Tsyp = 2’]; p Where T;,, denotes the computation time of
one 3-D rational CORDIC operation. The additional hardware
requirements for the concurrent computation of the unitary
matrices U and V are discussed in Section III-H.

F. SVD of Hermitian Matrices

If the m x m matrix A is Hermitian matrix, so is Ajj,
the 2 X 2 submatrix in the diagonal processor Pr;. In this
special case, the even matrix E; is diagonal, and both Er; and
Ojr have real diagonal elements. Hence, the first evaluation
phase—described by (18) and (19)—is redundant and can be
skipped. Therefore, the evaluation and application operations
can be accomplished within the computation time of one 3-
D rational CORDIC operation instead of the time of two
such operations [12]. Furthermore, after the evaluation, the
diagonalized matrix A;; is real.

G. Real Diagonalization in the Diagonal Processors

Since in general the Jacobi SVD algorithm converges to
a diagonal matrix with complex diagonal elements, addi-
tional operations on the complex diagonal matrix are required
in order to force the diagonal elements real and positive.
Considering the 2 x 2 complex diagonal submatrix in the
diagonal processor Py; after the convergence of the Jacobi
algorithm, two 2-D CORDIC operations are required to an-
nihilate the imaginary parts of the two complex diagonal
elements. Afterward, sign inversion may be needed to make
the diagonal elements positive. The above computation occurs
in the diagonal processors only after the Jacobi algorithm
converges, hence the magnitudes of the off-diagonal elements
are negligible. The computation time of this last phase is very
small compared to the total computation time of the Jacobi
algorithm. This phase is not needed in the Hermitian case.
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H. Construction of the Unitary Matrices U and V

The unitary matrices U and V' of the SVD of an m x m
matrix A = USV¥H can be calculated concurrently with the
computation of S if each processing element in the array
of Fig. 3 also contains two pairs of quaternion CORDIC
processors, each pair in charge of accumulating the product
of the rotations applied from the left or from the right of A.
More specifically, assume that initially a processing element
Pr; holds, in addition to A7y, two 2 x 2 submatrices U}
and Vr; where UF, and V;; are null matrices if I #
J and are identity’ matrices if / = J. Considering the
update for UfL, concurrently with the CORDIC evaluations or
applications discussed in Sections III-D and E, two identical
quaternion CORDIC operations, representing the left rotation,
are performed separately on the first columns of the two 4 x 4
real matrices that represent the even and the odd parts of
the current iterate of UfL. The two resultant 4-D column
vectors are then used to reconstruct the new U}%. The above
operations are performed in a pair of quaternion CORDIC
processors inside processing element Pr;. After each Jacobi
step, the entries of the iterate of U fg are exchanged among
its neighbors. Similar operations for the update of V;; are
performed in another pair of quaternion CORDIC processors.
The two unitary matrices U and V are thus generated when
the Jacobi SVD converges. (When A is not square, USVH
is the SVD of the matrix R in the decomposition A = QR
and the product of the first m columns of ¢) by U must be
computed on the CORDIC array. A procedure detailed in [11]
solves that problem.)

I. Comparison of Two CORDIC-Based Jacobi SVD Methods

In [6], Cavallaro and Elster proposed the Jacobi SVD of
complex matrices using the 2-D explicit CORDIC algorithm.
The total computation time for one Jacobi step is Zsvp
9.75’2’211;2 where T;g" denotes the computation time of one 2-
D CORDIC operation with the elementary rotations defined
in (7). The 0.75 factor accounts for the CORDIC scaling
iterations [5]. The areas of the diagonal and off-diagonal
processors (not including computation of U and V') are Ay =
Ary = 4Aé/D2’exp where Aég,exp is the area of a 2-D explicit
CORDIC processor shown in Fig. 1. For our Jacobi SVD
method using higher dimensional CORDIC algorithms, the
computation time of one Jacobi step is reduced to Zsyp =
2.157§D where ’Z},'D is the computation time of one 3-D
rational CORDIC operation. The factor 0.15 accounts for the
computation time of the scaling iterations on a 4-D unified
CORDIC processor. The processor area (not including the
computation of U and V) is A;r = Arg = 2A4p unified-
Fig. 4 details the computation time of one Jacobi step in these
two methods.

Assuming 32-bit accuracy and double-metal scalable CMOS
1-pm technology

T2 o

A3 exp = 2100 X 2000 pm? , )b = 0.63 s
A4D unified = 3600 x 4500 um? |, T, ~ 0.80 us.

The above area and time estimates take into consideration the
contribution of the interconnection wires, drivers, registers,



1: complex angle evaluation

5: complex rotation application

2: one-sided unitary transform angle evaluation 6: one-sided unitary transform rotation application
3: two-sided unitary transform angle evaluation 7: two-sided unitary transform rotation application

4: real SVD evaluation

8: real SVD application

1: first-phase evaluation using 4-D Householder CORDIC
2: second-phase evaluation using 3-D rational CORDIC
3: two-phase application using 3-D rational or 4-D Householder CORDIC

E:j angle evaluation - rotation application

- scaling operations

Fig. 4. Comparison of two CORDIC-based Jacobi methods for complex matrices: (a) Cavallaro and Elster’s method; (b) proposed method. For each method
the top (respectively, bottom) trace refers to the diagonal (respectively, off-diagonal) processors.

multiplexers, and other data steering units. The delay estimates
are obtained using SPICE. The adders are designed combining
multiple-output domino logic with carry-look-ahead [25]. The
shifters are barrel shifters with switches implemented by gate
logic to minimize delay. Using the above time estimates, each
Jacobi step takes about 6.1 us in Cavallaro and Elster’s method
and only 1.7 us in our method. Thus a speed-up factor of
about 3.5 is achieved while the hardware complexity in each
processor is barely doubled.

For comparison, on a single-CPU SPARC-20 workstation
and using a variant optimized for the SPARC CPU of the
procedure in [6], the diagonalization of a 2 X 2 complex
matrix takes around 37 ps while a corresponding two-sided
complex rotation application takes around 13 us. Thus the
computation time of a Jacobi step for a 50 x 50 complex matrix
is approximately 8.7 ms on a SPARC-20. The computation
time for the SVD of a 50 x 50 complex matrix on a single-
CPU SPARC-20 is about 1.6 s if the triangular structure of the
matrix A is preserved by the Jacobi steps [27]. Sequential soft-
ware packages typically use the more efficient Golub—Kahan
algorithm (QR algorithm) to compute the SVD [17]. For
example, MATLAB computes the SVD of the same 50 x 50
complex matrix within 0.4 s on a SPARC-20 workstation.
Unfortunately, the most efficient sequential SVD algorithms
are much less suited to processor array implementations than
the Jacobi algorithm. As will be seen in the next section, the
SVD of the 50 x 50 complex matrix on a 25 X 25 processor
array implementing our method takes 0.13 to 0.25 ms.

Recently, Hemkumar and Cavallaro [19], [20] have pro-
posed an approach which improves upon the original Cavallaro
and Elster’s method by using two pairs of “inner” and “outer”
transformations and by adopting Yang and Bohme’s method
[37] for the last outer transformation. With this approach, the
computation time of one Jacobi step is reduced to Zgyp =
7’]'21152 while the area complexity is still A;; = Ay =
4A§ﬁexp. Our method is still about 2.6 times faster and,
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as will be seen in the next section, because it uses implicit
CORDIC algorithms for all the transformations, its speed can
be further doubled at almost no extra hardware cost.

IV. JacoBi SVD wITH PARTIAL CORDIC

In the Jacobi SVD algorithm, the zeros created at each
step are smeared by subsequent rotations. Thus the exact
annihilation of matrix entries is not necessary during the early
steps of the algorithm, a property exploited in the “threshold
Jacobi method” [36]. With an implicit CORDIC algorithm one
may apply in the early steps of the Jacobi algorithm “partial-
resolution” CORDIC operations to bring the off-diagonal
elements just within some sufficiently small magnitude, thus
reducing the total number of CORDIC iterations [9], [12].

In a partial CORDIC algorithm only a contiguous subse-
quence of the sequence of rotation iterations in the original,
“full,” CORDIC algorithm is applied. The first and last rotation
parameters, 277 and 279, with p and ¢ the first and last shift,
may change from one operation to another. The window size
w = ¢ — p+ 1 is the total number of rotation iterations in one
CORDIC operation. In the standard, full-window, CORDIC
algorithm, the window size is fixed to cover the desired range
and achieve maximal resolution. In a unit-window partial
CORDIC algorithm, p = ¢ and each CORDIC operation
consists in a single rotation iteration [18], [21], [31].

In [18], Gotze et al. proposed a Jacobi-like algorithm
for the parallel eigenvalue computations of real symmetric
matrices in which a unit-window partial CORDIC operation
is performed on every 2 x 2 submatrix on the diagonal. While
the approach has been recently extended to Hermitian matrices
[21], its generalization to the SVD of general complex matrices
seems quite difficult. The process of determining p(= ¢) for
each diagonal submatrix involves several comparisons, and
the associated scaling operations—potentially different from
processor to processor—create extra computation overhead.
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Fig. 5. (a) Number of sweeps versus matrix size m for Hermitian matrices; (b) number of CORDIC rotation iterations versus m for Hermitian matrices; (c)
number of sweeps versus m for general complex matrices; (d) number of CORDIC rotation iterations versus m for general complex matrices.

We propose that p and q be identical for all 2 x 2 submatrices were applied, the final matrices obtained after convergence
and remain unchanged throughout each sweep in order to would just be scaled versions of the true results (assuming
simplify the scaling. Thus if no scaling CORDIC iterations no arithmetic overflow occurred). For this discussion we shall
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make the pessimistic assumption that at each step scaling is
performed in the same way as in Fig. 4(b) and with the same
number of iterations as for the full CORDIC algorithm. We
present here only the best of several strategies for updating p
and ¢, as came out from our experiments.

1) Start with p() = 1 and ¢{!) = go. The initial value gq
is selected equal to 4.

2) At the beginning of each sweep, increase the resolu-
tion—until reaching full resolution (shift b)—according
to plitD) = p() i+ = min (¢ 4+ Ag, b), where the
increment Aq is selected equal to 4.

We shall see that this scheme provides a speed-up factor
of about 2 on top of the speed-up obtained by using the
even-plus-odd decomposition discussed in Section III.

Since the convergence rate of the Jacobi SVD algorithm
depends on the distribution of the singular values of the
matrices, we generated for our experiments random matrices
belonging to several classes with different singular value
distributions, and applied to these matrices the Jacobi method
with full CORDIC and with partial CORDIC algorithms. The
matrices considered belong to five classes, listed below. For
all these classes, the random variables are independent, the
m X m matrices Dy, are diagonal and real, and the matrices U
and V' are random unitary matrices with columns uniformly
distributed on the m-dimensional unit sphere (subject to the
orthogonality constraints).

 Class 1: the real and imaginary parts of all the entries in
the matrix are uniformly distributed between —1 and 1.

* Class 2: A = UDy V¥ where D, contains singular values
uniformly distributed in an interval.

* Class 3: A = UD3V ¥, where the diagonal entries of D
are lumped into two groups, each with very small standard
deviation compared to the difference of the means of the
two groups. Thus matrix A tends to have multiple singular
values.

* Class 41 A = UD,VH, where D, has two diagonal
entries very close to each other while the others are
uniformly distributed in an interval.

e Class 5: A = UD5;VH, where the two extreme diagonal
entries in Dy have a large ratio (i.e., A is ill-conditioned)
while the others are uniformly distributed in an interval.

The stop criterion for the Jacobi algorithm in our exper-
iments was that the sum of the squares of the off-diagonal
elements be less than 107! times the sum of the squares
of all the elements. Fig. 5 shows, for selected matrix sizes
and 100 independent trials per data point, the maximum
numbers of sweeps and of CORDIC rotation iterations for the
SVD of Hermitian matrices and of general complex matrices
using full and partial CORDIC algorithms. For instance, for
100 x 100 general complex matrices, the Jacobi method using
full CORDIC requires about 0.61 ms for matrices in class 1
and 0.97 ms for matrices in class 3. With partial CORDIC, the
total computation times drop, respectively, to 0.34 and 0.71
ms. For 50 x 50 matrices in class 1, the required computation
times are 0.25 ms with full CORDIC and 0.13 ms with partial
CORDIC. (The array data input/output is at most a few percent
of the computation time. Furthermore, when computing the
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SVD of a batch of matrices, it may be overlapped with the
computations.) From the experiment, we make the following
observations:

1) Convergence for matrices in class 3 requires more
sweeps, and thus more CORDIC iterations, than for
matrices in other classes.

2) The test matrices in classes other than 3 have similar
convergence rates.

3) The speed-up of the Jacobi SVD using partial CORDIC
with respect to using full CORDIC is close to 2 except
for the matrices in class 3, for which the speed-up
seldom exceeds 1.5.

4) The average number of sweeps for a matrix of given
class and dimension is at most 1.5 less than the maxi-
mum shown in Fig. 5.

In a systolic implementation such as the one shown in
Fig. 3, classical matrix-dependent termination criteria for the
Jacobi algorithm are very expensive. Thus a good strategy
is to stop after a predetermined number of sweeps, possibly
dependent on the dimension of the matrix. According to
Fig. 5, a very simple strategy is to stop after 13 sweeps for
every matrix of size up to 100. Larger matrices require larger
numbers of sweeps. In [3] where the SVD of real matrices is
considered, Brent et al. suggested to select 10 as the number of
sweeps for matrices of practical size (say, m < 1000) because
they considered only random matrices belonging to class 1.
But as we have seen, matrices in class 3 require more sweeps
for convergence. We also tested other matrices, proposed in
[30], but the convergence rates were not worse than for the
matrices in class 3.

V. CONCLUSION

The core operation in a highly parallel version of the Ja-
cobi method for the singular-value decomposition of complex
matrices is the complex two-sided rotation of a 2 x 2 matrix.
Because any 2 x 2 complex matrix can be decomposed into
the sum of two special complex matrices—a scaled rotation
and a scaled reflection—the operation is equivalent to a left-
sided complex rotation on each matrix in the decomposition,
and thus amounts to two concurrent complex rotations on the
first column of each matrix.

With the original CORDIC algorithm, the real rotation of
a two-dimensional real vector may be performed on both
components in parallel. Multidimensional CORDIC algorithms
enable the complex rotation of a 2-D complex vector to
be performed almost as quickly as a real 2-D rotation by
computing all components simultaneously. With these new
CORDIC algorithms the two one-sided complex rotations
are performed on all components in parallel. Computation
time is further reduced by using rotations whose resolution
increases from coarse to fine as the Jacobi method proceeds.
A speed-up of 5 or more is achieved with respect to parallel
implementations based on the original CORDIC algorithm.

We have described a parallel implementation of the Jacobi
algorithm on a square array of 4-D CORDIC processors.
Since 4-D CORDIC processors can with little extra control
implement two 2-D CORDIC operations in parallel, we are



advocating the use of an array of 4-D CORDIC processors to
implement the SVD of both real and complex matrices as well
as eigendecompositions, QR decompositions, and other matrix
operations common in signal processing. If higher speeds are
desired, a promising route is to generalize to multidimensional
CORDIC algorithms the redundant arithmetic methods pre-
sented in [29] and use redundant arithmetic in conjunction
with the methods presented in this paper.

(1
(2]

B3l

[4]

(5]

[6]

[71

(8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]

[18]

REFERENCES

H. M. Ahmed, “Signal processing algorithms and architectures,” Ph.D.
dissertation, Dept. Elec. Eng., Stanford Univ., Stanford, CA, June 1982.
H. M. Ahmed, J.-M. Delosme, and M. Morf, “Highly concurrent
computing structures for matrix arithmetic and signal processing,” IEEE
Comput., pp. 65-82, Jan. 1982.

R. P. Brent and F. T. Luk, “The solution of singular-value and symmetric
eigenvalue problems on multiprocessor arrays,” SIAM J. Sci. Stat.
Comput., vol. 6, no. 1, pp. 69-84, Jan. 1985.

R. P. Brent, F. T. Luk, and C. F. Van Loan, “Computation of the
singular value decomposition using mesh-connected processors,” J. VLSI
Comput. Syst., vol. 1, no. 3, pp. 242-270, 1985.

J. R. Cavallaro and F. T. Luk, “CORDIC arithmetic for an SVD
processor,” J. Parallel Distrib. Comput., no. 5, pp. 271-290, June 1988.
J. R. Cavallaro and A. C. Elster, “A CORDIC processor array for
the SVD of a complex matrix,”” in R. Vaccaro, Ed., SVD and Sig-
nal Processing II. Amsterdam, The Netherlands: Elsevier, 1991, pp.
227-239.

J.-M. Delosme, “VLSI implementation of rotations in pseudo-Euclidean
spaces,” in Proc. IEEE ICASSP, Apr. 1983, pp. 927-930.

, “A processor for two-dimensional symmetric eigenvalue and
singular value arrays,” in Proc. 21st Asilomar Conf. on Circuits, Systems,
and Computers, Nov. 1987, pp. 217-221.

— ., “CORDIC algorithms: Theory and extensions,”’ in Advanced
Algorithms and Architectures for Signal Processing IV, Proc. SPIE, vol.
1152, Aug. 1989, pp. 131-145.

, “Bit-level systolic algorithm for the symmetric eigenvalue
problem,” in Proc. Int. Conf. on Application Specific Array Processors
, Princeton, NJ, Sept. 1990, pp. 770-781.

, “Parallel implementations of the SVD using implicit CORDIC
arithmetic,” in SVD and Signal Processing II: Algorithms, Analysis and
Applications, R. Vaccaro, Ed. Amsterdam, The Netherlands: Elsevier,
1991, pp. 33-56.

, “Bit-level systolic algorithms for real symmetric and Hermitian
eigenvalue problems,” J. VLSI Signal Processing, vol. 4, pp. 69-88,
1992.

J.-M. Delosme and S.-F. Hsiao, “CORDIC algorithms in four dimen-
sions,” in Advanced Algorithms and Architectures for Signal Processing
1V, Proc. SPIE vol. 1348, pp. 349-360, July 1990.

E. F. Deprettere, D. Dewilde, and R. Udo, “Pipelined CORDIC archi-
tectures for fast VLSI filtering and array processing,” in Proc. IEEE
Int. Conf. on Acoustics, Speech and Signal Processing, Mar. 1984, pp.
3:41A.6.1-41A.6.4.

M. D. Ercegovac and T. Lang, “Redundant and on-line CORDIC:
Application to matrix triangularization and SVD,” IEEE Trans. Comput.,
vol. 39, no. 6, pp. 725-740, June 1990.

F. R. Gantmacher, The Theory of Matrices. New York: Chelsea, 1959.
G. H. Golub and C. F. Van Loan, Matrix Computations, 2nd ed.
Baltimore, MD: Johns Hopkins Univ. Press, 1989, pp. 444-459.

J. Gétze, S. Paul, and M. Sauer, “An efficient Jacobi-like algorithm
for parallel eigenvalue computation,” IEEE Trans. Comput., vol. 42, pp.
10581065, Sept. 1993.

N. D. Hemkumar and J. R. Cavallaro, “Efficient complex matrix
transformations with CORDIC,” in Proc. IEEE 11th Symp. on Computer
Arithmetic (Windsor, Ont., Canada, June 1993) pp. 122-129.

, “Redundant and on-line CORDIC for unitary transformations,”
IEEE Trans. Comput., vol. 43, pp. 941-954, Aug. 1994.

__, “Jacobi-like matrix factorizations with CORDIC-based Inexact
diagonalizations,” in Proc. 5th SIAM Conf. on Applied Linear Algebra
(Snowbird, UT, June 1994), pp. 295-299.

S.-F. Hsiao and J.-M. Delosme, “Householder CORDIC algorithms,”
IEEE Trans. Comput., vol. 44, no. 8, pp. 990-1001, Aug. 1995.

’

17

[23]

[24]
[25]

[26]

(271
[28]

[29]

(30]

(31)

[32]

[33]

(34]
[35]
[36]
[37]

Y. H. Hu, “CORDIC-based VLSI architecture for digital signal pro-
cessing,” IEEE Signal Processing Mag., vol. 9, no. 3, pp. 17-35, July
1992.

Y. H. Hu and H. E. Liao, “CALF: A CORDIC adaptive lattice filter,”
IEEE Trans. Signal Processing, vol. 40, no. 4, pp. 990-993, Apr. 1992.
I. S. Hwang and A. L. Fisher, “Ultrafast compact 32-bit CMOS adders
in multiple-output domino logic,” IEEE J. Solid State. Circuits, vol. 24,
no. 2, pp. 358-369, Apr. 1989.

K. J.R. Liu, S. F. Hsieh, and K. Yao, “Systolic block Householder trans-
formation for RLS algorithm with two-level pipelined implementation,”
IEEE Trans. Signal Processing, vol. 40, no. 4, pp. 946-958, Apr. 1992.
F. T. Luk, “A triangular processor array for computing singular values,”
Linear Alg. Appl., vol. 77, pp. 259-273, 1986.

C. Mazenc, X. Merrheim, and J.-M. Muller, ‘‘Computing functions
cos™! and sin~! using Cordic,” IEEE Trans. Comput., vol. 42, no.
1, pp. 118-122, Jan. 1993.

X. Merrheim, “Bases Discretes et Calcul des Fonctions Elémentaires
par Matériel,” Ph.D. dissertation, Ecole Normale Supérieure de Lyon.
Lyon, France, Feb. 1994.

P. P. M. De Rijk, “A one-sided Jacobi algorithm for computing the
singular value decomposition on a vector computer,” SIAM J. Sci. Stat.
Comput., vol. 10, no. 2, pp. 359-371, Mar. 1989.

D. E. Schimmel, “Bit-level Jacobi-like algorithms for eigenvalue and
singular value decompositions,” Ph.D dissertation, Dept. Elec. Eng.,
Cornell Univ., Ithaca, NY, Jan. 1991.

N. Takagi, T. Asada, and S. Yajima, “Redundant CORDIC methods with
a constant scale factor for sine and cosine computation,” /IEEE Trans.
Comput., vol. 40, pp. 989-995, 1991.

A.-J. van der Veen and E. F. Deprettere, “Parallel VLSI matrix pencil
algorithm for high resolution direction finding,” /EEE Trans. Signal
Processing, vol. 39, pp. 383-394, Feb. 1991.

J. E. Volder, “The CORDIC trigonometric computing technique,”’ /RE
Trans. Electron. Comput., vol. EC-8, no. 3, pp. 330-334, Sept. 1959.
J. S. Walther, “A unified algorithm for elementary functions,” in Proc.
AFIPS Conf., vol. 38, 1971, pp. 379-385.

J. H. Wilkinson, The Algebraic Eigenvalue Problem.
Clarendon, 1988.

B. Yang and J. F. Bohme, “Reducing the computations of the singular
value decomposition array given by Brenk and Luk,” SIAM J. Matrix
Anal. Appl., vol. 12, no. 4, pp. 713-725, Oct. 1991.

Oxford, UK:



SOLVING EIGENVALUE AND SINGULAR VALUE PROBLEMS
ON AN UNDERSIZED SYSTOLIC ARRAY*

ROBERT SCHREIBERT

Abstract. Systolic architectures due to Brent, Luk and Van Loan are today the most promising method
for computing the symmetric eigenvalue and singular value decompositions in real time. These systolic
arrays, however, are only able to decompose matrices of a given fixed size. Here we present two modified
algorithms and a modified array that do not have this disadvantage. The results of a numerical experiment
show that a combination of one of our new algorithms and the modified array can decompose matrices of
arbitrary size with little or no loss of efficiency.

Key words. eigenvalue problems, singular value decomposition, systolic computation, parallel
computation

1. Introduction. Systolic arrays are of significant and growing importance in
numerical computing [12], especially in matrix computation and its applications in
digital signal processing [13]. There is now considerable interest in systolic computation
of the singular value decomposition [2], [4], [6], [10] and the symmetric eigenvalue
problem [1], [8].

To date, the most powerful systolic array for the eigenvalues of a symmetric n X n
matrix is a square n/2x n/2 array due to Brent and Luk. This array implements a
certain cyclic Jacobi method. It takes O(n) time to perform a sweep of the method,
and O(log n) sweeps for the method to converge [1].

Brent and Luk have also invented a closely related (n/2)-processor linear array
for computing the singular value decomposition (SVD) of an m x n matrix A. An SVD
of A is a factorization A= UZV", where V is orthogonal, £ is nonnegative and
diagonal, and U is m X n with orthonormal columns. This array implements a cyclic
Hestenes algorithm that, in real arithmetic, is an exact analogue of their Jacobi method
applied to the eigenproblem for ATA. The array requires O(mn) time for a sweep, and
O(log n) sweeps for convergence [2].

A new array, much like the eigenvalue array, is reported by Brent, Luk and Van
Loan to be capable of finding the SVD in time O(m+ n log n) [3].

The purpose of this paper is to consider an important, indeed an essential problem
concerning the practical use of these arrays. How, with an array of a given fixed size,
can we decompose matrices of arbitrarily large size?

2. Systolic arrays for the Jacobi and Hestenes methods. We shall concentrate on
Hestenes’ method for the SVD. Starting with the given matrix A, we build an orthogonal
matrix V such that AV has orthogonal columns. Thus

AV=US,

where U has orthonormal columns and X is nonnegative and diagonal. An SVD is
given by A=UZV".
To construct V, we take A© = A, and iterate

A(H—l):A(x‘)Q(")’ i=0,1,“ °,

* Received by the editors June 14, 1983, and in final revised form November 12, 1984. A preliminary
version of this paper appeared in Real-Time Signal Processing VI, SPIE vol. 431 (1983), pp. 72-77. This
research was partially supported by the U.S. Office of Naval Research under contract N00014-82-K-0703.

t Guiltech Research Company, 255 San Geronimo Way, Sunnyvale, California 94086.

Reprinted with permission from SIAM Journal of Scientific and Statistical Computing, Robert Schreiber,
"Solving Eigenvalue and Singular Value Problems on an Undersized Systolic Array," Vol. 7, pp. 441-451, April (1986).
© 1986 by the Society for Industrial and Applied Mathematics. All rights reserved.
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with Q' orthogonal, until some matrix A has orthogonal columns. Q) is chosen
to be a product of n(n—1)/2 plane rotations
n(n—-1)/2

0¥=T] o)
=1

Every possible pair (r, s), 1 =r < s=n, is associated with one of the rotations Q{" (the
association is independent of i) in this way: the rotation Q}" is chosen to make columns

r and s of
f .
A% 11 o)
k=1

orthogonal. The process of going from A’ to A"V is called a “sweep.” Every
permutation of the set of pairs corresponds to a different cyclic Hestenes method.

The correspondence with the Jacobi method is this. The sequence A'’7AY
converges to the diagonal matrix = of eigenvalues of A"A. Moreover,

A(H-I)TA(I'+1) — Q(i)T(A(i)TA(i))Q(i)

3

where Q' is the product of n(n—1)/2 of Jacobi rotations that zero, in some cyclic
order, the off-diagonal elements of A" A,

The permutation chosen by Brent and Luk allows the rotations to be applied in
parallel in groups of n/2. Their permutation consists of n —1 groups of n/2 pairs such
that, in each group, every column occurs once. Thus, the n/2 rotations corresponding
to a pair-group commute. They can be applied in any order or, in fact, in parallel.

The SVD array is shown in Fig. 1. There are n/2 processors. Each processor holds
two matrix columns. Initially processor i holds column 2i —1 in its “left memory’ and
column 2i in its “right memory.”

[ M| M| 1 l

1 2 3 4 s & 7 8

T IT 1T J
F1G. 1. The SVD array; n=38.

In each cycle, each processor computes and applies to its two columns a plane
rotation that makes them orthogonal. Next, using the connections shown in Fig. 1,
columns move to neighboring processors. This produces a new set of n/2 column-pairs.

After n—1 cycles, n(n—1)/2 pairs of columns have been orthogonalized. It can
be shown (by a parity argument) that no pair occurs twice during this time. Thus,
every pair is orthogonalized exactly once. We call the process of orthogonalizing all
pairs, in this parallel order, an A-sweep.

A diagram (given in [2] originally) showing the movement of columns through
the array, very important in the considerations to follow, is given in Fig. 2.

3. Solving larger problems. We now consider the problem of finding an SVD when
A has n columns, the array has p processors, and n>2p.

The usual approach to this problem is to imagine that a ‘‘virtual” array, large
enough to solve the problem (having [n/2] or more processors), is to be simulated
by the given small physical array. Moreover, the simulation must be efficient. The array
should not spend a large amount of time loading and unloading data.
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F1G. 2. Flow of data in the SVD array; n=38.

For some arrays, this simulation is trivial. One finds a subarray of the virtual
array, of the same size as the physical array, for which all the input streams are known.
Clearly the action of such a subarray can be carried out and its outputs stored. These
outputs then become the inputs to other subarrays. This process continues until,
subarray by subarray, the computation of the entire virtual array has been performed.
If this technique is possible, we say that the array is “‘decomposable.” The various
matrix multiply arrays [7], the array of Gentleman and Kung for QR factorization [5]
and the array of Schreiber and Kuekes for solving triangular systems [9] are good
examples of decomposable arrays.

Some arrays are indecomposable: the Kung-Leiserson band-matrix LU factoriz-
ation array, for example [7].

Consider the 4 X 4 matrix multiplication array shown in Fig. 3. It computes C + AB
where C and B are 4xXm and A is 4 X 4. Suppose we have a 2x2 array of the same
type. With it, C+ AB can be computed using a block algorithm. Partition A, B and

C so that
A=[A” AIZ]’ B=[Bl], C=[Cl],
AZ] A22 BZ C2

where the blocks are 2x2 or 2 x m. We use the array to carry out these operations:

1. C;:=ABy;

2. Cy= Ay By;

3. C,;'=C,+A;,By;

4. Cyi=Cy+ApnB,.
An equivalent viewpoint is that we use the array to emulate (that is, perform the work
of) four 2x2 sections of the 4 x4 array; the sections are shown in dotted outline in
Fig. 3. Note that the input data for each section is known at the time the section is
emulated by the 2x2 array, either because that data is input data or because it is
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F1G. 3. A matrix multiplication array: C « C+ AB.

output from another part of the array whose action has already been emulated. This
sort of decomposition of an array can work only when there are no cycles in the flow
of data in the array. This is true of the decomposable arrays mentioned above.

The SVD array of § 2 is indecomposable. Consider Fig. 2. Suppose a two-processor
array is available. It cannot efficiently simulate the four-processor array because there
does not exist a two-processor segment of Fig. 2 for which only known data enters. If
this diagram is cut by a vertical line, data flows across the line in both directions, every
cycle. The data cannot be known if only the computations on one side of the line have
been performed.

Here we shall present a solution to this problem. The idea is to have a given
p-processor array simulate a pg-processor “superarray” which is not of the Brent-Luk
type. Moreover, the superarray is decomposable. In its space-time dataflow graph, the
processors occur in groups of p. For long periods of either p or 2p —1 cycles, no data
flows between groups. Thus, the physical array can efficiently carry out the computation
of the superarray, group-by-group.

We give two such superarrays. The first implements a Hestenes method in which
a “sweep”’ corresponds to a permutation of a multiset of off-diagonal pairs. There is
some redundancy: some pairs are generated and orthogonalized several times. The
second implements a cyclic Hestenes method with a permutation different from the
one used in an A-sweep. For this method, a minor change must be made to the array.
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We have compared these new sweeps to the A-sweep. These experiments indicate
that the first superarray is about 20-60% less efficient than the Brent-Luk array, while
the second superarray is virtually equal to the Brent-Luk array in efficiency.

3.1. Method A. This method is easiest to explain in terms of an example. Suppose
we have a 4 processor array. Suppose there are 16 columns in A. We proceed as follows:
1. Load columns 1-8 and perform an A-sweep;
Load columns 9-16 and perform an A-sweep;
Load columns 1-4, 13-16; perform an A-sweep;
Load columns 5-8, 9-12; perform an A-sweep;
Load columns 1-4, 9-12; perform an A-sweep;
6. Load columns 13-16, 5-8; perform an A-sweep.
Steps 1-6 together constitute an A-supersweep. During an A-supersweep, every column
pair is orthogonalized. Some are orthogonalized more than once.
To describe the general case, suppose there is a p-processor array, and n=2pq
(pad A with zero columns, if necessary, so that 2p divides n). Imagine that the matrix
A consists of 2q supercolumns: supercolumn A; consists of columns

p(i—1)+1,---, pi

Now consider a g-superprocessor virtual superarray. Each superprocessor holds two
supercolumns (one in each of its left and right memories). In one supercycle the
superprocessors each perform a single A-sweep over the 2p columns in their memory.

(Obviously we can simulate a supercycle of a superprocessor using one p-processor
Brent-Luk array and 2p —1 cycles of time. Moreover, we can be loading the data for
the next supercycle and unloading the data from the preceding supercycle at the same
time as we process the data for the current supercycle.)

Initially, supercolumns A, and A, are in superprocessor 1, A; and A, in super-
processor 2, etc.

Between supercycles, the supercolumns move to neighboring superprocessors. The
scheme for moving supercolumns is precisely the same as the scheme for moving
ordinary columns in a g-processor Brent-Luk array.

After 2q —1 supercycles, we have performed an A-sweep on every pair of super-
columns exactly once. Together these 2qg — 1 supercycles constitute an A-supersweep.
During an A-supersweep, every pair of columns of A is orthogonalized. If two columns
are in different supercolumns, then they are orthogonalized once, during the supercycle
in which their containing supercolumns occupy the same superprocessor. If they are
in the same supercolumn, then they are orthogonalized 2q — 1 times.

In units of cycles, the time for an A-supersweep, T4s, is

“ok W

Tas =(2q —1) supercycles * (2p —1) cycles/supercycle
=(29-1)(2p-1).

(Of course, the simulation by a p-processor array takes g times this time.) The time
for an A-sweep over n columns, T,, is

To=n—-1=2pg—1.
Thus, the A-supersweep takes longer; the ratio of times satisfies

9 _Tas

=<2

T Ty

(The lower bound arises in the simplest nontrivial case p =g =2.)
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There is little theoretical basis for comparing the effectiveness of A-supersweeps
and A-sweeps in reducing the nonorthogonality of the columns of A. We have therefore
performed an experiment. A set of square matrices A whose elements were random
and uniformly distributed in [—1, 1] was generated. Both A-supersweeps and A-sweeps
were used until the sum-of-squares of the off-diagonal elements of A”A was reduced
to 107'? times its initial value. We show the results in Table 1. The number of test
matrices, the average number of sweeps, the largest number for any test matrix, and
the relative time

p = T, * average-sweeps (AS)/ T, * average-sweeps (A)
are shown.

Evidently one A-supersweep is more effective in reducing nonorthogonality than
one A-sweep. This is not surprising, since more orthogonalizations are performed.
Their cost-effectiveness, however, is roughly 20-60% less.

TABLE 1
Comparison of A-sweeps and A-supersweeps.

Average Maximum

p q n Trials A super A A super A p
2 2 8 320 3.98 4.33 5 5 1.18
2 4 16 160 5.10 5.38 6 7 1.33
2 8 32 80 6.18 6.29 7 7 1.43
4 2 16 160 4.80 5.40 5 6 1.24
4 4 32 80 5.99 6.31 7 7 1.50
4 8 64 20 7.05 7.55 8 8 1.57
8 2 32 80 5.25 6.28 6 7 1.21
8 4 64 10 6.60 7.60 7 8 1.45

16 2 64 20 6.00 7.30 6 8 1.21

In order to gauge the reliability of the statistics generated by this experiment, we
also measured the standard deviations of the sampled data. In all cases, the standard
deviations were less than 0.5. For the samples of size 80 or more, the standard errors
of the means are no more than 0.06, so these statistics are quite reliable. For the samples
of sizes 20 and 10, these data may be in error by as much as 10%.

3.2. Method B. Method A suffers some loss of speed, because in an A-supersweep
some column-pairs are orthogonalized many times. By making a small modification
to the Brent-Luk array and using the new array as our basic tool, we can simulate a
new supersweep, called an AB-supersweep, during which every column-pair is
orthogonalized exactly once.

Figure 3 shows the modified array. The connection from processor 1 to processor
p is new. Note that a ring connected set of processors can easily simulate this structure.
This array is still able to perform A-sweeps over sets of 2p columns. But it can also
perform a second type of sweep, which we call an “AB-sweep,” and which we now
describe.

In an AB-sweep, a pair (A, B) of supercolumns, each consisting of p columns, is
loaded into the array. During the sweep, all pairs (a, b) a € A, b e B are orthogonalized
exactly once. But no pairs from Ax A or B X B are orthogonalized.

To implement an AB-sweep, place the columns of A in the p left memories and
the columns of B in the p right memories of the processors. (The set of left (respectively
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right) processor memories is the superprocessor’s left (respectively right) memory,
rather than the memories of the leftmost (respectively rightmost) p/2 processors.)
Processors do precisely what they did before: orthogonalize their two columns. Between
cycles, A remains stationary while B rotates one position, using the connections shown
as solid lines in Fig. 4.

T I 1T 11 |

F1G. 4. The modified SVD array; n=38.

An AB-supersweep is as follows. Again we work with 2¢q supercolumns of p
columns each. The initial configuration is as for an A-supersweep. During the first
supercycle, which takes 2p —1 cycles, every superprocessor performs an A-sweep on
the 2p columns in its memory. On subsequent supercycles, all superprocessors perform
AB-sweeps, where the sets A and B are the two supercolumns in its memory. Between
supercycles, supercolumns move as before.

It is easy to see that in an AB-supersweep, every column pair is orthogonalized
once. Thus this scheme implements a true cyclic Hestenes method. The permutation
differs, nevertheless, from the permutation used in an A-sweep.

Again, we have compared the new scheme to the A-sweep by an experiment. The
experiment setup was precisely the same as for the previous experiment. The results
are shown in Table 2.

TABLE 2
Comparison of A-sweeps and AB-supersweeps.

Averages Maxima
p q n Trials AB super A AB super A
2 2 8 320 4.32 4.33 5 5
2 4 16 160 5.35 5.38 6 7
2 8 32 80 6.36 6.29 7 7
4 2 16 160 5.36 5.40 6 6
4 4 32 80 6.18 6.31 7 7
4 8 64 20 7.50 7.55 8 8
8 2 32 80 6.13 6.28 7 7
8 4 64 10 7.10 7.60 8 8
16 2 64 20 7.00 7.30 7 8

Evidently, AB-supersweeps are as effective as A-sweeps. The standard deviations
of the number of AB-supersweeps needed were also all less than 0.5.

3.3. Earlier work. Another scheme for solving problems with an undersized array
was proposed in [3], a paper that deals with a square SVD array. The proposal is to
use a block method, in which the SVDs of diagonal blocks are computed in the given
array.

Applied to the linear SVD array, this idea is much like our A-supersweep scheme,
except that a superprocessor iterates to convergence instead of performing only one
A-sweep.
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TABLE 3
Comparison of block-Jacobi A-sweeps and A-supersweeps.

p q n Trials Ratio
2 2 8 40 2.4
2 4 16 40 2.7
2 8 32 10 3.1
4 2 16 40 2.9
4 4 32 10 4.2
4 8 64 5 4.3
8 2 32 10 37
8 4 64 5 5.2
16 2 64 5 37

The extra time needed for this convergence leads to inefficiency in this scheme.
The data in Table 3 show this. These give the result of a numerical experiment; the
setup was the same as for previous experiments. For several values of p and q we
show the ratio of the number of operations used by the block method to the number
used by the AB-supersweep method discussed earlier. For this experiment, we stopped
a superprocessor, which was working on the nx2p matrix B, from further iteration
when the sum of the squares of the off-diagonal elements of B'B was less than 10™'*
times the sum of the squares of the diagonal elements of B”B.

Thus, the present schemes require fewer computations than the block method of
[3]. On the other hand, they may require more input/output from the array. The choice
between them will turn on factors such as the relative speed of computation and
input/output that depend on how the array is implemented.

Clearly there is a family of methods of this type parameterized by the number of
sweeps over each block. Our experiments illuminate two extreme cases.

4. The eigenvalue array. In this section we show how the two ideas for problem
decomposition in § 3 can be used to solve large eigenvalue problems on the square
array of [1]. This array solves the symmetric eigenvalue problem in time O(n log n)
and is the fastest array known for that problem. The same ideas also apply, in exactly
the same way, to the SVD array of [3].

The eigenvalue array is a p X p array that holds a 2p X 2p symmetric matrix. Each
processor p; holds a 2Xx 2 submatrix by: initially,

b = Ari-y12j—1 Qai-12§
= .

Ayinj—1 i

At each cycle, each diagonal processor p; generates a plane rotation r; such that rbr!l
is diagonal. The rotations are then sent from the diagonal processor to all processors
in the same row and the same column. The off-diagonal processor p; (if i<j) on
receiving rotations r; and r;, computes a new block b; = ribijr;T. After the rotations have
been applied by the off-diagonal processors, columns and rows are interchanged.
Adjacent processors exchange data with their neighbors to the right and left to permute
the matrix columns as in the SVD array (Fig. 1). Then processors exchange data with
the processors above and below to permute the matrix rows in the same way. After
2p — 1 cycles, all off-diagonal elements have been annihilated once: this is one sweep.

It is not necessary to broadcast rotations to an entire row or column of the array.
Instead, rotations move through one processor per cycle. Thus, if rotations are generated
at time ¢ = 0, they are applied at time ¢ by the processors p;;., in diagonal & Likewise,
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the process of exchanging data occurs in a wave. It begins with exchanges between
the diagonal processors and those in diagonals =1 at time 2. Attime t+1,0<t<p-—1,
processors of diagonals ¢ and £(¢+1) exchange data. The second set of rotations is
generated at the diagonal at time 3, the next at time 6, etc: Thus, the last rotations are
generated at time 6p —6, and the whole sweep is finished at time 7p—7.

The decomposition of this array works as follows. Partition the given n X n matrix
A as

Au Alz tr Al,Zq
Ay Ay A2.2q
AZq‘\ A2q,2 e Azq,zq

We imagine a virtual q X q superarray with superprocessors P; that hold a 2 X2 block
matrix B; having p X p blocks: initially,

B. = I:A2iAl,2j—l A2i—1,2j].

ij
Azi,zj—1 A2i,2j

At each supercycle, each diagonal superprocessor P; generates an orthogonal product
of plane rotations R; by performing one sweep of the Jacobi method with the parallel
order as described in the last paragraph. The rotations are then sent from the diagonal

1,7 1,8 1,9 1,10 1,11 1,12
1,3 7 7 fi,0 70T —
2,7 2,8 2,9 2,10 2,11 2,12
3,7 3,8 3,9 3,10 3,11 3,12
T T3 T T Ta0 T o—>
4,7 4,8 4,9 4,10 4,11 4,12
5,7 5,8 5,9 5,10 5,11 5,12
- - - - va
3,3 3,0 >
6,7 6,8 6,9 6,10 6,11 6,12
S1,0 - _
- S2.0 -
- B ®3,0
51,3 B -
B S, -
- - S3,3

F1G. 5. Operation of an off-diagonal superprocessor.
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superprocessor to all superprocessors in the same row and the same column. The
off-diagonal superprocessor P; (if i <j), on receiving rotation-products R; and R,
computes a new block B; = R:B;R;. After the rotations have been applied by the
off-diagonal processors, block columns and rows are interchanged. Adjacent superpro-
cessors exchange data with their neighbors to the right and left to permute the block
columns as in the SVD (Fig. 1). Then superprocessors exchange data with the super-
processors above and below to permute the block rows in the same way.

A single square p X p eigenvalue array can emulate this superarray efficiently.
Indeed, the diagonal superprocessor is a p X p eigenvalue array. We assume that the
rotations generated by this array flow out at the edges and can be stored for later use.
We need only show that the off-diagonal superprocessors can be emulated. For this
to work, the p diagonal processors must change their roles, becoming ordinary off-
diagonal processors. We assume an off-diagonal block Bj; is loaded into the array. The
rotations that make up R; and R; are sent into the array at its left and bottom edges.
The individual plane rotations are sent into the array at the same relative places and
times as when they left the array after being generated. They flow through the array
and are applied to the matrix elements as in the eigenvalue array. Interchange of rows
and columns begins at the lower left corner of the array and moves in a wave toward
the upper right corner.

Figure 5 illustrates this. The orthogonal matrix R; is a product of plane rotations
that we denote by r,,, where r,, is the rotation generated by processor p, at time 3¢
while the array was emulating the diagonal superprocessor P;. We denote by s, , the
constituent rotation of R; that was generated by py, at time 3¢ while the array was
emulating the diagonal superprocessor P,. Thus, 1=k=p and 0=1=2p-2.
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A SYSTOLIC ARRAY FOR SVD UPDATING*
MARC MOONEN', PAUL VAN DOOREN#, AND JOOS VANDEWALLE!

Abstract. In an earlier paper, an approximate SVD updating scheme has been derived as
an interlacing of a QR updating on the one hand and a Jacobi-type SVD procedure on the other
hand, possibly supplemented with a certain re-orthogonalization scheme. This paper maps this
updating algorithm onto a systolic array with O(n?) parallelism for O(n?) complexity, resulting in
an O(n?) throughput. Furthermore, it is shown how a square root-free implementation is obtained
by combining modified Givens rotations with approximate SVD schemes.

Key words. singular value decomposition, parallel algorithms, recursive least squares
AMS(MOS) subject classifications. 65F15, 65F25

CR classification. G.1.3

1. Introduction. The problem of continuously updating matrix decompositions
as new rows are appended frequently occurs in signal processing applications. Typi-
cal examples are adaptive beamforming, direction finding, spectral analysis, pattern
recognition, etc. [13].

In [12], it has been shown how an SVD updating algorithm can be derived by
combining QR updating with a Jacobi-type SVD procedure applied to the triangular
factor. In each time step an approzimate decomposition is computed from a previous
approximation at a low computational cost, namely, O(n?) operations. This algorithm
was shown to be particularly suited for subspace tracking problems. The tracking error
at each time step is then found to be bounded by the time variation in O(n) time
steps, which is sufficiently small for applications with slowly time-varying systems.
Furthermore, the updating procedure was proved to be stable when supplemented
with a certain re-orthogonalization scheme, which is elegantly combined ‘with the
updating.

In this paper, we show how this updating algorithm can be mapped onto a systolic
array with O(n?) parallelism, resulting in an O(n®) throughput (similar to the case
for mere QR updating; see [5]). Furthermore, it is shown how a square root-free
implementation is obtained by combining modified Givens rotations with approximate
SVD schemes.

In §2, the updating algorithm is briefly reviewed. A systolic implementation is
described in §3 for the easy case, where corrective re-orthogonalizations are left out.
In §4, it is shown how to incorporate these re-orthogonalizations. Finally, a square
root-free implementation is derived in §5.

2. SVD updating. The singular value decomposition (SVD) of a real matrix
Amxn (m > n) is a factorization of A into a product of three matrices

T
Amxn = Umxn : z:'nxn : annv
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where U has orthonormal columns, V' is an orthogonal matrix, and ¥ is a diagonal
matrix, with the singular values along the diagonal.

Given that we have the SVD of a matrix A, we may need to calculate the SVD
of a matrix A that is obtained after appending a new row to A.

A
A= [ aT ] =Q—(m+1)xn 'ann 'Kz;xn'

In on-line applications, a new updating is often to be performed after each sampling.
The data matrix at time step k is then defined in a recursive manner (k > n)

a®T kxn " “nxn’ Ynxn:

A0 — [ AR) . A(k=1) ] _y® . s® .V(k)T

Factor A*) is a weighting factor, and a(¥) is the measurement vector at time instance
k. For the sake of brevity, we consider only the case where A(*) is a constant ),
although everything can easily be recast for the case where it is time varying. Finally,
in most cases the U%) matrices (of growing size!) need not be computed explicitly,
and only V) and ©(*) are explicitly updated.

An adaptive algorithm can be constructed by interlacing a Jacobi-type SVD pro-
cedure (Kogbetliantz’s algorithm [9], modified for triangular matrices [8], [10]) with
repeated QR updates. See [12] for further details.

Initialization
VO <10
R® « Onxn

Loop
fork=1,...,00
input new measurement vector a(®)
T
a®) < g Ly -1)

RY¥) <. R*-D

QR updating

(k) R
[ R(; ] QW [ a(z?)T
*
R® « R®

V) & pyk-1)
SVD steps

fori=1,...,n—1
k)T k
R® <" . gk .ok
VR <y ok
{V® <1k . yk)y

end
end
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Matrices Sgk) and ng) represent plane rotations (ith rotation in time step k)
through angles Ofk) and ¢§") in the (%,¢ + 1)-plane. The rotation angles ng) and ¢§k)
should be chosen such that the (i,i + 1) element in R(¥) is zeroed, while R(*) remains
in upper triangular form. Each iteration thus amounts to solving a 2 x 2 SVD on the
main diagonal. The updating algorithm then reduces to applying sequences of n — 1
rotations, where the pivot index i repeatedly takes up all the valuesi = 1,2,...,n—1 (n
such sequences constitute a pipelined double sweep [14]), interlaced with QR updates.
At each time step, R*®) will be “close” to a (block) diagonal matrix, so that in some
sense V(¥ is “close” to the exact matrix with right singular vectors; see [12].

Transformations Ti(k) correspond to approximate re-orthogonalizations of row vec-
tors of V(¥), These should be included in order to avoid round-off error buildup, if
the algorithm is supposed to run for, say, thousands of time steps (see [12]). For the
sake of clarity, the re-orthogonalizations are left out for a while, and are dealt with
only in §4.

In the sequel, the time index k is often dropped for the sake of conciseness.

3. A systolic array for SVD updating. The above SVD updating algorithm—
for the time being without re-orthogonalizations—can be mapped elegantly onto a
systolic array, by combining systolic implementations for the matrix-vector product,
the QR updating, and the SVD. In particular, with n—1 SVD iterations after each QR
update,! an efficient parallel implementation is conceivable with O(n?) parallelism for
O(n?) complexity. The SVD updating is then performed at a speed comparable to
the speed of merely QR updating.

The SVD updating array is similar to the triangular SVD array in [10], where
the SVD diagonalization and a preliminary QR factorization are performed on the
same array. As for the SVD updating algorithm, the diagonalization process and the
QR updating are interlaced, so that the array must be modified accordingly. Also,
from the algorithmic description, it follows that the V-matrix should be stored as
well. Hence, we have to provide for an additional square array, which furthermore
performs the matrix-vector products a” - V. It is shown how the the matrix-vector
product, the QR updating, and the SVD can be pipelined perfectly at the cost of
little computational overhead. Finally, it is briefly shown how, e.g., a total least
squares solution can be generated at each time step, with only very few additional
computations.

Figure 1 gives an overview of the array. New data vectors are continuously fed
into the left-hand side of the array. The matrix-vector product is computed in the
square part, and the resulting vector is passed on to the triangular array that performs
the QR updating and the SVD diagonalization. Output vectors are flushed upwards
in the triangular array and become available at the right-hand side of the square
array. All these operations can be carried out simultaneously, as is detailed next. The
correctness of the array has also been verified by software simulation.

We first briefly review the SVD array of [10], and then modify the Gentleman-—
Kung QR updating array accordingly. Next, we show how to interlace the matrix-
vector products, the QR updates, and the SVD process, and additionally generate
(total least squares) output vectors.

3.1. SVD array. Figure 2 shows the SVD array of [10]. Processors on the main
diagonal perform 2 x 2 SVDs, annihilating the available off-diagonal elements. Row

1 If the number of rotations after each QR update is, for instance, halved or doubled, the array
can easily be modified accordingly.
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transformation parameters are passed on to the right, while column transformation
parameters are passed on upwards. Off-diagonal processors only apply and propagate
these transformations to the next blocks outward. Column transformations are also
propagated through the upper square part, containing the V-matrix (V’s first row in
the top row, etc.).

In this parallel implementation, off-diagonal elements with odd and even row
numbers are being zeroed in an alternating fashion (odd-even ordering). However,
it can easily be verified that an odd-even ordering corresponds to a cyclic-by-row
or -column ordering, apart from a different start-up phase [11], [14]. The 2 x 2
SVDs that are performed in parallel on the main diagonal can indeed be thought of



etc.

F1G. 3. Modified Gentleman—Kung array.

as corresponding to different pipelined sequences of » — 1 rotations, where in each
sequence the pivot index successively takes up the values ¢ = 1,...,n — 1. A series
of n such sequences is known to correspond to a double sweep (pipelined forward +
backward) in a cyclic-by-rows ordering. In Fig. 2, one such sequence is indicated with
double frames (for ¢ = 1,...,7), starting in Fig. 2(a). In a similar fashion, the next
sequence starts off from the top left corner in Fig. 2(e). As pointed out in §2, the QR
updatings should be inserted in between two such sequences.

3.2. A modified Gentleman—-Kung QR updating array. A QR updating
is performed by applying a sequence of orthogonal transformations ( Givens rotations)
[6]. Gentleman and Kung have shown how pipelined sequences of Givens rotations
can be implemented on a systolic array (see [5]). This array should now be matched
to the SVD array, such that both can be combined.

Figure 3 shows a modified QR updating array. While all operations remain un-
altered, the pipelining is somewhat different, so that the data vectors are now prop-
agated through the array in a slightly different manner. The data vectors are fed
into the array in a skewed fashion, as indicated, and are propagated downwards while
being changed by successive row transformations. On the main diagonal, elementary
orthogonal row transformations are generated. Rotation parameters are propagated
to the right, while the transformed data vector components are passed on downwards.
Note that each 2 x 2 block combines its first row with the available data vector com-
ponents and pushes the resulting data vector components one step downwards. The
first update starts off in Fig. 3(a) (large, filled boxes), the second in Fig. 3(e) (smaller,
filled boxes), etc. Furthermore, each update is seen to correspond to a sequence of
rotations where the pivot index takes up the values ¢ = 1,...,n. Both the processor’s
configuration and the pipelining turn out to be the same as for the SVD array.

3.3. Matrix-vector product. The matrix-vector product a’ - V can be com-
bined with the SVD steps, as depicted in Figs. 4(a)—(g). The data vectors aT are
fed into the array in a skewed fashion, as indicated, and are propagated to the right,
in between two rotation fronts corresponding to the SVD diagonalization (frames).
Each processor receives a-components from its left neighbor, and intermediate results
from its lower neighbor. The intermediate results are then updated and passed on to
the upper neighbor, while the a-component is passed on to the right. The resulting
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Fi1G. 4. SVD updating array.

matrix-vector product becomes available at the top end of the square array.

It should be stressed that a consistent matrix-vector product a - V' can only be
formed in between two SVD rotation fronts. That is a restriction, and it is worthwhile
analyzing its implications.

—First, the propagation of the SVD rotation fronts dictates the direction in
which a matrix-vector product can be formed. The resulting vector a, thus inevitably
becomes available at the top end of the square array, while it should be fed into the
triangular array at the bottom for the subsequent QR update. The a.-components
therefore have to be reflected at the top end and propagated downwards, towards
the triangular array (Figs. 4(e)—(p)). The downward propagation of an a.-vector
is then carried out in exactly the same manner as the propagation in the modified
Gentleman-Kung array (see also Fig. 3).

—Second, the V-matrix that is used for computing a7 - V is in fact some older
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F1G. 4 (continued).

version of V', which we term V® .2 For a specific input vector a¥), this V(%) equals
V&*=1) yp to a number of column transformations, such that

y&-1) — y®) . O
where ®® denotes the accumulated column transformations. In order to obtain aik),
it is necessary to apply ®® to the computed matrix-vector product
(k) _ ()T yk=1) _ (0T ) .M
N, pomemsms

Ay
T
al®

These additional transformations represent a computational overhead, which is the
penalty for pipelining the matrix-vector products with the SVD steps on the same

2 One can check that it is not possible to substitute a specific time index for the “}.”
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array. Notice, however, that at the same time, the throughput improves greatly.
Waiting until V(*~1) is formed completely before calculating the matrix-vector prod-
uct would induce O(n) time lags and likewise result in an O(n~!) throughput. With
the additional computations, the throughput is O(n°).

Let us now focus on the transformations in ®® and the way these can be pro-
cessed. One of these transformations is, e.g., <1>§’°‘5’ (see §2 for notation), which
is computed on the main diagonal in Fig. 4(a) (double frame). While propagating

T
downwards, the a" _vector crosses the upgoing rotation <I>§k'5) in Fig. 4(e). At this

point, this transformation can straightforwardly be applied to the available as,h)T-
components. Similarly, one can verify that <I>§k—4), ngﬁs), <I>§k_2), and <I>§k_1) are
applied in Figs. 4(h), 4(k), 4(n), and 4(q), respectively. The transformations in the
other columns can be traced similarly. In conclusion, each frame in the square array
now corresponds to a column transformation that is applied to a 2 x 2 block of the
V-matrix and to the two available components of an a&h)-vector. These components
are propagated one step downwards next. A complete description for a 2 x 2 block in
the V-matrix is presented in Display 1. Notation is slightly modified for conciseness,
and o and ¢ represent memory cells that are filled by the updated elements of the
aih) -vector.

By the end of Fig. 4(p), the first a,-vector leaves the square array in a form
directly amenable to the (modified Gentleman-Kung) triangular array.

3.4. Interlaced QR updating and SVD diagonalization. Finally, the mod-
ified Gentleman—-Kung array and the triangular SVD array are easily combined (Fig.
4(q)—(x)). In each frame, column and row transformations corresponding to the SVD
diagonalization are performed first (see also Fig. 2), while in a second step, only row
transformations are performed corresponding to the modified QR updating (affecting
the a,-components and the upper part of the 2 x 2 -blocks (see also Fig. 3). Again,
column transformations in the first step should be applied to the a,-components as
well. Boundary cells and internal cells are described in Displays 2 and 3.

Without disturbing the array operations, it is possible to output particular sin-
gular vectors (e.g., total least squares solutions [15]) at regular time intervals. This is
easily done by performing matrix-vector multiplications V - ¢, where ¢ is a vector with
all its components equal to zero, except for one component equal to 1, and which is
generated on the main diagonal. The t-vector is propagated upwards to the square
array, where the matrix-vector product V -t is performed, which singles out the ap-
propriate right singular vector. While ¢ is propagated upwards, intermediate results
are propagated to the right, such that the resulting vector becomes available at the
right-hand side of the array. These solution vectors can be generated at the same
rate as the input data vectors are fed in, and both processes can run simultaneously
without interference.

4. Including re-orthogonalizations. In [12], it was shown how additional re-
orthogonalizations stabilize the overall round-off error propagation in the updating
scheme. In the algorithmic description of §2, T,-(k) is an approximate re-orthogona-
lization and normalization of rows p and ¢ in the V-matrix. The row indices p and
q are chosen as functions of k£ and ¢, in a cyclic manner. Furthermore, the re-ortho-
gonalization scheme was shown to converge quadratically. In view of efficient parallel
implementation, we first reorganize this re-orthogonalization scheme. The modified
scheme is then easily mapped onto the systolic array. The computational overhead
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Input Transformation Parameters

C¢, 8¢ — C?n, S?n

Apply Transformation

* *
aq aq+1
vpq Vp,q+1

Yp+l,g  Yp+l,9+41

* *
%q “g+1 4 o®
- vp,q Up,g+1 b —s®

Yp+l,qg  Vp+l,q+1

(cgut’ sg’ut)

* *
Propagate ag, ag1

0,0+ ar,an
(ap)out 04 B

(ap)in
Propagate Transformation Parameters
(ap+1)in Yptl,q Yptl,g+l (ap+1)out c?ut’ S?u.t —c?,s?

if ¢ = even
Input ap,ap+1 and Intermediate Results

Qp, Ap+1,T, Y (ap)ina (ap+1)in, Ziny Yin

b ¢ Update Intermediate Result
(cin> 3in)
T — T+Upg-ap+ Uptlg - Op+l
Y + Y+ Upg+l Apt Uptlgt+l- Gptl

Propagate a,,ap+1 and intermediate results

(ap)out, (ap+1)ou.t, Zouty Yout +— Qp, Ap+1,T,Y

end

DispPLAY 1. Internal cell V-matriz.

turns out to be negligible, as the square part of the array (V-matrix) so far remained
underloaded, compared to the triangular part (see below for figures).

First of all, as the re-orthogonalization scheme cyclicly adjusts the row vectors in
the V-matrix, it is straightforward to introduce additional row permutations in the
square part of the array. The 2 x 2 blocks in the square part then correspond to
column transformations (SVD scheme) and row permutations (re-orthogonalization
scheme). Orthogonal column transformations clearly do not affect the norms and
inner products of the rows, except for local rounding errors assumed smaller than the
accumulated errors. Hence, the column transformations are assumed not to interfere
with the re-orthogonalization and thus need not be considered anymore. As for the
row permutations, subsequent positions for the elements in the first column of V are
indicated in Fig. 5, for a (fairly) arbitrary initial row numbering (as an example, the
2 x 2 block in the upper-left corner in Fig. 5(a) interchanges elements 4 and 5, etc.).

Let us now focus on one single row (row 1) and see how it can (approximately)
be normalized and orthogonalized with respect to all other rows. Later, we will use
this in an overall procedure.

1. In a first step, the norm (squared) and inner products are computed as a
matrix-vector product
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DiISPLAY 2. Boundary cell R-factor.

v{
‘ 3%
T 3
Iy = V"Ul = . m = ] ,
T §1n
e vn -

where v} is the ith row in V. On the systolic array, where v; initially resides in the
bottom row, it suffices to propagate the v;-components upwards, and accumulate the
inner products from the left to the right (Figs. 5(a)—(h), where pq is shorthand for
€pq)- The resulting z;-vector components run out at the right-hand side.

2. In a second step, this z;-vector is back-propagated to the left (Figs 5(e)—(t)).
Due to the permutations along the way, the x;-components reach the left-hand side
of the array at the right time and in the right place, such that
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3. in a third step, a correction vector can be computed as a matrix-vector product

o]

vi

yld'gf[ 1u-1) &2 ... &n |- : )

T
! Un i

where the term %(511 — 1) corresponds to the first-order term in the Taylor series
expansion for the normalization of v4. The y;-vector components are accumulated
from the bottom to the top, while x; is again being propagated to the right (Fig. 5(q)-
(w)). Finally,

4. in a fourth step, vy, which meanwhile moved on to the top row of the array, is
adjusted with y;:

v} < v1 — Y.

These operations are performed in the top row of the array (Figs. 5(t)—(w)). One can
check that if

vy -v1 =14+ 0(e),
vy - Up = O(€), p=2,...,n
for some small ¢ < 1, then

’Uf ) ’U{ =1+ 0(62)a
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F1G. 5. Re-orthogonalizations.

v} v, = O(€?), p=2,...,n.

The above procedure for v; should now be repeated for rows 2, 3, etc., and
furthermore, everything should be pipelined. Obviously, one could start a similar
procedure for v, in Fig. 5(e), for vs in Fig. 5(i), etc. The pipelining of such a scheme
would be remarkably simple, but unfortunately there is something wrong with it. A
slight modification is needed to make things work properly.

As for the processing of vq, one easily checks that the computed inner product
&21 equals vg - v; = v; -v2 = &12, while it should equal v, - v}. A similar problem occurs
with £31 and &32, etc. In general, problems occur when computing inner products with
ascending rows, which still have to be adjusted in the top row of the array before the
relevant inner product can be computed. This problem is readily solved as follows.
Instead of computing inner products with all other rows, we only take descending
rows into account. This is easily done by assigning tags to the rows, where, e.g., a
0-tag indicates an ascending row, and a 1-tag indicates a descending row. Tags are
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F1G. 5 (continued).

reset at the top and the bottom of the array. Computing an z; vector is then done as

follows:
5
i1
T )
podey | (TG | ||| | ae| &

o

For the 8 x 8 example of Fig. 5, one can check that the result of this is that v; is
orthogonalized onto vz, v3,v4, and vs (€16 = &17 = &18 = 0, because rows 6, 7, and
8 are ascending rows at that time, i.e., TAGg = TAG7; = TAGg = 0). Similarly, vz
is orthogonalized onto v3,v4,vs, and ve (€27 = €28 = €21 = 0), etc. The resulting
ordering is recast as follows (pp refers to the normalization of row p, whereas pq for
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TABLE 1

( || SVD updating | Re-orthog. || Total |

Internal cell 16x 8% 24 x
V-matrix 10+ 8+ 18+
Internal cell 28x 28 %
R-matrix 14+ 14+
Diagonal cell 25% 25%
R-matrix 13+ 13+
9- 9-
4/ 4./

p # q refers to the orthogonalization of row p onto row q)

11 12 13 14 15
22 23 24 25 26
33 34 35 36 37
44 45 46 47 48
55 56 57 58 51
66 67 68 61 62
77T 78 71 72 73
88 81 82 83 84

In such a sweep, each combination appears at least once (wherewith 4 = % combi-
nations appear twice, e.g., 15 (51), etc.). In the general case, the rows are cyclicly
normalized and orthogonalized onto the 3 succeeding rows. One can easily prove that
if [VVT — I||r = O(e) before a particular sweep, then |VVT — I||p = O(e?) after the
sweep. In other words, the quadratic convergence rate is maintained. On the other
hand, it is seen that one single sweep takes twice the computation time for a sweep
in a “normal” cyclic by rows or odd—even ordering. This is hardly an objection, as
the re-orthogonalization is only meant to keep V' reasonably close to orthogonal. The
error analysis in [12] thus still applies (with slightly adjusted constant coefficients).

Complete processor descriptions are left out for the sake of brevity. Let it suffice
to give an operation count for different kinds of processors. See Table 1, from which
it follows that the re-orthogonalizations do not increase the load of the critical cells.

Finally, as the rows of V' continuously interchange, each input vector a in Fig. 1
should be permuted accordingly, before multiplication (see §2, a* -V = (a? - P?).
(P-V), where P is a permutation matrix). One can straightforwardly design a kind
of “preprocessor” for a, which outputs the right components of a at the right time.
For the sake of brevity, we will not go into details here.

5. Square root-free algorithms. The throughput in the parallel SVD updat-
ing array is essentially determined by the computation times for the processors on
the main diagonal to calculate the rotation angles both for the QR updatings and the
SVD steps. In general, these computations require, respectively, one and three square
roots, which appears to be the main computational bottleneck. Gentleman developed
a square root-free procedure for QR updating [1], [4], [7] where use is made of a (one-
sided) factorization of the R-matrix. The SVD schemes as such, however, do not lend
themselves to square root-free implementation. Still, in [3] a few alternative SVD
schemes have been investigated based on approzimate formulas for the computation
of either tan# or tan¢$. When combined with a (generalized) Gentleman procedure
with a two-sided factorization of the R-factor, these schemes eventually yield square
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root-free SVD updating algorithms. Implementation on a systolic array hardly im-
poses any changes when compared to the conventional algorithm. Furthermore, as the
approximate formulas for the rotation angles are in fact (at least) first-order approxi-
mations, the (first-order) performance analysis in [12] still applies. In other words, the
same upper bounds for the tracking error are valid, even when approximate formulas
are used.

5.1. Square root-free SVD computations. The SVD procedure is seen to
reduce to solving elementary 2x2 SVDs on the main diagonal (§2). For an approzimate
SVD computation, the relevant transformation formula becomes

[ Tii  Thigl ] — [ —sinf cosf ] [ Tii  Tiitl ] [ —sin¢ cos¢]

0 7fi1in cosf sinf 0 7Tig1i41 cos¢ sing

where 7; ;11 is only being approximately annihilated (|r};,;| < [|r;i+1])- In particular,
the following approximate schemes from [3] turn out to be very useful for our purpose.
(For details, refer to [3].)

if |riil > [riga,ial

Tit+1,i4+174,i41

g =
2 2 2
Tii ~ Titli+1 T it

approximation 1: tanf = o
approximation 2: tanf = H—"a,

Tit1,i+1tan0 + 7 541
Ti,i

’

tan¢ =

if |ris] < |Pig1ia

T3,iTi,i+1

o=
3 3 3
Tit1i41 — Tii T Tiig1

approximation 1: tan¢ = o
approximation 2: tan¢ = 7

_rigtang — i

Titl,i+1

tan@

In the sequel, we consider only |r; ;| > |it1,i+1|, as the derived formulas can straight-
forwardly be adapted for the other case. These approximate schemes still require two
square roots for the computation of cos ¢ and cos§.

The above approximate formulas can, however, be combined with a (generalized)
Gentleman procedure, where use is made of a two-sided factorization of the R-matrix

1 = 1
R=D3%., R-DZ,

and where only R, Do, and D, are stored (in the sequel, an overbar always refers
to a factorization).
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Let us first rewrite the first approximate formula for tan 6:

2
_ i+1,i+1 t,4+1
tan6 = r2.—r2 . 4T Titlitl
1,0 i+1,i41 ,i+1 i+1,i+1

~ )
—

'

As p contains only squared values, it can be computed from the factorization of R as
well:

ow Jcol =2
Ay d T i

p= row Jcol =2 row Jcol =2 row Jcol =2 *
oAy — A A Ty i T AV T

Obviously, a similar formula for p can be derived from the second approximate formula
for tanf (which has better convergence properties; see [3]). Applying Gentleman’s
procedure to the row transformation then gives

—sinf cosé AV d;'ow 0 . Tis Tii41 . \% d;’,:o 0
cosf sin@ 0 VY 0 Fig1,i+1 0 ) /dz?ill

d"“Dw
— —re
~ [ I cos b 0 ] tanfy Gtz 1
- 0 V& cosf | [drow
* 1 tanf,y/ s5%
T Tigwr | |V di® 0
0 Tit1,i+1 0 4 deh
_ | vE™ 0 [ Toi  Thin ] A
0 V ey Torli Tig1itl 0 \/ dfill
With
Tii+1/d]%"
Fi+1,i+l\/d_£§ ’
this leads to row transformation formulas
_ _ L T di _ _

~=0 o] -
Tiv1i Tit1,i+1 0 i1

tanf = p-

1 . Tt
Tit1,i+1

with scale factor updating (notice the implicit row permutation)
dpv = 7% cos? 0,

10" = d°" cos? ),

cos? 6 =

1
72 . drow
1 +p2 - ti41 "

row
Tit1,i419041

Note that due to the 1’s in the first transformation formula, a 50 percent saving in
the number of multiplications is obtained in the off-diagonal processors.
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The column transformation should then annihilate ¢, , ; in order to preserve the
triangular structure. With

—o 1
1,1/ 955
tangp = —————

we can again apply Gentleman’s procedure as follows:

Vv 0 | e Toaer || Ve 0 | —sing cos¢
0 Vi TirLi Tiplid 0 dh cos¢ sing

S Y drev” 0 | e Thit1 ]
0 VaRy” e TirLidr |
deol T
—tan i 1
¢ 4t ) [ Vd¢g cos ¢ 0 ]
deol 0 /dqol
1 tan gy / —cbt i cosg

_ \/‘if_o'F 0 | T Tian . \/dfT 0
0o JaEr : o V&g |

which then leads to column transformation formulas

=0
Tit1,i41

=% o =0 7O —— 1
[ Tii  Tiit1 ] _ [ Tii Tiit1 ] Tori :
o = | o =0 . 7o, . .. . dS®
0 i1t Tit1i  Titlidl 1 Tisandin
1,9
with scale factor updating
col™ __ jcol 2
d;* = df, cos” ¢,
col® __ jcol 2
digy = d;” cos” ¢,
1
2 4 __
cos” ¢ = 7o geot
1+ i4+1,i+1 i+1
F?+1,id:-:°l

5.2. Square root-free SVD updating. The above approximate SVD schemes
straightforwardly combine with the square root-free QR updating procedure into a
square root-free SVD updating procedure. At a certain time step, the data matrix is
reduced to R, which is stored in factorized form

T - 1
R=Dp3 R-D?

col*

Furthermore, the same column scaling is applied to the V-matrix

— 1
V=V D},
where V is stored instead of V. The reason for this is twofold. First, the column
rotations to be applied to the V-matrix are computed as modified Givens rotations.
Explicitly applying these transformations to an unfactorized V' would then necessarily
require square roots. Second, a new row vector a’ to be updated immediately gets
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TABLE 2

| || SVD updating | Re-orthog. || Total

Internal cell 10x 12x 22x

V-matrix 10+ 8+ 18+

Internal cell 14x 14x

R-matrix 14+ 14+

Diagonal cell 35x 35x

R-matrix 17+ 17+
9- 9:

the correct column scaling from the matrix-vector product a” - V, so that the QR
updating can then be carried out as if there were no column scaling at all. The
updating can indeed be described as follows:

1
2

Al1_[vu o] [ DL, R-DE VT
|70 1 aT,(V,D%

col

— U o D'r%ow 0 R . D3 .yT
- [ 01 ] ' [ 0 1 ' aT.(V) Dcol 4
= etc.

The factor in the midst of this expression can then be reduced to a triangular factor
by QR updating, making use of modified Givens rotations. The further reduction of
the resulting triangular factor can be carried out next, as detailed in the previous
section.

From the above explanation, it follows that on a systolic array, a square root-free
updating algorithm imposes hardly any changes. The diagonal matrices D,., and
D, are obviously stored in the processor elements on the main diagonal, and R and
V are stored instead of R and V. The matrix-vector product a = aT -V is computed
in the square part, and the R-factor is updated with @I next, much like the R-factor
was updated with aI = a7 - V in the original algorithm. All other operations are
carried out much the same way, albeit that modified rotations are used throughout.
When re-orthogonalizations are included, it is necessary to propagate the scale factors
to the square array, along with the column transformation, such that the norms and
inner products can be computed consistently. The rest is straightforward.

Finally, an operation count for a square root-free implementation is exhibited in
Table 2. Note that the operation count for the diagonal processors depends heavily
on the specific implementation. We refer to the literature for various (more efficient)
implementations (1], [7]. The operation count for V-processors remains unchanged
(as compared to Table 1), while the computational load for the diagonal processors is
reduced to roughly the same level, apart from the divisions. The internal R-processors
are seen to be underloaded this time, due to the reduction in the number of multipli-
cations.

6. Conclusion. An approximate SVD updating procedure was mapped onto a
systolic array with O(n?) parallelism for O(n?) complexity. By combining modified
Givens rotations with approximate schemes for the computation of rotation angles in
the SVD steps, all square roots can be avoided. In this way, a main computational
bottleneck for the array implementation can be overcome.
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A Highly Concurrent Algorithm and Pipelined
Architecture for Solving Toeplitz Systems

SUN-YUAN KUNG, MEMBER, IEEE, AND YU HEN HU, STUDENT MEMBER, IEEE

Abstract—The design of VLSI parallel processors requires a funda-
mental understanding of the parallel computing algorithm and an appre-
ciation of the implementational constraint on communications. Based
on such consideration, this paper develops a highly concurrent Toeplitz
system solver, featuring maximum parallelism and localized communi-
cation. More precisely, a highly parallel algorithm is proposed which
achieves O(N) computing time with a linear array of O(N) processors.
This compares very favorably to the O(N log, N) computing time at-
tainable with the traditional Levinson algorithm implemented in paral-
lel. Furthermore, to comply with the communication constraint, a
pipelined processor architecture is proposed which uses only localized
interconnections and yet retains the maximum parallelism attainable.

I. INTRODUCTION

ITH rapidly growing microelectronics technology lead-

ing the way, modern signal processor architectures are
undergoing a major revolution. The availability of low cost,
fast VLSI (very large scale integration) devices promises the
practice of cost-effective, high-speed parallel processing of
large volumes of data. This will make possible an ultra-high
throughput rate and, therefore, indicates a major technological
breakthrough for real-time signal processing applications. On
the other hand, it has become more critical than ever to have a
fundamental understanding of the algorithm structure, archi-
tecture, and implementation constraints in order to realize the
full potential of VLSI computing power [1]. In this paper,
the two most critical issues—the parallel computing algorithm
and the VLSI architectural constraint—will be considered.

Traditionally, computational complexity is measured in
terms of number of the arithmetic operations required in an
algorithm. With the emergence of inexpensive (VLSI) parallel
computing capability, this criterion will soon become obsolete
since the most efficient algorithms for sequential machines are
not necessarily the most efficient for parallel machines. Tak-
ing into account the parallelism, an up to date and more prac-
tical criterion appears to be the processing throughput rate
attainable in parallel computation [2], [3]. Therefore, in for-
mulating a parallel algorithm, the first important question
should be: How can we structure the algorithm to achieve the
maximum parallelism and, therefore, the maximum through-
put rate?

Communication constraint represents another fundamental
impact of VLSI device technology on the architecture design
and implementation consideration. In VLSI systems, com-
munication tends to be very restrictive as it accounts for most

Manuscript received March 5, 1982; revised August 3, 1982. This
work was supported in part by the Office of Naval Research under Con-
tract N00014-80-C-0457, N00014-81-K- 0191 and by the National
Science Foundation under Grant ECS-80-16581.

The authors are with the Department of Electrical Engineering-
Systems, University of Southern California, Los Angeles, CA 90089.

time, area, and energy consumption. Therefore, architectures
which require only localized communication, such as a systolic
array [4] and a wavefront array processor [5]-[7], become
very attractive for VLSI implementation. Thus, the second
important question should be: How can we cope with the
communication constraint so as to compromise least in pro-
cessing throughput rate?

Obviously, the above two questions are mutually dependent,
and their answers often affect each other iteratively through-
out the design process. Therefore, they deserve an integrated
solution which should provide general guidelines for designing
VLSI parallel processing architectures. The motivation of this
paper, therefore, is to demonstrate a design methodology fol-
lowing these general guidelines. Nevertheless, we shall limit
ourselves to the specific task of solving Toeplitz systems [8]
which, we consider, is one of the most important signal pro-
cessing problems.

A Toeplitz system is a set of linear system equations

Tx =y (1.1)
with T being a Toeplitz matrix, i.e., the (i, j)th elemnent ¢;; =
ti-j=tg, -N<k<N. (Throughout this paper, we assume
that T is an (W + 1) X (M + 1) real matrix.) This system arises
in numerous widespread applications ranging from speech,
image, and neurophysics to radar, sonar, geophysics, and
astronomical signal processing [9]-[11]. The contribution
of this paper lies in the development of a highly concurrent
algorithm and pipelined architecture which is able to solve a
Toeplitz system in O(N) processing time in an array processor
as opposed to O(NV?) for the general (sequential) Gauss elimi-
nation procedure or O(N'?) for the (sequential) Levinson algo-
rithm (cf. Section II). In addition, the design methodology
demonstrated in this paper should also help answer some fun-
damental problems faced in designing VLSI parallel processor
architectures.

The organization of this paper is as follows. In Section II, a
conventional (Levinson) algorithm for solving a Toeplitz sys-
tem and its inherent limitation for parallel processing are ex-
amined. In Section III, a highly concurrent algorithm is de-
veloped. In Section IV, to naturally map this algorithm onto
a parallel computing system, a lattice-connected processors
array is proposed. The complete Toeplitz system solver is dis-
cussed in Section V, and lastly, some system applications, im-
plementations, and multichannel extensions are included in
Section VI.

II. PRELIMINARY REVIEW

It is known that the conventional approach (e.g., Gauss
elimination procedure) for solving a linear system takes O(V?)
arithmetic operations with each operation containing one mul-

Reprinted from JEEE Transactions on Acoustics, Speech, and Signal Processing, pp. 66-76, February 1983.
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tiplication and one addition. By making use of the Toeplitz
structure, several fast algorithms are now available to solve a
Toeplitz system in O(N?) operations or even less [12]-[17].
Among them, the most popular is the Levinson algorithm [12].

The Levinson algorithm was originally proposed by Norman
Levinson in 1947, and since then, a number of variants have
been proposed [18]-[23]. Basically, the Levinson algorithm
recursively solves for the (kth-order) solution {ay, b} in the
equation depicted below:

1 bk Ey O
a 0 Ek 0k
| = = (2.1)
N blk 0 0k Ek
Ay 1 0 Ek
a; by

where T denotes the (k + 1) X (k + 1) leading principal mi-
nor' of T and E, is some nonzero number. The recursive pro-
cedure efficiently utilizes {ay, by} to derive the solution for
the (k + 1)th-order equation. Then, by induction, the Nth-
order equatjon can be solved. This recursive procedure can be
explained in three steps.
Step 1: let
0; - 0

T a 0
k+1 0 bk
Qk Ek

where O, and S, are obtained via inner product operation:

Ey Sk
2.2)

Ok =ltksr» s il ax (2.3a)
Sk =tk o1, tq] by, (2.3b)
Step 2: {ay ., by .} are derived as
ac 0 1 Krk+n
[ PR T 0 b, Kek+D) | 2.4)
where?
K"(k+1) = _Sk/Ek and Ké’(k +1) = "Qk/Ek- (25)
Step 3: Consequently, we have
, Eryr O
Tig1l arer brgr 1= [ O Eips ] (2.6)
where
Eg oy = Ex +Ke®*0s, = £, + Krk+D0,
=E(1 - Ketd+ Dk +1)y 2.7)

and we are ready for the next recursion.

The computation should stop at the end of the Nth recur-
sion. A simple calculation shows that the total number of
operations required is approximately 2N ?2.

IThroughout this paper, we shall as;ume that each leading principle
minor of the matrix 7 is nonsingular.
In the literature, {Ke, Kr} are called “reflection coefficients”; see,
eg., [13].

In the case of a symmetric Toeplitz system, by symmetry,
we have Ke(D = K/ and that a;x = by |cf. (2.1)], and there-
fore the number of operations can be reduced to one half, that
is, N2.

To explicitly solve the Toeplitz system, we note that the
{ay, b} vectors produced in the Levinson algorithm consti-
tute a UDIL. decomposition of the T~! matrix, namely,

[~ ]
1L by - byy - -
01
T = ' &
1 by :
0 E
0 01 !
B 07
an 1
(2.8)
0
| 4NN a1 |
éUBDE]‘A'

Therefore, the solution of the Toeplitz system can be com-
puted asx = UgDgL 4.

In order to meet the extremely high throughput rate require-
ment in many real-time signal processing applications, the po-
tential of parallel computing has to be utilized. However, for
parallel execution of the Levinson algorithm on a linear pro-
cessor array with V processing elements, the parallelism will be
severely hampered by the presence of the inner product opera-
tions (2.3). More precisely, in each recursion step, the inner
product operation will be the bottleneck of the computation,
since it requires a minimum execution time of log, k units
[3]. Consequently, to compute all the N recursions, the total
parallel computing time amounts to O(V log, V) on a linear
processor array. This not only unnecessarily slows down the
parallel processing speed, but also accounts for considerable
waste of processors. In the next section, we shall develop an
algorithm which avoids the inner product operations, and
therefore achieves much higher parallelism. More precisely,
this algorithm will attain a processing time of O(V) time units
[as opposed to O(NV log, N)] on a vector array of O(N) pro-
cessing elements.

III. A HicHLY CONCURRENT ALGORITHM

In this section, we shall present a highly concurrent algo-
rithm. Mathematically, this algorithm can find its roots back
to the now classical Schur’s algorithm [24] as first pointed out
by Dewilde et al. [25]. The matrix formulation used in the
algorithm bears a strong similarity with an earlier work by
Bareiss [26] and later, in a different fashion, by Rissanen [27]
and Morf [16]. However, our derivation is independent of
the previous works. Moreover, in our formulation, 1) the par-
allelism and the (localized) date dependency inherent in the
algorithm are explicitly exposed, and 2) there surfaces a natu-
ral topological mapping from the mathematical algorithm to
the computing structure to be discussed in the next section.
Therefore, our formulation is included below for the purpose
of a clearer and easier presentation.
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A. Main Algorithm

The function of the proposed algorithm is to perform a tri-
angular decomposition on matrix ¥, that is,?

T=LDU=LUU=DU) 3.1

where D is a diagonal matrix. Then the solution x of (1.1) can
be solved explicitly with back substitution:

x=T"'y=U"['y. (3.2)
To set up for a new recursive procedure, we consider an aug-
mented Toeplitz matrix of T, say T, which is a natural exten-

sion of T as illustrated by the (4 X 4) example below:

ty ty ty0 by foy [, I
o 0 13 t2itl o -y [
r= 0 0 t3: ty, t; ty 1, (3-3)
0 0|It3 t, t; ity
T
Substituting T by T in (3.3), we have
1 0 0 0 X X Xiun Uyp U3 Uig
ln 10 0f_ | X X X0 up uy usy
Ly I 10 L X::O 0 uss usg
oy laz a1 X X X0 0 0 u.
L Y B
3.4)

where L 2 L' and the X’s denote DON'T CARE entries. Our
strategy is then to construct the matrices L and U by creating
all the “zeros” below the diagonal in the U matrix. Let us
consider the following equation:

1 00 07.
T
0100
Now perform row operations on both sides of (3.5) such that

ooo]m [1 Kr(z)OO]N
T= T
Ke® 1 00

ot o

ty t, Eto oy o, ty

] . (3.5)

]
0 t3 ty't; to 1o I,

1 Kr(z)
[Ke(2) 1

v(2) v§? o U(lz)l{vgz) 0 vgzz) v(_?,)
a2 ] ul? ul? uSZ)EO u® 4@ @
(3.6)
where*
Ke(2) = *tl/fo; [\'",(_2) = ——t_l/to (3-7)

Compare the second row of the RHS (right-hand side) of
(3.4) to that of (3.6), i.e., u(®; it is clear that a zero is created’
by the row operation and the desired second rows of Z and U
3The overbar > of the triangular matrix L (or U) indicates that L
(or /) has 1’s along its diagonal.

4These {Ke, Kr} play the same role as those in the Levinson algo-

rithm, and therefore will also be called reflection coefficients in the fol-
lowing discussion.

50

are obtained:
L2=[l,, 1 0 0] =[ke® 1 0 0]
Uy =[0 upy w3 uya] =10 u(_zl) u(_zz) u(_23)].

To compute the third rows of the Land U matrices, the
same strategy can be used. For this purpose, we first right-
shift [Ke(® 1 0 0] such that [Ke® 1 0 0] - [0 Ke®®) 1
0]. By the Toeplitz structure of the T matrix, u(*) in (3.6)
will also be right-shifted accordingly. Thus, we have the fol-
lowing equation:

] 7

v§? v{?) v(lz)Evgz) 0 ,){22) v(_23)]

! .
u® uD a0 u@ 4@

1 K5 00
0 Ke® 1 0

1

Note that through this shift operation, the two O’s created
in the previous recursion on the RHS are realigned into the
same column so as to remain uneffected by the row operations
in the next recursion. With this precaution, a similar proce-
dure as in the previous recursion can be repeated:

. (3.8)

[1 Kr(3>H1 Kr® 0 0]w
T
Ket® 1 0 Ke® 1 0
[1 X Kr® o]f (39
= 3.9a
Ke® x 1 0
o) v oD D 0 0 W&

[0(3)] [ ]
@ ugg) u(23) u(13):0 0 u£32) u(_g)

(3.9b)

where

Ke® =@ and Kr® = %) /0, (3.10)
By comparing u® to the third row on the RHS of (3.4),

clearly, the third rows of the L and U matrices are obtained:
Ly=1[l3; Iy 1 0] =[Ke® (Ke®DKrD +Ke®) 1 0]
Us =[0 0 uzz uz] =110 0 u(_;) u(_33)],

This completes the second recursion. By induction, future
recursions can be carried out in the same manner until all the
rows of the L and U matrices are computed. Summarizing the
above procedure, several observations can be made.

1) The shift operation in each recursion is natural due to the
Toeplitz structure of the T matrix since it retains the zeros
produced in the previous recursion. The purpose of the shift is
to realign these zeros with those of the auxiliary vector v [cf.
(3.8) such that these zeros will remain unaffected by the up-
coming row operations. This also explains the purpose and the
necessity of computing for the auxiliary vectors v in each
recursion.

2) Note that L is nothing but the L 4 matrix in (2.8) since
from (2.8) we have



T=L,'DF Up'.

Comparing the above equation to (3.1), and noting that the
LDU factorization of a given matrix is unique,® we have
L=L3",U=Ug", and D=Dg" = diag [E,, -, En]. In this
sense, the algorithm proposed can be regarded as a generaliza-
tion of the conventional Levinson algorithm. More precisely,
the {ay, by} vectors are actually embedded in the 2 X N ma-
trix on the LHS in the kth recursion. For example, in the first
recursion [cf. (3.6)], we have ay, =Ke®, b,y =Kr®. In
the second recursion [cf. (3.9a)], we have

y

ol

1<r<3>][1 a; O o] [1
0 by, 1 0 bas
(3.11)

1
[Ke(” 1
3) This new formula completely avoids the need of inner
product operations; therefore, the bottleneck incurred in par-
allel execution of the Levinson algorithm no longer exists.
Furthermore, the reflection coefficient computation and row
operations in the formulation are very suitable for parallel
execution; hence, this new algorithm is inherently highly
concurrent. As a consequence, it has the following parallel
formulation.
Main Algorithm

a2 dzz

by 1

INITIAL CONDITIONS!

i =uyV=r, (N<Kk<N) (3.12a)
FOR i =1 UNTIL N DO BEGIN
IN PARALLEL DO BEGIN®
Keli+1) = -u(,i)[vf)i)]" (3.12b)
K+ = "Ugi) [u(_"i)+1 ]! (3.12¢)
END IN PARALLEL DO;
IN PARALLEL FOR-N < k < NDO BEGIN
Ugcm) - v,‘j) + Kr("“)ufjll (3.12d)
u;(m) = uffll + Ke(”‘)ufci) (3.12¢)

END IN PARALLEL DO;
OUTPUT,;
END FOR LOOP;

4) Based on the above formulation, it is clear that with
O(N) processing elements connected in a linear array, the par-
allel computing time for each recursion can take as little as
two time units (one for reflection coefficient computation, the
other for row operation). For N recursions, this amounts to a
total parallel processing time of O(N) time units as opposed to
O(N log, N) in the Levinson algorithm.

B. Duality of the Main Algorithm

1) Duality: In order to execute the back Eubstitution step
(3.2) to solve a Toeplitz system, both the L and U matrices
have to be computed. However, the equation for computing
the L (= L") matrix is purposely left out in the above main

SThis is true provided that all the leading principal minors of the
given matrix are nonsingular.
6IN PARALLEL DO indicates that the operations within this block can
be executed in parallel.
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algorithm. This is because each column of the L (= LD) ma-
trix is also provided by the vector v while each row of the U
matrix is provided by the vector u. More precisely, it is proved
in Appendix A that

-1

S} 0| Eo 0
e {1 v E,
v}i,‘) "1(\?:)—1 :vf,N”) 0]Lo0 -EN
uf)‘) u(_ll)... “(—11\)/
T{ o (3.13a)
00— - uf’}’;,“)
=LD'U. (3.13b)

Consequently, (3.12) alone is sufficient for LDU factorization
of T matrix and the computation of the L matrix can be saved
(see also [28]).

2) Symmetric Toeplitz Systems: Additional computational
savings are possible in solving a symmetric Toeplitz system. In
this case, L = U, and hence [from (3.12)] Ke( =KrD for
each i. Consequently, the computations of vfci) and ufc") for
k > 0 become redundant and may be omitted. This leads to a
savings of one half of the computations as compared to the
nonsymmetrical case.

In practice, symmetric Toeplitz systems arise much more
often than nonsymmetric ones, and are therefore of much
greater importance from an applicational point of view. In the
next section, a pipelined computing structure for concurrent
processing of symmetric Toeplitz systems solutions will be
discussed.

IV. PIPELINED LATTICE PROCESSOR
A. Parallel Lattice Computing Structure

In this section, we consider the implementation of the par-
allel algorithm on a VLSI chip. The major computation in the
algorithm lies in the linear combinations of two vectors in each
recursion. Therefore, a parallel computing structure with a lin-
ear processor array as depicted in Fig. 1 is proposed.

The configuration consists of a series of modular processing
cells, termed lattice cells, to perform row operations. Each
cell is composed of an upper and a lower processing element
(PE) with lattice connections. The only exception is the upper
PE in the (0) cell which is a divider cell for the computation of
reflection coefficients.

During each recursion, the reflection coefficient is first com-
puted in the divider cell and then broadcast to all the lattice
cells through the global (horizontal) interconnections. Then
the row operations are performed simultaneously in all the lat-
tice cells. Upon completion, the result in each upper PE is
left-shifted to its immediate left neighbor, preparing for the
next recursion.” Meanwhile, the contents of the lower PEs,

7This corresponds to the shift operation discussed in Section III.
Note that since only the relative position between the data in the upper
and lower PE’s is of importance, the left-shift for the upper PE’s (v vec-
tor) is equivalent to the right-shift for the lower PE’s (u vector), as de-
scribed earlier.
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Fig. 1. Parallel lattice computing structure.

which correspond to a row of the U matrix, can be output,
arid the recursion is thus completed.

The operation is completed after N such recursions. Let 7,
denote the time interval needed for division, and let 7, denote
the time interval for each lattice operation (multiplication and
addition); then the total computing time will be N(7; + 7).

B. Pipelined Lattice Computing Structure

To accomplish maximal parallelism, the parallel lattice com-
puting structure just proposed relies heavily on global commu-
nication. As mentioned earlier, this may cause certain difficul-
ties on, for example, synchronization, longer delay, larger
power, and chip area consumption in a VLSI system. There-
fore, in the following, we shall propose a modified version of
the lattice computing structure which eliminates the need for
global communication without compromising the parallelism.

The general configuration (Fig. 2) of the modified lattice
computing structure remains largely resembling the one in Fig.
1, except that the global communication links are replaced by
nearest neighbor interconnections. To achieve maximal par-
allelism in this locally connected computing network, we must
resort to a pipelined operation which renders efficient and
smooth data flow. This leads to a useful notion of computa-
tional wavefront [5], [6], [29]-[31].

C. Computational Wavefront

Roughly speaking, a computational wavefront in a comput-
ing structure corresponds to the computational activity in-
curred in one recursion step in a recursive (parallel) algorithm.
As an example, the computational wavefront of the first recur-
sion is examined below.

Suppose that the data are initially placed in the registers of
the PE’s such that Bgy = t¢ and Ay, —1y = By =ty for m =
1,2,-:+, N where the A, register is in the mth upper PE
and By, in the mth lower PE (cf. Fig. 2). The process starts
with the <0} cell (divider cell) where the reflection coefficient
is computed and stored in register Cypy:

Cioy = Ac0)/Bioy- 4.1)
The computation activity then propagates to the (1) cell (after
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Fig. 2. Pipelined lattice computing structure.

propagating C(qy to C(yy) where the following computations
are executed simultaneously in upper and lower PE’s:®

Ay €Ay - Cay X Beyy

(in the upper PE of the (1) cell) (4.22)
By =By - Cay X Aqry
(in the lower PE of the (1) cell). (4.2b)

Upon completion of the execution, the (1) cell propagates its
new content in the upper PE, 4A(;,, to its left neighbor, 4o,
to prepare for the next recursion. Meanwhile, it also sends the
content of Ci;y to Ci,y so that the computation activity con-
tinues propagating to the (2) cell. The next front of activity
will be at the (3) cell, then the (4) cell, and so on. As a conse-
quence, a computational wavefront is created traveling across
the linear processor array. (It may be noted that the wave
propagation implies localized data flow.) Once the wavefront
sweeps through all the cells, the first recursion is completed.
The content in By (k=0,1,---, N - 1) is output downward
as soon as it is available.

As the first computational wavefront propagates, the second
recursion can be executed concurrently by pipelining a second
wavefront as soon as the content in Ayy is sent to the Ay
register in the {0) cell. Therefore, the time interval between
the first and second wavefronts is estimated to be 7, +75.
(Note that it takes a 7, + 7, time interval before 4,y is made
available if data transfer time is considered negligible.) The
second wavefront strongly resembles that of the first one. For
example, the (0} cell first computes the second reflection coe-
ficient according to (4.1), then forward C(oy to the (1) cell
where (4.2) will be performed. After this, the second wave-
front will propagate to cells (2}, (3), and so on. Once the
wavefront arrives and executes at the (N - 1)th cell, the sec-
ond recursion is completed. Again, the content in By, which
is nothing but ufi)_z(k =0, 1, --,N-2),is output down-
ward as soon as it is available.

8The lower PE of the (0) cell should also perform the operation

B(Q) = B(oy - C(0yXA 0oy at this moment. This accounts for the compu-
tation of the D matrix.
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The same pipelining scheme can be repeated for the third,
and eventually all the recursions. When all the N wavefronts
are generated and operations are executed, the parallel algo-
rithm is completed. Since the wavefronts are generated con-
secutively at a rate of one wavefront per 7, + 7, time interval,
the total computing time will be N(r, + 7,).° Therefore, the
pipelined operation takes the processing time N(r, +7,),
which is the same as that of the parallel operation with global
communication. From now on, the proposed pipelined com-
puting structure will be called the pipelined lattice processor
(PLP). We note that the PLP has accomplished the design goal
of using only local interconnections and yet not sacrificing any
degree of parallelism attainable.

D. Programming Aspects

In the above, we have successfully exploited the notion of
the computational wavefront to portray the pipelined opera-
tions on the lattice array. However, in general, it is even more
preferable to have an appropriate language to program pipe-
lined algorithms.

In a recent paper [5], [6], it is noted that the wavefront
notion has indeed much more widespread applications.
Namely, it is applicable to a large class of parallel matrix
algorithms, especially to those with the so-called locality and
recursivity nature. Therefore, this same notion has been
further extended to a wavefront-oriented language suitable
for programming pipelined algorithms on programmable
(pipelined) array processors [5], [6], [29]-[31]. Although
further elaboration on the structure of the language is beyond
the scope of this paper, for illustration purpose, we have in-
cluded in Appendix B one such programming example for the
above pipelined algorithm.

The wavefront language does not only facilitate program-
ming most pipelined algorithms, but also offers a convenient
tool for the subsequent simulation and verification tasks.
The simulation results of the PLP yield a series of snapshots
of the computation wavefronts in the PLP which match with
the result theoretically predicted [31].

V. CoMPLETE TOEPLITZ SYSTEM SOLVERS

So far, we have used the PLP to decompose a Toeplitz sys-
tem into lower and upper triangular matrices, i.e., T=U'D™'U
in O(V) time units (assume that 7 is symmetric). To com-
pletely solve the Toeplitz system, however, an explicit solution
x has to be derived. Therefore, subsequent operations are
needed and should also be performed in O(N) time units.
Based on different inversion formulas for the Toeplitz matrix
T, we shall present three different organizations—corresponding
to three different methods for the subsequent computations—
of a complete Toeplitz system solver. All of these utilize
linear processor array and achieve O(NV) units of processing
time.

A. Back-Substitution Method

This method involves computing x via (3.2) (for the sym-
metric case):

x=T 'y =U"'DWU') 'y (5.1

9Note that the Nth recursion will be initiated at the time (N - 1) (7| +
72), and by that time there will be only one computation [i.e., (4.1)]
to be performed in the last recursion (cf. Section III).

which can be separated in two back-substitution steps:

g=DU) 'y (5.2a)
and
x=U"g. (5.2b)

Back substitution is a standard matrix operation for solving
linear systems, which also enjoys a pipelined operation. There-
fore, it can be implemented with a locally connected linear
processor array. As it is a rather well-known procedure [4],
[7], the detail is omitted here.

A complete Toeplitz system solver depicted in Fig. 3 is
constituted by a PLP and a (pipelined) back-substitution
processor. The processor in the upper part is the PLP where
the outputs are fed into the lower part—the back-substitution
processor. Upon receiving the data, the back-substitution
processor (initially stores the y vector) will perform the first
back substitution (i.e., g =D(U*)™'y). The elements of the
U' matrix (output from PLP) are stored in the LIFO (last-in-
first-out) memory stack which serves as a matrix transposer.
The scaling operator D = diag[ugg, " -, unn] will operate
on (U")™!y to obtain the g vector which then is stored in the
G-LIFO stack. After the first back substitution, the second
step (5.2b) starts immediately with the U matrix and g vector
fetched from the memory stacks. Finally, the output x is
obtained from the left end of the back-substitution processor.
Note that the first back substitution can be executed concur-
rently with the LU decomposition in order to save processing
time.

B. A Method Based on LU Decomposition of T™!

Recall that in Section II, the {ay, b;} vectors computed
from the Levinson algorithm constitute a UDL decomposition
of the T"™! matrix, and thus facilitate an explicit solution for
the Toeplitz system (2.8). Now, this formula can be utilized
to provide a different organization of the Toeplitz system
solver. In doing so, we have to compute the {ay, by} vectors.
However, in Section III-A, we note that the Levinson pro-
cedure is inherently imbedded in the new algorithm, and that
the computation of {ay, by} requires virtually the same kind
of row operations [see, e.g., (3.11)]. Therefore, the PLP
processor can also be utilized te produce these vectors. For
this, a duplicate PLP (without a divider cell) can be attached
to the original one. The new PLP will have different initial
conditions: all of its PE’s are stored with “0,” except the
(1) cell where “1” is stored. During execution, the new PLP
is triggered by the reflection coefficients sending from the
original PLP for performing lattice operations. Then the
results, a; vectors [cf. (3.11)] in the lower PE’s, will be
output to a linear processor array for matrix-vector multi-
plication: x =L4DL4y. This is obtained from (2.8) with
Ug =L} (ie., the symmetric case). Details of this multi-
plication operation are omitted here since they are again
accessible in the literature [1], [4], [7].

Cybenko [32] has shown that the Levinson algorithm (in the
sequential computation scheme) is numerically comparable to
the Cholesky factorization method which is known to be
numerically stable. Since (2.8) is a formula based on the
Levinson algorithm, the numerical stability of the above
method in the pipelined computation scheme is expected.
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Fig. 3. Complete Toeplitz system solver.

C. A Different Organization Based on Gohberg’s Formula

In addition to the UDL decomposition, another Toeplitz
inversion formula proposed by Gohberg [33] can also be
applied for an alternative organization. This formula is based
only on the knowledge of {ay, by} and E:

1 1 by byn
T_l - _1“ alN 1 0 O ]
Ey bin
aynN ai1nN 1 0 te 1
0 0 byy - bin
_ _l_ ann 0 0 "0 (5 43)
Ev|: " " : bnn
ayN ann 0 0 0
=L,U, +LyUp. (5.4b)
Hence, x can be solved explicitly from
x=T''y=LUy+LyUpy=Law+Lyz (5.5)

where w=U,y, z=Up,y. Note that due to the particular tri-
angular Toeplitz structure, (5.5) can be essentially regarded as
linear convolution operations.

The appended PLP in Section V-B is again applicable to pro-
duce the needed {ay, by}. On completion of the lattice
operation, these vectors will be ready in the upper and lower
PE’s for the convolution operation according to Gohberg’s
formula. For this convolution operation, two linear array
processors can be utilized or, when the length of the vector
is large, than the FFT (fast Fourier transform) processor may
be used for fast processing.

As a brief comparison of the three different ‘organizations
proposed, note that the first organization utilizes only one set
of PLP; hence, it needs fewer PE’s. On the other hand, in the
third organization, no memory modules (LIFO) are needed.
As for the processing speed, it depends very much on the size

of the processor array and the applications. Generally speak-
ing, the first method is perhaps the fastest for moderate matrix
size. When N is large and the FFT is worth utilizing, the third
method will become more favorable.

VI. APPLICATIONS, IMPLEMENTATIONS, AND EXTENSIONS
A. Applications to Array Signal Processing

From a practical point of view, the proposed Toeplitz sys-
tem solver has many immediate signal processing applications.
For example, it can be applied to maximum likelihood (ML)
and maximum entropy (ME) adaptive array signal processing'®
problems [9]. In the ML method, the wave-vector spectrum
is computed as

o0& =[E"(f,0)ST(NES, 0]

where S,(f) is an N X N cross-covariance matrix and E(f, v)
is an N X 1 vector denoting the array phasing vector corre-
sponding to the wave direction [9]. Suppose that the input
sensor array is uniformly spaced, and that the statistical
environment is stationary, then the S,(f) matrix to be inverted
in the above equation will be a Toeplitz matrix. Then the PLP
can be applied to efficiently compute the spectrum o% .

For a better illustration, we use the following sample system
specifications. Suppose that the number of the sensors N =32
and that the temporal frequency bandwidth is F =50 Hz and
the frequency resolution desired is 6F =0.1 Hz. Then for one
set of input data, the total computation time required is

(FI8F) X 2Nty =32 000 to.

Now, we must have 32000 ¢, <T where T=1/8F =10 s is
the processing time allowed for one set of data, provided a
real-time processing rate is required. Hence, each arithmetic
operation must take no more than 10 s/32000=312.5 us
(that is, o <312.5 ps). This time frame can be easily com-
plied by a commercially available ALU, and therefore, a real-
time signal processing rate is trivially attainable.

Obviously, the specifications quoted above are oversimplified.
In practical situations, one will probably face a larger sensor
array with higher bandwidth; hence, many more operations
will probably be needed. On the other hand, in terms of VLSI
technology, the size of the PLP can be made much larger, and
the multiplication speed can be 103-10* times faster than that
given above. Therefore, for most cases, the real-time pro-
cessing rate can still be achievable, and with VLSI implementa-
tion of PLP, it is also rather affordable.

B. Implementation

In a joint effort between the Hughes Research Laboratory
(at Malibu, CA) and the University of Southern California,
Los Angeles, a VLSI Toeplitz system solver chip is imple-
mented [34], [35].

This design contains 16 stages of processors with 28 bit
fixed-point arithmetic units working on 8 bit (input dynamic
range) input data. Suppose that the system clock is operating
on a 4 MHz rate; it is estimated that a 16 X 16 Toeplitz sys-
tem equation can be solved in about 0.6 ms (minisecond). The
design is based on NMOS depletion load technology. In the

10The term “array processing” in signal processing commonly refers
to the processing of signals from a multiple sensor array.
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Fig. 4. Chip layout of Toeplitz systems solver. (Courtesy Hughes Re-
search Laboratory, Malibu, CA.)

chip design, 6 um feature size (A = 6 um) is used, and a single
stage of processor will occupy a whole chip (230 X 300 mil?).
The chip layout is shown in Fig. 4. It is estimated that with
the feature size reduced to 1 um, 32 stages can be imple-
mented on a single chip in a later implementation phase. A
full report on the final implementation will appear in a future
publication.

C. Extension to Multichannel Signal Processing

Quite often, one has to deal with multichannel signal process-
ing which involves a number of input signals simultaneously.
In this situation and under the stationary statistic assumption,
the main computation involved is usually to solve a block
Toeplitz system:

Bo B, --B.y
B, B

B=|°t Po
By By

where each block element Bj is by itself a ¢ X ¢ matrix.
The extension of the scalar case (nonsymmetric) main algo-
rithm to the matrix case can be carried out easily. However,
the dual relations established in the scalar case fail to extend
to the matrix case due to the noncommutability nature of
matrix multiplication. Consequently, we need a total of 2N
block-matrix processors (as opposed to V) to implement the
corresponding lattice computing structure for a symmetrical
block Toeplitz system. To strive towards a saving of half
the required processors, we propose the following further
modification.

D. Normalized Levinson Algorithm

Recently, a normalized version of the Levinson algorithm
was proposed by Vieara et al. [36]. This algorithm employs a
matrix square root procedure to accomplish normalization of
the reflection coefficient.!' It turns out that the very same
version may be applied to the parallel algorithm to retain the
duality relations and whereby save half of the hardware.
Roughly speaking, during the execution of each recursion,
each entry of the u and v vector is modified by'?

% o o y
v = v Py
O = (U917 U,

By substituting the above relation into the new algorithm
(in multichannel formulation), a similar analysis as in Section
ITII-A can be carried out and a normalized version of the new
algorithm can be derived. For completeness, this normalized
(high parallelism) algorithm is present in Appendix C.

VII. CONCLUSION

Two fundamental issues should be kept in mind in designing
modern VL1SI signal processors. The first is to formulate the
signal processing algorithm to allow the maximal extent of
parallel processing. The second is to make sure that the parallel
architecture meets the (localized) communication constraint
imposed by the device technology.

In this paper, we have demonstrated an integrated approach
to the above issues by tackling a specific (but practically

11That is, for each reflection coefficient matrix K(), its L, norm is
less than or cqual to unity provided that the B matrix is nonnegative
definite.

12[29r 3 symmetric nonnegative definite matrix M, M'/2 is defined as
M=M1/2[Ml/2 |t'
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important) problem—solving Toeplitz systems. We have pro-
posed a highly concurrent algorithm which enjoys O(V) com-
puting time by a vector processor array with O(V) processors.
This is to be compared to the O(N?) processing time of the
Levinson algorithms when implemented sequentially or
O(N log, N) when implemented in parallel. Furthermore,
we have developed a pipelined lattice processor (PLP) to
implement the new algorithm. The PLP architecture employs
a localized communication scheme without sacrificing the
overall parallel processing speed.

APPENDIX A
PrOOF OF (3.13)

The duality in (3.13) originates from the symmetric row
operation in the algorithm (3.12). Suppose that a matrix
Ta T’ is introduced. Due to Toephtz structure, we know
that T is also a Toeplitz matrix with , =¢_y for -N<k<N.
Obviously, the algorithm (3.12) can be applied on T as well.
Thus,"?

T=LD"0. (A.1)
Taking the transpose on both sides of (A.l1) and using the
uniqueness property of triangular factorization, it is easy to
show that

L=U' D=D, and U=L". (A2)
On the other hand, by carrying out the algorithm (3.12),
we find that

1) Ke® =12r(i), Kr® = ge® (A.3)
2) 8I£i)=u£2—i+1a (l)=v k-i+1 (A4)

Equations (A.3) and (A.4) are proved by induction as
follows.

For i=1, (A4) is true from (3.12a). Then, from (3.12b)
and (3.12¢),

Ke@ = 4O = -1 _ 1t = kr®@ (A.52)

KAr(Q') = —u(_ll)/vgl) = _tl/tO =Ke(2). (ASb)

Suppose that fori =1, (A.3) and (A.4) are valid;leti=1 + 1:

Red*D = @560 = @y, g, U4+

I)/“(II)+1 = ‘““(1”/1’8”

(A.6a)
FopTHD) — _ = KeI*1) (A.6b)
Moreover,

l/}\’£1+l) - if\]gl) +]2r(1+l)£l\,(¢1+)1

= “(f/\) I+1 KelHy| k) p=ul? u+n+1  (ATa)
I+1) — H_ + Kel+D) UU
=R+ ke UD L = Ugct(l}u)»«p (A.7b)
By mathematical induction, (A.3) and (A.4) are proved.
From (A.1) and (A.4), it is clear that
:[0,...,0’08"),... (I)I]] (A.8)

Using (A.8) and the relation U=L%in (A.2), (3.13) follows.

31In Appendix A,Aall the symbols with “ "> will be regarded as those
associated with the 7 matrix.
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APPENDIX B
PROGRAM FOR PIPELINED LATTICE ALGORITHM

(In the program presented below, the program constructs
are close to those of Pascal language, while the arithmetic
operations are similar to those of Assembly language. Note
that the statement after the *‘!” sign is considered as a
comment.)

Array Size: 2 X N processing elements.

Computation: Pipelined lattice algorithm.

Initial: First row of the Toeplitz matrix T in the A register
of the first row PE’s, and the B register of the second row
PE’s.

Output: Rows of the U matrix (T =U'D™'U) are output
from the second-row PE’s.

BEGIN
SET COUNT 1;
REPEAT
WHILE WAVEFRONT IN ARRAY DO
BEGIN
CASE KIND =
(1,%): FLOW A4, LEFT;
(2,1),(2,*) : FLow B, up;
ENDCASE;
END;
DECREMENT COUNT;
UNTIL TERMINATED
SET COUNT NV,

REPEAT
WHILE WAVEFRONT IN ARRAY DO
BEGIN
CASE KIND =
(1,1),(1,*) : BEGIN
FETCH A, RIGHT;
FLOW A, DOWN;
FETCH B, DOWN;
END;
(1,1) : BEGIN
piv A,B,C; ! C=A4/B,
FLOW C, DOWN;
END;
(1,*%) : BEGIN
FETCH C, LEFT;
'4<=A4-BXC,
MULT B,C,R;
suBA,R A;
FLOW A4, LEFT;
END;
(2,1) : FETCH C, UP;
(2,%) : FETCH C, LEFT;
(2,1),(2,*) : BEGIN
FETCH 4, UP;
'!B<=B-A4AXC,
MULT 4,C,R;
SUB B,R,B;
FLOW B, UP;
FLOW B, DOWN; ! OUTPUT;
END;
ENDCASE;

FLOW C, RIGHT;



END;
DECREMENT COUNT;
UNTIL TERMINATED
ENDPROGRAM.

APPENDIX C
NORMALIZED ALGORITHM
INITIAL CONDITIONS:
%k *
v =u) =B\ 2B, (-N<k<O0)

FOR [ =1 UNTIL NV DO
BEGIN

KO = O oy

IN PARALLEL DO
BEGIN

Pivy=1- KO VKDY
Qivy =1~ [K¥T D) KD
END IN PARALLEL DO
IN PARALLEL FOR ~-N <K < -1 DO BEGIN
* iy _ % /. i PR
R R (78 SRR /)
7900 R 2T SRl Vo
END IN PARALLEL DO
OUTPUT;

END FOR LOOP;
END NORMALIZED PARALLEL LEVINSON ALGORITHM.
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A ROTATION METHOD FOR COMPUTING THE QR-DECOMPOSITION*

FRANKLIN T. LUKt

Abstract. A parallel method for computing the QR-decomposition of an n x n matrix is proposed. It
requires O(n?) processors and O(n) units of time. The method can be extended to handle an m x n matrix
(m= n). The requirements then become O(n?) processors and O(m) time.

Key words. QR-decomposition, plane rotations, systolic arrays, real-time computation, VLSI

AMS(MOS) subject classifications. 65F30-68A10

1. Introduction. Let Ae R™*" and
(1.1) A=QR

(Q orthogonal, R upper triangular) be its QR-decomposition (QRD). The sequential
computation of this decomposition requires time O(n?). Often, the QRD of A€ R™*"
(m = n) is desired; the required time becomes O(mn?). For real-time signal processing
(cf. Bromley and Speiser [6]) fast parallel algorithms are needed and various methods
[11, [2], [8], [9], [10], [12] (most of which are applicable only to square matrices)
have been proposed in the literature. Ahmed, Delosme and Morf [1], Bojanczyk, Brent
and Kung [2] and Gentleman and Kung [8] all use Givens rotations and a triangular
array of O(n’) processors. Both [1] and [2] store Q (in product form) in the array
and propagate R, whereas [8] stores R and propagates Q. The decomposition is
computable in time O(n). The technique in [8] can be applied to an m X n matrix,
and it will use time O(m). Heller-Ipsen [9] and Johnsson [10] both consider a banded
matrix A, say with bandwidth w. Based on the Givens rotations, the technique of Heller
and Ipsen requires time O(n) and a rectangular array of wq processors, where q equals
the number of subdiagonals of A. Johnsson discusses a parallel implementation of the
Householder transformations. He uses w processors and O(nw) units of time. Sameh
[12] considers an m X n matrix and a ring of p processors. He describes procedures
based on the Givens and the Householder transformations; his algorithms require time
O(mn?/p).

The parallel algorithms of Brent, Luk and Van Loan [4], [S] for computing the
ordinary and the generalized singular value decompositions may require a preliminary
QRD step. However, the mesh-connected multiprocessor arrays in [4], [5] are very
different from the QR-arrays in [1], [2], [8], [9], [10], [12] and the interfacing of
different arrays can be a serious problem. In this paper we present a rotation method
that computes the QRD using a mesh-connected processor array. Our idea is to
determine the QRD of an n X n matrix by computing in parallel |n/2] two-by-two
QRDs. This strategy of decomposing an n-by-n problem into |n/2] two-by-two
subproblems has been used successfully by Brent and Luk [3] for the symmetric
eigenvalue decomposition, by Brent, Luk and Van Loan [4] for the singular value
decomposition, and by Stewart [13] for the Schur decomposition. The strategy in [3],
[4] is to divide an nx n matrix into blocks of 2x2 submatrices and to assign one

* Received by the editors June 11, 1984, and in final form March 8, 1985. This work was supported in
part by the National Science Foundation under grant MCS-8213718 and by the Office of Naval Research
under contract N00014-85-K-0074.

+ School of Electrical Engineering, Cornell University, Ithaca, New York 14853.

Reprinted with permission from SIAM Journal of Scientific and Statistical Computing, Franklin T. Luk,
"A Rotation Method for Computing the QR-Decomposition," Vol. 7, pp. 452-459, April 1986.
© 1986 by the Society for Industrial and Applied Mathematics. All rights reserved.
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processor to each block, resulting in a mesh-connected grid of ([n/2])* processors.
The Schur decomposition array in [13] consists of two computational networks, each
one quite similar to the multiprocessor array in [3], [4]. A total of approximately n’/2
processors are needed (see § 2 for a precise count). However, if we assign two nodes
(one from each network) to a processor, we can simulate this complex array using a
mesh-connected grid of processors (cf. O’Leary-Stewart [11]). Our QRD algorithm
requires the Schur decomposition array, hence O(n?) processors.

In § 2 we present our new algorithm and prove that it always converges after 2n
time steps. The algorithm is extended to handle an m x n (m = n) matrix in § 3. The
requirements become O(n?) processors and O(m) time.

2. The algorithm. We parallelize the computations by simultaneously triangulariz-
ing | n/2] two-by-two submatrices of Ae R"™". Consider the basic transformation: a
QRD with column pivoting is computed of the 2 X2 matrix

B= (“"" a"") :
a; a;

We get

where

J:( ¢ s) and n=(0 1).
-5 ¢ 1 0

The rotation parameters are calculated using the formulae:
h=vai+al, c=ay/h, s=ay/h
The full transformation on A is defined by

(2.1) T;: A> A= J,All

ijs
where J; denotes a plane rotation and II; a permutation, both in the (i, j)-plane. The
transformation T}; will annihilate the (j, i)-element.

Our new algorithm uses an “odd-even” ordering of Stewart [13]. His ordering is
amply illustrated by the n =8 case:

(1,/)=(1,2),(3,4),(5,6),(7,8),(2,3), (4,5), (6, 7).

Many results in this section come from [13] and an interested reader should consult
that fine paper. Besides a parallel implementation, the “odd-even” ordering preserves
the triangular structure of a given matrix (see Lemma 5). A bonus (unimportant here)
of the ordering is that the sum of squares of the strictly lower triangular elements will
decrease. More precisely, define

o(A)= Y la,l.,

pP=q
The transformation T;;,, will produce a matrix A satisfying
o(A)=a(A)=|a;.,

Our procedure thus shares with other Jacobi methods (cf. [3], [4], [13]) the property
that it drives the matrix to the desired form. An important difference is that our
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algorithm is finite: it converges after 2n time steps (see Theorem 2), where one time
step is defined as the time required to do a transformation T;. The orthogonal matrix
Q is readily computable through accumulating the plane rotations. We present our
new algorithm.

ALGoriTHM QRD.
Q<1
fort=1,2,---,n do
fori=1,3,---(i odd), 2,4, - - (i even) do
begin
Aed i Al
Q‘_QJ;,riﬂ

end.

The column pivotings are essential. For example, Algorithm QRD without pivoting
stagnates on a matrix with a zero subdiagonal:

X X
X
X

X X ©
X © X X
X X X X

0

Interestingly, the pivotings nullify one another after 2n steps.

LEMMA 1. All columns of A return to their original positions after 2n time steps.

Proof. A column vector moves forwards (backwards) after each time step until it
gets to the first (last) position, where it stays for one step. It then reverses direction
and moves again. The required number of steps for all columns to return to their initial
positions equals the sum of 2n —2 (for moving) and 2 (for the rest periods at the two
ends). O

Fig. 1 (cf. [13, Fig. 4.1]) exhibits these interchanges for the case n = 6. The numbers
to the side are time steps, and the six numbers following them mark the positions of
the original columns. A dash between two elements indicates an interchange that will
take place at the next time step. We shall prove that the matrix is triangularized after
at most 2n — 2 time steps. First, we introduce a notation and define a property indicating
that a column vector is in “upper triangular” form.

Notation. Let A” = A and denote by A" the matrix A after time step . Set also

AP=(al", .+, a")= (a).

0. 1-2 3-4 5-6
1. 21-43-65
2. 2-4 1-6 3-5
3. 42-61-53
4. 4-6 2-51-3
5. 64-52-31
6. 6-5 4-3 2-1
7. 56-34-12
8. 5-3 6-1 4-2
9. 35-16-24
10. 3-1 5-2 6-4
11. 1 3-25-46
12. 1-2 3-4 5-6

Fi1G. 1. Positions of original columns after each time step.
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DEFINITION. We say a!”

€ U (the ith column is in “upper-triangular” form) if

elements a{?,;, -+, a) all equal 0. O

Let us state and prove three lemmas.

LEMMA 2. If T,_,, is made at time step t, then a\*{) ;e U, fori=0,1,---,n—2.

Proof. The transformation T,_,, annihilates the (n, n —1)-element. So a(‘) eU.
Now use induction. At time step t+j (j=0) we perform T,_,_;,_; so that column
a*{) ;e U. At the next time step, the rotation in T,_,_;,_,_; will create a new zero in
the (n—1—j, n—2—j)-position, and pivoting will bring zeros to the other subdiagonal
positions of column n—2—j from column n—1—j. Hence a4 e U. O

LEMMA 3. If T,_,, is made at time step t, then a5\ > e U fori=1,2,---, |n/2].

Proof. We perform the transformation T,,_, , attime steps ¢, t+2, t+4, - - - . Hence
al*¥e U, for j=0,1,---. Apply Lemma 2 to each of these vectors. O

LEMMA 4. Ifa(') -+, al”, al¥, areallin U and T,,, ., is made at time step t+1,
then a{"*V, - - - a{'\V all belong to U.

Proof. We can check that our basic transformation (2.1) applied to any two
consecutive columns in {ai”, - - -, a{”} will not move the resulting pair out of U. The
transformation T}, 4, Will put column a!’}" in U (see the proof of Lemma 2). 0O

In words, after transformation T,,_, , the (n—1)-st column satisfies the “upper-
triangular” property. The column then moves left and picks up appropriate zero
elements along the way (Lemma 2). The same event recurs every two time steps.
Eventually all odd-numbered columns are in ‘“upper-triangular” form (Lemma 3).
After that, the first two columns get in U, then the first three columns, and so on
(Lemma 4). We thus need only to determine when the transformation T,,_, , first occurs
to compute the time at which the matrix becomes triangularized.

THEOREM 1. The matrix A®"">(A®""?) is upper triangular for n even (n odd).

Proof. For n even (n odd), we do the transformation T,_, , at time step 1 (step
2). After n —2 additional time steps, all odd-numbered columns are in U (Lemma 3).
At the next time step, T,; is made. We need n —2 time steps for columns 2,3, -+, n—1
to getin U (Lemma 4). O

It is clear now why the pivot block has been restricted to contiguous elements.

LEMMA 5. Let A" be upper triangular. Then A"V stays upper triangular.

Proof. Apply T,;,, (1=i<n)to A". Columns a{"*", a{{ " still belong to U. O

Since each column of A returns to its original position after 2n steps, we have
proved our principal result.

THEOREM 2. Algorithm QRD computes a QR-factorization of A after 2n steps.

Figure 2 shows how a 6 X6 matrix is triangularized after 9 steps. Steps 10 to 12
are necessary to return all columns to their original positions.

To implement the algorithm we associate a processor with each 2 x 2 block of four
contiguous elements. The architecture is the same as the Schur decomposition array
introduced in Stewart [13] and detailed in O’Leary-Stewart [11]. There are (n*>+2n—
6)/2 processors for n even and (n*+2n—3)/2 processors for n odd. Only nearest
neighbor connections are required of the processors, since each needs only to receive
rotations from some of its neighbors, apply them and pass them on to other neighbors.
We do not assume broadcasting of the rotation parameters and so each cluster of
rotations requires ([n/2]—1) time steps to pass completely out of the matrix. Since
the clusters follow each other at intervals of two time steps and the last (2nth) cluster
begins at step 4n—1 our algorithm requires a total of ([9n/2]—2) time steps. The
rotations propagate through the matrix as shown in Fig. 3 [13].

As mentioned in §1 we look for a new QRD algorithm to eliminate array
interfacings in an SVD computation. All other quadratic QRD arrays [1], [2], [8] are
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X X X X X X 3. X X X X X X
X X X X X X

2.

X X X X X X

0 X X X X X

0 X X X X X

X X X X X X
X X 0 x x x

X 0 X X X X

X X X X X X

X X X X X X
X X X 0 x X
X X X 0 x X

X X 0 X x X

X X 0 X X X

X X X X X X

X x 0 x 0 x

X X X x 0 x

X X X X X X

0 X X X X X

6.

X X X X X X

5.

4, X X X X X X

0 X X X X X

X X X X X X

X 0 X X xX X

0 0 X X X X

0 X X X X X

0 x 0 x X X 0 0 X X X X

x 0 X X X X

0 x 0 X X X 0 0 x 0 x x

x 0 X 0 x X

0 x 0 x 0 x 0 0 x 0 x X

X 0 X 0 x Xx

X X X X X X 9. X X X X X X
0 X X X X X

8.

X X X X X X

7.

0 X X X X X

0 X X X X X

0 0 x X X Xx 0 0 x X x Xx

0 0 X X X X

0 0 0 x x X 0 0 0 x X Xx

0 0 0 x x Xx

0 0 0 0 x x 0 0 0 0 x x

0 0 0 x x X

00 0 0 x x 00 0 0 0 x

0 0 0 x 0 x

X X X X X X

0 X X X X X

12.

X X X X X X

11.

X X X X X X
0 X X X X X

10.

0 X X X X X

0 0 X X X X 0 0 X X xX X

0 0 X x x X

0 0 0 x x X 0 0 0 x x X

0 0 0 x x X

0 0 0 0 x x 00 0 0 x x

0 0 0 0 x x

00 0 0 0 x 00 0 0 0 x

0000 0 x

F1G. 2. The zero-nonzero structure after each time step.

X X X X
X X X X

1
1

X X X X X X

X X X X
X X X X

1

X X X X

1 x x 1

X X

1
1

X X X X X X

X X X X

X X X X
X X X X

X X X X X X

1
1

4 x 2 2 X X X

X X

1
1

X X X X
x 2 2 x

3.

2 x x 2 2 x

2 X X 2 2 X X x

1
1
X 2 2 X X X

X 2 2 %X X X

X 2 2 x x 2 2 x
X 2 2 x x 2 2 %
X X X 2 2 x x 2

X X X 2 2 x

1
1

1

X X xX 2 2 X%

1

X 2 2 x x 2
X X X 2 2 x

x 2 2 x 1

X X X X

1
1

X X 3 3 x 2 2 x

X X 3 3 X X x 2

6.

3 3 x 2 2 x %X X
3 3 X x x 2 2 x

X X 3 3 x 2 2 x

5.

3 3 x x 3 3 x 2

3 3 x x 3 3 x x

2 x 3 3 x x x 2

X x 3 3 x x 3 3

2 X X X 3 3 x 2

X 2 2 x 3 3 x x

2 x 3 3 x x 3 3

2 x Xx x 3 3 x x

X 2 2 x 3 3 x x

X 2 2 x x x 3 3

X X X 2 2 x 3 3

F1G. 3. Propagations of the rotations.
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triangular structures composed of n(n +1)/2 processors (including the n delay registers
in [1], [2]) and they require 3n —2 time steps. Admittedly, Algorithm QRD needs a
little more time and the array structure is slightly more complex. But the possibility
of computing an SVD using just one programmable array of processors justifies the
additional costs.

It is of independent interest to compare the methods in [1], [2], [8] with Algorithm
QRD. The methods of Ahmed et al. [1] and of Gentleman-Kung [8] annihilate elements
of A from top down by chess knight moves, while the method of Bojanczyk et al. [2]
performs the Givens rotations from bottom up by “long’ chess knight moves. These
methods all require 3n —5 stages, where one stage is defined to be a simultaneous
application of disjoint plane rotations. Algorithm QRD requires 2n stages and creates
zeros in a rather unusual manner. The precise way depends on whether n is even or
odd and will be omitted. Figure 4 illustrates the three different orderings for n =38.
Like other parallel Jacobi-type methods [3], [4], [13] Algorithm QRD cannot utilize
any banded structure of A.

We complete our analysis by examining roundoff errors. The following lemma
comes from Gentleman [7].

LeMMA 6. If a sequence of plane rotations in a QRD scheme can be written as a
sequence of s stages, then the final computed matrix obtained when this sequence of plane
rotations is applied to a given matrix A will be the exact result of exact computations on
a matrix whose difference from A is bounded in norm by ns(1+n)*"'||A|F, where 7

denotes a small multiple of the machine precision and || - || the Frobenius matrix norm.
X X X X X X X X
1 x X X X X X X
2 4 x X X X X X
35 7 x x x x X
4 6 8 10 x x x X
5 7 9 11 13 x x x
6 8 10 12 14 16 x X
7 9 11 13 15 17 19 x

(a) Ahmed et al. [1] and Gentleman-Kung [8].

X X X X X X X X
7 X X X X X X X
6 9 X X X X X X
5 8 11 x X x X X
4 7 10 13 x X X X
3 6 9 12 15 x X X
2 5 8 11 14 17 x X
1 4 7 10 13 16 19 x
(b) Bojanczyk et al. [2].

X X X X X X X X
15 x X X X X X X
14 16 X X X X X X
13 15 11 x x X X X
12 14 10 16 x X X X
1 13 9 15 7 x x X
10 12 8 14 6 16 x X
9 11 7 13 5 15 3 x

(¢) Algorithm QRD.

F1G. 4. Three different orders of annihilations.
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We thus obtain a better error bound for Algorithm QRD (s=2n) than for the
other three methods (s =3n —5). This result comes as a surprise since redundant zeros
are created by our algorithm.

3. Rectangular matrices. In § 2 we consider only square matrices. If the matrix A
has more rows than columns, i.e., Ae R™*" with m=n, then we may adopt one of
two strategies. The first approach is to apply Algorithm QRD to the square matrix

A=(Al0)e R™™,

. R 0
i-o(3 o).

!

The procedure requires O(m) time and O(m?) processors. Its advantage is that no
additional hardware is needed, assuming that our processor array can handle m x m
matrices. The problem is of course that this assumption may be wrong.

The second approach is appropriate for a very large m, particularly for m > n.
For simplicity, assume that our array can handle 2n X 2n matrices and that

We get

where Re R"*" and so

k=m/n

is an integer. Partition the matrix in the form:

Ay
where each block A; is n X n. We propose a procedure that eliminates the elements of
A one block at a time.

ALGORITHM Block QRD.
Set R, = Ak 5
Fori=1,2,---,k—1do
Use Algorithm QRD to compute a 2n X 2n QR-decomposition:

A O _ R, 0)
( R,‘ 0) —Qi+l( 0 0 s
where Q;;,€ R**" and R;,, € R™*".

We get the QR-decomposition of A from

Ly 0 O\/L., 0 0 I, 0 0
I _ 0
o=(“ ) 0 @ oo @ of [0 Q. o (Q" 0),
0 Q 0 I
o o n/\o o 1 0 0 I,
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where I; denotes the jn X jn identity matrix, and

Ry

The requirements are O(n”) processors and O(m) time. Note that one may speed up
the algorithm by using two or more processor arrays. With |k/2| arrays we need but
[log, k] steps. Thus, excluding the costs of data input and output, the required time
can be cut to O(nlog k).
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A Novel Algorithm and Architecture for Adaptive
Digital Beamforming

CHRISTOPHER R. WARD, PHILIP J. HARGRAVE, anp JOHN G. McWHIRTER

Abstract—A novel algorithm and architecture are described which have
specific application to high performance, digital, adaptive beamforming.
It is shown how a simple, linearly constrained adaptive combiner forms
the basis for a wide range of adaptive antenna subsystems. The function
of such an adaptive combiner is formulated as a recursive least squares
minimization operation and the corresponding weight vector is obtained
by means of the () — R decomposition algorithm using Givens rotations.
An efficient pipelined architecture to implement this algorithm is also
described. It takes the form of a triangular systolic/wavefront array and
has many desirable features for very large scale integration (VLSI) system
design.

1. INTRODUCTION

HE OBJECTIVE of an adaptive antenna is to select a set
of amplitude and phase weights with which to combine the
outputs from the elements in an array so as to produce a far-
ficld pattern that, in some sense, optimizes the reception of a
desired signal. The substantial improvements in system
antijam performance offered by this form of array processing
has meant that it is now becoming an essential requirement for
many military radar, communications and navigation systems.
The key components of an adaptive antenna system are
illustrated in Fig. 1(b). The amplitude and phase weights are
selected by a beampattern controller that continuously updates
them in response to the element outputs. In some systems the
output from the beamformer is also monitored to provide a
feedback control. In all cases the resulting array beampattern
is continuously adjusted to ensure cancellation of interference
and jamming sources.

The most commonly employed technique for deriving the
adaptive weight vector uses a closed loop gradient descent
algorithm where the weight updates are derived from estimates
of the correlation between the signal in each channel and the
summed output of the array. This process can be implemented
in an analog fashion using correlation loops [1] or digitally in
the form of the Widrow least mean square (LMS) algorithm
[2]. The value of this approach should not be underestimated.
Gradient descent algorithms are very cost-effective and
extremely robust but unfortunately they are not suitable for all
applications. The major problem with an adaptive beamformer
based on a gradient descent process is one of poor convergence
for a broad dynamic range signal environment. This consti-
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tutes a fundamental limitation for many modern systems where
features such as improved antenna platform dynamics (in the
tactical aircraft environment, for example), sophisticated
jamming threats and agile waveform structures (as produced
by frequency hopped, spread spectrum formats) produce a
requirement for adaptive systems having rapid convergence
and high cancellation performance.

In recent years, there has been considerable interest in the
application of direct solution or ‘‘open loop’’ techniques to
adaptive antenna processing in order to accommodate these
increasing demands. In the context of adaptive antenna
processing, these algorithms have the advantage of requiring
only minimal input data to accurately describe the external
environment and provide an antenna pattern capable of
suppressing a wide dynamic range of jamming signals. Open
loop algorithms may be explained most concisely by express-
ing the adaptive process as a least squares minimization
problem. In fact, the least squares algorithm may be consid-
ered to define the optimal path of adaptation.

In this paper we describe a novel algorithm and architecture
for high performance, digital, adaptive beamforming. The
adaptive combiner function is formulated as a recursive least
squares minimization process and the corresponding set of
linear equations is solved using the Q— R decomposition
algorithm. It is further shown how the Q — R algorithm can be
implemented using an efficient pipelined architecture in the
form of a triangular systolic array.

II. Basic CONFIGURATIONS

The form of adaptive combiner which we consider in this
paper is illustrated in Fig. 1(b). The inputs to the combiner
take the form of a primary signal y(¢f) and set of N — 1
(complex) auxiliary signals x(f). The weight vector w is
adjusted to minimize the power of the combined output signal
which is given by

e(t)=xT(1)w+y(t). (1)

This type of adaptive linear combiner may be used in a wide
range of adaptive antenna applications.

It is well known, for example, how it may be applied to
adaptive sidelobe cancellation. In this case the primary signal
constitutes the output from a main (high gain) antenna while
the auxiliary signals are obtained from an array of N — 1
auxiliary antennas. The adaptive combiner serves to modify
the beampattern of the overall antenna system by directing
deep nulls toward jamming waveforms received via the
sidelobes of the main antenna.

Reprinted from IEEE Transactions on Antennas and Propagation, pp. 338-346, March 1986.
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Fig. 1.

[t is also well known how this form of adaptive combiner
may be used in conjunction with a suitable reference signal to
control a more general antenna array in which all of the
elements are essentially equivalent. The reference signal,
which is assumed to be correlated with the desired signal,
provides the (negative) primary input to the combiner while
the signals received by the antenna array provide the N — 1
auxiliary inputs. In this case the weighted sum of the auxiliary
inputs provides as close a match as possible to the reference
signal and hence produces the desired output from the
beamformer.

The basic combiner illustrated in Fig. 1(b) may also be used
in the so-called *‘power inversion’’ mode which has particular
application to communications. In this case the /N antenna
elements are assumed to be omnidirectional and of comparable
gain. The received signals are fed into the combiner, one of
them going to the primary channel and thus having its weight
coefficient constrained to unity. The other V — 1 signals enter
the auxiliary channels with their adaptive weights initialized to
zero and so, prior to adaptation, the overall beampattern is
determined solely by the (omnidirectional) response of the
“*primary element.”” This ‘‘end-element clamped’’ configura-
tion provides no inherent mechanism to inhibit the adaptive
process from nulling the desired signal. However, the system
is only allowed to adapt when the desired signal is known to be
absent. When it is present, the weight vector is frozen thus
allowing signal reception. This is referred to as the “‘power
inversion’’ mode of operation because the differential interfer-
ence powers received by the antenna elements are inverted by
the combiner.

A particularly important application of adaptive antenna
arrays requires the power of an N element combined signal

e(t)=xT()w )

to be minimized subject to a linear beam constraint of the form
cTw=yp. 3

This constraint ensures that the gain of the antenna array

Key components of an adaptive antenna processor. (a) Constraint preprocessor. (b) Adaptive combiner.

maintains a constant value p in a given look direction specified
by the vector c. It is worth pointing out that the ‘‘end-element
clamped’’ configuration described above constitutes a particu-
larly simple form of linearly constrained process in which the
constraint vector is given by

¢7=(0, 0-—--0 1). (4)

However, the incorporation of a general linear constraint is
not so straightforward. A number of techniques have been
proposed in the literature but in all cases the resulting
implementation is extremely cumbersome. For example,
Widrow [3] et al. suggested the injection of an artificial look
direction signal into the antenna array receiver channels and
introducing a corresponding reference signal into the adaptive
process. This technique then requires an additional ‘‘slave
processor’’ to apply the adapted weight vector. Frost [4] also
showed how a general linear constraint could be incorporated
into the adaptive process using projection operator techniques
but the resulting algorithm is rather expensive in terms of
computation.

We will now show how the general linear constraint in (3)
may be incorporated in a much simpler way. It may be
assumed without loss of generality that cy = 1 and so (3) may
be expressed as

wy=p—c’w (5)

where ¢ and w denote the first N — 1 elements of the vectors ¢
and w, respectively. Equations (2) and (3) can therefore be
combined in the form

e(t)=(RT(t) —xn(t)e )W + pxn(t) (6)

where X(f) denotes the vector of signals received by the first
N — 1 channels of the N element array. Since the constraint has
been absorbed explicitly by eliminating the coefficient wy and
thereby removing the Nth degree of freedom, the power of the
combined signal e(#) may now be minimized with respect to
the unconstrained N — 1 element weight vector W. The form
of (6) is therefore identical to that of (1) and so the output

67



power minimization may be carried out using the type of
adaptive combiner illustrated in Fig. 1(a). The term + pxn(f)
corresponds to the primary signal y(f) while the transformed
vector X(f) — xy(f)c corresponds to the vector of auxiliary
signals x(f). This input data transformation may be imple-
mented using a simple linear preprocessor array of the type
depicted in Fig. 1(a). In effect the Nth antenna signal is
arbitrarily chosen as the primary combiner input. The corres-
ponding antenna clement is assumed to have omnidirectional
coverage and the constraint preprocessor ensures that any
signal which enters it from the required look direction is
removed from the auxiliary channels before they enter the
combiner. The adaptive nulling of this look direction signal is
thus prevented.

From the discussion in this section it should be clear that the
type of adaptive combiner illustrated in Fig. 1(b) has a wide
range of applications in adaptive beamforming. In the remain-
der of this paper we concentrate on the development of a novel
direct solution adaptive control technique which applies
specifically to this basic configuration.

[II. LEAST SQUARES MINIMIZATION

The function of the adaptive combiner in Fig. 1(b) will now
be formulated in terms of least squares minimization. We
denote the combined array output at time f; by

e(t;)=xT(t))w+y(t;)- @)
where x(¢,) is the vector of (complex) auxiliary signals at time
t; and y(f;) is the corresponding sample of the (complex)
primary signal. The residual signal power at time f, is
estimated by the quantity £*(n) where
Em)y=[le(t)|*+8le(t,- )2+ - - +8" e(t)]]V2 (8)
For the sake of generality this unnormalized estimator includes
a simple ‘‘forget factor’” & which generates an exponential
time window and localizes the averaging procedure.

Introducing a more compact matrix notation the estimator
defined in (8) may be expressed in the form

E(n)=|e(n)| )]
where
e(t))
e(m) =B(m)| *? (10)
e(ty)
and
B(n)=diag {87!, B""2, -+, 1} (11
with 8% = 6.

Now from (7) it follows that the vector of residuals may be
written in the form

e(m)=X(nN)w+yn) (12)

where

x7(ty)

xT(ty)

X (n)=B(n) (13)

x7(tn)
and

y{ty)

y(t)

y(n)=B(n) (14)

yitn)

X(n) is simply the matrix of all data received by the weighted
clements up to time ¢, and y(n) is the corresponding vector of
data in the primary or reference channel. The matrix B(n)
takes account of the exponential time window and, for
convenience, it has simply been absorbed into the definition of
e(n), y(n) and X(n).

Determining the weight vector w(n) which minimizes
E*(n) is referred to as least squares estimation [5]. The
conventional approach to this problem is to derive an analytic
expression for the complex gradient of the quantity E*(n) and
determine the weight vector w(n) for which it vanishes. Now

from (9) and (12) we have for the complex gradient
Vo (EXn)=2X"(n)(X(n)w +y(n)) (15)

and setting the right side of this equation equal to zero leads to
the well-known Wiener-Hopf equation:

M(nyw(n)+p(n)=0 (16)
where

M(n)=X"(n)X(n) amn
is the (estimated) covariance matrix and

p(n)=X"(n)y(n) (18)

is the estimated cross-correlation vector. The solution to (16)
for nonsingular M(n) is clearly given by

w(n)=-M~'(n)p(n) (19)
and this provides an analytic expression for the optimum
weight vector at time ¢,.

In their classic paper, Reed, Mallet, and Brennan [6]
suggested that the weight vector be obtained by solving (16)
directly and showed that the problems of poor convergence
associated with closed loop algorithms may be avoided in this
way. This approach leads directly to the type of signal
processing architecture which is illustrated schematically in
Fig. 2. It comprises a number of distinct components—one to
form and store the covariance matrix estimate, one to compute
the solution of (16) and one to apply the resulting weight
vector to the received signal data. These data must be stored in
a suitable memory while the weight vector is being computed.
The system also requires a number of high speed data
communication buses and a sophisticated control unit to
deliver the appropriate sequence of instructions to each
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component. This type of architecture is obviously compli-
cated, extremely difficult to design and not very suitable for
very large scale integration (VLSI).

Not only does the analytic solution given in (16) lead to a
complicated circuit architecture, it is also very poor from the
numerical point of view. The problem of solving a system of
linear equations like those defined in (16) can be ill-
conditioned and hence numerically unstable. Ill-conditioning
occurs if the matrix has a very small determinant in which case
the true solution can be subjected to large perturbations and
still satisfy the equation quite accurately. The degree to which
a system of linear equations is ill-conditioned is determined by
the condition number of the coefficient matrix. The condition
number of a matrix A is defined by

Cn(A)=N/\, (20)

where A\, and A, are the largest and smallest singular values,
respectively, of the matrix A. The larger Cn(A), the more ill-
conditioned is the system of equations. It follows from (17)
that

Cn(M(n)=Cn(X#(mX(m)=Cn*(X(n)) (1)

and so the condition number of the estimated covariance
matrix M(n) is much greater than that of the corresponding
data matrix X(n). Any numerical algorithm which avoids
forming the covariance matrix explicitly and operates directly
on the data is likely to be much better conditioned.

IV. Q — R DECOMPOSITION

An alternative approach to the least squares estimation
problem which is particularly good in the numerical sense is
that of orthogonal triangularization [7]. This is typified by the
method known as Q— R decomposition which we generalize
here to the complex case. An n X n unitary' matrix Q(n) is
generated such that

R
Q(n)X(n)=<—Q—)>

22
0 22)

' A matrix A is defined in this paper as being unitary if AYA = 1. Matrix A
is termed orthogonal if ATA = I.

where R(n) is an (N — 1) by (N — 1) upper triangular matrix.
Then, since Q(n) is unitary we have

E(nm)=le(nl =]Qmel

|(552) v (5]
where

u(n)=P(n)y(n)
and

v(r)=8S(n)y(n). (24)

P(n) and S(n) are simply the matrices of dimension (N — 1)
by nand (n — N + 1) by n, respectively, which partition

Q(n) in the form
3 P(n)
A= <S(n>> '

It follows that the least squares weight vector w(n) must
satisfy the equation

(25)

R(m)w(n)+u(n)=0 (26)

and hence

E(m)=|v(m)]. @7

Since the matrix R(n) is upper triangular, (26) is much easier
to solve than the Wiener-Hopf equation described earlier. The
weight vector w(n) may be derived quite simply by a process
of back-substitution. Equation (26) is also much better
conditioned since the condition number of R(n) is given by

Cn(R(m) = Cn(Q(n)X (n)) = Cn(X(n)). (28)

This property follows directly from the fact that Q(n) is
unitary.

Givens Rotations

The triangularization process may be carried out using
either Householder transformations [7] or Givens rotations
[8], [9], [10]. However the Givens rotation method is
particularly suitable for the adaptive antenna application since
it leads to a very efficient algorithm whereby the triangulariza-
tion process is recursively updated as each new row of data
enters the problem. A complex Givens rotation is an elemen-
tary transformation of the form

<C s*><0---0,ri-'-rk"'>
-5 C O"'O,X,'"'X/\-"'
=<§%’Ov> 29
where the rotation coefficients, ¢ and s, satisfy
-s-ritc-x=0
s*¥s+c*c=1

(30
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and are synonymous with the cosine and sine of an angular
rotation in the multidimensional complex space. These rela-
tionships uniquely specify the rotation coefficients as

|7l

(= a3
V.vf‘x,+r;"r,-
and
Xi
s=—-cC. (32)
I

A sequence of such elimination operations may be used to
triangularize the matrix X(n) in the following recursive
manner. Assume that the matrix X{n — 1) has already been
reduced to triangular form by the unitary transformation

R(n-1)
Q(n—l)X(n-—l)=< 5 ) . (33)
Now define the unitary matrix
-0
Clearly
~ - X(n-1
Q(n-DX(m=Q(n-1) <64——)>
X (tn)
BR(n—1)
_ 0
\ X )

and so the triangular process may be completed by the
following sequence of operations. Rotate the N — | element
vector x 7(r,) with the first row of SR(n — 1) so that the
leading element of x7(r,) is eliminated producing a reduced
vector X 7’ (t,). The first row of R(n — 1) will, of course, be
modified in the process. Then rotate the (N — 2)-element
reduced vector x 7’ (z,) with the second row of BR(n — 1) so
that the leading element of x7’(¢,) is eliminated and so on
until every element has been eliminated. The resulting
triangular matrix R(n) then corresponds to a complete
triangularization of the matrix X(n) as defined in (22). The
corresponding unitary matrix Q(n) is simply given by the
recursive expression

Qm=QMQr-1)

where Q(n) is a unitary matrix representing the sequence of
Givens rotation operations described above, i.e.,

(36)

BR(n-1) R(n)
Q) 0 = 0 |. 37
x7(t,) 0

[t is not difficult to deduce in addition that

Bu(n—-1) u(n) -
Q) | Bvini—1) | =| Bvin—1) =<5’—'—'-> (38)
() o) v
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and this shows how the vector u(n) can be updated recursively
using the same sequence of Givens rotations. The least squares
weight vector w(rn) may then be derived by solving (26). The
solution is not defined, of course, if n < (N — 1) but the
recursive triangularization procedure may, nonctheless, be
initialized by setting R(0) = 0 and u(0) = 0.

Direct Extraction of Residuals

In many least squares problems, and particularly in the
adaptive antenna application, the main objective is to compute
the least squares residual since the corresponding weight
vector is not of direct interest. Previous work by McWhirter
[11] has described a modified version of the Q — R recursive
least squares algorithm in which the least squares residual is
produced directly at each stage of the recursive process
without any need to derive the weight vector explicitly. The
modified algorithm is much more robust since it avoids the
solution of a system of linear equations which could be ill-
conditioned. Furthermore, since the back-substitution circuit
and the separate beamforming network are both eliminated, it
offers a significant reduction in the complexity of the
subsequent hardware implementation.

The derivation of this technique may be summarized as
follows. Since

u(n)
R(n) _—
Q(n)e(n)=<—6—> w(n)+| Bv(n—-1) (39
a(n)

and the weight vector must satisfy (26), it follows that the
residual vector e(n) is given by

e(ty) 0
Qe =0 Q- B | “? | Bve-1)
elt,) ()
(40)
But Q(n) is unitary and so we have
e(t)) 0
Q=BG | “ | _ gy | Bvin=1) @41
e(t,) a(n)

Considering only the nth element of the vectors in (41) it is

then possible to deduce that the current residual e(t,) is given
by

e(ty)=vy(n) - a(n) (42)

where

N-1
rm=T]« (43)

is the product of all cosine parameters generated during the
sequence of Givens rotations used to eliminate the vector
x7(t,). Equation (43) follows from the fact that Q(n) is simply



the product of (N — 1) elementary rotations of the form

QM) =Qu-i(mQu_a(n) -+ Qi(n). (44)
The ith elementary rotation is simply given by
| 0
1

) EEEEE s¥
Qi(n) O ol ; (45)

E

_.S' ..... C’

where the only nonzero off-diagonal elements occur in the ith
row and the ith column. The result may be obtained by
considering the effect of a reversed sequence of conjugate
clementary rotations on the nth element of the right-hand
vector in (41). The parameter () may readily be computed
during the recursive update of the matrix R(n) while the scalar
quantity ofn) is available as a direct byproduct of the
corresponding update for the vector u(n). The current residual
e(t,) may therefore be evaluated in a very cost-effective
manner.

In order to avoid complicating this discussion on adaptive
beamforming. we have only considered the most direct form
of the Givens rotation algorithm. However, it is important to
point out that a very efficient ‘‘square root free’’ Givens
algorithm has been derived by Gentleman. The square root
free algorithm is equally applicable to the type of adaptive
beamformer described in this paper and would almost cer-
tainly be used in any practical application. The essential details
relating to its use may be found in [10] and [11].

Sensitivity to Arithmetic Precision

An important aspect of any signal processing algorithm is its
sensitivity to limited arithmetic precision. We have recently
carried out a detailed computer simulation study to compare
the effect of limited precision on the performance of two
adaptive cancellation processors—one based on sample matrix
inversion and the other on the recursive Q— R algorithm.
The results indicate quite distinctly the improved performance
offered by the data domain Q — R method under conditions of
finite resolution arithmetic compared with the sample matrix
inversion technique. Fig. 3(a) shows a simple schematic
representation of the two computer simulations. In both cases
the sequence of data samples was generated and applied to the
constraint preprocessor. The preprocessor applied a look
direction constraint toward the desired signal and was
implemented at full computer precision. The transformed data
were then truncated to the chosen arithmetic precision, this
word length being retained throughout subsequent Q—R
decomposition or sample matrix inversion computation. To
ensure a fair comparison between the two basic approaches
(i.e., covariance versus data domain), the effective sample
matrix inversion solution was actually computed by perform-
ing a Q — R decomposition on the covariance matrix estimate
in (16). In both cases the back-substitution was performed at
full computer precision.
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Fig. 3(b) shows a typical comparative result which corres-
ponds to a 24-bit floating point word length (16-bit mantissa
and eight-bit exponent). Here, we plot the expected signal-to-
noise ratio at the output of an eight-clement array as an
increasing number of data samples arc used to compute the
adapted weight vector solutions. In this example, we have
modelled the effect of three equal power jamming signals
received individually at levels of 0 dB relative to a thermal
noise floor of —50 dB at the antenna array elements.

The complex envelope of each jammer was described by an
independent. narrow-band Gaussian process. The model also
incorporated a desired signal received by the array at a level of
15 dB above the thermal noise tloor but approximately 40 dB
below the total received jamming.

From Fig. 3(b) it can be seen that the initial rate of
adaptation is extremely rapid for both sample matrix inversion
and the data domain Q — R algorithm. In both cases a good
level of jamming cancellation is obtained after about ten to 20
data samples. However, with sample matrix inversion there is
clear evidence of an unstable weight vector as reflected by
extreme fluctuations in the adaptive response curve. In
contrast, the data domain Q— R method shows no sign of
numerical instability and it is found that, over the timescale
shown on these plots, the signal-to-noise ratio performance
gets progressively better as the covariance information (in the
form of the updated R matrix) gains more and more statistical
accuracy with time.

For this scenario it was found that the sample matrix
inversion technique required a floating point word length of 32
bits (24-bit mantissa and eight-bit exponent) to achieve
comparable performance with the data domain Q-R
algorithm. It cannot be assumed, of course. that this word
length would be sufficient for any arbitrary dynamic range
environment. One should only conclude that the word length
required by the sample matrix inversion approach will always
be significantly greater than that for the data domain Q—R
method.

V. SystoLic ARRAY IMPLEMENTATION

Kung and Gentleman [12] have shown how the Givens
rotation algorithm described above may be implemented in a
very efficient pipelined manner using a triangular systolic
array. The implementation of a five-channel adaptive beam-
forming network using this architecture is shown in Fig. 4. It
may be considered to comprise three distinct sections—the
basic triangular array labeled ABC, the right hand column of
cells labeled DE and the final processing cell labeled F. The
entire array is controlled by a single clock and comprises three
types of processing cell. Each cell receives its input data from
the directions indicated on one clock cycle, performs the
specified function and delivers the appropriate output values to
neighboring cells as indicated on the next clock cycle. Apart
from the introduction of an extra parameter into the boundary
cell, the function of the boundary and internal cells is precisely
that required to implement the Givens rotations described
above. Each cell within the basic triangular array stores one
element of the recursively evolving triangular matrix R(n)
which is initialized to zero at the outset of the least squares
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Fig. 4. Triangular systolic array for adaptive beamforming.

calculation and then updated every clock cycle. As a result of
this initialization the value of r;; within each boundary cell is
entirely real. Cells in the right-hand column store one element
of the evolving vector u(n) which is also initialized to zero and
updated every clock cycle. Each row of cells within the array
performs a basic Givens rotation between one row of the
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stored triangular matrix and a vector of data received from
above so that the leading element of the received vector is
eliminated as detailed in (29). The reduced data vector is then
passed downwards through the array. This arrangement
ensures that as each row x7(¢,) of the matrix X moves down
through the array it interacts with the previously stored



triangular matrix R(n — 1) and undergoes the sequence of
rotations Q(n) described in the earlier analysis. All of its
elements are thereby eliminated (one on each row of the array)
and an updated triangular matrix R(n) is generated and stored
in the process.

As each element of the vector y moves down through the
right hand column of cells it undergoes the same sequence of
Givens rotations interacting with the previously stored vector
u(n — 1) and generating an updated vector u(n) in the
process. The resulting output, which emerges from the bottom
cell in the right-hand column, is simply the value of the
parameter «(n) in (42). The other value y(n) required for
direct computation of the least squares residual e(¢,) is
generated recursively by the additional parameter y which
appears in the definition of the boundary cell function. The
value of v (initialized to one) is simply multiplied by the
*‘cosine’’ parameter in each boundary cell and passed on to the
boundary cell in the next row two clock cycles later. The extra
delay, which is a direct consequence of the temporal data
skew, may be achieved by using an additional storage element
which is indicated by a black dot in Fig. 4 and would be
incorporated within the boundary processor. The required
value y(n) emerges from the final boundary cell and is simply
multiplied by the corresponding output value a(#n) to produce
the desired residual. This operation takes place within the final
processing cell F. A consequence of the highly pipelined
nature of the systolic array and the need to impose a time-skew
on the input data is the presence of an overall delay or latency
in the system response. Each output residual e(z,) corresponds
to a data vector whose first element was input to the network
2(N — 1) clock periods previously.

The systolic array described in this section clearly exhibits
many desirable properties such as regularity and local inter-
connections which render it comparatively simple to imple-
ment. Furthermore, the control overhead is extremely low
since the processing cells operate synchronously and the only
control required is a simple globally distributed clock.
However, the need to distribute a common clock signal to
every processor without incurring any appreciable clock skew
is one possible disadvantage of the systolic array approach
particularly in large multiprocessor systems. It is possible,
however, to implement the same basic design as a wavefront
array processor of the type proposed by S. Y. Kung et al. [13].
In a wavefront array processor, the required computation is
distributed in exactly the same way over an array of
elementary processors as it would be on the corresponding
systolic array. Unlike its systolic counterpart, however, the
wavefront array does not operate synchronously. Instead, the
operation of each processor is controlled locally and depends
on the necessary input data being available and on its previous
outputs having been accepted by the appropriate neighboring
processors. As a result, it is not necessary to impose a
temporal skew on the data input to a wavefront processor.
Instead the associated processing wavefront develops naturally
within the array. In order to operate in the wavefront array
mode, every processing element must incorporate some
additional circuitry to implement a bidirectional handshake on
each of its input/output links and thus ensure that the necessary

communication protocol is observed. This represents an
overhead which is not negligible but can easily be absorbed
within the overall processing.

Obtaining the Weight Vector

It is worth pointing out that, as well as being capable of
operating in the direct, beamforming mode, the triangular
array in Fig. 4 can also be used in conjunction with some
additional circuitry to compute the weight solution explicitly.
The scheme which was originally proposed by Kung and
Gentleman [12] uses the triangular systolic array in conjunc-
tion with a linear systolic array which solves for the weight
vector by back-substitution. This method could clearly be used
with the circuit in Fig. 4 by providing suitable means for
extracting the triangular matrix R(n) from the array. How-
ever, the weight vector, if required, can be obtained in a much
simpler way as a further byproduct of the direct residual
extraction technique.

The method, which we refer to as ‘‘weight flushing’’ may
be explained fairly simply as follows. As the nth data vector
x(t,) and the corresponding input y(f,) pass through the
triangular array in Fig. 4 they update the parameters of the
system from their state at time » — 1 to the new state at time
n. The vector x(¢,) also undergoes a simple linear projection
with the implicit updated weight vector w(n) to produce the
corresponding output residual

e(t,,):xT(t,,)w(n)+y(t,,). (46)

Assume that the state of the system is subsequently
‘“‘frozen’’ by preventing any further adaptation and define a
simple N — 1 element projection vector of the form

¢I=0--- 010 ---0) (47)
with unit ith element. If the vector ¢; is now input to the array
as though it were another vector of auxiliary samples and the
corresponding primary input is set equal to zero it follows

from (46) that the associated output ‘‘residual’’ must be given
hv

b ]w(n)=w(n). (48)

It is therefore possible to ‘‘flush’’ the entire weight vector
w(n) out of the array by inputting to the N — 1 auxiliary
channels the sequence of vectors ¢; (f = 1,2, <+, N = 1)
i.e., by inputting a simple unit diagonal matrix.

For the sake of brevity in this paper we have not explained
in detail how the adaptive process may be *‘frozen’ in
practice. However, the technique is quite straightforward and
may be implemented in a very direct manner. It is particularly
simple when the square root free Givens rotation algorithm is
being used.

V1. CoNCLUSION

This paper has described a novel algorithm and associated
systolic/wavefront array architecture for high performance,
digital, adaptive beamforming. The adaptive beamformer
enjoys all the desirable architectural features of a systolic or
wavefront array. As each row of data moves down through the
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array it is fully absorbed into the statistical estimation process,
the triangular matrix R(#) is updated accordingly and the
corresponding residual is produced automatically. The circuit
architecture is greatly enhanced by avoiding the need to derive
an explicit solution for the least squares weight vector W ().
This leads to a considerable reduction in the amount of
computation and circuitry required since it is no longer
necessary to clock out ecach triangular matrix R(n), carry out
the back-substitution or form the vector product x7(z,) W(n)
explicitly.

The adaptive beamformer described in Sections IV and V is
also based on a very stable and well-conditioned numerical
algorithm. Indeed the method of Q— R decomposition by
Givens rotations is widely accepted as one of the very best
techniques for solving lincar least squares problems. However
the final triangular lincar system may, in general. be ill-
conditioned and avoiding the back-substitution process also
enhances the numerical properties of the adaptive combiner. In
particular the systolic array implementation of the Q—R
algorithm produces the correct (zero) residual even if n < (N
1) and the matrix X is not of full rank. This sort of
unconditional stability is most important in the design of real
time signal processing systems.

As part of the United Kingdom's research program into
advanced algorithms and architectures for adaptive antenna
array signal processing, Standard Telecommunication Labora-
tories and the Royal Signals and Radar Establishment are
developing jointly an experimental wavefront array processor.
This digital processor will be configured primarily as an
adaptive antenna test-bed and will have the ability to process
six input channels of data in real-time. Each node of the
wavefront array processor will be based on an existing digital
signal processor chip and hence will provide a useful degree of
programmability whilst maintaining a node throughput rate
which will allow a comprehensive range of real-time tests and
trials.

Eventually, the development of high performance process-
ing nodes by VLSI design will permit the practical realization
of such parallel processing architectures in extremely compact
hardware form. In addition, the VLSI circuitry in conjunction
with advanced technology will provide processing throughput
rates far in excess of those obtainable by current DSP
components and will therefore be matched to future wideband
radar and communications applications.
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Systolic array processor for MVDR beamforming

J.G. McWhirter
T.J. Shepherd

Indexing terms: Array processing, Adaptive antennas, Alyorithms

Abstract: An efficient systolic array for computing
the minimum variance distortionless response
(MVDR) from an adaptive antenna array is
described. It is fully pipelined and based on a
numerically stable algorithm which requires
O(p* + Kp) arithmetic operations per sample time,
where p is the number of antenna elements and K
is the number of look direction constraints.

1 Introduction

In this paper, we describe a novel systolic array which
can efficiently compute the minimum variance distor-
tionless response (MVDR) from an array of p antenna
receiver elements in a rapidly changing signal
environment. The MVDR beamforming problem
amounts to minimising, in a least squares sense, the com-
bined output from an antenna array subject to K inde-
pendent linear equality constraints, each of which
corresponds to a chosen ‘look direction’. The constraints
are independent in the sense that, for each new vector of
received data samples, it is necessary to compute the
minimum array output subject to each constraint in turn.
This involves the solution of K independent, but closely
related, least squares minimisation problems.

In a previous publication, McWhirter and Shepherd
[1] showed how a p + 1 x p + 1 triangular systolic array
of the type proposed by Gentleman and Kung [2] and
adapted by McWhirter [3] could be applied to the
problem of recursive least squares minimisation, subject
to one or more simultaneous linear equality constraints.
In effect, the top row or rows (one for each simultaneous
constraint) of the triangular array are used to perform a
constraint preprocessing operation. The remainder of the
triangular array is used to perform a QR decomposition
on the transformed data matrix produced by the ‘con-
straint preprocessor’. The number of arithmetic oper-
ations performed by this array is O((p + 1)?) per sample
time. Unfortunately, this type of systolic array is ineffi-
cient for computing the MVDR, which involves several
independent constraints. As the constraint preprocessor
will produce a different transformed data matrix for each
of the constraints, the whole computation, including QR
decomposition, must be repeated for each constraint, and
the number of arithmetic operations required is
O(K(p + 1)) per sample time.
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In a recent paper, Bojanczyk and Luk [4] proposed
the use of a different triangular systolic array for comput-
ing the MVDR. Their approach also requires a separate
preprocessing operation to be applied to the received
data vectors for each of the K independent constraints,
and so it still requires O(K(p + 1)?) arithmetic operations
per sample time. Compared to the constraint pre-
processing technique of McWhirter and Shepherd, the
method proposed by Bojanczyk and Luk for computing
the MVDR requires more arithmetic operations to be
performed and leads to a more complicated processor
design. However, it involves much less data storage and
is likely to have better numerical properties because the
preprocessing operation is carried out using only orthog-
onal transformations.

A much more efficient algorithm for computing the
MVDR has been developed by Schreiber [5]. His method
only requires O(p> + Kp) arithmetic operations per
sample time, which corresponds to the minimum compu-
tational complexity; it is also known to have excellent
numerical properties. Schreiber’s algorithm involves a
number of steps, each of which can be implemented effi-
ciently on some form of systolic array. However, as
pointed out by Bojanczyk and Luk [4], it seems to be
difficult to realise the complete algorithm in a fully pipe-
lined fashion as, for example, updating the Cholesky
factor requires top-to-bottom processing, whereas the
back substitution process requires bottom-to-top pro-
cessing.

In this paper, we show how Schreiber’s algorithm may
be implemented very efficiently on a single systolic array
by avoiding the need for an explicit back substitution
processor. The resulting MVDR array is both fully effi-
cient and fully pipelined. It is also shown how the initial-
isation stage required for Schreiber’s algorithm may be
carried out in a fully pipelined manner within the array.

2 Theory

The MVDR problem may be summarised as follows. At
each sample time t,, evaluate the a posteriori residuals

e®it) =xTtyw®m) k=1,2,...,K 1)

where x(¢,) is the p-element vector of (complex) signal
samples received by the array at time ¢t,, and w*)(n) is the
p-element vector of (complex) weights which minimises
the quantity

E¥(n) = |e¥m)|| = | X(n)w®(n)| 2
subject to a linear equality constraint of the form
c(k)Tw(k)(n) — #(k) (3)
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In eqn. 2, we have assumed the notation

xT(tl)
T,
X(n) = B(n)| © f“) “
«7(t,)
and
e(k)(tl)
(k)
e®(n) = B(n) ¢ :(tz) (5)
e"".(tn)
where the matrix
B(n) = diag {ﬂ”fl, [3"’2,..., l} 6)

has been included to represent the effect of applying an
exponential ‘forget’ factor, which progressively scales
down the statistical weight assigned to previously
received data vectors in the least squares computation.
X(n) is simply the (weighted) matrix of all data received
by the antenna array up to time t, and ¢®(n) is the corre-
sponding vector of least squares residuals for the kth look
direction.

The solution to this constrained least squares mini-
misation problem is given by the well known formula

w""(n) — #(k)M- l(n)c(k)*/c(k)TM— 1(n)c(k)* (7)
where M(n) is the (weighted) covariance matrix defined
by

M(n) = X*(n)X(n) @®)
Assuming that a QR decomposition has been carried out
on the data matrix X{(») so that

R
QX(r) = H")]

where R(n) is a p x p upper triangular matrix, then it
follows that
M(n) = R¥(n)R(n) (10)

and so R(n) is the Cholesky square root factor of the
covariance matrix M(n). Eqn. 7 may therefore be written
in the form

©)

u("’R - 1(n)R - H(n)c(k)#

w¥(n) = TR ()R- By
I N ) )
lla®(n)||?
where
a(k)(n) =R H(n)c(k)* (12)

It follows that the a posteriori residual at time ¢, is given
by

k)30
) = b (3
where
eM(t,) = xT(t, )R~ (ma*(n)
= bT(n)a™(n) (14)
and
b(n) = R™T(n)x(t,) (15)

Gentleman and Kung [2] have shown how the QR
decomposition of X(n) may be implemented recursively
on a triangular systolic array. The triangular matrix
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R(n — 1) is updated using an orthogonal transformation
Q(n) of the form

BRn—1) 1 | Rin)
Om|_ __0__ |=|.0 (16)
xT(t,,) 0

where Q(n) represents a sequence of elementary Givens
rotations used to annihilate each element of a new data
vector x7(t,) in turn. Schreiber’s algorithm is based on the
fact that the vector a*)(n) can also be computed recurs-
ively. In the context of QR decomposition, this recursion
may be derived as follows. From eqn. 12 it is clear that at
time ¢

n—1s

¢®* = R¥(n — 1)a¥(n — 1)

fatn 1)
= B2 LAR"(n = DI0|x*w)]| f¥n ~ 1| (17)
0

where v*(n — 1) is an arbitrary n — p — 1 element vector.
Now, as the matrix Q(n) is unitary, eqn. 17 may be
expressed in the form

% = B72[BRH(n — 1)| 0| x*(t,)]

Ba*(n — 1)
x QH(m)O(n)| fo'n — 1) (18)
0
and it follows from eqn. 16 that
pan — 1)
% = B=2[R"(n)|0|0]Q(n)| fo™(n — 1) (19)
0
The structure of Q(n) is such that we may express
a®(n — 1 d®(n
o B — 1) | = | - [‘—’f—:—(’ﬂ 20)
S B | L
and so from eqns. 19 and 20 we obtain
W% = B2 RA)dW(n) 1
It follows from the definition in eqn. 12 that
d®(n) = p*a"(n) (22)

and hence eqn. 20 constitutes a straightforward recursion
which may be used to compute the updated vector a®(n).
It also follows from eqn. 20 that

B*la®(n — D|? = B*1a¥(m)|* + | «®Yn) |2 (23

and this provides a simple recursive formula which could
be used to update the denominator in eqn. 13. However,
for reasons of numerical stability, it is preferred to
compute the inner product a®*(n)a'(n) directly [5].

The recursive update in eqn. 20 may be implemented
using a simple extension to the triangular systolic array
proposed by Gentleman and Kung [2], or to the type of
systolic array described by Schreiber and Tang [6] for
updating the Cholesky factor R(n — 1). Schreiber’s algo-
rithm proceeds by solving the triangular system of linear
equations

RT(n)b(n) = x(t,) (24)

forming the inner product 5"(n)a(n), and multiplying the
result by the normalisation factor u™/|a®(n)}|2. It is this
part of the overall procedure which Bojanczyk and Luk
[4] cite as being awkward from the point of view of
pipelining Schreiber’s algorithm. In the following Section



we will show how the entire algorithm may be pipelined
on one triangular systolic array by avoiding the need for
a separate processor to solve eqn. 24. A similar technique
has recently been derived independently by Yang and
Béhme [7] who propose the use of a single linear systolic
array to perform the computation.

3 Systolic array implementation

In a previous publication [3], it was shown how a systol-
ic array of the type illustrated in Fig. 1 could be used in

Y3

X34 Y,

X33 24 Yy

X139 X23 X4 l

X3 X 22 X13 l l
X X 12 l l ‘
| |

residual

Fig.1  Systolic array for recursive least squares minimisation

an efficient recursive manner, to evaluate the sequence of
a posteriori least squares residuals

e(t,) = xT(t,)w(n) + yt,) (25)

where y(t,) denotes the value at time ¢, of an additional
‘reference’ signal and w(n) is the (unconstrained) weight
vector which minimises

E(n) = [|(X(n)w(n) + p(n)] (26)
The vector
y(n) = [u(ty), ¥(ta), .., we)]" (27

denotes the sequence of all reference signal samples
obtained up to time t,. The main triangular array ABC
implements a sequence of Givens rotations in order to
perform a recursive QR decomposition of the data matrix
X(n), as described by eqns. 9 and 16. The right hand
column of cells applies an identical sequence of rotations
to the vector y(n) such that, at any time ¢,,,

(28)
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The vector u(n) is stored in the right hand column of cells
DE and updated using the recursive formula

fun — 1)) | uln)
O@m)| poin — 1) | = | Bo(n — 1) l-—"-('-')—] (29)
R B TR IR

where O(n) is the sequence of Givens rotations defined in
eqn. 16.

By applying the orthogonal transformation Q(n) to the
term in brackets in eqn. 26, it is easy to show that the
least squares weight vector is given by

R(m)w(n) + u(n) =0 (30)

and McWhirter [3] showed that the corresponding
residual

e(t,) = —x"(t,)R™ " (nju(n) + y(t,) (€2

may be obtained without any need to compute the
weight vector w(n) explicitly. It is simply given by

e(t,) = y(n)(n) (32

where a(n) is the value of x,,, produced by the internal
cell E at time t,, and y(n) is the corresponding value of
You Produced by the boundary cell C. The product in
eqn. 32 is computed by the final cell F. The function of
each processing cell required for the systolic array in Fig.
1 was given by McWhirter [3], and is specified (for the
more general case of complex data) by the first mode of
operation of the corresponding cell in Fig. 2. By compar-
ing eqns. 31 and 29 with eqns. 14 and 20, respectively, it

J band 3
0 0 Z7 M=)
o o-7"
o -0 bang
*na” 0 1 0 =0)
X 27 e 0 0_--6
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columns

Fig.2  Systolic array for MV DR beamforming

can be seen that if at time ¢,_,, the vector u(n — 1) gener-
ated by the right hand column of cells in Fig. 1 was
replaced by the vector a®(n — 1), and the value of y(t,)
was set equal to zero, then the output from the final cell
F at time ¢, would be identical to — f2é*)(¢,). The vector
B%a®(n) would also be generated and stored in the right
hand column of cells as a result, and so the process may
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Fig. 3  Processing cells required for MV DR systolic array (conventional Givens rotation algorithm)

be continued in a very simple recursive manner to gener-
ate the sequence of output residuals &¥(t) (i=n, n + 1,
...). These considerations lead to the systolic array for
MVDR beamforming, which is illustrated in Fig. 2. It
incorporates four types of cell whose processing functions
are detailed in Fig. 3. The array comprises a basic tri-
angular array ABC and K columns of cells cn the right
hand side — one for each constraint. The MVDR com-
putation is carried out in three distinct phases, the first
two of which constitute a pipelined initialisation pro-
cedure.

During the first phase, which corresponds to the first
band of input data in Fig. 2, the first n — 1 rows of data
xT(t)(i=1,2,...,n—1; where n — 1 > p) are input to
the main triangular array ABC in the usual time-
staggered manner. The boundary and internal cells
perform standard Givens rotations as defined by mode 1
of the procedures in Fig. 3. This mode is selected accord-
ing to the value of a special control bit M associated with
each input data sample, the mode control bit for all
samples in the first band of input data being set to one.
During the first processing phase, the basic triangular
array ABC implements a QR decomposition of the initial
data matrix X(n — 1) to produce the upper triangular
matrix R(n — 1), which is stored within the array in the
usual manner. A sequence of zeros is input to the rest of
the array which performs no useful function during the
first processing phase.
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During the second processing phase, which corre-
sponds to the second band of input data in Fig. 2, the
associated mode control bits are set to zero, and all cells
within the array operate in mode 2. For cells within the
basic triangular array, mode 2 simply constitutes a non-
adaptive or ‘frozen’ version of mode 1, in which the
update of all stored values is suppressed. It can be shown
that, when the triangular array operates in this mode, the
effect of inputting an arbitrary p-element data vector x
from above (in the usual time-staggered manner) is to
produce a transformed vector

sn—1)=R T(n—1)x (33)

represented by the output values s which emerge from the
array p cycles later (in a corresponding time-staggered
fashion). This can be demonstrated quite simply by
examining the operation of the ‘frozen’ network in detail,
and expressing each input x; as a function of the corre-
sponding output values s;. Alternatively, it may be con-
sidered as a corollary to the direct residual extraction
technique defined in eqns. 31 and 32.

The input to the main triangular array during the
second processing phase comprises the sequence of K
time-staggered constraint vectors ¢V, ¢'?, ..., ¢X, and so
it serves to produce the corresponding sequence of
output vectors a*™*(n — 1) (k = 1, 2, ..., K) as defined in
eqn. 12. These emerge from the right hand boundary of
the main triangular processor and continue to move to
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the right at the rate of one cell per clock cycle across the
K constraint postprocessor columns. During the second
phase of processing, the input to these columns from
above takes the form of a unit diagonal matrix. The unit
input associated with the kth column (k =1, 2, ..., K)
enters each cell within that column at the same time as
the corresponding element of the vector a®*(n — 1). It
serves to indicate that the complex conjugate of this
element should be stored within the cell, where it remains
unaltered during the remainder of the second processing
phase. At the end of this phase, the systolic array in Fig.
2 has clearly been initialised as appropriate for the recur-
sive MVDR computation described above.

During the third phase of processing, which corre-
sponds to band 3 of the input data in Fig. 2, the sequence
of data vectors x(t) (i = n, n + 1, ...) is input to the main
triangular processor, and zeros are fed into the remainder
of the array as shown. All cells within the array receive a
sequence of unit mode control bits and hence return to
their first (adaptive) mode of operation. The mode 1 func-
tion for each cell in the constraint postprocessor section
DGHE includes an additional computation associated
with the parameter A. This parameter is initialised to zero
on entry to the array and serves to accumulate the nor-
malisation term [|a*(n)||? associated with each constraint
column on each cycle. The value of y in the final cell of
the kth constraint column is set equal to u®, and so it
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follows from eqn. 13 that the output produced by this cell
during the third phase of processing is the required
sequence of residual values e®(t) (i =n, n + 1, ...). This
concludes our description of the basic systolic array for
MVDR beamforming. The following Section is devoted
to discussing how it may be modified to perform the
same computation using square-root-free Givens rota-
tions.

4 Square-root-free algorithm

Fig. 4 details the cell functions which are required when
the systolic array in Fig. 2 is used to compute the MVDR
by means of square-root-free Givens rotations [8]. In
their first mode of operation, the boundary and internal
cells perform essentially the same functions (but gener-
alised to the case of complex data) as those required for
the square-root-free systolic least squares processor
described by McWhirter [3]. The second mode of oper-
ation for these cells simply constitutes, as before, a non-
adaptive or ‘frozen’ version of mode I, in which the
update of all stored quantities is suppressed. It is worth
noting that for the square-root-free algorithm, this mode
of operation can be selected very simply by setting the
value of §,, to zero (instead of 1) at the top boundary cell.
For convenience, however, the use of explicit mode
control bits has been assumed in Fig. 4.



To understand the operation of the constraint cells, it
is important to realise that when square-root-free Givens
rotations are used to perform a QR decomposition, the
upper triangular matrix is represented in the form

Rin — 1) = D'"?*(n — )K(n — 1) (34)

where D(n — 1) is a diagonal matrix stored within the
boundary cells, and K(n — 1) is a unit upper triangular
matrix stored within the internal cells of the systolic
array in Fig. 1 or Fig. 2. Furthermore, the vector u(n — 1)
in eqn. 29 is represented in the form

u(n — 1) = DV*(n — Da(n — 1) (35)

where the vector u(n — 1) is stored in the right hand
column of the array in Fig. 1. It follows that, to perform
the recursive update in eqn. 20, the kth constraint column
in Fig. 2 must be initialised to store the vector @*(n — 1),
rather than the vector a®(n — 1), where

a®(n — 1) = D'2(n — Da®(n — 1) (36)

Now it can readily be shown that during the second pro-
cessing phase of the square-root-free algorithm, when the
systolic array in Fig. 2 operates in mode 2, the effect of
inputting an arbitrary p-element vector x from above (in
the usual time-staggered manner) is to produce a trans-
formed vector

wn—1)=KTn— x 37)

represented by the output values z which emerge from
the array p cycles later (in a corresponding time-
staggered manner). To initialise each of the K constraint
columns, it is necessary, therefore, to divide the captured
vector

®(n—1)=K "(n— 1)
= D" (n — YR T(n — 1)e®
= D(n — )a™*(n — 1) (38)

by the diagonal matrix D(n — 1), and as this is stored
within the boundary cells, the associated parameter d’
must be passed from left to right across each row of cells,
together with the parameters ¢, 5 and z as indicated in
Fig. 4. Unfortunately, this places an additional communi-
cation overhead on every cell within the MVDR pro-
cessor array.

To understand the operation of the square-root-free
constraint cells, it is also important to appreciate that the
recursion in eqn. 20 will produce an updated vector a*'(n)
stored in the kth constraint column and hence, to evalu-
ate the normalisation term |a®(n)||, it is necessary to
multiply this stored vector by the updated diagonal
matrix D'Y2(n) in accordance with eqn. 36. This is
achieved by making use once again of the associated
parameter d’ as indicated in Fig. 4. In all other respects,
the operation of both the constraint cells and the final
cells in Fig. 4 may be deduced quite readily from that of
the internal and final cells derived by McWhirter [3] for
the square-root-free algorithm.

5 Discussion

In this paper, we have described an efficient systolic array
for computing the MVDR based on a recursive algo-
rithm proposed by Schreiber. The numerical properties of
this algorithm are obviously of vital importance in any
application of the technique, and this aspect will now be
discussed.

Schreiber showed by means of a simple error analysis
[5]. that the basic recursion is numerically stable, in the
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sense that the effect of an error introduced into the com-
putation at any stage will not grow in time. This property
may not seem to be consistent with the fact that, in mode
1, the operation of the constraint cell involves dividing
the stored value a by the ‘forget’ factor § (or 2 for the
square-root-free algorithm). As f# is a scalar generally
close to, but less than one, this could obviously lead to an
exponential growth in errors. However, this division in
the constraint cells is, in effect, offset by the fact that, in
mode 1, the operation of all cells within the main triangu-
lar array involves multiplying the stored value r by the
same factor f8 (or 8% for the square-root-free algorithm).
As a result, the effect of an individual error is not magni-
fied within the computation, but neither is it diminished
by means of the ‘forget’ factor, as in the basic triangular
array. In a sense, the constraint cells are simply counter-
acting the effect of the exponential forget factor on the
stored matrix R in order to satisfy eqn. 12 at each stage
of the recursion. The net effect is a steady accumulation
of numerical errors within the algorithm, and so eqn. 12
is satisfied less accurately as the time index n increases.
This difficulty may be overcome quite readily by switch-
ing the array to mode 2 and reinitialising the vectors
a®(n) periodically. Our numerical simulations have
shown, for example, that for an exponential window of
approximately 100 samples (f = 0.99) and a 24-bit float-
ing point number representation (16-bit mantissa and
8-bit exponent), it is sufficient to reinitialise these vectors
every 5000 samples to retain sufficient accuracy for most
practical applications. We hope to discuss these and
other numerical results more fully in a future publication.

An alternative initialisation scheme has been sug-
gested, whereby at time n = 0, the triangular matrix R is
set equal to 1, 6 being a small scalar and I representing
the unit matrix. This simulates the effect of low-level
thermal noise in the receiver channels prior to the input
of any data vectors. The corresponding value of a® is
simply 6 '¢®* and so the overall initialisation pro-
cedure is very straightforward. This alternative technique
has been found to work quite well in practice, but has the
disadvantage that it is not suitable for reinitialising the
vectors a®(n) at a later stage of the adaptive process and
does not, therefore, avoid the need for a mode 1 pro-
cedure to be defined within the array. The numerical
implications of this initialisation technique will also be
discussed in a future publication.
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Systolic Block Householder Transformation for RLS
Algorithm with Two-Level Pipelined
Implementation

KuoJuey Ray Liu, Member, IEEE, Shih-Fu Hsieh, Member, IEEE, and Kung Yao, Senior Member, IEEE

Abstract—The QR decomposition, recursive least squares
(QRD RLS) algorithm is one of the most promising RLS algo-
rithms, due to its robust numerical stability and suitability for
VLSI implementation based on a systolic array architecture.
Up to now, among many techniques to implement the QR de-
composition, only the Givens rotation and modified Gram-
Schmidt methods have been successfully applied to the devel-
opment of the QRD RLS systolic array. It is well known that
Householder transformation (HT) outperforms the Givens ro-
tation method under finite precision computations. Presently,
there is no known technique to implement the HT on a systolic
array architecture. In this paper, we propose a systolic block
Householder transformation (SBHT) approach, to implement
the HT on a systolic array as well as its application to the RLS
algorithm. Since the data is fetched in a block manner, vector
operations are in general required for the vectorized array.
However, a modified HT algorithm permits a two-level pipe-
lined implementation of the SBHT systolic array at both the
vector and word levels. The throughput rate can be as fast as
that of the Givens rotation method. Our approach makes the
HT amenable for VLSI implementation as well as applicable to
real-time high throughput applications of modern signal pro-
cessing. The constrained RLS problem using the SBHT RLS
systolic array is also considered in this paper.

I. INTRODUCTION

EAST squares (LS) technique constitutes an integral

part of modern signal processing and communications
methodology as used in adaptive filtering, beamforming,
array signal processing, channel equalization, etc. [6]. Ef-
ficient implementation of the LS algorithm, particularly
the recursive LS algorithm (RLS), is needed to meet the
high throughput and speed requirements of modern signal
processing. There are many possible approaches, such as
the fast transversal method and the lattice method, which
can perform RLS algorithm efficiently [1], [6]. Unfortu-
nately, these methods can encounter numerical difficulties
due to the accumulation of roundoff errors under a finite-
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precision implementation as summarized in [2]. This may
lead to a divergence of the computations of the RLS al-
gorithm [2]. A new type of systolic algorithm based on
the QR decomposition (QRD), known as the QRD RLS,
was first proposed by McWhirter in [18]. This algorithm
is one of the most promising algorithms in that it is nu-
merically stable [1], [12] as well as suitable for parallel
processing implementation on a systolic array [6], [18].

Up to now, most of the QRD RLS implementations
were based on the Givens rotation method and modified
Gram-Schmidt method, which are both rank-1 update ap-
proaches [2], [4], [7], [13], [16], [18], [9]. It is well
known that the Householder transformation (HT), which
is a rank-k update approach, is one of the most computa-
tionally efficient methods to compute QRD. The error
analysis carried out by Wilkinson [26], [8] showed that
the HT outperforms the Givens method under finite pre-
cision computations. Presently, there is no known tech-
nique to implement the HT on a systolic array parallel
processing architecture, since there is a belief that non-
local connections in the implementation are necessary due
to the vector processing nature of the Householder trans-
formation. One of the purposes of this paper is to show
that we can implement the HT on a systolic array with
only local connections. Thus, it is amenable to VLSI im-
plementation and is applicable to real-time high through-
put applications of modern signal processing.

In this paper, we first propose a systolic Householder
algorithm called a systolic block Householder transfor-
mation (SBHT) to compute the QRD with an implemen-
tation on a vectorized systolic array. Then a RLS algo-
rithm based on the SBHT called SBHT RLS algorithm is
proposed to perform RLS operations on the array. We
shall show that the SBHT array and the SBHT RLS array
are generalizations of Gentleman-Kung’s QRD array [4]
and McWhirter’s QRD RLS systolic array [18] (see Fig.
1), respectively. The difficulty in the applications of the
above arrays is mainly due to the vectorized operations of
the processing cells. This results in a high cell complexity
as well as a high I/0 bandwidth. By using a modified HT
algorithm proposed by Tsao [25], a two-level pipelined
implementation of the SBHT RLS algorithm can be
achieved. That is, the algorithm is pipelined at the vector
level as well as at the word level. The complexity of the
processing cell and the I/O bandwidth are thus reduced.

Reprinted from IEEE Transactions on Signal Processing, pp. 946-958, April 1992.
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Fig. 1. (a) QRD RLS systolic array using Givens rotation method. (b) Pro-
cessing cells of the Givens rotation method.

In general, the cell complexity of the SBHT array is higher
and the system latency is longer than that of the conven-
tional Givens rotation implementations. With the two-
level pipelined implementation, the throughput of the
SBHT RLS systolic array is as fast as that of McWhirter's
Givens rotation array, and it offers better numerical sta-
bility than the Givens method. In addition, an extension
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of the SBHT RLS array to MVDR beamformation, which
is a constrainted RLS problem, is also considered.

In Section II, a brief review of the QRD RLS algorithm
is given. In Section III, the SBHT is presented, while the
SBHT RLS algorithm is considered in Section IV. The
two-level pipelined implementation of the SBHT RLS
systolic array is discussed in Section V. In Section VI,
the constrained RLS problem is applied to the MVDR
beamformation, using an extension of the SBHT RLS ar-
ray. Finally, the systolic array for the hyperbolic House-
holder transformation is considered in Section VII and a
conclusion is given in Section VIII.

II. QRD RLS ALGORITHM

A full rank m X p, m > p, rectangular matrix X can
be uniquely factorized into two matrices @ and R such
that X = QR, where Q is an m X p matrix with ortho-
normal columns and R is a p X p upper triangular matrix.
Several different approaches of the QRD systolic arrays
have been proposed by Gentleman and Kung [4], Heller
and Ipsen [7], Luk [16], Ling et al. [13], and Kalson and
Yao [9]. The first three approaches are based on the Giv-
ens rotations methods, while the last two are based on the
modified Gram-Schmidt orthogonalization. Given an m
X 1 vector y, the LS problem is to minimize the norm of
the residual vector ¢

letm)ll = I X(m)w(m) — y(m)|

by choosing an optimal weight vector w. If the matrix X
and vector y grow in time, then the problem of minimiz-
ing the norm of the residual vector recursively becomes
the RLS problem. Until recently, it appears that only Giv-
ens and modified Gram-Schmidt methods have been con-
sidered for RLS computations. Some recent RLS prob-
lems based upon the use of Householder transformation
have appeared [3], [15]. In [18], McWhirter showed that
a QRD RLS systolic array, which was based on the
Gentleman-Kung array, can be designed without first
computing the weight vector of the RLS problem. This
approach is useful for high throughput applications in var-
ious modern signal processing problems such as adaptive
filtering and beamforming since optimal residuals are of
direct interest while the weight vector needs not be com-
puted. The basic idea of the QRD RLS systolic array in
[18] is to update the p X p matrix R using a sequence of
Givens rotation matrices when a new row of data arrives.
Suppose we have the QRD of the data matrix X at time m
and expressed as X(m) = Q(m)R(m). Define

. Q'm : 0
Q'(m = L
oT -1
When a new row of data arrives, we then have
R(m)
0'mXm + 1) = 0
X1, X2, °° " , X

P



This new row of data can be zeroed out by applying a
sequence of Givens rotations

G=Gp."GZGl

where the (m + 1) X (m + 1) transformation matrix G;
is defined by

L.,: 0 = 0 -0
0 Ci 0 §;
G=|—. . —
0o -0 :1I,.;,:0
0 E—s,-z 0 Eci
with
b
C.

a
= — S =
CoVd + b YJE+ B

where a and b are elements of vectors in the ith and (m
+ 1)th rows under rotation.

Fig. 1(a) shows the systolic array proposed by Mc-
Whirter in [18]. It consists of a QRD triarray and a linear
response array (RA). The rotation parameters are propa-
gated from the boundary cells to the right for internal cells
to update their contents, and the cosine parameters are
also cumulated and propagated down diagonal boundary
cells. Each skewed input row of data is zeroed out by the
QRD triarray. The optimal residual is then obtained by
the multiplication of the cumulated cosines and the ro-
tated output of the desired response at the response array
(see Fig. 1(a)) [18].

III. SystoLic BLock HOUSEHOLDER TRANSFORMATION

The Givens rotation method discussed above is a rank-1
update approach since each input consists of one row of
data. For the systolic block Householder transformation
(SBHT), we need a block data formulation. Denote the
data matrix as

X7
X7 X(n - 1) .

X(n) = : = [—X—;T——]ea xp 1)
xr_|

and the desired response vector as

Y
~1
ym = |7 | = [————y v )}e(ﬁ”" 2)
: Yn
Yul

where X[ is the k X p ith data block matrix

T
X(i—hk+1
T
x .
T (i— Dk+2
X,' = . = [xi.l x,~_2 st x,‘,p] (3)
T
X ik

Xi—bk+1,1 Xi-Dk+1,2 """ Xi-Dk+1,p
X - X - Ce X
(- Dk+2.1 X(i—k+2,2 (i~ 1k+2.p )
= . . ) . e RF*»
Xik,1 Xik,2 t 0 Xikp
“4)
and y; is the k£ X 1 ith desired response block vector
Yi-Dk+1
Yi-1k+2 X
yi= . e® &)
Yik

where k is the block size and p is the order (i.e., number
of columns) of the system.
For a rank-k update QR decomposition, suppose we

have
R(n — 1)
On — DHX(n - 1) = [ 0 —] (6)
Denote
_ Qn -1 : 0
on-)=|—7"", — )
OT : Ik
then we have
Rin — 1)
On — ) X(n) = 0o | 8)
XT
If we can find a matrix H(n) such that
_ ‘R(n)
Hn)Qn — 1) X(n) = [“-0“} ()]
then the new Q(n) is
Q(n) = Hm)Qy(n — 1). (10)

An n X n Householder transformation matrix T is of
the form

2w
[l?

where z € ®" [5]. When a vector x is multiplied by T, it
is reflected in the hyperplane defined by span{z}*.
Choosing z = x + ||x|,e,, where ¢, = [1,0,0, - - -, 0]
€ ®”, then x is reflected onto e, by T as

T=1 an

Tx = +|lxll,e,. (12)

That is, all of the energy of x is reflected onto the ;mit
vector e, after the transformation. We can zero out X, by
applying successive Householder transformations as



follows:
(R P - 1)
HO(n) 0
L0, -+, 0,70 e
RO — 1)
= 0
L0, -+, 0,0, x00y, -0, Xy,
fori =1, -, p, where xf,o’, =X, R®n — 1) = R(n
— 1), and the resultant matrix H(n) is

Hn) = H(F)(H)H(P“l)(n) e H(l)(n) (13)

where each H)(n) represents a Householder transforma-

tion which zeros out the ith column of the updated X[,
i=1)

i, x,; .

To obtain H O(n), denote

z = [ry — o o(Tn—l)k—l xL]T
where |, is the (1, 1) element of R(n — 1), o7 = r?, +
Ilx, ;|1 Then from (11)
Wi o 0T YT
HOm = | 0 ¢ Iy E 0 (14)
Bn : 0 HY)(n)

where K (n) is a scalar, B{Y(n) is a k x 1 vector, hS)(n)
m(n) and H)(n) is a k X k matrix given by

2xn,lxz,l
— el
Z1
with 03,. = “11”% = 2(0% — oyryy). Define ¢, = 021 (URATE
(15) can be rewritten in a form without multiplication of
the number 2 as

HB(n) = (15)

(”(n) =7 Xn, lxn L
‘ ¥
In general,
[CH{®m) - 0 H{P(n)™]
H™(n) = 0 Iy, : O (16)
L HPm) - 0 HY(n)_

where H{?(n) € ®”** is an 1dent1ty matrix except for the
mth diagonal entry; H{?(n) € ®R”** is a zero matrix ex-

cept for the mth row; HSP(n) = H{P'(n); and
x(m— l)x(MA])T
H3(n) = I, — === " m—e ®C(17)
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. . . 2 2 2
is symmetric with ,, = 65, — 0,,"pm, Where o, = 1, +

flc"~DYI2. 1t can be easily seen that H{3(n) HY)(n) = 0,
(’)(n)H D) = 0, for Vi # j. Thus we have the follow-
ing lemma.
Lemma 1: The Householder transformation matrix,
H(n) € ®™*"™ is orthogonal and is of the form

(Hym : 0 Hom)
H(n) = 0 Ly_iy—p: O
|_H,,(n) 0 Hy(n)_
— H(p)(n)H(p—l)(n) e H(l)(n) (18)
with
H, (n) = (p)(”) (2)(") H (l)(n)
Hp(m) = HB®n) - - - HYWHY M. O (19)

For the block size of £k = 1 the Givens rotation method
reduces to the special case of the rank-1 update House-
holder transformation [5], and the H matrix in Lemma 1
becomes a Givens rotation matrix G of the form [18]

Kw 1 _0_ 1k
G =| 0 jhpi| 0
O R

where K(r) is a p X p matrix, h(n) isap X 1 vector, and

v(n) is a scalar given by y(n) = I, ¢;(n), n = p where
¢;(n) is the cosine parameter assomated with the ith Giv-
ens rotation.

A. Vectorized SBHT QRD Systolic Array

Now we propose a vectorized systolic atray to imple-
ment the QRD based on the SBHT. Similar to the QR
triarray of Gentleman-Kung [4], this array has both
boundary and internal cells. The boundary cell takes an
input of block size k from the above internal processor or
directly from the input port, updates its content and gen-
erates the reflection vector, and sends it to the right for
the internal cell processing (see Fig. 2(a)). Define

—U*UT . . L= DT
X =[0,_, AT o(n—l)k—i sxui L
i = 1, ceeLp
and z; = x(’ — o0;e;, where e; is a zero vector except

for a unity at the ith position. When an internal cell re-
celves the reflection vector, instead of forming the matrix
zz/ and performing matrix arithmetics, it performs an in-

ner product operation to update its content r; by doing
HOmx(;" = %177 - 2 @ - %7
zh
j=i+1,---,p (20)
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Fig. 2. (a) SBHT QRD systolic array. (b) Processing cells of the SBHT
QRD systolic array.

and sends the reflected data x,, ; downward for further pro-
cessing. Fig. 2 shows the SBHT QRD array architecture
and the processing cells. When the block size is k = 1,
this vectorized array degenerates to the Gentleman-
Kung’s Givens rotation triarray.

IV. SBHT RLS ALGORITHM
The LS problem is to choose a weight vector w(n) €

®?, such that the block-forgetting norm of
e(n)

ex(n)

&(n) = = X(myw(n) — y(n) @n

e,(n)
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is minimized. The optimal weight vector w(n) satisfies

min [le@)ll5, = 1X() %) — ym)lly, (22)

where

lemla, = lAmeml, = \/ E} A= e (m)lf3

O0<A=s1
(23)
A(n) is a block-diagonal exponential weighting matrix of
the form

N - 0000

Ayln) = e R (24)

v )\Ik 0
0 e 0 Ik

and |- ||, is the Euclidean norm,

k
||e,(n)||§ = j§| ‘e(i—l)k+j(n)|2- 25)

The exponential forgetting weighting A is incorporated in
the RLS filtering scheme to avoid overflow in the proces-
sors as well as to facilitate nonstationary data updating.

The QRD of the weighted augmented data matrix at
time n (in the block sense, it is equivalent to nk snap-
shots), is given by

R(n) - u(n)]

Adm)[X(n) - ym)] = [QT(n) - QzT(n)][ :
0 - v

(26)
where
0 (")]
Q,(n)

constitutes an orthogonal transformation matrix with @,(n)
€ ®”*" spanning the column space of the weighted data
matrix Au(n)X(n) and Q,(n) € ®R™ P X" spanning the
null space, R(n) € ®” *” is an upper triangular matrix and

()
0m)y(n) = [" " ]

v(n)

o |

The optimal weight vector can be obtained by solving
R(n)w(n) = u(n). 27N

Obviously, Ai(n)X(n) = Q,T(n)R(n). As a result, the
weighted optimal residual of (21) is

AmEm) = QT(m) Rm)w(n) — QT(mu(n) — Q(mwv(n)
= —Qi(mv(n) (28)

which lies in the null space of the weighted data matrix.



Now, suppose we have the data matrix up to time n —
1 and the QRD of Ag(n — 1)[X(n — 1) * y(n — 1)]. The

recursive LS problem here is to compute efficiently the
optimum residual at time n from the results we have at
time n — 1. In particular, we are interested in the new nth
block of the optimal residual

é,(n) = X W (n) — y,. (29)
From (8), (9), and (18), (26) can be expressed as
[ Hym) - 0 - Hpm) ]
R * u(n) B
. = 0 = Iy_ix-p 0
0 - v
| _H,,(n) 0 Hy(n)_|
AR(n — 1) - Nu(n — 1)
0 -
X, 2
&n — 1ln)
Am)e(n) = | ———
é,(n)

_ {—le(n — Dotn = 1) = Q{(n -
- _Hg2(n)vn

By recursion on n, we relate Q(n) and Q(n — 1) using
(10) and have

_Hn(”) 0 le(n)_
Q(n) = 0 I(n—l)k—p , 0
L") - 0 - Hoy(n)_|
Qn—1) - 0
On—1) -0
0 -

Hy(n)Qi(n — 1) Hy(n)

=] Qn — 1) ©0

H,(m)Q\(n — 1) * Hy,

(30)

We can see that (,(n) is updated from @Q,(n — 1) and Q»(n

~ 1) by
O,(n — 1) 0
on) =| ————— - (31
H, (mQi(n — 1) : Hy

On the other hand, the updated [u(n), v(n)]” is

E
v(n)

n - 1)
QW) A(n) [ﬂl - —}

Yn

AH (mu(n — 1) + Hyy(n)y,

Il
>
<

=
S
|

where

v, = NHy (mu(n — 1) + Hy(n)y,. (33)

Therefore, from (28), (31), and (32), the weighted opti-
mal residual vector can be obtained from parameters at
time n — 1 by

(34)

I)H;l(”)vnjl

where £(m|n) denotes the estimate of £ at time m, m < n,
given all of the data up to time n. The new nth block of
the optimal residual is then obtained as

é,(n) = —Hy(mw, = ~HRYMHZ(n) - - - HY (W),
(35)
For the block size of k = 1, all vector parameters in (35)
become scalars and can be expressed as
P

en) = — 1l ¢,

i=

(36)

which was first shown by McWhirter in [18]. Note that
there are some differences between the optimal residuals
estimated by SBHT and Givens rotation methods. To be
specific, the optimal residual vector in (35) is given by

em-ni+1((n — Dk + 1|nk)

é,(n) = (37

enc—1(nk — 1|nk)
e(nk|nk)

while, the optimal residual estimated by the Givens rota-
tion method in (36) is

é,(n) = e,,(nln).

(38)



In this sense, the SBHT RLS gives a better estimate of
the residual since it uses more data samples to estimate
the optimal residual. As an example, consider k = 2. Then
the optimal residuals obtained from the SBHT RLS and
Givens methods are [e,, _ ((2n — 1)|2n), e,,(2n|2n)] and
[e2, - 1((2n — D)|(2n — 1), €,,(2n|2n)], respectively. It is
clear now that the SBHT RLS method gives a better es-
timate for the previous residual than the Givens rotation
method because the former makes use of the future data
sample at time 2r to estimate the residual at time 2n — 1,
while the latter does not.

A. Vectorized SBHT RLS Array

In order to obtain the RLS filtering residual vector in
the systolic array, we can use two possible approaches.
The first approach is to generalize the architecture of
McWhirter’s Givens rotation approach [18]. A SBHT
QRD array with a RA based on this approach is shown in
Fig. 3. Since the v, in (33) results from the reflection
computation in (32), therefore v, is obtained naturally
from the output of RA. Each boundary cell then forms the
matrix HS; and propagates it down the diagonal boundary
cells. Since HY) is generated earlier than HS) for i < j,
(35) has to be computed from left to right involving ma-
trix-matrix multiplications. As a result, each boundary
cell performs the matrix multiplication to accumulate
HS) when it is propagated down diagonal boundary cells.
The matrix multiplications needed in the boundary cells
in this approach are objectionable since they not only slow
down the throughput but also increase the complexity of
the boundary cells. We note, McWhirter’s original ap-
proach based on Givens rotation worked well since only
scalars need to be propagated down the diagonal boundary
cells and the order of multiplications for the scalars is ir-
relevant.

Obviously, we prefer to compute (35) from right to left
such that only inner product computations are performed.
Instead of forming the matrix HS,) and propagating it
down, another approach is to use the facts that HS, can
be expressed by using (17) and the reflection vectors are
sent to the right from boundary cells as described in Sec-
tion III-A. From these observations, (35) can be com-
puted in a manner similar to the internal cell operation. A
new architecture shown in Fig. 4 is thus introduced to
circumvent this problem. A column array of internal cells
called backward propagation array (BPA) is added at the
right-hand side to perform the backward propagation of
v,. Each row, say the ith one, needs 2(p — i) delayed
buffers as shown in Fig. 4. The v, obtained at the output
of RA is then backward propagated through the BPA.
From (17), each cell of this array performs the operation

)
—— i T o)

2
i=p, .21

H(ZIZ)(n)ﬁn =0, —

39

where @, is an updated v,. This is a subset of the opera-
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Fig. 3. SBHT RLS systolic array obtained by direct generalization of the
Givens rotation array.
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Fig. 4. New matrix-multiplication-free SBHT RLS systolic array.

tions performed by the internal cell shown in (20). The
residual vector is obtained from the top of the newly ap-
pended column array.

The costs for this proposed architecture are: an in-
creased latency time from (2p + 1)z, of McWhirter’s Giv-
ens method to 3pt,, where ¢, represents the processing time
for the scalar operations used in the Givens rotation
method and ¢, is the processing time for vector operations
used in the SBHT method; the number of delay elements
needed increases from p to £{ 2(p — i) = p(p — 1); and
p additional internal processing cells. The operations of
the boundary and internal cells are still given in Fig. 2(b).



These results clearly show that HT can be implemented
simply on a systolic array to achieve massive parallel pro-
cessing with vector operations. This provides an efficient
method to obtain a high throughput rate for recursive LS
filtering by using the HT method.

V. Two-LEVEL PIPELINED IMPLEMENTATIONS

The SBHT QRD array and the RLS array discussed in
the above sections are derived using the conventional
Householder transformation as shown in (11). Due to the
vector processing nature of the conventional method, the
cells of both arrays perform vector operations such as in-
ner products. This means the complexity of each cell is
high and the I/0 bandwidth is large in order to achieve an
effective vector data communication. Each cell, due to the
complexity of vector processing, may require a large pro-
cessor. Clearly, this is not desirable for VLSI implemen-
tation. Thus, we are motivated to find a suitable algorithm
to pipeline the data down to the word level such that the
I/0 bandwidth as well as the complexity can be reduced.
In addition, we still wish to achieve a high throughput
which is needed in many modern signal processing appli-
cations.

The conventional approach in computing Householder
transformation, y = Tq, based on (11) is to form first z
and ||z|| from x and then z'q/||z[|* and ¢ — 22(z"q/|z|l»
as considered before. It can be stated in the following
form:

HT Algorithm (Conventional):

Step 1. S, = x|

Step 2. If S, = 0, theny = q.

Step 3. If S, # 0 then

(1) s=+S.z=x+1[s5,0,0,---,0],
Q) ¢ =8, +sx,S,=2"q,

Z

B)d=S,/¢,y=q—dz

In [25], Tsao pointed out that by skipping the compu-
tation of ¢ and avoiding the cumbersome intermediate
steps of forming vector z for further computations, a mod-
ified algorithm with smaller round off error and fewer op-
erations can be obtained. Only step 3 of the conventional
algorithm is modified as follows.

Modified HT Algorithm [25]:

Step 3. If §,, # O then
(1)s=s/S_xx,a=x,+s,
Q) S, =xyg,

B3y = _qu/s’d= (g, —‘)")/U, yi=¢q —dx;,i=
2, -+, n.

With this algorithm, the operations of the cells of the vec-
torized systolic arrays can be modified as shown in Fig.
5. As we can see, for the boundary cell, the vector u,
which consists of the weighted diagonal element of the
upper triangular matrix and one column of the input data
block (updated or not), can be sent out immediately when
the input x is available, without waiting for any compu-
tations as required in the implementation using the con-
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If [x)]2 = 0 then
X o=0,r=r
else
k S = Nrt 4 x|l
s VS
u o — s+ Ar
s Ar ]
o u—
x
res
end

If 0 = 0 then
x y=x.r=Arn

else
k P Ar
: x
t e —S/s
u § . g d e (Ar—1)/a
o re—1
uy
- u;
ye—x-d- :3
Yy Uks

end

Fig. 5. Operations of the processing cells by using the modified House-
holder transformation.

ventional algorithm. Due to this advantage and the mod-
ified operations in the internal cells, we can then pipeline
the vector operations down to the word level such that
each cell only performs scalar operations, which will sig-
nificantly reduce its complexity.

A two-level pipelined implementation of the modified
HT algorithm is given in Fig. 6(a). The boundary cell
performs three major functions: square and accumulate,
square root, and addition. For each data block, the bound-
ary cell fetches one data sample, accumulates the squares
of the samples, and sends the data to the right for internal
cell. When all the data of the block are processed, the
content of § is then sent down for square-root operation.
The resultant s is sent to the right for internal cell as well
as sent down to obtain ¢, which is then sent to the right
when available. At the same time, when an internal cell
receives a u;, it multiplies #; with an input x; and accu-
mulates all these products to obtain S. When S is avail-
able, it is sent down for division operation with s, which
arrives at the same time, to obtain #; then ¢ is sent down
and ¢ again arrives at the same time to compute d. To
compute y; of (3) in step 3, we need registers to store u;
and x; temporarily. Since data from the next block are
continuously being sent into the system, each internal cell
needs 2(k + 3) registers to store u; and x; as indicated in
Fig. 6(a). When d is available, the y; are then obtained
one by one and sent down for further processing. Data
from the next block undergo the same processing. When
a new d is available in the internal cell, the corresponding
x; and u; are already waiting in the registers. Therefore
the vector operations are successfully pipelined down to
the word level. This means that by using the modified HT
algorithm, we have not only pipelined the SBHT arrays
at the vector level but also at the word level. The input
data is now skewed in the word level as shown in Fig.
6(a) rather than in the vector level as shown in Fig. 4.
The functional descriptions of the processing cells for two-
level pipelined implementation are given in Fig. 6(b).
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Fig. 6. (a) Architectures of the processing cells for two-level pipelined implementation. (b) Functional descriptions of pro-
cessing cells for two-level pipelined implementation.
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TABLE I
CoMPARISONS OF THE SBHT AND GIVENS ROTATION METHODS

Givens Rotation SBHT
Number of cells (p* +3p)/2 (P> +5p)/2
Number of delay elements p p(p = 1)
Number of registers 0 (p* + 3p)k +3)
System latency 2p+1 2ptk + 4)
Cell complexity less higher
Numerical stability good better

Since the most time consuming operation of this two-
level pipelined implementation is the square root opera-
tion which is also the critical operation in McWhirter’s
Givens rotation implementation, the throughput of this
two-level pipelined implementation is as fast as that of the
McWhirter’s Givens array. However, with a longer pipe-
line, a longer system latency for the SBHT method is ob-
tained. This is due to the fact that the registers of the in-
ternal cells have to be filled before we can obtain the
residual vector. For the SBHT RLS systolic array of order
p, we have (p* + 3p) /2 internal cells, including the BPA.
Thus, there are a total of (p*> + 3p)(k + 3) registers for
the whole system. The system latency is given by 7, =
2p(k + 4), which is linearly proportional to p and k.
However, for the Givens rotation method, the system la-
tency is only #t, = 2p + 1. Comparisons of both RLS
arrays based on the SBHT and Givens rotation are sum-
marized in Table I. In general, the throughput of the
SBHT RLS systolic array is as fast as the Givens rotation
method. Of course, while the cell complexity of the SBHT
array is higher, it does offer better numerical stability [26].
A detailed backward error analysis carried out by Wilk-
inson showed that for an n X n matrix A4, after n(n — 1) /2
Givens rotations, the roundoff error in the upper triangu-
lar matrix is in the order of O(x,n>/?u[|All) 26, p. 138],
while a series of (n — 1) HT gives O(x,nullAl) [26, p.
160], with «, and «, being constants and p a machine
floating point computation precision.

VI. ConsTRAINED RLS PROBLEMS

In the above sections, we have dealt with an uncon-
strained RLS problem. The RLS systolic array considered
there was motivated originally by the sidelobe canceller
beamformation problem [18]. Other practical motivation
could have come from the adaptive filtering problem [6].
However, there are other signal processing applications
which are modeled by a constrained RLS problem. The
MYVDR beamformation constitutes such an example [19],
[20], [23]. It is interesting to determine whether a systolic
array for an unconstrained RLS problem can also be used
for a constrained RLS problem. In [19], McWhirter and
Shepherd showed an extension of the unconstrained RLS
array to the MVDR beamforming problem. Based on their
approach, we shall also demonstrate the implementation
of a MVDR beamformation problem using a SBHT RLS
array.
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The MVDR beamforming problem is to minimize

£ = 1Xww s, =1, ,L (40)
subject to the linear constaints of
cwOmy =0, 1=1,---,L @D

where L is the number of constraints. We are interested
in the a posteriori residual vector

éPm) = XIw(n). 42)

The optimal solution of the weight vector is known [19]
to be given by

M ' _ BOR™'(m)a"n)
C(I)TM—I(n)c(I) - ”a([)(n)”2
where M = XT(n)A2(n)X(n) is the weighted covariance

matrix, R(n) is the upper triangular matrix resulted from
the QRD of the weighted data matrix A,X(n), and

whn) = (43)

a®(n) = R "(n)c?. (44)
Therefore the optimal residual vector at time »n is
)
éd(n) = - XJR™'(ma®(n). 45)

la® @

A crucial step needed is for the efficient recursive updat-
ing of a”)(n). A novel approach was proposed for per-
forming this updating [19]. Specifically, from (8), (9),
and (44)

¢® = RTn — a%m - 1)

AP(n — 1)
=N ART(n — 1) : 07 - X,] MO — 1)
———

(46)

where b(n — 1) is an arbitrary ((n — Dk — p) X 1
vector. Then from Lemma 1, (8), and (9), we have

¢ = N?NRT(n — 1) * 07 X,]H(n)H(n)

NaP(n - 1)
AP — 1)
0

= R'(n) - N\2(NH,,(m)a®(n - 1)). 47)

Thus, a”(n) = N2 (NH,,(n)a”(n — 1)) can be ob-
tained by updating @’ (n — 1) in a way similar to that u(n)
is obtained by updating u(n — 1) using (32). The only
differences are the input for updating a”’(n — 1) is a zero
vector and a scaling factor A2, Due to the structure of H
in Lemma 1, the vector b)(+) plays no role in the updat-
ing of a”’(+). Furthermore, from (27) and (29), we have

é,(n) = XIR '(myun) — y,. (48)

From (32), we see that u(n) results from the update of
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Fig. 7. MVDR beamforming using the SBHT systolic array.

[y(n — 1) : y,], where y, is the new input. Now replac-

ing u(n) with a®’(n) and y, with a zero vector, we have

é,(n) = X, R (n)a®(n) 49)

and from (45), we then obtain

]

eV = @G é,(n). (50)

This equation reveals that by the proper scaling of é,(n),
which can be obtained from the SBHT RLS systolic array,
we can obtain the a posteriori residual vector, é¥(n), of
the MVDR beamformation. Fig. 7 shows an extension of
the SBHT RLS array for the new problem. Now one more
data channel is needed for the RA to pipeline cumulation
of la”’(n)||?, and the scaling of the residual vector is done
at the bottom of the RA when a new ||a®(+)|? is avail-
able. Each RA/BPA pair in Fig. 7 represents one of the
K constraints. The optimal a posteriori residual vector of
each linear constraint is obtained at the output of the cor-
responding backward propagation array.

As pointed out in [19], there are two ways to initialize
the array. One method is to set R(0) = 61, where 6 is a
small scalar, and thus from (44), a®(0) = 6 ¢, 1 =1,
-+ -, L. Another method is to obtain R(n) to some time
n, then use (44) to obtain a®(n). The details of a two-
mode operation required for this initialization procedure
are also considered in [19].
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VII. SystoLic ARRAY FOR HYPERBOLIC HOUSEHOLDER
TRANSFORMATION

In some applications, the fixed window approach is
preferred to the exponentially weighted window ap-
proach. The updating of new data and downdating of old
data must then be considered. Rader and Steinhardt [22]
in 1986 proposed a hyperbolic Householder transforma-
tion (HHT) to simultaneously perform up/downdating. Let
us define a J-hyperbolic Householder matrix H; as fol-
lows:

H,=J - 2hh"/|Al; (51)

where h is a column vector, J is a pseudoidentity matrix

I, 0 0
J=|0 1 0
00 -1

with I, representing preserving the previous Cholesky fac-
tor, I, incorporating the new data for updating, —1I, dis-
carding the old data for downdating, and

P p+k p+2k
2= X+ X - 22 #
i=1 i=p+1 i=p+k+1

is the J-pseudo vector norm.
We note that H, is Hermitian and J-pseudo orthogonal,
namely,

H, = HY (52)
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and
HIJH, = J. (53)

We can compress all of the J-pseudo energy of a vector a
into its jth entry by premultiplying it (performing pseu-
doorthogonal transformation) by H; and choosing

h=Ja+ o (54)

with
a = (+a;/llal)lall,. (55)

Here u; is a unit vector with all zeros except for its jth
entry. Then we have

Hja = —au,. (56)

An algorithm using HHT to update the block data ma-

trix 4 = [a,, - * -, a,] and downdate the matrix B = [b,,
*+, b,] from the Cholesky factor R is given below:
The HHT Up/Downdating Algorithm

Fori=1,---,p,do
Fy = «/r,% + airai -_ b,-Tb,-;
ifr;, <0, 7 = —Fy;
Forj=(@G+1),:-+,p,do
Fj = (ryry + ala; — b]b) /Fy;

aj = a; — (Fj + ry/F; + ra;

b = b — (7; + ry/F; + rb;

ifr; <0,a, = —a;; b = —b;;
End;

End.

Same as previous sections, it can be shown that Q‘l
A~ 1 ~ L Al . .
AP - AP where HY)" € ®* > s the lower right
submatrix of the hyperbolic Householder reflection matrix
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Fig. 9. Modified processing cells for the block HHT systolic array.

in zeroing out the jth column of appended data

X + y +
[X Sy “]
with [X* y*]and [X~ y~] representing the new and
old data block to be up/downdated, respectively. The re-
sidual vector e therefore can be written as e -AM*
-+ + H'P* v, which can be computed by a series of back-
ward matrix-vector multiplications as given in previous
sections. A block HHT systolic array for RLS filtering is

given in Fig. 8. Fig. 9 depicts the modified boundary and
regular processors based on Tsao’s algorithm.

VIII. CoNCLUSIONS

In this paper, we have shown that the Householder
transformation can be implemented on a systolic array.
By using a two-level pipelined implementation, the
throughput of the SBHT RLS systolic array can be as fast
as that of the original Givens array in [18]. While, the
system latency is longer for the SBHT, it provides a better
numerical stability than the Givens method. Clearly, the
Givens array is a special case of the SBHT array with a
block size of one. In general, the block size is an impor-
tant variable. A larger block size results in a better nu-
merical stability, while the system latency is increased.
Many known properties of the Givens array are also ap-
plicable to the SBHT array. For example, the real-time
algorithm-based fault-tolerant scheme proposed in [14]
can also be easily incorporated into the SBHT RLS array.
From the results described in this paper, it shows that the
Householder transformation method is useful in real-time
high throughput applications of modern signal processing
as well as in VLSI implementation.
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A Class of Square Root and Division
Free Algorithms and Architectures for
QRD-Based Adaptive Signal Processing

E. N. Frantzeskakis, Member, IEEE,

Abstract— The least squares (LS) minimization problem con-
stitutes the core of many real-time signal processing problems,
such as adaptive filtering, system identification and adaptive
beamforming. Recently efficient implementations of the recursive
least squares (RLS) algorithm and the constrained recursive
least squares (CRLS) algorithm based on the numerically stable
QR decomposition (QRD) have been of great interest. Several
papers have proposed modifications to the rotation algorithm
that circumvent the square root operations and minimize the
number of divisions that are involved in the Givens rotation.
It has also been shown that all the known square root free
algorithms are instances of one parametric algorithm. Recently,
a square root free and division free algorithm has also been
proposed. In this paper, we propose a family of square root
and division free algorithms and examine its relationship with
the square root free parametric family. We choose a specific
instance for each one of the two parametric algorithms and make
a comparative study of the systolic structures based on these two
instances, as well as the standard Givens rotation. We consider the
architectures for both the optimal residual computation and the
optimal weight vector extraction. The dynamic range of the newly
proposed algorithm for QRD-RLS optimal residual computation
and the wordlength lower bounds that guarantee no overflow
are presented. The numerical stability of the algorithm is also
considered. A number of obscure points relevant to the realization
of the QRD-RLS and the QRD-CRLS algorithms are clarified.
Some systolic structures that are described in this paper are very
promising, since they require less computational complexity (in
various aspects) than the structures known to date and they make
the VLSI implementation easier.

I. INTRODUCTION

HE least squares (LS) minimization problem constitutes

the core of many real-time signal processing problems,
such as adaptive filtering, system identification and beamform-
ing [6]. There are two common variations of the LS problem
for adaptive signal processing:

1) Solve the minimization problem

w(n) = arg min [|5(n) (X (n)w(n) - y)lI> M
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where X (n) is a matrix of size n x p, w(n) is a
vector of length p, y(n) is a vector of length n and
B(n) = diag{g"~1,p""2%,---,1},0 < B < 1, that is, 3
is a forgetting factor.

Solve the minimization problem in (1) subject to the
linear constraints

2)

@

where ¢’ is a vector of length p and ¢ is a scalar. In this
paper, we consider only the special case of the minimum
variance distortionless response (MVDR) beamforming
problem [15] for which y(n) = 0 for all n and (1) is
solved by subjecting to each linear constraint, i.e., there
are N linear-constrained LS problems.

There are two different pieces of information that may be
required as the result of this minimization [6]:
1) The optimizing weight vector w(n) and/or
2) the optimal residual at the time instant n
e(tn) = X(tn)w(n) - y(tn) 3)

where X (t,,) is the last row of the matrix X (n) and
y(tn) is the last element of the vector y(n).

Efficient implementations of the recursive least squares
(RLS) algorithms and the constrained recursive least squares
(CRLS) algorithms based on the QR decomposition (QRD)
were first introduced by McWhirter [14], [15]. A compre-
hensive description of the algorithms and the architectural
implementations of these algorithms is given in [6, chap.14].
It has been proved that the QRD-based algorithms have
good numerical properties [6]. However, they are not very
appropriate for VLSI implementation, because of the square
root and the division operations that are involved in the Givens
rotation and the backprintingsubstitution required for the case
of weight extraction.

Several papers have proposed modifications in order to
reduce the computational load involved in the original Givens
rotation [2], [5], [4], [8]. These rotation-based algorithms
are not rotations any more, since they do not exhibit the
normalization property of the Givens rotation. Nevertheless,
they can substitute for the Givens rotation as the building block
of the QRD algorithm and thus they can be treated as rotation
algorithms in a wider sense:

Reprinted from IEEE Transactions on Signal Processing, pp. 2455-2469, September 1994.
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Definition 1: A Givens-rotation-based algorithm that can be
used as the building block of the QRD algorithm will be called
a Rotation algorithm.

A number of square-root-free Rotations have appeared in
the literature [2], [5], [8], [10]. It has been shown that a
square-root-free and division-free Rotation does exist [4].
Recently, a parametric family of square-root-free Rotation
algorithms was proposed in [8]; it was also shown that all
the known square-root-free Rotation algorithms belong to this
family, which is called the “upv-family.” In this paper we will
refer to the uv-family of Rotation algorithms with the name
parametric uv Rotation. We will also say that a Rotation
algorithm is aur Rotation if this algorithm belongs to the pv-
family. Several QRD-based algorithms have made use of these
Rotation algorithms. McWhirter has been able to compute
the optimal residual of the RLS algorithm without square
root operations [14]. He also employed an argument for the
similarity of the RLS and the CRLS algorithms to obtain a
square-root-free computation for the optimal residual of the
CRLS algorithm [15]. A fully-pipelined structure for weight
extraction that circumvents the back-substitution divisions was
also derived independently in [17] and in [19]. Finally, an
algorithm for computing the RLS optimal residual based on
the parametric uv Rotation was derived in [8].

In this paper, we introduce a parametric family of square-
root-free and division-free Rotations. We will refer to this
family of algorithms with the name parametric kA Rotation.
We will also say that a Rotation algorithm is a kA Rotation
if this algorithm is obtained by the parametric kA Rotation
with a choice of specific values for the parameters « and
A. We employ the arguments in [8], [14], [15] and [17] in
order to design novel architectures for the RLS and the CRLS
algorithms that have less computation and circuit complexity.
Some systolic structures that are described here are very
promising, since they require the minimum computational
complexity (in various aspects) known to date, and they can
be easily implemented in VLSI.

In Section II, we introduce the parametric <A Rotation. In
Section III, we derive the RLS algorithms that are based on
the parametric kA Rotation and we consider the architectural
implementations for a specific kA Rotation. In Section IV, we
follow the same procedure for the CRLS algorithms. In Section
V, we address the issues of dynamic range, lower bounds
for the wordlength, stability and error bounds. We conclude
with Section VI. In the Appendix we give the proofs of some
lemmas that are stated in the course of the paper.

II. SQUARE ROOT AND DIVISION FREE ALGORITHMS

In this section, we introduce a new parametric family of
Givens-rotation-based algorithms that require neither square
root nor division operations. This modification to the Givens
rotation provides a better insight on the computational com-
plexity optimization issues of the QR decomposition and
makes the VLSI implementation easier.

A. The Parametric k) Rotation

The standard Givens rotation operates (for real-valued data)
as follows:

Mory o ) _[e s][Bry Bra o Bra
0 zb z, -5 c¢||z1 2 Tm
4
where
c = ___@_ﬁ_ s = __x_l___ (5)

N VBt
ry =4/ B?r? + z? (©)
Hmcpry s, G=12m )
/ j=23-,m. ®

z; = —sPr; + czj,

We introduce the following data transformation

r-——l—a- T; = ! b, o= ! a’

J \/Z: Al J \/l—b-]’ 7 \/l_/; 3
j=1121"‘1m
1

zh = ! j=2,3,---,m. 9)

R
We seek the square root and division-free expressions for the
transformed data a},j = 1,2,---,m,b}, j = 2,3,---,m, in
(6) and solving for af, we get

ll
o = \/ 25 (16703 + 1), (10)

By substituting (5) and (9) in (7) and (8) and solving for ag-
and b, we get
J = LB%a1a; + lb1b;
T Vil (1b8% + 1Y) /1,
b = —blﬂa]- 4+ ﬂalbj
! \/@,ﬂza% + lab?)/lg

We will let I/, and [} be equal to

U =Ll (hB2%a2 +1,02)k%, 1 = (bB%a] +1.03)A? (12)

j=2737""m' (11)

where x and A are two parameters. By substituting (12) in
(10)—(11) we obtain the expressions

i = k(lpB%a? + 1,0%) (13)
a;' = K;(lblgzalaj + lablbj), ] = 27 31 e 7m a'nd (14)
b; = Aﬂ(—blaj +albj), 71=2,3,---,m. (15)

If the evaluation of the parameters « and A does not involve
any square root or division operations, the update equations
(12)—(15) will be square root and division-free. In other words,
every such choice of the parameters x and A specifies a square
root and division-free Rotation algorithm.

Definition 2: Equations (12)—(15) specify the parametric
&\ Rotation algorithm. Furthermore, a Rotation algorithm will
be called a k)X Rotation if it is specified by (12)—(15) for
specific square-root-free and division-free expressions of the
parameters < and .

One can easily verify that the only one square root and
division-free Rotation in the literature to date [4] is a kA
Rotation and is obtained by choosing x = X = 1.
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Rotation Algorithms

pv Rotation

xA Rotation

Fig. 1. The relations among the classes of algorithms based on QR decom-
position, a Rotation algorithm, a ;v Rotation, and a kA Rotation.

B. The Relation between the Parametric KA
and the Parametric pv Rotation

Let

1
=g (6
b

1
K ==,
a l; ?
We can express &, and k; in terms of k, and k; as follows [8]
,_ kaky 1
PR

If we substitute (16) and (17) in (12) and solve for x and v
we obtain

ki = (kof2a? + keb}) /1, K (17)

k(koB2a? + kpb?)
koky

The above provides a proof for the following Lemma:

Lemma 2.1: For each square root and division-free pair of
parameters («, A) that specifies a kA Rotation algorithm Al,
we can find square-root-free parameters (u(x), v(A)) with two
properties: first, the pair (u(x),v()\)) specifies a ur Rotation
algorithm A2 and second, both A1 and A2 are mathematically
equivalent!. 0

Consequently, the set of xA Rotation algorithms can be
thought of as a subset of the set of the v Rotations. Further-
more, (18) provides a means of mapping a kA Rotation onto
a pv Rotation. For example, one can verify that the square
root and division-free algorithm in [4] is a puv Rotation and
is obtained for

_ k.B%a? + kyb?
h kakb
In Fig. 1, we draw a graph that summarizes the relations

among the classes of algorithms based on QR decomposition,
a Rotation algorithm, a uv Rotation and a k) Rotation.

p= . v=A (18)

, v=1.

III. RLS ALGORITHM AND ARCHITECTURE

In this section, we consider the kA Rotation for optimal
residual and weight extraction using systolic array imple-
mentation. Detailed comparisons with existing approaches are
presented.

! They evaluate logically equivalent equations.

A. A Novel Fast Algorithm for the RLS
Optimal Residual Computation

The QR-decomposition of the data at time instant n is as
follows

[Rm) u(n) } — T(n) [/ﬂ%@n

Bu(n — 1)]

19
OO
where T(n) is a unitary matrix of size (p + 1) x (p + 1)
that performs a sequence of p Givens rotations. This can be
written symbolically as

[L(n aTn-% y %-%Hﬁ}%;l) ﬂﬁ;ntn-)l)]
A -

where

L()"2R(-) = R(-
L(n) "2 X (tn) = X(tn),
and

L(n~ 1) = diag{ls,lp, -, L}
L(n) = diag{lg_; l/23 Tty l’ }’

P
fa11 a2 a1p ]
_ 022 az
Rn—1)= ’
. app:
ai;  ajy allp
_ % a,
R(n) = N
!
L Opp
~ T
(n —1) = [a1p41 02p41 " Oppt1]
_ T
i(n) = [a,l,p+1 Gy py1” “;,p+1]

[X(tn) g(tn)] =[by by--- bp bp+1]-

Equations (12)—~(15) imply that the ith Rotation is specified
as follows

R R et IS
) = (50 8% + b2 (23)
a;; = K’i(léi_l)ﬁ2aii0«i]‘ + lib§i‘1)b§i’1)),

j=4,i+1,---,p+1 ©4)
bﬁ-i) = \B(=bVay; + aiib?_l)),
j=i+1,i+2,---,p+1 (25)

where ¢ = 1,2,--- ' Ds b§0) = bj’j =1,---,p+1 and l‘(IO) = lQ‘
For the optimal residual we have:
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The symbol ® denotes
a unit time delay
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Fig. 2.

Lemma 3.1: 1f the parametric kA Rotation is used in the
QRD-RLS algorithm, the optimal residual is given by the
expression

eRLS

(H s ﬂa”> Kpﬁapp b(p)l\/l_ (26)

O
The proof is given in the Appendix.

Here, [, is a free variable. If we choose I, = 1, we can
avoid the square root operation. We can see that for a recursive
computation of (26) only one division operation is needed at
the last step of the recursion. This compares very favorably
with the square root free fast algorithms that require one
division for every recursion step, as well as with the original
approach (63), which involves one division and one square
root operation for every recursion step.

The division operation in (26) cannot be avoided by proper
choice of expressions for the parameters « and A. This is
restated by the following Lemma, which is proved in the
Appendix:

Lemma 3.2: If a kA Rotation is used, the RLS optimal

residual evaluation will require at least one division evaluation.
O

out ©

deo Br+l-b b,
m m in
Ceo,. 1
m
se1l-b,
m
c  &«d
out
eomi-einﬁt
Xé&r
y(—-bin
le1-0.d
m

red

€RLS

eRIS(-_ emhmlo‘in

S1.1: Systolic array that computes the RLS optimal residual. It implements the algorithm that is based on the k) Rotation for which K = X = 1.

Note that the proper choice of the expression for the
parameter J)p, along with the rest of the parameters, is an
open question, since the minimization of the multiplication
operations, as well as communication and stability issues have
to be considered.

B. A Systolic Architecture for the Optimal
RLS Residual Evaluation

McWhirter has used a systolic architecture for the imple-
mentation of the QR decomposition [14]. This architecture
is modified, so that equations (22)—(26) be evaluated for the
special case of k; = A\; = 1,4 =1,2,---,pand l; = 1. The
systolic array, as well as the memory and the communication
links of its components, are depicted in Fig. 2°. The boundary
cells (cell number 1) are responsible for evaluating (22) and
(23), as well as the coefficients ¢; = lff'l) a;; and 3; =
libgz_l) and the partial products e; = [[j_,(Ba;;). The
internal cells (cell number 2) are responsible for evaluating
(24) and (25). Finally, the output cell (cell number 3) evaluates
(26). The functionality of each one of the cells is described in
Fig. 2. We will call this systolic array S1.1.

2Note the aliases l( = g, lfli) = oout.li = lajj =1, b(' -0 =

i) —
bzn~b§') = bout, €i—1 = €in-€i = €out-
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TABLE 1
RLS RESIDUAL COMPUTATIONAL COMPLEXITY
S1.1: KA §51.2: pv 51.3 : Givens rotation

cell 1 2 31 2 3 1 2 3
number of ”-i-—l”;l 1|p ”—(——2”; o p et p;' ! 1
sq.rt - - - - - - 1 - -
div. - - 1(1 - - 1 - R
mult. 9 4 115 3 1 4 4 1

i/o 9 10 416 8 5 6

On Table I, we collect some features of the systolic structure
S1.1 and the two structures, S1.2 and S1.3, in [14] that are
pertinent to the circuit complexity. The S1.2 implements the
square-root-free QRD-RLS algorithm with 4 = v = 1, while
S51.3 is the systolic implementation based on the original
Givens rotation. In Table 1, the complexity per processor cell
and the number of required processor cells are indicated for
each one of the three different cells®. One can easily observe
that S1.1 requires only one division operator and no square
root operator, S1.2 requires p division operators and no square
root operator, while S1.3 requires p division and p square root
operators. This reduction of the complexity in terms of division
and square root operators is penalized with the increase of the
number of the multiplications and the communication links
that are required.

Apart from the circuit complexity that is involved in the
implementation of the systolic structures, another feature of
the computational complexity is the number of operations-per-
cycle. This number determines the minimum required delay
between two consecutive sets of input data. For the structures
S51.2 and S1.3 the boundary cell (cell number 1) constitutes
the bottleneck of the computation and therefore it determines
the operations-per-cycle that are shown on Table V. For the
structure S1.1 either the boundary cell or the output cell are
the bottleneck of the computation.

C. A Systolic Architecture for the Optimal
RLS Weight Extraction

Shepherd et al. [17] and Tang et al. [19] have independently
shown that the optimal weight vector can be evaluated in a
recursive way. More specifically, one can compute recursively
the term R~T(n) by

)

and then use parallel multiplication for computing w? (n) by

wT(n) = uT (n)R™T(n). (28)

27

The symbol # denotes a term of no interest. The above
algorithm can be implemented by a fully pipelined systolic
array that can operate in two distinct modes, 0 and 1. The
initialization phase consists of 2p steps for each processor.
During the first p steps the processors operate in mode 0 in
order to calculate a full rank matrix R. During the following
p steps, the processors operate in mode 1 in order to compute
R~T, by performing a task equivalent to forward substitution.

3 The multiplications with the constants 3 and 32 are not encountered.
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After the initialization phase the processors operate in mode
0. In [17] one can find the systolic array implementations
based both on the original Givens rotation and the Gentleman’s
variation of the square-root-free Rotation, that is, the uv
Rotation for = v = 1. We will call these two structures
S52.3 and S52.2, respectively.

In Fig. 3, we present the systolic structure S2.1 based on
the kA Rotation with x; = A\; = 1,7 = 1,2,---,p. This
is a square-root-free and division-free implementation. The
boundary cells (cell number 1) are slightly simpler than the
corresponding ones of the array S1.1. More specifically, they
do not compute the partial products e;. The internal cells (cell
number 2), that compute the elements of the matrix R, are
identical to the corresponding ones of the array S1.1. The
cells that are responsible for computing the vector u (cell
number 3) differ from the other internal cells only in the
fact that they communicate their memory value with their
right neighbors. The latter (cell number 4) are responsible for
evaluating (28) and (27). The functionality of the processing
cells, as well as their communication links and their memory
contents, are given in Fig. 3. The mode of operation of each
cell is controlled by the mode bit provided from the input. For
a more detailed description of the operation of the mode bit
one can see [15] and [17].

On Tables II and V, we collect some computational com-
plexity metrics for the systolic arrays $2.1, $2.2 and $2.3,
when they operate in mode 0*. The conclusions we can draw
are similar to the ones we had for the circuits that calculate the
optimal residual: the square root operations and the division
operations can be eliminated with the cost of an increased
number of multiplication operations and communication links.
We should also note that S2.1 does require the implemen-
tation of division operators in the boundary cells, since these
operators are used during the initialization phase. Nevertheless,
after the initialization phase the circuit will not suffer from any
time delay caused by division operations. The computational
bottleneck of all three structures, S$2.1, S$2.2 and 52.3, is
the boundary cell, thus it determines the operations-per-cycle
metric.

As a conclusion for the RLS architectures, we observe that
the figures on Tables I, II, and V favor the architectures based
on the kA Rotation, kK = A = 1 versus the ones that are
based on the uv rotation with 4 = v = 1 and the standard
Givens rotation. This claim is clearly substantiated by the delay
times on Table V, associated to the DSP implementation of the
QRD-RLS algorithm. These delay times are calculated on the
basis of the manufacturers benchmark speeds for floating point
operations [stewart]. Due to the way of updating R~!, such
a weight extraction scheme will have a numerical stability
problem if the weight vector at each time instant is required.

IV. CRLS ALGORITHM AND ARCHITECTURE

The optimal weight vector w'(n) and the optimal residual
ecrrs(tn) that correspond to the ith constraint vector ¢ are
given by the expressions [15]

+The multiplications with the constants 3. 3%.1/3 and 1/.32, as well as
the communication links that drive the mode bit, are not encountered.
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Fig. 3. 52.1 : Systolic array that computes the RLS optimal weight vector. It implements the algorithm that is based on the £\ Rotation for whichk = A = 1.

TABLE II

RLS WEIGHT EXTRACTION COMPUTATIONAL COMPLEXITY (MODE 0)

52.1: kA §2.2: pv 52.3 : Givens rotation
cell 1 2 3 4 1 2 3 4 1 2 3 4
number of | p (”'21)" P P(L“H) P (P;UP P(P;I) » L—zlh ? ZQ;LQ
sq.rt - - - - - - - 1 - - -
div. - - - - 1 - - 1 - - -
mult. 8 4 4 5 5 3 3 4 4 4 4 5
ifo 7 10 11 14 6 8 9 12 3 6 7 10
i rt - ; where
w'(n) = ———= R (n)z'(n) (29)
ll2* ()2
Ecrrs(tn) = X (ta)R™H (n)2"(n). (31D
and
The term z%(n) is defined as follows
, 'ri .
ecrrs(tn) = 75 €crLs(tn) (30) : :
" lE )2 " Z(n) = R-T(n)c (32)
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and it is computed with the recursion [15]

R

where the symbol # denotes a term of no interest. In this
section, we derive a variation of the recursion that is based
on the parametric kA Rotation. Then, we design the systolic
arrays that implement this recursion for kK = A = 1. We
also make a comparison of these systolic structures with those
based on the Givens rotation and the pv Rotation introduced
by Gentleman [6], [2], [15], [17].

From (32) and (21) we have zi(n) = (L(n)~*/2R(n)) " ¢
and since L(n) is a diagonal real valued matrix we get z¢(n) =
L(n)/2R(n)~Tc, where ¢t is the constraint direction. If we
let

(33)

#(n) = L(n)R(n)"T¢ (34)

we obtain
Z(n) = L(n)"Y2 (n).

From (35) we get [|2%(n)|> = 2 (n)L~}(n)z'(n). Also,
from (21) and (35) we get R™!(n)z'(n) = R™(n)z'(n).
Consequently, from.(29), (30), (31) we have

,,.’I.

eiCRLS(n) = ZiT (n)L_l (n)zz(n) éiCRLS(n) (36)
and
v ) = S a6
where
écrrs(n) = X(n)R™*(n)2'(n). (3%

Because of the similarity of (31) with (38) and (29) with (37)
we are able to use a variation of the systolic arrays that are
based on the Givens rotation [15], [17] in order to evaluate
36)-(37).

A. Systolic Architecture for the Optimal
CRLS Residual Evaluation

From (26) and (36), if [, = 1, we get the optimal residual

i p—1
. T KpQ
i - _ Noa.: | Zrlepy(p)
eCRLS(n) EZT(n)L'l(n)Zl(n) ]I=_[1 i 3jj Apa';)p p+1
(39)

In Fig. 4, we present the systolic array S3.1, that evaluates
the optimal residual for k; = A\; = 1,5 = 1,2,---,p, and
the number of constraints is N = 2. This systolic array is
based on the design proposed by McWhirter [15]. It operates
in two modes and is in a way very similar to the operation
of the systolic structure S2.1 (see Section III). The recursive
equations for the data of the matrix R are given in (22)—(25).
They are evaluated by the boundary cells (cell number 1)
and the internal cells (cell number 2). These internal cells
are identical to the ones of the array S2.1. The boundary
cells have a very important difference from the corresponding

ones of 52.1: while they operate in mode 0, they make use
of their division operators in order to evaluate the elements
of the diagonal matrix L~!(n), i.e., the quantities 1/l;,i =
1,2,---,p. These quantities are needed for the evaluation of
the term z' (n)L~=1(n)z'(n) in (39). The elements of the
vectors z' and 72 are updated by a variation of (24) and
(25), for which the constant 3 is replaced by 1/3. The two
columns of the internal cells (cell number 3) are responsible for
these computations. They initialize their memory value during
the second phase of the initialization (mode 1) according to
(34). While they operate in mode 0, they are responsible for
evaluating the partial sums

k
me=Y_lIZ512/1;. (40)
7j=1

The output cells (cell number 4) are responsible for the final
evaluation of the residual®.

McWhirter has designed the systolic arrays that evaluate the
optimal residual, based on either the Givens rotation or the
square-root-free variation that was introduced by Gentleman
[2], [15]). We will call these systolic arrays 53.3 and S3.2,
respectively. On Tables III and V we collect some computa-
tional complexity metrics for the systolic arrays S3.1, S3.2
and $3.3, when they operate in mode 0%. We observe that the
pr Rotation-based 53.2, outperforms the kA Rotation-based
S53.1. The two structures require the same number of division
operators, while 53.2 needs less multipliers and also it has
less communication overhead.

B. A Systolic Architecture for the Optimal
CRLS Weight Vector Extraction

In Fig. 5, we present the systolic array that evaluates (37)
fork; = A; =1,j =1,2,---, p and the number of constraints
equal to N = 2. This systolic array operates in two modes, just
as the arrays 52.1 and 53.1 do. The boundary cell (cell number
1) is responsible for evaluating the diagonal elements of the
matrices R and L, the variable /g, as well as all the coefficients
that will be needed in the computations of the internal cells.
In mode O its operation is almost identical to the operation of
the boundary cell in $2.1 (except for ), while in mode 1 it
behaves like the corresponding cell of S3.1. The internal cells
in the left triangular part of the systolic structure (cell number
2) evaluate the nondiagonal elements of the matrix R and they
are identical to the corresponding cells of $3.1. The remaining
part of the systolic structure is a 2-layer array. The cells in
the first column of each layer (cell number 3) are responsible
for the calculation of the vector z* and the partial summations
(40). They also communicate their memory values to their right
neighbors. The latter (cell number 4) evaluate the elements of
the matrix R~7 and they are identical to the corresponding
elements of S52.1. The output elements (cell number 5) are
responsible for the normalization of the weight vectors and
they compute the final result.

5Note the alias r* = .

The multiplications with the constants 3.32,1/3 and 1/32, as well as
the communication links that drive the mode bit, are not encountered.
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Fig. 4. S3.1 : Systolic array that computes the CRLS optimal residual. It implements the algorithm that is based on the kA Rotations for which &k = A = 1.

TABLE II
CRLS OptiIMAL RESIDUAL COMPUTATIONAL COMPLEXITY (MODE 0)

$3.1: kA §3.2: uv $3.3 : Givens rotation

cell 1 2 3 4|1 2 3 4141 2 3 4
number of | p ip;;)f Np N |p (”—'2—1)-’3 Np N|p f%)—” Np N
sq.rt - - - - |- - - -1 - - -
div. 1 - - 111 - 1|1 - - 1
mult. 9 4 6 3 (6 3 5 2|5 4 5 2
ifo 10 12 14 7|7 10 12 5|5 6 8 5

Shepherd et al. [17] and Tang et al. [19] have designed
systolic structures for the weight vector extraction based
on the Givens rotation and the square-root-free Rotation of
Gentleman [2]. We will call these two arrays S4.3 and S4.2,
respectively. On Tables IV and V, we show the computational
complexity metrics for the systolic arrays S4.1, S4.2 and S4.3,
when they operate in mode 0. The observations we make are

10

similar to the ones we have for the systolic arrays that evaluate
the RLS weight vector (see Section III).

Note that each part of the 2-layer structure computes the
terms relevant to one of the two constraints. In the same
way, a problem with N constraints will require an N-layer
structure. With this arrangement of the multiple layers we
obtain a unit time delay between the evaluation of the weight

1



00
00 00 00
00 00 00 00 1
00 00 00 00 0 1 0 Cell Number 1
00 00 00O o1 00
x 00 00 10 00 o b
x x 00 o 1 00 [ in
x x 1 o0 10 o0 o 00
x 0 0 0o 1 o0 0 00 00 00 _— ¢
0 1 0 00 ©0 00 0000 0000 iaiadd
0 0 2 1 00 0000 0000 00
1 c? ¢! 0000 0000 00 LI
c: ! x 00 00 00
x 2
¢ . x 0 mode 0: d o, Br+l-b b
1 x x ?(—-Ohr
4 x se1-b,
mn
— Y c"'(-d
“r
1 2 2 3 4 X
y(—l:hI
Y l(—l-chd
d
4 4 re
! 2 3 te1/1
mode 1: x &1
> y(-bin/l'
1 [_3_] 4 4 4 te1
The symbol @ denotes Cell Number 2
a unit time delay S S S
b.
mn
M ¥
w2 w‘lwz - - -
1 C8,X,y,t—3 T L3C,8,x,Y,t
Wz W1W2 w
W‘Wz W‘ b
w‘ out
mode O :b & Bx-b. —y.Br
Cell Number 3 5-b.
Cell N 4 rec K‘r#-s bm
de1:b &x-b _~-y-r
i Vin  T,5,x,y,tin b ,w. mode out y
lll¢ n
- = z - =
€8xyt G XY, L XYt r 5,5, xy,t Cell Number S
Y -
bonl’“out b mn
out’  out
de0: b R N
mode 0 : b ¢ gx b —gy-z ) 1 n n
2 Yeozeib mode 0 bou« X Pin YT
p 1. -
Mo & Ny +t, 202 re p:¢'r+ﬁ'bh w
t “«~z out
out WomE Wi tter
mode 1: if b = . w 1w /1
byl then remy by, mode 1: if b, =1 thenre¢y ont n
Fig. 5. S54.1 : Systolic array that computes the CRLS optimal weight vector. It implements the algorithm that is based on the <A Rotation for
which k = A = 1.

vectors for the different constraints. The price we have to pay
is the global wiring for some of the communication links of
cell 3. A different approach can also be considered: we may
place the multiple layers side by side, one on the right of the
other. In this way, not only the global wiring will be avoided,
but also the number of communication links of cell 3, will be
considerably reduced. The price we will pay with this approach
is a time delay of p units between consequent evaluations of
the weight vectors for different constraints.

As a conclusion for the CRLS architectures, we observe
that the figures on Tables III, IV and V favor the architectures
based on the uv Rotation, u = v = 1 versus the ones that are
based on the x\ rotation with kK = A = 1.

V. DYNAMIC RANGE, STABILITY, AND ERROR BOUNDS

Both the kA and pr Rotation algorithms enjoy computa-
tional complexity advantages compared to the standard Givens
rotation with the cost of the denormalization of the latter.
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TABLE IV
CRLS WEIGHT VECTOR EXTRACTION ComP COMPLEXITY (MODE 0)

54.1: KA 54.2: pv
cell 1 2 3 4 5 |1 2 3 4 5
number of | p (r—zl)p Np Np(2P+1) Npl|p 75—21)1’ Np Np(;+1) Np
sq.rt - - - - - - - - - -
div. 1 - - - 1 1 - - - 1
mult. 8 4 6 5 1 (5 3 5 4 -
ifo 8 12 19 14 4 |6 8 14 10 4
54.3 : Givens rotation
cell 1 2 3 4 5
number of | p (”_2”" Np X2 (; *1 Np
sq.rt 1 - - - -
div. 1 - - 1
mult. 4 4 5 5 -
ifo 4 8 13 10 4
TABLE V

MINIMUM REQUIRED DELAY BETWEEN TwWO CONSEQUENT SETS OF INPUT DATA

operations-per-cycle DSP96000 IMS T800 WEITEK 3164 ADSP-3201/2

(s) (ns) (us) (zs)
S1.1 | max{1l div. + 1 mult. , 9 mult. } 900 3150 1800 2700
S$1.2 | 1 div. + 5 mult. 1020 2300 2700 3675
$1.3 | 1 sq.rt. + 1 div. + 4 mult. 1810 4500 5300 7175
$2.1 | 8 mult. 800 2800 1600 2400
$2.2 | 1 div. + 5 mult. 1020 2300 2700 3675
S52.3 | 1 sq.rt. + 1 div. + 4 mult. 1810 4500 5300 7175
§3.1 | 1 div. + 9 mult. 1420 3700 3500 4875
$3.2 | 1 div. + 6 mult. 1120 2650 2900 3975
53.3 | 1 sq.rt. + 1 div. + 5 mult. 1810 4500 5300 7175
S54.1 | 1 div. + 8 mult. 1320 3350 3300 4575
S$4.2 | 1 div. + 5 mult. 1020 2300 2700 3675
S4.3 | 1 sq.rt. + 1 div. + 4 mult. 1810 4500 5300 7175

Consequently, the numerical stability of the QRD architectures
based on these algorithms can be questioned. Furthermore,
a crucial piece of information in the circuit design is the
wordlength, that is the number of bits per word required to
ensure correct operations of the algorithm without overflow.
At the same time, the wordlength has large impact on the
complexity and the speed of the hardware implementation. In
this section, we address issues on stability, error bounds and
lower bounds for the wordlength by means of dynamic range
analysis. We focus on the algorithm for RLS optimal residual
extraction based on a kA Rotation. The dynamic range of the
variables involved in the other newly introduced algorithms
can be computed in a similar way.

In [13], Liu ez al. study the dynamic range of the QRD-RLS
algorithm that utilizes the standard Givens rotation. This study
is based on the fact that the rotation parameters generated
by the boundary cells of the systolic QRD-RLS structure
eventually reach a quasi-steady-state regardless of the input
data statistics, provided that the forgetting factor 3 is close to
one. A worst case analysis of the steady state dynamic range
reveals the bound [13]

(26)~
-7

j=1%t+1,---,p+1

AN
!xmaa: ]=R:,

lim |ri;(n)| <
(41

for the contents of the processing elements of the :th row in the

systolic structure, s = 1,2,---,p, where |ZTmq.| is the largest
value in the input data. Similarly, at the steady state the output
of the ith row 3", j = i,i+1,---,p+ 1 is bounded by [13]
. 7 . A
lim [29(n)] < (20) amas R,

Furthermore, the optimal residual egr s is bounded by [13]
1 - JAN rr
lim |errs(n)] < (28)P 7 |Tmaz|=RE.
n-—+oo

The latter is a BIBO stability result that applies also for the
QRD-RLS algorithm based on a kA Rotation. Nevertheless,
the internal stability is not guaranteed. More concretely, the
terms involved in the QRD-RLS algorithm may not be upper
bounded.

In view of the internal stability problem, a proper choice of
the parameters x and A should be made. A correct choice will
compensate for the denormalization of the type

_ 1 @__1 o
B g 0 =T

q
where [ and lff) are given in (22) and (23), respectively. The
terms n? and )\? in (22) and (23) can be used as shift operators
by choosing

K = 27 and /\i = 2_”,

T (43)

1=1,2,---,p (44)
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Fig. 6. Systolic array that computes the RLS optimal residual based on the scaled square root free and division free Rotation.

where p; and 7; take integer values. For instance, in (23), if
X Y

7 > 0 the effect of A2 on (1778242 + ;61" ) will be a

right shift of 27; bits. We can ensure that

0.5<!<2and 0.5 <1 <2, i=1,2,---,p (45)

by forcing the most significant bit (MSB) of the binary
representation to be either at position 2° or 27! after the shift
operation. This normalization task has been introduced in [1]
and further used in [4]. It can be described in analytic terms
by the expression

shift_amount(unnormalized quantity)

= | {log, (unnormalized_quantity) + 1} /2|

and it can be implemented very easily in hardware.
In the sequel, we consider the kA Rotation by choosing

pi = shift_amount [liléi_l)(lgi_l)ﬁzaizi + libgi_l)z )]

7; = shift_amount [(zgi-U B2a% + libg’“l)z)] (46)
for:=1,2,---, p [4]. Note that (46) along with (44) should
precede (22)-(25) in the rotation algorithm. In conformity to
[1] and [4] we will refer to the resulting rotation algorithm
with the name scaled rotation.

The systolic array that implements the QRD-RLS algorithm
for the optimal residual extraction is depicted in Fig. 6. A
comparison of this systolic array with the one in Fig. 2

is summarized by the following points: The boundary cells
generate the shift quantities p and 7 associated with the
parameters « and A, respectively, and they communicate them
horizontally with the internal cells. This yields two additional
links for the boundary cells and four additional ones for the
internal cells. In the dynamic range study that follows, we
show that the number of bits these links occupy is close to
the logarithm of the number of bits required by the rest of the
links. The boundary cells are also responsible for computing
the quantities []5_, Ba;; and Hf;ll ); in (26). In this case, \;
is an exponential term according to (44), so the above product
can be computed as the running sum of the exponents

gi:ZTkr z=12,p——1 (47)
k=1

yielding an additional adder for the boundary cells. Finally, as
far as the boundary cells are concerned, we observe that the
cell at position (p,p) of the systolic array is not identical to
the rest of the boundary cells. This is a direct consequence of
(26). On the other hand, the shift operators constitute the only
overhead of the internal and the output cells compared with
the corresponding ones in Fig. 2. Overall, the computational
complexity (in terms of operator counts) is slightly higher than
that of the systolic array with x = A = 1.

Let us focus now on the dynamic range of the variables in
the systolic array. By solving (43) for agj and using (41) and
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(45) one can compute an upper bound for a;; at the steady
state, thus one can specify the dynamic range of the ith row
cell content. A similar result can be obtained for the output
of the ith row by using (42), (43) and (45). The results are
summarized by the following Lemma:

Lemma 5.1: The steady state dynamic range of the cell
content R¢ and output range R? in the ith row are given by

Jlim_agi(n)] < Rgé\/ing and

lim |b§.’)(n)| < RY2\3RE 48)
n—00
respectively.

The lower bounds in the wordlength come as a direct
consequence of Lemma 4: The wordlength of the cell content
B¢ and output 3 in the ith row must be lower bounded by

B¢ > [BF +0.5] and B > [B7 +0.5] 49)
respectively, where 37 = [log, R7| and 87 = [log, R¥] are
the corresponding wordlength lower bounds for the QRD-RLS
implementation based on the standard Givens rotation.

The parameters «;, A; are communicated via their exponents
p; and 7;. The dynamic ranges of these exponents are given
by Lemma 5 which is proved in the Appendix.

Lemma 5.2: The steady state dynamic range of the terms
p; and 7; at the ith row R? and R are given by

lim p; < RPER® +2.5
n—00

lim 7 < RT2A% + 1.5 (50)

respectively’, if both p; and 7; are nonnegative.

Obviously, if both p; and 7; take negative values, (50)
will also satisfy. But there is no guarantee in its dynamic
bound. Notice that taking negative value means a left shift.
Uncontrolled arbitrary left shift may end up losing the MSB,
an equivalence of overflow. Thus, it will be wise to also limit
the magnitudes of negative p; and 7; to the bounds in (50), i.e.

lim [p;| <R

n-—oc

lim |r;| < R] (51)
n—oo

Consequently, the lower bounds on the wordlength 8¢ and 37
of p; and 7; are

B! = [log (B + 2.5)] and

BT = [log (87 +1.5)] (52)
respectively.

For the computation of the optimal residual the bound-
ary cells need to evaluate both the running product e; =
H2=1 Bagr and the running sum in (47). The dynamic ranges
for these terms are given by the following Lemma:

7For the sake of simplicity in notation we have dropped the time parameter
n from the expression in the limit argument.

Lemma 5.3: The steady state dynamic range of the terms
e; and g; at the ith row R¢ and R are given by

i
lim le;| < R$= [ Rg
k=1

n—oo

s
lim |g:| < RIZiB2 + 3(—%—) (53)
n—oo

respectively.

The proof is given in the Appendix. With simple algebraic
manipulations one can show that the corresponding lower
bounds on wordlength 8 and 37 of e; and g; are

T
ge>Y B¢ and
k=1

89 > max{[log 62 + logi + 11, [logi + log(i + 2)]}
(54)

respectively.
Finally, consider the coefficients defined as

;i = l‘gi_l)ﬂzaii 8§ = libgz:_l)
¢ = Pai; 5= ﬁb?‘”.,
that describe the information exchanged by the remaining
horizontal links in the systolic array (cf. Fig. 6). One can easily
show that the steady state dynamic range of these coefficients,
denoted by RE, R, R¢ and R}, respectively are
lim |6 < REE2RS
n—o0
lim |5;] < RI22RY
n—oo
lim |&;] < REER?
n-—0o0

lim |5;] < RIERL. (55)
n—oo

The implied wordlength lower bounds are 3¢ > (¢ + 1,
B> B2+ 1,6 > B¢ and 8§ > [, respectively.

In summary, (45), (48), (50), (53), and (55) show that all the
internal parameters are bounded and therefore the algorithm
is stable. Furthermore, the lower bounds on the wordlength
provide the guidelines for an inexpensive, functionally correct
realization.

The error bound of the whole QRD to a given matrix
A € R™X" due to floating point operations is given by [1], [4]

16A]] < T(m+n = 3)(1+ 7)™ "4 Al + O(?), (56)

where 7 is the upper bound and ¢ is the largest number such
that 1 + ¢ is computed as 1. If (44) and (45) are satisfied, for
& = A = 1, then it follows that 7 = 6.5¢ [4]. This is fairly
close to the standard Givens rotation which has 7 = 6.0¢ [4].

VI. CONCLUSION

We introduced the parametric kA Rotation, which is a
square-root-free and division-free algorithm, and showed that
the parametric kA Rotation describes a subset of the uv
Rotation algorithms [8]. We then derived novel architectures
based on the kA Rotation for k = A = 1 and made a
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comparative study with the standard Givens rotation and the
uv Rotation with 4 = v = 1. Finally, a dynamic range
study is pursued. It is observed that considerable improvements
can be obtained for the implementation of some QRD-based
algorithms.

We pointed out the tradeoffs between .the architectures
based on the above Rotations. Our analysis suggests the
following decision rule for selecting between the architectures
that are based on the uv Rotation and the x)\ Rotation:
Use the pv Rotation — based architectures, with u =
v = 1, for the constrained minimization problems and the
kA Rotation — based architectures, with « = A = 1,
for the unconstrained minimization problems. Table V
shows the benchmark comparisons of different algorithms
using different DSP processors and it confirms the properties
claimed in this paper.

A number of obscure points relevant to the realization of the
QRD-RLS and the QRD-CRLS algorithms are clarified. Some
systolic structures that are described in this paper are very
promising, since they require less computational complexity
(in various aspects) from the structures known to date and
they make the VLSI implementation easier.

APPENDIX

Proof of Lemma 3.1: First, we derive some equations
that will be used in the course of the optimal residual com-
putation.

If we solve (24), case i = j = 1, for {,8%a?; + ;6% and
substitute in (22) we get

a
i 11 2
b= hlg—2a]

K1

and therefore
ll
1

I (67

_ !
= lqallnl.

If we solve (24), case j = i, for 15;'“”5%3. + lib,(-i'l)2 and
substitute in (23) we get

19 = /\z:iz 58)
If we substitute the same expression in (22) we get
I, = lilfli*l)aiini
(58), and solve for [/l; to obtain
U A2k,
= a1 105;. (59)

E Ki-1
If we solve (22) for l(l D B%aZ + I; b(2 D® and substitute in
(23) we get

2

V=R )

Also, we note that (4) implies that

i = Bris/ vl

and by substituting (9) we obtain

o= b1, (61)
ag; \ b
Similarly, from (4) and (9), we get
pi—v [
i = T i =1,2,---,p. 62
$ a;i l((lz_l) t d p ( )
The optimal residual for the RLS problem is [6]
erwLs(tn) (H ck)v (tn)- (63)

The expressions in (20) and (19) imply

o(tn) = ——b®)

[~ p+1l°
l‘(lp)

If we substitute the above expressions of v(t,) and ¢; in (63)

we obtain
£ ﬂau 1 (p)
errs(tn) H + byi1-  (64)
=1 z l(p)
Via
From (60) we get
2 2 2
R S SR Y S g
a K2 1 lgp‘l) K2l A2 _ 1 f
Hk )‘g'éi_"‘g —1 21 l = 2k
B j=1 ;g‘fzzj b ) p=
k-1 n§ 1_21)‘3'_1151—1 A?, ; 1 = % 1
H]=1 235 L, KZZJ Rz ,Tgﬁﬁ: p= —
(65)

Thus, from (64) and (65), for the case of p = 2k, we have
the first equation at the top of the next page. By doing
the appropriate term cancelations and by substituting the
expressions of I./l;,i = 1,2,---,2k from (57) and (59) we
obtain the expression (26) for the optimal residual. Similarly,
for the case of p = 2k — 1, from (64) and (65) we obtain the
second equation at the top of the next page and by substituting
(59), we get (26).

Proof of Lemma 3.2: The question is whether we can
avoid the division in the evaluation of the residual. Obviously
we should A,ay,, or

Ap = Kp/ a;p
holds. But, from (24), for 7 = i, we get

1
17V 822, + 1,V

Ko/ Qpp

Therefore, if we choose to avoid the division operation in the
expression of the residual, we will need to perform another
division in order to evaluate the parameter A,.
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Proof of Lemma 5.2: From (45) and the fact that 0 <
B8 <1 we get

léi—l)ﬁza?i -+ libgi—l)z < 20,,',‘(17,)2 + 2b2(i-1)2
Consequently, at the steady state we have

lim l,(zi"l)ﬂza?i + libf’”z( < 2(72?)2 + 2(72?)2-

n-—o0

Also, (41), (42), and (48) imply that R¢ > R?. Therefore, we
obtain the bound

1D %2 + 18V | < a(R2)?

lim
n—oo

and by utilizing (23) and the fact that I$” > 0.5we get
lim [372] <2 lim [16D6% + 1|

n-—0o0
< 8(RY)%.

(66)

By substituting the expression A\; = 277, using (66) and

solving the resulting inequality for 7;

lim ; <logR?+1.5

n—oo

if 7;is nonnegative. The expression for the dynamic range of
7; in (50) is a direct consequence of the above inequality.
Similarly, for the computation of the dynamic range of the

term p; first one can prove that
Jim (P06 + 16| < 16(RE)?

and then compute an upper bound for p;at the steady state
based on (22), (44) and the fact that I} > 0.5.

Proof of Lemma 5.3: Since 0 < 8 < 1, for the term e;
we have

i i
. i : a
Jom e = 07 1T Jimfowad < TL 5
Similarly, for the term g;we have
Jim loil =3 Jim e
k=1
and from (50)

%

> (B +1.5).

k=1

lim |gi| <) RE= (67)

k=1

Equation (41) implies that the wordlength for the variable r
should satisfy the inequality

Bi 2 [(1—1)(1+logB) + C]

where C is constant with respect to i. Since § < 1, it is
sufficient to have

B 2[i-14+C
or

B >i—1+/07. (68)

A similar formula can be derived for the wordlength of the
contents of the the array that utilizes the scaled rotation, based
on (49) and (68). More specifically, we have

B2 BT +i-1.

From this inequality and (67) we get
(i1
lim [g:] <ige+ 0=V 415
n—00 2
The dynamic range expression in (53) follows directly.
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Algorithmic engineering in adaptive signal

processing

J.G. McWhirter

Indexing terms: Signal processing, Algorithms

Abstract: The concept of algorithmic engineering
is introduced and discussed in the context of
parallel digital signal processing. The main points
are illustrated by means of some fairly simple
worked examples. Most of these relate to the use
of QR decomposition by square-root-free Givens
rotations as applied to adaptive filtering and
beamforming.

1 Introduction

Achieving the performance required from a modern
digital signal processing (DSP) system often necessitates
the real-time application of reliable numerical algorithms
for least squares estimation, solving linear systems, per-
forming singular value decomposition and so on. To
perform such computations at the required data rate, it is
often necessary to introduce a high degree of parallel pro-
cessing. For some applications, it may be sufficient to
exploit a general purpose parallel computer, in which
case the signal processing designer must map the relevant
numerical algorithms as efficiently as possible onto the
architecture of that particular machine. For many real-
time applications however, it is necessary to design a
highly dedicated parallel processor that can be imple-
mented using advanced VLSI technology. It is in this
context that the concept of algorithmic engineering has
started to emerge. It describes the hybrid discipline of
deriving stable numerical algorithms, which are suitable
for parallel computation, and then mapping them onto
parallel-processing architectures capable of performing
the computation efficiently at the required throughput
rate. Both aspects are extremely important and cannot be
treated in isolation. For real-time DSP, it is obviously
essential to ensure that an algorithm may be imple-
mented at the required data rate. However, there is no
point in designing a high-performance parallel processor
if the underlying algorithm is numerically unstable or
grossly inefficient.

The most significant advance in algorithmic engineer-
ing was undoubtedly the pioneering work of Kung and
Leiserson [1]. They introduced the concept of a systolic
array and showed how a number of important linear
algebra computations, such as matrix multiplication, tri-
angularisation and back substitution, could be mapped
onto this very efficient type of parallel-processing archi-
tecture. A particularly important development, which fea-
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tures in this paper, was the design by Gentleman and
Kung [2] of a triangular systolic array for QR decom-
position. This constitutes a relatively simple and highly
regular architecture whereby the essential least squares
process required for many adaptive filtering and beam-
forming operations may be implemented in a number-
ically stable and efficient recursive manner [3]. It has
since been generalised to include linear constraints and
applied to a wide range of problems in signal processing.
These include narrowband and broadband adaptive fil-
tering, Kalman filtering and nonlinear adaptive filtering
as applied to neural networks and pattern recognition.

Now that a number of kernel processing architectures,
such as the Gentleman and Kung array, have become
widely understood and accepted, many signal-processing
engineers are willing to accept them as high-level build-
ing blocks on which the design of other hybrid processing
structures may be based. The use of high-level building
blocks can be a valuable aid in the design of more com-
plicated processing architectures, but, if the technique is
to gain wider acceptance, a more rigorous methodology
is essential. The approach adopted to date is much too ad
hoc and ill-defined. In this paper, I hope to illustrate, by
means of suitable worked examples, a more methodical
procedure which the author has developed in the context
of research on adaptive filtering.

A well-defined block diagrammatic representation of
any high-level building block is essential for the purposes
of algorithmic engineering, and the concept of a signal
flow graph (SFG) proves to be very useful in this context
[4]. A signal flow graph hides the detailed timing features
associated with a synchronous systolic array, but, when
required, this information can easily be re-inserted or
established from first principles, using the cut theorem
and retiming techniques (assuming that systolic operation
of the hybrid architecture is possible). Postponing the
detailed timing issues in this way gives the DSP designer
more freedom to establish the optimum level of granular-
ity for the processing cells in each block. More import-
antly, it allows the high-level building blocks to be
represented functionally as well-defined mathematical
operators. It is then possible to manipulate the blocks in
a rigorous manner, determined by the type of matrix (or
other) algebra associated with those operators. The
author and his colleagues have found this to be a very
powerful approach and have used it in the past to derive
novel signal-processing architectures, such as the systolic
array for MVDR beamforming described in Reference 5.

2 Fixed matrix operators

In this section, I will discuss some relatively simple
matrix operators, which may be implemented using an
array of the basic processing cells defined in Fig. 1. These
are referred to as fixed matrix operators because their

Reprinted with permission from Proceedings of the IEE, Part F, J. G. McWhirter, "Algorithmic Engineering
in Adaptive Signal Processsing," Vol. 139, No. 3, pp. 226-232, June 1992. © Crown Copyright.
Reprinted with the permission of the Controller of Her Majesty's Stationery Office.

109



function remains constant and is not affected by the data
that they process. The parameter r in each case represents
a value stored within the cell.

boundary cell internal cell

X X
&—% X/T z r z
X—TIZ

Fig. 1 Processing cells required for fixed matrix operators
Xy ) X3

Z) Uy U= U3 Z

L Up = Ugg—= Upg—=> 29

23 U= Uzp—= Us3 Z3

Z4 Ugy Uy Ug3 Z4
X X2 X3

Fig. 2  Rectangular fixed matrix operator

Consider first a p x ¢ rectangular array of internal
cells of the type illustrated in Fig. 2. It is well known and
can readily be shown that, if the vectors x” and z are
input to such a processing network as indicated in Fig. 2,
the resulting output vector from below is given by

xT=x"-7"U 1)

where U denotes the matrix of values stored within the
cells. The array may therefore be regarded as a matrix
multiplication operator. Fig. 2 should be regarded as a
signal flow graph, which is only intended to provide an
abstract description of the algorithm mapping. For ease
of understanding, it may therefore be assumed that the
output of each cell, and hence the entire array, is gener-
ated instantaneously. In practice, of course, the pro-
cessing time will not be negligible, and it may be
necessary to introduce some form of pipelining into the
computation. Accordingly, Fig. 2 may be used to define a
fully pipelined, systolic array by generating a pipeline
‘cut’ between each diagonal row of processors. The
dashed line in Fig. 2 indicates one such cut, the others
being drawn parallel to this. Where each pipeline cut
crosses a data interconnection line, the systolic array will
require a corresponding data storage or delay element.
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Note that the triangular wedge of delay elements
required to skew/deskew each input/output vector is also
specified by the complete set of pipeline cuts.

Z3

l34
Z4

Fig. 3  Triangular fixed matrix operator

Now consider a p x p triangular array of processing
cells of the type represented by the signal flow graph in
Fig. 3. It is easy to show that the input vector x™ may be
expressed in terms of the output vector z, as follows:

x=R"z @

where R denotes the triangular matrix of stored values.
For example, it is clear that

zy=xy/ryy and  z; =(x; —ry;2)/rp; 3
ie.

Xy =rzy and X, =r,z;, +7r;y,2, )

Hence, if R is nonsingular (i.e. no diagonal element of R
is zero), the output vector z is given by

=R "x %)

and so the processor array represented by Fig. 3 consti-
tutes an inverse triangular matrix operator. As before, a
fully systolic processor array may be defined by intro-
ducing a set of diagonal pipeline cuts parallel to the one
indicated by a dashed line in Fig. 3.

The matrix operators in Figs. 2 and 3 may be rep-
resented quite compactly by the simplified schematic dia-
grams in Figs. 4a and b, respectively. In effect, each of
these diagrams constitutes a vector-level signal flow
graph which provides no information about the under-
lying algorithm and architecture. Now, as a very simple
example of algorithmic engineering, consider the trapez-
oidal processor array represented by the diagram in Fig.
4c. It is formed by combining a p x g rectangular array
and a p x p triangular array of the type illustrated in
Figs. 2 and 3, respectively. From the discussion above, it
follows that the effect of inputting a p-element vector x7
and a g-element vector x{ from the top as shown, is to
generate the p-element output vector R~ Tx,, which
emerges from the right-hand edge, and the g-element
vector x{ — xIR™'U, which is output from the bottom
edge of the trapezoidal network. This output vector is, by
definition, the Schur complement [6] of R in the com-
pound matrix

R U
s=% x ©



and it is interesting to note that the processor array rep-
resented by Fig. 4c may also be viewed as a parallel
implementation of the Fadeev algorithm [7]. In effect,
the triangular array serves to null the input vector xT by
forming a linear combination of the form x! + MR,

and y(n) is the complex n-element vector
) = [p(ey), ylea), ..., y(e)]" (1)

The main triangular array 4BC transforms the data
matrix X(n) into a p x p upper triangular matrix R(n) by

.......... XT_________ R XT...__.
: : R _
7 = U | > z = R Ty
a b
------ xI-2TU -
T T
_____ xa ceamea-. xb e
R U —.T
— R 'x,
c g
T Tp=1y1...
=Xy —x,R U
Fig. 4  Schematic representation of fixed networks
a Rectangular fixed network b Triangular fixed network ¢ Trapezoidal fixed network
where performing a QR decomposition of the form
M= —xTR™! (7

An identical linear combination is formed by the rec-
tangular array to produce the output vector

xT =xI + MU ®)

which emerges from below, and combining eqns. 7 and 8
leads immediately to the expression in Fig. 4c. Note how
easily this result was obtained by considering the con-
stituent blocks in Fig. 4c as simple matrix operators.

The dashed line in Fig. 4c is intended to demonstrate
how the type of pipeline cut shown in Figs. 2 and 3 may
be applied to the combined array. In particular, it serves
to illustrate the fact that there is no need for any delay
elements to deskew/skew the data between the individual
subarrays to define the corresponding systolic processor.
It is for reasons like this, that algorithmic engineering is
best carried out in terms of the basic signal flow graph
associated with each elementary operator.

3 Recursive least squares

Fig. 5 depicts a parallel processing network of the type
proposed by Gentleman and Kung [2] for linear least
squares estimation. Its purpose at each sample time ¢, is
to compute the complex weight vector w(n), which mini-
mises the norm of the residual vector

e(n) = X(nw(n) + y(n) ©
where X(n) is an n x p complex matrix defined by

X(") = [x(tl)» x(tz), e x(tn)]T

O X(n) = [R(")] (12)

o

QO(n) denotes an n x n unitary matrix which is generated
as a sequence of complex square-root-free Givens rota-
tions. The array operates in the following recursive
manner: The triangular matrix R(n — 1) corresponding to
the data matrix X(n — 1) is assumed to be known and
represented in the form

R(n — 1) = D**(n — )R(n — 1) (13)

D(n — 1) denotes a real, positive diagonal matrix stored
within the boundary cells of the array, and R(n — 1) is a
unit upper triangular matrix stored within the internal
cells. The data vector x7(t,) is input from the top, as
indicated in Fig. 5, and progressively eliminated by rotat-
ing it with each row of the stored triangular matrix
R(n — 1) in turn. The appropriate square-root-free rota-
tion parameters are computed within each boundary cell
and passed on to the internal cells in the same row to
complete the rotation process. The updated triangular
matrix R(n) and diagonal matrix D(n) are computed in
the course of eliminating the vector x'(t,) and subse-
quently stored within the array. In a similar manner, the
right-hand column of cells DE in the least squares pro-
cessor array evaluates and stores the p-element vector
i(n) defined by

0rtn =| 0| (14
and

u(n) = DY*(n)i(n) (15)



The optimum weight vector is then given by the equation
R(n)w(n) + u(n) = o (16)
1e.
w(n) = — R '(mu(n) = — R~ '(n)a(n) (17)

Note that each cell of the array in Fig. 5 must wait until
the elimination of x7(t,) has been completed before

stored quantities. A close inspection reveals that, in
frozen mode, the operation of the triangular array ABC
is equivalent to that of the fixed matrix operator illus-
trated in Fig. 3, assuming that the latter stores the unit
upper triangular matrix R(n — 1). Hence, the effect of
inputting a vector x"(t,) from the top is to produce the
output vector R™T(n — 1)x(¢,), which emerges from the
right. It can also be seen that, in its fully adaptive mode,
the triangular array ABC performs the same matrix oper-

Ly

A \j/ B D

d; 12 I3 721114 Uy

d, I3 24 b

dg T34 us

boundary cell
c - E
d4 R U4
X.
6 n
in
. o
“}(Sa Z)
Sout .
internal cell
Xin
if x;,=0 or E)m =0 then
§= 03 2= Xini Qour = Oin (s, z) T (s, 2)
otherwise
z=x;d =d+ 6m|z|2;
¢=(d/d);s=9, (z/d); Xout

6out =¢ b, ;(ded) Xout = Xijp ~ 2T
TeT+sTx

Fig. 5

updating its stored value. The procedure may, of course,
be pipelined, and the familiar systolic array is obtained
by introducing a complete set of diagonal cuts similar to
the one represented by the dashed line. Note that each
diagonal interconnection will be cut twice, and so it is
necessary to impose two delays on the output of the
boundary cells.

Since the function of the main QR decomposition
array in Fig. 5 is modified by the data that it processes, it
constitutes an adaptive matrix operator. The adaptation
may be frozen very simply by setting 6 = O within each
boundary cell and thereby suppressing the update of all

Parallel processing architecture for recursive least squares estimation

ation before updating the stored matrices D(n — 1) and
R(n — 1). As a consequence, it may be represented by the
simplified block diagram in Fig. 6a, where the adaptive
nature is denoted by the legend D, R(n — 1) — D, R(n).
The right-hand column of cells may be analysed in a
similar manner. In the frozen mode, it is functionally
equivalent to a single column of the rectangular matrix
operator in Fig. 2. In the adaptive mode, it performs
the same operation before updating the stored vector
a(n — 1). The least squares processor array may therefore
be represented by the simplified block diagram in Fig.
6b and, from the description above, it follows that the
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output oft,) from the bottom cell in the right-hand
column is given by the expression

alt,) = y(t,) — x"(t, )R '(n — Dian — 1) (18)
Hence, from eqn. 17, we have
alt,) = Wt,) + < (t,)win — 1) (19)

which is, by definition, the a priori least squares residual.
In effect, by means of some fairly straightforward algo-
rithmic engineering, it has been shown how the a priori

hand side of eqn. 21. The update procedure defined in
eqn. 21 may be carried out, in practice, by extending the
basic triangular array ABC in Fig. 5 to include an addi-
tional triangle of internal cells, as illustrated schematic-
ally in Fig. 7. If the matrix K(n — 1), defined by

R Hn—1)=D"*n - 1)K(n — 1) (22)

is stored within this additional triangular array at time
t,— . the combined processing network will automatically

update D(n — 1), R(n — 1) and K(n — 1) in response to the

""""" K (1) o s X () ey (ty)
D,R(n-1)|ua(n-1) |
e ' - - '
= R (n—-.l)x(tn) b.R(m| 0 = BT (n- 1) x (1)

Fig. 6

a Triangular QR decomposition array

Schematic representation of arrays

residual may be extracted from the square-root-free least
squares processor array without computing the optimum
weight vector w(n — 1) explicitly. It should be noted,
however, that direct extraction of the a posteriori residual
cannot be proved so easily. A more detailed mathemati-
cal analysis reveals that the output scalar oft,) must be
multiplied by an auxiliary variable [8]. This comment
applies to direct extraction of either type of residual,
when conventional (as opposed to square-root-free)
Givens rotations are applied. In this case, the adaptive
algorithm cannot be viewed as a fixed matrix operation
followed by an update procedure (or vice versa). None-
theless, a simplified block schematic representation of the
corresponding frozen processing network provides a very
useful insight to the residual extraction techniques that
have been developed.

4 Triangular post-processor

The updating process performed by the triangular QR
decomposition array in Fig. 5 may be described by an
equation of the form

R(n—1)] _[R)
Q‘"’[ £7(t,) ]'[ 0 ]

where Q(n) is a unitary matrix representing the sequence
of elementary Givens rotations which eliminates x7(t,,).
Now, it can easily be shown that

R Hn—1 R™H
o)1

where * denotes a vector of no specific interest. In other
words, the inverse matrix R™H(n) can be updated by
applying the same sequence of Givens rotations as used
to update the matrix R(n). This is readily proved by
taking the Hermitian conjugate of eqn. 20 and post-
multiplying the left-hand side by the term on the left-

(20)

@1

b Triangular least squares processor array

'
'

v
i

y

a (tn)

next input vector x’(t,), and so on. The additional tri-
angular array, often referred to as the post-processor,
may be initialised by freezing the main triangular array at
time ¢,_, so that it stores the matrix R(n — 1) and acts as
a fixed matrix operator of the type illustrated in Fig. 3. If
a unit matrix 7 is then input from the top, the matrix

R~ T(n— 1) = D(n — DK*(n — 1) (23)

will emerge from the right-hand edge and enter the post-
processor, where it can easily be captured, divided by the
diagonal matrix D(n — 1) and stored in the required
complex conjugate form.

Now consider the effect of inputting the vectors x”(t,)
and o to the combined adaptive processing network, as
indicated in Fig. 7. The output vector R™T(n — 1)x(t,)
produced by the main triangular array also serves as an
input to the post-processor along its left-hand edge. Prior
to updating the matrix K(n — 1), the post-processor acts
as a (triangular) matrix multiplier of the type specified in
Fig. 2 and, since its input from the top is o, the vector ¢,

________ xT(tn) IR ¢ RS
D,R(n-1) :
- —= R T(m-1x(t)
D, R (n) :
K(n-1)
— K (n)

V

—xT (t) Mt (n- 1)

Fig. 7  Schematic representation of triangular post-processor
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which emerges from below, is given by
T = —x"t)R '(n— DKn—1)
= —x"(t)R '(n — DR M(n — 1) 24
But, from eqn. 12, it follows that
Mn — 1) = Xn — )X(n - 1)
= R — )R(n — 1) (25)
and so
" = —xT(t)M '(n— 1) (26)

where M(n — 1) is, by definition, an unnormalised estim-
ate of the input covariance matrix, based on all data
samples up to time t,_,. The combined array therefore
acts as an inverse covariance matrix operator, which is
particularly useful, for example, in the design of parallel
Kalman filters. It also serves, in effect, to update the
underlying covariance matrix and its inverse in terms of
the Cholesky square-root factors R(n) and R~ ¥(n). The
orthogonal updating of R(n) is known to be numerically
stable. The procedure for updating R ~¥(n) has also been
shown to be stable [9], although a steady build-up of
errors can occur, and care must be taken in any practical
application of the technique. Moonen [10] has recently
shown how the numerical accuracy may be improved by
performing additional Jacobi rotations, but his method is
beyond the scope of this paper.

5 Multichannel lattice filter

The triangular QR decomposition array in Fig. 5 has
now been adopted as the key building block for a
number of higher-level processing structures, such as the
square root information Kalman filter proposed by Chen
and Yao [11], the square root covariance Kalman filter
described by Gaston et al. [12] and the orthogonal
multichannel lattice filter depicted in Fig. 8. The latter
provides a particularly rich example of algorithmic engin-
eering. Each of the triangles represents a p x p QR
decomposition array of the type illustrated in Fig. S,
where p is the number of auxiliary input channels, i.e. the
number of elements in the input vector x. The squares
and rectangles represent p x p arrays and p-element
columns of internal cells, respectively. The symbol A is
used to denote a unit time delay.

The orthogonal multichannel lattice architecture can
be derived from the conventional multichannel least
squares lattice equations by expressing the covariance
matrix, at each stage of the filter, in terms of its Cholesky
square root factorisation. The Cholesky square root
factor may, of course, be obtained directly from the
underlying data by performing a recursive QR decom-
position and exploiting the processing structure in Fig. 5.
Incorporating the type of direct residual extraction
process described in eqn. 19 then leads to the processing
architecture in Fig. 8. This approach was adopted by
Lewis [13] and also by Yang and Bohme [14]. By con-
struction, the underlying algorithm must be orthogonal,
as the only mathematical operations required are
elementary Givens rotations. Accordingly, it has excellent
numerical properties and is proving to be one of the most
stable lattice algorithms available.

Proudler et al. [15] have recently shown how the
orthogonal least squares lattice filter in Fig. 8 may be
derived explicitly by applying a recursive QR decomposi-
tion to the type of data matrix generated by a multi-
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channel tapped delay line, taking account of its block
Toeplitz structure and thereby achieving the improved
computational efficiency associated with least squares
lattice algorithms. The requirement for a number of pro-
cessing modules based on the triangular QR decomposi-
tion array arises quite naturally in this case.

auxiliary reference
signal vector signal
T
x'(t,) y(t,)

7 L

%:]

& &

backward forward
residual residual
vector vector
filtered
signal
Fig. 8  Multichannel least squares lattice filter based on Givens rota-

tions

The triangle denotes a p x p processor array, as defined in Fig. 5; the square and
rectangle denote a p x p array and a p-element column of internal cells

By virtue of its modular structure, the diagram in Fig.
8 constitutes more than a highly regular parallel-
processing architecture. It also provides a very compact
and well-structured representation of the underlying
algorithm. The only mathematics required to describe
this very complex algorithm is that of the elementary
square-root-free Givens rotation cells. As previously dis-
cussed, all cells within this multichannel lattice architec-
ture are assumed to operate instantaneously, but, for any



practical application, the processor array may be parti-
tioned and pipelined as appropriate. For examle, in the
context of a rccent application to acoustic adaptive
beamforming, it was found that the computation required
for each stage of the multichannel lattice filter could be
performed in real time using two floating-point trans-
puters, one for each of the extended QR decomposition
modules [16].

6 Conclusions

In this paper, I have attempted to introduce and define
the emerging concept of algorithmic engineering. The
examples chosen serve to illustrate how various parallel
algorithms and processing architectures may be rep-
resented very effectively in terms of simple mathematical
operator diagrams. Section 2 introduces some fairly
simple fixed matrix operators and shows how they may
be combined in a very precise way to generate more
powerful compound processors. This theme is generalised
to adaptive processors in Sections 3 and 4, which con-
sider the application of QR decomposition to least
squares adaptive filtering. In this context, for example,
the application of algorithmic engineering allows the (a
priori) direct residual extraction technique to be proved
in an extremely simply yet fully rigorous manner. Section
5 briefly illustrates how the simplified operator represen-
tations discussed in Section 3 may be used to describe
and specify accurately a novel multichannel lattice filter
based on QR decomposition. This is a much more com-
plicated processing structure, whose derivation is beyond
the scope of this paper, but the example serves to illus-
trate how powerful the use of formal diagrammatic tech-
niques can be.

Throughout the paper, with the possible exception of
Section 5, I have chosen to illustrate the concept of algo-
rithmic engineering with reference to some fairly simple,
well-known examples. It might appear, therefore, that the
method is only useful for describing existing algorithms
and architectures. However, the approach has already
proved useful in the derivation of some novel processing
structures. This is partly due to the fact that a simple but
accurate representation of the basic building blocks helps
to clarify the design process, and partly as a result of
rigorous diagrammatic manipulation. Most recently, an
original architecture for linearly constrained adaptive
beamforming has been derived, by starting with an estab-
lished processor design and applying a sequence of
formal transformations to the basic operator diagrams,

to produce an entirely different structure [17]. This
example clearly suggests that the concept of algorithmic
engineering, as introduced in this paper, could provide
the basis of a powerful formal method for designing
future parallel-processing architectures, at least in the
context of digital signal processing.
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