
CHAPTER 1
A BRIEF REVIEW OF THE
RELEVANT BASIC
EQUATIONS OF PHYSICS

From a mathematical viewpoint, all equations of physics (both microscopic and
macroscopic) are relevant for semiconductor devices. In an absolutely strict
mathematical way, we therefore would have to proceed from the fundamentals
of quantum field theory and write down the « 1023 coupled equations for all the
atoms in the semiconductor device. Then we would have to solve these equa-
tions, including the complicated geometrical boundary conditions. However, the
outcome of such an attempt is clear to everyone who has tried to solve only one
of the 1023 equations.

Any realistic approach oriented toward engineering applications has to pro-
ceed differently. Based on the experience and investigations of many excellent
scientists in this field, we neglect effects that would only slightly influence the re-
sults. In this way many relativistic effects become irrelevant. In my experience,
the spin of electrons plays a minor role in the theory of most current semicon-
ductor devices and can be accounted for in a simple way (the correct inclusion
of a factor of 2 in some equations).

Most effects of statistics can be understood classically, and we will need
only a very limited amount of quantum statistical mechanics. This leaves us es-
sentially with the Hamiltonian equations (classical mechanics), the Schrodinger
equation (quantum effects), the Boltzmann equation (statistics), and the Maxwell
equations (electromagnetics).

It is clear that the atoms that constitute a solid are coupled, and therefore the
equations for the movement of atoms and electrons in a solid are coupled. This
still presents a major problem, a many-body problem. We will see, however,
that there are powerful methods to decouple the equations and therefore make
single particle solutions possible. The many interacting electrons in a solid are
then, for example, replaced by single independent electrons moving in a periodic
potential. Complex many body effects, such as superconductivity, are then ex-
cluded from our treatment, which is justified because of the low electron density
in typical semiconductors. We also exclude in our treatment effects of extremely
high magnetic fields because these are unimportant for most device applications.
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2 Chap. 1 A Brief Review of the Basic Equations

In this way, the fundamental laws of physics are finally reduced to laws of semi-
conductor devices that are tractable and whose limitations are clearly stated. The
following sections are written with the intent to remind the reader of the basic
physics underlying device operation and to review some of the physicist's tool
kit in solid-state theory.

1.1 THE EQUATIONS OF CLASSICAL MECHANICS,
APPLICATION TO LATTICE VIBRATIONS

Hamilton was able to give the laws of mechanics a very elegant and powerful
form. He found that these laws can be closely linked to the sum of kinetic and
potential energy written as a function of momentumlike (pf) and spacelike (xt)
coordinates.

This function is now called the Hamiltonian junction H(p^Xi). The laws of
mechanics are

dpi dH{pi,xt)
dt dxt

and

dxt dH(p(,Xi)

(1.1)

(1.2)
dt dpi

where t is time and / = 1,2,3. Instead of xu we sometimes denote the space
coordinates by x,y,z.

Some simple special cases can be solved immediately. The free particle
(potential energy = zero) moves according to

H = ^Pi
2/2m

and we have from Eq. (1.1)

dpi
— 0; pi = constant,

dt

which is Newton's first law of steady motion without forces.
If we have a potential energy V(x\) that varies in the x\ direction, we obtain

fromEq. (1.1)

-df~~~^r=F° (L3)

The quantity defined as Fo is the force, and Eq. (1.3) is Newton's second law of
mechanics.

A more involved example of the power of Hamilton's equations is given
by the derivation of the equations for the vibrations of the atoms (or ions) of
the crystal lattice. As we will see, these vibrations are of utmost importance

dt 3*1
dPl dV(Xl)

= FO (1.3)

i

H = "£Pi
2/2m
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Figure 1.1 Displacement w,-(r) of atoms in a crystal lattice.

in describing electrical resistance. They also give a fine example of how the
many-body problem of atomic motion can be reduced to the solution of a single
differential equation by using the crystal symmetry (group theory from a math-
ematics point of view) by a cut-off procedure. Here we cut off the interatomic
forces beyond the nearest neighbor interaction. We also introduce below cyclic
boundary conditions, which are of great importance and convenience in solid-
state problems.

It suffices for this section to define a crystal, and we will be mostly interest-
ed in crystalline solids, as a regular array of atoms hooked together by atomic
forces. "Regular" means that the distance between the atoms is the same through-
out the structure. Many problems involving lattice vibrations can be solved by
classical means (i.e., using the Hamiltonian equations) because the atoms that
vibrate are very heavy. Then we only have to derive the kinetic and potential
energy. Because we would like to describe vibrations (i.e., the displacement of
the atoms), we express all quantities in terms of the atomic displacements Wj(r),
where i = x,y,z and r is the number (identification) of the atom. It is important
to note that r is not equal to the continuous space coordinate r in this chapter, al-
though it has similar significance because it labels the atoms. The displacement
of an atom in a set of regularly arranged atoms is shown in Figure 1.1.

We follow the derivations in Landsberg [5] and express the kinetic energy T
by

T = ^M£M?(r) where u{r) = ^ ^ (1.4)
n

and M is the mass of the atoms (ions).
We assume now that the total potential energy U of the atoms can be ex-

pressed in terms of a power series in the displacements,

U = Uo + X ^ i M + \ ^BVuitfujis) + - • • (1.5)

1 2 3 :*)

(1.5)
n

I
2

dui(r)
dt
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4 Chap. 1 A Brief Review of the Basic Equations

where s also numbers the atoms as r does.
The following results rest on this series expansion and truncation, which

makes a first principle derivation (involving many body effects) unnecessary.
Equation (1.5) is, of course, a Taylor expansion with

B't = ^ - 0.6)

Because the crystal is in equilibrium, that is, at a minimum of the potential energy
[/, the first derivative vanishes and

£;:* = o (i.7)

We further have

B™. - *— = Bs- (I S)

We now use the fact that the crystal is translationally invariant—that is, we
can shift the coordinate system by s atoms (start to count s atoms later), and the
crystal is transformed into itself (at least if it is infinite). Therefore,

BYj^B^ (1.9)

Furthermore, a rigid displacement (all w; equal) of the crystal does not change U
and we therefore have, from Eqs. (1.5) and (1.9),

5 X r = 0 (1.10)
r

To derive Eq. (1.9), we have assumed an infinite crystal. We also could have
introduced so-called periodic or cyclic boundary conditions; that is, continue the
crystal by repeating it over and over. In one dimension, this means we consider
only rings of atoms (Figure 1.2). This approach amounts to neglecting any sur-
face effects or other effects that are sensitive to the finite extension of crystals.

We can now derive the equations of motion by using Eqs. (1.1) and (1.2)
with coordinates w;(r) instead of X[\

and

Pi(r)=Mui{r) (1.12)

Eq. (1.11) gives

Pi{r) =
1 d
2dui{r)

Y,Bi}n
Ui(m)Uj(n) (1.13)

Br__ W
* ! dui(r)dui(r)

dU

B'l = O

dui(r)duj(s)
d2U -nnrs

(1.7)

>(r-s)Onrs
~Bij

(1.8)

(1.11)Pi{r) = -
dH(pj,Uj)

out

Pi{r)=Mui(r)
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Sec. 1.1 The Equations of Classical Mechanics, Application to Lattice Vibrations

Figure 1.2 A ring of atoms representing cyclic boundary conditions.

Here, also, the indices m,n are used to number the atoms (as r,s above). There-
fore

Pi(r) = -%B?jUj(s)

and, together with Eq. (1.12), one obtains

Mui(r)+^s
Juj(s) = 0 (1.14)

Remember that the index s in Eq. (1.14) runs over a large number of atoms;
that is, up to about 1023 in a typical crystal. The r can also assume any of these
numbers. In other words, we have about 1023 coupled equations to solve. This
situation is very typical for any type of solid-state problem, but by far not as
hopeless as it may seem. Powerful methods have been developed to reduce the
number of equations and the following treatment is representative. We will as-
sume for simplicity that the crystal is one dimensional and avoid the complicated
geometrical arrangement of atoms in a real crystal. (We will learn more about
this when we discuss the electrons and their motion in crystals.)

In the three-dimensional case, Eqs. (1.7) through (1.10) are very helpful;
they reduce the numbers of parameters. Without going into details, we mention
that this reduction of parameters is generally accomplished by group theoretical
arguments, and Eq. (1.9) is a direct consequence of the translational invariance
(group of translations).
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6 Chap. 1 A Brief Review of the Basic Equations

To proceed explicitly with our one-dimensional model, we need to make the
drastic assumption that each atom interacts only with its nearest neighbor. (We
can use the same method also for second, third ... nearest neighbor interaction, if
we proceed numerically and use a high-speed computer.) Our assumption means

B r ' V 0 only for s = r±l

Notice that we dropped the indices /, j because this is a one-dimensional
problem. Without any loss of generality, we may assume r = 0. Then we have

B0s^0 for s = ±l

and

B0s = 0 otherwise (1.15)

Furthermore,
gpi=B-w

according to Eq. (1.9) and

B-i0 = fl0(-i)

according to Eq. (1.8). Therefore,

501=£0(-l)

From Eq. (1.10) we obtain

B00 = -2B01 (1.16)

It is now customary to denote B01 = B°(~1^ by —a (a is the constant of the
"spring" forces that hold the crystal together) and therefore #00 by 2a. The
equation of motion, Eq. (1.14), then becomes for any r

Mu(r) = -2au(r) + au(r-l) + au{r+l) (1.17)

Eq. (1.17) leaves us still with 1023 coupled differential equations. However,
these equations are now in tridiagonal form, all with coefficient a. Such a form
can be reduced to one equation by skillful substitution. The substitution can
be derived from Bloch's theorem, which we will discuss later. It also can be
guessed:

u(r) = ueiqra (1.18)

Note that the amplitude u is still a function of time. Here a is the distance be-
tween atoms (i.e., the lattice constant). Eq. (1.17) becomes

Mueiqra = -2aueiqra + aueiqrae~iqa + aueiqraeiqa (1.19)

which gives

MU = au(2cosqa-2)
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Figure 1.3 Dispersion relation v(q) for lattice vibrations. (Remember, E — hv.)

and

, , _ - 4 a M ^ 2 ^ < z
u = M sin' (?)

This gives

with

u + vzu = 0

v = 2 sin aq

(1.20)

(1.21)

This means that the atoms are oscillating in time with frequency v, which is a
function of the wave vector q. The function is shown in Figure 1.3.

There are several important points to notice. First, at q = —n/a and q — n/a,
the energy has its highest value. For these q, the wavelength X = 2n/q has the
value X = 2a. As can be seen from Figure 1.4, this is the shortest wavelength
that we really need to describe the physics of the lattice vibrations. Shorter
wavelengths lead only to "wiggles" between the atoms, but the displacements
are actually the same. For example, if q = 3n/a and A, = 2/3a, the atoms are
displaced in exactly the same way as for q — n/a. In other words, for any q
outside the zone —n/a < q < n/a, which is called the Brillouin zone, we can
find a q inside the zone that describes the same displacement, energy, and so

Figure 1.4 Illustration of the shortest possible physical wavelength of lattice vibrations.
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8 Chap. 1 A Brief Review of the Basic Equations

on. Notice that in a real crystal the arrangement of atoms is different in dif-
ferent directions. Therefore, the three-dimensional Brillouin zone is usually a
complicated geometrical figure (see Chapter 2).

Second, q is not a continuous variable because of the boundary conditions.
Consider, for example, the ring of Figure 1.2 with eight atoms and

K(0) = II(8)

or, in general, for N atoms, we have

u(N) = u(0) and u(N) = u(0)e^Na

Therefore eiqNa equals one, and we conclude that q — 2nl/Na where / is an
integer. If we restrict q to the first Brillouin zone, we have — N/2 < I < N/2. This
means that q assumes only discrete (not continuous) values. However, because
of the large number N, it can almost be regarded as continuous.

Third, without emphasizing it, we have developed a microscopic theory of
sound propagation in solids. For small wave vectors q (i.e., large X), we have

and

Using A,v = vs, where v s is the velocity of sound, we obtain

vs = 2naxl^ (1.23)
V M

which is a microscopic description of the sound velocity.
In real crystals additional complications arise from the fact that we can have

two or even more different kinds of atoms. These atoms may oscillate as the
identical atoms in the above example. There are, however, different modes of
oscillation possible. If we think of a chain with two different kinds of atoms, it
can happen that one kind of atom (black) oscillates against the other kind (white).

Such an oscillation can take place, and indeed does, at a very high (optical)
frequency, and the corresponding lattice vibrations are called optical phonons. It
is very important to note that in principle all black atoms can oscillate in phase
against the white ones. This means that we can have high frequencies (energies)
even if the wavelength is very large or the q vector is very small (Figure 1.5).

Figure 1.5 Two different kinds of atoms oscillating against each other. This represents a
wave with high energy (frequency) and small wave vector.

u(N) = u(0) and u(N) = u(0)eic*NaJqNa

«(0) = «(8)

sir
qa _ qa

2 2

v=\lMqa
M qa
a (1.22)
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Figure 1.6 Schematic v{q) diagram for acoustic and optic phonons in one dimension.

The energy versus q relation can then have two branches, the acoustic and the
optic, as shown in Figure 1.6.

The presence of two different atoms can also cause long-range coulombic
forces owing to the different charge on the two atom types (ionic component).
The long-range forces cannot be described by simple forces between neighbor-
ing atoms, and one calls the phonons polar optical phonons if these long-range
forces are important.

As mentioned, lattice vibrations are important in various ways. Electrons in-
teract with the crystal lattice exciting (emitting) and absorbing lattice vibrations
(the net lost energy is known as Joules heat). The system of electrons by itself is
therefore not a Hamiltonian system; that is, one in which energy is conserved. It
is only the sum of electons and lattice vibrations which is Hamiltonian.

The interested reader is encouraged to obtain knowledge of a detailed quan-
tum picture of lattice vibrations (also phonons) and their interactions with elec-
trons as described, for example, by Landsberg [5].

1.2 THE EQUATIONS OF QUANTUM MECHANICS

At the beginning of the twentieth century, scientists realized that nature cannot be
strictly divided into waves and particles. They found that light has particle-like
properties and cannot always be viewed as a wave, and particles such as electrons
revealed definite wave-like behavior under certain circumstances. They are, for
example, diffracted by gratings as if they had a wavelength

X =
h

(1.24)
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10 Chap. 1 A Brief Review of the Basic Equations

where h = h/2n « 6.58 x 10"16 eVs is Planck's constant and p is the electron
momentum.

Schrodinger demonstrated that the mechanics of atoms can be understood
as boundary value problems. In his theory, electrons are represented by a wave
function \|/(r), which can have real and imaginary parts, and follows an eigen-
value differential equation:

( " £ v 2 + y ( r ) ) ¥ ( r ) = j E ¥ ( r ) (L25)

The part of the left side of Eq. (1.25) that operates on \|/ is now called the Ham-
iltonian operator H. Formally this operator is obtained from the classical Ham-
iltonian by replacing momentum with the operator Vh/i (i = imaginary unit),
where

\dx' 3y' dx

The meaning of the wave function \|/(r) was not clearly understood at the
time Schrodinger derived his famous equation. It is now agreed that |\|/(r)|2 is
the probability of finding an electron in a volume element dx at r. In other words,
we have to think of the electron as a point charge with a statistical interpretation
of its whereabouts (the wave-like nature). It is usually difficult to get a deeper
understanding of this viewpoint of nature; even Einstein had trouble with it. It is,
however, a very successful viewpoint that describes exactly all phenomena we
are interested in. To obtain a better feeling for the significance of \|/(r), we will
solve Eq. (1.25) for several special cases. As in the classical case, the simplest
solution is obtained for constant potential. Choosing an appropriate energy scale,
we put V(r) = 0 everywhere.

By inspection we can see that the function

Cexp(/k • r) = C(cosk • r + /sink • r) (1.26)

is a solution of Eq. (1.25) with

£-«
and C a constant.

The significance of the vector k can be understood from analogies to well-
known wave phenomena in optics and from the classical equations. Because E
is the kinetic energy, hk has to be equal to the classical momentum p to satisfy
E = p2/2m. On the other hand, in optics

k\ = 2n/X (1.28)

which gives, together with Eq. (1.24),

ftk = p

which is consistent with the mechanical result.

2m

&
V2• + V(r) V(r) = Ey(r) (1.25)

dx' 3y' dx/

d d i
V - |

(1.27)
2m

ft2*2

= £
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How can the result of Eq. (1.26) be understood in terms of the statistical
interpretation of \|/(r)? Apparently

| ¥ ( r ) | 2 - |C|2(cos2k.r + sin2k-r) - \C\2

This means that the probability of finding the electron at any place is equal to C2.
If we know that the electron has to be in a certain volume Voi (e.g., of a crystal),
then the probability of finding the electron in the crystal must be one. Therefore,

L \C\zdv = Vol\C\z = \

and

|C| = 1 A / ^ i d.29)

In other words, the probability of finding an electron with momentum ?ik at a
certain point r is the same in the whole volume and equals \/V0\. We will give
a more detailed discussion of this somewhat peculiar result in the next section.
The unfamiliar reader is referred to an introductory text (e.g., Feynman [3]).

Note that by confining the electron to a volume, we have already contra-
dicted our assumption of constant potential V(r) = 0. (Electrons can only be
confined in potential wells.) If, however, the volume is large, our mistake is
insignificant for many purposes.

Let us now consider the confinement of an electron in a one-dimensional
potential well (although such a thing does not exist in nature). We assume that
the potential energy V (r) is zero over the distance (0,L) on the x-axis and infinite
at the boundaries 0 and L.

The Schrodinger equation, Eq. (1.25), reads in one dimension (jc-direction,
V(x) = 0)

h2 d2y(x)
2m dx2 = E\\f(x) (1.30)

Inspection shows that the function

y(x) = J-sin^x with n= 1,2,3,... (1.31)

satisfies Eq. (1.30) as well as the boundary conditions. The boundary conditions
are, of course, that \\f vanishes outside the walls, since we assumed an infinite
impenetrable potential barrier. In the case of a finite potential well, the wave
function penetrates into the boundary and the solution is more complicated. If
the barrier has a finite width, the electron can even leak out of the well (tunnel).
This is a very important quantum phenomenon the reader should be familiar
with. We will return to the tunneling effect below.

The wave function, Eq. (1.31), corresponds to energies E (called eigen en-
ergies)

n2 ax*)

\C\ = l/y/V^

|¥(r)|2 - |C|2(cos2k.r + sin2k.r) - \C\2

2
L

nn
L

-xsm¥(*) =

E =
n2n2h2

2mL2 (1.32)

with n = 1,2,3,... (1.31)

satisfies Eq. (1.30) as well as the boundary conditions. The boundary conditions
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Because n is an integer, the electron can assume only certain discrete energies
while other energies are not allowed. These discrete energies that can be assumed
are called quantum states and are characterized by the quantum number n. The
wave function and corresponding energy are therefore also denoted by \|/n, En.

Think of a violin string vibrating in various modes at higher and lower tones
(frequency v), depending on the length L, and consider Einstein's law:

E = hv (1.33)

If we compare the modes of vibration of the string with the form of the wave
function for various n, then we can appreciate the title of Schrodinger's paper,
"Quantization as a Boundary Value Problem."

Devices that contain a well and feature quantized energy levels similar to the
ones given in Eq. (1.32) do exist. Quantum well lasers typically contain one or
more small wells and the well size controls the electron energy. However, in most
devices, the wells are not rectangular. In silicon metal oxide semiconductor field
effect transistors (MOSFETs), the well is closer to triangular and its shape de-
pends on the electron density (i.e., the charge in the well). We will deal with this
charge-dependent well shape in Chapter 10. Here we discuss only well-defined
potential problems—cases where the potential is given and fixed. With current
high-end workstations, the Schrodinger equation can then be solved numerically
for an arbitrary (but given) potential shape. One-dimensional problems can be
solved by standard discretization (transforming the differentiations into finite dif-
ferences) and by solving the resulting matrix equations by standard solvers such
as found in EISPACK and LAPACK. For two- and three-dimensional problems,
this procedure still leads to a prohibitively large number of equations (which
grows with the third power of the number of discretization points). Therefore
the discretized mesh must be coarsened even when using the fastest supercom-
puters. Often, however, one is interested only in relatively small sets of eigen
values, for example, the first three [as for n = 1,2,3 in Eq. (1.31)].

One then can use so-called subspace interaction techniques that only resolve
certain intervals of eigenvalues. These techniques are well established for sym-
metric real matrices as they occur in well-defined potential problems (see, e.g.,
Golub and Loan [4]). A useful computer code is the RITZED eigenvalue solver
by Rutishauser [6].

Frequently, one needs to obtain an explicit solution of Schroedinger's equa-
tion for an arbitrary complicated form of the potential, provided only that it is
small and represents just a small perturbation to a problem for which the solu-
tion is known. This scenario is typical for scattering problems such as an electron
propagating in a perfect solid and then encountering a small imperfection and be-
ing scattered. Fortunately, for this type of problem there is a powerful method of
approximation, perturbation theory, that gives us the solution for arbitrary weak
potentials. The method is very general and applies to any kind of equation.

Consider an equation of the form

(Ho + e#i)V = O (1.34)
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where Ho and H\ are differential operators of arbitrary complication and s is a
small positive number.

If we know the solution \|/o of the equation

HoWo = 0

then we can assume that the solution of Eq. (1.34) has the form \|/o + E\\f\. In-
serting this form into Eq. (1.34), we obtain

(Ho + EH\ ) (\|/0 + eyi) = #oVo + effi Vo + Hoey\ + £2#i\|/i

We now can neglect the term proportional to £2 (because e is small), and because
Hotyo — 0, we have

#i\ | /o + # o V i = O (1.35)

This equation is now considerably simpler than Eq. (1.34) because \|/o is known.
Therefore, \\f\ can be determined easily if Ho has a simple form no matter how
complicated H\ is. Repeated application of this principle leads to perturbation
theory including higher orders (£j£3....). The derivation is given in many text-
books on quantum mechanics (see Baym [1]). Here we quote only the result that
is used at several occasions.

Assume that we know the solutions of a Schrodinger equation:

HoVn = Enyn n= 1 ,2 ,3 , . . . (1.36)

and we would like to know the solutions of

(H0+Hi)$m=Wm$m with /Ji<C//o (1.37)

Then it is shown in elementary texts on quantum mechanics (Baym [1]), by re-
peatedly using the method of perturbation theory as outlined, that

Wm=Em+Mmm+ X ~4r (1.38)

with
M

^=¥m+XrrFV» (i-39), Em — En

and

M, = f YnHiVmdr (1.40)

where dv stands for dxdydz (integration over volume yoi) and \|/* is the complex
conjugate of \\fn.

First-order perturbation theory (to order 8) amounts to setting \|/m = Om and
Wm — Em-\-Mmm. The only change then is in the value of the eigen energy by
Mmm, which can be obtained by the integration in Eq. (1.40); the integrand is
known from the solution of Eq. (1.36). This means that the numerical problem

\Mmn\
2

Em — Enn^m

Wm =Em+Mmm +

Mmn Wn<bm = Win +

n+m1
(1.39)

Vol
Mmn YnH\Vmdr (1.40)

H0\\fn = Enx\fn n= 1 , 2 , 3 , . . .

(H0+Hi)$m=Wmtym with #i<C//o

Hiyo + Hoyi = 0

(Ho + £#i) (\|/o + eyi) = flbVo + effi Vo + ̂ o£¥i + £2#i Vi

with
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^S(k,k')f

E(/c')

E(k)+27i hit

Figure 1.7 Probability of a transition from k to k' according to the Golden Rule after the
potential has been on for time t.

is reduced to a volume integration (in three dimensions). To obtain solutions to
higher order, one also needs to perform the summations in Eqs. (1.38) and (1.39).

The formalism outlined above and the examples given are independent of
time, and the electrons are perpetually in appropriate (eigen) states. In many
instances, however, we will be interested in the following type of problem: The
electron initially is in an eigenstate of Ho, denoted, for example, by a wave vector
k for the free electron. What is the probability that the electron will be observed
in a different eigenstate characterized by the wave vector k', after it interacts
with a potential V(r,f)? In other words, what is the probability S(k,k') per unit
time that the interaction causes the system to make a transition from k to k'?

The answer to this question is the famous Golden Rule of Fermi, which
is also derived in almost every text on quantum mechanics by so-called time-
dependent perturbation theory. The unfamiliar reader is urged to acquire a de-
tailed understanding of the Golden Rule as derived, for example, in the text of
Baym [1]. Here we only illustrate its generality and discuss results for important
special cases.

1. Assume that a potential V(r) is switched on at time t
independent otherwise. One then obtains

0 but is time

/ Vk'^(r)vMr
JVo\

sin(E(kf)-E(k))t/2h
(1.41)S(k kf) =

V> ) ... TR v - , T — (E(k>)-E(k))^t/2

The function in brackets deserves special attention and is plotted in Fig-
ure 1.7. Notice that as t approaches infinity, the function plotted in Fig-
ure 1.7 becomes more and more peaked at its center (E(kf) = E(k)). In
the limit t —> °°, the so-called 8-function is approached, which is defined
by

4sin2[(£(k')-£(k))f/(2ft)]
lim

(E(k>)-E(k)¥t
= ^8(E(k')-£(k)) (1.42)

E(k)
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and can always be understood as a limit of ordinary functions. It does
have some remarkable properties, however, and the unfamiliar reader
should consult some of the references at the end of this section. A most
important property of the S-function is the following: For any continuous
function f(Er)9 we have

nf(E')S(E-Ef)dE' = f(E) (1.43)
Joo

2. We assume that the perturbation is harmonic, which means we have a
potential of the form

For t —> oo, we obtain the transition probability

f V*k>V(r)ykdrS(M0 = f
[8(£(k) -E(k') - to) + 8(£(k) -£(k') + tuai)] (1.44)

It is clear that the 8-function simply takes care of energy conservation.
For a constant potential, we have to conserve energy as t increases. For a
harmonic perturbation, the system can gain or loose energy correspond-
ing, for example, to the absorption or emission of light.
We now turn our attention to the first term in Eq. (1.41), the matrix
element, which also plays a vital role in time-independent perturbation
theory. The significance of the matrix element is best illustrated by the
following special cases of well-defined potential problems (problems in
which the potential is given by a certain function of coordinates):

(a) V(r) = constant. The matrix element is then

- /
Vo\ Jv0]

The integration is over the volume Vo\ of the crystal. In many
practical cases, this volume will be much larger than the de Broglie
wavelength X of the electron, which is of the order of 100 A in typical
semiconductor problems. This means that the integral of Eq. (1.45)
will be very close to zero, because the cosine and sine functions to
which the exponents in Eq. (1.45) are equivalent are positive as often
as they are negative in the big volume. There is only one exception:
In the case k' = k, the integral is equal to the volume and the matrix
element is equal to constant. Therefore, we can write

constant — / e~lk'relkrdr = constant 8k/ k (1.46)
Vol JVol

where 8^,k = 1 for k = k' and is zero otherwise. This is known as
the Kronecker delta symbol. Consequently, the matrix element has

constant—/ e~ik''reikrdr (1.45)

/»oo

Jex
f(E)

V(r,t) = V(r)(e-i<at+^)

2

h
2TT

fVoi

Vol ./Voi
constant

1
e-ik'reikr dx — constant 8k/k
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taken care of momentum conservation; the free electron in a constant
potential does not change its momentum.

(b) Second, we consider an arbitrary potential having the following Four-
ier representation:

y(r) = X V q ' r (1.47)
q

Then the matrix element, which we now denote by Af^/, becomes

^ k , k ' = X ^ / ^-k'+Q)r ( 1 4 8 )
q Vo\ JVO]

q

How do we interpret this result? If we also allow the potential of
Eq. (1.47) to have a time dependence (e.g., as em), then the potential
can be interpreted as that of a wave (e.g., an electromagnetic wave).
In this case Eq. (1.49) simply tells us that the wave vectors of all scat-
tering agents (i.e., their momenta) are conserved, because we have

k ' - k = q (1.49)

It is important to notice that Eq. (1.49) is also valid for a static,
time-independent potential—that is, even a static potential "supplies"
momentum according to its Fourier components—in the same way a
wave does. This seems strange at first glance. To see the significance,
consider the boundary of a billiard table. This boundary is an impen-
etrable abrupt potential step whose Fourier decomposition involves
all values of q. Indeed, the boundary can supply any momentum to
the ball to make it bounce back. The above two examples show that
the Golden Rule essentially takes care of energy and momentum con-
servation. This is also the reason for its generality and importance.
Remember, however, that this is true only for cases when time t at
which we observe the scattered particle is long after the potential is
switched on. For short times (in practice these are times of the order
of 10~14 s), the function in Eq. (1.42) cannot be approximated by a 8
function, and energy need not be conserved in processes on this short
time scale. This is at the heart of the energy time uncertainty rela-
tion. To illustrate the great generality of the Golden Rule, one more
example is given.

(c) Consider the "tunneling problem" of Figure 1.8. Although an elec-
tric field F is applied in the z-direction, the electron in Figure 1.8
is confined in a small well. Classically, it would stay in the well.
However, because the barrier is not infinite, as assumed in Eq. (1.31),
the wave function is not zero at the well boundary but penetrates the

q
V q r

q

^k,k'
q Vol JVol

k'-k = q

Vq$k'-k,q

I
I1

^ g«(k-k'+q)-r
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Figure 1.8 Electrons in a potential well plus applied electric field F.

boundary. In other words, there is a finite probability of finding the
electron outside the well.

We can calculate the probability per unit time that the electron
leaks out if we know the wave function \\fm in the well and \|/ou out-
side the well, and regard the electric field as a perturbation. This
perturbation gives a term (the potential energy) eFz in the Hamilton-
ian. The Golden Rule tells us that

5(w,ou) =
JVoi

x\f*0UeFz\\f[ndr
2K

8(£ou-£in) (1.50)

In writing down this equation (which was first derived by Op-
penheimer), I have swept under the rug the fact that \|/ou and \ | / jn are
the solutions of different Hamiltonians. \\fm is obtained from the so-
lution of the Schrodinger equation of the quantum well and \|/ou is the
solution of a free electron in an electric field with

„ h2V2 vH = — eFz
2m

An exact justification of this procedure is complicated and is dis-
cussed in great detail in Duke's treatise of tunneling [2] (see also
Appendix A).

We emphasize that the matrix elements represent all that needs to be known
to obtain perturbation theory solutions. These matrix elements are given by three
dimensional integrals. Alternatively they can be viewed as scalar products in a
vector space denoting \\fn by a vector \n). For those unfamiliar with Dirac's
notation the following definition can just be used as a shorthand way of writing
the integral:

(m\Hi\n)= [ yfaHiVndr 0.51)
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PROBLEMS

1.1 Solve by perturbation theory (to first order) for v:

dvsin(x) dy
dx dx

where £ is a small positive quantity.
1 Jk-r ,1.2 Calculate the matrix elements for wave functions of the form \\f — —==e and

VVoi
(a) Hxoce^v

(b) H{ - 8(r)

(c) H{oc\r\-2

•ffl -(d) H\ oc exp < —— > ro > 0 Polar coordinates are helpful in parts c and d.

1.3 Consider a one-dimensional crystal lattice with two ions (atoms) repeated in a circular
arrangement. The two ions (atoms) are identical, with mass M, but are connected by
springs of alternating strength (Di ,Z>2).

(a) Derive the equations of motion. (Consider only nearest neighbor interactions,
where the force is proportional to the difference in displacements.)

(b) Find and sketch the dispersion relation of the possible vibrational modes. (Assume
all displacements are traveling waves with sinusoidal time dependence, that is, Uj(ra) =
E.ei(qra-®t) ^

(c) Discuss the form of the dispersion relation and the nature of the modes for q <C n/a
and q = n/a, where q is the wave vector.

(d) Find the velocity of sound (co/q for q -» 0).

(e) Show that the group velocity d(o/dq becomes zero at the Brillouin zone boundary.
(This is a general result.)
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