
Chapter 1
An Introduction to Evolutionary

Computation

D. B. Fogel (1994) "An Introduction to Simulated Evolutionary Optimization," IEEE Trans.
Neural Networks, Vol. 5:1, pp. 3-14.

T. Back, U. Hammel, and H.-P. Schwefel (1997) "Evolutionary Computation: Comments on
the History and Current State," IEEE Trans. Evolutionary Computation, Vol. 1:1, pp. 3-17.

EVOLUTION is in essence a two-step process of random
variation and selection (Mayr, 1988, pp. 97-98). A popula-

tion of individuals is exposed to an environment and responds
with a collection of behaviors. Some of these behaviors are bet-
ter suited to meet the demands of the environment than are oth-
ers. Selection tends to eliminate those individuals that
demonstrate inappropriate behaviors. The survivors reproduce,
and the genetics underlying their behavioral traits are passed on
to their offspring. But this replication is never without error, nor
can individual genotypes remain free of random mutations. The
introduction of random genetic variation in turn leads to novel
behavioral characteristics, and the process of evolution iterates.
Over successive generations, increasingly appropriate behav-
iors accumulate within evolving phyletic lines (Atmar, 1994).

Evolution optimizes behaviors (i.e., the phenotype), not the
underlying genetics per se, because selection can act only in the
face of phenotypic variation. The manner in which functional
adaptations are encoded in genetics is transparent to selection;
only the realized behaviors resulting from the interaction of the
genotype with the environment can be assessed by competitive
selection. Useful variations have the best chance of being pre-
served in the struggle for life, leading to a process of continual
improvement (Darwin, 1859, p. 130). Evolution may in fact cre-
ate "organs of extreme perfection and complication" (Darwin,
1859, p. 171), but must always act within the constraints of
physical development and the historical accidents of life that
precede the current population. Evolution is entirely oppor-
tunistic (Jacob, 1977), and can only work within the variation
present in extant individuals.

The process of evolution can be modeled algorithmically and
simulated on a computer. In the most elementary of models, it
may be summarized as a difference equation:

x[f + 1] = J(V(XM))

where the population at time, f, denoted as x[t], is operated
on by random variation, v, and selection, s, to give rise to a

new population x[t + 1]. Natural evolution does not occur
in discontinuous time intervals, but the use of a digital com-
puter requires discrete events. Over successive iterations
of variation and selection, an evolutionary algorithm can drive
a population toward particular optima on a response sur-
face that represents the measurable worth of each possible
individual that might reside in a population. Evolutionary com-
putation is the field that studies the properties of these algo-
rithms and similar procedures for simulating evolution on a
computer.

Although the term evolutionary computation was invented
as recently as 1991, the field has a history that spans four
decades. Many independent efforts to simulate evolution on a
computer were offered in the 1950s and 1960s. Three broadly
similar avenues of investigation in simulated evolution have
survived as main disciplines within the field: evolution strate-
gies, evolutionary programming, and genetic algorithms. Each
begins with a population of contending trial solutions brought
to a task at hand. New solutions are created by randomly vary-
ing the existing solutions. An objective measure of perfor-
mance is used to assess the "fitness" of each trial solution, and
a selection mechanism determines which solutions to retain as
"parents" for the subsequent generation. The differences be-
tween the procedures are characterized by the typical data rep-
resentations, the types of variations that are imposed on
solutions to create offspring, and the methods employed for se-
lecting new parents. Over time, however, these differences
have become increasingly blurred, and will likely become of
only historical interest.

The two papers reprinted here, Fogel (1994) and Back et al.
(1997), provide surveys of evolutionary computation. Fogel
(1994) offered an introduction to a special issue of the IEEE
Transactions on Neural Networks devoted to evolutionary com-
putation, while Back et al. (1997) offered the first paper of the
IEEE Transactions on Evolutionary Computation. These two
publications represent important milestones in the acceptance

1

Chapter 1

Of evolutionary algorithms as practical tools for addressing [2] T. Back, U. Hammel, and H.-P. Schwefel (1997) "Evolutionary computa-
COmplex problems in engineering. The papers include numerous t i o n : comments on the history and current state," IEEE Trans. Evolutionary

references that will assist novice readers who are just entering r l l / 7 " ° ' " L ! ^ ! '£p ' . lc • *_ ** m , c , •
J b [3] C. Darwin (1859) The Origin of Species by Means of Natural Selection or

trie tieia. tj^e Preservation of Favoured Races in the Struggle for Life, Mentor
Reprint, 1958, NY.

[4] D. B. Fogel (1994) "An introduction to simulated evolutionary optimiza-
References t i o n ' " I E E E T™ns- Neural Networks, Vol. 5:1, pp. 3-14.

[5] F. Jacob (1977) "Evolution and tinkering," Science, Vol. 196, pp. 1161-1166.
[1] W. Atmar (1994) "Notes on the simulation of evolution," IEEE Trans. [6] E. Mayr (1988) Toward a New Philosophy of Biology: Observations of an

Neural Networks, Vol. 5:1, pp. 130-147. Evolutionist, Belknap, Harvard.

2

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 5, NO. 1, JANUARY 1994

An Introduction to Simulated
Evolutionary Optimization

David B. Fogel, Member, IEEE

Abstract—Natural evolution is a population-based optimization
process. Simulating this process on a computer results in stochas-
tic optimization techniques that can often outperform classical
methods of optimization when applied to difficult real-world
problems. There are currently three main avenues of research in
simulated evolution: genetic algorithms, evolution strategies, and
evolutionary programming. Each method emphasizes a different
facet of natural evolution. Genetic algorithms stress chromosomal
operators. Evolution strategies emphasize behavioral changes at
the level of the individual. Evolutionary programming stresses
behavioral change at the level of the species. The development
of each of these procedures over the past 35 years is described.
Some recent efforts in these areas are reviewed.

I. INTRODUCTION

THE fundamental approach to optimization is to formulate
a single standard of measurement—a cost function—that

summarizes the performance or value of a decision and itera-
tively improve this performance by selecting from among the
available alternatives. Most classical methods of optimization
generate a deterministic sequence of trial solutions based on
the gradient or higher-order statistics of the cost function [1,
chaps. 8-10]. Under regularity conditions on this function,
these techniques can be shown to generate sequences that
asymptotically converge to locally optimal solutions, and in
certain cases they converge exponentially fast [2, pp. 12-15].
Variations on these procedures are often applied to train-
ing neural networks (backpropagation) [3], [4], or estimating
parameters in system identification and adaptive control ap-
plications (recursive prediction error methods, Newton-Gauss)
[2, pp. 22-23] , [5], But the methods often fail to perform
adequately when random perturbations are imposed on the
cost function. Further, locally optimal solutions often prove
insufficient for real-world engineering problems.

Darwinian evolution is intrinsically a robust search and
optimization mechanism. Evolved biota demonstrate optimized
complex behavior at every level: the cell, the organ, the
individual, and the population. The problems that biological
species have solved are typified by chaos, chance, temporality,
and nonlinear interactivity. These are also characteristics of
problems that have proved to be especially intractable to
classic methods of optimization. The evolutionary process
can be applied to problems where heuristic solutions are not
available or generally lead to unsatisfactory results.

The most widely accepted collection of evolutionary theo-
ries is the neo-Darwinian paradigm. These arguments assert

Manuscript received April 15, 1993; revised August 2, 1993.
The author is with Natural Selection, Inc., La Jolla, CA 92037.
IEEE Log Number 9213549.

that the history of life can be fully accounted for by physical
processes operating on and within populations and species [6,
p. 39]. These processes are reproduction, mutation, competi-
tion, and selection. Reproduction is an obvious properly of
extant species. Further, species have such great reproductive
potential that their population size would increase at an expo-
nential rate if all individuals of the species were to reproduce
successfully [7], [8, p. 479]. Reproduction is accomplished
through the transfer of an individual's genetic program (either
asexually or sexually) to progeny. Mutation, in a positively
entropic system, is guaranteed, in that replication errors during
information transfer will necessarily occur. Competition is a
consequence of expanding populations in a finite resource
space. Selection is the inevitable result of competitive repli-
cation as species fill the available space. Evolution becomes
the inescapable result of interacting basic physical statistical
processes ([9], [10, p. 25], [11] and others).

Individuals and species can be viewed as a duality of their
genetic program, the genotype, and their expressed behavioral
traits, the phenotype. The genotype provides a mechanism for
the storage of experiential evidence, of historically acquired
information. Unfortunately, the results of genetic variations
are generally unpredictable due to the universal effects of
pleiotropy and polygeny (Fig. 1) [8], [12], [13], [14, p. 224],
[15]-[19], [20, p. 296]. Pleiotropy is the effect that a single
gene may simultaneously affect several phenotypic traits.
Polygeny is the effect that a single phenotypic characteristic
may be determined by the simultaneous interaction of many
genes. There are no one-gene, one-trait relationships in natural
evolved systems. The phenotype varies as a complex, non-
linear function of the interaction between underlying genetic
structures and current environmental conditions. Very different
genetic structures may code for equivalent behaviors, just as
diverse computer programs can generate similar functions.

Selection directly acts only on the expressed behaviors of
individuals and species [19, pp. 477-478]. Wright [21] oifered
the concept of adaptive topography to describe the fitness
of individuals and species (minimally, isolated reproductive
populations termed demes). A population of genotypes maps
to respective phenotypes {sensu Lewontin [22]), which are in
turn mapped onto the adaptive topography (Fig. 2). Each peak
corresponds to an optimized collection of phenotypes, and thus
one or more sets of optimized genotypes. Evolution probabilis-
tically proceeds up the slopes of the topography toward peaks
as selection culls inappropriate phenotypic variants.

Others [11], [23, pp. 400-401] have suggested that it is more
appropriate to view the adaptive landscape from an inverted

Reprinted from IEEE Transactions on Neural Networks, Vol. 5:1, pp. 3-14, January, 1994.

3

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 5, NO. 1, JANUARY 1994

(U N ! PRODUCT

Fig. 1. Pleiotropy is the effect that a single gene may simultaneously affect
several phenotypic traits. Polygeny is the effect that a single phenotypic
characteristic may be determined by the simultaneous interaction of many
genes. These one-to-many and many-to-one mappings are pervasive in natural
systems. As a result, even small changes to a single gene may induce a raft
of behavioral changes in the individual (after [18]).

Fig. 2. Wright's adaptive topology, inverted. An adaptive topography, or
adaptive landscape, is defined to represent the fitness of all possible phe-
notypes. Wright [21] proposed that as selection culls the least appropriate
existing behaviors relative to others in the population, the population advances
to areas of higher fitness on the landscape. Atmar [11] and others have
suggested viewing the topography from an inverted perspective. Populations
then advance to areas of lower behavioral error.

position. The peaks become troughs, "minimized prediction
error entropy wells" [11]. Such a viewpoint is intuitively
appealing. Searching for peaks depicts evolution as a slowly
advancing, tedious, uncertain process. Moreover, there appears
to be a certain fragility to an evolving phyletic line; an
optimized population might be expected to quickly fall off
the peak under slight perturbations. The inverted topography
leaves an altogether different impression. Populations advance

rapidly, falling down the walls of the error troughs until their
cohesive set of interrelated behaviors are optimized, at which
point stagnation occurs. If the topography is generally static,
rapid descents will be followed by long periods of stasis. If,
however, the topography is in continual flux, stagnation may
never set in.

Viewed in this manner, evolution is an obvious optimizing
problem-solving process. Selection drives phenotypes as close
to the optimum as possible, given initial conditions and
environmental constraints. But the environment is continually
changing. Species lag behind, constantly evolving toward
a new optimum. No organism should be viewed as being
perfectly adapted to its environment. The suboptimality of
behavior is to be expected in any dynamic environment that
mandates trade-offs between behavioral requirements. But
selection never ceases to operate, regardless of the population's
position on the topography.

Mayr [19, p. 532] has summarized some of the more salient
characteristics of the neo-Darwinian paradigm. These include:

1) The individual is the primary target of selection.
2) Genetic variation is largely a chance phenomenon. Sto-

chastic processes play a significant role in evolution.
3) Genotypic variation is largely a product of recombina-

tion and "only ultimately of mutation."
4) "Gradual" evolution may incorporate phenotypic discon-

tinuities.
5) Not all phenotypic changes are necessarily consequences

of ad hoc natural selection.
6) Evolution is a change in adaptation and diversity, not

merely a change in gene frequencies.
7) Selection is probabilistic, not deterministic.

Simulations of evolution should rely on these foundations.

II. GENETIC ALGORITHMS

Fraser [24]-[28], Bremermann et al. [29]-[36], Reed et al.
[37], and Holland [38], [39] proposed similar algorithms that
simulate genetic systems. These procedures are now described
by the term genetic algorithms and are typically implemented
as follows:

1) The problem to be addressed is defined and captured
in an objective function that indicates the fitness of any
potential solution.

2) A population of candidate solutions is initialized subject
to certain constraints. Typically, each trial solution is
coded as a vector x, termed a chromosome, with ele-
ments being described as genes and varying values at
specific positions called alleles. Holland [39, pp. 70-72]
suggested that all solutions should be represented by
binary strings. For example, if it were desired to find
the scalar value x that maximizes:

F(x) = -x2,

then a finite range of values for x would be selected

and the minimum possible value in the range would be

represented by the string (0 . . . 0 1 , with the maximum

value being represented by the string (1 . . . 1) . The de-

4

CHAMCnUI

FOGEL: AN INTRODUCTION TO SIMULATED EVOLUTIONARY OPTIMIZATION

No.

2
3
4

Total

String

01101
11000
01000
10011

Fitness

169
576
64

361

1170

% of Total

14.4
492

5.5
30.9

100.0

Fig. 3. Roulette wheel selection in genetic algorithms. Selection in genetic algorithms is often accomplished via differential
reproduction according to fitness. In the typical approach, each chromosome is given a probability of being copied into the next
generation that is proportional to its fitness relative to all other chromosomes in the population. Successive trials are conducted in
which a chromosome is selected, until all available positions are filled. Those chromosomes with above-average fitness will tend to
generate more copies than those with below-average fitness. The figure is adapted from [143].

sired degree of precision would indicate the appropriate
length of the binary coding.

3) Each chromosome, Xi, i = 1 P, in the population
is decoded into a form appropriate for evaluation and
is then assigned a fitness score, ^(x{) according to the
objective.

4) Each chromosome is assigned a probability of repro-
duction, pi, z = 1, . . . , P, so that its likelihood of
being selected is proportional to its fitness relative to
the other chromosomes in the population. If the fitness
of each chromosome is a strictly positive number to
be maximized, this is often accomplished using roulette
wheel selection (see Fig. 3).

5) According to the assigned probabilities of reproduction,
Pi, i ~ 1 P, a new population of chromosomes is
generated by probabilistically selecting strings from the
current population. The selected chromosomes generate
"offspring" via the use of specific genetic operators,
such as crossover and bit mutation. Crossover is applied
to two chromosomes (parents) and creates two new
chromosomes (offspring) by selecting a random position
along the coding and splicing the section that appears
before the selected position in the first string with the
section that appears after the selected position in the
second string, and vice versa (see Fig. 4). Other, more
sophisticated, crossover operators have been introduced
and will be discussed later. Bit mutation simply offers
the chance to flip each bit in the coding of a new
solution. Topical values for the probabilities of crossover
and bit mutation range from 0.6 to 0.95 and 0.001 to
0.01, respectively [40], [41].

6) The process is halted if a suitable solution has been
found, or if the available computing time has expired;
otherwise the process proceeds to step (3) where the new
chromosomes are scored and the cycle is repeated.

For example, suppose the task is to find a vector of 100
bits {0,1} such that the sum of all of the bits in the vector is
maximized. The objective function could be written as:

100

•t=i

where a; is a vector of 100 symbols from {0,1}. Any such
vector x could be scored with respect to JLA(J;) and would

C r o s s o v e r P o i n t

O f f s p r i n g # 1 : 1 0 1 0 0 1 1 1 1 0 1

O f f s p r i n g # 2 : 1 1 0 1 0 0 0 0 1 0 0

Fig. 4. The one-point crossover operator. A typical method of recombination
in genetic algorithms is to select two parents and randomly choose a splicing
point along the chromosomes. The segments from the two parents are
exchanged and two new offspring are created.

receive a fitness rating ranging from zero to 100. Let an initial
population of 100 parents be selected completely at random
and subjected to roulette wheel selection in light of /x(ac), with
the probabilities of crossover and bit mutation being 0.8 and
0.01, respectively. Fig. 5 shows the rate of improvement of the
best vector in the population, and the average of all parents,
at each generation (one complete iteration of steps 3-6) under
such conditions. The process rapidly converges on vectors of
all l's.

There are a number of issues that must be addressed when
using a genetic algorithm. For example, the necessity for
binary codings has received considerable criticism [42]-[44].
To understand the motivation for using bit strings, the notion
of a schema must be introduced. Consider a string of symbols
from an alphabet A. Suppose that some of the components of
the string are held fixed while others are free to vary. Define a
wild card symbol, #, that matches any symbol from A. A string
with fixed and variable symbols defines a schema. Consider the
string {01##), defined over the union of {#} and the alphabet
A = (0,1). This set includes {0100), {0101 (, {01101 and
{0111}. Holland [39, pp. 66-74] recognized that every string
that is evaluated actually offers partial information about the
expected fitness of all possible schemata in which that string
resides. That is, if the string {0000} is evaluated to have
some fitness, then partial information is also received about the
worth of sampling from variations in {0###}, {#0##|, {#00#},
{#0#0}, and so forth. This characteristic is termed implicit
parallelism, as it is through a single sample that information
is gained with respect to many schemata. Holland [39, p.
71] speculated that it would be beneficial to maximize the
number of schemata being sampled, thus providing maximum
implicit parallelism, and proved that this is achieved for

i
K4JC

o
30.9Z

3 49£X

s

Parent #1: 1 1 0 1

Parent #2: 1 0 1 0

0 1 1 1 1 0 1

0 0 0 0 1 0 0

100

t = l

Xi,

5

/*(*)

33Z

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 5, NO. 1, JANUARY 1994

Fig. 5. The rate of optimization in a simple binary coding problem using a standard genetic algorithm. The curves indicate the fitness
of the best chromosomes in the population and the mean fitness of all parents at each generation. The optimum fitness is 100 units.

\A\ = 2. Binary strings were therefore suggested as a universal
representation.

The use of binary strings is not universally accepted in
genetic algorithm literature, however. Michalewicz [44, p. 82]
indicates that for real-valued numerical optimization problems,
floating-point representations outperform binary representa-
tions because they are more consistent, more precise, and lead
to faster execution. But Michalewicz [44, p. 75] also claims
that genetic algorithms perform poorly when the state space
of possible solutions is extremely large, as would be required
for high-precision numerical optimization of many variables
that could take on real-values in a large range. This claim is
perhaps too broad. The size of the state space alone does not
determine the efficiency of the genetic algorithm, regardless
of the choice of representation. Very large state spaces can
sometimes be searched quite efficiently, and relatively small
state spaces sometimes provide significant difficulties. But it
is fair to say that maximizing implicit parallelism will not
always provide for optimum performance. Many researchers in
genetic algorithms have foregone the bit strings suggested by
Holland [39, pp. 70-72] and have achieved reasonable results
to difficult problems [44]-[47].

Selection in proportion to fitness can be problematic. There
are two practical considerations: 1) roulette wheel selection
depends upon positive values, and 2) simply adding a large
constant value to the objective function can eliminate selec-
tion, with the algorithm then proceeding as a purely random
walk. There are several heuristics that have been devised to
compensate for these issues. For example, the fitness of all
parents can be scaled relative to the lowest fitness in the
population, or proportional selection can be based on ranking
by fitness. Selection based on ranking also eliminates problems
with functions that have large offsets.

One mathematical problem with selecting parents to repro-
duce in proportion to their relative fitness is that this procedure
cannot ensure asymptotic convergence to a global optimum
[48]. The best chromosome in the population may be lost
at any generation, and there is no assurance that any gains
made up to a given generation will be retained in future
generations. This can be overcome by employing a heuristic
termed elitist selection [49], which simply always retains the
best chromosome in the population. This procedure guarantees
asymptotic convergence [48], [50], [51], but the specific rates
of convergence vary by problem and are generally unknown.

The crossover operator has been termed the distinguishing
feature of genetic algorithms [52, pp. 17-18]. Holland [39, pp.
110-111] indicates that crossover provides the main search
operator while bit mutation simply serves as a background
operator to ensure that all possible alleles can enter the
population. The probabilities commonly assigned to crossover
and bit mutation reflect this philosophical view. But the choice
of crossover operator is not straightforward.

Holland [39, p. 160], and others [53], [54], propose that
genetic algorithms work by identifying good "building blocks"
and eventually combining these to get larger building blocks.
This idea has become known as the building block hypothesis.
The hypothesis suggests that a one-point crossover operator
would perform better than an operator that, say, took one bit
from either parent with equal probability (uniform crossover),
because it could maintain sequences (blocks) of "good code"
that are associated with above-average performance and not
disrupt their linkage. But this has not been clearly demon-
strated in the literature. Syswerda [55] conducted function
optimization experiments with uniform crossover, two-point
crossover and one-point crossover. Uniform crossover pro-
vided generally better solutions with less computational effort.
Moreover, it has been noted that sections of code that reside
at opposite ends of a chromosome are more likely to be
disrupted under one-point crossover than are sections that are
near the middle of the chromosome. Holland [39, pp. 106-109]
proposed an inversion operator that would reverse the index
position for a section of the chromosome, so that linkages
could be constructed between arbitrary genes. But inversion
has not been found to be useful in practice [52, p. 21]. The
relevance of the building block hypothesis is presently unclear,
but its value is likely to vary significantly by problem.

Premature convergence is another important concern in
genetic algorithms. This occurs when the population of chro-
mosomes reaches a configuration such that crossover no longer
produces offspring that can outperform their parents, as must
be the case in a homogeneous population. Under such cir-
cumstances, all standard forms of crossover simply regenerate
the current parents. Any further optimization relies solely on
bit mutation and can be quite slow. Premature convergence
is often observed in genetic algorithm research ([40], [52, pp.
25, 26], [56], [57], and others) because of the exponential
reproduction of the best observed chromosomes coupled with
the strong emphasis on crossover. Davis [52, pp. 26, 27]

i

0 20 40 60 80 100 120

Generations

110-

ioo-

90-

80-

70-

6 0 '

50"

6

Bat

Mean

FOGEL: AN INTRODUCTION TO SIMULATED EVOLUTIONARY OPTIMIZATION

(a) (b)

Fig. 6. Comparing dynamic parameter encoding to more standard genetic algorithm coding techniques, (a) A two-dimensional,
inverted illustration of a quadratic bowl, (b) Optimization on a three-dimensional quadratic bowl, (c) An inverted illustration of the
Shekel's foxholes problem, (d) Optimization on the Shekel's foxholes problem. Dynamic parameter encoding offers the possibility
of increasing the precision of a solution on-line, but may also encounter problems with premature convergence.

recommends that when the population converges on a chromo-
some that would require the simultaneous mutation of many
bits in order to improve it, the run is practically completed
and it should either be restarted using a different random seed,
or hill-climbing heuristics should be employed to search for
improvements.

One recent proposal for alleviating the problems associated
with premature convergence was offered in [41]. The method,
termed dynamic parameter encoding (DPE), dynamically re-
sizes the available range of each parameter. Broadly, when
a heuristic suggests that the population has converged, the
minimum and maximum values for the range are resized
to a smaller window and the process is iterated. In this
manner, DPE can zoom in on solutions that are closer to

the global optimum than provided by the initial precision.
Schraudolph [58] has kindly provided results from experiments
with DPE presented in [41]. As indicated in Fig. 6, DPE clearly
outperforms the standard genetic algorithm when searching a
quadratic bowl, but actually performs worse on a multirnodal
function (Shekel's foxholes). The effectiveness of DPE is an
open, promising area of research. DPE only zooms in, so the
initial range of parameters must be set to include the global
optimum or it will not be found. But it would be relatively
straightforward to include a mechanism in DPE to expand the
search window, as well as reduce it.

Although many open questions remain, genetic algorithms
have been used to successfully address diverse practical opti-
mization problems [59]. While some researchers do not view

(c)

1
s

3

2

0'

• 1

0 100 200 300 400

Generations

(d)

GA

OAw/DPE

Generations

0 100 200 300 400

£

i

2

0

-2

-4

•%

-10

-12

GA

OAw/DPE

7

4-

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 5, NO. 1, JANUARY 1994

genetic algorithms as function optimization procedures per se
(e.g., [60]), they are commonly used for precisely that purpose.
Current research efforts include: 1) developing a stronger
mathematical foundation for the genetic algorithm as an opti-
mization technique [41], [48], [61], [62], including analysis of
classes of problems that are difficult for genetic algorithms
[63]-[66] as well as the sensitivity to performance of the
general technique to various operator and parameter settings
[42], [44], [67]-[70]; 2) comparing genetic algorithms to other
optimization methods and examining the manner in which they
can be enhanced by incorporating other procedures such as
simulated annealing [71]—[73]; 3) using genetic algorithms for
computer programming and engineering problems [74]-[79];
4) applying genetic algorithms to machine learning rule-based
classifier systems [80]-[84]; 5) using genetic algorithms as
a basis for artificial life simulations [85], [86, pp. 186-195];
and 6) implementing genetic algorithms on parallel machines
[87]-[89]. The most recent investigations can be found in [90].

III. EVOLUTION STRATEGIES AND

EVOLUTIONARY PROGRAMMING

An alternative approach to simulating evolution was in-
dependently adopted by Schwefel [91] and Rechenberg [92]
collaborating in Germany, and L. Fogel [93], [94] in the United
States, and later pursued by [95]-[99], among others. These
models, commonly described by the terms evolution strategies
or evolutionary programming, or more broadly as evolutionary
algorithms [87], [100] (although many authors use this term
to describe the entire field of simulated evolution), emphasize
the behavioral link between parents and offspring, or between
reproductive populations, rather than the genetic link. When
applied to real-valued function optimization, the most simple
method is implemented as follows:

1) The problem is defined as finding the real-valued n-
dimensional vector x that is associated with the ex-
tremum of a functional F(x) : Rn —> R. Without loss
of generality, let the procedure be implemented as a
minimization process.

2) An initial population of parent vectors, Xi, i = 1, . . . ,
P , is selected at random from a feasible range in each
dimension. The distribution of initial trials is typically
uniform.

3) An offspring vector, x j , i = 1, . . . , P, is created from
each parent Xi by adding a Gaussian random variable
with zero mean and preselected standard deviation to
each component of Xi.

4) Selection then determines which of these vectors to
maintain by comparing the errors F(x.i) and F(xJ),
t = 1, . . . , P . The P vectors that possess the least
error become the new parents for the next generation.

5) The process of generating new trials and selecting those
with least error continues until a sufficient solution is
reached or the available computation is exhausted.

In this model, each component of a trial solution is viewed
as a behavioral trait, not as a gene. A genetic source for these
phenotypic traits is presumed, but the nature of the linkage
is not detailed. It is assumed that whatever genetic transfor-

mations occur, the resulting change in each behavioral trait
will follow a Gaussian distribution with zero mean difference
and some standard deviation. Specific genetic alterations can
affect many phenotypic characteristics due to pleiotropy and
polygeny (Fig. 1). It is therefore appropriate to simultaneously
vary all of the components of a parent in the creation of a
new offspring.

The original efforts in evolution strategies [91], [92] exam-
ined the preceding algorithm but focused on a single parent-
single offspring search. This was termed a (1 + 1) - £"5 in that
a single offspring is created from a single parent and both are
placed in competition for survival, with selection eliminating
the poorer solution. There were two main drawbacks to this
approach when viewed as a practical optimization algorithm:
1) the constant standard deviation (step size) in each dimension
made the procedure slow to converge on optimal solutions,
and 2) the brittle nature of a point-to-point search made the
procedure susceptible to stagnation at local minima (although
the procedure can be shown to asymptotically converge to the
global optimum vector x) [101].

Rechenberg [92] defined the expected convergence rate of
the algorithm as the ratio of the average distance covered
toward the optimum and the number of trials required to
achieve this improvement. For a quadratic function

F(*) = 5 > ? , (i)
i = i

where a: is an n-dimensional vector of reals, and X{ denotes
the zth component of x, Rechenberg [92] demonstrated that
the optimum expected convergence rate is given when a w
1.224r/n, where a is the standard deviation of the zero
mean Gaussian perturbation, r denotes the current Euclidean
distance from the optimumn and there are n dimensions. Thus,
for this simple function the optimum convergence rate is
obtained when the average step size is proportional to the
square root of the error function and inversely proportional
to the number of variables. Additional analyses have been
conducted on other functions and the results have yielded
similar forms for setting the standard deviation [102].

The use of multiple parents and offspring in evolution
strategies was developed by Schwefel [103], [104]. Two
approaches are currently explored, denoted by (n -f A) — ES
and (n, A) - ES. In the former, fi parents are used to create A
offspring and all solutions compete for survival, with the best
being selected as parents of the next generation. In the latter,
only the A offspring compete for survival, and the parents are
completely replaced each generation. That is, the lifespan of
every solution is limited to a single generation. Increasing the
population size increases the rate of optimization over a fixed
number of generations.

To provide a very simple example, suppose it is desired to
find the minimum of the function in (1) for n = 3. Let the
original population consist of 30 parents, with each component
initialized in accordance with a uniform distribution over
[-5.12, 5.12] (after [40]). Let one offspring be created from
each parent by adding a Gaussian random variable with mean
zero and variance equal to the error score of the parent divided

8

FOGEL: AN INTRODUCTION TO SIMULATED EVOLUTIONARY OPTIMIZATION

Fig, 7. The rate of optimization using a primitive version of evolution strate-
gies on the three-dimensional quadratic bowl. Thirty parents are maintained at
each generation. Offspring are created by adding a Gaussian random variable
io each component.

by the square of the number of dimensions (32 = 9) to each
component. Let selection simply retain the best 30 vectors in
the population of parents and offspring. Fig. 7 indicates the
rate of optimization of the best vector in the population as
a function of the number of generations. The process rapidly
converges close to the unique global optimum.

Rather than using a heuristic schedule for reducing the
step size over time, Schwefel [104] developed the idea of
making the distribution of new trials from each parent an
additional adaptive parameter (Rechenberg, personal commu-
nication, indicates that he introduced the idea in 1967). In this
procedure, each solution vector comprises not only the trial
vector x of n dimensions, but a perturbation vector a which
provides instructions on how to mutate x and is itself subject
to mutation. For example, if x is the current position vector
and a is a vector of variances corresponding to each dimension
of x, then a new solution vector (a;',a7) could be created as:

a[= u{ exp(r' • JV(0,1) + r • AT;(O, 1))

* ; = S* + JV(OX)

where i = 1, . . . , n, and JV(0,1) represents a single standard
Gaussian random variable, iV;(0,1) represents the zth indepen-
dent identically distributed standard Gaussian, and r and r'
are operator set parameters which define global and individual
step-sizes [102]. In this manner, the evolution strategy can self-
adapt to the width of the error surface and more appropriately
distribute trials. This method was extended again [104] to
incorporate correlated mutations so that the distribution of new
trials could adapt to contours on the error surface (Fig. 8).

Finally, additional extensions were made to evolution strate-
gies to include methods for recombining individual solutions
in the creation of new offspring. There are many proposed
procedures. These include selecting individual components
from either of two parents at random, averaging individual
components from two parents with a given weighting, and so
forth [102].

The original evolutionary programming approach was sim-
ilar to that of Schwefel and Rechenberg but involved a
more complex problem, that of creating artificial intelligence.
Fogel [94] proposed that intelligent behavior requires the
composite ability to predict one's environment coupled with a
translation of the predictions into a suitable response in light
of the given goal. To provide maximum generality, in a series

Fig. 8. Under independent Gaussian perturbations to each component of
every parent, new trials are are distributed such that the contours of equal
probability are aligned with the coordinate axes (left picture). This will not be
optimal in general because the contours of the response are rarely similarly
aligned. Schwefel [104] suggests a mechanism for incorporating self-adaptive
covariance terms. Under this procedure, new trials can be distributed in any
orientation (right picture). The evolutionary process adapts to the contours of
the response surface, distributing trials so as to maximaize the probability of
discovering improved solutions.

|0/T

M

Fig. 9. A finite state machine (FSM) consists of a finite number of states.
For each state, for every possible input symbol, there is an associated output
symbol and next-state transition. In the figure, input symbols are shown to the
left of the virgule, output symbols are shown to the right. The input alphabet
is {0, 1} and the output alphabet is [a, ft, 7 } . The machine is presumed to
start in state A. The figure is taken from [144].

of experiments, a simulated environment was described as
sequence of symbols taken from a finite alphabet. The problem
was then defined to evolve an algorithm that would operate on
the sequence of symbols thus far observed in such a manner
as to produce an output symbol that is likely to maximize the
benefit to the algorithm in light of the next symbol to appear
in the environment and a well-defined payoff function. Finite
state machines (FSM's) [105] provided a useful representation
for the required behavior (Fig. 9).

Evolutionary programming operated on FSM's as follows:

1) Initially, a population of parent FSM's is randomly
constructed.

2) The parents are exposed to the environment; that is, the
sequence of symbols that have been observed up to the
current time. For each parent machine, as each input
symbol is offered to the machine, each output symbol is
compared to the next input symbol. The worth of this
prediction is then measured with respect to the given
payoff function (e.g., ail-none, absolute error, squared
error, or any other expression of the meaning of the
symbols). After the last prediction is made, a function

i
I
1

20

0

-20

-40

-60

-80
0 100 200 300 400

Generation*
line of equal probability density to place an offspring

i/«

B

0/0/

1/7 cAM

9

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 5, NO. 1, JANUARY 1994

Player B

C D

Player A

Fig. 10. A payoff matrix for the prisoner's dilemma. Each of two players
must either cooperate (C) or defect (D). The entries in the matrix, (a,b),
indicate the gain to players A and B, respectively. This payoff matrix was
used in simulations in [106]-[108].

of the payoff for each symbol (e.g., average payoff per
symbol) indicates the fitness of the machine.

3) Offspring machines are created by randomly mutating
each parent machine. There are five possible modes of
random mutation that naturally result from the descrip-
tion of the machine: change an output symbol, change a
state transition, add a state, delete a state, or change the
initial state. The deletion of a state and the changing of
the start state are only allowed when the parent machine
has more than one state. Mutations are chosen with
respect to a probability distribution, which is typically
uniform. The number of mutations per offspring is also
chosen with respect to a probability distribution (e.g.,
Poisson) or may be fixed a priori.

4) The offspring are evaluated over the existing environ-
ment in the same manner as their parents.

5) Those machines that provide the greatest payoff are
retained to become parents of the next generation. Typ-
ically, the parent population remains the same size,
simply for convenience.

6) Steps 3)-5) are iterated until it is required to make an ac-
tual prediction of the next symbol (not yet experienced)
from the environment. The best machine is selected to
generate this prediction, the new symbol is added to
the experienced environment, and the process reverts to
step 2).

The prediction problem is a sequence of static optimization
problems in which the adaptive topography (fitness function)
is time-varying. The process can be easily extended to ab-
stract situations in which the payoffs for individual behaviors
depend not only on an extrinsic payoff function, but also
on the behavior of other individuals in the population. For
example, Fogel [106], [107], following previous foundational
research by Axelrod using genetic algorithms [108], evolved
a population of FSM's in light of the iterated prisoner's
dilemma (Fig. 10). Starting with completely random FSM's
of one to five states, but ultimately possessing a maximum
of eight states, the simulated evolution quickly converged on
mutually cooperative behavior (Fig. 11). The evolving FSM's
essentially learned to predict the behavior (a sequence of
symbols) of other FSM's in the evolving population.

Evolutionary programming has recently been applied to
real-valued continuous optimization problems and is virtually

(b)

Fig. 11. (a) The mean of all parents' scores as a function of the number
generations when using evolutionary programming to simulate an iterated
prisoner's dilemma incorporating 50 parents coded as finite state machines
(FSM's). The input alphabet consists of the previous moves for the current
player and the opponent {(C,C), (C.D), (D,C), (DJ))}; the output alphabet
consists of the next move {C,D}. Each FSM plays against every other FSM
in the population over a long series of moves. The results indicate a propensity
to evolve cooperative behavior even though it would appear more beneficial
for an individual to defect on any given play, (b) A typical FSM evolved
after 200 generations when using 100 parents. The cooperative nature of
the machine can be observed by noting that (C,C) typically elicits further
cooperation, and in slates 2 and 3, such cooperation will be absorbing. Further,
(D,D) typically elicits further defection, indicating that the machine will not
be taken advantage of during an encounter with a purely selfish machine.
These results appear in [107J.

10

Start SUM
C«Coop«rat«
D-Dtftct

ugmd

D.C/C

C.C/CT

4
a

cony,
C.CALI

^iyosc.D/0

C.C/C;
o.c/c

D.C/C

S5S 28

D.O/O C.C/C
&&>1

c

C,O/D

Generations
(a)

" 0 25 50 73 100 123 150 173 200 225

Is

•8

3.2-

3

2.8

2.6

2.4

2.2

2

1.8

1.6

1.4

(3,3) (0,5)

(1.D(5,0)

C

D

FOGEL: AN INTRODUCTION TO SIMULATED EVOLUTIONARY OPTIMIZATION

equivalent in many cases to the procedures used in evolution
strategies. The extension to using self-adapting independent
variances was offered in [109] with procedures for optimizing
the covariance matrix used in generating new trials offered in
[110]. These methods differ from those offered in [104] in that
Gaussian perturbations are appl ied to the self-adaptive param-
eters instead of lognormal perturbations. Initial comparisons
[111], [112] indicate that the procedures in [104] appear to be
more robust than those in [110]. One possible explanation for
this would be that it is easier for variances of individual terms
to transition between small and large values under the method
of [104]. Theoretical and empirical comparison between these
mechanisms is an open area of research.

As currently implemented, there are two essential differ-
ences between evolution strategies and evolutionary program-
ming.

1) Evolution strategies rely on strict deterministic selec-
tion. Evolutionary programming typically emphasizes
the probabilistic nature of selection by conducting a
stochastic tournament for survival at each generation.
The probability that a particular trial solution will be
maintained is made a function of its rank in the popu-
lation.

2) Evolution strategies typically abstracts coding structures
as analogues of individuals. Evolutionary programming
typically abstracts coding structures as analogues of
distinct species (reproductive populations). Therefore,
evolution strategies may use recombination operations to
generate new trials [111], but evolutionary programming
does not, as there is no sexual communication between
species [100].

The current efforts in evolution strategies and evolutionary
programming follow lines of investigation similar to those
in genetic algorithms: 1) developing mathematical founda-
tions for the procedures [51], [111], [113], investigating their
computational complexity theoretically and empirically [114],
[115] and combining evolutionary optimization with more
traditional search techniques [116]; 2) using evolutionary
algorithms to train and design neural networks [117]—[121];
3) examining evolutionary algorithms for system identifica-
tion, control, and robotics applications [122]—[127], as well
as pattern recognition problems [128]—[130], along with the
possibility for synergism between evolutionary and fuzzy
systems [131], [132]; 4) applying evolutionary optimization
to machine learning [133]; 5) relating evolutionary models to
biological observations or applications [107], [134]—[137]; and
also 6) designing evolutionary algorithms for implementation
on parallel processing machines [138], [139], [140]. The most
recent investigations can be found in [141], [142].

IV. SUMMARY

Simulated evolution has a long history. Similar ideas and
implementations have been independently invented numerous
times. There are currently three main lines of investiga-
tion: genetic algorithms, evolution strategies, and evolutionary
programming. These methods share many similarities. Each
maintains a population of trial solutions, imposes random

changes to those solutions, and incorporates the use of se-
lection to determine which solutions to maintain into future
generations and which to remove from the pool of trials.
But these methods also have important differences. Genetic
algorithms emphasize models of genetic operators as observed
in nature, such as crossing over, inversion, and point mutation
and apply these to abstracted chromosomes. Evolution strate-
gies and evolutionary programming emphasize mutational
transformations that maintain behavioral linkage between each
parent and its offspring, respectively, at the level of the
individual or the species. Recombination may be appropriately
applied to individuals, but is not applicable for species.

No model can be a complete description of the true system.
Each of the three possible evolutionary approaches described
above is incomplete. But each has also been demonstrated
to be of practical use when applied to difficult optimization
problems. The greatest potential for the application of evolu-
tionary optimization to real-world problems will come from
their implementation on parallel machines, for evolution is
an inherently parallel process. Recent advances in distributed
processing architectures will result in dramatically reduced ex-
ecution times for simulations that would simply be impractical
on current serial computers.

Natural evolution is a robust yet efficient problem-solving
technique. Simulated evolution can be made as robust. The
same procedures can be applied to diverse problems with
relatively little reprogramming. While such efforts will un-
doubtedly continue to address difficult real-world problems,
the ultimate advancement of the field will, as always, rely on
the careful observation and abstraction of the natural process
of evolution.

ACKNOWLEDGMENT

The author is grateful to W. Atmar, T. Back, L. Davis, G.
B. Fogel, L. J. Fogel, E. Mayr, Z. Michalewicz, G. Rudolph,
H.-P. Schwefel, and the anonymous referees for their helpful
comments and criticisms of this review.

REFERENCES

[1] M. S. Bazaraa and C. M. Shetty, Nonlinear Programming, New "York:
John Wiley, 1979.

[2] B. D. O. Anderson, R. R. Bitmead, C. R. Johnson, P. V. Kokotovic,
R. L. Kosut, I. M. Y. Marcels, L. Praly, and B. D. Riedle, Stability of
Adaptive Systems: Passivity and Averaging Analysis. Cambridge, MA:
MIT Press, 1986.

[3] P. Werbos, "Beyond regression: new tools for prediction and analysis
in the behavioral sciences," Doctoral dissertation, Harvard University,
1974.

[4] D. E. Rumelhart and J. L. McClelland, Parallel Distributed Processing:
Explorations in the Microstructures of Cognition, vol. 1, Cambridge,
MA: MIT Press, 1986.

[5] L. Ljung, System Identification: Theory for the User, Englewood Cliffs,
NJ: Prentice-Hall, 1987.

[6] A. Hoffman, Arguments on Evolution: A Paleontologist's Perspective,
New York: Oxford University Press, 1988.

[7] T. R. Malthus, An Essay on the Principle of Population, as it Affects the
Future Improvement of Society, 6th ed., London: Murray, 1826.

[8] E. Mayr, The Growth of Biological Thought: Diversity, Evolution and
Inheritance, Cambridge, MA: Belknap Press, 1988.

[9] J. Huxley, "The evolutionary process," in Evolution as a Process, J.
Huxley, A. C. Hardy, and E. B. Ford, Eds. New York: Collier Books.
pp. 9-33, 1963.

[10] D. E. Wooldridge, The Mechanical Man: The Physical Basis of Intelli-
gent Life. New York: McGraw-Hill, 1968.

11

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 5, NO. i, JANUARY 1994

[11] W. Atmar, "The inevitability of evolutionary invention," unpublished
manuscript, 1979.

[12] S. Wright, "Evolution in Mendelian populations," Genetics, vol. 16, pp.
97-159, 1931.

[13] S. Wright, "The evolution of life," Panel discussion in Evolution After
Darwin: Issues in Evolution, vol. Ill, S. Tax and C. Callender, Eds.
Chicago: Univ. of Chicago Press, 1960.

[14] G. G. Simpson, The Meaning of Evolution: A Study of the History of Life
and Its Significance for Man. New Haven, CT: Yale Univ. Press, 1949.

[15] T. Dobzhansky, Genetics of the Evolutionary Processes. New York:
Columbia Univ. Press, 1970.

[16] S. M. Stanley, "A theory of evolution above the species level," Proc.
Nat. Acad. Sci., vol. 72, no. 2, pp. 646-650, 1975.

[17] E. Mayr, "Where are we?" Cold Spring Harbor Symp. Quant. Biol, vol.
24, pp. 409-440, 1959.

[18] E. Mayr, Animal Species and Evolution. Cambridge, MA: Belknap Press,
1963.

[19] E. Mayr, Toward a New Philosophy of Biology: Observations of an
Evolutionist. Cambridge, MA: Belknap Press, 1988.

[20] R. Dawkins, The Blind Watchmaker. Oxford: Clarendon Press, 1986.
[21] S. Wright, "The roles of mutation, inbreeding, crossbreeding, and

selection in evolution," Proc. 6th Int. Cong. Genetics, Ithaca, vol. 1,
pp. 356-366, 1932.

[22] R. C. Lewontin, The Genetic Basis of Evolutionary Change. New York:
Columbia University Press, NY, 1974.

[23] P. H. Raven and G. B. Johnson, Biology, St. Louis, MO: Times Mirror,
1986.

[24] A. S. Fraser, "Simulation of genetic systems by automatic digital
computers. I. Introduction," Australian J. of Biol. Sci., vol. 10, pp.
484-491, 1957.

[25] A. S. Fraser, "Simulation of genetic systems by automatic digital
computers. II. Effects of linkage on rates of advance under selection,"
Australian J. of Biol. Sci., vol. 10, pp. 492-499, 1957.

[26] A. S. Fraser, "Simulation of genetic systems by automatic digital
computers. IV. Epistasis," Australian J. of Biol. Sci., vol. 13, pp.
329-346, 1960.

[27] A. S. Fraser, "Simulation of genetic systems," / . ofTheor. Biol., vol.
2, pp. 329-346, 1962.

[28] A. S. Fraser, "The evolution of purposive behavior," in Purposive
Systems, H. von Foerster, J. D. White, L. J. Peterson, and J. K. Russell,
Eds. Washington, DC: Spartan Books, pp. 15-23, 1968.

[29] H. J. Bremermann, "The evolution of intelligence, The nervous system
as a model of its environment," Technical Report No. 1, Contract No.
477(17), Dept. of Mathematics, Univ. of Washington, Seattle, 1958.

[30] H. J. Bremermann, "Optimization through evolution and recombina-
tion," in Self-Organizing Systems. M. C. Yovits, G. T. Jacobi, and G. D.
Goldstine, Eds. Washington, DC: Spartan Books, pp. 93-106, 1962.

[31] H. J. Bremermann, "Quantitative aspects of goal-seeking self-organizing
systems," in Progress in Theoretical Biology, vol. 1, New York: Aca-
demic Press, pp. 59-77, 1967.

[32] H. J. Bremermann, "Numerical Optimization Procedures Derived from
Biological Evolution Processes," in Cybernetic Problems in Bionics, H.
L. Oestreicher and D. R. Moore, Eds. New York: Gordon & Breach,
pp. 543-562, 1968.

[33] H. J. Bremermann, "On the Dynamics and Trajectories of Evolution
Processes," in Biogenesis, Evolution, Homeostasis. A. Locker, Ed. New
York: Springer-Verlag, pp. 29-37, 1973.

[34] H. J. Bremermann and M. Rogson, "An Evolution-Type Search Method
for Convex Sets," ONR Technical Report, Contracts 222(85) and
3656(58), UC Berkeley, 1964.

[35] H. J. Bremermann, M. Rogson, and S. Salaff, "Search by Evolution,"
in Biophysics and Cybernetic Systems. M. Maxfield, A. Callahan, and
L. J. Fogel, Eds. Washington, DC: Spartan Books, pp. 157-167, 1965.

[36] H. J. Bremermann, M. Rogson, and S. Salaff, "Global Properties of
Evolution Processes," in Natural Automata and Useful Simulations. H.
H. Pattce, E. A. Edlsack, L. Fein, and A. B. Callahan, Eds. Washington,
DC: Spartan Books, pp. 3-41, 1966.

[37] J. Reed, R. Toombs, and N. A. Barricelli, "Simulation of biological
evolution and machine learning," Journal of Theoretical Biology, vol.
17, pp. 319-342, 1967.

[38] J. H. Holland, "Adaptive plans optimal for payoff-only environments,"
Proc. of the 2nd Hawaii Int. Conf on System Sciences, pp. 917-920,
1969.

[39] J. H. Holland, Adaptation in Natural and Artificial Systems. Ann Arbor:
Univ. Of Michigan Press, 1975.

[40] K. A. De Jong, "The analysis of the behavior of a class of genetic
adaptive systems," Doctoral dissertation, Univ. of Michigan, Ann Arbor,
1975.

[41] N. N. Schraudolph and R. K. Belew, "Dynamic parameter encoding for
genetic algorithms," Machine Learning, vol. 9, no. 1, pp. 9-21, 1992,

[42] G. A. Vignaux and Z. Michalewicz, "A genetic algorithm for the linear
transportation problem," IEEE Trans, on Systems, Man and Cybernetics,
vol. 21, no. 2, pp. 445-452, 1991.

[43] J. Antonisse, "A new interpretation of schema notation that overturns
the binary encoding constraint," Proc. of the Third International Conf.
on Genetic Algorithms, J. D. Schaffer, Ed. San Mateo, CA: Morgan
Kaufmann Publishers, pp. 86-91, 1989.

[44] Z. Michalewicz, Genetic Algorithms + Data Structures - Evolution
Programs. New York: Springer-Verlag, 1992.

[45] D. J. Montana, "Automated parameter tuning for interpretation of
synthetic images," in Handbook of Genetic Algorithms. L. Davis, Ed.
New York: Van Nostrand Reinhold, pp. 282-311, 1991.

[46] G. Syswerda, "Schedule optimization using genetic algorithms," in
Handbook of Genetic Algorithms, L. Davis, Ed. New York: Van Nostrand
Reinhold, pp. 332-349, 1991.

[47] A. H. Wright, "Genetic algorithms for real parameter optimization,"
Foundations of Genetic Algorithms, G. J. E. Rawlins, Ed. San Mateo,
CA: Morgan Kaufmann Publishers, pp. 205-218, 1991.

[48] G. Rudolph, "Convergence properties of canonical genetic algorithms,"
IEEE Trans, on Neural Networks, vol. 5. no. 1, 1994.

[49] J. J. Grefenstette, "Optimization of control parameters for genetic
algorithms," IEEE Trans. Sys., Man and Cybern., vol. 16, no. 1, pp.
122-128, 1986.

[50] A. E. Eiben, E. H. Aarts, and K. M. Van Hee, "Global convergence
of genetic algorithms: An infinite Markov chain analysis," Parallel
Problem Solving from Nature, H.-P. Schwefel and R. Manner, Eds,
Heidelberg, Berlin; Springer-Verlag, pp. 4-12, 1991.

[51] D. B. Fogel, "Asymptotic convergence properties of genetic algorithms
and evolutionary programming: Analysis and experiments," Cybernetics
and Systems, in press, 1994.

[52] L. Davis, Ed. Handbook of Genetic Algorithms, New York: Van Nostrand
Reinhold, 1991.

[53] D. E. Goldberg, "Computer-aided gas pipeline operation using genetic
algorithms and rule learning," Doctoral dissertation, Univ. of Michigan,
Ann Arbor, 1983.

[54] J. J. Grefenstette, R. Gopal, B. Rosmaita, and D. Van Gucht, "Genetic
algorithms for the traveling salesman problem," in Proc. of an Intern.
Conf. on Genetic Algorithms and Their Applications, J. J. Grefenstette,
Ed. Lawrence Earlbaum, pp. 160-168, 1985.

[55] G. Syswerda, "Uniform crossover in genetic algorithms," in Proc. of
the Third Intern. Conf. on Genetic Algorithms, J. D. Schaffer, Ed. San
Mateo, CA: Morgan Kaufmann, pp. 2-9, 1989.

[56] A. S. Bickel and R. W. Bickel, "Determination of near-optimum use
of hospital diagnostic resources using the 'GENES' genetic algorithm
shell," Comput. Biol. Med., vol. 20, no. 1, pp. 1-13, 1990.

[57] G. Pitney, T. R. Smith, and D. Greenwood, "Genetic design of process-
ing elements for path planning networks," Proc. of the Int, Joint Conf.
on Neural Networks 1990, vol. Ill, IEEE, pp. 925-932, 1990.

[58] N. N. Schraudolph, personal communication, UCSD, 1992.
[59] J. H. Holland, "Genetic algorithms," Scientific American, pp. 66-72,

July, 1992.
[60] K. A. De Jong, "Are genetic algorithms function optimizers?" Proc. of

the Sec. Parallel Problem Solving from Nature Conf, R. Manner and
B. Manderick, Eds. The Netherlands: Elsevier Science Press, pp. 3-14,
1992.

[61] T. E. Davis and J. C. Principe, "A simulated annealing like convergence
theory for the simple genetic algorithm," Proc. of the Fourth Intern.
Conf. on Genetic Algorithms, R. K. Belew and L. B. Booker, Eds. San
Mateo, CA: Morgan Kaufmann, pp. 174-181, 1991.

[62] X. Qi and F. Palmieri, "Adaptive mutation in the genetic algorithm,"
Proc. of the Sec. Ann. Conf. on Evolutionary Programming, D.B. Fogel
and W. Atmar, Eds. La Jolla, CA: Evolutionary Programming Society,
pp. 192-196, 1993.

[63] G. E. Liepins and M. D. Vose, "Deceptiveness and genetic algorithm
dynamics," in Foundations of Genetic Algorithms, G. J. E. Rawlins, Ed.
San Mateo, CA: Morgan Kaufmann, pp. 36-52, 1991.

[64] L. D. Whitley, "Fundamental principles of deception in genetic search,"
in Foundations of Genetic Algorithms, G. J. E. Rawlins, Ed. San Mateo,
CA: Morgan Kaufmann, pp. 221-241, 1991.

[65] W. E. Hart and R. K. Belew, "Optimizing an arbitrary function is hard
for the genetic algorithm," Proc. of the Fourth Intern. Conf. on Genetic
Algorithms, R. K. Belew and L. B. Booker, Eds. San Mateo, CA: Morgan
Kaufmann, pp. 190-195, 1991.

[66] S. Forrest and M. Mitchell, "What makes a problem hard for a genetic
algorithm?" Machine Learning, vol. 13, no. 2-3, pp. 285-319, 1993.

[67] J. D. Schaffer and L. J. Eshelman, "On crossover as an evolutionarily

12

FOGEL: AN INTRODUCTION TO SIMULATED EVOLUTIONARY OPTIMIZATION

viable strategy," in Proc. of the Fourth Intern, Conf. on Genetic Algo-
rithms, R. K. Belew and L. B. Booker, Eds. San Mateo, CA: Morgan
Kaufmann, pp. 61-68, 1991.

[68] W. M. Spears and K. A. De Jong, "On the virtues of parameterized
uniform crossover," in Proc. of the Fourth Intern. Conf. on Genetic
Algorithms, R. K. Belew and L. B. Booker, Eds. San Mateo, CA: Morgan
Kaufmann, pp. 230-236, 1991.

[69] D. E. Goldberg, K. Deb, and J. H. Clark, "Genetic algorithms: noise, and
the sizing of populations," Complex Systems, vol. 6, pp. 333-362, 1992.

[70] V. Kreinovich, C. Quintana, and O. Fuentes, "Genetic algorithms—what
fitness scaling is optimal," Cybernetics and Systems, vol. 24, no. 1, pp.
9-26, 1993.

[71] S. W. Mahfoud and D. E. Goldberg, "Parallel recombinative simulated
annealing: A genetic algorithm," IHiGAL Report No. 92002, Univ. of
Illinois, Urbana-Champaign, 1992.

[72] L. Ingber and B. Rosen, "Genetic algorithms and very fast simulated
annealing—a comparison," Math, and Comp. Model., vol. 16, no. 11,
pp. 87-100, 1992.

[73] D. Adler, "Genetic algorithms and simulated annealing: A marriage pro-
posal," in IEEE Conference on Neural Networks 1993, pp. 1104-1109,
1993.

[74] J. R. Koza, "A hierarchical approach to learning the boolean multiplexer
function," in Foundations of Genetic Algorithms. G. J. E. Rawlins, Ed.
San Mateo, CA: Morgan Kaufmann, pp. 171-192, 1991.

[75] J. R. Koza, Genetic Programming. Cambridge, MA: MIT Press, 1992.
[76] S. Forrest and G. Mayer-Kress, "Genetic algorithms, nonlinear dy-

namical systems, and models of international security," Handbook of
Genetic Algorithms, L. Davis, Ed. New York: Van Nostrand Reinhold,
pp. 166-185, 1991.

[77] J. R. Koza, "Hierarchical automatic function definition in genetic
programming," Foundations of Genetic Algorithms 2, L. D. Whitley,
Ed. San Mateo, CA: Morgan Kaufmann, pp. 297-318, 1992.

[78] K. Kristinsson and G. A. Dumont, "System identification and control
using genetic algorithms," IEEE Trans. Sys., Man and Cybern., vol. 22,
no. 5, pp. 1033-1046, 1992.

[79] K. Krishnakumar and D. E. Goldberg, "Control system optimization
using genetic algorithms," Journ. of Guidance, Control and Dynamics,
vol. 15, no. 3, pp. 735-740, 1992.

[80] J. H. Holland, "Concerning the emergence of tag-mediated lookahead
in classifier systems," Physica D, vol. 42, pp. 188-201, 1990.

[81] S. Forrest and J. H. Miller, "Emergent behavior in classifier systems,"
Physica D, vol. 42, pp. 213-227, 1990.

[82] R. L. Riolo, "Modeling simple human category learning with a classifier
system," in Proc. of the Fourth Intern. Conf. on Genetic Algorithms, R.
K. Belew and L. B. Booker, Eds. San Mateo, CA: Morgan Kaufmann,
pp. 324-333, 1991.

[83] G. E. Liepins, M. R. Hilliard, M. Palmer and G. Rangarajan, "Credit
assignment and discovery in classifier systems," Intern. Journ. of Intel-
ligent Sys., vol. 6, no. 1, pp. 55-69, 1991.

[84] S. Tokinaga and A.B. Whinston, "Applying adaptive credit assignment
algorithms for the learning classifier system based upon the genetic
algorithm," IEICE Trans, on Fund. Elec. Comm. and Comp. Sci., vol.
E75A, no. 5, pp. 568-577, 1992.

[85] D. Jefferson, R. Collins, C. Cooper, M. Dyer, M. Flowers, R. Korf,
C. Taylor, and A. Wang, "Evolution as a theme in artificial life: The
Genesys/Tracker system," in Artificial Life II, C. G. Langton, C. Taylor,
J. D. Farmer, and S. Rasmussen, Eds. Reading, MA: Addison-Wesley,
pp. 549-578, 1991.

[86] j . H. Holland, Adaptation in Natural and Artificial Systems. 2nd ed.,
Cambridge, MA: MIT Press, 1992.

[87] H. MUhlenbein, "Evolution in time and space—the parallel genetic
algorithm," in Foundations of Genetic Algorithms, G. J. E. Rawlins,
Ed. San Mateo, CA: Morgan Kaufmann, pp. 316-337, 1991.

[88] P. Spiessens and B. Manderick, "A massively parallel genetic algorithm:
implementation and first analysis," in Proc. of the Fourth Intern. Conf.
on Genetic Algorithms, R. K. Belew and L. B. Booker, Eds. San Mateo,
CA: Morgan Kaufmann, pp. 279-286, 1991.

[89] H. MUhlenbein, M. Schomisch and J. Bom, "The parallel genetic
algorithm as function optimizer," Parallel Computing, vol. 17, pp.
619-632, 1991.

[90] S. Forrest, Ed., Proc. of the Fifth Intern. Conf. on Genetic Algorithms,
San Mateo, CA: Morgan Kaufmann, 1993.

[91] H.-P. Schwefel, "Kybernetische evolution als strategic der experi-
mentellen forschung in der strmungstechnik," Diploma thesis, Technical
Univ. of Berlin, 1965.

[92] I. Rechenberg, Evolutionsstrategie: Optimierung technischer systeme
nach prinzipien der biolgischen evolution. Stuttgart: Frommann-
Holzboog Verlag, 1973.

[93] L. J, Fogel, "Autonomous automata," Industrial Research, vol. 4, pp.
14-19, 1962.

[94] L. J. Fogel, "On the organization of intellect," Doctoral dissertation,
UCLA, 1964.

[95] M. Conrad, "Evolutionary learning circuits," Journ. Theor. BioL, vol.
46, pp. 167-188, 1974.

[96] M. Conrad and H. H. Pattee, "Evolution experiments with an artificial
ecosystem," Journ. Theor. BioL, vol. 28, pp. 393-409, 1970.

[97] G. H. Burgin, "On playing two-person zero-sum games against nonmin-
imax players," IEEE Trans, on Systems Science and Cybernetics, vol.
SSC-5, no. 4, pp. 369-370, 1969.

[98] G. H. Burgin, "System identification by quasilinearization and evolu-
tionary programming," Journal of Cybernetics, vol. 2, no. 3, pp. 4-23,
1974.

[99] J. W. Atmar, "Speculation on the evolution of intelligence and its pos-
sible realization in machine form," Doctoral dissertation, New Mexico
State University, Las Cruces, 1976.

[100] D. B. Fogel, "On the philosophical differences between genetic: algo-
rithms and evolutionary algorithms," in Proc. of the Sec. Ann. Conf on
Evolutionary Programming, D. B. Fogel and W. Atmar, Eds. La Jolla,
CA: Evolutionary Programming Society, pp. 23-29, 1993.

[101] F. J. Solis and R. J.-B. Wets, "Minimization by random search tech-
niques," Math. Operations Research, vol. 6, pp. 19-30, 1981.

[102] T. Back and H.-P. Schwefel, "An Overview of Evolutionary Algorithms
for Parameter Optimization," Evolutionary Computation, vol. 1, no. 1,
pp. 1-24, 1993..

[103] H.-P. Schwefel, "Numerische optimierung von computer-modelien mit-
tels der evoluionsstrategie," Interdisciplinary systems research, vol. 26,
Basel: Birkhuser, 1977.

[104] H.-P. Schwefel, Numerical Optimization of Computer Models. Chich-
ester, UK: John Wiley, 1981.

[105] G. H. Mealy, "A method of synthesizing sequential circuits," Bell Sys.
Tech. Journ., vol. 34, pp. 1054-1079, 1955.

[106] D. B. Fogel, "The evolution of intelligent decision making in gaming,"
Cybernetics and Systems, vol. 22, pp. 223-236, 1991.

[107] D. B. Fogel, "Evolving behaviors in the iterated prisoner's dilemma,"
Evolutionary Computation, vol. 1, no. 1, pp. 77-97, 1993.

[108] R. Axelrod, "The evolution of strategies in the iterated prisoner's
dilemma," in Genetic Algorithms and Simulated Annealing, L. Davis,
Ed. London: Pitman Publishing, pp. 32-41, 1987.

[109] D. B. Fogel, L. J. Fogel, and W. Atmar, "Meta-evolutionary program-
ming," in Proc. of the 25th Asilomar Conf. on Signals, Systems and
Computers, R. R. Chen, Ed. IEEE Computer Society, pp. 540-545,
1991.

[110] D. B. Fogel, L. J. Fogel, W. Atmar, and G. B. Fogel, "Hierarchic
methods of evolutionary programming," in Proc. of the First Ann. Conf.
on Evolutionary Programming, D. B. Fogel and W. Atmar, Eds. La
Jolla, CA: Evolutionary Programming Society, pp. 175-182, 1992.

[I l l] T. Back, G. Rudolph, and H.-P. Schwefel, "Evolutionary programming
and evolution strategies: similarities and differences," in Proc, of the
Second Ann. Conf. on Evolutionary Programming, D. B. Fogel and
W. Atmar, Eds. La Jolla, CA: Evolutionary Programming Society, pp.
11-22, 1993.

[112] N. Saravanan, "Learning of Strategy Parameters in Evolutionary Pro-
gramming," Proc. of Third Annual Conference on Evolutionary Pro-
gramming, A. V. Sebald and L. J. Fogel, Eds. RiverEdge, NJ: World
Scientific, to appear, 1994.

[113] G. Rudolph, "On correlated mutations in evolution strategies," in
Parallel Problem Solving from Nature 2, R. Manner and B. Manderick,
Eds. The Netherlands: Elsevier Science Press, pp. 105-114, 1992.

[114] B. K. Ambati, J. Ambati, and M. M. Mokhtar, "Heuristic combinatorial
optimization by simulated darwinian evolution: A polynomial time
algorithm for the traveling salesman problem," Biological Cybernetics,
vol. 65, pp. 31-35, 1991.

[115] D. B. Fogel, "Empirical estimation of the computation required to
discover approximate solutions to the traveling salesman problem using
evolutionary programming," in Proc. of the Second Ann. Conf. on
Evolutionary Programming, D. B. Fogel and W. Atmar, Eds. La Jolla,
CA: Evolutionary Programming Society, in press, 1993.

[116] D. Waagen, P. Diercks, and J. R. McDonnell, "The stochastic direction
set algorithm: A hybrid technique for finding function extrema," in Proc.
of the First Ann. Conf. on Evolutionary Programming, D. B. Fogel and
W. Atmar, Eds. La Jolla, CA: Evolutionary Programming Society, pp.
35-42, 1992.

[117] R. Lohmann, "Structure evolution and incomplete induction," in Proc. of
the Sec. Parallel Problem Solving from Nature Conf, R. Manner and B.
Manderick, Eds. The Netherlands: Elsevier Science Press, pp. 175-186,
1992.

13

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 5, NO. 1, JANUARY 1994

[118] J. R. McDonnell and D. Waagen, "Evolving neural network connec-
tivity," Intern. Conf. on Neural Networks 1993, IEEE, pp. 863-868,
1993.

[119] P. J. Angeline, G. Saunders and J. Pollack, "An evolutionary algorithm
that constructs neural networks," IEEE Trans. Neural Networks, vol. 5,
no 1, 1994.

[120] D. B. Fogel, "Using evolutionary programming to create neural networks
that are capable of playing tic-tac-toe," Inern. Conf. on Neural Networks
1993, IEEE, pp. 875-880, 1993.

[121] R. Smalz and M. Conrad, "Evolutionary credit apportionment and time-
dependent neural processing," in Proc. of the Second Ann. Conf. on
Evolutionary Programming, D. B. Fogel and W. Atmar, Eds. La Jolla,
CA: Evolutionary Programming Society, pp. 119-126, 1993,

[122] W. Kuhn and A. Visser, "Identification of the system parameter of a 6
axis robot with the help of an evolution strategy," Robotersysteme, vol.
8, no. 3, pp. 123-133, 1992.

[123] J. R. McDonnell, B. D. Andersen, W. C. Page and F. Pin, "Mobile ma-
nipulator configuration optimization using evolutionary programming,"
in Proc. of the First Ann. Conf. on Evolutionary Programming, D. B.
Fogel and W. Atmar, Eds. La Jolla, CA: Evolutionary Programming
Society, pp. 52-62, 1992.

[124] W. C. Page, B. D. Andersen, and J. R. McDonnell, "An evolutionary
programming approach to multi-dimensional path planning," in Proc.
of the First Ann. Conf. on Evolutionary Programming, D. B. Fogel and
W. Atmar, Eds. La Jolla, CA: Evolutionary Programming Society, pp.
63-70, 1992.

[125] A. V. Sebald, J. Schlenzig, and D. B. Fogel, "Minimax design of CMAC
encoded neural controllers for systems with variable time delay," in
Proc. of the First Ann. Conf. on Evolutionary Programming, D. B. Fogel
and W. Atmar, Eds. La Jolla, CA: Evolutionary Programming Society,
pp. 120-126, 1992.

[126] D. B. Fogel, System Identification Through Simulated Evolution: A
Machine Learning Approach to Modeling. Needham, MA: Ginn Press,
1991.

[127] D. B. Fogel, "Using evolutionary programming for modeling: An ocean
acoustic example," IEEE Journ. on Oceanic Engineering, vol. 17, no.
4, pp. 333-340, 1992.

[128] V. W. Porto, "Alternative methods for training neural networks," in
Proc. of the First Ann. Conf. on Evolutionary Programming, D. B. Fogel
and W. Atmar, Eds. La Jolla, CA: Evolutionary Programming Society,
pp. 100-110, 1992.

[129] L. A. Tamburino, M. A. Zrnuda and M. M. Rizki, "Applying evolution-
ary search to pattern recognition problems," in Proc. of the Sec. Ann.
Conf. on Evolutionary Programming, D. B. Fogel and W. Atmar, Eds.
Evolutionary Programming Society, La Jolla, CA, pp. 183-191, 1993.

[130] M. M. Rizki, L. A. Tamburino and M. A. Zmuda, "Evolving multi-
resolution feature detectors," in Proc. of the Sec. Ann. Conf. on Evolu-

tionary Programming, D. B. Fogel and W. Atmar, Eds. La Jolla, CA:
Evolutionary Programming Society, pp. 108-118, 1993.

[131] D. B. Fogel and P. K. Simpson, "Evolving fuzzy clusters," Intern. Conf.
on Neural Networks 1993, IEEE, pp. 1829-1834, 1993.

[132] S. Haffner and A. V. Sebald, "Computer-aided design of fuzzy HVAC
controllers using evolutionary programming," in Proc. of the Sec. Ann.
Conf. on Evolutionary Programming, D. B. Fogel and W. Atmar, Eds.
La Jolla, CA: Evolutionary Programming Society, pp. 98-107, 1993.

[133] S. H. Rubin, "Case-based learning: A new paradigm for automated
knowledge acquisition," ISA Transactions, Special Issue on Artif. Intell.
for Eng., Design and Manuf., vol. 31, pp. 181-209, 1992.

[134] W. Atmar, "Notes on the simulation of evolution," IEEE Trans, on
Neural Networks, vol. 5. no. 1, 1994.

[135] G. B. Fogel, "An introduction to the protein folding problem and the
potential application of evolutionary programming," in Proc. of the Sec.
Ann. Conf. on Evolutionary Programming, D. B. Fogel and W. Atmar,
Eds. La Jolla, CA: Evolutionary Programming Society, pp. 170-177,
1993.

[136] M. Conrad, "Molecular computing: The lock-key paradigm," Computer,
Special Issue on Molecular Computing, M. Conrad, Ed. Nov., pp. 11-20,
1992.

[137] J. O'Callaghan and M. Conrad, "Symbiotic interactions in the EVOLVE
III ecosystem model," BioSystems, vol. 26, pp. 199-209, 1992.

[138] G. Rudolph, "Parallel approaches to stochastic global optimization," in
Parallel Computing: From Theory to Sound Practice. W. Joosen and E.
Milgrom, Eds. Amsterdam: IOS Press pp. 256-267, 1992.

[139] B. S. Duncan, "Parallel evolutionary programming," in Proc. of the Sec.
Ann. Conf. on Evolutionary Programming, D.B. Fogel and W. Atmar,
Eds. La Jolla, CA: Evolutionary Programming Society, pp, 202-208,
1993.

[140] F. Hoffmeister, "Scalable Parallelism by Evolutionary Algorithms," in
Parallel Comp. & Math. Opt., D. B. Grauer, Ed. Heidelberg, Berlin:
Springer-Verlag, pp. 177-198, 1991.

[141] D. B. Fogel and W. Atmar Eds., Proc. of the Sec. Ann. Conf. on
Evolutionary Programming, La Jolla, CA: Evolutionary Programming
Society, 1993.

[142] R. Manner and B. Manderick, Eds., Proc. of the Sec. Parallel Problem
Solving from Nature Conf. The Netherlands: Elsevier Science Press,
1992.

[143] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Ma-
chine Learning. Reading, MA: Addison Wesley, 1989.

[144] L. J. Fogel, A. J. Owens, and M. J. Walsh, Artificial Intelligence through
Simulated Evolution. New York: John Wiley, 1966.

14

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. I, NO. I, APRIL 1997

Evolutionary Computation: Comments
on the History and Current State

Thomas Back, Ulrich Hammel, and Hans-Paul Schwefel

Abstract— Evolutionary computation has started to receive
significant attention during the last decade, although the origins
can be traced back to the late 1950's. This article surveys the
history as well as the current state of this rapidly growing
field. We describe the purpose, the general structure, and the
working principles of different approaches, including genetic
algorithms (GA) [with links to genetic programming (GP) and
classifier systems (CS)], evolution strategies (ES), and evolutionary
programming (EP) by analysis and comparison of their most
important constituents (i.e., representations, variation operators,
reproduction, and selection mechanism). Finally, we give a brief
overview on the manifold of application domains, although this
necessarily must remain incomplete.

Index Terms— Classifier systems, evolution strategies, evolu-
tionary computation, evolutionary programming, genetic algo-
rithms, genetic programming.

I. EVOLUTIONARY COMPUTATION: ROOTS AND PURPOSE

THIS first issue of the IEEE TRANSACTIONS ON
EVOLUTIONARY COMPUTATION marks an important point

in the history of the rapidly growing field of evolutionary
computation, and we are glad to participate in this event.
In preparation for this summary, we strove to provide a
comprehensive review of both the history and the state
of the art in the field for both the novice and the expert
in evolutionary computation. Our selections of material
are necessarily subjective, and we regret any significant
omissions.

Although the origins of evolutionary computation can be
traced back to the late 1950's (see e.g., the influencing works
of Bremermann [1], Friedberg [2], [3], Box [4], and others),
the field remained relatively unknown to the broader scientific
community for almost three decades. This was largely due
to the lack of available powerful computer platforms at that
time, but also due to some methodological shortcomings of
those early approaches (see, e.g., Fogel [5, p. 103]).

The fundamental work of Holland [6], Rechenberg [7],
Schwefel [8], and Fogel [9] served to slowly change this pic-
ture during the 1970's, and we currently observe a remarkable

Manuscript received November 13, 1996; revised January 23, 1997. The
work of T. Back was supported by a grant from the German BMBF, Project
EVOALG.

T. Back is with the Informatik Centrum Dortmund, Center for Applied
Systems Analysis (CASA), D-44227 Dortmund, Germany, and Leiden
University, NL-2333 CA Leiden, The Netherlands (e-mail: baeck@icd.de).

U. Hammel and H.-P. Schwefel are with the Computer Science
Department, Dortmund University, D-4422I Dortmund, Germany (e-mail:
hammel®LSI 1.informatik.uni-dortmund.de; schwefel@LS 11.informatik.uni-
dortmund.de).

Publisher Item Identifier S 1089-778X(97)03305-5.

and steady (still exponential) increase in the number of pub-
lications (see, e.g., the bibliography of [10]) and conferences
in this field, a clear demonstration of the scientific as well as
economic relevance of this subject matter.

But what are the benefits of evolutionary computation
(compared to other approaches) which may justify the effort
invested in this area? We argue that the most significant advan-
tage of using evolutionary search lies in the gain of flexibility
and adaptability to the task at hand, in combination with robust
performance (although this depends on the problem class) and
global search characteristics. In fact, evolutionary computation
should be understood as a general adaptable concept for
problem solving, especially well suited for solving difficult
optimization problems, rather than a collection of related and
ready-to-use algorithms.

The majority of current implementations of evolutionary
algorithms descend from three strongly related but indepen-
dently developed approaches: genetic algorithms, evolutionary
programming, and evolution strategies.

Genetic algorithms, introduced by Holland [6], [II] , [12],
and subsequently studied by De Jong [13]—[16], Goldberg
[17]-[21], and others such as Davis [22], Eshelman [23], [24],
Forrest [25], Grefenstette [26]-[29], Koza [30], [31], Mitchell
[32], Riolo [33], [34], and Schaffer [35]-[37], to name only
a few, have been originally proposed as a general model of
adaptive processes, but by far the largest application of the
techniques is in the domain of optimization [15], [16]. Since
this is true for all three of the mainstream algorithms presented
in this paper, we will discuss their capabilities and performance
mainly as optimization strategies.

Evolutionary programming, introduced by Fogel [9], [38]
and extended in Burgin [39], [40], Atmar [41], Fogel
[42]-[44], and others, was originally offered as an attempt
to create artificial intelligence. The approach was to evolve
finite state machines (FSM) to predict events on the basis of
former observations. An FSM is an abstract machine which
transforms a sequence of input symbols into a sequence of
output symbols. The transformation depends on a finite set of
states and a finite set of state transition rules. The performance
of an FSM with respect to its environment might then be
measured on the basis of the machine's prediction capability,
i.e., by comparing each output symbol with the next input
symbol and measuring the worth of a prediction by some
payoff function.

Evolution strategies, as developed by Rechenberg [45], [46]
and Schwefel [47], [48], and extended by Herdy [49], Kursawe
[50], Ostermeier [51], [52], Rudolph [53], Schwefel [54], and

Reprinted from IEEE Transactions on Evolutionary Computation, Vol. 1:1, pp. 3-17, April, 1997.

15

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 1, NO. 1, APRIL 1997

others, were initially designed with the goal of solving difficult
discrete and continuous, mainly experimental [55], parameter
optimization problems.

During the 1980's, advances in computer performance en-
abled the application of evolutionary algorithms to solve
difficult real-world optimization problems, and the solutions
received a broader audience. In addition, beginning in 1985, in-
ternational conferences on the techniques were offered (mainly
focusing on genetic algorithms [56]-[61], with an early em-
phasis on evolutionary programming [62]-[66], as small work-
shops on theoretical aspects of genetic algorithms [67]-[69],
as a genetic programming conference [70], with the gen-
eral theme of problem solving methods gleaned from nature
[71]—[74], and with the general topic of evolutionary computa-
tion [75]—[78]). But somewhat surprisingly, the researchers in
the various disciplines of evolutionary computation remained
isolated from each other until the meetings in the early 1990' s
[59], [63], [71].

The remainder of this paper is intended as an overview
of the current state of the field. We cannot claim that this
overview is close to complete. As good starting points for
further studies we recommend [5], [18], [22], [31], [32],
[48], and [79]-[82]. In addition moderated mailing lists1 and
newsgroups2 allow one to keep track of current events and
discussions in the field.

In the next section we describe the application domain of
evolutionary algorithms and contrast them with the traditional
approach of mathematical programming.

II. OPTIMIZATION, EVOLUTIONARY COMPUTATION,

AND MATHEMATICAL PROGRAMMING

In general, an optimization problem requires finding a
setting x e M of free parameters of the system under
consideration, such that a certain quality criterion / : M -> R
(typically called the objective function) is maximized (or,
equivalently, minimized)

f(x) -> max. (1)

The objective function might be given by real-world systems
of arbitrary complexity. The solution to the global opti-
mization problem (1) requires finding a vector x* such that
Vf € M: f(x) < /(£*) = /*. Characteristics such as
multimodality, i.e., the existence of several local maxima x
with

3e > O:\fxe M: p{x, x) < e =» f{x) < / (f) (2)

(where p denotes a distance measure on M), constraints, i.e.,
restrictions on the set M by functions gy. M ~> 1R such that
the set of feasible solutions F C M i s only a subset of the
domain of the variables

F = { x e M | f l 3 - (£) > 0 V j } (3)

and other factors, such as large dimensionality, strong non-
linearities, nondifferentiability, and noisy and time-varying

JFor example, GA-List-Request@AIC.NRL.NAVY.MIL and EP-List-
Request@magenta.me.fau.edu.

2 For example, comp.ai.genetic.

objective functions, frequently lead to difficult if not unsolv-
able optimization tasks (see [83, p. 6]). But even in the latter
case, the identification of an improvement of the currently
known best solution through optimization is often already a big
success for practical problems, and in many cases evolutionary
algorithms provide an efficient and effective method to achieve
this.

Optimization problems occur in many technical, economic,
and scientific projects, like cost-, time-, and risk-minimization
or quality-, profit-, and efficiency-maximization [10], [22] (see
also [80, part G]). Thus, the development of general strategies
is of great value.

In real-world situations the objective function / and the
constraints gj are often not analytically treatable or are even
not given in closed form, e.g., if the function definition is
based on a simulation model [84], [85].

The traditional approach in such cases is to develop a formal
model that resembles the original functions close enough but is
solvable by means of traditional mathematical methods such as
linear and nonlinear programming. This approach most often
requires simplifications of the original problem formulation.
Thus, an important aspect of mathematical programming lies
in the design of the formal model.

No doubt, this approach has proven to be very successful
in many applications, but has several drawbacks which mo-
tivated the search for novel approaches, where evolutionary
computation is one of the most promising directions. The
most severe problem is that, due to oversimplifications, the
computed solutions do not solve the original problem. Such
problems, e.g., in the case of simulation models, are then often
considered unsolvable.

The fundamental difference in the evolutionary computation
approach is to adapt the method to the problem at hand. In our
opinion, evolutionary algorithms should not be considered as
off-the-peg, ready-to-use algorithms but rather as a general
concept which can be tailored to most of the real-world
applications that often are beyond solution by means of
traditional methods. Once a successful EC-framework has been
developed it can be incrementally adapted to the problem
under consideration [86], to changes of the requirements of
the project, to modifications of the model, and to the change
of hardware resources.

(3)

III. THE STRUCTURE OF AN EVOLUTIONARY ALGORITHM

Evolutionary algorithms mimic the process of natural evo-
lution, the driving process for the emergence of complex and
well-adapted organic structures. To put it succinctly and with
strong simplifications, evolution is the result of the interplay
between the creation of new genetic information and its
evaluation and selection. A single individual of a population
is affected by other individuals of the population (e.g., by
food competition, predators, and mating), as well as by the
environment (e.g., by food supply and climate). The better an
individual performs under these conditions the greater is the
chance for the individual to live for a longer while and generate
offspring, which in turn inherit the (disturbed) parental genetic
information. Over the course of evolution, this leads to a

16

BACK et al.: EVOLUTIONARY COMPUTATION: COMMENTS ON THE HISTORY AND CURRENT STATE

penetration of the population with the genetic information
of individuals of above-average fitness. The nondeterministic
nature of reproduction leads to a permanent production of
novel genetic information and therefore to the creation of
differing offspring (see [5], [79], and [87J for more details).

This neo-Darwinian model of organic evolution is reflected
by the structure of the following general evolutionary algo-
rithm.

Algorithm 1:

t:=0;
initialize P(t);
evaluate P(t);
while not terminate do

P'(t) := variation [P{t)};
evaluate [P'(t)};
P(t+1) := select [P'(t)UQ];
t:=t + l;

od

In this algorithm, P(t) denotes a population of (/, individuals
at generation t. Q is a special set of individuals that might
be considered for selection, e.g., Q = P(t) (but Q =
0 is possible as well). An offspring population P'(t) of
size A is generated by means of variation operators such as
recombination and/or mutation (but others such as inversion
[11, pp. 106-109] are also possible) from the population P(t).
The offspring individuals are then evaluated by calculating the
objective function values f(xk) for each of the solutions Xk
represented by individuals in P'{i), and selection based on
the fitness values is performed to drive the process toward
better solutions. It should be noted that A = 1 is possible,
thus including so-called steady-state selection schemes [88],
[89] if used in combination with Q = P(t). Furthermore, by
choosing 1 < A < y, an arbitrary value of the generation
gap [90] is adjustable, such that the transition between strictly
generational and steady-state variants of the algorithm is also
taken into account by the formulation offered here. It should
also be noted that A > \L, i.e., a reproduction surplus, is the
normal case in nature.

IV. DESIGNING AN EVOLUTIONARY ALGORITHM

As mentioned, at least three variants of evolutionary al-
gorithms have to be distinguished: genetic algorithms, evo-
lutionary programming, and evolution strategies. From these
("canonical") approaches innumerable variants have been de-
rived. Their main differences lie in:

• the representation of individuals;
• the design of the variation operators (mutation and/or

recombination);
• the selection/reproduction mechanism.
In most real-world applications the search space is defined

by a set of objects, e.g., processing units, pumps, heaters,
and coolers of a chemical plant, each of which have different
parameters such as energy consumption, capacity, etc. Those
parameters which are subject to optimization constitute the
so-called phenotype space. On the other hand the genetic

selection

phenotype space,
search space M

decoding function h'

genotype space,
genetic
representation

Fig. I. The relation of genotype space and phenotype space [5, p. 39],

operators often work on abstract mathematical objects like
binary strings, the genotype space. Obviously, a mapping or
coding function between the phenotype and genotype space is
required. Fig. 1 sketches the situation (see also [5, pp. 38—43]).

In general, two different approaches can be followed. The
first is to choose one of the standard algorithms and to design
a decoding function according to the requirements of the
algorithm. The second suggests designing the representation
as close as possible to the characteristics of the phenotype
space, almost avoiding the need for a decoding function.

Many empirical and theoretical results are available for the
standard instances of evolutionary algorithms, which is clearly
an important advantage of the first approach, especially with
regard to the reuse and parameter setting of operators. On
the other hand, a complex coding function may introduce
additional nonlinearities and other mathematical difficulties
which can hinder the search process substantially [79, pp.
221-227], [82, p. 97].

There is no general answer to the question of which one of
the two approaches mentioned above to follow for a specific
project, but many practical applications have shown that the
best solutions could be found after imposing substantial mod-
ifications to the standard algorithms [86]. We think that most
practitioners prefer natural, problem-related representations.
Michalewicz [82, p. 4] offers:

It seems that a "natural" representation of a potential
solution for a given problem plus a family of appli-
cable "genetic" operators might be quite useful in the
approximation of solutions of many problems, and this
nature-modeled approach . . . is a promising direction for
problem solving in general.
Furthermore, many researchers also use hybrid algorithms,

i.e., combinations of evolutionary search heuristics and tradi-
tional as well as knowledge-based search techniques [22, p.
56], [91], [92].

It should be emphasized that all this becomes possible
because the requirements for the application of evolution-
ary heuristics are so modest compared to most other search
techniques. In our opinion, this is one of the most important
strengths of the evolutionary approach and one of the rea-

17

genetic
operators

s—^

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 1, NO. 1, APRIL 1997

sons for the popularity evolutionary computation has gained

throughout the last decade.

A. The Representation

Surprisingly, despite the fact that the representation prob-
lem, i.e., the choice or design of a well-suited genetic represen-
tation for the problem under consideration, has been described
by many researchers [82], [93], [94] only few a publications
explicitly deal with this subject except for specialized research
directions such as genetic programming [31], [95], [96] and the
evolution of neural networks [97], [98].

Canonical genetic algorithms use a binary representation of
individuals as fixed-length strings over the alphabet {0, 1}
[11], such that they are well suited to handle pseudo-Boolean
optimization problems of the form

/:{o,i}£-m. (4)

Sticking to the binary representation, genetic algorithms of-
ten enforce the utilization of encoding and decoding functions
h\M-* {0, I}1 and ti\ {0, 1 } ' -* M that facilitate mapping
solutions x € M to binary strings h(x) e {0, 1}£ and vice
versa, which sometimes requires rather complex mappings h
and h!. In case of continuous parameter optimization problems,
for instance, genetic algorithms typically represent a real-
valued vector x E R " by a binary string y G {0, I}1 as
follows: the binary string is logically divided into n segments
of equal length I1 (i.e., t = n • H!\ each segment is decoded to
yield the corresponding integer value, and the integer value
is in turn linearly mapped to the interval [ui, V{] C R
(corresponding with the zth segment of the binary string) of
real values [18].

The strong preference for using binary representations of
solutions in genetic algorithms is derived from schema theory
[11], which analyzes genetic algorithms in terms of their
expected schema sampling behavior under the assumption
that mutation and recombination are detrimental. The term
schema denotes a similarity template that represents a subset of
{0, 1}*, and the schema theorem of genetic algorithms offers
that the canonical genetic algorithm provides a near-optimal
sampling strategy (in terms of minimizing expected losses)
for schemata by increasing the number of well-performing,
short (i.e., with small distance between the left-most and right-
most defined position), and low-order (i.e., with few specified
bits) schemata (so-called building blocks) over subsequent
generations (see [18] for a more detailed introduction to the
schema theorem). The fundamental argument to justify the
strong emphasis on binary alphabets is derived from the fact
that the number of schemata is maximized for a given finite
number of search points under a binary alphabet [18, pp.
40-41]. Consequently, the schema theory presently seems to
favor binary representations of solutions (but see [99] for an
alternative view and [100] for a transfer of schema theory to
5-expression representations used in genetic programming).

Practical experience, as well as some theoretical hints re-
garding the binary encoding of continuous object variables
[101]—[105], however, indicate that the binary representation
has some disadvantages. The coding function might introduce

an additional multimodality, thus making the combined objec-
tive function / = / ' o h! (where / ' : M —> R) more complex
than the original problem / ' was. In fact, the schema theory
relies on approximations [11, pp. 78-83] and the optimization
criterion to minimize the overall expected loss (corresponding
to the sum of all fitness values of all individuals ever sampled
during the evolution) rather than the criterion to maximize the
best fitness value ever found [15]. In concluding this brief
excursion into the theory of canonical genetic algorithms, we
would like to emphasize the recent work by Vose [106]—[109]
and others [110], [111] on modeling genetic algorithms by
Markov chain theory. This approach has already provided
a remarkable insight into their convergence properties and
dynamical behavior and led to the development of so-called
executable models that facilitate the direct simulation of ge-
netic algorithms by Markov chains for problems of sufficiently
small dimension [112], [113].

In contrast to genetic algorithms, the representation in
evolution strategies and evolutionary programming is directly
based on real-valued vectors when dealing with continuous
parameter optimization problems of the general form

/ : M C R n -> R. (5)

Both methods have originally been developed and are also
used, however, for combinatorial optimization problems [42],
[43], [55]. Moreover, since many real-world problems have
complex search spaces which cannot be mapped "canonically"
to one of the representations mentioned so far, many strategy
variants, e.g., for integer [114], mixed-integer [115], structure
optimization [116], [117], and others [82, ch. 10], have been
introduced in the literature, but exhaustive comparative studies
especially for nonstandard representations are still missing.
The actual development of the field is characterized by a
progressing integration of the different approaches, such that
the utilization of the common labels "genetic algorithm,"
"evolution strategy," and "evolutionary programming" might
be sometimes even misleading.

B. Mutation

Of course, the design of variation operators has to obey the
mathematical properties of the chosen representation, but there
are still many degrees of freedom.

Mutation in genetic algorithms was introduced as a ded-
icated "background operator" of small importance (see [11,
pp. 109-111]). Mutation works by inverting bits with very
small probability such as pm = 0.001 [13], pm 6 [0.005, 0.01)
[118], or pm = 1/i [119], [120]. Recent studies have im-
pressively clarified, however, that much larger mutation rates,
decreasing over the course of evolution, are often helpful with
respect to the convergence reliability and velocity of a genetic
algorithm [101], [121], and that even self-adaptive mutation
rates are effective for pseudo-Boolean problems [122]—[124].

Originally, mutation in evolutionary programming was im-
plemented as a random change (or multiple changes) of the
description of the finite state machines according to five dif-
ferent modifications: change of an output symbol, change of a
state transition, addition of a state, deletion of a state, or change

18

BACK et ai: EVOLUTIONARY COMPUTATION: COMMENTS ON THE HISTORY AND CURRENT STATE

(a) (b) (c)

Fig. 2. Two-dimensional contour plot of the effect of the mutation operator in case of self-adaptation of (a) a single step size, (b) n step sizes, and (c)
covariances. x* denotes the optimizer. The ellipses represent one line of equal probability to place an offspring that is generated by mutation from the parent
individual located at the center of the ellipses. Five sample individuals are shown in each of the plots.

of the initial state. The mutations were typically performed
with uniform probability, and the number of mutations for a
single offspring was either fixed or also chosen according to
a probability distribution. Currently, the most frequently used
mutation scheme as applied to real-valued representations is
very similar to that of evolution strategies.

In evolution strategies, the individuals consist of object
variables X{ € R (1 < i < n) and so-called strategy
parameters, which are discussed in the next section. Mutation
is then performed independently on each vector element by
adding a normally distributed random value with expectation
zero and standard deviation a (the notation Ni(-, •) indicates
that the random variable is sampled anew for each value of
the index i)

x'^Xi + a • JVj(O, 1). (6)

This raises the question of how to control the so-called step
size a of (6), which is discussed in the next section.

C. Self-Adaptation

In [125] Schwefel introduced an endogenous mechanism
for step-size control by incorporating these parameters into
the representation in order to facilitate the evolutionary self-
adaptation of these parameters by applying evolutionary op-
erators to the object variables and the strategy parameters for
mutation at the same time, i.e., searching the space of solutions
and strategy parameters simultaneously. This way, a suitable
adjustment and diversity of mutation parameters should be
provided under arbitrary circumstances.

More formally, an individual a = (x, a) consists of object
variables x 6 R n and strategy parameters a 6 1R+. The
mutation operator works by adding a normally distributed
random vector z G IRn with z\ ~ N(0, a2) (i.e., the
components of z are normally distributed with expectation
zero and variance af).

The effect of mutation is now defined as

O\=<J{. exp[r' • iV(0, 1) + r • ^ (0 , 1)] (7)

x'i=Xi + a[• Ni(0, 1) (8)

where r' oc (x/^n)"1 and r a (y/2y/n)-1.
This mutation scheme, which is most frequently used in

evolution strategies, is schematically depicted (for n = 2)

in the middle of Fig. 2. The locations of equal probability
density for descendants are concentric hyperellipses (just one
is depicted in Fig. 2) around the parental midpoint. In the case
considered here, i.e., up to n variances, but no covariances, the
axes of the hyperellipses are congruent with the coordinate
axes.

Two modifications of this scheme have to be mentioned: a
simplified version uses just one step-size parameter for all of
the object variables. In this case the hyperellipses are reduced
to hyperspheres, as depicted in the left part of Fig. 2. A more
elaborate correlated mutation scheme allows for the rotation
of hyperellipses, as shown in the right part of Fig. 2. This
mechanism aims at a better adaptation to the topology of the
objective function (for details, see [79]).

The settings for the learning rates r and r' are recom-
mended as upper bounds for the choice of these parameters
(see [126, pp. 167-168]), but one should have in mind that,
depending on the particular topological characteristics of the
objective function, the optimal setting of these parameters
might differ from the values proposed. For the case of one self-
adaptable step size, however, Beyer has recently theoretically
shown that, for the sphere model (a quadratic bowl), the setting
ro oc \j\fn is the optimal choice, maximizing the convergence
velocity [127].

The amount of information included into the individuals
by means of the self-adaptation principle increases from the
simple case of one standard deviation up to the order of
n2 additional parameters, which reflects an enormous degree
of freedom for the internal models of the individuals. This
growing degree of freedom often enhances the global search
capabilities of the algorithm at the cost of the expense in
computation time, and it also reflects a shift from the precise
adaptation of a few strategy parameters (as in case of one
step size) to the exploitation of a large diversity of strategy
parameters. In case of correlated mutations, Rudolph [128]
has shown that an approximation of the Hessian could be
computed with an upper bound of fj, + A = (n2 -f 3n + 4)/2
on the population size, but the typical population sizes \L = 15
and A = 100, independently of n, are certainly not sufficient
to achieve this.

The choice of a logarithmic normal distribution for the
modification of the standard deviations O{ is presently
also acknowledged in evolutionary programming literature

19

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 1. NO. !, APRIL 1997

[129]—[131]. Extensive empirical investigations indicate some
advantage of this scheme over the original additive self-
adaptation mechanism introduced independently (but about
20 years later than in evolution strategies) in evolutionary
programming [132] where

c[= Oi • [1 + a • JV(O, 1)] (9)

(with a setting of a « 0.2 [131]). Recent preliminary inves-
tigations indicate, however, that this becomes reversed when
noisy objective functions are considered, where the additive
mechanism seems to outperform multiplicative modifications
[133].

A study by Gehlhaar and Fogel [134] also indicates that the
order of the modifications of X{ and <Ji has a strong impact
on the effectiveness of self-adaptation: It appears important
to mutate the standard deviations first and to use the mutated
standard deviations for the modification of object variables.
As the authors point out in that study, the reversed mechanism
might suffer from generating offspring that have useful object
variable vectors but poor strategy parameter vectors because
these have not been used to determine the position of the
offspring itself.

More work needs to be performed, however, to achieve any
clear understanding of the general advantages or disadvantages
of one self-adaptation scheme compared to the other mecha-
nisms. A recent theoretical study by Beyer presents a first step
toward this goal [127]. In this work, the author shows that
the self-adaptation principle works for a variety of different
probability density functions for the modification of the step
size, i.e., it is an extremely robust mechanism. Moreover, [127]
clarifies that (9) is obtained from the corresponding equation
for evolution strategies with one self-adaptable step size by
Taylor expansion breaking off after the linear term, such that
both methods behave equivalently for small settings of the
learning rates r and a, when r = a. This prediction was
confirmed perfectly by an experiment reported in [135].

Apart from the early work by Schaffer and Morishima [37],
self-adaptation has only recently been introduced in genetic
algorithms as a mechanism for evolving the parameters of
variation operators. In [37], punctuated crossover was offered
as a method for adapting both the number and position
of crossover points for a multipoint crossover operator in
canonical genetic algorithms. Although this approach seemed
promising, the operator has not been used widely. A simpler
approach toward self-adapting the crossover operator was
presented by Spears [136], who allowed individuals to choose
between two-point crossover and uniform crossover by means
of a self-adaptable operator choice bit attached to the rep-
resentation of individuals. The results indicated that, in case
of crossover operators, rather than adapting to the single best
operator for a given problem, the mechanism seems to benefit
from the existing diversity of operators available for crossover.

Concerning the mutation operator in genetic algorithms,
some effort to facilitate self-adaptation of the mutation rate
has been presented by Smith and Fogarty [123], based on
earlier work by Back [137], These approaches incorporate the
mutation rate pm e [0, 1] into the representation of individuals
and allow for mutation and recombination of the mutation rate

in the same way as the vector of binary variables is evolved.
The results reported in [123] demonstrate that the mechanism
yields a significant improvement in performance of a canonical
genetic algorithm on the test functions used.

D. Recombination

The variation operators of canonical genetic algorithms,
mutation, and recombination are typically applied with a
strong emphasis on recombination. The standard algorithm
performs a so-called one-point crossover, where two indi-
viduals are chosen randomly from the population, a position
in the bitstrings is randomly determined as the crossover
point, and an offspring is generated by concatenating the
left substring of one parent and the right substring of the
other parent. Numerous extensions of this operator, such as
increasing the number of crossover points [138], uniform
crossover (each bit is chosen randomly from the corresponding
parental bits) [139], and others, have been proposed, but
similar to evolution strategies no generally useful recipe for
the choice of a recombination operator can be given. The
theoretical analysis of recombination is still to a large extent
an open problem. Recent work on multi-parent recombination,
where more than two individuals participate in generating a
single offspring individual, clarifies that this generalization
of recombination might yield a performance improvement
in many application examples [140]-[142]. Unlike evolution
strategies, where it is either utilized for the creation of all
members of the intermediate population (the default case) or
not at all, the recombination operator in genetic algorithms is
typically applied with a certain probability pc, and commonly
proposed settings of the crossover probability are pc = 0.6
[13] andp c 6 [0.75,0.95] [118].

In evolution strategies recombination is incorporated into
the main loop of the algorithm as the first operator (see
Algorithm 1) and generates a new intermediate population of
A individuals by A-fold application to the parent population,
creating one individual per application from Q (1 < Q < /i)
individuals. Normally, Q = 2 or Q = \i (so-called global
recombination) are chosen. The recombination types for object
variables and strategy parameters in evolution strategies often
differ from each other, and typical examples are discrete re-
combination (random choices of single variables from parents,
comparable to uniform crossover in genetic algorithms) and
intermediary recombination (often arithmetic averaging, but
other variants such as geometrical crossover [143] are also
possible). For further details on these operators, see [79].

The advantages or disadvantages of recombination for a
particular objective function can hardly be assessed in advance,
and certainly no generally useful setting of recombination op-
erators (such as the discrete recombination of object variables
and global intermediary of strategy parameters as we have
claimed in [79, pp. 82-83]) exists. Recently, Kursawe has
impressively demonstrated that, using an inappropriate setting
of the recombination operator, the (15 100)-evolution strategy
with n self-adaptable variances might even diverge on a sphere
model for n = 100 [144]. Kursawe shows that the appropriate
choice of the recombination operator not only depends on
the objective function topology, but also on the dimension of

20

BACK et at. EVOLUTIONARY COMPUTATION: COMMENTS ON THE HISTORY AND CURRENT STATE

the objective function and the number of strategy parameters
incorporated into the individuals. Only recently, Rechenberg
[46] and Beyer [142] presented first results concerning the
convergence velocity analysis of global recombination in case
of the sphere model. These results clarify that, for using one
(rather than n as in Kursawe's experiment) optimally chosen
standard deviation a, a ^-fold speedup is achieved by both
recombination variants. Beyer's interpretation of the results,
however, is somewhat surprising because it does not put down
the success of this operator on the existence of building blocks
which are usefully rearranged in an offspring individual, but
rather explains it as a genetic repair of the harmful parts of
mutation.

Concerning evolutionary programming, a rash statement
based on the common understanding of the contending struc-
tures as individuals would be to claim that evolutionary
programming simply does not use recombination. Rather than
focusing on the mechanism of sexual recombination, however,
Fogel [145] argues that one may examine and simulate its
functional effect and correspondingly interpret a string of
symbols as a reproducing population or species, thus making
recombination a nonissue (refer to [145] for philosophical
reasons underlining this choice).

E. Selection

Unlike the variation operators which work on the genetic
representation, the selection operator is based solely on the
fitness values of the individuals.

In genetic algorithms, selection is typically implemented
as a probabilistic operator, using the relative fitness p{3i) =
/("»)/ !Cj=i / (*i) t 0 determine the selection probability of
an individual Si {proportional selection). This method re-
quires positive fitness values and a maximization task, so that
scaling Junctions are often utilized to transform the fitness
values accordingly (see, e.g., [18, p. 124]). Rather than using
absolute fitness values, rank-based selection methods utilize
the indexes of individuals when ordered according to fitness
values to calculate the corresponding selection probabilities.
Linear [146] as well as nonlinear [82, p. 60] mappings have
been proposed for this type of selection operator. Tournament
selection [147] works by taking a random uniform sample
of a certain size q > 1 from the population, selecting the
best of these q individuals to survive for the next generation,
and repeating the process until the new population is filled.
This method gains increasing popularity because it is easy
to implement, computationally efficient, and allows for fine-
tuning the selective pressure by increasing or decreasing the
tournament size q. For an overvie'w of selection methods
and a characterization of their selective pressure in terms of
numerical measures, the reader should consult [148] and [149].
While most of these selection operators have been introduced
in the framework of a generational genetic algorithm, they
can also be used in combination with the steady-state and
generation gap methods outlined in Section III.

The (/z, A)-evolution strategy uses a deterministic selection
scheme. The notation (n, A) indicates that /i parents create
A > \i offspring by means of recombination and mutation,
and the best \i offspring individuals are deterministically

selected to replace the parents (in this case, Q = 0 in
Algorithm 1). Notice that this mechanism allows that the
best member of the population at generation t + 1 might
perform worse than the best individual at generation t, i.e.,
the method is not elitist, thus allowing the strategy to accept
temporary deteriorations that might help to leave the region of
attraction of a local optimum and reach a better optimum. In
contrast, the (}.i -f- A) strategy selects the /i survivors from
the union of parents and offspring, such that a monotonic
course of evolution is guaranteed [Q = P(t) in Algorithm
1]. Due to recommendations by Schwefel, however, the (//, A)
strategy is preferred over the (/x + A) strategy, although recent
experimental findings seem to indicate that the latter performs
as well as or better than the (//. A) strategy in many practical
cases [134]. It should also be noted that both schemes can be
interpreted as instances of the general (/x, «, A) strategy, where
1 < K < oo denotes the maximum life span (in generations)
of an individual. For « = 1, the selection method yields the
(/z, A) strategy, while it turns into the (/i + A) strategy for
K = oo [54].

A minor difference between evolutionary programming and
evolution strategies consists in the choice of a probabilistic
variant of (/x + A) selection in evolutionary programming,
where each solution out of offspring and parent individuals is
evaluated against q > 1 (typically, q < 10) other randomly
chosen solutions from the union of parent and offspring
individuals [Q = P(t) in Algorithm lj. For each comparison,
a "win" is assigned if an individual's score is better or
equal to that of its opponent, and the /x individuals with the
greatest number of wins are retained to be parents of the next
generation. As shown in [79, pp. 96-99], this selection method
is a probabilistic version of (fi + A) selection which becomes
more and more deterministic as the number q of competitors
is increased. Whether or not a probabilistic selection scheme
should be preferable over a deterministic scheme remains an
open question.

Evolutionary algorithms can easily be ported to parallel
computer architectures [150], [151]. Since the individuals can
be modified and, most importantly, evaluated independently
of each other, we should expect a speed-up scaling linear
with the number of processing units p as long as p does
not exceed the population size /x. But selection operates on
the whole population so this operator eventually slows down
the overall performance, especially for massively parallel
architectures where p > fi. This observation motivated the
development of parallel algorithms using local selection within
subpopulations like in migration models [531, [152] or within
small neighborhoods of spatially arranged individuals like in
diffusion models [153]—[156] (also called cellular evolutionary
algorithms [157]—[159]). It can be observed that local selection
techniques not only yield a considerable speed-up on parallel
architectures, but also improve the robustness of the algorithms
[46], [116], [160].

F. Other Evolutionary Algorithm Variants

Although it is impossible to present a thorough overview
of all variants of evolutionary computation here, it seems

21

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION. VOL. I. NO. 1, APRIL 1997

appropriate to explicitly mention order-based genetic algo-
rithms [18], [82], classifier systems [161], [162], and genetic
programming [31], [70], [81], [163] as branches of genetic
algorithms that have developed into their own directions of
research and application. The following overview is restricted
to a brief statement of their domain of application and some
literature references:

• Order-based genetic algorithms were proposed for
searching the space of permutations n: {1, • • •, n } —>
{1, • • •, n) directly rather than using complex decoding
functions for mapping binary strings to permutations
and preserving feasible permutations under mutation and
crossover (as proposed in [164]). They apply specialized
recombination (such as order crossover or partially
matched crossover) and mutation operators (such as
random exchanges of two elements of the permutation)
which preserve permutations (see [82, ch. 10] for an
overview).

• Classifier systems use an evolutionary algorithm to search
the space of production rules (often encoded by strings
over a ternary alphabet, but also sometimes using sym-
bolic rules [165]) of a learning system capable of in-
duction and generalization [18, ch. 6], [161], [166],
[167]. Typically, the Michigan approach and the Pitts-
burgh approach are distinguished according to whether
an individual corresponds with a single rule of the rule-
based system (Michigan) or with a complete rule base
(Pittsburgh).

• Genetic programming applies evolutionary search to the
space of tree structures which may be interpreted as
computer programs in a language suitable to modification
by mutation and recombination. The dominant approach
to genetic programming uses (a subset of) LISP programs
(S expressions) as genotype space [31], [163], but other
programming languages including machine code are also
used (see, e.g., [70], [81], and [168]).

Throughout this section we made the attempt to compare
the constituents of evolutionary algorithms in terms of their
canonical forms. But in practice the borders between these
approaches are much more fluid. We can observe a steady evo-
lution in this field by modifying (mutating), (re)combining, and
validating (evaluating) the current approaches, permanently
improving the population of evolutionary algorithms.

V. APPLICATIONS

Practical application problems in fields as diverse as engi-
neering, natural sciences, economics, and business (to mention
only some of the most prominent representatives) often exhibit
a number of characteristics that prevent the straightforward
application of standard instances of evolutionary algorithms.
Typical problems encountered when developing an evolution-
ary algorithm for a practical application include the following.

1) A suitable representation and corresponding operators
need to be developed when the canonical representation
is different from binary strings or real-valued vectors.

2) Various constraints need to be taken into account by
means of a suitable method (ranging from penalty func-

tions to repair algorithms, constraint-preserving opera-
tors, and decoders; see [169] for an overview).

3) Expert knowledge about the problem needs to be incor-
porated into the representation and the operators in order
to guide the search process and increase its convergence
velocity—without running into the trap, however, of
being confused and misled by expert beliefs and habits
which might not correspond with the best solutions.

4) An objective function needs to be developed, often in
cooperation with experts from the particular application
field.

5) The parameters of the evolutionary algorithm need to be
set (or tuned) and the feasibility of the approach needs to
be assessed by comparing the results to expert solutions
(used so far) or, if applicable, solutions obtained by other
algorithms.

Most of these topics require experience with evolutionary
algorithms as well as cooperation between the application's
expert and the evolutionary algorithm expert, and only few
general results are available to guide the design of the al-
gorithm (e.g., representation-independent recombination and
mutation operators [170], [171], the requirement that small
changes by mutation occur more frequently than large ones
[48], [172], and a quantification of the selective pressure im-
posed by the most commonly used selection operators [149]).
Nevertheless, evolutionary algorithms often yield excellent
results when applied to complex optimization problems where
other methods are either not applicable or turn out to be
unsatisfactory (a variety of examples can be found in [80]).

Important practical problem classes where evolutionary al-
gorithms yield solutions of high quality include engineering
design applications involving continuous parameters (e.g.,
for the design of aircraft [173], [174] structural mechanics
problems based on two-dimensional shape representations
[175], electromagnetic systems [176], and mobile manipula-
tors [177], [178]), discrete parameters (e.g., for multiplierless
digital filter optimization [179], the design of a linear collider
[180], or nuclear reactor fuel arrangement optimization [181]),
and mixed-integer representations (e.g., for the design of
survivable networks [182] and optical multilayer systems
[115]). Combinatorial optimization problems with a straight-
forward binary representation of solutions have also been
treated successfully with canonical genetic algorithms and
their derivatives (e.g., set partitioning and its application to
airline crew scheduling [183], knapsack problems [184], [185],
and others [186]). Relevant applications to combinatorial prob-
lems utilizing a permutation representation of solutions are
also found in the domains of scheduling (e.g., production
scheduling [187] and related problems [188]), routing (e.g.,
of vehicles [189] or telephone calls [190]), and packing (e.g.,
of pallets on a truck [191]).

The existing range of successful applications is extremely
broad, thus by far preventing an exhaustive overview—the
list of fields and example applications should be taken as a
hint for further reading rather than a representative overview.
Some of the most challenging applications with a large profit
potential are found in the field of biochemical drug design,
where evolutionary algorithms have gained remarkable interest

22

BACK et al.\ EVOLUTIONARY COMPUTATION: COMMENTS ON THE HISTORY AND CURRENT STATE

and success in the past few years as an optimization proce-
dure to support protein engineering [134], [192]—[194]. Also,
finance and business provide a promising field of profitable
applications [195], but of course few details are published
about this work (see, e.g., [196]). In fact, the relation between
evolutionary algorithms and economics has found increasing
interest in the past few years and is now widely seen as a
promising modeling approach for agents acting in a complex,
uncertain situation [197].

In concluding this section, we refer to the research field of
computational intelligence (see Section VI for details) and the
applications of evolutionary computation to the other main
fields of computational intelligence, namely fuzzy logic and
neural networks. An overview of the utilization of genetic
algorithms to train and construct neural networks is given in
[198], and of course other variants of evolutionary algorithms
can also be used for this task (see e.g., [199] for an evolution-
ary programming, [200] for an evolution strategy example, and
[97] and [201] for genetic algorithm examples). Similarly, both
the rule base and membership functions of fuzzy systems can
be optimized by evolutionary algorithms, typically yielding
improvements of the performance of the fuzzy system (e.g.,
[202]-[206]). The interaction of computational intelligence
techniques and hybridization with other methods such as
expert systems and local optimization techniques certainly
opens a new direction of research toward hybrid systems
that exhibit problem solving capabilities approaching those
of naturally intelligent systems in the future. Evolutionary
algorithms, seen as a technique to evolve machine intelligence
(see [5]), are one of the mandatory prerequisites for achieving
this goal by means of algorithmic principles that are already
working quite successfully in natural evolution [207].

VI. SUMMARY AND OUTLOOK

To summarize, the current state of evolutionary computation
research can be characterized as in the following.

• The basic concepts have been developed more than 35
years ago, but it took almost two decades for their
potential to be recognized by a larger audience.

• Application-oriented research in evolutionary computa-
tion is quite successful and almost dominates the field (if
we consider the majority of papers). Only few potential
application domains could be identified, if any, where
evolutionary algorithms have not been tested so far. In
many cases they have been used to produce good, if not
superior, results.

• In contrast, the theoretical foundations are to some extent
still weak. To say it more pithy: "We know that they
work, but we do not know why." As a consequence,
inexperienced users fall into the same traps repeatedly,
since there are only few rules of thumb for the design
and parameterization of evolutionary algorithms.

A constructive approach for the synthesis of evolution-
ary algorithms, i.e., the choice or design of the represen-
tations, variation operators, and selection mechanisms is
needed. But first investigations pointing in the direction of
design principles for representation-independent operators

are encouraging [171], as well, as is the work on complex
nonstandard representations such as in the field of genetic
programming.

• Likewise, the field still lacks a sound formal charac-
terization of the application domain and the limits of
evolutionary computation. This requires future efforts in
the field of complexity theory.

There exists a strong relationship between evolutionary
computation and some other techniques, e.g., fuzzy logic and
neural networks, usually regarded as elements of artificial
intelligence. Following Bezdek [208], their main common
characteristic lies in their numerical knowledge representation,
which differentiates them from traditional symbolic artificial
intelligence. Bezdek suggested the term computational intelli-
gence for this special branch of artificial intelligence with the
following characteristics3:

1) numerical knowledge representation;
2) adaptability;
3) fault tolerance;
4) processing speed comparable to human cognition pro-

cesses;
5) error rate optimality (e.g., with respect to a Bayesian

estimate of the probability of a certain error on future
data).

We regard computational intelligence as one of the most
innovative research directions in connection with evolutionary
computation, since we may expect that efficient, robust, and
easy-to-use solutions to complex real-world problems will be
developed on the basis of these complementary techniques.
In this field, we expect an impetus from the interdisciplinary
cooperation, e.g., techniques for tightly coupling evolutionary
and problem domain heuristics, more elaborate techniques for
self-adaptation, as well as an important step toward machine
intelligence.

Finally, it should be pointed out that we are far from using
all potentially helpful features of evolution within evolutionary
algorithms. Comparing natural evolution and the algorithms
discussed here, we can immediately identify a list of important
differences, which all might be exploited to obtain more
robust search algorithms and a better understanding of natural
evolution.

• Natural evolution works under dynamically changing
environmental conditions, with nonstationary optima and
even changing optimization criteria, and the individuals
themselves are also changing the structure of the adap-
tive landscape during adaptation [210]. In evolutionary
algorithms, environmental conditions are often static,
but nonelitist variants are able to deal with changing
environments. It is certainly worthwhile, however, to
consider a more flexible life span concept for individuals
in evolutionary algorithms than just the extremes of a
maximum life span of one generation [as in a (/z, A)
strategy] and of an unlimited life span (as in an elitist
strategy), by introducing an aging parameter as in the
(/i, «, A) strategy [54].

3 The term "computational intelligence" was originally coined by Cercone
and McCalla [209].

23

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 1. NO. 1, APRIL 1997

• The long-term goal of evolution consists of the main-
tenance of evolvability of a population [95], guaranteed
by mutation, and a preservation of diversity within the
population (the term meliorization describes this more
appropriately than optimization or adaptation does). In
contrast, evolutionary algorithms often aim at finding a
precise solution and converging to this solution.

• In natural evolution, many criteria need to be met at
the same time, while most evolutionary algorithms are
designed for single fitness criteria (see [211] for an
overview of the existing attempts to apply evolutionary
algorithms to multiobjective optimization). The concepts
of diploidy or polyploidy combined with dominance and
recessivity [50] as well as the idea of introducing two
sexes with different selection criteria might be helpful
for such problems [212], [213].

• Natural evolution neither assumes global knowledge
(about all fitness values of all individuals) nor a
generational synchronization, while many evolutionary
algorithms still identify an iteration of the algorithm
with one complete generation update. Fine-grained asyn-
chronously parallel variants of evolutionary algorithms,
introducing local neighborhoods for recombination and
selection and a time-space organization like in cellular
automata [157]—[159] represent an attempt to overcome
these restrictions.

• The co-evolution of species such as in predator-prey
interactions implies that the adaptive landscape of in-
dividuals of one species changes as members of the
other species make their adaptive moves [214]. Both the
work on competitive fitness evaluation presented in [215]
and the co-evolution of separate populations [216], [217]
present successful approaches to incorporate the aspect
of mutual interaction of different adaptive landscapes
into evolutionary algorithms. As clarified by the work
of Kauffman [214], however, we are just beginning to
explore the dynamics of co-evolving systems and to
exploit the principle for practical problem solving and
evolutionary simulation.

• The genotype-phenotype mapping in nature, realized by
the genetic code as well as the epiyenetic apparatus (i.e.,
the biochemical processes facilitating the development
and differentiation of an individual's cells into organs
and systems), has evolved over time, while the mapping
is usually fixed in evolutionary algorithms (dynamic
parameter encoding as presented in [218] being a no-
table exception). An evolutionary self-adaptation of the
genotype-phenotype mapping might be an interesting
way to make the search more flexible, starting with a
coarse-grained, volume-oriented search and focusing on
promising regions of the search space as the evolution
proceeds.

• Other topics, such as multicellularity and ontogeny of
individuals, up to the development of their own brains
(individual learning, such as accounted for by the Baldwin
effect in evolution [219]), are usually not modeled in
evolutionary algorithms. The self-adaptation of strategy
parameters is just a first step into this direction, realizing

the idea that each individual might have its own internal
strategy to deal with its environment. This strategy might
be more complex than the simple mutation parameters
presently taken into account by evolution strategies and
evolutionary programming.

With all this in mind, we are convinced that we are just
beginning to understand and to exploit the full potential of
evolutionary computation. Concerning basic research as well
as practical applications to challenging industrial problems,
evolutionary algorithms offer a wide range of promising
further investigations, and it will be exciting to observe the
future development of the field.

ACKNOWLEDGMENT

The authors would like to thank D. B. Fogel and three
anonymous reviewers for their very valuable and detailed
comments that helped them improve the paper. They also
appreciate the informal comments of another anonymous re-
viewer, and the efforts of the anonymous associate editor
responsible for handling the paper submission and review
procedure. The first author would also like to thank C. Muller
for her patience.

REFERENCES

[1] H. J. Bremermann, "Optimization through evolution and recombina-
tion," in Self-Organizing Systems, M. C. Yovits et ah, Eds. Washington,
DC: Spartan, 1962.

[2] R. M. Friedberg, "A learning machine: Part I," IBM J., vol. 2, no. 1.
pp. 2-13, Jan. 1958.

[3] R. M. Friedberg, B. Dunham, and J. H. North, "A learning machine:
Part II," IBM J., vol. 3, no. 7, pp. 282-287, July 1959.

[4] G. E. P. Box, "Evolutionary operation: A method for increasing indus-
trial productivity," Appl. Statistics, vol. VI, no. 2, pp. 81-101, 1957.

[5] D. B. Fogel, Evolutionary Computation: Toward a New Philosophy of
Machine Intelligence. Piscataway, NJ: IEEE Press, 1995.

[6] J. H. Holland, "Outline for a logical theory of adaptive systems," J.
Assoc. Comput. Mach., vol. 3, pp. 297-314, 1962.

[7] I. Rechenberg, "Cybernetic solution path of an experimental problem,"
Royal Aircraft Establishment, Library translation No. 1122, Farnbor-
ough, Hants., U.K., Aug. 1965.

{8] H.-P. Schwefel, "Projekt MHD-Staustrahlrohr: Experimentelle Opti-
mierung einer Zweiphasendtise, Teil I," Technischer Bericht 11.034/68,
35, AEG Forschungsinstitut, Berlin, Germany, Oct. 1968.

[9] L. J. Fogel, "Autonomous automata," Ind. Res., vol. 4, pp. 14-19, 1962.
[10] J. T. Alander, "Indexed bibliography of genetic algorithms papers of

1996," University of Vaasa, Department of Information Technology and
Production Economics, Rep. 94-1-96, 1995, (ftp.uwasa.fi, cs/report94-l,
ga96bib.ps.Z).

[11] J. H. Holland, Adaptation in Natural and Artificial Systems. Ann
Arbor, MI: Univ. of Michigan Press, 1975.

[12] J. H. Holland and J. S. Reitman, "Cognitive systems based on adaptive
algorithms," in Pattern-Directed Inference Systems, D. A. Waterman and
F. Hayes-Roth, Eds. New York: Academic, 1978.

[13] K. A. De Jong, "An analysis of the behavior of a class of genetic
adaptive systems," Ph.D. dissertation, Univ. of Michigan, Ann Arbor,
1975, Diss. Abstr. Int. 36(10), 5 MOB, University Microfilms no. 76-
9381.

[14] , "On using genetic algorithms to search program spaces," in Proc.
2nd Int. Conf. on Genetic Algorithms and Their Applications. Hillsdale,
NJ: Lawrence Erlbaum, 1987. pp. 210-216.

[15] , "Are genetic algorithms function optimizers?" in Parallel Prob-
lem Solving from Nature 2. Amsterdam, The Netherlands: Elsevier,
1992, pp. 3-13.

[16] , "Genetic algorithms are NOT function optimizers," in Foun-
dations of Genetic Algorithms 2. San Mateo, CA: Morgan Kaufmann,
1993, pp. 5-17.

[17] D. E. Goldberg, "Genetic algorithms and rule learning in dynamic
system control," in Proc. 1st Int. Conf. on Genetic Algorithms and Their
Applications. Hillsdale, NJ: Lawrence Erlbaum, 1985, pp. 8-15.

24

BACK et al.: EVOLUTIONARY COMPUTATION: COMMENTS ON THE HISTORY AND CURRENT STATE

[18] , Genetic Algorithms in Search, Optimization and Machine Learn-
ing. Reading, MA: Addison-Wesley, 1989.

[19] , "The theory of virtual alphabets," in Parallel Problem Solving
from Nature—Proc. 1st Workshop PPSN1. (Lecture Notes in Computer
Science, vol. 496). Berlin, Germany: Springer, 1991, pp. 13-22.

[20] D. E. Goldberg, K. Deb, and J. H. Clark, "Genetic algorithms, noise, and
the sizing of populations," Complex Syst., vol. 6, pp. 333-362, 1992.

[21] D. E. Goldberg, K. Deb, H. Kargupta, and G. Hank, "Rapid, accurate
optimization of difficult problems using fast messy genetic algorithms,"
in Proc. 5th Int. Conf. on Genetic Algorithms. San Mateo, CA: Morgan
Kaufmann, 1993, pp. 56-64.

[22] L. Davis, Ed., Handbook of Genetic Algorithms. New York: Van
Nostrand Reinhold, 1991.

[23] L. J. Eshelman and J. D. Schaffer, "Crossover's niche," in Proc. 5th
Int. Conf. on Genetic Algorithms. San Mateo, CA: Morgan Kaufmann,
1993, pp. 9-14.

[24] , "Productive recombination and propagating and preserving
schemata," in Foundations of Genetic Algorithms 3. San Francisco,
CA: Morgan Kaufmann, 1995, pp. 299-313.

[25] S. Forrest and M. Mitchell, "What makes a problem hard for a genetic
algorithm? Some anomalous results and their explanation," Mach.
Learn., vol. 13. pp. 285-319, 1993.

[26] J. J. Grefenstette, "Optimization of control parameters for genetic
algorithms," IEEE Trans. Syst., Man Cybern., vol. SMC-16, no. 1, pp.
122-128, 1986.

[27] , "Incorporating problem specific knowledge into genetic algo-
rithms," in Genetic Algorithms and Simulated Annealing, L. Davis, Ed.
San Mateo, CA: Morgan Kaufmann, 1987, pp. 42-60.

[28] , "Conditions for implicit parallelism," in Foundations of Genetic
Algorithms. San Mateo, CA: Morgan Kaufmann, 1991, pp. 252-261.

[29] , "Deception considered harmful," in Foundations of Genetic
Algorithms 2. San Mateo, CA: Morgan Kaufmann, 1993, pp. 75-91.

[30] J. R. Koza, "Hierarchical genetic algorithms operating on populations
of computer programs," in Proc. 11th Int. Joint Conf. on Artificial
Intelligence, N. S. Sridharan, Ed. San Mateo, CA: Morgan Kaufmann,
1989, pp. 768-774.

[31] , Genetic Programming: On the Programming of Computers by
Means of Natural Selection. Cambridge, MA: MIT Press, 1992.

[32] M. Mitchell, An Introduction to Genetic Algorithms. Cambridge, MA:
MIT Press, 1996.

[33] R. L. Riolo, "The emergence of coupled sequences of classifiers," in
Proc. 3rd Int. Conf. on Genetic Algorithms. San Mateo, CA: Morgan
Kaufmann, 1989, pp. 256-264.

[34] , "The emergence of default hierarchies in learning classifier
systems," in Proc. 3rd Int. Conf. on Genetic Algorithms. San Mateo,
CA: Morgan Kaufmann, 1989, pp. 322-327.

[35] J. D. Schaffer, "Multiple objective optimization with vector evaluated
genetic algorithms," in Proc. 1st Int. Conf. on Genetic Algorithms
and Their Applications. Hillsdale, NJ: Lawrence Erlbaum, 1985, pp.
93-100.

[36] J. D. Schaffer and L. J. Eshelman, "On crossover as an evolutionary
viable strategy," in Proc. 4th Int. Conf. on Genetic Algorithms. San
Mateo, CA: Morgan Kaufmann, 1991, pp. 61-68.

[37] J. D. Schaffer and A. Morishima, "An adaptive crossover distribution
mechanism for genetic algorithms," in Proc. 2nd Int. Conf. on Genetic
Algorithms and Their Applications. Hillsdale, NJ: Lawrence Erlbaum,
1987, pp. 36-40.

[38] L. J. Fogel, "On the organization of intellect," Ph.D. dissertation,
University of California, Los Angeles, 1964.

[39] G. H. Burgin, "On playing two-person zero-sum games against nonmin-
imax players," IEEE Trans. Syst. Sci. Cybern., vol. SSC-5, no. 4, pp.
369-370, Oct. 1969.

[40] , "Systems identification by quasilinearization and evolutionary
programming," J. Cybern., vol. 3, no. 2, pp. 56-75, 1973.

[41] J. W. Atmar, "Speculation on the evolution of intelligence and its
possible realization in machine form," Ph.D. dissertation. New Mexico
State Univ., Las Cruces, 1976.

[42] L. J. Fogel, A. J. Owens, and M. J. Walsh. Artificial Intelligence Through
Simulated Evolution. New York: Wiley, 1966.

[43] D. B. Fogel, "An evolutionary approach to the traveling salesman
problem," Biological Cybern., vol. 60, pp. 139-144, 1988.

[44] , "Evolving artificial intelligence," Ph.D. dissertation, Univ. of
California, San Diego, 1992.

[45] I. Rechenberg, Evolutionsstrategie: Optimierung technischer Systeme
nach Prinzipien der biologischen Evolution. Stuttgart, Germany:
Frommann-Holzboog, 1973.

[46] , Evolutionsstrategie '94, in Werkstatt Bionik und Evolutionstech-
nik. Stuttgart, Germany: Frommann-Holzboog, 1994, vol. 1.

[47] H.-P. Schwefel, Evolutionsstrategie und numerische Optimierung Dis-
sertation, Technische Universitat Berlin, Germany, May 1975.

[48] , Evolution and Optimum Seeking. New York: Wiley, 1995
(Sixth-Generation Computer Technology Series).

[49] M. Herdy, "Reproductive isolation as strategy parameter in hierarchi-
cally organized evolution strategies," in Parallel Problem Solving from
Nature 2. Amsterdam, The Netherlands: Elsevier, 1992, pp. 207-217.

[50] F. Kursawe, "A variant of Evolution Strategies for vector optimization,"
in Parallel Problem Solving from Nature—Proc. 1st Workshop PPSN
I (Lecture Notes in Computer Science, vol. 496). Berlin, Germany:
Springer, 1991, pp. 193-197.

[51] A. Ostermeier, "An evolution strategy with momentum adaptation of the
random number distribution," in Parallel Problem Solving from Nature
2. Amsterdam, The Netherlands: Elsevier, 1992, pp. 197-206.

[52] A. Ostermeier, A. Gawelczyk, and N. Hansen, "Step-size adaptation
based on nonlocal use of selection information," in Parallel Problem
Solving from Nature—PPSN III, Int. Conf. on Evolutionary Computation.
(Lecture Notes in Computer Science, vol. 866). Berlin, Germany:
Springer, 1994, pp. 189-198.

[53] G. Rudolph, "Global optimization by means of distributed evolution
strategies," in Parallel Problem Solving from Nature—Proc. 1st Work-
shop PPSN I (Lecture Notes in Computer Science, vol. 496). Berlin,
Germany: Springer, 1991, pp. 209-213.

[54] H.-P. Schwefel and G. Rudolph, "Contemporary evolution strategies,"
in Advances in Artificial Life. 3rd Int. Conf. on Artificial Life (Lecture
Notes in Artificial Intelligence, vol. 929), F. Moran, A. Moreno, J. J.
Merelo, and P. Chac6n, Eds. Berlin, Germany: Springer, 1995, pp.
893-907.

[55] J. Klockgether and H.-P. Schwefel, 'Two-phase nozzle and hollow
core jet experiments," in Proc. Uth Symp. Engineering Aspects of
Magnetohydrodynamics, D. G. Elliott, Ed. Pasadena, CA: California
Institute of Technology, Mar. 24-26, 1970, pp. 141-148.

[56] J. J. Grefenstette, Ed., Proc. 1st Int. Conf. on Genetic Algorithms and
Their Applications. Hillsdale, NJ: Lawrence Erlbaum, 1985.

[57] , Proc. 2nd Int. Conf. on Genetic Algorithms and Their Applica-
tions. Hillsdale, NJ: Lawrence Erlbaum, 1987.

[58] J. D. Schaffer, Ed., Proc. 3rd Int. Conf on Genetic Algorithms. San
Mateo, CA: Morgan Kaufmann, 1989.

[59] R. K. Belew and L. B. Booker, Eds., Proc. 4th Int. Conf. on Genetic
Algorithms. San Mateo, CA, Morgan Kaufmann, 1991.

[60] S. Forrest, Ed., Proc. 5th Int. Conf. on Genetic Algorithms. San Mateo,
CA: Morgan Kaufmann, 1993.

[61] L. Eshelman, Ed., Genetic Algorithms: Proc. 6th Int. Conf San Fran-
cisco, CA: Morgan Kaufmann, 1995.

[62] D. B. Fogel and W. Atmar, Eds., Proc istAnnu. Conf. on Evolutionary
Programming. San Diego, CA: Evolutionary Programming Society,
1992.

[63] , Proc. 2nd Annu. Conf. on Evolutionary Programming. San
Diego, CA: Evolutionary Programming Society, 1993.

[64] A. V. Sebald and L. J. Fogel, Eds., Proc. 3rd Annual Conf. on Evolu-
tionary Programming. Singapore: World Scientific, 1994.

[65] J. R. McDonnell, R. G. Reynolds, and D. B. Fogel, Eds., Proc. 4th Annu.
Conf. on Evolutionary Programming. Cambridge, MA: MIT Press,
1995.

[66] L. J. Fogel, P. J. Angeline, and T. Back, Eds., Proc. 5th Annu. Conf. on
Evolutionary Programming. Cambridge, MA: The MIT Press, 1996.

[67] G. J. E. Rawlins, Ed., Foundations of Genetic Algorithms. San Mateo,
CA: Morgan Kaufmann, 1991.

[68] L. D. Whitley, Ed., Foundations of Genetic Algorithms 2. San Mateo,
CA: Morgan Kaufmann, 1993.

[69] M. D. Vose and L. D. Whitley, Ed., Foundations of Genetic Algorithms
3. San Francisco, CA: Morgan Kaufmann, 1995.

[70] J. R. Koza, D. E. Goldberg, D. B. Fogel, and R. L. Riolo, Eds., Genetic
Programming 1996. Proc. IstAnnu. Conf. Cambridge, MA: MIT Press,
1996.

[71] H.-P. Schwefel and R. Manner, Eds., Parallel Problem Solving from
Nature—Proc. 1st Workshop PPSN I. Berlin, Germany: Springer, 1991,
vol. 496 of Lecture Notes in Computer Science.

[72] R. Manner and B. Manderick, Eds., Parallel Problem Solving from
Nature 2. Amsterdam, The Netherlands: Elsevier, 1992.

[73] Y. Davidor, H.-P. Schwefel, and R. Manner, Eds., Parallel Problem
Solving from Nature—PPSN III, Int. Conf. on Evolutionary Computation.
(Lecture Notes in Computer Science, vol. 866) Berlin: Springer, 1994.

[74] H.-M. Voigt, W. Ebeling, I. Rechenberg, and H.-P. Schwefel, Eds., Par-
allel Problem Solving from Nature IV. Proc. Int. Conf. on Evolutionary
Computation. Berlin, Germany: Springer, 1996, vol. 1141 of Lecture
Notes in Computer Science.

[75] Proc. 1st IEEE Conf. on Evolutionary Computation, Orlando, FL. Pis-
cataway, NJ: IEEE Press, 1994.

25

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 1, NO. 1, APRIL 1997

[76] Proc. 2nd IEEE Conf. on Evolutionary Computation, Perth, Australia.
Piscataway, NJ: IEEE Press, 1995.

[77] Proc. 3rd IEEE Conf. on Evolutionary Computation, Nagoya, Japan.
Piscataway, NJ: IEEE Press, 1996.

[78] Proc. 4th IEEE Conf. on Evolutionary Computation, Indianapolis, IN.
Piscataway, NJ: IEEE Press, 1997.

[79] T. Back, Evolutionary Algorithms in Theory and Practice. New York:
Oxford Univ. Press, 1996.

[80] T. Back, D. B. Fogel, and Z. Michalewicz, Eds., Handbook of Evolu-
tionary Computation. New York: Oxford Univ. Press and Institute of
Physics, 1997.

[81] K. E. Kinnear, Ed., Advances in Genetic Programming. Cambridge,
MA: MIT Press, 1994.

[82] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution
Programs. Berlin, Germany: Springer, 1996.

[83] A. Tttrn and A. Zilinskas, Global Optimization (Lecture Notes in
Computer Science, vol. 350). Berlin: Springer, 1989.

[84] T. Back, U. Hammel, M. Schiitz, H.-P. Schwefel, and J. Sprave,
"Applications of evolutionary algorithms at the center for applied
systems analysis," in Computational Methods in Applied Sciences'96,
J.-A. D6sid£ri, C. Hirsch, P. Le Tallec, E. Oiate, M. Pandolfi, J. P6riaux,
and E. Stein, Eds. Chichester, UK: Wiley, 1996, pp. 243-250.

[85] H.-P. Schwefel, "Direct search for optimal parameters within simulation
models," in Proc. 12th Annu. Simulation Symp., Tampa, FL, Mar. 1979,
pp. 91-102.

[86] Z. Michalewicz, "A hierarchy of evolution programs: An experimental
study," Evolutionary Computation, vol. 1, no. 1, pp. 51-76, 1993.

[87] W. Atmar, "Notes on the simulation of evolution," IEEE Trans. Neural
Networks, vol. 5, no. 1, pp. 130-148, 1994.

[88] L. D. Whitley, 'The GENTTOR algorithm and selection pressure: Why
rank-based allocation of reproductive trials is best," in Proc. 3rd Int.
Conf. on Genetic Algorithms. San Mateo, CA: Morgan Kaufmann,
1989, pp. 116-121.

[89] L. D. Whitley and J. Kauth, "GENITOR: A different genetic algorithm,"
in Proc. Rocky Mountain Conf. Artificial Intel, Denver, CO, 1988, pp.
118-130.

[90] K. A. De Jong and J. Sarma, "Generation gaps revisited," in Foundations
of Genetic Algorithms 2. San Mateo, CA: Morgan Kaufmann, 1993,
pp. 19-28.

[91] D. J. Powell, M. M. Skolnick, and S. S. Tong, "Interdigitation: A
hybrid technique for engineering design optimization employing genetic
algorithms, expert systems, and numerical optimization," in Handbook
of Genetic Algorithms. New York: Van Nostrand Reinhold, 1991, ch.
20, pp. 312-321.

[92] J.-M. Renders and S. P. Flasse, "Hybrid methods using genetic algo-
rithms for global optimization," IEEE Trans. Syst., Man, Cybern. B, vol.
26, no. 2, pp. 243-258, 1996.

[93] K. A. De Jong, "Evolutionary computation: Recent developments and
open issues," in 1st Int. Conf on Evolutionary Computation and Its
Applications, E. D. Goodman, B. Punch, and V. Uskov, Eds. Moskau:
Presidium of the Russian Academy of Science, 1996, pp. 7-17.

[94] M. Mitchell and S. Forrest, "Genetic algorithms and artificial life,"
Artificial Ufe, vol. 1, no. 3, pp. 267-2&9, 1995.

[95] L. Altenberg, "The evolution of evolvability in genetic programming,"
in Advances in Genetic Programming. Cambridge, MA: MIT Press,
1994, pp. 47-74.

[96] R. Keller and W. Banzhaf, "Genetic programming using genotype-
phenotype mapping from linear genomes into linear phenotypes," in
Genetic Programming 1996: Proc. 1st Annu. Conf, J. R. Koza, D. E.
Goldberg, D. B. Fogel, and R. L. Riolo, Eds., 1996.

[97] F. Gruau, "Genetic synthesis of modular neural networks," in Proc. 5th
Int. Conf. on Genetic Algorithms. San Mateo, CA: Morgan Kaufmann,
1993, pp. 318-325.

[98] M. Mandischer, "Representation and evolution of neural networks," in
Artificial Neural Nets and Genetic Algorithms, R. F. Albrecht, C. R.
Reeves, and N. C. Steele, Eds. Wien, Germany: Springer, 1993, pp.
643-649.

[99] H. J. Antonisse, "A new interpretation of schema notation that
overturns the binary encoding constraint," in Proc. 3rd Int. Conf.
on Genetic Algorithms. San Mateo, CA: Morgan Kaufmann, 1989,
pp. 86-91.

[100] U.-M. O'Reilly and F. Oppacher, "The troubling aspects of a building
block hypothesis for genetic programming," in Foundations of Ge-
netic Algorithms 3. San Francisco, CA: Morgan Kaufmann, 1995, pp.
73-88.

[101] T. Back, "Optimal mutation rates in genetic search," in Proc. 5th Int.
Conf. on Genetic Algorithms, S. Forrest, Ed. San Mateo, CA: Morgan
Kaufmann, 1993, pp. 2-8.

[102] L. J. Eshelman and J. D. Schaffer, "Real-coded genetic algorithms
and interval-schemata," in Foundations of Genetic Algorithms 2. San
Mateo, CA: Morgan Kaufmann, 1993, pp. 187-202.

[103] C. Z. Janikow and Z. Michalewicz, "An experimental comparison of
binary and floating point representations in genetic algorithms," in
Proc. 4th Int. Conf. on Genetic Algorithms. San Mateo, CA, Morgan
Kaufmann, 1991, pp. 31-36.

[104] N. J. Radcliffe, "Equivalence class analysis of genetic algorithms,"
Complex Systems, vol. 5, no. 2, pp. 183-206, 1991.

[105] A. H. Wright, "Genetic algorithms for real parameter optimization," in
Foundations of Genetic Algorithms. San Mateo, CA: Morgan Kauf-
mann, 1991, pp. 205-218.

[106] A. Nix and M. D. Vose, "Modeling genetic algorithms with markov
chains," Ann. Math. Artif Intell., vol. 5, pp. 79-88, 1992.

[107] M. D. Vose, "Modeling simple genetic algorithms," in Foundations of
Genetic Algorithms 2. San Mateo, CA: Morgan Kaufmann, 1993, pp.
63-73.

[108] M. D. Vose and A. H. Wright, "Simple genetic algorithms with linear
fitness," Evolutionary Computation, vol. 2, no. 4, pp. 347-368, 1994.

[109] M. D. Vose, "Modeling simple genetic algorithms," Evolutionary Com-
putation, vol. 3, no. 4, pp. 453-472, 1995.

[110] G. Rudolph, "Convergence analysis of canonical genetic algorithms,"
IEEE Trans. Neural Networks, Special Issue on Evolutionary Computa-
tion, vol. 5, no. 1, pp. 96-101, 1994.

[I l l] J. Suzuki, "A Markov chain analysis on simple genetic algorithms,"
IEEE Trans. Syst., Man, Cybern., vol. 25, no. 4, pp. 655-659, Apr. 1995.

[112] K. A. De Jong, W. M. Spears, and D. F. Gordon, "Using Markov chains
to analyze GAFO's," in Foundations of Genetic Algorithms 3. San
Francisco, CA: Morgan Kaufmann, 1995, pp. 115-137.

[113] L. D. Whitley, "An executable model of a simple genetic algorithm,"
in Foundations of Genetic Algorithms 3. San Francisco, CA: Morgan
Kaufmann, 1995, pp. 45-62.

[114] G. Rudolph, "An evolutionary algorithm for integer programming,"
in Parallel Problem Solving from Nature—PPSN III, Int. Conf. on
Evolutionary Computation (Lecture Notes in Computer Science, vol.
866). Berlin, Germany: Springer, 1994, pp. 139-148.

[115] M. Schiitz and J. Sprave, "Application of parallel mixed-integer evolu-
tion strategies with mutation rate pooling," in Proc. 5th Annu. Conf. on
Evolutionary Programming. Cambridge, MA: MIT Press, 1996, pp.
345-354.

[116] B. Grofi, U. Hammel, A. Meyer, P. Maldaner, P. Roosen, and M. Schiitz,
"Optimization of heat exchanger networks by means of evolution
strategies," in Parallel Problem Solving from Nature IV. Proc. Int. Conf.
on Evolutionary Computation. (Lecture Notes in Computer Science, vol.
1141). Berlin: Springer, 1996, pp. 1002-1011.

[117] R. Lohmann, "Structure evolution in neural systems," in Dynamic,
Genetic, and Chaotic Programming, B. Soucek and the IRIS Group,
Eds. New York: Wiley, 1992, pp. 395-411.

[118] J. D. Schaffer, R. A. Caruana, L. J. Eshelman, and R. Das, "A study of
control parameters affecting online performance of genetic algorithms
for function optimization," in Proc. 3rd Int. Conf. on Genetic Algorithms.
San Mateo, CA: Morgan Kaufmann, 1989, pp. 51-60.

[119] H. J. Bremermann, M. Rogson, and S. Salaff, "Global properties of
evolution processes," in Natural Automata and Useful Simulations, H. H.
Pattec, E. A. Edelsack, L. Fein, and A. B. Callahan, Eds. Washington,
DC: Spartan, 1966, ch. 1, pp. 3-41.

[120] H. MUhlenbein, "How genetic algorithms really work: I. Mutation and
hillclimbing," in Parallel Problem Solving from Nature 2. Amsterdam:
Elsevier, 1992, pp. 15-25.

[121] T. C. Fogarty, "Varying the probability of mutation in the genetic
algorithm," in Proc. 3rd Int. Conf. on Genetic Algorithms. San Mateo,
CA: Morgan Kaufmann, 1989, pp. 104-109.

[122] T. Back and M. Schiitz, "Intelligent mutation rate control in canonical
genetic algorithms," in Foundations of Intelligent Systems, 9th Int.
Symp., ISMIS'96 (Lecture Notes in Artificial Intelligence, vol. 1079), Z.
W. Ras and M. Michalewicz, Eds. Berlin, Germany: Springer, 1996,
pp. 158-167.

[123] J. Smith and T. C. Fogarty, "Self adaptation of mutation rates in a
steady state genetic algorithm," in Proc. 3rd IEEE Conf. on Evolutionary
Computation. Piscataway, NJ: IEEE Press, 1996, pp. 318-323.

[124] M. Yanagiya, "A simple mutation-dependent genetic algorithm," in
Proc. 5th Int. Conf. on Genetic Algorithms. San Mateo, CA: Morgan
Kaufmann, 1993, p. 659.

[125] H.-P. Schwefel, Numerical Optimization of Computer Models. Chich-
ester: Wiley, 1981.

[126] , Numerische Optimierung von Computer-Modellen mittels der
Evolutionsstrategie, vol. 26 of Interdisciplinary Systems Research.
Basel, Germany: BirkhSuser, 1977.

26

BACK et ai: EVOLUTIONARY COMPUTATION: COMMENTS ON THE HISTORY AND CURRENT STATE

[127] H.-G. Beyer, 'Toward a theory of evolution strategies: Self-adaptation,"
Evolutionary Computation, vol. 3, no. 3, pp. 311-348, 1995.

[128] G. Rudolph, "On correlated mutations in evolution strategies," in
Parallel Problem Solving from Nature 2. Amsterdam, The Netherlands:
Elsevier, 1992, pp. 105-114.

[129] N. Saravanan and D. B. Fogel, "Evolving neurocontrollers using evo-
lutionary programming," in Proc. 1st IEEE Conf. on Evolutionary
Computation. Piscataway, NJ: IEEE Press, 1994, vol. 1, pp. 217-222.

[130] , "Learning of strategy parameters in evolutionary programming:
An empirical study," in Proc. 3rdAnnu. Conf. on Evolutionary Program-
ming. Singapore: World Scientific, 1994, pp. 269-280.

[131] N. Saravanan, D. B. Fogel, and K. M. Nelson, "A comparison of
methods for self-adaptation in evolutionary algorithms," BioSystems,
vol. 36, pp. 157-166, 1995.

[132] D. B. Fogel, L. J. Fogel, and W. Atmar, "Meta-evolutionary program-
ming," in Proc. 25th Asilomar Conf. Sig., Sys. Comp., R. R. Chen, Ed.
Pacific Grove, CA, 1991, pp. 540-545.

[133] P. J. Angeline, "The effects of noise on self-adaptive evolutionary
optimization,1' in Proc. 5th Annu. Conf. on Evolutionary Programming.
Cambridge, MA: MIT Press, 1996, pp. 433--440.

[134] D. K. Gehlhaar and D. B. Fogel, 'Tuning evolutionary programming for
conformationally flexible molecular docking," in Proc. 5th Annu. Conf.
on Evolutionary Programming. Cambridge, MA: MIT Press, 1996, pp.
419-429.

[135] T. Back and H.-P. Schwefel, "Evolutionary computation: An overview,"
in Proc. 3rd IEEE Conf. on Evolutionary Computation. Piscataway,
NJ: IEEE Press, 1996, pp. 20-29.

[136] W. M. Spears, "Adapting crossover in evolutionary algorithms," in Proc.
4th Annu. Conf. on Evolutionary Programming. Cambridge, MA: MIT
Press, 1995, pp. 367-384.

[137] T. Back, "Self-Adaptation in Genetic Algorithms," in Proceedings of the
1st European Conference on Artificial Life, F. J. Varela and P. Bourgine,
Eds. Cambridge, MA: MIT Press, 1992, pp. 263-271.

[138] L. J. Eshelman, R. A. Caruna, and J. D. Schaffer, "Biases in the
crossover landscape," in Proc. 3rd Int. Conf. on Genetic Algorithms.
San Mateo, CA: Morgan Kaufmann, 1989, pp. 10-19.

[139] G. Syswerda, "Uniform crossover in genetic algorithms," in Proc. 3rd
Int. Conf. on Genetic Algorithms. San Mateo, CA: Morgan Kaufmann,
1989, pp. 2-9.

[140] A. E. Eiben, P.-E. Raue", and Zs. Ruttkay, "Genetic algorithms
with multi-parent recombination," in Parallel Problem Solving from
Nature—PPSN HI, Int. Conf. on Evolutionary Computation. Berlin:
Springer, 1994, vol. 866 of Lecture Notes in Computer Science, pp.
78-87.

[141] A. E. Eiben, C. H. M. van Kemenade, and J. N. Kok, "Orgy in the
computer: Multi-parent reproduction in genetic algorithms," in Advances
in Artificial Life. 3rd Int. Conf. on Artificial Life, F. Morfin, A. Moreno,
J. J. Merelo, and P. Chacon, Eds. Berlin: Springer, 1995, vol. 929 of
Lecture Notes in Artificial Intelligence, pp. 934-945.

[142] H.-G. Beyer, 'Toward a theory of evolution strategies: On the benefits
of sex—the (p/p, A)-theory," Evolutionary Computation, vol. 3, no. 1,
pp. 81-111, 1995.

[143] Z. Michalewicz, G. Nazhiyath, and M. Michalewicz, "A note on use-
fulness of geometrical crossover for numerical optimization problems,"
in Proc. 5th Annu. Conf. on Evolutionary Programming. Cambridge,
MA: The MIT Press, 1996, pp. 305-312.

[144] F. Kursawe, "Toward self-adapting evolution strategies," in Proc. 2nd
IEEE Conf. Evolutionary Computation, Perth, Australia. Piscataway,
NJ: IEEE Press, 1995, pp. 283-288.

[145] D. B. Fogel, "On the philosophical differences between evolutionary
algorithms and genetic algorithms," in Proc. 2nd Annu. Conf. on Evo-
lutionary Programming. San Diego, CA: Evolutionary Programming
Society, 1993, pp. 23-29.

[146] J. E. Baker, "Adaptive selection methods for genetic algorithms," in
Proc. 1st Int. Conf. on Genetic Algorithms and Their Applications.
Hillsdale, NJ: Lawrence Erlbaum, 1985, pp. 101-111.

[147] D. E. Goldberg, B. Korb, and K. Deb, "Messy genetic algorithms:
Motivation, analysis, and first results," Complex Syst., vol. 3, no. 5,
pp. 493-530, Oct. 1989.

[148] T. Back, "Selective pressure in evolutionary algorithms: A characteriza-
tion of selection mechanisms," in Proc. 1st IEEE Conf. on Evolutionary
Computation. Piscataway, NJ: IEEE Press, 1994, pp. 57-62.

[149] D. E. Goldberg and K. Deb, "A comparative analysis of selection
schemes used in genetic algorithms," in Foundations of Genetic Algo-
rithms. San Mateo, CA: Morgan Kaufmann, 1991, pp. 69-93.

[150] M. Dorigo and V. Maniezzo, "Parallel genetic algorithms: Introduction
and overview of current research," in Parallel Genetic Algorithms: The-
ory & Applications, Frontiers in Artificial Intelligence and Applications,

J. Stender, Ed. Amsterdam, The Netherlands: IOS, 1993, pp. 5-42.
[151] F. Hoffmeister, "Scalable parallelism by evolutionary algorithms," in

Parallel Computing and Mathematical Optimization, (Lecture Notes in
Economics and Mathematical Systems, vol. 367), M. Grauer and D. B.
Pressmar, Eds. Berlin, Germany: Springer, 1991, pp. 177-198.

[152] M. Munetomo, Y. Takai, and Y. Sato, "An efficient migration scheme
for subpopulation-based asynchronously parallel genetic algorithms," in
Proc. 5th Int. Conf on Genetic Algorithms. San Mateo, CA: Morgan
Kaufmann, 1993, p. 649.

[153] S. Baluja, "Structure and performance of fine-grain parallelism in genetic
search," in Proc. 5th Int. Conf on Genetic Algorithms. San Mateo, CA:
Morgan Kaufmann, 1993, pp. 155-162.

[154] R. J. Collins and D. R. Jefferson, "Selection in massively parallel genetic
algorithms," in Proc. 4th Int. Conf. on Genetic Algorithms. San Mateo,
CA, Morgan Kaufmann, 1991, pp. 249-256.

[155] M. Gorges-Schleuter, "ASPARAGOS: An asynchronous parallel genetic
optimization strategy," in Proc. 3rd Int. Conf. on Genetic Algorithms.
San Mateo, CA: Morgan Kaufmann, 1989, pp. 422-427.

[156] P. Spiessens and B. Manderick, "Fine-grained parallel genetic algo-
rithms," in Proc. 3rd Int. Conf. on Genetic Algorithms. San Mateo,
CA: Morgan Kaufmann, 1989, pp. 428-433.

[157] V. S. Gordon, K. Mathias, and L. D. Whitley, "Cellular genetic
algorithms as function optimizers: Locality effects," in Proc. 1994 ACM
Symp. on Applied Computing, E. Deaton, D. Oppenheim, J. Urban, and
H. Berghel, Eds. New York: ACM, 1994, pp. 237-241.

[158] G. Rudolph and J. Sprave, "A cellular genetic algorithm with self-
adjusting acceptance threshold," in Proc. 1st 1EE/IEEE Int. Conf. Genetic
Algorithms in Eng. Sys.: Innovations and Appl. London: IEE, !995,
pp. 365-372.

[159] L D. Whitley, "Cellular genetic algorithms," in Proc. 5th Int. Conf on
Genetic Algorithms. San Mateo, CA: Morgan Kaufmann, 1993, p. 658.

[160] M. Gorges-Schleuter, "Comparison of local mating strategies in mas-
sively parallel genetic algorithms," in Parallel Problem Solving from
Nature 2. Amsterdam: Elsevier, 1992, pp. 553-562.

[161] J. H. Holland, K. J. Holyoak, R. E. Nisbett, and P. R. Thagard, Induction:
Processes of Inference, Learning, and Discovery. Cambridge, MA:
MIT Press, 1986.

[162] R. Serra and G. Zanarini, Complex Systems and Cognitive Processes.
Berlin: Springer, 1990.

[163] M. L. Cramer, "A representation for the adaptive generation of simple
sequential programs," in Proc. 1st Int. Conf. on Genetic Algorithms
and Their Applications. Hillsdale, NJ: Lawrence Erlbaum, 1985, pp.
183-187.

[164] J. C. Bean, "Genetics and random keys for sequences and optimization,"
Department of Industrial and Operations Engineering, The Univ. of
Michigan, Ann Arbor, Tech. Rep. 92-43, 1993.

[165] D. A. Gordon and J. J. Grefenstette, "Explanations of empirically
derived reactive plans," in Proc. Seventh Int. Conf. on Machine Learning.
San Mateo, CA: Morgan Kaufmann, June 1990, pp. 198-203.

[166] L B. Booker, D. E. Goldberg, and J. H. Holland, "Classifier systems
and genetic algorithms," in Machine Learning: Paradigms and Methods,
J. G. Carbonell, Ed. Cambridge, MA: MIT Press/Elsevier, 1989, pp.
235-282.

[167] S. W. Wilson, "ZCS: A zeroth level classifier system," Evolutionary
Computation, vol. 2, no. 1, pp. 1-18, 1994.

[168] F. D. Francone, P. Nordin, and W. Banzhaf, "Benchmarking the
generalization capabilities of a compiling genetic programming system
using sparse data sets," in Genetic Programming 1996. Proc. 1st Annu.
Conf Cambridge, MA: MIT Press, 1996, pp. 72-80.

[169] Z. Michalewicz and M. Schoenauer, "Evolutionary algorithms for con-
strained parameter optimization problems," Evolutionary Computation,
vol. 4, no. 1, pp. 1-32, 1996.

[170] N. J. Radcliffe, 'The algebra of genetic algorithms," Ann. Math. Artif.
Intell, vol. 10, pp. 339-384, 1994.

[171] P. D. Surry and N. J. Radcliffe, "Formal algorithms + formal represen-
tations = search strategies," in Parallel Problem Solving from Nature
IV. Proc. Int. Conf. on Evolutionary Computation. (Lecture Notes in
Computer Science, vol. 1141) Berlin, Germany: Springer, 1996, pp.
366-375.

[172] N. J. Radcliffe and P. D. Surry, "Fitness variance of formae and
performance prediction," in Foundations of Genetic Algorithms 3. San
Francisco, CA: Morgan Kaufmann, 1995, pp. 51-72.

[173] M. F. Bramlette and E. E. Bouchard, "Genetic algorithms in parametric
design of aircraft," in Handbook of Genetic Algorithms. New York:
Van Nostrand Reinhold, 1991, ch. 10, pp. 109-123.

[174] J. P6riaux, M. Sefrioui, B. Stoufflet, B. Mantel, and E. Laporte, "Robust
genetic algorithms for optimization problems in aerodynamic design,"
in Genetic Algorithms in Engineering and Computer Science, G. Winter,

27

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 1, NO. 1, APRIL 1997

J. Periaux, M. Galin, and P. Cuesta, Eds. Chichester: Wiley, 1995, ch.
19, pp. 371-396.

[175J M. Schoenauer, "Shape representations for evolutionary optimization
and identification in structural mechanics," in Genetic Algorithms in
Engineering and Computer Science, G. Winter, J. P6riaux, M. Galin,
and P. Cuesta, Eds. Chichester: Wiley, 1995, ch. 22, pp. 443-463.

[176] E. Michielssen and D. S. Weile, "Electromagnetic system design using
genetic algorithms," in Genetic Algorithms in Engineering and Com-
puter Science, G. Winter, J. Periaux, M. Galdn, and P. Cuesta, Eds.
Chichester: Wiley, 1995, ch. 18, pp. 345-369.

[177] B. Anderson, J. McDonnell, and W. Page, "Configuration optimization
of mobile manipulators with equality constraints using evolutionary
programming," in Proc. 1st Annu. Conf. on Evolutionary Programming.
San Diego, CA: Evolutionary Programming Society, 1992, pp. 71-79.

[178] J. R. McDonnell, B. L. Anderson, W. C. Page, and F. G. Pin, "Mobile
manipulator configuration optimization using evolutionary program-
ming," in Proc 1st Annu. Conf. on Evolutionary Programming. San
Diego, CA: Evolutionary Programming Society, 1992, pp. 52-62.

[179] J. D. Schaffer and L. J. Eshelman, "Designing multiplierless digital
filters using genetic algorithms," in Proc. 5th Int. Conf. on Genetic
Algorithms. San Mateo, CA: Morgan Kaufmann, 1993, pp. 439-444.

[180] H.-G. Beyer, "Some aspects of the 'evolution strategy' for solving TSP-
like optimization problems appearing at the design studies of a 0.5
TeV e+e~ -linear collider," in Parallel Problem Solving from Nature
2. Amsterdam: Elsevier, 1992, pp. 361-370.

[181] T. Back, J. Heistermann, C. Kappler, and M. Zamparelli, "Evolutionary
algorithms support refueling of pressurized water reactors," in Proc.
3rd IEEE Conference on Evolutionary Computation. Piscataway, NJ:
IEEE Press, 1996, pp. 104-108.

[182] L. Davis, D. Orvosh, A. Cox, and Y. Qiu, "A genetic algorithm
for survivable network design," in Proc. 5th Int. Conf on Genetic
Algorithms. San Mateo, CA: Morgan Kaufmann, 1993, pp. 408-415.

[183] D. M. Levine, "A genetic algorithm for the set partitioning problem," in
Proc. 5th Int. Conf on Genetic Algorithms. San Mateo, CA: Morgan
Kaufmann, 1993, pp. 481-487.

[184] V. S. Gordon, A. P. W. Bohm, and L. D. Whitley, "A note on the
performance of genetic algorithms on zero-one knapsack problems," in
Proc. 1994 ACM Symp. Applied Computing, E. Deaton, D. Oppenheim,
J. Urban, and H. Berghel, Eds. New York: ACM, 1994, pp. 194-195.

[185] A. Olsen, "Penalty functions and the knapsack problem," in Proc.
1st IEEE Conf. on Evolutionary Computation. Piscataway, NJ: IEEE
Press, 1994, pp. 554-558.

[186] S. Khuri, T. Ba"ck, and J. Heitktitter, "An evolutionary approach to com-
binatorial optimization problems," in Proc. 22nd Annu. ACM Computer
Science Conf, D. Cizmar, Ed. New York: ACM, 1994, pp. 66-73.

[187] R. Bruns, "Direct chromosome representation and advanced genetic
operators for production scheduling," in Proc. 1st Annu. Conf on Evo-
lutionary Programming. San Diego, CA: Evolutionary Programming
Society, 1992, pp. 352-359.

[188] H.-L. Fang, P. Ross, and D. Come, "A promising genetic algorithm
approach to job-shop scheduling, rescheduling, and open-shop schedul-
ing problems," in Proc. 1st Annu. Conf. on Evolutionary Programming.
San Diego, CA: Evolutionary Programming Society, 1992, pp. 375-382.

[189] J. L. Blanton and R. L. Wainwright, "Multiple vehicle routing with
time and capacity constraints using genetic algorithms," in Proc. 5th
Int. Conf. on Genetic Algorithms. San Mateo, CA: Morgan Kaufmann,
1993, pp. 452-459.

[190] L. A. Cox, L. Davis, and Y. Qiu, "Dynamic anticipatory routing in
circuit-switched telecommunications networks," in Handbook of Genetic
Algorithms. New York: Van Nostrand Reinhold, 1991, ch. 11, pp.
109-143.

[191] K. Juliff, "A multi-chromosome genetic algorithm for pallet loading," in
Proc. 5th Int. Conf. on Genetic Algorithms. San Mateo, CA: Morgan
Kaufmann, 1993, pp. 467-473.

[192] S. Schulze-Kremer, "Genetic algorithms for protein ternary structure
prediction," in Parallel Genetic Algorithms: Theory & Applications, J.
Stender, Ed. Amsterdam: IOS, 1993, Frontiers in Artificial Intelligence
and Applications, pp. 129-150.

[193] R. Unger and J. Moult, "A genetic algorithm for 3D protein folding
simulation," in Proc. 5th Int. Conf. on Genetic Algorithms. San Mateo,
CA: Morgan Kaufmann, 1993, pp. 581-588.

[194] D. C. Youvan, A. P. Arkin, and M. M. Yang, "Recursive ensemble
mutagenesis: A combinatorial optimization technique for protein en-
gineering," in Parallel Problem Solving from Nature 2. Amsterdam:
Elsevier, 1992, pp. 401-410.

[195] R. F. Walker, E. W. Haasdijk, and M. C. Genets, "Credit evaluation
using a genetic algorithm," in Intelligent Systems for Finance and
Business. Chichester: Wiley, 1995, ch. 3, pp. 39-59.

[196] S. Goonatilake and P. Treleaven, Eds., Intelligent Systems for Finance
and Business. Chichester: Wiley, 1995.

[197] P. G. Harrald, "Evolutionary algorithms and economic models: A view,"
in Proc. 5th Annu. Conf on Evolutionary Programming. Cambridge,
MA: MIT Press, 1996, pp. 3-7.

[198] L. D. Whitley, "Genetic algorithms and neural networks," in Genetic
Algorithms in Engineering and Computer Science, G. Winter, J. P6riaux,
M. Galan, and P. Cuesta, Eds. Chichester, UK: Wiley, 1995, ch. U,
pp. 203-216.

[199] P. J. Angeline, G. M. Saunders, and J. B. Pollack, "An evolutionary
algorithm that constructs recurrent neural networks," IEEE Trans. Neural
Networks, vol. 5, no. 1, pp. 54-65, 1994.

[200] W. Wienholt, "Minimizing the system error in feedforward neural
networks with evolution strategy," in Proc. Int. Conf on Artificial Neural
Networks, S. Gielen and B. Kappen, Eds. London: Springer, 1993, pp.
490-493.

[201] M. Mandischer, "Genetic optimization and representation of neural
networks," in Proc. 4th Australian Conf on Neural Networks, P.
Leong and M. Jabri, Eds. Sidney Univ., Dept. Elect. Eng., 1993.
pp. 122-125.

[202] A. Homaifar and E. McCormick, "Full design of fuzzy controllers
using genetic algorithms," in Neural and Stochastic Methods in Image
and Signal Processing, S.-S. Chen, Ed. The International Society for
Optical Engineering, 1992, vol. SPIE-1766, pp. 393-404.

[203] C. L. Karr, "Genetic algorithms for fuzzy controllers," Al Expert, vol.
6, no. 2, pp. 27-33, 1991.

[204] S. B. Haffner and A. V. Sebald, "Computer-aided design of fuzzy
HVAC controllers using evolutionary programming," in Proc. 2nd Annu.
Conf. on Evolutionary Programming. San Diego, CA: Evolutionary
Programming Society, 1993, , pp. 98-107.

[2051 P- Thrift, "Fuzzy logic synthesis with genetic algorithms," in Proc. 4th
Int. Conf on Genetic Algorithms. San Mateo, CA, Morgan Kaufmann,
1991, pp. 514-518.

[206] P. Wang and D. P. Kwok, "Optimal fuzzy PID control based on genetic
algorithm," in Proc. 1992 Int. Conf. on Industrial Electronics, Control,
and Instrumentation. Piscataway, NJ: IEEE Press, 1992, vol. 2, pp.
977-981.

[207] D. C. Dennett, Darwin's Dangerous Idea, New York: Touchstone,
1995.

[208] J. C. Bezdek, "What is computational intelligence?" in Computational
Intelligence: Imitating Life, J. M. Zurada, R. J. Marks II, and Ch. J.
Robinson, Eds. New York: IEEE Press, 1994, pp. 1-12.

[209] N. Cercone and G. McCalla, "Ten years of computational intelligence,"
Computational Intelligence, vol. 10, no. 4, pp. i-vi, 1994.

[210] J. Schull, "The view from the adaptive landscape," in Parallel Problem
Solving from Nature—Proc. 1st Workshop PPSN I, Berlin: Springer,
1991, vol. 496 of Lecture Notes in Computer Science, pp. 415-427.

[211] C. M. Fonseca and P. J. Fleming, "An overview of evolutionary
algorithms in multiobjective optimization," Evolutionary Computation,
vol. 3, no. 1, pp. 1-16, 1995.

[212] J. Lis and A. E. Eiben, "Multi-sexual genetic algorithm for multiobjec-
tive optimization," in Proc. 4th IEEE Conf. Evolutionary Computation,
Indianapolis, IN Piscataway, NJ: IEEE Press, 1997.

[213] E. Ronald, "When selection meets seduction," in Genetic Algorithms:
Proc. 6th Int. Conf San Francisco, CA: Morgan Kaufmann, 1995, pp.
167-173.

[214] S. A. Kauffman, The Origins of Order. Self-Organization and Selection
in Evolution. New York: Oxford Univ. Press, 1993.

[215] P. J. Angeline and J. B. Pollack, "Competitive environments evolve
better solutions for complex tasks," in Proc. 5th Int. Conf. on Genetic
Algorithms. San Mateo, CA: Morgan Kaufmann, 1993, pp. 264-270.

[216] W. D. Hillis, "Co-evolving parasites improve simulated evolution as
an optimization procedure," in Emergent Computation. Self-Organizing,
Collective, and Cooperative Phenomena in Natural and Artificial Com-
puting Networks. Cambridge, MA: MIT Press, 1990, pp. 228-234.

[217] J. Paredis, "Coevolutionary life-time learning," in Parallel Problem
Solving from Nature IV. Proc. Int. Conf. on Evolutionary Computation.
(Lecture Notes in Computer Science, vol. 1141). Berlin, Germany:
Springer, 1996, pp. 72-80.

[218] N. N. Schraudolph and R. K. Belew, "Dynamic parameter encoding for
genetic algorithms," Machine Learning, vol. 9, pp. 9-21, 1992.

[219] R. W. Anderson, "Genetic mechanisms underlying the Baldwin ef-
fect are evident in natural antibodies," in Proc. 4th Annu. Conf on
Evolutionary Programming. Cambridge, MA: MIT Press, 1995, pp.
547-564.

[220] S. Forrest, Ed., Emergent Computation. Self-Organizing, Collective, and
Cooperative Phenomena in Natural and Artificial Computing Networks.
Cambridge, MA: MIT Press, 1990.

28

