
CHAPTER 1

PRELIMINARY BACKGROUND

This chapter presents the fundamentals of electromagnetic theory neces-
sary for reading this book. Many mathematical techniques discussed herein
could be adapted for other kinds of waves. We will, however, illustrate most
of the techniques with electromagnetic waves and fields. The material in this
chapter is also discussed in many textbooks which are given in the reference
list.

The electromagnetic field can sometimes be described by the scalar wave
equation, but in most cases, it can only be described by the vector wave equa-
tion. In many instances, the mathematical techniques explained in this book
can be illustrated more clearly using scalar wave equations. Since acoustic
waves are always described by the scalar wave equation, the derivation of the
acoustic wave equation for inhomogeneous medium is also given in Section
1.2 (on the topic of scalar wave equation).

§1.1 Maxwell's Equations
Maxwell's equations were established by James Clerk Maxwell in 1873.

Prior to that time, the equations existed in incomplete forms as a result of
the work of Faraday, Ampere, Gauss, and Poisson. Later, Maxwell added
a displacement current term to the equations. Also, this was important to
prove that an electromagnetic field could exist as waves. Finally, the wave
nature of Maxwell's equations was verified experimentally by Heinrich Hertz
in 1888. Even though the earth's surface is curved, with the aid of the
ionosphere which reflects radio waves, Guglielmo Marconi was able to send a
radio wave across the Atlantic Ocean in 1901. Since then, the importance of
Maxwell's equations has been demonstrated in optics, microwaves, antennas,
communications, radar, and many sensing applications.

§§1.1.1 Differential Representations
In vector notation and SI units, Maxwell's equations in differential rep-

resentations are

VxE(r, t ) = ~ B ( r , f ) , (1.1.1)

V x H(r,t) = ^D(r,t) + J(r,t), (1.1.2)

V-B(r,t) = 0, (1.1.3)
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V-D(r,i) = 0(r,O, (1-1.4)
where E is the electric field in volts/m, H is the magnetic field in amperes/m,
D is the electric flux in coulombs/m2, B is the magnetic flux in webers/m2,1

J(r, t) is the current density in amperes/m2, and g(r,t) is the charge density
in coulombs/m3.

For a time-varying electromagnetic field, Equations (3) and (4) of the
above Maxwell's equations can be derived from Equations (1) and (2). For
example, taking the divergence of (1) gives rise to (3). Taking the divergence
of (2) and using the continuity equation,

= 0, (1.1.5)

we arrive at (4).

For static problems where d/dt = 0, the electric field and the magnetic
field are decoupled. In this case, Equations (3) and (4) cannot be derived from
Equations (1) and (2). Then, the electric field Equations (1) and (4) are to be
solved independently from the magnetic field Equations (2) and (3). However,
in practice, a current is carried by a conductor. Unless the conductor is a
superconductor, the current would have to be driven by an electric field or
a voltage. Therefore, the magnetic field may never be completely decoupled
from the electric field in statics.

The curl operator Vx is a measure of field rotation. Hence, Equation (1)
indicates that a time-varying magnetic flux generates an electric field with
rotation. Moreover, Equation (2) indicates that a current or a time-varying
electric flux (also known as displacement current) generates a magnetic field
with rotation.

The divergence operator V- is a measure of the total flux exuding from a
point. If there is no source or sink at a point, the divergence of the flux at that
point should be zero. Therefore, Equation (3) says that the divergence of the
magnetic flux is always zero, since a source or a sink of magnetic flux (namely,
magnetic charges) has not been found to date. Furthermore, Equation (4)
states that the divergence of the electric flux at a point is proportional to the
positive charge density present at the point.

Equation (1), which was discovered by Michael Faraday, is also known as
Faraday's Law. Equation (2), without the dD/dt term, or the displacement
current term, is also known as Ampere's Law. The displacement current
term, discovered by Maxwell later, is very important because it couples the
magnetic field to the time-varying electric flux. Moreover, it also allows for
the possible existence of electromagnetic waves which were later shown to be
the same as light waves. Equations (3) and (4) are the consequences of Gauss'
Law, which is a statement of the conservation of flux. More specifically,

1 weber/m2 = 1 Tesla = 104 Gauss. The earth's field is about 0.5 Gauss.
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(a) Stokes1 Theorem (b) Gauss' Theorem

Figure 1.1.1 The parameters in the application of Stokes' theorem
and Gauss' theorem.

Equation (4) implies that the electric flux D is produced by a charge density
Q-

§§1.1.2 Integral Representations
Different insights sometimes result if we look at Maxwell's equations in

their integral representations. To derive the integral forms of Equations (1)
and (2), we integrate them over a cross-sectional area A and make use of
Stokes' theorem,

/ d S . V x E ( r , f ) = /d! -E(r , t ) . (1.1.6)

A C

In (6), C is a contour that forms the perimeter of the area A (Figure 1.1.1a).
Moreover, (6) is a statement that the sum of all the rotations due to the
field E over the cross-sectional area A is equal to the "torque" produced
by these rotations on the perimeter of A which is C: The left-hand side
of (6) is the summation over all the rotations, while the right-hand side of
(6) is the evaluation of the net "torque" on the perimeter C. The fact is
that neighboring rotations within the area C cancel each other, leaving a net
rotation on the perimeter.

Using Stokes' theorem, we can then convert (1) and (2) to

I <fl. E(r, t) = ~ I dS • B(r, t), (1.1.7)
C A

f d\ • H(r,«) = ̂  fdS- D(r, t) + J dS - J(r, t). (1.1.8)
C A A
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But to convert Equations (3) and (4) into integral forms, we integrate them
over a volume V and make use of Gauss' theorem, which states that

/ dVV • B(r, t) = I dS • B(r, t). (1.1.9)

v s

This is a mere statement that the sum of all divergences of a flux B in a
volume V is equal to the net flux which is leaving the volume V through the
surface S. In other words, neighboring divergences tend to cancel each other
within a volume V (Figure 1.1.1b).

Consequently, (3) and (4) become

/dS.B(r,t) = 0, (1.1.10)

s

f dS • D(r, t)= f g{r, t) dV = Q, (1.1.11)

5 V

where Q is the total charge in volume V.

The left-hand side of Equation (7) is also the definition of an electromotive
force. Hence, Equation (7) implies that a time-varying magnetic flux through
an area A generates an electromotive force around a loop C. For instance, if
C is replaced with a metallic conductor, the electromotive force will drive a
current through this metallic conductor.

By the same token, Equation (8) implies that a time-varying electric flux
(displacement current) or a current will generate a magnetomotive force, or
simply, a magnetic field that loops around the currents.

On the other hand, Equations (10) and (11) are mere statements of the
conservation of fluxes. Equation (11) implies that the net flux through a
surface S equals the total charge Q inside S.

§§1.1.3 Time Harmonic Forms
Maxwell's equations can be further simplified if we assume that the field

is time harmonic. A time harmonic field can be expressed as

A(r, t) = 5Re[A(r)e-iw<],

where i = y--T, u) is frequency in radians/second, and A(r) is a complex
vector. This is also commonly referred to as the e~iu)t time convention. (The
eju;t time convention is sometimes used. Here, letting — i —* j will make the
two conventions equivalent.) In this case, A(r,£) is a sinusoidal function of
time—in other words, it is time harmonic. If this is in fact the case, it is easy
to show that

^ A ( r , 0 = »e[-tu;A(r)e-'1-*].
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Subsequently, Equations (1) to (4) become

V x E ( r ) = iu;B(r), (1.1.12)
V x H(r) = -to;D(r) + J(r), (1.1.13)
V-B(r) = 0, (1.1.14)

V-D(r) = p(r). (1.1.15)

In the above, E(r), H(r), D(r), B(r), J(r), and g(r) are complex vector
or scalar functions known as phasors. Better still, a simple rule of thumb of
obtaining (12) to (15) from (1) to (4) is to replace d/dt with — «*;, and vice
versa if we were to obtain (1) to (4) from (12) to (15). Alternatively, Equa-
tions (12) to (15) can also be obtained by Fourier transforming Equations
(1) to (4) with respect to time. In this case, the phasors are actually the
Fourier transforms of the fields in the time domain, and they are functions
of frequency as well (see Exercise 1.1). Hence, the phasors are also known as
the frequency domain solutions of the field. Likewise, the solutions of (1)
to (4) are the time domain solutions. Obviously, the advantage of working
with (12) to (15) is the absence of the time dependence and time derivatives.

§§1.1.4 Constitutive Relations
Since only two of the four Maxwell's equations are independent in elec-

trodynamics, we need only work with the first two: Equations (12) and (13).
However, there are four vector unknowns, E, H, B, and D, with only two
vector equations. Hence, in order to have a sufficient number of equations for
the four unknowns, two more equations relating E, H, B, and D are needed.
This can be obtained from the constitutive relations.2

The electric and magnetic fluxes are related to the electric and magnetic
fields via the constitutive relations. These general constitutive relations in
the frequency domain have the form

D(r, u) = e(r, u) • E(r, u>) + ?(r, u) • H(r, w),
(1.1.16a)

B(r, u) = /J(r, w) • H(r, u) + <(r, u>) • E(r, w),
(1.1.16b)

where €, £, /J, and £ are 3 x 3 tensors.3 In addition, the constitutive relations
also characterize the medium that we are describing. In fact, the above
medium is also known as a bianisotropic medium because D and B are
related to both E and H. In contrast, a medium that is aniaotropic has
constitutive relations where D is only related to E, and B is only related to
H, that is,

D = € E, (1.1.17a)
B = p H. (1.1.17b)

2 Extended discussion of this topic is given in Kong (1986).
3 For a review of tensors see Appendix B.
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And the word "anisotropy" implies that relationships (16) and (17) are func-
tions of the field directions.

When e, £, /I, or £ are functions of space, the medium is also known
as an inhomogeneous medium. But when they are functions of frequency,
the medium is frequency dispersive. In this case, the relations in the time
domain correspond to convolutions. On the other hand, when the relations
are convolutions over space, the medium is spatially dispersive. Moreover,
when the tensors are functions of the fields, the medium is nonlinear. For
isotropic media, however, relationship (17) is independent of field polariza-
tions and the constitutive relations simply become

D = eE, B = / iH. (1.1.18)

In free-space, e = CQ = 8.854 x 10~12 farad/m, while /x = ^0 = 47r X 10~~7

henry/m. The constant c = 1/y/JIo^o is the velocity of light, which has been
measured very accurately. The value of //o is assigned, while the value of 60
is calculated from c. In fact, the value of //0 is chosen so that the units of
voltage and current in a laboratory experiment are not inordinately large or
small (see Exercise 1.2). More recently, a study (Cohen and Taylor 1986)
recommends that the unit of meter be redefined so that the velocity of light
is exactly 299,792,458 m/s.

§§1,1.5 Poynting Theorem and Lossless Conditions

(a) Poynting Theorem

It can be easily shown that the vector E(r,£) x H(r,£) has a dimension
of watts/m2 which is that of power density. Therefore, it may be associated
with the direction of power flow. If the fields are time harmonic, a time
average of the vector can be defined as

T

(E(r, t) x H(r,t)) = lim i / E(r, t) x H(r, t) dt. (1.1.19)
T-*OO 1 j

0

Given the phasors of time harmonic fields E(r, i) and H(r,£), namely, E(r)
and H(r) respectively, we can show that (see Exercise 1.3)

(E(r, t) x H(r, t)) = \ Ke{E(r) x H*(r)}. (1.1.20)

Here, the vector E(r) x H*(r) is also known as the complex Poynting vec-
tor. Moreover, because of its aforementioned property, and its dimension of
power density, we will study its conservative property. To do so, we take its
divergence and use the appropriate vector identity to obtain

V • (E x H*) = H*. V x E - E • V x H*. (1.1.21)
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Next, using Maxwell's equations for V x E and V x H* and the constitutive
relations for anisotropic media, we have

V (E x H*) = ia;H* B -- iu;E D* - E J*

= t u ; i r - J i .H- iu /E - r -E* -E- J* .
(1.1.22)

The above is also known as the complex Poynting theorem. It can also
be written in an integral form using Gauss' theorem, namely,

f dS - (E x H*) = iu> [ dV(H* • Ji • H - E e* - E*) - f dVE • J*.
J I I (1.1.23)

(b) Lossless Conditions

For a region V that is lossless and source-free, J = 0 and

S R e / d S ' ( E x H > 0 ,

5

because there is no net time-averaged power-flow out of or into this region
V. Therefore, because of energy conservation, the real part of the right-hand
side of (22), without the E • J* term, must be zero. In other words,

/ dV{H* • Ji • H - E • r E*) (1.1.24)

v

must be a real quantity.

Other than the possibility that the above is zero, the general requirement
for it to be real is that H*«/i-H and E-€* -E* are real quantities. But since the
conjugate transpose of a real number is itself, we have (H^/i-H)* = H*-7Z-H.
Therefore,

(H* p H)f = (H • JL* H*)£ = H* pt • H = H* Ji H. (1.1.25)

The last equality in the above is possible only if Ji = jrf (where the f im-
plies conjugate transpose and t implies transpose), or that Ji is Hermitian.
Therefore, the conditions for anisotropic media to be lossless are

Ji^jJ, € = €*, (1.1.26)

requiring the permittivity and permeability tensors to be Hermitian. Then,
for an isotropic medium, the lossless conditions are simply that ^m(fji) = 0
and 3m(e) = 0.
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If a medium is source-free, but lossy, then 5Re/dS • (E x H*) < 0. Con-
sequently, from (23), this implies

3ra / dV{W - JI - H - E • r • E*) > 0. (1.1.27)
v

But the above is the same as

i I dV[W • (pf - /Z) • H + E* • (6f - c) • E] >0. (1.1.28)
1/

Therefore, for a medium to be lossy, i{^—/i) and i(e* — e) must be Hermitian,
positive definite matrices, to ensure the inequality in (28). Similarly, for an
active medium, i(j$ — Ji) and z(e* — c) must be Hermitian, negative definite
matrices (see Exercise 1.6).

For a lossy medium which is conductive, we may define J = <r • E where

a is a conductivity tensor. In this case, Equation (23), after combining the

last two terms, may be written as

J I \ & J J

= iuj I dV[H* JIH-E?- E*], (1.1.29)

where e = e + ^ is known as the complex permittivity tensor. In this
manner, (29) has the same structure as the source-free Poynting theorem.

The quantity H* • Ji • H for lossless media is associated with the time-
averaged energy density stored in the magnetic field, while the quantity E •
c* • E* for lossless media is associated with the time-averaged energy density
stored in the electric field. Then, for lossless, source-free media, (23) implies
that

S m / d S « ( E x H * ) = a ; / dV(H* JI H - E c* E*), (1.1.30)
s v

or that
3m /dS-(ExH*)

5

is proportional to the time rate of change of the difference of the time-averaged
energy stored in the magnetic field and the electric field. Since this power
is nondissipative, it is also known as the reactive power (see Exercise 1.5).
Hence, the imaginary part of E x H* may be associated with the reactive
power density.
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§§1-1*6 Duality Principle
Maxwell's equations exhibit a certain symmetry between E and H, and

D and B. However, the absence of magnetic charges destroys the symmetry
for the sources. Nevertheless, from a mathematical viewpoint, Maxwell's
equations can be made symmetrical by introducing a magnetic current density
M and a magnetic charge density gm. In this case, (1) to (4) become

V x E(r, t) = - ^ B ( r , t) - M(r, t), (1.1.31)

V x H(r, t) = ^D(r , *) + J(r, t), (1.1.32)

V-B(r,«) = ft»(r,«), (1.1.33)
V-D(r,t) = e(r,t). (1.1.34)

The symmetry exhibited by the above equations implies that given a
solution to Maxwell's equations, with E, D, H, B, M, J, £m, and g, another
solution can be obtained by the following replacements:

E-+H, H-+E, B - > - D , D - + - B ,

M - > - J , J - • - M , Q m - + - g , Q - > - Q m > ( 1 . 1 . 3 5 )

Notice that the above replacements are nonunique and any other replacements
that make Equations (31) to (34) invariant will also suffice (see Exercise 1.7).

If the constitutive relations appear explicitly in (31) to (34), the rule for
replacements can be altered accordingly. For example, for anisotropic media,
B = Ji • H and D = e • E, a possible set of replacement rules is

E -> H, H -> E, j£ -» - ? , c -+ -/J,

M -> - J , J -> - M , Qm -> -g, g -+ ~gm. (1.1.36)

For source-free Maxwell's equations, this becomes simply

E->H, H-->E, p-^-e, €-^-/I. (1.1.37)

Even though there is no true magnetic current, one can still speak of
equivalent magnetic current. For instance, a current loop carrying an electric
current generates a field that resembles that of a magnetic dipole. Conse-
quently, in the limit when the electric current loop is very small, it is equiv-
alent to a magnetic dipole. Then, a series of current loops such as a solenoid
or a toroid generates a field similar to that generated by a magnetic current.

§1.2 Scalar Wave Equations
Certain physical phenomena can be described using only the scalar wave

equation, for example, acoustic waves and Schrodinger waves. In fact, in
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certain situations, electromagnetic waves can also be described by the scalar
wave equation. Hence, we shall study the scalar wave equation and first
illustrate the derivation of the acoustic wave equation.

§§1.2.1 Acoustic Wave Equation
The acoustic wave equation can be derived based on the conservation of

mass and conservation of momentum. Similar to the conservation of charge
expressed by Equation (1.1.5), the conservation of mass for a fluid can be
written as

V • (VQ) + ^ = 0, (1.2.1)

where g is the mass density and v is the velocity of the fluid particles. If
no external force is acting on a fluid mass, the conservation law for the i-
th component of the momentum can be written in a manner similar to (1),
giving

V • {vevt) + ^ = 0, (1.2.2)

where Vt is either vx, vy, or vz. Next, by writing the conservation law for
three components of the momentum simultaneously, we have

v" ̂ VV + iHr = °- (L2*3)

Now, if an external force density F is applied to the fluid mass, then (3)
becomes

V *̂ VV + Iff = F* (L2>4)

Furthermore, by using the conservation of mass equation given by (1), (4)
can be rewritten more simply as (see Exercise 1.8)

4 v ' V v + S r ] = F (L2'5)
Force in a fluid sets up a disturbance, giving rise to particle velocity v,

and changes in mass density g and pressure p. Before proceeding with a
perturbation analysis, we denote the equilibrium quantities by subscript 0,
and the perturbed quantities by subscript 1 as follows:

v(r,t) = vi(r,t)i (1.2.6a)
0(r,t) = &)(r) + 0i(r,t), (1.2.6b)
p(r,t)=Po(r)+pi(r,«), (1.2.6c)

where we assume v0 = 0, i.e., the fluid particles are at rest before a wave is
established. Next, assuming gx <C g0, px < p0, and vx to be a small quantity,
on substituting (6) into (1) yields

V • (vlft)) + V • (v l f t) + ^ = 0. (1.2.7)
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Then, keeping only the first order terms (assuming v\Qi to be much smaller
than the other terms), we have

^•yiQo + ~ = 0. (1.2.8)
at

The restoring force in a fluid is provided by the pressure differential set
up in it. Therefore, the force density in (5) can be shown to be (see Exercise
1.8)

F = -Vp = -Vp 0 - VP l . (1.2.9)

Then, using (6) and (9) in (5), we have

[Qo + Qi] [vi • V V l + ^ ] = "Vpo - V P l . (1.2.10)

Now, by equating the leading-order term in (10), we have

Vp0 = 0, (1.2.11)

while by keeping the first order term, we have

0O1JF = ~Vpi- (L2ll2)

Equation (11) implies that the pressure has to be uniform in the equilibrium
state. Note that this quiescent pressure need not be a constant in the presence
of a gravitational force. But over a short length-scale, the pressure gradient
induced by gravity can be ignored.

In a compressible fluid, if Vi, pu and QX are small, and constant entropy
is assumed for adiabatic compression and expansion, they can be further
linearly related as (see Exercise 1.9, see also Pierce 1981)

^ + V l • Vpo = c2 ( ^ + vx • V , o ) . (1.2.13)

Next, using (13) in (8), and making use of (11) we have

-v^+hw-0- <1214)

Then, after differentiating the above once with respect to t, we obtain

eoS/- {-W)+7>-W = o- (L2'15)

Finally, using (12) in (15) yields

<?oV • eo'VpiM) - ^ | U ( ' . < ) = 0- (L2-16)
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Equation (16) is a scalar wave equation for acoustic waves in inhomo-
geneous media. In addition, Qo(r) an<l c ( r ) &re both functions of position.
Furthermore, in the case of a homogeneous medium where go and c are con-
stants, (16) becomes

V2
Pl(r,t)-^^Pl(r,t) = 0, (1.2.17)

where c is the velocity of the wave. For a time harmonic field, however, (16)
becomes

£oV • QolVpi(r,uj) + k2
Pl(r,uj) = 0, (1.2.18)

where k = UJ/C. The above is the Helmholtz wave equation for inhomogeneous
acoustic media.

§§1.2.2 Scalar Wave Equation from Electromagnetics
Certain electromagnetic problems can even be described by the scalar

wave equation. For instance, in three dimensions, the vector wave equations
reduce to the scalar wave equations in a homogeneous, isotropic medium.

In a homogeneous, isotropic, and source-free medium, B = fiH. and D =
cE. Next, after taking the curl of Equation (1.1.12) and substituting it for
V x H from Equation (1.1.13) without the current source, we have

V x V x E(r) - u; V E(r) = 0, (1.2.19)
which is the vector wave equation for a source-free homogeneous medium.
Moreover, by using the vector identity that V x V x E = V(V • E) — V2E
and that V • E = 0 for a homogeneous, source-free medium, Equation (19)
becomes

V2E(r) + A;2E(r) = 0, (1.2.20)
where k2 = to2fie. In Cartesian coordinates, E(r) = xEx + yEy + zEz, where
i , y, and z are unit vectors independent of position. Hence, (20) consists of
three scalar wave equations,

(V2 + fc2)V(r) = 0, (1.2.21)
where ^(r) can be either Ex, Ey, or Ez. [Note that this statement is not
true in cylindrical or spherical coordinates (see Exercise 1.10).] However,
Equation (20) must be solved with V • E = 0 condition before the solution is
also admissible for (19). Hence, only two out of the three equations in (20)
are independent.

The above establishes the wave nature of Maxwell's equations, which
is a consequence of the displacement current term discovered by Maxwell.
Therefore, it is worthwhile to study more extensively the solutions of the
scalar wave equation.

§§1.2.3 Cartesian Coordinates
In Cartesian coordinates, the Laplacian operator in (21) becomes

( d2 d2 d2 \
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All r on This Plane
Have a Constant Phase

Figure 1.2.1 Constant phase front of a plane wave which is perpen-
dicular to k.

Then, ^(r) has the general solution

V>(r) = Aei{kxX+k*v+kzZ) = A^'r, (1.2.23)

where the vector k = xkx + yky + zkz is known as the propagation vector,
while the vector r = xx + yy + zz is known as the position vector. Next, after
substituting (23) into (22), we have

(-«£ - k\ - k\ + k2) 0(r) = 0. (1.2.24)

For nontrivial ^(r), we require that k2 = kl + k2 + k2, which is also known
as the dispersion relation. It implies that the propagation vector k is of a
fixed length, i.e., |k| = k, no matter what direction it is pointing.

Equation (23) denotes mathematically a plane wave propagating in the
k direction. For example, for a plane wave propagating in the x direction,
<0(r) = Aeikx and k = xk, a vector pointing in the x direction. More specifi-
cally, the function eik'r has a constant phase eiks for all r such that k • r = ks.
The locus of the tips of all such r's is a plane perpendicular to k (see Figure
1.2.1).

In addition, assuming that E(r) = Eoe*kr, we can show easily that V —>
ik. Then, by using this fact in (19), we have

- k x k x E(r) + k2E(r) = 0. (1.2.25)

Dotting the above with k implies that k • E = 0 for all plane waves. Further-
more, for a homogeneous, isotropic and source-free medium, V x E = iufjiH,
implying that k x E = w/iH and k • H = 0 for plane waves. Therefore, E,
H, and k form a right-handed system: they are mutually orthogonal.
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§§1.2,4 Cylindrical Coordinates
The scalar wave equation in cylindrical coordinates is

£&* + & + * + *)«»-• ("-»
The above partial differential equation can be solved by the separation of
variables. On the other hand, the simple d2 /d(j)2 and d2jdz2 derivatives
imply that the solutions are of the form4

</>(r) = Fn(p)ein*+ik*\ (1.2.27)

where n is an integer since the field has to be 2ir periodic in <f>. Then,
substituting (27) into (26) gives rise to

G ! 4 - 7 + O F " w = o (i-2-28)
where k2 = k2 — k2. Notice that the above is just the Bessel equation with two
linearly independent solutions. Its general solution is a linear superposition
of any two of the following four special functions5:

(i) the Bessel function Jn{kpp)\

(ii) the Neumann function Nn(kpp);

(iii) the Hankel function of the first kind Hn \kpp)\ and

(iv) the Hankel function of the second kind Hn(kpp).

Since only two of these four special functions are independent, they are
linearly related to each other, i.e.,

UKP) = \ W\kpp) + H™{kppj\ , (1.2.29a)

N»(kpP) = Yi iHn}(kpP) - Hi2)(kpp)] , (1.2.29b)
or

H^(kpP) = Jn(kpp) + iNn(kpP), (1.2.29c)

H^{kpP) = Jn(kpp) - iNn(kpp). (1.2.29d)

These special functions behave differently around the origin when the
argument kpp —» 0. For instance, for n = 0, when kpp —» 0,

Mkpp) ~ 1, N0{kpp) ~ ^ \n(kPp), (1.2.30a)

H0(kpP) ~ ^ \n(kpp), Hg\kpp) - ~ \n{kpp). (1.2.30b)

4 This form is also obtainable by separation of variables.
5 See Abramowitz and Stegun (1965).
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But for n > 0, when kpp —* 0,

(1.2.31a)

(1.2.31b)

Therefore, only the Bessel function is regular at the origin, while the other
functions are singular.

On the other hand, when kpp —> oo,

Jn(kPp) ~ J^~ cos (kpP - ^ - J ) , (L2.32a)

flix)(M ~ i/-f-e'(fc'""¥"f)' (L2-32c)
y IT KpP

HZKKP) ~ i/-|-e" i (fc '"'~¥"f)- (L2-32d)
Therefore, the Bessel function and the Neumann function are standing waves.
In contrast, Hn\kpp) is an outgoing wave, whereas H^\kpp) is an incoming
wave (assuming e~iu)t dependence), when kpp -> oo. When kpp is real, Jn(kpp)
and Nn{kpp) are real functions, whereas H^\kpp) and H^\kpp) are complex
functions. Furthermore, H^\kpp) = [jH£2)(*pp)]* in this case.

Equation (27) in general represents a cylindrical wave or a conical wave,
since for large p, the wavefront has a cone shape (see Exercise 1.11). When
Fn{p) in (27) is a H{n\kpp), then

^( r) „ Ll-e-i¥-tie^"+**'+ik'p\ (1.2.33)
y TT^P

In the above, p(f> is the arc length in the 0 direction, and n/p can be thought
of as the <f) component of the k vector if we compare (33) with (23). Con-
sequently, (33) looks like a plane wave propagating mainly in the direction
k = zkz + pkp, when p —• oo.

An important recurrence formula for solutions of the Bessel equation is

B'n(kpp) - Bn-!(kpp) ~ ^-pBn{kPp)

= -B n + i (* pp) + ^pBn{kPp), (1.2.34)
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where Bn(kpp) is either Jn(kpp), Nn(kpp), Hn\kpp), H^\kpp), or a linear
combination thereof.

§§1.2.5 Spherical Coordinates
In spherical coordinates, the scalar wave equation is

[r2 Or dr r2sm9 89 89 r2sin 9 dtp2 J

Noting the d2/d<j)2 derivative, we assume that i/j(r) is of the form

V>(r) = F{r,9)eim<f>. (1.2.36)

Then, (35) becomes

\-27Tr27r + -2^§n^0^ - -^T-a + *21 F(r,0) = 0. (1.2.37)[r2dr dr r2sm9d9 89 r2smz9 J

The above can be further simplified by the separation of variables by letting

F(r, 9) = bn(kr)P™(cos 6), (1.2.38)

where P^"(cos^) is the associate Legendre polynomial satisfying the equation

{^»^ s t a ^ + h' ' + i >-^]}^( c o 8 s »= a <L2-39>
Therefore, bn(kr) satisfies the equation

[ • ^ ^ . w ^ , ^ (,,40)
The above is just the spherical Bessel equation, and bn(kr) is either the
spherical Bessel function jn{kr), spherical Neumann function nn(kr), or the
spherical Hankel functions h^\kr) and h^\kr).

The spherical functions are related to the cylindrical functions via (see
Exercise 1.12)

K{kr) = ^^Bn+h{kr), (1.2.40a)

where bn(kr) is either jn{kr), nn{kr), h{
n

l\kr), or h{n\kr)\ while J5n+i(kr) is

either J n + i (* r ) , Nn+i(A;r), H™i{kr), or H^kr). More specifically,

C(*r) = g , *}•>(*>_-(! + £ ) £ , (1.2.41a)

^ 0 = - ^ , » » , * , , - ( l - ^ ) ^ : , (1.,4lb)

. cosfcr sinfcr cosA:r
no(A;r) = — , m(fcr) = -——. 1.2.41d

kr kr (kr)2
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Hence, the spherical functions represent spherical waves, which resemble
plane waves when r —• oo. Moreover, recurrence relations similar to (34)
can be derived for spherical Bessel functions (see Exercise 1.13, also see
Abramowitz and Stegun 1965)

§1.3 Vector Wave Equations
For an inhomogeneous, anisotropic medium, Maxwell's equations with a

fictitious magnetic current density M could be written as

V x E(r, t) = - - £ . H(r, t) - M(r, *), (1.3.1)

V x H(r, *) = JU • E(r, t) + J(r, t). (1.3.2)

Furthermore, if the fields are time harmonic, the above equations become

V x E(r) = tu//i- H(r) - M(r), (1.3.3)

V x H(r) = - t w c . E(r) + J(r). (1.3.4)

Since electromagnetic fields are vector fields, the general wave equation is a
vector wave equation. Hence, we will derive the general, time harmonic form
of the vector wave equation first.

To do so, we take the curl of JX~X • (3), and use (4), to obtain

V x JZ-1 • V x E(r) - w2e • E(r) = twJ(r) - V x / J 1 • M(r). (1.3.5a)

Similarly,

V x e - 1 . V x H(r) - u2JI • H(r) = iu M(r) + V x e ~x • J(r). (1.3.5b)

The above also follows directly from the duality principle.

Equations (5a) and (5b) are two vector wave equations governing the so-
lutions of an electromagnetic field in an inhomogeneous, anisotropic medium.
Here, p and e are assumed to be functions of positions; hence, they do not
commute with the V operator. Moreover, for time-varying fields, E and H
can be derived from each other; hence, only one of the two Equations (5a)
and (5b) is needed to fully describe electromagnetic fields.

For an inhomogeneous isotropic medium, however, the above equations
reduce to

V x /i"1 V x E(r) - u)2e E(r) = w J(r ) - V x ^ l { )
(1.3.6a)

V x e"1 V x H(r) - LJ2(I H(r) = iu M(r) + V x e"1 J ( r ) .
(1.3.6b)

As mentioned in the preceding paragraph, either one of the above equations
is self-contained. Consequently, all phenomena of electrodynamic fields in
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Figure 1.3.1 The solution to a piecewise-constant inhomogeneity can
be obtained by first obtaining the solution in each region, and then
patching the solutions together via boundary conditions.

inhomogeneous media are obtained by studying just one of them. In fact, the
two equations are derivable from each other. Furthermore, since V • e • E =
Q and V • ~fi • H = #m, the three components of E or H are not linearly
independent of each other. Hence, many electromagnetic problems can be
formulated in terms of only two of the six components in E and H.

§§1.3.1 Boundary Conditions
Equation (5a) or (5b) describes all the phenomena of electrodynamic

wave interaction with inhomogeneity. Therefore, either one of them can be
considered as the basic equation rather than Maxwell's equations for electro-
magnetic phenomena. Moreover, what is derivable from Maxwell's equations
is also derivable from the above equations. For instance, when solving prob-
lems involving piecewise-constant inhomogeneities, a common practice is to
obtain first solutions to Maxwell's equations in each region, and later, match
boundary conditions at the interfaces to obtain the solution valid everywhere
(see Figure 1.3.1). We shall show that these boundary conditions can be
derived from either one of the two vector wave equations.

To do so, we integrate (5a) about a small area between the interface of the
two inhomogeneities (see Figure 1.3.2). Then, on invoking Stokes' theorem
for the surface integral of a curl, (5a) becomes

i d l - ( p - l - V X E ) - U J 2 [ d S - e - E = iu [ d S J - < f d l - p ~ l M .
c { { I (1-3.7)

But if M is a current sheet, the last term on the right-hand side of (7) vanishes
because JZ~l • M = 0 on C.

Consequently, when 8 -» 0 (see Figure 1.3.2), the area integral on the
left-hand side of the above equation vanishes, because e • E is nonsingular at
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Figure 1.3.2 Derivation of the boundary conditions.

the interface. Moreover, if a current sheet J5 resides at the interface, then J
is singular at the interface, and

b

IdS-J= f d l ( n x l ' J s ) . (1.3.8)
A a

Similarly,

b b

/dl-(7J-1-VxE)= /dl-GHf^VxEO- /dl.(7Z2-
1-VxE2),

I I I (1-3-9)
where Ei and E2 are the fields and ̂  and ~p2 are the permeability tensors
in the two different regions. This further implies that

I'iW1 • V x Ei ) - I - (Ji2l ' V x E 2 ) = iu)h x i-38. (1.3.10)

On noticing that I = (hxl)xn on the left-hand side, and using the appropriate
vector identity, we have

h x (Jil1 • V x Ex) - n x (/LT1 - V x E 2 ) = iu Js. (1.3.11)

Since V x E = kjJL • H, the above is also the same as

nxHa-nxH2-JS) (1.3.12)

which states that the discontinuity in the tangential component of the mag-
netic field is proportional to the electric current sheet Js.

To derive another boundary condition, we rewrite Equation (5a) as

V x p - 1 • [V x E(r) + M(r)] - u2 e • E(r) = to;J(r). (1.3.13)
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Now, on the right-hand side, if J(r) is a current sheet J5, it will give rise
to a discontinuity in Ji~l • [V x E(r) + M]. However, Jl~l • [V x E(r) + M]
must be regular or nonsingular, for if it is singular, its curl will make it
doubly singular, which cannot be cancelled by any other terms in (13). But
if JL~l • [V x E(r) + M(r)] is regular, so must V x E(r) + M since ~pL~l is
nonsingular. Therefore, after integrating V x E(r) + M over A as in (7) and
letting 8 —• 0, we conclude that

nxEi-nxE2 = -Ma, (1.3.14)

where M s is a magnetic current sheet at the interface. Thus, the disconti-
nuity in the tangential component of the electric field is proportional to the
magnetic current sheet M5.

The boundary conditions (12) and (14) can also be derived more di-
rectly from Maxwell's equations. Though the derivation here is less direct,
it illustrates that these boundary conditions are inherently buried in (5a).
Similarly, they can also be extracted from (5b). In general, boundary con-
ditions are buried in the partial differential equation that governs the field
(see Exercise 1.14). This further reinforces the point that either (5a) or (5b)
alone is sufficient to describe electrodynamic phenomena in an inhomoge-
neous, anisotropic medium.

§§1.3.2 Reciprocity Theorem
The reciprocity theorem relates in a simple manner the mutual interac-

tions between two groups of sources, under certain conditions on the medium.
Such a medium is then known as a reciprocal medium. We shall show how
such a reciprocity relation can be derived from the vector wave equations.

If there are two groups of sources J i ,Mi; and J 2 ,M 2 radiating in an
anisotropic, inhomogeneous medium, where J i ,Mi produces the field E1?

and J 2 ,M 2 produces the field E2, the vector wave equations that Ei and E2

satisfy are then

V x p " 1 • V x Ei - w 2 c - E i = ivJ1 - V x ^ " 1 -Mi, (1.3.15a)

and

V x JJ~l • V x E2 - u)2 e • E2 = iu J2 - V x Ji-1 • M2. (1.3.15b)

Next, by dotting (15a) by E2 and integrating over volume, we obtain

ia;(E2 , J1)~(E2 ,Vx/[Z-1 .M1)
= (E2, V x JJ-1 • V x Ex) - u2(E2, e • EO,

(1.3.16a)

where the reaction or the inner product (A, B) = / drA • B (Rumsey 1954).
By the same token, from (15b),

iu;(Ei, J2) ~ (Ex, V x p " 1 • M2)
= (Ei,V x /I"1 • V x E2) ~u;2(Ei,€-E2).

(1.3.16b)
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The above can be rewritten using the vector identity V • (A x B) = B • V x
A - A V x B and Gauss' theorem6:

(Ei, V x JI-1 • V x Ej) = / dv (V x Ei) • / I"1 • (V x E,)

v

+ / dSh-(JJ-l'V xEj) xEj,
s (1.3.18)

where V and S are volume and surface respectively, tending to infinity (see
Figure 1.3.3). Note that now, the first term on the right-hand side of (18) is
symmetric about E* and E, Hji — Ji1.

To show the symmetry of the second term, however, more manipulation
is needed as follows: When S —* oo, it is reasonable to assume that ~p is
isotropic and homogeneous. Furthermore, the fields, which are produced by
sources of finite extent, become plane waves in the far field. Hence, V -+ zk,
which is the case for plane waves. Consequently,

(JZ-1 . V x E,) x Ei = i/io x(k x E,-) x E i = - t ^ k f E , • E,). (1.3.19)

In arriving at the above, we have used k • E* = 0 because of the plane-wave
assumption. In this manner, the surface integral in (18) is symmetric about
Ei and E,-.

6 This manipulation is also referred to as integration by parts. It is the generalization of
integration by parts in one dimension to higher dimensions and vector fields.

Figure 1.3.3 Derivation of the reciprocity relation.

The second terms on the right-hand side of (16a) and (16b) are equal if
c = c*. It is unclear if the first terms on the right-hand side of (16a) and
(16b) are the same, but they are of the form

(Ei, V x JI~l • V x Ej) = / dr Ei • V x Ji~l - V x E,, (1.3.17)

v
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From the above, the right-hand sides of (16a) and (16b) are equal only if

Jx = Jl\ e = e\ (1.3.20)

i.e., when JZ and e are symmetric tensors. Consequently, Equation (20) im-
plies that

iuj{E2, Ji) - (E2, V x ~jj~l • Mi) = iu>(Ex, J2> - (Ei, V x Ji~l • M2).
(1.3.21)

Moreover, using the vector identity used for Equation (18), we can show that

(E2,Vx ji^-Mi) = [ dr(V xE2)'jI-
l'Ml = iu f drH2'Ml.

I v (1-3.22)

The last equality follows because Ji = Jbl. Hence, (21) is identical to

(E2, Jx) - (U2iMi) = (E l f J2> - (Hi ,M 2) , (1.3.23)
which is the reciprocal theorem. Note that the above describes a mutually
reciprocal relationship.

One side of Equation (23) describes the mutual interaction between the
field of one group of sources with another group of sources. This mutual in-
teraction is only reciprocal if the medium satisfies the conditions of Equation
(20). A medium for which conditions given by Equation (20) hold, implying
the reciprocal relationship (23), is known as a reciprocal medium. We shall
see later that the reciprocal nature of (23) is due to the symmetric nature of
the vector wave Equation (15). Scalar wave equations with similar symmetry
also have an analogous reciprocal relation (see Exercise 1.14).

The reaction (E*, 3j) and (H;,M ;) can be thought of as generalized mea-
surements. Physically, Equation (23) states that the field resulting from Jx,
Mi measured by J2 , M2 is the same as the field resulting from J2, M2 mea-
sured by J1? Mi. Examples of reciprocal media are free-space and lossy
media—a medium can be lossy and still be reciprocal! Examples of nonre-
ciprocal media are plasma and ferrite media biased by a magnetic field.

§§1.3.3 Plane Wave in Homogeneous, Anisotropic Media
A plane wave is the simplest of the wave solutions. All wave types can

be expanded in terms of plane waves as shall be shown later in Chapter
2. Therefore, we shall look for a plane-wave solution in a homogeneous,
anisotropic and source-free medium. In such a medium, the vector wave
equation from (5a) is

V xjLt"1 • V x E - o ; 2 € - E = 0. (1.3.24)

To look for a plane-wave solution to (24), we assume E to be of the form

E - E o e i k r , (1.3.25)
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where k is the k vector denoting the direction of propagation of the plane
wave. Then, substituting (25) into (24) yields

k x Ji-1 - k x Eo + J1 e - Eo = 0. (1.3.26)

Next, k x Eo can be written as fcK • Eo where K is a tensor:

U fcz fcy

kK= kz 0 ~kx , (1.3.27)
_-ky kx 0 .

which is an antisymmetric matrix in Cartesian coordinates (see Appendix B
for a review of tensors). Moreover, we can write the Cartesian components
of k in terms of direction cosines to obtain

1 0 — cos 6 sin 6 sin 4> "

cos 6 0 - sin^ cos 0 , (1.3.28)
— sin#sin</> sin 6 cos (/> 0

where fc, which is yet to be found, is the length of the k vector. Alternatively,
Equation (26) can be written as

[fc2F(M)+^2I].D0 = 0, (1.3.29)
where

F(0,4>) = K(0,(j>) • /J"1 • K(0, (j>) - e ~ \ D o = e Eo. (1.3.29a)

F(0, (j>) is only a function of angles and tensors Ji andje. Notice that for a
plane-wave solution propagating in a fixed direction, F(0, 0) is a constant
matrix.

Equation (29) corresponds to an eigenvalue problem where u2/k2 is the
eigenvalue and D o is the eigenvector. Since F is a 3 x 3 matrix, we expect the
above equations to have three eigenvalues and three eigenvectors. However,
from the V • D = 0 condition, k • D = 0. This can also be seen by dotting
Equation (26) with k and noting that k • k x A = 0. Therefore, only two out
of three components of the electric flux D are independent, implying that
only two equations in (29) are independent. Consequently, it will only yield
two eigenvalues and two eigenvectors. This can be shown easily by expressing
the field and the tensors in a coordinate system where the z axis corresponds
to the k direction of the k vector (see Exercise 1.15). Hence, the general wave
solution to (24) is of the form

2

E = a ^ e * 1 * + a2e2e i k 2 r = ] T a^-e* '* , (1.3.30)

where k; = kjk, kj is derived from the j - th eigenvalue, and e,- is derived from
the j - th eigenvector of (29). Because k is different for the two waves, they
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Note that since F is a function of angles, the eigenvalues kj or the lengths
of the kj vectors change as a function of angle, i.e., kj(O,(j)). Therefore, the
phase velocity in an anisotropic medium is also a function of angles for each
of the two types of waves. With kj changing as a function of angles, e, also
changes as a function of angles. Furthermore, since V • E ^ 0 in general,
k • E 7̂  0 for anisotropic media, unlike the case for isotropic media.

For a homogeneous, isotropic medium, the eigenvalues are degenerate
where kj = u^/JIe and kj • e3; = 0 for j = 1,2. The eigenvectors of (29) then
are any two linearly independent vectors d and e2 that are orthogonal to
k (Figure 1.3.4). Moreover, d and e2 can also be made orthogonal to each
other without loss of generality. The general solution then becomes

E - ai(k x c)e?:kr + a2(k x k x c)e*"p, (1.3.32)

where c is an arbitrary constant vector. For instance, if c = z which points
upward, then the above two waves correspond to a horizontal polarization
and a vertical polarization. The first corresponds to a transverse electric
(TE) to z wave while the second corresponds to a transverse magnetic (TM)
to z wave.

§§1.3.4 Green's Function
The Green's function of a wave equation is the solution of the wave equa-

tion for a point source. And when the solution to the wave equation due to a

Figure 1.3.4 The electric field vectors and the k vector in an isotropic
medium.

have k vectors of different lengths. Moreover, since the phase velocity for a
plane wave is defined by vp — u/k, the phase velocities for the two waves
will be different. These two waves are generally known as type I and type II
waves. Furthermore, their corresponding magnetic field can easily be derived
to be

2 2

H - Y,a3^V)~l ' k3 x eje*'* = YlaJhJe*S'T' (1.3.31)
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Figure 1.3.5 The radiation of a source s(r) in a volume V.

point source is known, the solution due to a general source can be obtained
by the principle of linear superposition (see Figure 1.3.5). This is merely a
result of the linearity of the wave equation, and that a general source is just
a linear superposition of point sources.

For example, to obtain the solution to the scalar wave equation in V in
Figure 1.3.5,

(V2 + fc2)</>(r) = s(r), (1.3.33)

we first seek the Green's function in the same V, which is the solution to the
following equation:

(V2 + k2) g(r, r') = -«(r - r'). (1.3.34)

Given #(r,r'), I/J(T) can be found easily fron the principle of linear superposi-
tion, since #(r, r') is the solution to (33) with a point source on the right-hand
side. To see this more clearly, note that an arbitrary source s(r) is just

*(r) = / dr's(r') 6{r - r'), (1.3.35)

which is actually a linear superposition of point sources in mathematical
terms. Consequently, the solution to (33) is just

i/>(r) = - j dr'g(r, r') a(r'), (1.3.36)

v

which is an integral linear superposition of the solution of (34). Moreover, it
can be seen that g(r, r') = p(r',r) from reciprocity irrespective of the shape
of V (see Exercises 1.14, 1.17).



26 PRELIMINARY BACKGROUND

To find the solution of Equation (34) for an unbounded, homogeneous
medium, one solves it in spherical coordinates with the origin at r'. By so
doing, (34) becomes

(V2 + k2) g(r) = -S(T) = -6(x) 6(y) 6(z). (1.3.37)

But due to the spherical symmetry of a point source, g(r) must also be spher-
ically symmetric. Then, for r ^ 0, the homogeneous, spherically symmetric
solution to (37) is given by

pikr p-ikr
g(r) = C +D . (1.3.38)

r r
Since sources are absent at infinity, physical grounds then imply that only an
outgoing solution can exist; hence,

gikr
g(r) = C . (1.3.39)

r
The constant C is found by matching the singularities at the origin on both
sides of (37). To do this, we substitute (39) into (37) and integrate Equation
(37) over a small volume about the origin to yield

/

fjpikr p npikr

dV V • V ^ — + / dVk2^- = - 1 . (1.3.40)
AV AV

Note that the second integral vanishes when AV —+ 0, because dV = 4nr2dr.
Moreover, the first integral in (40) can be converted into a surface integral
using Gauss' theorem to obtain

lim47rr2-^-C— = - 1 , (1.3.41)
r-o dr r v }

orC = l/4?r.

The solution to (34) must depend only on |r - r'|. Therefore, in general,

9(r,r') = g(r-r') = ̂ ^ , (1.3.42)

implying that #(r, r') is translationally invariant for unbounded, homogeneous
media. Consequently, the solution to (33), from Equation (36), is then

f eik\r-r>\

^ ) = -yrfr / ^ ̂ (O- (1.3.43)
v

The Green's function for the scalar wave equation could be used to find
the dyadic Green's function for the vector wave equation in a homogeneous,
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isotropic medium. First, notice that the vector wave equation in a homoge-
neous, isotropic medium is

V x V x E(r) - k2E(r) = iufiJ{r). (1.3.44)

Then, by using the fact that V x V x E = - V 2 E + VV • E and that V • E =
g/e = V • 3/iu)€, which follows from the continuity equation, we can rewrite
(44) as

V2E(r) -I- k2 E(r) = -iutfi [i + ^ 1 • J(r), (1.3.45)

where I is an identity operator. In Cartesian coordinates, there are actually
three scalar wave equations embedded in the above vector equation, each of
which can be solved easily in the manner of Equation (36). Consequently,

E(r) = iufi J dv'g(r' - r) [l + ̂ ] • J(r') (1.3.46)

where g{vf — r) is the unbounded medium scalar Green's function. Moreover,
by using the vector identities7 Vgf = fVg+gVf and V-gF = gV-F+(Vg)-F,
it can be shown that

J dv'g{r' - r)V'/(r') = - j dvf [Vg(vf - r)]/(r'), (1.3.47)
v v

and

fdr'[Vg(r' - r)]V • J(r') = - f drf J(r') • V'V'</(r' - r).
J J (1.3.48)

Hence, Equation (46) can be rewritten as

E(v) = iunJdr'J(r'). [l + ^ ] ^ - r ) . (1.3.49)
v

It can also be derived using scalar and vector potentials (see Exercise 1.16
and Chapter 7).

Alternatively, Equation (49) can be written as

E(r) = {up fdr'3(r')'Ge(r',r), (1.3.50)

v

7 The first identity is the same as the second identity if we think of F(r) = a/(r) where
a is an arbitrary constant vector. Since a is an arbitrary constant vector, we can cancel
it from both sides of the equation to obtain the first identity.
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where

Ge(r', r) = [l + ^ ] g(r' - r) (1.3.51)

is a dyad known as the dyadic Green's function for the electric field in an
unbounded, homogeneous medium. (A dyad is a 3 x 3 matrix that transforms
a vector to a vector. It is also a second rank tensor. See Appendix B for
details.) Even though (50) is established for an unbounded, homogeneous
medium, such a general relationship also exists in a bounded, homogeneous
medium. It could easily be shown from reciprocity that

<Jx(r), Ge(r,r'), J2(r')> = <J2(r'), Ge(r',r), Jx(r))

= ( j1(r) ,G;(r / , r ) ,J2(r ' ) ) ,
N ' (1.3.52)

where

<Ji(rO,Ge(r>),J,(r))= / [dr'dr J,(r') • Ge(r',r) • J,(r),
( Jy (1.3.52a)

is the reaction between J{ and the electric field produced by J,. Notice that
the above implies that8

G e V,r) = Ge(r,r'). (1.3.52b)

Then, by taking its transpose, (50) becomes

E(r) = iujfi /dr 'G e ( r , r ' ) • J(r'). (1.3.53)

v

Alternatively, the dyadic Green's function for an unbounded, homoge-
neous medium can also be written as

G e(r ,O = -5 [V x V x Ig(r - r') - IS(r - r')] . (1.3.54)

By substituting (53) back into (44) and writing

J(r)= fdr'I6(r-rf).J(rf), (1.3.55)

we can show quite easily that

V x V x Ge(r,r') - fc2Ge(r,r') = U(r - r'). (1.3.56)

Equation (50) or (53), due to the W operator inside the integration
operating on #(r — r'), has a singularity of l/ |r - r'|3 when r -+ r'. Conse-
quently, it has to be redefined in this case for it does not converge uniformly,

8 Similar relations also hold for scalar wave equation (see Exercise 1.17).
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specifically, when r is also in the source region occupied by J(r). Hence, at
this point, the evaluation of Equation (53) in a source region is undefined.
This singular nature of the dyadic Green's function will be addressed later in
Chapter 7.

§1.4 Huygens' Principle
Huygens' principle shows how a wave field on a surface S determines the

wave field off the surface 5. This concept can be expressed mathematically
for both scalar and vector waves. We shall first discuss the scalar wave case
first, followed by the electromagnetic wave case.

§§1-4-1 Scalar Waves

For a ^(r) that satisfies the scalar wave equation

(V2 + fc2)^(r) = 0, (1.4.1)

the corresponding scalar Green's function #(r, r') satisfies

(V2 + k2) g(r, r') = -6(r - r'). (1.4.2)
Next, on multiplying (1) by #(r,r') and (2) by t/>(r), subtracting the resultant
equations and integrating over a volume containing r', we have

j dv fo(r, r') W ( r ) - </>(r)V2<?(r, r')] = t/>(r'). (1.4.3)
v

Since gV2i/j - i/>V2g = V • {gVij) - ^Vp), the left-hand side of (3) can be
rewritten using Gauss' divergence theorem, giving9

iP(r') = fdSh- b(r,r')VV(r) - ^(r)V^(r,r')], (1.4.4)
5

where S is the surface bounding V. The above is the mathematical expression
that once ^(r) and h • V^(r) are known on S, then ip(rf) away from S could
be found.

If the volume V is bounded by S and Sinf as shown in Figure 1.4.1, then
the surface integral in (4) should include an integral over Sinj. But when
Sinj —• oo, all fields look like plane wave, and V -> fik on Sjnf . Furthermore,
g{r - r') ~ O(l/r),10 when r —> oo, and ip(r) ~ O(l/r), when r —> oo, if ^(r)
is due to a source of finite extent. Then, the integral over Sinf in (4) vanishes,

9 The equivalence of the volume integral in (3) to the surface integral in (4) is also known
as Green's theorem.

10 The symbol "O" means "of the order."
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Figure 1.4.1 The geometry for the derivation of Huygens' principle.

and (4) is valid for the case shown in Figure 1.4.1 as well. Here, the field
outside S at r' is expressible in terms of the field on S.

Notice that in deriving (4), #(r, r') has only to satisfy (2) for both r and r'
in V but no boundary condition has yet been imposed on g(r, r'). Therefore,
if we further require that #(r, r') = 0 for r G 5, then (4) becomes

</,(r') = -&dSil){v) h • Vff(r, O- (1-4.5)
s

On the other hand, if require additionally that #(r,r') satisfies (2) with the
boundary condition h • V#(r,r') = 0 for r E 5, then (4) becomes

il>(r')= &dSg{Y,Yf)h'Vil)(r). (1.4.6)
s

Equations (4), (5), and (6) are various forms of Huygens' principle de-
pending on the definition of #(r,r'). Equations (5) and (6) stipulate that
only ip(r) or n • V^(r) need be known on the surface S in order to determine
^(r'). (Note that in the above derivation, k2 could be a function of position
as well.)
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§§1.4.2 Electromagnetic Waves
In a source-free region, an electromagnetic wave satisfies the vector wave

equation
V x V x E(r) - k2 E(r) = 0. (1.4.7)

Moreover, the dyadic Green's function satisfies the equation

V x V x Ge(r,r') - k2 Ge(r,r') = IS(r - r'). (1.4.8)

Then, after post-multiplying (7) by Ge(r,r'), pre-multiplying (8) by E(r),
subtracting the resultant equations and integrating the difference over volume
V, we have

E(r') = [dV [E(r) • V x V x Ge(r, r') + V x V x E(r) • Gc(r, r')] .

i (1-4.9)

Next, using the vector identity that11

- V • [E(r) x V x Ge(r, r') + V x E(r) x Ge(r, r')]
= E(r) • V x V x Ge(r, r') - V x V x E(r) • Ge(r, r'),

(1.4.10)

Equation (9), with the help of Gauss' divergence theorem, can be written as

E(r') = - idSh- [E(r) x V x Ge(r,r') + V x E(r) x Ge(r,r')]

= -(fdS[nx E(r) • V x Ge(r,r') + ku(ihx H(r) • Ge(r,r')] .
{ (1-4.11)

The above is just the vector analogue of (4). Again, notice that (11) is
derived via the use of (8), but no boundary condition has yet been imposed
on G^r,!:') on S. Now, if we require that n x Ge(r,r /) = 0 for r 6 5, then
(11) becomes

E(r') = - idSfix E(r) • V x Ge(r,r ;), (1.4.12)
s

for it could be shown that n x H - G e = H - n x G e implying that_the second
term in (11) is zero. On the other hand, if we require that nxVxG e(r ,r ;) = 0
for r G 5, then (11) becomes

E(r') - -iu>n idSn x H(r) • Ge(r,r'). (1.4.13)

11 This identity can be established by using the identity V-(AxB) = B - V x A - A - V x B .
The equality of the volume integral in (9) to the surface integral in (11) is also known
as vector Green's theorem.
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Equations (12) and (13) state that E(r') is determined if either h x E(r) or
n x H(r) is specified on S.

It can be shown from reciprocity that (Exercise 1.18)

[G^ry^GedV), (1.4.14a)

[V x Ge(r,r')]* = V'x Gm(r',r), (1.4.14b)

where Gm(r, r') is the dyadic Green's function for magnetic field, and Ge(r, r')
is the dyadic Green's function for electric field. Then, by taking its transpose,
Equation (11) becomes

E(r') - - V x <fdSGm(r'7r) . h x E(r) - iujfi cfdS Ge(r',r) • h x H(r).
Js s (1-4.15)

Moreover, Equation (12) then becomes

E(r') = - V x I dS Gm{r', r) • h x E(r), (1.4.16)

s

while Equation (13) becomes

E(r') = -ujfi IdS}Ge{v\v) • n x H(r). (1.4.17)

s

The dyadic Green's functions in (12), (13), (16), and (17) are for a closed
cavity since boundary conditions are imposed on S for them. But the dyadic
Green's function for an unbounded, homogeneous medium can be written as

G(r.r') = i [ V x V x Ig(r - r') - I6(r - r')], (1.4.18)

VxG(r , r ' ) = V x I ( / ( r - r ' ) . (1.4.19)

Also, for unbounded homogeneous medium, Ge(r, r') = Gm(r, r'). Then, (15)
becomes

E(r') = -V'xL53(r-r ' )nxE(r) + —V'xV'x <S>dSg{r - r')nxH(r).
{ W€ { (1-4.20)

The above can be applied to the geometry in Figure 1.4.1 where r' is enclosed
in S and Sinf. However, the integral over Sinj vanishes by virtue of the
radiation condition as for (4). Then, (20) relates the field outside S at r' in
terms of only the field on S.

§1.5 Uniqueness Theorem
The uniqueness theorem provides conditions under which the solution

to the wave equation is unique. This is especially important because the
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solutions to a problem should not be indeterminate. These conditions under
which a solution to a wave equation is unique are the boundary conditions
and the radiation condition. Uniqueness also allows one to construct solutions
by inspections; if a candidate solution satisfies the conditions of uniqueness,
it is the unique solution. Because of its simplicity, the scalar wave equation
shall be examined first for greater insight into this problem.

§§2.5.1 Scalar Wave Equation
Given a scalar wave equation with a source term on the right-hand side,

we shall derive the conditions under which a solution is unique. First, assume
that there are two different solutions to the scalar wave equation, namely,

[V2 + fc2(r)]^(r) = 5(r), (1.5.1a)

[V2 + fc2(r)]02(r) = s(r), (1.5.1b)

where k2(r) includes inhomogeneities of finite extent. Then, on subtracting
the two equations, we have

[V2 + fc2(r)]^(r) = 0, (1.5.2)

where 8<f)(r) = (f>\(r) — </>2(r)- Note that the solution is unique if and only if
6<j> = 0 for all r.

Then, after multiplying (2) by <50*, integrating over volume, and using
the vector identity V • ipA = A • Vip + ipV • A, we have

/ n • (6^VS<f>) dS - f |V8<f>\2dV + / k2\6<f>\2dV = 0, (1.5.3)

S V V

where h is a unit normal to the surface S. Then, the imaginary part of the
above equation is

%m I ft- (<50*V<50) dS+ I %m(k2)\6<l>\2dV = 0. (1.5.4)

s v

Hence, if Qm[fc2(r)] ^ 0 in F , and

(i) 6<t> = 0 or n • V<50 = 0 on 5, or

(ii) 6(f> = 0 on part of S and h • V8(j> = 0 on the rest of S,

then
j^m[k2{v)]\6(j>\2dV^Q. (1.5.5)

v

Since |<50|2 is positive definite for 6<f) ^ 0, and 3m(fc2) ^ 0 in V,12 the above
is only possible if 6(j) = 0 everywhere inside V.

12 More specifically, 3m[fc2(r)] > 0, V r € V, or 3m[*2(r)] < 0, V r € V.
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Therefore, in order to guarantee uniqueness, so that 0i = 02 in V, either

(i) 0i = fa on S or h • V0i = n • V02 on 5, or

(ii) 0i = 02 on one part of 5, and h • V0i = n • V02 on the rest of 5.

The specification of 0 on S is also known as the Dirichlet boundary condition,
while the specification of h- V0, namely, the normal derivative, is also known
as the Neumann boundary condition. In words, the uniqueness theorem
says that if two solutions satisfy the same Dirichlet or Neumann boundary
condition or a mixture thereof on 5, the two solutions must be identical.

When ^sm(k2) = 0, i.e., when k2 is real, the condition 50 = 0 or n- V<50 =
0 on S in (3) does not necessarily lead to <50 = 0 in V, or uniqueness. The
reason is that solutions for 8<j) = 0i — 02 where

/ | V<50|2 dV= f k2\6<t>\2 dV (1.5.6)

v v

can exist. These are the resonance solutions in the volume V (see Exercise
1.19). These resonance solutions are the homogeneous solutions13 to the wave
Equation (1) at the real resonance frequencies of the volume V. Because
the medium is lossless, they are time harmonic solutions which satisfies the
boundary conditions, and hence, can be added to the particular solution of
(1). In fact, the particular solution usually becomes infinite at these resonance
frequencies if S(r) ^ 0.

Equation (6) implies the balance of two energies. In the case of acoustic
waves, for example, it represents the balance of the kinetic energy and the
potential energy in a volume V.

When 5m(fc2) ^ 0, however, the resonance solutions of the volume V
are exponentially decaying with time for a lossy medium [3m(fc2) > 0], and
they are exponentially growing with time for an active medium [9fm(ifc2) < 0],
But if only time harmonic solutions <f>x and 02 are permitted in (1), these
resonance solutions are automatically eliminated from the class of permissible
solutions. Hence, for a lossy medium [2m(fc2) > 0] or an active medium
[3ro(fc2) < 0], the uniqueness of the solution is guaranteed if we consider
only time harmonic solutions, namely, two solutions will be identical if they
have the same boundary conditions for 0 and h • V0 on S.u

When S —> oc or V —> oo, the number of resonance frequencies of V be-
comes denser. In fact, when S —» oo, the resonance frequencies of V become a

13 "Homogeneous solutions" is a mathematical parlance for solutions to (1) without the
source term.

14 The nonuniqueness associated with the resonance solution for a lossless medium can be
eliminated if we consider time domain solutions. In the time domain, we can set up an
initial value problem in time, e.g., by requiring all fields be zero for t < 0; thus, the
nonuniqueness problem can be removed via the causality requirement. The resonance
solution, being time harmonic, is noncausal.
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continuum implying that any real frequency could be the resonant frequency
of V. Hence, if the medium is lossless, the uniqueness of the solution is not
guaranteed at any frequency, even appropriate boundary conditions on S at
infinity, as a result of the presence of the continuum of resonance frequen-
cies. One remedy then is to introduce a small loss. With this small loss
[$>m(k) > 0], the solution is either exponentially small when r —> oo (if a
solution corresponds to an outgoing wave, eikr), or exponentially large when
r —• oo (if a solution corresponds to an incoming wave, e~tkr). Now, if the
solution is exponentially small, namely, keeping only the outgoing wave solu-
tions, it is clear that the surface integral term in (4) vanishes when 5 —̂  oo,
and the uniqueness of the solution is guaranteed. This manner of imposing
the outgoing wave condition at infinity is also known as the Sommerfeld
radiation condition (Sommerfeld 1949, p. 188). This radiation condition
can be used in the limit of a vanishing loss for an unbounded medium to
guarantee uniqueness.

§§1.5.2 Vector Wave Equation
Similar to the uniqueness conditions for the scalar wave equation, analo-

gous conditions for the vector wave equation can also be derived. First, as-
sume that there are two different solutions to a vector wave Equation (1.3.5),
i.e.,

V x Ji'1 . V x Ei(r) - u2 c • Ej(r) = S(r), (1.5.7a)

V x p - 1 • V x E2(r) - w2 6 - E2(r) = S(r), (1.5.7b)

where S(r) = iu J(r) - V x p*""1 • M(r) corresponds to a source of finite
extent. Similarly, JJ and c correspond to an inhomogeneity of finite extent.
Subtracting (7a) from (7b) then yields

V x / I " 1 . V x SE - J1 € • SE = 0, (1.5.8)

where SE = Ei — E2. The solution is unique if and only if <5E = 0. Next,
on multiplying the above by <5E*, integrating over volume V, and using the
vector identity A • V x B = - V • (A x B) + B • V x A, we have

- / h • (SE* x /J-1 • V x SE) dS + IV x <5E*. Ji~l. V x 6E dV

s v

-w2 f6E*-e-6EdV = 0.
I (1.5.9)

Since V x <5E = iwji • <5H, the above can be rewritten as

iu [h-(6E*x6H)dS + u2 /((5H*.^t.(!)H-(!)E*-€.(5E)dV = O.
{ I (1-5-10)
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Then, taking the imaginary part of (10) yields

3m liuj fn-{6E* x6H)ds\

2 r

- ^ - / [8W • {T$ - V) ' 8H + 6E* • (ef - e) • SE] dV = 0.

v (1.5.11)

But if the medium is not lossless (either lossy or active), then /I t ^ Ji
and €* T̂  e [see (1.1.2b)], and the second integral in (11) may not be zero.
Moreover, if

(i) h x <5E = 0 or n x <5H = 0 on 5, or

(ii) n x <5E = 0 on one part of S and n x <5H = 0 on the rest of 5,

the first integral in (11) vanishes. In this case,

— I [6H* • i(p* - 7Z) • tfH + (5E* • i(ef - e) • 6E] dV = 0. (1.5.12)

v

In the above, i(~p) — JZ) and i(c* - e) are Hermitian matrices. Moreover,
the integrand will be positive definite if both JL and € are lossy, and the
integrand will be negative definite if both /J and € are active (see Subsection
1.1.5). Hence, the only way for (12) to be satisfied is for 5E = 0 and SH = 0,
or that Ei = E2 and Hi = H2, implying uniqueness.

Consequently, in order for uniqueness to be guaranteed, either

(i) h x Ei = h x E2 on 5 or h x Hi = n x H2 on 5, or

(ii) n x Ej = n x E2 on a part of S while h x Hi = h x H2 on the rest
of S.

In other words, if two solutions satisfy the same boundary conditions for
tangential E or tangential H, or a mixture thereof on 5, the two solutions
must be identical.

Again, the requirement for a nonlossless condition is to eliminate the real
resonance solutions which could otherwise be time harmonic, homogeneous
solutions to (7) satisfying the boundary conditions. For example, if the ap-
propriate boundary conditions for 6E and <5H are imposed so that the first
term of (10) is zero, then

!{6W • p t . SH - 6E* • € • 6E) dV = 0. (1.5.13)

v

The above does not imply that SE or 6H equals zero, because at resonances, a
perfect balance between the energy stored in the electric field and the energy
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stored in the magnetic field is maintained. As a result, the left-hand side of
the above could vanish without having <5E and 6H be zero, which is necessary
for uniqueness. But away from the resonances of the volume F, the energy
stored in the electric field is not equal to that stored in the magnetic field.
Hence, in order for (13) to be satisfied, <5E and 6H have to be zero since
each term in (13) is positive definite for lossless media due to the Hermitian
nature of JZ and ?.

When V —• oo, as in the scalar wave equation case, some loss has to be
imposed to guarantee uniqueness. This is the same as requiring the wave to
be outgoing at infinity, namely, the radiation condition. Again, the radiation
condition can be imposed for an unbounded medium with vanishing loss to
guarantee uniqueness.

Exercises for Chapter 1

1.1 Show that Equations (1.1.12) to (1.1.15) can also be obtained from Equa-
tions (1.1.1) to (1.1.4) by Fourier transforms. In this case, we define a

oo

field A(r , f )= / due-iu>tA{r,u>).
— OO

1.2 (a) The fundamental units in electromagnetics can be considered to be
meter, kilogram, second, and coulomb. Show that 1 volt, which is 1
watt/amp, has the dimension of (kilogram meter2)/(coulomb sec2).

(b) From Maxwell's equations, show that /i0 has the dimension of (second
volt)/(meter amp), and hence, its dimension is (kilogram meter)/
(coulomb2) in the more fundamental units.

(c) If we assign the value of fj,0 to be 4?r instead of 4TT X 10~~7, what would
be the unit of coulomb in this new assignment compared to the old
unit? What would be the present value of 1 volt and 1 amp in this
new assignment?

1.3 Show that for two time harmonic functions,

(A(r,t),B(r,t)) = ±te[M*)B*(r)],

where ^l(r) and J3(r) are the phasors of ^4(r,i) and J5(r,i).

1.4 By putting an electrostatic field next to a magnetostatic field, show that
E x H is not zero, but the quantity cannot possibly correspond to power
flow.

1.5 Assume that a voltage is time harmonic, i.e., V(t) = Vbcoscjtf, and that
a current I(t) = / / cosut + IQ sine*;*, i.e., it consists of an in-phase and a
quadrature component.

(a) Find the instantaneous power due to this voltage and current, namely,
V{t)I(t).
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(b) Find the phasor representations of the voltage and current and the
complex power due to this voltage and current.

(c) Establish a relationship between the real part and reactive part of the
complex power to the instantaneous power.

(d) Show that the reactive power is due to the quadrature component of
the current, which is related to a time-varying part of the instanta-
neous power with zero-time average.

1.6 Show that the matrices i(jft — ]J) and i(e^ — e) are either zero, positive,
or negative definite. Explain the physical interpretation of each case.

1.7 Find another set of replacement rules different from Equation (1.1.36)
that will leave Maxwell's equations invariant.

1.8 (a) Derive Equation (1.2.5).

(b) In one dimension, a pressure gradient p(x) (force/unit area) is es-
tablished. Show that the force on an elemental sheet between x and
x+Ax is \p(x)— p(x+Ax)]A where A is the area of the elemental sheet.
Hence, show that the force per unit volume is \p{x) — p(x + Ax)]/Ax,
implying that the force density Fx = -dp/dx.

(c) Apply the same derivation to a cube and show that F = -Vp.

1.9 (a) In hydrodynamic problems, it is easier to formulate a concept if one
moves with the particles in a fluid. For example, if the density is
described by #(r,£), in the coordinate system which moves with a
fluid particle, then r(t) is a function of time as well. Consequently,
the total change in density in the neighborhood of the particle that
one observes is affected by r being a function of t as well. This total
change of g with respect to t is usually denoted j^g(r,t). Show that

(b) The pressure in a fluid is a function of both the density g and entropy
S, i.e., p(g, S). If one follows a fluid particle's motion, the entropy in
the vicinity of the fluid particle is constant. This can be denoted by
^ = 0. From this, deduce that

£P_dpDg^ dp PS
Dt ~~ dg'Di^dS'W

and then
dp _ dp \dg „ 1

Hence, derive Equation (1.2.13).

1.10 Explain why Equation (1.2.20) is not equivalent to three scalar wave
equations if E is decomposed into three components not in the Cartesian
coordinates.
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1.11 Sketch the wavefront of Equation (1.2.33) in three dimensions and ex-
plain why it is called a conical wave.

1.12 Using Equations (1.2.28) and (1.2.40), establish the relationship in
Equation (1.2.40a).

1.13 Show that a recurrence relationship similar to (1.2.34) for the solutions
of (1.2.40) is

Vn{kr) = bn^(kr) - ^bnikr) = -6n+1(fcr) + ^K(kr).

1.14 For a scalar wave equation, V • p""1(r)V0(r) + k2<p(r) — s(r):

(a) What is the boundary condition at an interface where p is discontin-
uous?

(b) Show that a reciprocal relationship (0i(r),s2(r)) = (02(r)>5i(r)) ex"
ists.

1.15 By considering the case where k is pointing in the z direction, prove
that Equation (1.3.29) has only two nontrivial eigenvalues, and hence,
only two nontrivial eigenvectors. Find these eigenvalues and eigenvectors.

1.16 By letting B = Vx A and E = —V0+ia;A, and starting from Maxwell's
equations, derive an expression similar to (1.3.49).

1.17 (a) Define a Green's function to be a solution of V • p*"1(r)v5r(r»r') +
k2g(r, r') = —5(r — r') and show that the solution to the equation
V • p~l(r) V^(r) + k2ftp(r) = s(r) can be written as

iP(r) = -Jdr'g(r,vf)s(r')t

(b) Using the result of Exercise 1.14, show that #(r,r') = #(r',r).

1.18 (a) In the manner of Equation (1.3.52), show that [G(r, r')]* = G(r', r)
for a dyadic Green's function defined over a bounded region.

(b) Define a magnetic field dyadic Green's function such that

H(r)=iueJdx>Gm(rJ)'M(rf).
v

From the reciprocity requirement that (M2,Hi) = - (J i ,E 2 ) , show
that [V x Ge(r,r')]f = V7 x Gm(r',r).

1.19 For the lossless scalar wave equation in a homogeneous medium like
(1.5.1):
(a) Find the resonance solutions to a box of dimension a x b x d, with

homogeneous Neumann boundary condition (n • V</> — 0) on the sides
of the box.
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(b) Show that the resonance solutions satisfy (1.5.6).

(c) At resonance, show that the nontrivial difference between two solu-
tions is still a solution satisfying the boundary condition.

(d) Describe what happens to the resonance solutions when a, fc, and
d —» oo.
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