
On the Role of Pattern Matching
in Information Theory

Aaron D. Wyner, Fellow, IEEE, Jacob Ziv, Fellow, IEEE, and Abraham J. Wyner, Member, IEEE

(Invited Paper)

In Memory of Aaron D. Wyner (1939-1997)

Abstract— In this paper, the role of pattern matching in-
formation theory is motivated and discussed. We describe the
relationship between a pattern's recurrence time and its prob-
ability under the data-generating stochastic source. We show
how this relationship has led to great advances in universal data
compression. We then describe nonasymptotic uniform bounds on
the performance of data-compression algorithms in cases where
the size of the training data that is available to the encoder
is not large enough so as to yield the asymptotic compression:
the Shannon entropy. We then discuss applications of pattern
matching and universal compression to universal prediction,
classification, and entropy estimation.

Index Terms— Information theory, source coding, universal
data compression.

I. INTRODUCTION

THE self-information of a random event or a random
message is a term coined by C. E. Shannon who defined

it to be "minus the logarithm of the probability of the random
event." The Shannon "entropy" of the stochastic source that
generated the event is the expectation of the self-information.

Shannon discovered that the entropy of a stochastic source
has a clear and important physical meaning: on average, it is
the smallest number of bits that it takes to faithfully represent
or communicate events generated from the stochastic source.

Suppose, for example, we are interested in finding efficient
representations of incoming random messages or random
events. In a broad sense, we consider three possible circum-
stances.

• The source distribution is completely known.
• The source distribution is unknown, but it belongs to a

parameterized family of probability distributions.
• The source distribution is known to be stationary and

ergodic, but no other information is available.

Manuscript received December 1, 1997; revised May 30, 1998. This work
was supported in part by the Bi-national US-Israel Science fund. The work of
A. J. Wyner was supported by the National Science Foundation under Grant
DMS-9508933.

A. D. Wyner (deceased) was with Bell Laboratories, Lucent Technologies.
J. Ziv is with the Department of Electrical Engineering, Technion-Israel

Institute of Technology, 32000 Haifa, Israel.
A. J. Wyner was with the Department of Statistics, University of California

at Berkeley, Berkeley, CA 94720 USA. He is now with the Department
of Statistics, Wharton School, University of Pennsylvania, Philadelphia, PA
19104 USA.

Publisher Item Identifier S 0018-9448(98)06082-9.

If the source distribution is completely known then there is
a wide variety of efficient and practical solutions. Shannon
himself showed how to find a code which assigns to every
random message a codeword whose length is nearly the self-
information (log likelihood) of the message.1 Consider then
the situation where the source's underlying probability law
is not completely known, which is indeed the case when
dealing with practical information sources. The obvious way to
proceed is by the "plug-in" approach: This involves estimation
of the source distribution, which is then used in the coding
algorithm in place of the unknown distribution. If, for example,
the source distribution is not specified completely but is
known to be a member of a parametric family then the
unknown parameters are readily estimated from the message
itself or from training data. The actual representation can be
accomplished by finding a Shannon code that uses codewords
whose lengths are nearly the self-information of messages
with respect to the estimated measure instead of the true
measure. With enough data the estimate will be sufficiently
close to the truth and the representation will be nearly optimal.
On the other hand, as we shall see, conventional methods
for estimating the source probability measure are not always
optimal and are rarely practical in universal settings where no
prior information is available. Consequently, we propose the
following general question:

Can we find an appropriate and universal way to estimate
the probability measure that governs the generation of
messages by the source?

This is a question of wide-ranging interest to scientists,
mathematicians, and engineers (for perhaps different reasons).
We will attempt to answer this question from the point of
view of information theory.

A natural (frequentist) understanding of the probability of
an event begins with a long realization from a stochastic
source, which we will assume to be stationary and ergodic.
The number of occurrences of a random event when divided
by the length of the realization, is nearly the probability of
the event. Thus the time between events, called the recurrence
time, is on average inversely proportional to its probability
of occurrence. For example, suppose we observed a monkey
typing at a typewriter. The number of occurrences of the

1 We call this the Shannon code. See [1] for a description.

1

pattern "CLAUDESHANNON" in the monkey manuscript is
expected to be the probability of the pattern multiplied by
the number of letters in the manuscript. Therefore, the time,
measured in letters, that it will take the monkey to type the
pattern "CLAUDESHANNON" is simply the inverse of the
probability of the pattern. Since the probability of the pattern
is easily seen to be 2 ~13 the average recurrence time is 213.
This is accurately expressed by Kac's lemma which states that
the expected time until the recurrence of a fixed pattern in
a stationary ergodic sequence is the inverse of the pattern's
probability. We can rewrite the quantity 2613 as 21 3 1 o g 2 6

which in turn is equal to 2iH, where £ is the length of the
pattern and H is defined to be log2 26.2 Thus for this pattern,
the expected log of the recurrence time divided by the length of
the pattern is not more than H. For some source distributions
it is possible to find the distribution of the recurrence time for
any fixed pattern using probabilistic and analytical techniques
[32], [33].

In the above discussion, we delt with the recurrence time for
any fixed pattern. The information theorist, on the other hand,
is interested in random messages and the recurrence time of
random patterns.

Let us introduce some notation: The random variables X{
are assumed to take values in a finite alphabet A with |A| =
A < oo. For any positive integer £ we write

Xx = Xi,X2,- - - ,Xe.

For stationary sources, define the &h-order-per-letter entropy

H{X[) = -\E\ogP{Xi).

The entropy rate is defined to be

H= lim H(X{). (1)

We define Ni to be the time of the first recurrence of X[in
the stochastic source. That is, Nt is the smallest integer N so
that a copy of X[equals X^Xi- The asymptotic equipartition
theorem (AEP) implies that for £ large enough the random
pattern is with high probability typical which means that minus
the log of the probability of X[divided by £ is nearly its
expected value H. Thus for almost every pattern (the typical
ones) Kac's theorem implies that the log of the recurrence
time divided by £ is nearly H. This is stated formally in the
following theorem:

A Recurrence Time Theorem [8]-[10]: Let Nt be the first
recurrence of pattern X[in a stationary, ergodic, finite-
alphabet source. Then

lim l^k = H with probability 1. (2)

In light of this result,3 it should not be at all surprising that
matching a pattern onto its first recurrence, moving backward
into the suffix of the string, turns out to be an important device

2 All logarithms will be base 2.
3 Historical Note: Convergence in probability and half of an almost sure

extension appeared first in [8]. A complete proof of almost sure convergence
first appeared in [91. A short proof can be found in flOl.

for generating an efficient estimate for the probability of the
pattern.

What is surprising is that the recurrence time may be the
only available tool for estimating probabilities while other
more "intuitive" estimates are useless. There is, of course,
a significant practical problem: For a given sequence of letters
Xi and a fixed £, it may be that N^ > n. To avoid this
uncertainty, we turn the problem inside out and consider a
different kind of pattern matching.

Define Ln to be the "longest match" of any prefix of the
incoming sequence Xf° into the sequence X ^ n + 1 of the n
most recent observations. Mathematically, the longest match
behaves like the recurrence time since

{Ne > n} = {Ln < £}.

The following result is the match length equivalent of the
recurrence time theorem.

A Match Length Theorem [8]: Let Ln be the longest match
of the incoming sequence X^° into the past n observations
X°n + 1 . T h e n

lim —— = — in probability. (3)
n-+oo log Tl H

Let us motivate this result by establishing directly the rela-
tionship between the longest match and the probability of the
pattern. Taking our lead from renewal theory, we introduce
the stopping time T — Tn equal to the smallest k such that
— logP(Xi |X^ n + 1) > logn. For most sources it follows
(informally) that - logP(Xj r |X^ n + 1) « logn. Now consider
a pattern of length £ = T + 8, where 8 is any positive integer.
From the linearity of expectations it is easy to see that if
Sn(X() is the number of occurrences of X[in X ^ n + 1 then

ESn {Xi) = nEP(Xi) * EP{X™ \ X?). (4)

For 8 large the right-hand side of (4) is small which implies
that strings longer than T are not expected to appear even once
in the past n observations; this in turn implies that Ln < £.
Now let £ = T - 8. Then

ESn(Xi) = nEP(X{) » EP{X*_6+1 \ X^'6)~\ (5)

If 8 is large then the right-hand side of (5) is large which
implies that we expect many occurrences of X[in the past n
observations; this in turn implies that Ln > £.

Taken together, we have shown that the longest match is
likely to be sandwiched between T-8 and T+8. To prove this
precisely we would need to show 1) if the expected number
of pattern occurrences is larg, than the probability of at least
one occurrence is close to one; and 2) that the maximum
conditional probability of any pattern goes to zero sufficiently
fast. For sources with vanishing memory these conditions are
satisfied, and the random variable A = \Ln — T\ is not too
large [14].

In summary, we have established the connection between
the match length and the probability of a pattern: the longest
match is approximately the first prefix of Xf° whose proba-
bility is less than ^.

2

We shall see, in Section II, that that this approach is efficient
and enormously practical. Consequently, pattern matching has
blossomed into an important tool for information theorists,
especially when no knowledge of the underlying probability
measure is available.

In this paper we describe the role of pattern matching in
information theory. In Section II, we develop a general way
to use recurrence times and patterns to estimate a probability
measure, specifically in order to construct, improve, and
analyze universal coding algorithms. We show how pattern-
matching-based data compression algorithms can achieve op-
timal compression rates. We then show how some string-
matching algorithms for universal data compression are not
only asymptotically optimal when the length of the training set
tends to infinity, but are also optimal for intermediate amounts
of training data. In Sections III and IV we consider applications
of pattern matching and recurrence times to problems of
classification, prediction, and entropy estimation.

II. UNIVERSAL DATA COMPRESSION

As mentioned earlier, C. E. Shannon was the first one to
point out that for a given source, the entropy is the lowest
average number of bits per input letter that a noiseless (i.e.,
error-free) encoder can achieve. Indeed, for a given source
code, let L{X[) denote the length function of X\ defined to
be the number of bits that represent X[. It is well known (see,
for example [1]) that

EBZlL>H{Xi). (6)

Let L{X[) be the length function associated with the appli-
cation of the Shannon coding algorithm, which can easily be
applied when the source probabilities are known. This length
function satisfies

- log P{X[) < L(X() < - log P{X[) + 1
hence

H{X{)<\EL(X{)<H{X{)+\.

Thus with £ going to infinity, it follows that H is the lowest
ACHIEVABLE average number of bits per source letter for
any given stationary source.

Sometimes, no a priori information about the underlying
statistics of the source is available. To formulate a represen-
tation of our random event in such a circumstance we can
utilize various different universal data compression algorithms
that take the following forms:

A) Universal data-compression algorithms that operate on
the input sequence that is to be compressed. These
algorithms may be adaptable to empirical statistics
generated by the sequence itself.

B) Universal data-compression algorithms that utilize a
finite "training sequence" which was either emitted by
the same source, or some other finite binary vector that
conveys some description of the statistics of the source.

C) Universal data compression algorithms that utilize a
training set, but are also adaptable to statistics generated
from the sequence itself.

Let us begin our exploration of universal data compression al-
gorithms of type (A). Our goal is to compress a given sequence
of n letters using those letters and no other information. Let

X™ — X\, X2, • • • Xn (7)

and let
- n-M-l

QiO^^ri E i{xr-i=4). (8)

The quantity defined in (5) is called the M-order empirical
probability measure. We also define H{X{) to be the entropy
rate of the empirical probability Q.

Now, by the concavity of the entropy function and Jensen's
inequality, it follows that

EH(X() = \E{-Y,Q{X[)\ogQ{X{)\ < H(Xi). (9)
I ae)

By [2] and [3], for any £ (smaller than n) one can, for example,
empirically evaluate Q(Xf) for each £ vector and then apply
the appropriate Shannon coding algorithm on consecutive £-
blocks. (The description of {Q{X[)} takes about Aelogn
bits.) The length function may therefore be upper-bounded by

L(XD = A'logn + £ L (^) (10)

where it is assumed that £ divides n and that the length function
^PQilf 1) is t n a t produced by the Shannon coding algorithm.
It therefore follows that if we let £ < log n, then

- logQ(Xf) < L{X() < -logQ{X() + l + o(n).

If we further assume that £ <C log n then the per-letter cost
of describing Q tends to zero. Thus taking expectation in (10),
it follows that

±EL{X?)<H(Xt) +) + Z&. (ID

Thus the expected compression of the sequence Xf is very
nearly H{X[).

This will be good if H{X[) is close to H. If £ is such
that H{X[) is not close to H we may try to close the
gap by increasing £. But increasing £ will sharply increase
the length of the description of the empirical distribution!
Good sense dictates that we try to find the £ that achieves
the shortest overall representation. It was a similar approach
that led J. Rissanen to suggest the MDL (i.e. Minimum
Description Length, see [12]) as an alternative to Shannon's
self-information for an individual sequence.

At first glance this approach appears to solve the compres-
sion problem completely; but there are drawbacks. For any I,
the compression H(X[) is achieved by introducing a coding
delay of n letters. This means that no decoding is possible until
the entire n-block has been encoded. Furthermore, if there also
exists a training set, then this approach will not necessarily
yield the best compression.

Finally, if the source belongs to a parametric family, more
efficient coding schemes (as well as achievable lower bounds)
do exist (see [3]).

3

We now introduce an alternative approach to data compres-
sion which is optimal in a very general sense, since:

• no knowledge of the source is required;
• the coding delay is not long;
• it is simple and easy to implement.

The approach uses pattern matching.

Universal Data Compression with a Training Sequence

Rather than to generate the empirical statistics from the
incoming data to be compressed, one can use past data which
was emitted by the source or some other description of the
source in order to generate an appropriate encoder for the
incoming data (this is case (B) above). With that an mind we
propose that the encoder be fed with two inputs:

a) The incoming data X[.
b) A training sequence that consists of NQ letters, emitted

by the very same source. For example, the training
sequence may consist of the most recent JVo letters,
X^NQ+1, prior to the incoming sequence Xf. If the
training set is shifted with incoming data, then the
training set is called a sliding window. If the training
sequence is not shifted then the training set is called a
fixed database.

Our first attempt at data compression in this setting is the
most intuitive approach: the plug-in method. Given the training
sequence of length 7V0, we choose an integer £ and then
compute the relative frequency Q(X[) of all ^-vectors. As-
suming that the empirical distribution is the true probability
law we then encode incoming ^-blocks using a Shannon code,
or better still, the appropriate Huffman code. The expected
compression ratio in this case will be nearly —E\ogQ(X[).
The primary concern is whether it is possible to make the
expected compression ratio close to H{X[). This may not
be the case since — jE\ogQ(X{) is not lower-bounded by
H(X[). In fact, if X[is generated independently of the
training sequence X^_NQ+1 then it follows that

-jElogQ{X()>H{X() (12)

by the concavity of the logarithmic function.
Thus in general, the highly intuitive plug-in approach, based

on frequency counting, does not always work if the length
7V0 of the training sequence is not large, even though the
distance between —E\ogQ(X[)/£ and H(X{) goes to zero
with NQ very quickly for most sources. We therefore have to
seek other encoding methods for intermediate values of No.
To this end, we resume our investigation of the connection
between a sequence's probability and its recurrence time. Our
first task is to define the first recurrence of a pattern looking
backwards into the suffix of a training sequence:

Definition: Let NeiXi^^) be the smallest integer TV > 1
such that X[= XZ^tv Pr°vided that TV < TV0. If no such
TV can be found, we let Ni(Xi_No+1) = TV0.

We will often wish to evaluate the expected recurrence time
conditional on the opening sequence. To this end, let Ext(-)

denote the conditional expectation E(- \X[). The following
simple lemma forms the basis of an enormously powerful tool.

Kac's Lemma [4], [6], [19]: For all stationary ergodic
sources, the expected recurrence time into a training sequence
of length TV0 can be bounded by

E^iN^Xi^^Kj^. (13)

Equality is achieved for TVo —• oo. It then follows by convexity
that

jE]ogNt{XLNo+1)<H{Xi). (14)

Here is a possible coding algorithm (following [5]), which is
a simplified variant of the Lempel-Ziv (LZ) algorithm [11]:
encode each block of length £ into a binary sequence. The
first bit of this sequence will be a "yes-no" flag to indicate
if Ne(Xi_No+1) < TV0. If "yes," then a copy of the sequence
X[occurs in X^_NQ+V In that case, we append the binary
encoding of the pointer iVg(-X"£iVo+1) to the location of its
most recent occurrence. If there is no such occurrence (the flag
is "no"), then we append the binary encoding of the ordinal
number of the vector Xf in Ae (which requires £\ogA bits).
We define the length function L(X[|-X"%0+1) to be the total
number of bits in the binary sequence. It is roughly equal to

1) L(X(\X°_No+1) « logNe(XiNo+l) + 0(log\ogN0),
if Ne(XiNo+1) < N0

2) L[X[I X^_NQjtl) « £\og A (no compression),
otherwise.

Recurrence Time Coding Theorem: Let 8 be some arbitrary
small positive number. For any R > 0 and any stationary
ergodic source (assume that A — 2), we define the set

TR = {x[: P(x[)<2-Rt}.

Let

Be = mm[R: Pr{TR} < 8].

For TV0 sufficiently large and any I such that B£ < ^ ^ - 8

\ EL{X[| X % o + 1) < H{X{) + O (^) + 8. (15)

Proof: Consider any TV0 and £ for which B£ < l-^f^--8.
If X[g TBe then the encoding takes at most logTV^ +
O (log log No) bits if Ni < No. Otherwise, the encoding takes
at most £ bits. Thus

EL (Xf) < E log N£ + O (log log No)

+ lPT{XitTBl,Ni>N0}

+ lPT{xieTBi}.
For any sequence X[g TBt the Markov inequality implies
that

, , ExtNi
Vr{N£>No\X{}<-^-.

4

is the binary representation of the location of the match, plus
additional bits to encode L^o as a binary string. That is, if
L(X[) = L(XI\X^_NQ+1) is the length of the binary encoding
of X[with £ = LNo, then

L{X[) » logiVo + O(loglogiVo).

In another version of the LZ algorithm, LZ-78, the training
sequence itself is parsed into unique phrases. This eliminates
the need to encode the phrase lengths, although the incoming
data is parsed into phrases that are shorter than in LZ-77. The
coding in either version is optimal as iV0 tends to infinity,
with an encoding delay that is also variable (i.e., the encoding
cannot proceed until at least LN0 + 1 letters are observed), but
is on average O (logiVo).

Perhaps the most significant advantage of the LZ algo-
rithm over the recurrence-time algorithm that is described
above is that there are no choices for the encoder since
the encoding delay is entirely data-driven. The fixed-length
blocks are replaced by variable-length blocks which are "just
right" automatically: Successive variable-length phrases are
all approximately equiprobable with common probability ^ - .
Furthermore, the approach is also very practical since no
explicit estimate of the probability needs to be computed.
There is a small price: The phrase length needs to be encoded,
although a clever encoding (see [16]) can make even these
extra bits negligible.

A Match Length Coding Theorem: Let LN0 be the longest
match of the incoming sequence Xf° into the past iVo obser-
vations X^_NQ+1. For iV0 sufficiently large

expected compression ratio

EL{XJ) ffloglogiVo /logIogiVo\
= -EL^-=H+ logiVo + O n ^ v T j - (1?)

Proof: For iV0 sufficiently large it follows from (3) that
each phrase is approximately l o^v° letters long. The encoding
of each phrase requires logiV0 bits to encode the location
of the match in the training sequence and an additional
log Ljv0 + o(loglogLiVo) bits to encode the phrase length. If
we form the compression ratio as indicated, we have the result.

We remark that we have not formally proven the conver-
gence of the LZ-77 algorithm (any variant). This would require
a convergence theorem that holds jointly for all phrases. This
is harder to prove (although intuitively true) since consecutive
phrases are not independent even if the source itself is mem-
oryless. See [6], [14], [24], [30], and [34] for complete proofs
and useful results.

In summary, we have seen how the recurrence time is
closely related to Shannon's self-information and Shannon's
entropy. We now know how to construct practical universal
coding algorithms without a priori information about the
source probability law. We also have a new interpretation of
the Shannon self-information: "the logarithm of the recurrence
time."

Applying Kac's lemma to X[$ TB£ with the smallest
probability implies

Thus

jEL(X*\xH_No+1)

<H(Xi)+0(^^^+8 + 2^. (16)

Now (16) holds for all £ and No with Bt < l-^- - 6. If No

is sufficiently large it follows from the AEP, for any 6, that
logiVo logiVo

Be<-j--6, for I = W^g

(15) follows.

Discussion: We measure performance in terms of the com-
pression ratio. The recurrence time coding encodes each £-
block using L{X[) bits. Thus the per-block compression ratio

is K
e
 l). We would like to measure the average per-block

compression ratio. Since the algorithm encodes fixed-length
blocks into variable-length strings, the average compression
ratio must be — j -u- . We point out that if the encoding
mapped variable length blocks into variable length binary
strings, then the block length £ would be random. In this case,
the expected compression can be defined as either —^ j J- or

T (X^\

E e
l . The distinction is real since the definitions result in

possibly different compression ratios, corresponding to sound
operational motivations, albeit distinct (see [14] and [29] for
a discussion).

The practical result of the coding theorem is that the
recurrence time provides a basic tool for construction of a
workable universal algorithm in the sense that as iV0 tends to
infinity the compression ratio will tend to H{X[). For most
sources, the plug-in method may satisfy the same result.

There is a complication with this algorithm: For any given
iV0 the algorithm is effective only for those I with Bt <
lo^e

N° - S. It is, therefore, essential to know the values of
Be in order to design the appropriate algorithm. The plug-in
approach has a similar problem: if the blocklength is too short
you waste data; but if it is too long, the method fails outright.

This problem is solved by replacing this universal Fixed-
to-Variable (F-V) scheme by a sliding-window version of the
universal LZ-77 algorithm [6] which is Variable-to-Variable
(V-V); it encodes blocks of variable length into variable-
length codes. This algorithm does not require the user to
choose a blocklength. The fixed-length ^-blocks are replaced
by variable-length blocks defined using the "longest match"
idea. More formally, we define

LNo = max{& : X\ = Xk_T~X for some 0 < i < No}.

The blocklength L^o is the longest prefix of the incoming
data that matches a contiguous substring in the training set. In
this context, the sequence Xx

 N° is called a phrase, and LNo

is the phrase length. As before, the encoding of each phrase

5

Pr{Xf g TBt, Nt > No} < max
1

x&Bt Pr{Xf }N0

<
2Bee

No

< 2~se.

Nonasymptotic Universal Data Compression
with a Training Sequence

Indeed, the Lempel-Ziv algorithm is optimal in the limit as
the length of the training sequence tends to infinity. What is not
at all clear, however, is if, in cases where the memory which is
constrained to some "reasonable" finite value No and a delay
that is O (logTVo), one cannot achieve better compression.

In general, a sliding-window data compression algorithm
with a training sequence of No letters, encodes substrings
(phrases) of • • • X_2 , X_i , Xo, X1 • • • Xi • • • into binary
strings. Let {s = i} denote the event that a phrase has
ended at Xi-\ and thus Xi is the first letter of the next
phrase. Conditional on {s = i}, let the training data be a
sequence Y l ^ + i (°^ *en&m ^o letters). In most applications,
the sequence Y^Q+i i s

 ^1~JVO+; ("sliding-window" case).
On the other hand, by introducing Y^o+i we may consider
other cases. The training set for fixed-database algorithms is
always a fixed vector Y2NQ+1, that may or may not be the
first No observations of X. We will, however, insist that the

distribution of Xl^-H b e t n e s a m e a s ^-~No+i-
A code consists of a collection of words

Ci = C{Yi-N\+i, s = i) = {X{;l<j< T}

that satisfy the property that no word is a prefix of any
other word, and any sequence Xf;; k > r has a word in
Ci as its prefix. Here r is the maximum allowable delay (i.e.,
the maximal length of a codeword in any of the codebooks
Cs). Since we have assumed stationarity we may restrict
our attention to the case {s = 1}. Each codeword X[
in C\ is mapped into a distinct binary vector of length
L(Xi\Y%o+1-,s = 1) ("length function"), where

^2 2-M^|y%0+1;S=i) < L

We now introduce the random variable K defined to be the
largest integer k such that X\k is a substring of Y2No+v If
no such k is found, K is defined to be zero. Thus K is the
length of the longest match moving backwards into the past
No observations. We point out that the random variable K has
the same distribution as the LZ-77 phrase lengths. Consider the
"constrained conditional entropy" defined to be

H{X1 | X°_K) = - E f l o g P ^ | X°_K)}.

It follows from (3) that K = O(logiVo) which implies that
H(Xi\X^_K) converges to H as No tends to infinity.

Our main results, presented below, connect the optimal per-
formance of universal compression algorithms (as measured
by either definition of the expected compression ratio) to the
constrained conditional entropy.

Claims:

a) Let CV(NO) be the expected compression ratio for any
universal coding algorithm, with a training sequence
of length No and a variable length (V-V) delay r =
O(logiVo). There exists a fixed blocklength universal
algorithm (F-V) with a training-sequence of length about

No, a blocklength I, and an expected compression ratio
Cf that satisfies

\Cf(N0)-Cv(N0)\<o{^f^).

b) At least for some ergodic sources, the expected compres-
sion ratio C(N0) that may be achieved by any sliding-
window universal coding algorithm with a window of
length No and a delay of no more than r — O (log NQ),
satisfies the following lower bound:

^ A f K f r f y l y o \ ^ / l o g log No \̂
G(iVo) > H[Xi \X_K) ~U{ J J

for O(loglogiVo) < I < O (log No)
c) Consider the LZ family of universal data-compression

algorithms. These are all compression algorithms that
are "dictionary-type" algorithms in the sense that they
encode incoming strings by referring to entries in a
"dictionary" of phrases from a training sequence of
length iV0.

If the training-data Y^jyo+1 is independent of the
incoming data and the source is stationary and ergodic,
then the expected per-letter compression ratio C(NQ)
satisfies the following lower bound:

C(M\ \ TT(Y I VO \ ^ l o g l o g N o ^
C{N0) > H{X1 \X_K) -CM 1

for any I < logTVo. The above lower bound holds also
for the LZ sliding-window algorithm [6] for sources with
"vanishing memory" (e.g., Markov sources) [17].

d) The Hershkovitz-Ziv (HZ) sliding-window context algo-
rithm [7] is essentially "optimal" in the sense of Claim
b) above and achieves an expected compression ratio
CHZ(NO) upper-bounded by

CRZ{N0) < H{Xi | X_K+i_l) + 0 1 1.

for O(loglogTVo) < I < O(logATo).
This holds for any ergodic source.

We leave the proof of claims a) and c) to the Appendix. The
proofs of claims b) and d) follow from claim a) and [7].

Discussion: Claims a)-d) are best understood against the
background of what is known already about the LZ algorithms.
As indicated earlier, there are two standard implementations
of the algorithm: the LZ-77 and the LZ-78. Brushing aside
minor differences in implementation, it is known that the LZ-
77 algorithm (with a training sequence of length n) achieves
a compression ratio equal to H + Hl$ffin when applied
to sources with vanishing memory (see [14]). The LZ-78
is slightly better (at least asymptotically) since it is known
(see [18]) that it achieves a compression ratio equal to H +
C*(tolbr) when applied to memoryless sources. It is also
known to be no worse than H+0 (j ^) (see [20]) for Markov
sources. In [16] it was demonstrated that the LZ-77 algorithm
can achieve the efficiency of the LZ-78 algorithm but only
if modified. As informative as these results may be, they are
nevertheless all asymptotic in character. They indicate that

6

with a Training Sequence

log log No'

eventually the compression ratio will be within a specified
distance from the entropy. In contrast, claims a)-d) establish a
nonasymptotic standard of optimal efficiency. Let us examine
each claim in turn:

In a) we learn that all universal-coding algorithms that parse
incoming data into variable-length phrases can be adapted to
parse using fixed phrases of length L We prove the claim by
construction leaving the proof for the Appendix. Of course, it
should be pointed out that this conversion involves a penalty,
but it is only O (lo§lo$NQ.y Claim a) serves mainly as a tool for
proving claims b)-d). It is interesting in its own right, however.
We point out that it follows from claim a) that both definitions
of the expected compression ratio (as defined earlier) yield
the same value.

Claim b) establishes a lower bound on the achievable
compression for at least some stationary ergodic sources. Fur-
thermore, in contrast to the lower bounds of [14], [18], and [20]
this lower bound is nonasymptotic in character. Since for any
size training set the compression will be near the constrained
conditional entropy to within terms that are O (l ofo^|^°). We
know that the constrained conditional entropy converges to
the true entropy eventually, but possibly very slowly. Thus
we get a performance bound even for training sequences of
moderate size. Since the lower bound is above the entropy,
the difference between the constrained conditional entropy
and the actual entropy is a measure of the difference between
what is realizable with a finite training set and that which is
theoretically achievable with an infinite training set (which is
equivalent to a perfect knowledge of the source statistics).

Claim c) establishes the lower bound for a specific class of
widely used algorithms. It should be pointed out that if more
is known about the source, for example, if the source is known
to be a Markov source, one can get better lower bounds than
that of c) ([14], [18], [29]).

Finally, claim d) establishes that the HZ context algorithm
is optimal in the sense of claim b).

A final point: the constrained conditional entropy is a nat-
ural alternative to the classical Shannon conditional entropy,
specifically when universal coding is on the agenda.

III. UNIVERSAL PREDICTION AND

CLASSIFICATION WITH MEMORY CONSTRAINTS

Consider the following situation: A device called a "clas-
sifier" observes a probability law Pi on ^-vectors z £ A1.
Its task is to observe data Xf, from a second probability
law Qt and decide whether Pi = Qi or else Pi and Qi are
sufficiently different according to some appropriate criterion.
Specifically, the classifier must produce a function /c(-X"i\ Pi)
which with high probability equals 0 when Pi = Qi and 1
when D£(P£ || Q£) > A, where

Di{Pl\\Qt)= E P ^) l 0 S ^

and A is a fixed parameter. The divergence Di(Pi \\Qi) is
a positive measure of "differentness" which equals 0 only
if Pi = Qi. We will require nothing of the classifier if the
divergence is greater than 0 but less than A (i.e., close enough).

Suppose that the classifier fc has sufficient memory re-
sources to store the statistics of the entire probability law Pi.
We now introduce the pattern-matching technique to provide
us with a suitable estimate of Qi which we then "plug in" to
the divergence formula. To this end, for any pattern z £ A*
let N(z, X?) be the smallest integer such N £ [1, N - £ + 1]
such that a copy of z is equal to X ^ + ^ + 1 . If z never occurs
in X? then let N(z,X?) = n + 1. For n sufficiently large,
N(z,X™) is the waiting time until pattern z occurs in string
X™. For most z (those without repetitive substructure), the
waiting time is nearly the recurrence time which implies that
the probability of z can be estimated using

In [17] it is shown that for a finite-memory source the
classification task can be completed successfully provided n
is at least 2iH+°(e\ where H is the entropy of Qi. More
formally, for sufficiently large £ and n = 2 ^ + e ^ it can be
shown that N(z, X™) < n with high probability and that

Pr j i log#(*,*?)-log ^ y < c | « l . (18)

It therefore follows (informally) from (18) that

Di(P* II Qt) = E W log XT\ W D(p* II <M-

The classifier then sets fc(X™,P£) = 1 or to 0 accordingly
as D exceeds a threshold (which depends on A). It turns out
that this technique works, but only with a slight modification.
Complete details are given in [17].

The case where two unknown Markov processes, each
represented solely by a sequence which is a realization of the
source, is discussed in [37]. There, an efficient, asymptotically
optimal estimate of the divergence between the two sources
is introduced. This estimator is based on pattern-matching
parsing of one sequence relative to the other.

Now consider a different situation. Suppose the training data
is a prefix of the incoming I letters, and Qi is some empirical
measure obtained from observations X ^ n + 1 generated from
probability law P. This is the natural setup for predicting X[
given X ° n + 1 .

It is reasonable to suppose that our best efforts at predicting
an incoming ^-vector X[is limited by our ability to empiri-
cally estimate P{X[\XQ_nJrl). Assume, for example, that the
closeness between the empirical measure and the true measure
is expressed by the requirement that the divergence between
the true probability P(X[|X°n+1) and its empirical estimate
Q(Xf |X° n + 1) be small. Specifically, we say that Q and P
are within e if

Intuitively, one may accept the idea that efficient universal
compression algorithms efficiently squeeze out of the past
history all the essential available statistics about the true

7

Qe(z) =
1

Nt{z,X?)'

Dxo_n+i(P\\Q) = -£Elog
P{X{ X\+1)
Q{x[\x\+1)

< £ .

probability law that governs the source. Hence, they should
lead to empirical estimate Q which is "close" to P.

The next result shows that no empirical estimate Q can be
too good for all stationary ergodic sources, unless the training
data is long enough so as to yield efficient universal data
compression (i.e., achieving a compression ratio close to the
entropy of the source).

Converse Claim: At least for some stationary ergodic
sources

DxonJP\\Q)>H(X1\X°_K{xl })

This follows from the fact that - logQ(Xf|X^n+1) is a
proper length-function. We can then use this length-function
as the basis for a Shannon code that will achieve an expected
compression equal to

/ W X ° n + 1) + i?xo n + i (P | |Q) .

From claim b) of the preceding section (replacing Wo by n)
this expected compression must be lower-bounded by

H(XI\X-KIXLJ)-0[-^-)-

This proves the claim.
Indeed, for large enough n

HiX^Xl^) t* H n HIX^XIK)

for some K (the "memory" of the source). Hence, unless
n is large enough so as to make, with high probability,
K(X]_n) > K, the universal prediction error (as measured
by Dxo (P II Q)) cannot vanish.

— n-\-1

On the other hand, we can also use the HZ data-compression
scheme to construct an empirical measure that works well for
values of n which are just "right," namely, for which

#(Xi|XVi)«#~#(*il^)-

Claim: Let

£ 0 2 -L H Z (x i i x - -+i)

Q{X, X_n+1) = _ _ I _ ^ i ^ _ y

where LHz(^i|^_n+i) i s t h e leng th function of the HZ
universal encoder. Then

Dxln+1(P\\Q) < H(X1\X°_K{xl_nHe)

n(X I Y° \ / log logn\-H{Xi I A_n + 1J + 01 I

for O(loglogn) < £ < O(logra).
Thus the empirical measure generated from the HZ length

functions is close to the true measure P once n satisfies

ff(X1|^(xin)«ff(X1|X°n+1).

IV. ON THE ROLE OF PATTERN

MATCHING IN ENTROPY ESTIMATION

We have seen already how a pattern-matching-based ap-
proach to estimating a probability distribution has led to
universal data compression algorithms and universal classifiers
and predictors. In this section we demonstrate, both theoret-
ically and with an example, how the entropy of a stochastic
source can be estimated using pattern matching.

Shannon discovered that the entropy of a stochastic process
has physical meanings: It measures a source's predictability
as well as its uncertainty. It is also a computable measure
of complexity. It even has a gambling interpretation [1]. The
estimation process begins with a sequence of observations
from a stochastic source. Since the entropy is a function of
the probability law, estimation can always be accomplished
by forming the empirical probability measure and calculating
the actual entropy of the estimated probability distribution. As
pointed out earlier, this "plug-in" approach is not always ac-
curate: to be successful it usually requires model assumptions
and large amounts of data. This estimate of the entropy is only
as good as the estimate of the probability measure.

We have seen that compression can be accomplished using
pattern matching in situations where a straightforward Shan-
non code is either impossible to construct or not likely to work.
Thus one should expect that entropy estimation could also
be accomplished by means of pattern matching in situations
where the probability law cannot be accurately determined.
This is indeed the case, as demonstrated below.

Let us return to the discussion of the relationship of the
recurrence time of a random sequence looking backward into
the past and the sequence's probability. We have seen that

l̂im ^ ! L ^ = -E[logP(Xf)] = H, with probability 1.

The recurrence-time theorem offers a reliable way to approxi-
mate the entropy which is widely applicable since it holds for
all stationary, ergodic sources. On the other hand, it is quite
impractical since the convergence is slow.

Stronger results are possible if P is assumed to satisfy an
appropriate vanishing memory condition. For example, given
any t > 0, it follows [31] that

Pv{NeP(X() >t}^ e x p (- J) . (19)

The result is surprisingly general: It holds for d-dimensional
random fields with memory restrictions and for I also random,
but (almost) independent of the past. An example of such a
random length is the stopping time

Ti(n) = max{/c : - log(P(X*+fc) > logn}.

Following the discussion in Section I we have (for vanishing
memory sources) that \Li(n) — Ti{n)\ = O (1), where Li(n)
is the longest match of sequence Xi,X{+i, • • • into the past
n observations: X\Zn- The entropy reappears in the theory,
since [14]

lim ̂ M = 1.
rwoo log Tl H

8

log log n
logn

-F^I^VO-OI

log log n

r(*i |X°n + i)-

TABLE I
MARKOV MODEL ENTROPY ESTIMATES

Model Order

k = 1
k = 2
k = 4

H(k)

1.98
1.98
1.93

Hi(l)[E(k,l)]

1.98 [0]
1.99 [0.15]
1.98 [0.64]

ffJ(2)[E(*,2)]

1.98 [0.1]
1.97 [0.15]
1.98 [0.92]

£j(4)[l<7(*,4)]

1.95 [2.1]
1.93 [1.7]
1.91 [0.285]

Thus it is true that for sources with an appropriate vanishing
memory condition:

ELjjn) = 1 | 0(1)
log n H log n'

Similar results hold even for processes whose memory van-
ishes quite slowly [15].

We construct an entropy-estimation algorithm based on the
mean convergence of Li(n) to jj. Consider the following: Let
k and n be chosen arbitrarily. Given observations X ^ n + 1 from
P with entropy H, let Li(n) be the match length function as
defined above. Define

F(n,fc) = - ^ U
£ Li{n)

Since the match lengths are calculated into a sliding window
of length n, we label this the "sliding-window" entropy
(SWE) estimator. In many respects, the estimate is basically
an achievable compression ratio; that is, H measures the
"compression" stripped of excess overhead which can be
substantial [11]. Thus the advantages of pattern-matching-
based coding also apply to pattern-matching-based entropy
estimation. Specifically, pattern-matching-based entropy esti-
mation is useful when one or more of the following is likely
to be true.

• The model (or model class) is unspecified.
• The effect of model mis-specification is large.
• The data has more than trivial dependencies.
• The number of observations is small. (Equivalently, the

source statistics change over time, even if the entropy
does not.)

A single real example should make some of these issues
more concrete. Since entropy is closely identified with infor-
mation and complexity, there is consequently great interest in
estimating the entropy of genetic sequences. The genetic code
is billions of bases in length (a base is one of four letters:
A, G, T or C), with a distinct time arrow and finite memory.
Yet DNA is not stationary. The code is divided into distinct
regions of known and unknown function. In this experiment
we consider 25 460 bases [36] that comprise the coding regions
(exons) of section DS02740 of the Drosophila Melanogaster
(the fruit fly).4 We choose to work only with the exons because
the exon entropy is known to be closer to the maximum of 2.
We point out that it is difficult to determine or even define
stationarity in this setting. It is hoped that the sequence of
concatenated exons will be more stationary than a contiguous

4 The entire 83 527 base pair sequence is located in Genbank, accession
number L49408.

stretch of DNA. We report that the marginal frequency of each
base remains fairly constant over the entire sequence.

We denote our sequence by X^, with TV — 25460, and
we compute the sliding-window entropy estimate for varying
parameters. As a standard of comparison, we compute plug-in
estimates of the entropy using different order Markov models.
That is, for varying k we compute the empirical probabilities
Pi(') for fc-vectors x G {A,G,C,T}k. Then we let

#(*) = £ E -Pk(x)logPk{x).
xe{A,C,G,T}k

To investigate the robustness of this procedure we take a plug-
in approach. We do not know the true empirical distribution
jPfc(-), for any k. We can, however, assume that Pk(-) is the
true distribution on ft-tuples. With this assumption in place we
can simulate from Pk{m) to generate replicates of the original
sequence, each of length 25460.

In our experiment, we generate 200 replicates for varying k:
these we label X*k for i = 1, • • •, 200. We can compute, for
any j the average of the jth-order entropy estimates over all
200 replicates. These we label H%(j). By comparing H%(j)
to H(k) we can estimate bias and measure the effect of model
mis-specification. To this end, we report the quantity

E{kj) = ^^im
K J 2-H(k)

which corresponds to the relative error in redundancy incurred
by specifying a jth-order model when the true model is A;th-
order.

The entropy estimates (see Table I) vary from 1.98 (first-
order Markov) to 1.93 (fourth-order Markov). This is a three-
fold increase in the redundancy . Observe that the relative
error is small if model is specified correctly (E(k, k) ranges
from a minimum of 0 when k = 1 to a maximum of 0.285 for
A; = 4) Thus the plug-in approach is not too bad (especially
for small fc) if the model is accurately specified. On the other
hand, the effect of model misspecification can be very large
(as measured by E(kJ) for j / k). The worst errors result
from specification of a large model when in fact a small one is
true. Significant errors are also observed when a small model
is assumed when a larger one is in fact true.

In contrast to the uncertainty of the plug-in approach, the
estimates based on pattern matching are universal and thus
no model selection is required. Since the expected difference
between Li(n) and jj tends to zero like O (j~^) there is a
considerable bias problem associated with the SWE for even
reasonably large values of n. This problem is fixable. It is
possible to estimate a model for the sequence and correct

9

TABLE II
SLIDING-WINDOW ENTROPY ESTIMATES

Window Size

64
128
512

1024

Mean Match Length

3.12
3.61
4.60
5.07

H

1.92
1.94
1.96
1.97

Bias-Corrected H

1.86
1.89
1.92
1.94

V. CONCLUDING REMARKS

We have tried to motivate and explain applications of
pattern matching to a variety of problems in information
theory. Although it has been more than twenty years since
the publication of [11] and ten years since [8] we are still
surprised at how easily and thoroughly pattern matching is
able to uncover information about a probability measure. In our
paper, we chose to restrict our discussion of pattern matching
to fundamental concerns and basic applications. Regrettably,
we have omitted discussion of a great variety of substantial and
important works. Indeed, the literature on the subject continues
to grow in a variety of directions.

One area of great activity concerns the extension of pattern
matching ideas to approximate string matching and "lossy"
data compression. This work has led to a variety of noisy data
compression algorithms based on LZ that are also character-
ized by small computational complexity. There are a number of
publications that discuss the role pattern matching in lossy data
compression [18], [22], [24]-[28], [37]. It seems, however,
that low computational complexity is achievable only at the
expense of yielding a nonoptimal distortion.

APPENDIX

Kac's lemma states that the average distance between oc-
currences of a fixed pattern is equal to the inverse of the
probability of the pattern. Consider now the fixed pattern
#lfc+i- In any long realization the proportion of times the pat-
tern x[occurs after x°__k+1 will be nearly P{X[= xl\x°_k+1).
Equivalently, we would expect

1

P(X< = x{\x<Lk+1)

occurrences of xQ_k+1 for every occurrence of x[.
Below we state the conditional version of Kac's lemma. In

[7] this lemma is used to analyze the HZ context algorithm.
On its own, it yields an efficient data compression scheme,
although not necessarily as efficient as the "optimal" HZ
algorithm.

Modified Kac's Lemma [7]: Let Ne+k be the time of the
first recurrence of the pattern Xik+1 moving backward into
the training sequence X^No+v If there is no recurrence then
let Nk+i = No:

a)

^i^EH^+i-^*Vi}j

- p O r ' l V o — V (20)

(Equality is achieved for NQ —• oo.) We could then
average over Xf.fc+1 to prove

b)

-£iog£ i{i:i+1_-iVi}
i = l

<H{Xl\X°_k+1).

10

for this bias again using the bootstrap (see [35]).5 As before,
we would generate replicates of X^ using a parametric
approximation for the unknown "source" that generated the
DNA sequence. The entropy of each replicate can then be
computed using the SWE for varying window sizes. These
values would then be subtracted from the known entropy of
the replicate sequence, and then averaged over all replicates to
estimate the bias of the SWE. Correcting for bias has the effect
of restoring the natural entropy scaling (with a maximum of 2).
We present in Table II the SWE estimates of the entropy, both
bias-corrected and unconnected, computed for varying choices
in n (the window size). From Table II we notice that the size of
the bias adjustments diminish as n increases. This follows from
the theory which predicts a bias proportional to j — ^ . Observe
also that the uncorrected entropy estimates increase in n, which
is surprising since entropy estimates usually decrease as the
window size increases (this is analogous to improvements in
code performance as blocklength and delay increase). This is
evidence that the substantial drop in entropy is due to local
features in the genetic code. We confirm this by computing the
quantities Li equal to largest k such that a copy of the sequence
x%+k-i ^s c o n t a m e c j anywhere in the sequence. The main
difference between Li and Li(n) is the latter only looks for
matches into the past n observations but the former searches
through the entire sequence, front and back. The resulting
estimate was proposes by Grassberger [21]

A logiV
HG = -N

i=l

where N is the total number of observations. In our example
TV = 25460. For stationary sequences the Grassberger estimate
behaves much like the SWE but only for large n (near TV).
In our example, the Grassberger estimate is 1.98. Since this
estimate is so much higher than the estimates obtained with
smaller windows we speculate that the statistics of higher order
patterns are not consistent with an assumption of stationarity
over the entire sequence (despite the approximate constancy
of the marginal frequencies).

The lowest estimate (and thus the best) is 1.86 obtained from
the SWE with a short window (likely necessary to account for
slowly changing statistics) and then adjusted for bias. In real
terms, this implies that sequence contains more than a tenth of
a bit of redundancy per symbol. For the curious, a great deal
more theory and application of this method can be found in
[15] (as applied to the English language) and [13] (as applied
to DNA).

5 Bias correction using the bootstrap is not always possible. An accepted
practice is to test the consistency of the bias-correction procedure with known
models. This has been established for the sliding-window estimate of entropy.

The HZ Universal Coding Scheme: We shall now describe
the HZ universal coding scheme which, by adaptively chang-
ing fc, fully utilizes the training sequence in an appropriate
way.

Consider blocks of length (!. Let Ho < log A and 8 be
some arbitrary positive numbers. Define £ = j and No =
£2Hoi. Furthermore, let

i = max{i : iV^+i(X£#
JVo+1) < No - %} (21)

(i.e., X1^ is the longest Xl'-+1 that re-occurs in X l ' ^ 1 ^) .
Let

^ (X _ N o + 1) - j ^ otherwise. (2 2)

The block Xf' is encoded into a binary string which consists
of the binary expansion of K(X^NQ+1) (about log£ bits),
followed by the binary expansion of the pointer to the first
occurrence of Xf in X i ^ * + 1 among all £' vectors with a
prefix that is equal to

x?-i

*(xi'iVo + l)-

(This takes about \ogN£l+l(X^No+l) + loglog7V0 bits.)

Proof of Claim a): Assume that one is given a coding pro-
cedure that parses a long block #" into variable-length phrases,
using sliding-window or fixed-database training sequence, then
apply the appropriate V-V code to each phrase. The goal of
claim a) is to show that almost the same performance can be
obtained by parsing into fixed-length £ phrases and using an
F-V code on each ^phrase, where the particular code used is
allowed to depend on the past of the phrase.

Lemma 1: Let C be a complete and proper set of variable-
length words and let L(w) be the length function for the word
w. For each j , each 1 < k < j , and each xf, there are prefix
codes on A7 and on Ajj.+1 with respective length functions
Lj(Xf) and L^Xjj+JXf) such that

Lj{Xi) + L3{X{+1 | X*) < L(X{) + 2, X{ e AK

Proof: Extend L(w) to ALL words by defining L(w) =
oo if w is not in C. Fix j and define the distribution

2-L{w)

zeAJ

For each 1 < k < j , let Qj^(-) be the projection of Qj
onto Ak. Also, for each Xf, let Qj(- |Xf) be the conditional
distribution defined by the following two formulas:

n (yi I Yk\ — Qi\X\) yi c ^j
Vj^jt+i | ^ i j - y; QfZ f c) ' A H - i e A M - r

Z1.Z1 - A j

Let Lj(Xi) be the length function for the Shannon code
defined by Qj,fc() and let Lj(X^+1 |Xf) be the length function
for the Shannon code defined by Qj(- |A"f). The factorization

Q;(^)=^-,4*i*W,(*iU*ifc)

combined with the fact that, being a length function, L(w)
satisfies the Kraft inequality and therefore - log Qj(w) <
L(w), completes the proof of Lemma 1 above.

V-V to F-V Theorem: Suppose Xf is coded by a V-V
code with a training sequence of length No and delay
r = O(logATo) into a binary sequence with length L(X]L).
Given £ < r = O (log No), there is an F-V code with
blocklength £ and training sequence of length iV0, that given
the suffix X^_i+l encodes X™ into a binary sequence of
length L'(X?) such that

L'{X?)<L(X?) + jO(\og\ogN0).

Proof: Change notation so that X[is the next ^-block
to be encoded and, for the V-V original parsing of the n-
sequence, let 5(1) < 1 < e(l) be the left and right endpoints of
the parsed phrase that includes X\ and let 5(2) < £ < e(2) be
the left and right endpoints of the parsed phrase that includes
Xi. Assume that the encoder and decoder both know how the
n-sequence was parsed by the V-V code, starting from any
position 5(1).

Assume for the moment that the positions s(l),e(l),s(2),
and e(2) are known to both the encoder and the decoder.
The encoder first transmits these values to the decoder. This
requires 41ogr bits. The encoder next transmits the block
X^ using the Shannon code defined by the conditional
distribution Qe(i)-s(i)+i(" l^sm)> a s defined in Lemma 1.
The block XSJ?\^.\ i s t n e n transmitted using the V-V code, and
finally, the block X*,2x is transmitted using the Shannon code
defined by the projection of the distribution Qe(2)-s(2)+i()
onto its first £ — s(2) + 1 coordinates, as defined in Lemma 1.
The decoder, knowing the values of s(l), e(l), s(2), and e(2),
as well as the V-V code and hence the codes of Lemma 1,
can correctly decode.

However, the encoder need not know the values
s(l),e(l),s(2), and e(2). The encoder can try all possible
values s(l) ,e(l) ,s(2), and e(2) and determines the values
that produce the shortest code, transmits these values, and
uses the corresponding code. This can only improve code
performance. This, together with Lemma 1 complete the
proof of the V-V to F-V Theorem and claim a).

Proof of Claim c): We begin with the independent fixed
database. Thus the training sequence is the vector of obser-
vations Y^N o + 1 and the incoming data is X. We remind the
reader that Y has the same distribution as X. We begin the
proof by conditioning on the random event {S(l) = —t}
for any t < r. Let £ be the length of the fixed blocklength
algorithm whose expected compression is nearly the expected

11

QAw) = w € Aj.
£ 2-M*)'

Qj,k(x
k
1)= Y,Q}(xi). x{eAk

* z + .

min{lj-i'} - 1, « > 1

compression of the original variable length algorithm, by claim
a). It follows that

jEL(Xi\n0+i,X°sW;S(l))

> jH(Xl\XS(l)>Y-N0+l) - JH(SW\XS(l)fY-N0+l)

> \H(Xi\XlK) - ^ 1 .
For the sake of clarity, the unnormalized form of the entropy
function was used here. The last inequality follows specifically
from the independence of the database Y~_%0+1 and the
incoming data X. Now -S(l) < K by definition. Hence

^TPTfYi\V° Y° \^>^U(Yi\Y° \ &T

jhL{xl i Y_NO+1,XS(1)) > jH\xi \X-K) —j-•
This completes the proof of (c) for the independent fixed
database.

The proof for the LZ sliding-windoe case [6] follows along
the same lines.

ACKNOWLEDGMENT

The authors wish to thank Neri Merhav, Paul Shields,
Wojciech Szpankowsky, Jack Wolf, and Frans Willems for
valuable remarks. The V-V to F-V Theorem in the Appendix
was greatly revised and simplified by Paul Shields.

REFERENCES

[1] M. C. Thomas and J. A. Thomas, Elements of Information Theory.
New York: Wiley, 1991.

[2] B. M. Fitingof, "The compression of discrete information," Probl.
Inform. Transm., vol. 3, pp. 28-36, 1967.

[3] F. M. J. Willems, Y. M. Shtarkov, and T. J. Tjalkens, "The context-tree
weighting method: Basic properties," IEEE Trans. Inform. Theory, vol.
41, pp. 653-664, May 1995.

[4] M. Kac, "On the notion of recurrence in discrete stochastic processes,"
Bull Amer. Math. Soc, vol. 53, pp. 1002-1010, Oct. 1947.

[5] F. J. Willems, "Universal compression and repetition times," IEEE
Trans. Inform. Theory, vol. 35, pp. 54-58, Jan. 1989.

[6] A. D. Wyner and J. Ziv, "The sliding-window Lempel-Ziv algorithm
is asymptotically optimal" (Invited Paper), Proc. IEEE, vol. 82, pp.
872-877, June 1994.

[7] Y. Hershkovits and J. Ziv, "On sliding-window universal data compres-
sion with limited memory," IEEE Trans. Inform. Theory, vol. 44, pp.
66-78, Jan. 1998.

[8] A. D. Wyner and J. Ziv, "Some asymptotic properties of the entropy of
a stationary ergodic data source with applications to data compression,"
IEEE Trans. Inform. Theory, vol. 35, pp. 1250-1258, Nov. 1989.

[9] D. Ornstein and B. Weiss, "Entropy and data compression schemes,"
IEEE Trans. Inform. Theory, vol. 39, pp. 78-83, Jan. 1993.

[10] A. D. Wyner, "1994 Shannon lecture: Typical sequences an all that:
Entropy, pattern matching and data compression," IEEE Inform. Theory
Soc. Newslett, vol. 45, pp. 8-14, June 1995.

[11] J. Ziv and A. Lempel, "A universal algorithm for sequential date-
compression," IEEE Trans. Inform. Theory, vol. IT-23, pp. 337-343,
May 1977.

[12] J. Rissanen, "Universal coding, information, prediction, and estimation,"
IEEE Trans. Inform. Theory, vol. IT-30, pp. 629-636, July 1984.

[13] M. Farach, M. Noordewier, S. Savari, L. Shepp, A. Wyner, and J.
Ziv, "On the entropy of DNA: Algorithms and measurements based
on memory and rapid convergence," presented at the Symposium on
Discrete Algorithms (SODA), 1995.

[14] A. J. Wyner, "The redundancy and distribution of the phrase lengths for
the fixed-database vLempel-Ziv algorithm," IEEE Trans. Inform. Theory,
vol. 43, pp. 1452-1464, Sept. 1997.

[15] I. Kontoyiannis, P. H. Algoet, Y. M. Suhov, and A. J. Wyner, "Non-
parametric entropy estimates for stationary processes and random fields
with applications to English text," IEEE Trans. Inform. Theory, vol. 44,
pp. 1319-1327, May 1998.

[16] A. D. Wyner and A. J. Wyner, "Improved redundancy of a version of
the Lempel-Ziv algorithm," IEEE Trans. Inform. Theory, vol. 41, pp.
723-731, May 1995.

[17] A. D. Wyner and J. Ziv, "Classification with finite memory," IEEE
Trans. Inform. Theory, vol. 42, pp. 337-347, Mar. 1996.

[18] G. Louchard and W. Szpankowski, "On the average redundancy rate of
the Lempel-Ziv code," IEEE Trans. Inform. Theory, vol. 43, pp. 1-7,
Jan. 1997.

[19] P. C. Shields, The Ergodic Theory of Discrete Sample Paths. American
Math. Soc, 1996.

[20] A. Savari, "Redundancy of the Lempel-Ziv incremental parsing rule,"
IEEE Trans. Inform. Theory, vol. 43, pp. 9-21, Jan. 1997.

[21] P. Grassberger, "Estimating the information content of symbol se-
quences and efficient codes," IEEE Trans. Inform. Theory, vol. 35, pp.
669-675, May 1989.

[22] P. C. Shields, "Approximate-match waiting times for the substitu-
tion/deletion metric," preprint, submitted to ISIT-98.

[23] T. Luczak and W. Szpankowski, "A lossy data compression based
on string matching: Preliminary analysis and suboptimal algorithms,"
preprint 1997.

[24] E. H. Yang and J. C. Kieffer, "On the performance of data compression
algorithms based upon string matching," IEEE Trans. Inform. Theory,
vol. 44, pp. 47-65, Jan. 1998.

[25] Y. Steinberg and M. Gutman, "An algorithm for source coding based
upon string matching," IEEE Trans. Inform. Theory, vol. 39, pp.
877-886, May 1993.

[26] I. Kontoyiannis, "A practical lossy version of the Lempel-Ziv algorithm
that is asymptotically optimal—Part I: Memoryless sources," preprint
1998.

[27] H. Morita and K. Kobayashi, "An extension of LZW coding algorithm to
source coding subject to a fidelity criterion," in 4th Joint Swedish-Soviet
Int. Workshop on Information Theory (Gotland, Sweden, 1989), pp.
105-109.

[28] E.-h. Yang and J. C. Kieffer, "Simple universal lossy data compression
schemes derived from the Lempel-Ziv algorithm," IEEE Trans. Inform.
Theory, vol. 42, pp. 239-245, Jan. 1996.

[29] , "On the redundancy of the Lempel-Ziv Algorithm for ^-mixing
sources," IEEE Trans. Inform. Theory, vol. 43, pp. 1101-1111, July
1997.

[30] P. Jaquet and W. Szpankowski, "Autocorrelation on words and its
applications. Analysis of suffix trees by string-ruler approach," J. Comb.
Theory, Ser. A, vol. 66, pp. 237-269, 1994.

[31] A. J. Wyner, "More on recurrence and waiting times," Tech. Rep. 486,
Dept. Statist., Univ. Calif., Berkeley, to be published in Ann. Appl.
Prob., Sept. 1996.

[32] L. J. Guibas and A. M. Odlysko, " String overlaps, pattern matching,
and non-transitive games," Comb. Theory Applic, vol. 30, pp. 183-208,
1981.

[33] S.-Y. R. Li, "A martingale approach to the study of occurrence of
sequence patterns in repeated experiments," Ann. Prob., vol. 8, pp.
1171-1176, 1980.

[34] E. Plotnick, M. J. Weinberger, and J. Ziv, "Upper bounds on the
probability of sequences emitted by finite-state sources and on the
redundancy of the Lempel-Ziv algorithm," IEEE Trans. Inform. Theory,
vol. 38, pp. 66-72, Jan. 1992.

[35] B. Efron and R. Tibshirani, An Introduction to the Bootstrap. London,
U.K.: Chapman and Hall, 1993.

[36] G. Rubin, "Berkeley Drosophila Genome Project," private communica-
tion, May 1997.

[37] N. Merhav and J. Ziv, "A measure of relative entropy between individual
sequences with application to universal classification," IEEE Trans.
Inform. Theory, vol. 39, pp. 1270-1279, July 1993.

12

