CHAPTER

DEFINING ARTIFICIAL
INTELLIGENCE

1.1 BACKGROUND

Although most scientific disciplines, such as mathematics, physics, chemistry,
and biology, are well defined, the field of artificial intelligence (AI) remains
enigmatic. Indeed, Hofstadter (1985, p. 633) remarks, “The central problem of
Al is the question: What is the letter ‘a’? Donald Knuth, on hearing me make
this claim once, appended, ‘And what is the letter “i”?’—an amendment that I
gladly accept.” Despite nearly 50 years of research in the field, no widely ac-
cepted definition of artificial intelligence exists.

Artificial intelligence is sometimes defined as the manipulation of symbols
for problem solving (e.g., Buchanan and Shortliffe, 1985, p. 3) or by tautologi-
cal statements such as artificial intelligence is “the part of computer science
concerned with developing intelligent computer programs” (Waterman, 1986,
p. 10). Rich (1983, p. 1) offered, “Artificial intelligence (AI) is the study of how
to make computers do things at which, at the moment, people are better.” But
this definition, if regarded statically, precludes the very existence of artificial
intelligence. Once a computer program exceeds the capabilities of a human,
the program is no longer in the domain of Al

The majority of proffered definitions of artificial intelligence rely on com-
parisons to human behavior. Staugaard (1987, p. 23) attributes a definition to
Marvin Minsky—*“the science of making machines do things that would re-
quire intelligence if done by men”—and suggests that some define Al as the
“mechanization, or duplication, of the human thought process.” Charniak and
McDermott (1985, p. 6) offer, “Artificial intelligence is the study of mental fac-
ulties through the use of computational models,” while Schildt (1987, p. 11)
claims, “An intelligent program is one that exhibits behavior similar to that of
a human when confronted with a similar problem. It is not necessary that the
program actually solve, or attempt to solve, the problem in the same way that
a human would.”



2 CHAPTER 1 DEFINING ARTIFICIAL INTELLIGENCE

The question, “What is AI?” would become mere semantics if only the an-
swers did not suggest or imply radically different avenues of research: “Some
researchers simply want machines to do the various sorts of things that people
call intelligent. Others hope to understand what enables people to do such
things. Still other researchers want to simplify programming” (Minsky, 1991).
Yet Minsky also laments, “Why can’t we build, once and for all, machines that
grow and improve themselves by learning from experience? Why can’t we sim-
ply explain what we want, and then let our machines do experiments or read
some books or go to school, the sorts of things that people do. Our machines
today do no such things.”

1.2 THETURING TEST

Turing (1950) considered the question, “Can machines think?” Rather than
define the terms machines or think, he proposed a test which begins with three
people, a man (A), a woman (B), and an interrogator (C). The interrogator is
to be separated from both A and B, say, in a closed room (Figure 1-1) but may

Woman (B) Man (A)

]

Interrogator (C)

Figure 1-1 The Turing test. An interrogator (C) questions both a man (A) and a woman (B) and
attempts to determine which is the woman.
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ask questions of both A and B. The interrogator’s objective is to determine
which of A and B is the man and which is the woman. It is A’s objective to
cause C to make an incorrect identification. Turing (1950) provided the fol-
lowing example of a question posed to the man:

“C: Will X [C’s name for A] please tell me the length of his or her hair?”
“A: My hair is shingled, and the longest strands are about nine inches long.”

Player A may be deceitful, if he so desires. In contrast, the object for B is to
help the interrogator. Turing suggested that the probable best strategy for her
is to give truthful answers. In order that the pitch of the voice or other exter-
nal clues may not aid in C’s decision, a teleprinter was to be used for commu-
nication between the rooms.

Turing then replaced the original question, “Can machines think?” with
the following: “We now ask the question, ‘What will happen when a machine
takes the part of A in this game?’ Will the interrogator decide wrongly as of-
ten when the game is played like this as he does when the game is played be-
tween a man and a woman?” (Turing, 1950). This question separates the phys-
ical and intellectual capacities of humans. The form of interrogation prevents
C from using sensory information regarding A’s or B’s physical characteristics.
Presumably, if the interrogator were able to show no increased ability to de-
cide between A and B when the machine was playing as opposed to when the
man was playing, then the machine would be declared to have passed the test.
Whether or not the machine should then be judged capable of thinking was
left unanswered. Turing (1950) in fact dismissed the original question as being
“too meaningless to deserve discussion.”

Turing (1950) limited the possible machines to be the set of all digital com-
puters. He indicated through considerable analysis that these machines are
universal, that is, all computable processes can be executed by such machines.
With respect to the suitability of the test itself, Turing (1950) thought the game
might be weighted “too heavily against the machine. If the man were to try and
pretend to be the machine he would clearly make a very poor showing.”
(Hofstadter, 1985, pp. 514-520, relates an amusing counterexample in which he
was temporarily fooled in such a manner.)

Turing (1950) considered and rejected a number of objections to the
plausibility of a “thinking machine,” although somewhat remarkably he felt
an argument supporting the existence of extrasensory perception in humans
was the most compelling of all objections. The Lady Lovelace objection
(Countess of Lovelace, 1842), referring to a memoir by the Countess of
Lovelace on Babbage’s Analytical Engine, is the most common of present
refutations of a thinking machine. The argument asserts that a computer
can only do what it is programmed to do and therefore will never be capable
of generating anything new. Turing (1950) countered this argument by equat-
ing it with a statement that a machine can never take us by surprise. But
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he noted that machines often act in unexpected ways because the entire
determining set of initial conditions of the machine is generally unknown;
therefore, an accurate prediction of all possible behavior of the mechanism is
impossible.

Moreover, he suggested that a thinking machine should be a learning ma-
chine, capable of altering its own configuration through a series of rewards and
punishments. Thus it could modify its own programming and generate unex-
pected behavior. He speculated that “in about fifty years’ time it will be possi-
ble to programme computers, with a storage capacity of about 10° [bits], to
make them play the imitation game so well that an average interrogator will
not have more than a 70 per cent chance of making the right identification af-
ter five minutes of questioning” (Turing, 1950).

1.3 SIMULATION OF HUMAN EXPERTISE

The acceptance of the “Turing Test” focused attention on mimicking human
behavior. At the time (1950), it was beyond any reasonable consideration that
a computer could pass the Turing Test. Rather than focus on imitating human
behavior in conversation, attention was turned to more limited domains of in-
terest. Simple two-person games of strategy were selected. These games re-
ceived attention for at least three reasons: (1) Their rules are static, known to
both players, and easy to express in a computer program, (2) they are exam-
ples from a class of problems concerned with reasoning about actions, and
(3) the ability of a game-playing computer can be measured against human
experts.

The majority of research in game playing has been aimed at the develop-
ment of heuristics that can be applied to two-person, zero-sum, nonrandom
games of perfect information (Jackson, 1985). The term zero-sum indicates
that any potential gain to one player will be reflected as a corresponding loss
to the other player. The term nonrandom means that the allocation and posi-
tioning of resources in the game (e.g., pieces on a chess board) is purely de-
terministic. Perfect information indicates that both players have complete
knowledge regarding the disposition of both players’ resources (e.g., tic-tac-
toe, not poker).

The general protocol was to examine an expert’s decisions during a game
so as to discover a consistent set of parameters or questions that are evaluated
during his or her decision-making process. These conditions could then be for-
mulated in an algorithm capable of generating behavior similar to that of the
expert when faced with identical situations. It was believed that if a sufficient
quantity or “coverage” of heuristics could be programmed into the computer,
the sheer speed and infallible computational ability of the computer would en-
able it to match or even exceed the ability of the human expert.
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1.3.1 Samuel’s Checker Program

One of the earliest efforts along these lines was offered by Samuel (1959), who
wrote a computer program that learned to play checkers. Checkers was cho-
sen for several reasons: (1) There is no known algorithm that provides for a
guaranteed win or draw, (2) the game is well defined with an obvious goal,
(3) the rules are fixed and well known, (4) there are human experts who can
be consulted and against which progress of the program can be tested, and
(5) the activity is familiar to many people. The general procedure of the pro-
gram was to look ahead a few moves at a time and evaluate the resulting
board positions.

This evaluation was made with respect to several selected parameters.
These parameters were then included in a linear polynomial with variable co-
efficients. The result of the polynomial indicated the worth of the prospective
board under evaluation. The most critical and obvious parameter was the in-
ability for one side or the other to move. This can occur only once in a game
and was tested separately. Another clearly important consideration was the
relative piece advantage. Kings were given 50 percent more weight than regu-
lar pieces. Samuel (1959) tried two alternative methods for including addi-
tional parameters. Initially, Samuel himself chose these terms, but he later al-
lowed the program to make a subset selection from a large list of possible
parameters.

To determine a move, the game tree of possible new boards was searched.
A minimax procedure was used to discover the best move. The ply, or number
of levels to be searched in the tree, was initially set at three unless the next
move was a jump, the last move was a jump, or an exchange offer was possi-
ble. The analysis proceeded backward from the evaluated board position
through the tree of possible moves, with the assumption that at each move the
opponent would always attempt to minimize the machine’s score while the
machine would act to maximize its score. Under these conditions the search
was continued until these circumstances were no longer encountered or until
a maximum of 20 levels had been searched.

After initial experiments in which the selected polynomial had four terms
(piece advantage, denial of occupancy, mobility, and a hybrid term that com-
bined control of the center and piece advancement), the program was allowed
to select a subset of 16 parameters from a list of 38 chosen parameters. Samuel
allowed the computer to compete against itself; one version, Alpha, constantly
modified the coefficients and parameters of its polynomial, and the other ver-
sion, Beta, remained fixed (i.e., it was replaced by Alpha after a loss). A record
of the correlation existing between the signs of the individual term contribu-
tions in the initial scoring polynomial and the sign of the change between the
scores was maintained, along with the number of times that each particular
term with a nonzero value was used. The coefficient for the polynomial term
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of Alpha with the then-largest correlation coefficient was set at a prescribed
maximum value with proportionate values determined for all the remaining
coefficients. Samuel noted some possible instabilities with this modification
technique and developed heuristic solutions to overcome these problems.
Term replacement was made when a particular parameter had the lowest cor-
relation eight times. Upon reaching this arbitrary limit, it was placed at the
bottom of the reserve list and the first parameter in the reserve list was in-
serted into the scoring polynomial.

After a series of 28 games, Samuel described the program as being a
better-than-average player. “A detailed analysis of these results indicated that
the learning procedure did work and that the rate of learning was surprisingly
high, but that the learning was quite erratic and none too stable” (Samuel,
1959). Refinements were made to the method of altering the scoring polyno-
mial to help prevent this problem.

In 1962, at the request of Edward Feigenbaum and Julian Feldman,
Samuel arranged for a match between his program and Robert W. Nealy, a
purported former Connecticut checkers champion. Samuel’s program de-
feated Nealy, who commented (cited in Samuel, 1963):

Our game . . . did have its points. Up to the 31st move, all of our play had been
previously published, except where I evaded “the book” several times in a vain
effort to throw the computer’s timing off. At the 32-27 [a specific move] loser and
onwards, all the play is original with us, so far as I have been able to find. It is very
interesting to me to note that computer had to make several star moves in order
to get the win, and that I had several opportunities to draw otherwise. That is why
I kept the game going. The machine, therefore, played a perfect ending without
one misstep. In the matter of the end game, I have not had such competition from
any human being since 1954, when I lost my last game.

The moves of the game appear in Samuel (1963).

In retrospect, perhaps more acclaim was given to this result than was de-
served. Schaeffer (1996, p. 94) indicated that Nealy was in fact not a former
Connecticut state champion at the time of the match against Samuel’s pro-
gram, although he did earn that title in 1966, four years later. Moreover, Nealy
did not enter the U.S. Championship checkers tournament, and thus the
strength of his play at the national level was based more on opinion than on
record. Schaeffer (1996, pp. 94-95) reviewed the sequence of moves from the
Nealy match, and with the aid of Chinook (a current world champion artificial
intelligence checkers program designed by Schaeffer and his colleagues), indi-
cated that Nealy made several blunders during the game and that Samuel’s
checkers program also did not capitalize on possible opportunities. In sum, the
glowing description that Nealy gave of Samuel’s program’s endgame is well
accepted in the literature but is an overstatement of the program’s ability.
Schaeffer (1996, p. 97) also reported that, in 1966, Samuel’s program was
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played against the two persons vying for the world championship. Four games
were played against each opponent, with Samuel’s program losing all eight
matches.

1.3.2 Chess Programs

Researchers in artificial intelligence have also been concerned with develop-
ing chess programs. Initial considerations of making machines play chess date
to Charles Babbage (1792-1871). Babbage had described the Analytical
Engine, a theoretic mechanical device that was a digital computer, although
not electronic. This machine was never built (but an earlier design, the
Difference Engine, was in fact successfully constructed only as recently as
1991; Swade, 1993). Babbage recognized that, in principle, his Analytical
Engine was capable of playing games such as checkers and chess by looking
forward to possible alternative outcomes based on current potential moves.

Shannon (1950) was one of the first researchers to propose a computer
program to play chess. He, like Samuel later, chose to have an evaluation func-
tion such that a program could assess the relative worth of different configu-
rations of pieces on the board. The notion of an evaluation function has been
an integral component of every chess program ever since. The suggested pa-
rameters included material advantage, pawn formation, positions of pieces,
mobility, commitments, attacks, and options (cited in Levy and Newborn,
1991, pp. 27-28). Shannon noted that the best move can be found in at least
two ways, although the methods may be combined: (1) Search to a given num-
ber of moves ahead and then use a minimax algorithm or (2) selectively search
different branches of the game tree to different levels (i.e., moves ahead). The
second method offers the advantage of preventing the machine from wasting
time searching down branches in which one or more bad moves must be made.
This method, later termed the alpha-beta algorithm, has been incorporated in
many current chess playing programs.

Turing (1953) is credited with writing the first algorithm for automatic
chess play. He never completed programming the procedure on a computer
but was able to play at least one game by hand simulation. Turing’s evaluation
function included parameters of mobility, piece safety, castling, pawn position,
and checks and mate threats. The one recorded game (cited in Levy and
Newborn, 1991, pp. 35-38) used a search depth of two ply and then continued
the search down prospective branches until “dead” positions (e.g., mate or the
capture of an undefended piece) were reached. In this game, the algorithm was
played against “a weak human opponent” (Levy and Newborn, 1991, p. 35)
and subsequently lost. Turing attributed the weakness of the program to its
“caricature of his own play” (cited in Levy and Newborn, 1991, p. 38).

The first documented working chess program was created in 1956 at Los
Alamos. An unconfirmed account of a running program in the Soviet Union
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was reported earlier by Pravda (Levy and Newborn, 1991, p. 39). Bernstein et
al. (1958) described their computer program, which played a fair opening
game but weak middle game because the program only searched to a depth of
four ply. Newell et al. (1958) were the first to use the alpha-beta algorithm
(Shannon, 1950). Greenblatt et al. (1967) are credited with creating the first
program, called MACHACK VI, to beat a human in tournament play. The pro-
gram was made an honorary member of the United States Chess Federation
(USCEF), receiving their rating of 1640. MACHACK VI used a search of at
least nine ply.

In 1978, CHESS 4.7, a revised version of a program originally written by
Atkin, Gorlen, and Slate of Northwestern University, defeated David Levy,
Scottish chess champion, in a tournament game. Levy was “attempting to beat
the program at its own game” and returned in the next match to a “no-
nonsense approach,” presumably to win (Levy and Newborn, 1991, pp. 98,
100). BELLE, written by Thompson and Condon, was the first program that
qualified, in 1983, for the title of U.S. Master.

In the 1980s, efforts were directed at making application-specific hardware
capable of searching large numbers of possible boards and quickly calculating
appropriate evaluations. Berliner created HITECH, a 64-processor system.
Hsu produced an even more powerful chip and its resident program, now
known as DEEP THOUGHT, quickly outperformed HITECH. DEEP
THOUGHT was able to search to a level of 10 ply and became the first pro-
gram to defeat a world-class grand master, Bent Larsen. In 1989, DEEP
THOUGHT, then rated at 2745, played a four-game match against David
Levy. Levy admits, “It was the first time that [I] had ever played a program
rated higher than [I] was at [my] best” (Levy and Newborn, 1991, p. 127), and
correctly predicted that the machine would win 4-0. In 1990, Anatoly Karpoyv,
the former world champion, lost a game to a MEPHISTO chess computer
while giving a simultaneous exhibition against 24 opponents.

The pinnacle of beating a human world champion in match play finally
was achieved in May 1997 when IBM’s Deep Blue, the successor to DEEP
THOUGHT, defeated Garry Kasparov, scoring two wins, one loss, and three
draws. The previous year, Kasparov had defeated Deep Blue, scoring three
wins, one loss, and two draws. The computer horsepower behind Deep Blue in-
cluded 32 parallel processors and 512 custom chess ASICs which allowed a
search of 200 million chess positions per second (Hoan, cited in Clark, 1997).
Although the event received wide media attention and speculation that com-
puters had become “smarter than humans,” surprisingly little attention was
given to the event in scientific literature. McCarthy (1997) offered that Deep
Blue was really “a measure of our limited understanding of the principle of ar-
tificial intelligence (AI) . . . . this level of play requires many millions of
times as much computing as a human chess player does.” Indeed, there was no
automatic learning involved in Deep Blue. A. Joseph Hoan Jr., a member of
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the team that developed Deep Blue, remarked (in Clark, 1997): “we spent the
whole year with chess grand master, Joel Benjamin, basically letting him beat
up Deep Blue—making it make mistakes and fixing all those mistakes. That
process may sound a little clunky, but we never found a good way to make au-
tomatic tuning work.” Between games, adjustments were made to Deep Blue
based on Kasparov’s play, but these again were made by the humans who de-
veloped Deep Blue, not by the program itself.

Judging by the nearly linear improvement in the USCF rating of chess
programs since the 1960s (Levy and Newborn, 1991, p. 6), the efforts of re-
searchers to program computers to play chess must be regarded as highly suc-
cessful. But there is a legitimate question as to whether or not these programs
are rightly described as intelligent. Schank (1984, p. 30) commented, “The mo-
ment people succeeded in writing good chess programs, they began to wonder
whether or not they had really created a piece of Artificial Intelligence. The
programs played chess well because they could make complex calculations
with extraordinary speed, not because they knew the kinds of things that hu-
man chess masters know about chess.” Simply making machines do things that
people would describe as requiring intelligence is insufficient (cf. Staugaard,
1987, p. 23). “Such programs did not embody intelligence and did not con-
tribute to the quest for intelligent machines. A person isn’t intelligent because
he or she is a chess master; rather, that person is able to master the game of
chess because he or she is intelligent” (Schank, 1984, p. 30).

1.3.3 Expert Systems

The focus of artificial intelligence narrowed considerably from the early 1960s
through the mid-1980s (Waterman, 1986, p. 4). Initially, the desire was to cre-
ate general problem-solving programs (Newell and Simon, 1963), but when
preliminary attempts were unsuccessful, attention was turned to the discovery
of efficient search mechanisms that could process complex data structures. The
focus grew even more myopic in that research was aimed at applying these
specific search algorithms (formerly termed heuristic programming) to very
narrowly defined problems. Human experts were interrogated about their
knowledge in their particular field of expertise, and this knowledge was then
represented in a form that supported reasoning activities on a computer. Such
an expert system could offer potential advantages over human expertise: It is
“permanent, consistent, easy to transfer and document, and cheaper”
(Waterman, 1986, p. xvii). Nor does it suffer from human frailties such as ag-
ing, sickness, or fatigue.

The programming languages often used in these applications are LISP
(McCarthy et al., 1962) and Prolog (invented by Colmerauer, 1972, as cited
in Covington et al., 1988, p. 2). To answer questions that are posed to the sys-
tem, an inference engine (a program) is used to search a knowledge base.
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Knowledge is most frequently represented using first-order predicate calculus,
production rules, semantic networks, and frames. For example, a knowledge
base might include the facts: Larry is a parent of Gary and David. This might
be represented in Prolog as

1. parent(larry, gary), and
2. parent(larry, david).

(Versions of Prolog often reserve the use of capitals for variables.) If one were
to be able to interrogate about whether or not a person was a child of Larry,
the additional facts

1. child(gary, larry), and
2. child(david, larry),

or the rule

1. child(X,Y) :-
parent(Y, X).

could be included (:- denotes “if”). The computer has no intrinsic understand-
ing of the relationships “parent” or “child.” It simply has codings (termed func-
tors) that relate “gary,” “david,” and “larry.”

With the existence of such a knowledge base, it becomes possible to query
the system about the relationship between two people. For example, if one
wanted to know whether or not “david” was the parent of “gary,” one could
enter

? - parent(david, gary).

The inference engine would then search the knowledge base of rules and facts
and fail to validate “parent(david, gary)” and therefore would reply, “no.”
More general questions could be asked, such as

? - parent(larry, X).

where X is a variable. The inference engine would then search the knowledge
base, attempting to match the variable to any name it could find (in this case,
either “gary” or “david”).

Although these examples are extremely simple, it is not difficult to imagine
more complex relationships programmed in a knowledge base. The elements in
the knowledge base need not be facts, but may be conjectures with degrees of
confidence assigned by the human expert. The knowledge base may contain con-
ditional statements (production rules), such as, “IF premise THEN conclusion”
or “IF condition WITH certainty greater than x THEN action.” Through the suc-
cessive inclusion of broad-ranging truths to very specific knowledge about a lim-
ited domain, a versatile knowledge base and query system can be created.
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DENDRAL, a chemistry program that processed mass spectral and nu-
clear magnetic response data to provide information regarding the molecular
structure of unknown compounds, was one of the first such systems. The pro-
gram was started in the mid-1960s and was subsequently refined and extended
by several researchers (e.g., Feigenbaum et al., 1971; Lindsay et al., 1980).
MYCIN (Shortliffe, 1974; Adams, 1976; Buchanan and Shortliffe, 1985), a pro-
gram to diagnose bacterial infections in hospital patients, was an outgrowth of
the “knowledge-based” DENDRAL project. Other examples of well-known
knowledge-based systems can be found in Bennett and Hollander (1981), Barr
and Feigenbaum (1981), and Lenat (1983).

The expert system PROSPECTOR was developed by the Stanford
Research Institute to aid exploration geologists in the search for ore deposits
(Duda et al., 1978). Work on the system continued until 1983 (Waterman, 1986,
p. 49). Nine different mineral experts contributed to the database; it contains
over 1,000 rules and a taxonomy of geological terms with more than 1,000 en-
tries. The following sequence represents an example of PROSPECTOR re-
ceiving information from a geologist:

“l: THERE ARE DIKES
(Dike) (5)
2: THERE ARE CRETACEOUS DIORITES
(Cretaceous diorites) (5)

3: THERE IS PROBABLY SYENODIORITE
(Monzonite) (3)

4: THERE MIGHT BE SOME QUARTZ MONZONITE
(Quartz-monzonite) (2)”

(Waterman, 1986, p. 51). The values in parentheses represent the degree of cer-
tainty associated with each statement (—5 indicates complete certainty of ab-
sence while +5 indicates complete certainty of existence). The nouns in paren-
theses represent the internally stored name for the substance described.
Through subsequent questioning of the human expert by the expert system,
the program is able to offer a conjecture such as

My certainty in (PCDA) [Type-A porphyry copper deposit] is now: 1.683

followed by a detailed listing of the rules and facts that were used to come to
this conclusion.

In 1980, PROSPECTOR was used to analyze a test drilling site near
Mount Tolman in eastern Washington that had been partially explored.
PROSPECTOR processed information regarding the geological, geophysical,
and geochemical data describing the region and predicted the existence of
molybdenum in a particular location (Campbell et al., 1982). “Subsequent
drilling by a mining company confirmed the prediction as to where ore-grade
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molybdenum mineralization would be found and where it would not be
found” (Waterman, 1986, p. 58).

Waterman (1986, pp. 162-199) described the construction of an expert sys-
tem and discussed some potential problems. For example, the number of rules
required for a given application may grow very large. “PUFF, an expert system
that interprets data from pulmonary function tests, had to have its number of
rules increased from 100 to 400 just to get a 10 percent increase in perfor-
mance” (Waterman, 1986, p. 182). PUFF required five person-years to con-
struct. There are no general techniques for assessing a system’s completeness
or consistency. Nevertheless, despite the procedural difficulties associated with
constructing expert systems, useful programs have been created to address a
wide range of problems in various domains including medicine, law, agricul-
ture, military sciences, geology, and others (Waterman, 1986, p. 205). Building
expert systems has now become routine (Barr et al., 1989, p. 181).

1.3.4 A Criticism of the Expert Systems
or Knowledge-Based Approach

There is some question whether or not the research in expert or knowledge-
based systems truly advances the field of artificial intelligence. Dreyfus and
Dreyfus (1984, 1986) claimed that when a beginner is first introduced to a new
task, such as driving a car, he or she is taught specific rules to follow (e.g., main-
tain a two-second separation between yourself and the car in front of you).
But as the beginner gains experience, less objective cues are used. “He listens
to the engine as well as looks at his speedometer for cues about when to shift
gears. He observes the demeanor as well as the position and speed of pedes-
trians to anticipate their behavior. And he learns to distinguish a distracted or
drunk driver from an alert one” (Dreyfus and Dreyfus, 1984). It is difficult to
believe that the now-expert driver is relying on rules in making these classifi-
cations. “Engine sounds cannot be adequately captured by words, and no list
of facts about a pedestrian at a crosswalk can enable a driver to predict his be-
havior as well as can the experience of observing people crossing streets un-
der a variety of conditions” (Dreyfus and Dreyfus, 1984). They asserted that
when a human expert is interrogated by a “knowledge-engineer” to assimilate
rules for an expert system, the expert is “forced to regress to the level of a be-
ginner and recite rules he no longer uses . . .there is no reason to believe that
a heuristically programmed computer accurately replicates human thinking”
(Dreyfus and Dreyfus, 1984).

Other problems occur in the design of expert systems. Human experts,
when forced to verbalize rules for their behavior, may not offer a consistent
set of explanations. There may be inherent contradictions in their rules. In ad-
dition, different experts will differ on the rules that should be employed. The
question of how to handle these inconsistencies remains open and is often
handled in an ad hoc manner by knowledge-engineers who do not have ex-
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pertise in the field of application. Simply finding an expert can be troublesome,
for most often there is no objective measure of “expertness.” And even when
an expert is found, there is always the chance that the expert will simply be
wrong. History is replete with incorrect expertise (e.g., a geocentric solar sys-
tem, and see Cerf and Navasky, 1984). Moreover, expert systems often gener-
ate preprogrammed behavior. Such behavior can be brittle, in the sense that it
is well optimized for its specific environment, but incapable of adapting to any
changes in the environment.

Consider the hunting wasp, Sphex flavipennis. When the female wasp must
lay its eggs, its builds a burrow and hunts out a cricket, which it paralyzes with
three injections of venom (Gould and Gould, 1985). The wasp then drags the
cricket into the burrow, lays the eggs next to the cricket, seals the burrow, and
flies away. When the eggs hatch, the grubs feed on the paralyzed cricket.
Initially, this behavior appears sophisticated, logical, and thoughtful (Woold-
ridge, 1968, p. 70). But upon further examination, limitations of the wasp’s be-
havior can be demonstrated. Before entering the burrow with the cricket, the
wasp carefully positions its paralyzed prey with its antennae just touching the
opening of the burrow and “then scoots inside, ‘inspects’ its quarters, emerges,
and drags the captive inside” (Gould and Gould, 1985). As noted by French
naturalist Jean Henri Fabré, if the cricket is moved just slightly while the wasp
is busy in its burrow, upon emerging the wasp will replace the cricket at the en-
trance and again go inside to inspect the burrow. “No matter how many times
Fabré moved the cricket, and no matter how slightly, the wasp would never
break out of the pattern. No amount of experience could teach it that its be-
havior was wrongheaded: its genetic inheritance had left it incapable of learn-
ing that lesson” (Gould and Gould, 1985).

The wasp’s instinctive program is essentially a rule-based system that is
crucial in propagating the species, unless the weather happens to be a bit
breezy. “The insect, which astounds us, which terrifies us with its extraordinary
intelligence, surprises us, the next moment, with its stupidity, when confronted
with some simple fact that happens to lie outside its ordinary practice” (Fabré,
cited in Gould and Gould, 1985). Genetically hard-coded behavior is inher-
ently brittle. Similarly, an expert system chess program might do very well, but
if the rules of the game were changed, even slightly, by perhaps allowing the
king to move up to two squares at a time, the expert system might no longer
be expert. This brittleness of domain-specific programs has been recognized
for many years (Samuel, 1959).

1.3.5 Fuzzy Systems

Another procedural problem associated with the construction of a knowledge
base is that when humans describe complex environments, they do not typi-
cally speak in absolutes. Linguistic descriptors of real-world circumstances are
not precise but rather are “fuzzy.” For example, when one describes the opti-
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mum behavior of an investor interested in making money in the stock market,
the adage is “buy low, sell high.” But how low is “low”? And how high is
“high”? It is unreasonable to suggest that if the price of the stock climbs to a
certain precise value in dollars per share, then it is high; yet if it were only
$0.01 lower, it would not be high. Useful descriptions need not be of a binary
or crisp nature.

Zadeh (1965) introduced the notion of “fuzzy sets.” Rather than describ-
ing elements as being either in a given set or not, membership in the set was
viewed as a matter of degree ranging over the interval [0, 1]. A membership of
0.0 indicates that the element absolutely is not a member of the set, and a
membership of 1.0 indicates that the element absolutely is a member of the
set. Intermediate values indicate degrees of membership. The choice of the ap-
propriate membership function to describe elements of a set is left to the re-
searcher.

Negoita and Ralescu (1987, p. 79) note that descriptive phrases such as
“numbers approximately equal to 10” and “young children” are not tractable
by methods of classic set theory or probability theory. There is an undecid-
ability about the membership or nonmembership in a collection of such ob-
jects, and there is nothing random about the concepts in question. A classic set
can be represented precisely as a binary valued function f4: X — {0, 1}, the
characteristic function, defined as

_J1,ifxeA;
Falx) = { 0, otherwise.

The collection of all subsets of X (the power set of X) is denoted

P(X) = {A|A is a subset of X}.
In contrast, a fuzzy subset of X is represented by a membership function:

u:X—[0,1]
The collection of all fuzzy subsets of X (the fuzzy power set) is denoted by
F(X):
F(X) = {ulu : X — [0,1]}.
It is natural to enquire as to the effect of operations such as union and inter-
section on such fuzzy sets. If u# and v are fuzzy sets, then
(u or v)(x) = max[u(x), v(x)]

(u and v)(x) = min[u(x), v(x)].

Other forms of these operators have been developed (Yager, 1980; Dubois and

Prade, 1982; Kandel, 1986, pp. 143-149). One form of the complement of a
fuzzy set,u : X — [0, 1] is

u(x) =1 — u(x).
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Other properties of fuzzy set operations, such as commutativity, associativity,
and distributivity, as well as other operators such as addition, multiplication,
and so forth, may be found in Negoita and Ralescu (1987, pp. 81-93).

It is not difficult to imagine a fuzzy system that relates fuzzy sets in much
the same manner as a knowledge-based system. The range of implementation
and reasoning methodologies is much richer in fuzzy logic. The rules are sim-
ply fuzzy rules describing memberships in given sets rather than absolutes.
Such systems have been constructed and Bezdek and Pal (1992) give a com-
prehensive review of efforts in fuzzy systems from 1965.

1.3.6 Perspective on Methods Employing
Specific Heuristics

Human experts can only give dispositions or rules (fuzzy or precise) for prob-
lems in their domain of expertise. There is a potential difficulty when such a
system is required to address problems for which there are no human experts.
Schank (1984, p. 34) states, definitively, “Expert systems are horribly mis-
named, since there is very little about them that is expert . . . while potentially
useful, [they] are not a theoretical advance in our goal of creating an intelli-
gent machine.” He continues:

The central problem in Al has little to do with expert systems, faster programs,
or bigger memories. The ultimate Al breakthrough would be the creation of a
machine that can learn or otherwise change as a result of its own experiences . . .
like most Al terms, the words “expert system” are loaded with a great deal more
implied intelligence than is warranted by their actual level of sophistication. . . .
Expert systems are not innovative in the way the real experts are; nor can they
reflect on their own decision-making processes.

This generalization may be too broad. Certainly, both expert and fuzzy
systems can be made very flexible. They can generate new functional rules that
were not explicitly stated in the original knowledge base. They can be pro-
grammed to ask for more information from human experts if they are unable
to reach any definite (or suitably fuzzy) conclusion in the face of current in-
formation. Yet one may legitimately question whether the observed “intelli-
gence” of the system should really be attributed to the system, or merely to the
programmer who implemented knowledge into a fixed program. Philosoph-
ically, there appears to be little difference between such a hard-wired system
and a simple calculator. Neither is intrinsically intelligent.

The widespread acceptance of the Turing Test has both focused and con-
strained research in artificial intelligence in two regards: (1) the imitation of
human behavior and (2) the evaluation of artificial intelligence solely on the
basis of behavioral response. But, “Ideally, the test of an effective understand-
ing system is not the realism of the output it produces, but rather the validity
of the method by which that output is produced” (Schank, 1984, p. 53).
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Hofstadter (1985, p. 525) admitted to being an “unabashed pusher of the va-
lidity of the Turing Test as a way of operationally defining what it would be for
a machine to genuinely think.” But he also cogently wrote while playing devil’s
advocate: “I'm not any happier with the Turing Test as a test for thinking ma-
chines than T am with the Imitation Game [the Turing Test] as a test for femi-
ninity” (Hofstadter, 1985, p. 495). Certainly, even if a man could imitate a
woman, perfectly, he would still be a man. Imitations are just that: imitations.
It is important to define and program mechanisms that generate intelligent be-
havior. Artificial intelligence should not seek to merely solve problems, but
should rather seek to solve the problem of how to solve problems.

1.4 NEURAL NETWORKS

A human may be described as an intelligent problem-solving machine. Singh
(1966, p. 1) suggested that “the search for synthetic intelligence must begin
with an inquiry into the origin of natural intelligence, that is, into the working
of our own brain, its sole creator at present.” The idea of constructing an arti-
ficial brain or neural network has been proposed many times (e.g., McCulloch
and Pitts, 1943; Rosenblatt, 1957, 1962; Samuel, 1959; Block, 1963; and others).

The brain is an immensely complex network of neurons, synapses, axons,
dendrites, and so forth (Figure 1-2), a “mammoth automatic telephone ex-

Dendrites

Cell Body or Soma

Axon

Figure 1-2 The basic structure of a neuron.
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change” (Singh, 1966, p. 129). Through detailed modeling of these elements, a
simulated network that is capable of diverse behaviors may be constructed.
The human brain comprises at least 2 X 10'° neurons, each possessing about
10,000 synapses distributed over each dendritic tree with an average number
of synapses on the axon of one neuron again being about 10,000 (Block, 1963;
Palm, 1982, p. 10). Modeling the precise structure of this connection scheme
would appear beyond the capabilities of foreseeable methods. Fortunately, this
may not be necessary.

Rather than deduce specific replications of the human brain, models may
be employed. Among the first such artificial neural network designs was the
perceptron (Rosenblatt, 1957, 1958, 1960, 1962). A perceptron (Figure 1-3)
consists of three types of units: sensory units, associator units, and response
units. A stimulus will activate some sensory units. These sensory units in turn
activate, with varying time delays and connection strengths, the associator
units. These activations may be positive (excitatory) or negative (inhibitory).
If the weighted sum of the activations at an associator unit exceeds a given
threshold, the associator unit activates and sends a pulse, again weighted by a
connection strength, onto the response units. There is obvious analogous be-
havior of units and neurons, of connections and axons and dendrites. The char-
acteristics of the stimulus-response (input-output) of the perceptron describe
its behavior.

Earlier work by Hebb (1949) indicated that neural networks could learn to
recognize patterns by weakening and strengthening the connections between
neurons. Rosenblatt (1957, 1960, 1962) and others (e.g., Keller, 1961; Kesler,
1961; Block, 1962; Block et al., 1962) studied the effects of changing the con-
nection strengths in a perceptron by various rules (Rumelhart and McClelland,
1986, p. 155). Block (1962) indicated that when the perceptron was employed
on some simple pattern recognition problems, the behavior of the machine de-
graded gradually with the removal of association units. That is, the perceptrons
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Figure 1-3 Rosenblatt’s perceptron model.
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were robust, not brittle. Rosenblatt (1962, p. 28) admitted that his perceptrons
were “extreme simplifications of the central nervous system, in which some
properties are exaggerated and others suppressed.” But he also noted that the
strength of the perceptron approach lay in the ability to analyze the model.

Minsky and Papert (1969) studied the computational limits of perceptrons
with one layer of modifiable connections. They demonstrated that such pro-
cessing units were not able to calculate mathematical functions such as parity or
the topological function of connectedness without using an absurdly large
number of predicates (Rumelhart and McClelland, 1986, p. 111). But these lim-
itations do not apply to networks of perceptrons that consist of multiple layers
of perceptrons, nor does their analysis address networks with recurrent feed-
back connections (rather than simple feedforward connections, although any
perceptron with feedback can be approximated by an equivalent but larger
feedforward network). Nevertheless, Minsky and Papert (1969, pp. 231-232)
speculated that the study of multilayered perceptrons would be “sterile” in the
absence of an algorithm to usefully adjust the connections of such architectures.

Minsky and Papert (1969, p. 4) offered, “We have agreed to use the name
‘perceptron’ in recognition of the pioneer work of Frank Rosenblatt,” but
Block (1970) noted that “they study a severely limited class of machines from
a viewpoint quite alien to Rosenblatt’s.” While Block (1970) recognized the
mathematical prowess of Minsky and Papert, he also replied, “Work on the
four-layer Perceptrons has been difficult, but the results suggest that such sys-
tems may be rich in behavioral possibilities.” Block (1970) admitted the in-
ability of simple perceptrons to perform functions such as parity checking and
connectedness, but remarked, “Human beings cannot perceive the parity of
large sets . . . nor connectedness.” The recognition of more common objects
such as faces was viewed as a more appropriate test.

Block questioned prophetically, “Will the formulations or methods devel-
oped in the book have a serious influence on future research in pattern recog-
nition, threshold logic, psychology, or biology; or will this book prove to be
only a monument to the mathematical virtuosity of Minsky and Papert? We
shall have to wait for a few years to find out” (Block, 1970).

Minsky and Papert’s speculation that efforts with multilayered percep-
trons would be sterile served in part to restrict funding and thus research ef-
forts in neural networks during the 1970s and early 1980s. The criticisms by
Minsky and Papert (1969) were passionate and persuasive. Papert (1988) ad-
mitted, “Yes, there was some hostility in the energy behind the research re-
ported in Perceptrons, and there is some degree of annoyance at the way the
new [resurgence in neural network research] has developed; part of our drive
came, as we quite plainly acknowledged in our book, from the fact that fund-
ing and research energy were being dissipated on what still appear tome . . .
to be misleading attempts to use connectionist methods in practical applica-
tions.” Subsequent to Minsky and Papert (1969), neural network research was
continued by Grossberg (1976, 1982), Amari (1967, 1971, 1972, and many oth-
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ers), Kohonen (1984), and others, but to a lesser degree than that conducted
on knowledge-based systems. A resurgence of interest grew in the mid-1980s
following further research by Hopfield (1982), Hopfield and Tank (1985),
Rumelhart and McClelland (1986), Mead (1989), and others (Simpson, 1990,
pp. 136-145, provides a concise review of efforts in neural networks; also, see
Hecht-Nielsen, 1990; Haykin, 1994).

It is now well known that multiple layers of perceptrons with variable con-
nection strengths, bias terms, and nonlinear sigmoid functions can approxi-
mate arbitrary measurable mapping functions. In fact, universal function ap-
proximators can be constructed with a single hidden layer of squashing units
and an output layer of linear units (Cybenko, 1989; Hornik et al., 1989; Barron,
1993). The application of such structures to pattern recognition problems is
now routine. But as noted, such structures are simply mapping functions.
Functions are not intrinsically intelligent. The crucial problem then becomes
training such functions to yield the appropriate stimulus-response. There are
several proposed methods to discover a suitable set of weights and bias terms,
given an overall topological structure and a set of previously classified pat-
terns (e.g., Werbos, 1974; Hopfield, 1982; Rumelhart and McClelland, 1986;
Arbib and Hanson, 1990; Levine, 1991).

Currently, the method most often employed (i.e., back propagation) is
based on a simple gradient descent search of the error response surface de-
termined by the set of weights and biases. But this method is likely to discover
suboptimal solutions because the response surface is a general nonlinear func-
tion and may possess many local optima. Moreover, a gradient descent algo-
rithm is inherently no more intelligent than any other deterministic algorithm.
Conceptually, the back propagation routine is little different from the addition
of two integers.

There does not appear to be any evidence to suggest that biologic neural
networks alter connection strengths via methods similar to gradient-based
search. If the bottom-up approach to neural networks is to lead to artificially
intelligent machines, the intelligence must come in the search for the appro-
priate structure and parameters of the particular mapping function. “Learning
models which cannot adaptively cope with unpredictable changes in a com-
plex environment have an unpromising future as models of mind and brain”
(Grossberg, 1987). Models of self-organizing networks (e.g., Grossberg, 1987,
and others) appear more broadly useful as explanations of biologic nervous
systems.

1.5 DEFINITION OF INTELLIGENCE

If one word were to be used to describe research in artificial intelligence, that
word might be fragmented. Opinions as to the cause of this scattered effort are
varied. Atmar (1976) remarked:
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Perhaps the major problem is our viewpoint. Intelligence is generally regarded
as a uniquely human quality. And yet we, as humans, do not understand ourselves,
our capabilities, or our origins of thought. In our rush to catalogue and emulate
our own staggering array of behavioral responses, it is only logical to suspect that
investigations into the primal causative factors of intelligence have been passed
over in order to more rapidly obtain the immediate consequences of intelligence.

Minsky (1991), on the other hand, assigns blame to attempts at unifying theo-
ries of intelligence: “There is no one best way to represent knowledge or to
solve problems, and the limitations of current machine intelligence largely
stem from seeking unified theories or trying to repair the deficiencies of theo-
retically neat but conceptually impoverished ideological positions.”

A prerequisite to embarking upon research in artificial intelligence should
be a definition of the term intelligence. As noted above (Atmar, 1976), many
definitions of intelligence have relied on this property being uniquely human
(e.g., Singh, 1966, p. 1) and often reflect a highly anthropocentric view. Schank
(1984, p. 49) stated:

No question in Al has been the subject of more intense debate than that of as-
sessing machine intelligence and understanding. People unconsciously feel that
calling something other than humans intelligent denigrates humans and reduces
their vision of themselves as the center of the universe. Dolphins are intelligent.
Whales are intelligent. Apes are intelligent. Even dogs and cats are intelligent.

Certainly other living systems can be described as being intelligent, without as-
cribing specific intelligence to any individual member of the system. Any pro-
posed definition of intelligence should not rely on comparisons to individual
organisms.

In contrast to Staugaard’s comments (1987, p. 23), Minsky has offered the
following definition of intelligence (1985, p. 71): “Intelligence . . . means. . .
the ability to solve hard problems.” But how hard does a problem have to be?
Who is to decide which problem is hard? All problems are hard until you
know how to solve them, at which point they become easy. Finding the slope
of a polynomial at any specific point is very difficult, unless you are familiar
with derivatives, in which case it is trivial. Such a definition would appear prob-
lematic.

For an organism, or any system, to be intelligent, it must make decisions.
Any decision may be described as the selection of how to allocate the avail-
able resources. And an intelligent system must face a range of decisions, for if
there were only one possible decision, there would really be no decision at all.
Moreover, decision making requires a goal. Without the existence of a goal,
decision making is pointless. The intelligence of such a decision-making entity
becomes a meaningless quality.

This argument begs the question, “Where do goals come from?” Consider
biologically reproducing organisms. They exist in a finite arena; as a conse-
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quence, there is competition for the available resources. Natural selection is in-
evitable in any system of self-replicating organisms that fill the available re-
source space. Selection stochastically eliminates those variants that do not ac-
quire sufficient resources. Thus, while evolution as a process is purposeless, the
first purposeful goal imbued into all living systems is survival. Those variants
that do not exhibit behaviors that meet this goal are stochastically culled. The
genetically preprogrammed behaviors of the survivors (and thus the goal of
survival) are reinforced in every generation through intense competition.

Such a notion has been suggested many times. For example, Carne (1965,
p. 3) remarked, “Perhaps the basic attribute of an intelligent organism is its ca-
pability to learn to perform various functions within a changing environment
so as to survive and to prosper.” Atmar (1976) offered, “Intelligence is that
property in which the organism senses, reacts to, learns from, and subsequently
adapts its behavior to its present environment in order to better promote its
own survival.”

Note that any automaton whose behavior (i.e., stimulus-response pairs
that depend on the state of the organism) is completely prewired (e.g., a sim-
ple hand-held calculator or the hunting wasp described previously) cannot
learn anything. Nor can it make decisions. Such systems should not be viewed
as intelligent. But this should not be taken as a contradiction to the statement
that “the genetically preprogrammed behaviors of the survivors (and thus the
goal of survival) are passed along to future progeny.” Behaviors in all biota, in-
dividuals or populations, are dependent on underlying genetic programs. In
some cases, these programs mandate specific behaviors; in others, they create
nervous systems capable of adapting behavior of the organism based on its ex-
periences.

But the definition of intelligence should not be restricted to biological or-
ganisms. Intelligence is a property of purpose-driven decision makers. It ap-
plies equally well to humans, colonies of ants, robots, social groups, and so
forth. Thus, more generally, following Fogel (1964; Fogel et al., 1966, p. 2), in-
telligence may be defined as the capability of a system to adapt its behavior to
meet its goals in a range of environments. For species, survival is a necessary
goal in any given environment; for a machine, both goals and environments
may be imbued by the machine’s creators.

1.6 INTELLIGENCE, THE SCIENTIFIC METHOD,
AND EVOLUTION

Ornstein (1965) argued that all learning processes are adaptive. The most im-
portant aspect of such learning processes is the “development of implicit or
explicit techniques to accurately estimate the probabilities of future events.”
Similar notions have been offered by Atmar (1976, 1979). When faced with a
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changing environment, the adaptation of behavior becomes little more than a
shot in the dark if the system is incapable of predicting future events. Ornstein
(1965) suggested that as predicting future events is the “forte of science,” it is
sensible to examine the scientific method for useful cues in the search for ef-
fective learning techniques.

The scientific method (Figure 1-4) is an iterative process that facilitates
the gaining of new knowledge about the underlying processes of an observ-
able environment. Unknown aspects of the environment are estimated. Data
are collected in the form of previous observations or known results and com-
bined with newly acquired measurements. After the removal of known erro-
neous data, a class of models of the environment that is consistent with the
data is generalized. This process is necessarily inductive. The class of models is
then generally reduced by parametrization, a deductive process. The specific
hypothesized model (or models) is then tested in its ability to predict future
aspects of the environment. Models that prove worthy are modified, extended,
or combined to form new hypotheses that carry on a “heredity of reasonable-
ness” (Fogel, 1964). This process is iterated until a sufficient level of credibility
is achieved. “As the hypotheses correspond more and more closely with the
logic of the environment they provide an ‘understanding’ that is demonstrated
in terms of improved goal-seeking behavior in the face of that environment”
(Fogel et al., 1966, p. 111). It appears reasonable to seek methods to mechanize
the scientific method in an algorithmic formulation so that a machine may
carry out the procedure and similarly gain knowledge about its environment
and adapt its behavior to meet goals.

The scientific method can be used to describe a process of human investi-
gation of the universe, or of learning processes in general. Atmar (1976), fol-
lowing Weiner (1961), proposed that there are “three distinct organization
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Figure 1-4 The scientific method.
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forms of intelligence: phylogenetic, ontogenetic and sociogenetic, which are
equivalent to one another in process, each containing a quantum unit of mu-
tability and a reservoir of learned behavior.” Individuals of most species are
capable of learning ontogenetically (self-arising within the individual). The
minimum unit of mutability is the proclivity of a neuron to fire. The reservoir
of learned behavior becomes the entire “collection of engrams reflecting the
sum of knowledge the organism possesses about its environment” (Atmar,
1976). Sociogenetic learning (arising within the group) is the basis for a soci-
ety to acquire knowledge and communicate (Wilson, 1971; Atmar, 1976). The
quantum unit of mutability is the “idea,” while “culture” is the reservoir of
learned behavior.

But phylogenetic learning (arising from within the lineage) is certainly the
most ancient, and the most commonly exhibited, form of intelligence. The
quantum unit of mutability is the nucleotide base pair, and the reservoir of
learned behavior is the genome of the species. The recognition of evolution as
an intelligent learning process is a recurring idea (Cannon, 1932; Turing, 1950;
Fogel, 1962; and others). Fogel et al. (1966, p. 112) developed a correspondence
between natural evolution and the scientific method. In nature, individual or-
ganisms serve as hypotheses concerning the logical properties of their envi-
ronment. Their behavior is an inductive inference concerning some as yet un-
known aspects of that environment. Validity is demonstrated by their survival.
Over successive generations, organisms become successively better predictors
of their surroundings.

Minsky (1985, p. 71) disagreed, claiming that evolution is not intelligent
“because people also use the word ‘intelligence’ to emphasize swiftness and
efficiency. Evolution’s time rate is so slow that we don’t see it as intelligent,
even though it finally produces wonderful things we ourselves cannot yet
make.” But time does not enter into the definition of intelligence offered
above, and it need not. Atmar (1976) admits that “the learning period [for evo-
lution] may be tortuously long by human standards, but it is real, finite, and
continuous.” And evolution can proceed quite rapidly (e.g., viruses). Units of
time are a human creation. The simulation of the evolutionary process on a
computer need not take billions of years. Successive generations can be inter-
ated very quickly. Metaphorically, the videotape of evolution can be played at
fast forward with no alteration of the basic algorithm. Arguments attacking
the speed of the process (as opposed to the rate of learning) are without merit.

There is obvious value in plasticity. Organisms that can adapt to changes
in the environment at a greater rate than through direct physical modifications
will tend to outcompete less mutable organisms. Thus the evolutionary bene-
fit of ontogenetic learning is obvious. Sociogenetic learning is even more pow-
erful as the communicative group possesses even greater plasticity in behav-
ior, a more durable memory, and a greater range of possible mutability
(Atmar, 1976). But both ontogenetic learning and sociogenetic learning are
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“tricks” of phylogenetic learning, invented through the randomly driven
search of alternative methods of minimizing behavioral surprise to the evolv-
ing species.

If the evolutionary process is accepted as being fundamentally analogous
to the scientific method, then so must the belief that this process can be mech-
anized and programmed on a computing machine. Evolution, like all other
natural processes, is a mechanical procedure operating on and within the laws
of physics and chemistry (Fogel, 1964; Fogel et al., 1966; Wooldridge, 1968,
p. 25; Atmar, 1976,1979,1991; Mayr, 1988, pp. 148-159). If the scientific method
is captured in an algorithm, then so must induction be captured as an intrinsic
part of that algorithm.

Fogel et al. (1966, p. 122) noted that induction had been presumed to re-
quire creativity and imagination, but through the simulation of evolution, in-
duction can be reduced to a routine procedure. Such notions have a propen-
sity to generate pointed responses. Lindsay (1968) wrote in criticism of Fogel
et al. (1966), “The penultimate indignity is a chapter in which the scientific
method is described as an evolutionary process and hence mechanizable with
the procedures described.” People unconsciously feel that calling something
not human “intelligent” denigrates humans (Schank, 1984, p. 49; cf. Pelletier,
1978, pp. 240-241). Yet wishing something away does not make it so.
Wooldridge (1968, p. 129) stated:

In particular, it must not be imagined that reduction of the processes of intelli-
gence to small-step mechanical operations is incompatible with the apparently
spontaneous appearance of new and original ideas to which we apply such terms
as “inspiration,” “insight,” or “creativity.” To be sure, there is no way for the phys-
ical methods . . . to produce full-blown thoughts or ideas from out of the blue.
But it will be recalled that there is a solution for this problem. The solution is to
deny that such spontaneity really exists. The argument is that this is an example
of our being led astray by attributing too much reality to our subjective feel-
ings—that the explanation of the apparent freedom of thought is the incom-
pleteness of our consciousness and our resulting lack of awareness of the tortu-
ous . . .nature of our thought processes.

Hofstadter (1985, p. 529) went further:

Having creativity is an automatic consequence of having the proper representa-
tion of concepts in a mind. It is not something you add on afterward. It is built
into the way concepts are. To spell this out more concretely: If you have suc-
ceeded in making an accurate model of concepts, you have thereby also suc-
ceeded in making a model of the creative process, and even of consciousness.

Creativity and imagination are part of the invention of evolution just as are
eyes, opposable thumbs, telephones, and calculators.

The process of evolution can be described as four essential processes: self-
reproduction, mutation, competition, and selection (Mayr, 1988; Hoffman,
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1989; and many others). The self-reproduction of germline DNA and RNA
systems is well known. In a positively entropic universe (as dictated by the sec-
ond law of thermodynamics), the property of mutability is guaranteed; error
in information transcription is inevitable. A finite arena guarantees the exis-
tence of competition. Selection becomes the natural consequence of the excess
of organisms that have filled the available resource space (Atmar, 1979). The
implication of these very simple rules is that evolution is a procedure that can
be simulated and used to generate creativity and imagination mechanically.

1.7 EVOLVING ARTIFICIAL INTELLIGENCE

It is natural to conclude that by simulating the evolutionary learning process
on a computer, the machine can become intelligent, that it can adapt its be-
havior to meet goals in a range of environments. “Intelligence is a basic prop-
erty of life” (Atmar, 1976). It has occurred at the earliest instance of natural
selection and has pervaded all subsequent living organisms. In many ways, life
is intelligence, and the processes cannot be easily separated.

Numerous opinions about the proper goal for artificial intelligence re-
search have been expressed. But intuitively, intelligence must be the same
process in living organisms as it is in machines. The “artificial” is not nearly as
important as the “intelligence.” “Artificial Intelligence is the study of intelli-
gent behavior. Its ultimate goal is a theory of intelligence that accounts for the
behavior of naturally occurring intelligent entities and that guides the creation
of artificial entities capable of intelligent behavior” (Genesereth and Nilsson,
1987). Evolutionary processes account for such intelligent behavior and can be
simulated and used for the creation of intelligent machines.
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