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All digital image processing algorithms involve logical functions operating on vec-
tors of logical variables, where the logical vectors represent binary encodings of
image data. Ipso facto, characterization of image operators is naturally set in a log-
ical framework, and this is especially straightforward in the case of binary image
operators. The central tasks of any applied operator theory are analysis and syn-
thesis of operators. Analysis concerns operator effects and synthesis the design of
operators to perform desired tasks. Since digital images are modeled as discrete
random sets, operator design involves synthesis governed by probabilistic criteria
relating input and output image processes. The methodology is to find suitable op-
erator representations, examine the manner in which these representations interact
with the image probability structure to characterize optimal operators, and develop
tools that translate them into efficient image processing procedures. The approach
taken in the present chapter is to use examples (collections of input-output pairs of
images) as the knowledge source for the representation formalism.

1.1 BOOLEAN FUNCTIONS

A binary-valued function i//(x\, #2 , . . . , xn) of binary variables x\, X2, -. •, xn is
called a Boolean function. We will denote binary variables and Boolean functions
by lower-case italic and Greek letters, respectively. As a logical function, ifr pos-
sesses a logical sum-of-products disjunctive-normal-form representation in terms
of the n variables x\, xj,... ,xn:

yfyXj, X2, • . • , Xn) — 2 X\ X2 xn V1 -U

i

where the "sum" denotes OR, the "product" denotes AND, and /?(/, k) is either '
(prime) or null, depending on whether the variable is complemented or not comple-
mented. There are at most 2n products in the expansion, and each product is called
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a minterm. The representation can be (nonuniquely) reduced to a sum of products
containing a minimal number of logic gates; that is,

/ / \ \ ~ ^ /?(/, 1) p(i,2) p(i,n(i)) / t ON

\KXUX2, ...,Xn) = 2^xi,\ Xi\ "'Xln{i) ^'^

Disjunctive normal form will be used for operator design, with reduction being
employed to cut the logic cost of implementation.

The truth table formulation of iff corresponds directly to the disjunctive normal
form of Eq. 1-1. if/ is defined by a 2'2-row truth table of n variables in which
each string t\t2--tn of Os and Is is assigned a binary value ir(t\t2- — tn). The
correspondence between Eq. 1-1 and the truth table is given by the following rule:
the minterm x^'^x^1'2* • • • xl^1^ appears in the expansion of Eq. 1-1 if and only
if there is a 1-valued string t\t2--tn in the truth table with p(i, j) null if t}• = 1
and p ( i , j ) = ' i f f / = 0 .

The product set {0, 1 }n is composed of binary ^-vectors and is a finite lattice under
the partial-order relation (x\, #2 , . . . , xn) ^ (y\, y2, - • •, yn) if a nd only if xj ^ yj
for j = 1, 2 , . . . , n. We denote vectors of binary variables by bold-face lower-case
letters, such as x = (x\, X2, -.., xn) and y = (y\, y2, • • •, yn)> For any A C {0, I}'2,
the upper set of A is defined by

U[A] — {y: there exists xeA with x ^ y} (1-3)

A~ denotes the set of minimal elements in A, and U[A] = U[A~]. In terms of
{0, l}n, a Boolean function is a mapping ifr: {0, \}n -> {0, 1}. if/ is defined by
specifying either of the subsets

S0W = {xe{0,l}": V(x) = 0}

SiW] = {xe{0,l}n: ^(x) = l j (

^otV ]̂ and S\[\/f] are called the 0-set and l-^r (0-slice and \slice) of T/T, respec-
tively, and <So[^] is the complement of Si [^] in {0, 1 }n.

A Boolean function \j/ is increasing if x ^ y implies VKX) ^ ^(y)- If V̂  is increas-
ing, then it is a called positive Boolean function. \fr is positive if and only if it can
be represented as a logical sum of products having no complemented variables,

ty(xux2, ...,Xn) = Y^xi,ixi,2 ' "Xi,n(i) (l~5)

A complementation-free expansion is called a positive expansion. If the variable set
in any product of the expansion contains as a subset the set of variables in a distinct

i

(1-4)
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Figure 1-1. Increasing Boolean function.

product, then, whenever the former product has value 1, so too does the latter. Thus,
inclusion of the former product in the expansion is redundant and it can be deleted
from the expansion without changing \j/. No product whose variable set does not
contain the variable set of a distinct product can be deleted without changing ifr.
Performing the permitted deletions produces a unique minimal representation of \fr.
Unless otherwise stated, it is convention to assume that positive Boolean functions
are represented by positive expansions.

A Boolean function x/r is increasing if and only if there do not exist vectors
x € S\[i//] and y € So[i/f] such that x ^ y. In terms of upper sets, \j/ is increas-
ing if and only if U[S\[if]~] = U[S\[f\] = S\[f]. S\[i/r] is called the kernel of f
and, if i/s is increasing, then Siliff]" is called the increasing basis (or, commonly,
just the basis) of if/. We denote the kernel and basis by K[^r] and B[iJ/], respec-
tively, or just /C and B when not specifying the function. A four-variable increasing
Boolean function is shown in Fig. 1-1. The enclosed vectors compose the kernel,
and minimal elements are shown in solid black boxes. Figure 1-2 corresponds to
a nonincreasing Boolean function; again the enclosed vectors compose the kernel.
Since the upper set of the minimal elements does not equal the kernel, the Boolean
function is nonincreasing. It becomes increasing if 0111 is switched into the kernel.

Suppose iff is an increasing Boolean function, its positive representation according
to Eq. 1-5 is assumed to be minimal, and there are m products in the expansion
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Figure 1-2. Nonincreasing Boolean function.

made up of the m variable sets

Vl = {X2,l,X2,2,...,X2,n(2)} (1-6)

Vm — \xm,\i xm,2i • • • > xm,n(m)\

Then B[\fr] = {yi, y 2 , . . . , ym} ? where the components of y; = (yit\, yi}2,.. •, yt,n)

are

y'-k = {o.ifxk i Vt
d-7)

for k = 1, 2, . . . , n. Hence, the product terms of the minimal expansion are referred
to as the basis elements of y\r.

If \js and £ are two rc-variable Boolean functions, their switching set is defined by

Z[f^] = {x: f(x) ^£(x)} = (SiW] nSbEl) U (50[^] n5 iK] ) (1-8)

If we were to switch (change the value of) §(x) for every x e Z[f, %] or switch
f(x) for every x e >Z[T ,̂ §], then we would have iff = £. Many filtering problems
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are concerned with switching one Boolean function into another where there is a
cost associated with switching. To formulate a switching cost, we postulate a real-
valued cost function Co defined on {0, 1 }n and define the cost of switching f into
£ or £ into iff by

Co[1r,$]= ] T Co(x) (1-9)

As a convention, the cost function is defined so that if the switching cost is negative,
the switch is advantageous; if it is positive, the switch is disadvantageous (relative
to Co). The cost of switching a function f into a class 3 of functions is defined to
be

Co%[f] = mm{Co[f, £]: £ € 3} (1-10)

As will be discussed subsequently, for filter design an important switching cost in-
volves constraining a filter to a particular filter class. In this case, the cost function
is an error probability and the switching cost gives the increased error owing to the
constraint.

1.2 MORPHOLOGICAL REPRESENTATION

Boolean functions are used to define translation-invariant windowed operators on
binary digital images. These images are modeled as subsets of the Cartesian grid
Z2 . Each point is called & pixel and is an ordered pair of integers. An image S con-
sists of a set of pixels z € S. As sets, binary images are operated upon by the usual
set operations: union, intersection, complement, set subtraction, etc. Logically, an
image is represented as 0s and 1 s. The image value is 1 if a pixel is in the image and
0 if it is not: if S(z) denotes the value of S at z, then z € S if and only if S(z) — 1
and z $. S if and only if S(z) = 0. The translation of S by pixel z is defined by
Sz = {u + z: u e S}.

To define a windowed operator, let W = {w\, W2,..., wn) be an n-pixel window
and \/r be an n-variable Boolean function. The corresponding set operator ^ is
defined by

*(S)(z) = f(S H Wz) = 1r(S(wi + z), S(w2 + z), . . . , S(wn + z)) (1-11)

(Fig. 1-3). Note that we are simultaneously treating S and ^(S) as subsets of the
digital plane and as binary-valued functions: in the first instance, S Pi Wz is the
intersection between the sets S and Wz; in the second, S D Wz is the {0, l}-valued
function S restricted to Wz. * is translation-invariant, meaning ^(Sz) = ^(S)z,
because the same Boolean function is applied at every pixel. We call ^ a W-
operator and \j/ its window function. The representation of ^ corresponds directly
to the logical representation of \jr.

X€ZW,$]
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Figure 1-3. Window W applied at pixel z.

A W-operator */ defined by a single-product Boolean function

fi(xi,x2, . . . ,*„) = x u x/ ) 2 • -xijl{i) (1-12)

is called an erosion. According to the correspondence between a binary image
being defined as a subset of the grid and as a binary-valued function, z € */ (S) if
and only if ^i(S)(z) = 1. In terms of window logic, this means that the pixels in
the translated window Wz corresponding to the pixels ui/i, wit2, • • •, Wi,n{i) m W
must all have value 1 so that the product of Eq. 1-12 is 1; that is, so that JC Î =
xi2 — • - • = Xitn(i) = 1. The pixels in Wz corresponding to tu/j, wi^, • • •» Wi,n(O
are tu/j + z, wit2 + z , . . . , u>i,n(i) + z, and the product of Eq. 1-12 is 1 if and
only if all of these pixel translates lie in S. Letting Bl = {u»fj, Wit2,.. •, w/,n(/)},
z € */ (S) if and only if B\ C 5. ^ is called an erosion operator.

Erosion of set S by set 5 , called a structuring element, is denoted by EB(S) and
the window function corresponding to E# is denoted by eg. Figure 1-4 shows a
set A and a structuring element B (with origin marked). Part (a) shows a translate
of B to a pixel z for which Bz c A, so that z e E#(A); part (b) shows a translate
of B to a pixel w for which Bw £ A, so that iu ^ E^(A); part (c) shows E^(A).
Morphological image processing is based on the representation of image operators
in terms of primary image operators, the most fundamental being erosion.

A set operator is said to be increasing if and only if S\ C S2 implies ^(Si) C
^(52). A W-operator ty with window function xfr is increasing if and only if \//
is a positive Boolean function. It follows at once from the logical representation
of Eq. 1-5 that a W-operator is increasing if and only if it possesses an erosion
representation [1] of the form

*(5') = (jEll/(5) (1-13)
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a) b)

c)

Figure 1-4. Erosion: (a) pixel in eroded set; (b) pixel not in eroded set; (c) eroded set [with
A 0 B denoting erosion].

where the correspondence between Eqs. 1-5 and 1-13 is given by

Xi,\Xi,2'-XiMi) **B* (1-14)

The erosion representation is minimal if no structuring element is a subset of an-
other. This corresponds directly to a minimal logical representation [2-4] and the
corresponding structuring elements comprise the basis, B[^], of *I>.

Consider the binary moving median M defined over a window W containing an
odd number of pixels. The window function IJL is defined by fi(x\, X2,...»xn) = 1
if and only if more than n/2 pixels in W are 1 -valued. Hence a row of the truth table
defining /x is 1-valued if and only if at least (n + l)/2 of the variables are 1-valued,
which means that an n -variable product is a minterm in the disjunctive normal form
for fju if and only if at least (n + l)/2 variables are uncomplemented. The minimal
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positive expansion for \x consists of all products of exactly (n + l) /2 variables. For
instance, suppose W consists of the origin together with the pixels immediately
below, above, to the right, and to the left of it. Let x\, X2, *3, X4, and X5 denote the
five variables corresponding to the five pixels. The minimal representation of \x is
given by

\l{X\, X2, X3, X4, X5) = *1*2*3 + -̂ 1̂ 2-̂ 4 + 1̂X3X4 + Xl*2*5 + Jl*3*5

+ X1X4X5 + *2*3*4 + *2*3*5 + *2*4*5 + *3*4*5 (1—15)

The basis of M consists of ten structuring elements:

Note that a bold character indicates the origin and including extra Os in the matrix
representation of a structuring element does not change the structuring element.

Morphological representation of arbitrary (nonincreasing) W-operators is achieved
via the hit-or-miss transform [5], which is defined, for any pair of disjoint subsets
£, F C W, by

AE,F(S)=EE(S)nEF(Sc) (1-16)

Pixel wise, as a binary-valued function, AE,F is given by

AE,F(S)(Z)=EE(S)(Z)AEF(SC)(Z)

1, if Ez C S n Wz and Fz C Sc n Wz

0, otherwise

1, if Ez c S H Wz and Fz n (S n Wz) = 0 7

0, otherwise

Corresponding to the logical representation of Eq. 1-2 is the standard morpholog-
ical representation for a W-operator [6],

*(5) = [jA£ , f /(5) (1-18)
i

The correspondence between Eqs. 1-2 and 1-18 is given by

(£'', F>) ̂  xf(U)x2
p(/ '2) • • -xftif™ (1-19)

/o 1 0W0 0 o\ /o 0 o\ /o 0 o\ /o 0 o\
0 0 1 1 1 1 1 1 0 1 0 1 1 ( 0 1 1

\o 1 0/ \o 0 0/ \o 1 0/ \o 1 0/ \o 1 0/

(0 1 o\ /o 1 o\ /o 1 o\ /o 1 o\ /o 1 o\
1 1 0 1 0 1 I I 0 1 1 1 0 O l O 1 0
0 0 0 / \ 0 0 0 / \ 0 0 0 / \ 0 1 0 / \ 0 1 0 /

(1-15)
X\X3X5

(Sc)(z)

(1-17)

(1-19)
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where Xk corresponds to the pixel Wk € W, x^ appears uncomplemented if Wk e
El, xk appears complemented if Wk e F \ and xk does not appear if Xk £ Ej U Fl.
A structuring pair is said to be canonical if El U Fl = W and is canonical if and
only if the corresponding logical product contains all n variables in the window.
The representation of Eq. 1-18 is said to be canonical if all structuring pairs are
canonical, in which case it corresponds to the disjunctive normal form of Eq. 1-1.
If * happens to be increasing, then the hit-or-miss expansion of Eq. 1-18 reduces
to the erosion expansion of Eq. 1-13.

There is a useful alternative form of the hit-or-miss tranform. If L and U are bi-
nary functions defined on W such that L ^ £/, then the interval defined by the pair
(L, U) is the set of all binary functions V defined on W such that L ^ V ^ U.
This interval is denoted by [L, U] and L and U are called the lower and upper
endpoints, respectively. For any binary image S, the hit-or-miss transform corre-
sponding to (L, U) is defined at pixel z by

where Lz and Uz denote L and U operating on the translate Wz. If L = f/, then
the pair is said to be canonical and Ai^u(S)(z) = Au1u(S)(z) = 1 if and only if
S n Wz = UZ9 which means there is an exact pattern match. To see that the two
definitions agree, let E and F be the sets of all pixels at which L is 1-valued and
U is 0-valued, respectively; that is, E = L and F = Uc. Then LZ^SDWZ^ UZ

if and only if Ez C S n Wz and Fzn(SD Wz) = 0.

For an illustration, let W be the 3 x 3 square centered at the origin and

/I 1 1\ (I 1 1\ /0 0 0\
JS = L = ( O 1 0 U=\l 1 1 F = UC= 10 0 0 (1-21)

\0 0 0/ \0 0 0/ \1 1 1/

Then

f / i i i \ / i i i \ / i i i W i i i \ J
[ L , t / ] = { 0 1 0 , 1 1 0 , 0 1 1 , 1 1 1 (1-22)

\ 0 0 0 / \ 0 0 0 / \ 0 0 0 / \ 0 0 0 / J

E and F are often expressed in a single matrix, with 1 and 0 denoting the pixels of
E and F, respectively, and " x " denoting a (don't care) pixel in neither E nor F.
In this notation, the hit-or-miss-transform structuring pair corresponding to (L, U)
is expressed by

/i i A
[E,F]=\x 1 x (1-23)

\0 0 0/

AL,u(S)(z) = f1'10.
if Lz < S n Wz < C/z
otherwise

(1-20)
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1.3 SYSTEM MODEL

A key task of binary operator theory is automatic filter design. We desire an oper-
ator to optimally estimate an image when it is observed after going through some
system. To frame the problem, binary digital images are modeled as discrete ran-
dom sets (i.e., a collection of subsets associated with a probability distribution) [7].
If ^ is a set operator, then for each input random set S there is an output random
set ^(S) . If S is any observed realization of S, then ^(S) is a realization of ^(S).
The task is to design an operator *I> so that, given S, ^>(S) is probabilistically
close to some desired process I. We call S, I, and *(S) the observation, ideal, and
estimator processes, respectively.

The distance between the ideal and estimator processes is measured by some proba-
bilistic error measure Er[I, ^(S)]. Assuming the operator belongs to some operator
family 3 , an optimal operator relative to 3 is an operator tyopt 6 3 for which

£r[I, vIV(S)] ^ Er[I, *(S)] (1-24)

for all ^ e 3 . If 3 is characterized by some operator representation, then every
operator * G 3 has a representation and optimization can be viewed as finding the
representation defining an operator possessing minimum error Er[I, ^(S)].

The optimization model includes a system transformation S such that S = S ( I ) ;
that is, the observation process is assumed to be the output of some system
operating on the ideal process [8]. Optimization involves minimizing the error
Er[I, 4>(E (I))]. In general, S is a multivalued image operator, meaning that, given
a realization / of the ideal image, there are many possible output realizations 3 (/).
The task of finding an optimal operator ^ constitutes an inverse problem: find ^
to best invert S.

A much-studied application of the method is when S is a degradation (noise) trans-
formation — the ideal image is obscured by noise [9, 10]. The form of S depends
on the physical system causing the degradation. If N is some other binary process,
then the signal-union-noise model is defined by the degradation transformation
S = 3 ( I ) = I U N . Each observed realization is of the form S = / U N, where
/ and N are realizations of I and N, respectively. Unless there are no restrictions
placed on the ideal and noise processes, the union IU N does not fully define the
system transformation. For instance, it might be required that I and N are statis-
tically independent or that the union is restricted in such a way that there is no
intersection between signal and noise. In document processing, the noise is often
restricted to character edges, so that the noise process is strongly dependent on
the signal process. Rather than union noise with the signal, one might subtract the
noise, thereby having the degradation transformation 3(1) = I — N. There could



LOGICAL IMAGE OPERATORS 11

be two noise processes, Nj and N2, with the degradation both adjoining and delet-
ing pixels and the system transformation being S( I ) = (IUNi) — N2.

Examples of morphological system models are the dilation and erosion models
(see Section 3.3 for discussion of basic morphological operators). If B is a fixed
structuring element and we define the system transformation by dilation or erosion,
S ( I ) = A#(I) or S ( I ) = E#(I), then S is single-valued: for each realization of
the ideal process, a single determined observation results from the system. If the
designed operator needs to be applied across various possible dilations or erosions,
then it is better to treat the structuring element as a random set B, in which case
the dilation and erosion system transformations take the forms S ( I ) = A B ( I ) and
3 ( I ) = E B ( I ) , respectively, both of which are multivalued. System models can
be defined by other morphological operators. If A and B are random structuring
elements, then the system transformation might be erosion followed by dilation,
S ( I ) = A A ( E B ( I ) ) , or dilation followed by erosion, 3(1) = E A ( A B ( I ) ) . If A =
B, then these system transformations are, respectively, opening and closing by B.

To characterize binary edge detection in terms of a system model, assume there
exists a canonical edge detector: given a binary deterministic image L, there is an
edge operator © such that 0(L) is by definition the edge of L. For the system
model, the ideal image process is a process of edges, the class of edges consisting
of all possible edges that might be observed. To avoid undue mathematical com-
plexity, assume that, for each ideal edge realization / , there exists a unique binary
image Rj having edge /[©(L/) — /] and we know the algorithm H that produces
Lj from / . For instance, 0 might be 3 x 3 dilation of the image minus the im-
age and H a contour filler. If S = H, then perfect edge construction would result
from applying © and there would be no operator-design problem. A more practical
model results by assuming the system model is H followed by noise degradation.
For union noise, the system transformation takes the form S( I ) = H(I )UN. An
optimal edge detector minimizes the error £V[I, ^ (H(I ) U N)].

For matched filtering, the ideal image is a set of points at which the object of
interest is located. We assume there exists an operator that places an object to be
recognized at each point of the ideal image process. An object to be recognized is
a random set (shape) A. Given a realization / = {zi, zi, . •., zn} of the ideal image
(point set at which instances of the object are located), a realization of the observed
image is given by a union of realizations A\, A2,..., An of A translated to the
points z\,Z2>--<,Zn> respectively. As a random process, the observation image is
defined by the system transformation

N

S=3match(I) = U A ^ + ^ (1~25)
i = l

where N is a random variable giving the number of points in the ideal image;
Ai, A2, . . . , Aiv are random sets identically distributed to the primary shape A;
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and zi, Z2,... , z# are the random points composing the ideal image. The system is
generally not completely characterized by these minimal conditions. For instance,
there may be a constraint that objects cannot intersect or that intersection is con-
strained. There are also independence assumptions. Are Ai, A2, . . . , &N mutually
independent? Are they independent of the points at which they are located? The
randomness of A also needs to be modeled. It might be that A is a fixed shape dis-
torted by union noise, A = AQ U N; it might be that A is analytically described with
random parameters, such as an ellipse with random axes and angle of rotation.

The system transformation of Eq. 1-25 can itself be more general. In character
recognition, there exist random primary shapes (characters) different from A, say
A1, A 2 , . . . , Am and random point images F1, F 2 , . . . , Fw such that

(
N \ I m N(k) \

| J At + it U I (J | J AJ + zkJ (1-26)
.1=1 / u=i ./=i /

where iV(l), N(2),..., N(m) are the numbers of points in F1, F 2 , . . . , Fm , for k =
1, 2 , . . . , m, F^ = {Zjtj, z*(2> • • • > z>k,N(k)}> a nd A^ is identically distributed to A^
forj = l,2,...,JV(Jfc).
Finally, suppose we desire a VF-operator to emulate a given algorithm A. If A op-
erates on a random image process R, then the ideal image process is I = A(R) and
the system transformation is S A ( I ) = A " 1 ( I ) , where 3 A is multivalued because
many realizations of R might yield the same ideal realization. The optimal emula-
tor of A minimizes the emulation error Er[I, *f (A"1 (I))]. If A is a segmentation
algorithm, then I is composed of segmented images from R and A""1 ( I) consists
of unsegmented images. More generally, consider adapting a given algorithm to a
noisy environment. Suppose A""1 (I) is the observation process resulting from al-
gorithm inversion. As designed originally, A is meant to be applied to this process;
however, suppose the observations have been degraded. Then the system transfor-
mation is given by S N ( I ) = N(A~"1 (I)), where N is a noise-degradation operator.
For segmentation, if the presegmented images are degraded by erosion by a ran-
dom structuring element B, then S N ( I ) = E B ( A ~ ] ( I ) ) and the optimal emulator
minimizes the error Er[I, * ( E B ( A ~ 1 ( I ) ) ) ] . With direct emulation using system
function 3 A , the only advantage is translation of the algorithm into a W-operator.
When emulation involves a degraded version of A~l ( I ) , there is the added advan-
tage that the original algorithm may not work well in the degraded environment,
whereas the emulation will estimate the algorithm as if it were applied in a nonde-
graded environment.

1.4 OPTIMAL ^-OPERATORS

Estimation of I from 3(1) by a W-operator * requires finding a Boolean function
i/s to minimize error. Since ^ is translation-invariant, we make the modeling as-

Smatch,m(I) —(LJA,-,)
1=1
UA'+z'

m Nik)

Aj.+z^- (1-26)
.*=i ./=i

where iV(l), iV(2) , . . . , N(m) are the numbers of points in F 1 , F 2 , . . . , F m , for k =
1, 2 , . . . , m, F^ = {Zjtj, z*(2> • • •» Z ,̂A (̂̂ )}^ a n d A^ is identically distributed to A^
for j = l,2,...,JV(Jfc).
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sumption that I and 3(1) are jointly strict-sense stationary. This means that, if X
is the random vector of binary values in Wz and Y = I(z), then the joint probability
distribution for X and Y is independent of z, so that estimating Y from X yields
a translation-invariant filter. We will denote random variables and random vectors
by upper-case italic and bold-face letters, respectively. Realizations of the random
variable Y and the random vector X will be denoted by y and x, respectively.

For operator optimization we require a loss function /: {0,1}2 —> [0, oo), where
l(a,b) measures the cost of the difference between a and fe, with Z(0, 0) = Z(l, 1) =
0. Relative to the loss function (and owing to stationarity), filter error, Er(ty), is
given by the expected loss from estimating l(z) by *(S(I))(z) ,

Er{V) =Er[l, * ( S ( I ) ) ] = E[l(l(z), * ( B ( I ) ) ( Z ) ) ] (1-27)

where z is an arbitrary pixel. In terms of the Boolean function T/T for *I>,

Er(#) = E[l(Y,+(X))]
= Y,E[l(Y,t(x))\x]P(x)

X

= ]C E[l(Y,Q)\x]P(x) + ]T £[/(F,1)|X]P(X)
{x: V/(x)=0} {x: V'(x)=l)

]T /(i,o)P(y = i|x)P(x)
{x: i/(x)=0]

+ J^ Z(0,l)P(y = 0|x)P(x) (1-28)
{x: ir(x)=l]

where P(x) denotes P(X = x). An optimal image filter is one whose Boolean
function f minimizes Eq. 1-28. Although there can be more than one filter achiev-
ing minimal error, we shall denote "the" optimal filter and its window function by
tyopt and tyopu respectively, the convention being that, from the standpoint of filter
optimization, all filters possessing minimal error are equivalent.

The mean-absolute-error (MAE) loss function is defined by

l(y,if(x)) = \y-f(x)\ (1-29)

Since y and ^r(x) are binary-valued, the loss function is given by Z(l, 0) = Z(0, 1) =
1 and 1(0, 0) = Z(l, 1) = 0. The associated error is the mean-absolute error and is
denoted by MAE(^). Because Z(l, 0) = 1(0, 1), it follows from Eq. 1-28 that the
optimal Boolean function and the error of the corresponding optimal set filter are
given by

, . f 1, if P(Y = l | x ) > 0 . 5 n ~m

V W x ) = | a if P ( y = i i x ) < o.5 (1"30)
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MAEWMAE) = E[\Y -rKX)\]

= J 2 P(x)P(Y = O\x)
{x:P(Y=l\x)>0.5}

+ J2 P(x)P(Y = \\x) (1-31)
{x:/>(y=l|xK0.5)

If we list the possible realizations x of X in a table along with the prior proba-
bilities P(x) and conditional probabilities P(Y = 0 | x) and P{Y = 1 | x), then
MAE(^MAE) is obtained by summing the joint probabilities corresponding to the
values (0 or 1) not chosen for I^MAE- Because images are binary,

E[Y\X] = P(Y = l\X) (1-32)

so that

tMAEtt) = | Q' | f ^rv i Z\ ^ n< (1~33)
E[Y | x ]>0.5

• £ [ F | x K 0 . 5

the binary conditional expectation. Relative to the input image S = 3(1), the op-
timal MAE filter is defined pixelwise by

f l , i f / > ( I ( z ) = l | S n W 2 ) > 0 . 5
*MAE(S)(z) = \Ot i f P ( I ( z ) = = 1 | s n w 2 ) < o . 5 ( 1 ~ 3 4 )

The MAE loss function is used in many applications. Consider object recognition
in a model in which I gives the locations of a shape A. The conditional probability
in Eq. 1-34 gives the probability of A being at pixel z given the observation S n Wz.
Equivalently, the shape occurrence probability is given by P(Y = 1 | X). Now,
suppose there exists a single observation x^ for which P(Y — 1 | X/0 > 0.5 and
P(Y = I 1 x) < 0.5 for x # xA. Then, according to Eq. 1-30, the optimal MAE
filter is defined by the Boolean function

vwx)={; : **;*; d-35)

In particular, suppose P(Y = 1 | xA) = 1 and P(Y = 1 | x) < 0.5 for x ̂  xA. Then
^MAEOO = 1 if, based on the observation x, we are almost sure that shape A occurs.
If, however, there were to exist xo =̂  xA such that P(Y = 1 | xo) > 0.5, then we
would also have T^M4E(XO) = 1 •

A different loss function can achieve a more general shape recognition result. Let
xi, X2, . . . , xm denote the m = 2n possible realizations of X. Let xi, X2, . . . , xr,
r < m, correspond to the patterns which when observed guarantee (almost surely)
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that the shape A occurs at z and xr+\, xr+2» • • • i xm correspond to patterns which
when observed do not guarantee (almost surely) that A occurs at z. In terms of
conditional probabilities, P(Y = 1 | x7-) = 1 for j = 1, 2 , . . . , r and P(Y = 1 |
X/) < 1 for / = r + 1, . . . , in. Let

r = max P(7 = 1 | x /)P(x /) < 1 (1-36)
j>r

and define a loss function by /(0,0) = 1(1,1) = 0, 1(1,0) = 1, and Z(0,1) =
(1 — r ) " 1 . We claim that the optimal shape-recognition filter relative to / is given
by

, . . [1, ifx = x,-, j = 1, 2, . . . , r , . , „
« X ) = (o, ifx = ^ . ; - = r + l , . . . , « ( 1 " 3 7 )

which is precisely the filter we desire. From Eq. 1-28, the error for XJ/SR is given by

SSR = Yl P(Y = l I X/)P(X/> ^ ~ 3 8 )
./=r+i

Now, suppose I/TSR is changed so that some of the first r vectors, say ui, U2,...,«/?,
are redefined to be 0-valued and some of the originally 0-valued vectors, say
vi, V2,..., vc:, are redefined to be 1-valued. The error for the new function, call
it f, is given by

c

7 = 1

c h

+ — ^ P(F = 0 | Vj)P(yj) + J2 p(u/) C1"39)
7 = 1 7 = 1

The first sum is bounded above by cr, the second sum is bounded below by
c(\ — r), and the third sum is nonnegative. Hence,

h

£? > SSR + c(l - r) + ]T P(u;) > ^/? (1-40)
7 = 1

thereby proving that fsR is optimal relative to the new loss function.

Every W-operator * can be canonically represented as

*(S)= U A ^ F ( 5 ) (1-41)
(E,F)€Cy

m

£f =£SR-J2PiY=l\yOP(yJ)
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where Cvy is the set of canonical structuring pairs defining * . Owing to canoni-
calness, xI/(5)(z) = 1 if and only if there is a structuring pair (E, F) e Cq> such
that E = S fl Wz and F — Sc'Hi Wz. We denote the structuring-pair set defining an
optimal filter tyopt by Copt.

For an arbitrary loss function [8] (E, F) e Copt if and only if

£ [ / ( I ( z ) , l)\SHWz = E ] < E [ l ( l ( z ) , 0 ) | S H Wz = E] (1-42)

where S Pi Wz = E means that the observed windowed process equals E and, be-
cause the structuring pair is canonical, S6' n Wz = F . Each canonical pair corre-
sponds to the binary /i-vector x of values in (F, F); for each set operator ^ with
window function ifr, Cy corresponds to the kernel K\ty]\ and Eq. 1-42 is equiva-
lent to x e lC[x/fopt] if a nd only if

E[l(YA)\x]<E[l(Y,0)\x] (1-43)

Once the disjunctive normal form for ^opt (canonical expansion for ^Opt) has been
determined, logic reduction can be employed to reduce the expansion to a non-
canonical sum of products (hit-or-miss expansion) involving fewer logic gates. For
estimation purposes, we continue to assume canonical representation.

For the MAE loss function [11] Copt is denoted by CMAE and

£ [ / ( I ( z ) , l ) \ S H W z = E] = l - P ( l ( z ) = l \ S H W z = E) (1-44)

According to Eq. 1-42, (£\ F) e CMAE if a nd only if

P(l(z) = l \SnWz = E)>0.5 (1-45)

Equivalently, x e K\^MAE\ if and only if

P(Y=l | x )>0 .5 (1-46)

We often use a suboptimal filter ^ instead of the optimal filter ^opt, with a con-
comitant increase in error. The expansion of Eq. 1-41 is taken over Cy instead of
Copt and, equivalently, IC[\//] replaces KL[\j/opt]. To quantify the error increase, if
P(x) > 0, we define the advantage of x by

Adi(x) = (E[l(Y, 0) | x] - E[l(Y, 1) | x])P(x) (1-47)

According to Eq. 1-43, Adi(x) > 0 if and only if x G JC[fopt\. An increase in error
can arise in two ways from using ^ instead of ̂ opt\ x e JC[\//opt] but x ̂  /C[^],
or x ̂  IC[\lropt] but x e IC[i/f]. This error increase is the switching cost with cost
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Table 1.1. MAE cost of using the median instead of the optimal filter.

X

000
001
010
011
100
101
110
111

P(x)

0.30
0.05
0.20
0.05
0.05
0.05
0.10
0.20

P(Y = 1 | x)

0,10
0.10
0.60
0.70
0.10
0.30
0.70
0.90

P(Y = 0|x)

0.90
0.90
0.40
0.30
0.90
0.70
0.30
0.10

-0.24
-0.04
0.04
0.02

-0.04
-0.02
0.04
0.16

function Co(x) = \Adi(x)\. According to Eq. 1-9, the total error increase from
using W instead of tyopt is

Er(V)-Er{Vopt) = Co[f,fopt]

= J2 N w l = ] L N ( X ) I (1"48)

where the last sum is over the symmetric difference between the kernels. Ad[(x)
can also be written as Adi(E, F), where the canonical pair (£, F) corresponds
to x.

Using a particular filter without concern for optimization almost always leads to
suboptimality and often the error increase is excessive. To illustrate the cost of ad
hoc filter selection, we consider a three-point horizontal window centered at the
origin and the MAE loss function. There are eight observation vectors. For the
probabilities and advantages in Table 1.1, K[fopt] = {010,011,110, 111}. Sup-
pose, instead of using %)pt9 one were to apply the three-point median M, whose
window function has kernel /C[/x] = {011, 101,110, 111}. Since /C[V^]A/C[JU,] =
{010, 101}, Eq. 1-48 gives the MAE cost of using the median instead of the optimal
filter as 0.06.

Suboptimality can be introduced when there is too much logic for implementa-
tion, even after reduction. All pairs in Copt contribute to error reduction but some
contribute very little and can be deleted with a small loss in filter performance. If
dp C COpu then

Erm - Er(Vopt) = £ I M W I (1"49)

xeJClifopt)-~IC\i/}

In practice, vectors with positive advantage are listed from largest to smallest ad-
vantage, Filter logic is reduced by deleting those at the bottom of the list prior to
logic reduction.

xeZ\f,fop!\ xe/Cf^lA/CfV/)
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For the MAE loss function, advantage and absolute advantage are given by

AdMAE{x) = [P(Y = 1 | x) - P(Y = 0 | x)]P(x) (1-50)

\AdMAE{x)\ - 11 - 2P(Y = 1 | x)P(x)| (1-51)

In image restoration, ACIMAEOO [ACIMAE(E, F)] has been called [9, 10] the restora-
tion effect of x [(£, F)]. The advantage for the SR loss function is

AdSR(x) = [P(Y = 1 | x) - (1 - r)~lP(Y = 0 | x)]P(x) (1-52)

If P(Y = 1 | x) = 1, then AdSR(x) = 1; if P(Y = 1 | x) < 1, then AdSR(x) ^
r - 1 < 0.

1.5 ESTIMATION OF OPTIMAL W-OPERATORS

In practice, the optimal filter is statistically estimated from image realizations
by estimating the conditional expectations composing the decision criterion
of Eq. 1-43. This is accomplished by taking image-pair realizations (I\,S\),
(h, Si), (J/wi Sm) of I and S = S ( I ) and forming estimators

*/,x(0) = E[l(Y,0)\x]

*/,x(l) = E[Z(y,l) |x] (1-53)

The designed estimate of the optimal filter, ^opt (with window function ifropt\ is
determined by the set /C[^/7f] of observation vectors x for which

£/.x(0<S/,x(0) (1-54)

For a given x there is an increase in error owing to estimation of the optimal filter if
and only if the inequality of Eq. 1-43 holds but the inequality of Eq. 1-54 does not,
or if Eq. 1-43 does not hold but Eq. 1-54 does. These cases correspond to two types
of estimation error: x e KL[fopt\ but x ^ K\^ffopt\ and x ^ JC[i//opt] but x e lC[\//opt].
This suboptimality situation is covered by Eq. 1-48 with ^opt being the suboptimal
filter used in place of *I>. Hence, Er(^opt) — Er{^opt)9 the error increase owing to
estimation of the optimal filter is given by Eq. 1-48 with K[^fopt\ in place of JC[ifr].

For the MAE loss function, we can employ Eq. 1-42 or the respective equivalent
conditions of Eqs. 1-44 and 1-45. For the latter, we can use the probability esti-
mator

Card[x]
P(Y = k | x) =

Card[Y = k\x]

Card[x]
(1-55)
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for k = 0, 1, where Card denotes set cardinality and the numerator and denomi-
nator give the number of times the sample ideal images are ^-valued given x and
the number of times x is observed across the sample, respectively, x e K^MAE] if
and only if Eq. 1-46 holds with the estimate of Eq. 1-55 used in place of the true
conditional probability.

As thus far stated, the error increase corresponds to a given designed kernel
PC[\lfopt]; in fact, K[^j/()pt\ is a random collection depending on the realizations se-
lected. Thus, Er(tyOpt) — Er(tyOpt) is a random variable and we measure the preci-
sion with which tyopt estimates tyopt by the expected error increase,

popt = E[Er($opt) - Er(%)pt}] (1-56)

Note that x e JC[^opt] — JC[\/fopt] if and only if Adi(x) > 0 and e/)X(l) ^ £/,x(0).
Moreover, x e JC[\lropt] — IC[\/rOpt] if and only if Ad[(x) ^ 0 and £/,x(l) < £/,x(0).
Hence,

Popt = ] T M(x)P(^ ,x( l ) > */,x(0))
xeJC[i/opt]

- Y, Adi(x)P(ei,x(l)<eu(0)) (1-57)
X^IC[fopt]

This error has been studied in the context of binary-image restoration and the anal-
ysis applies to the general MAE theory [9, 10, 12]. For the MAE loss function,

PMAE = Y \2P(Y = 1 | x) - \\P(P(Y = 1 I x)< 0.5)P(x)
{xeP(y=l|x)>0.5}

+ Y | 2 P ( F = l | x ) - l | P ( P ( y = l | x ) > 0 . 5 ) P ( x ) (1-58)
{xGF(r=l|x)^0.5}

As the number of observations increases to infinity, PMAE ~> 0-

The preceding estimation methodology is somewhat idealized. If P(x) > 0, then
we obtain good estimates £/,x(0) and ^/>x(l) for sufficiently large observation sam-
ples and the error analysis applies. In practice, however, a particular structur-
ing pair x may not be observed during the estimation procedure, in which case
£/,x(0) and £/)X(l) are not defined. Then, based solely on our statistical knowl-
edge, it is irrelevant whether x is placed into IC[if/opt]. If £/,x(0) a nd £/,x(l)
are not defined, then the design procedure discussed in the next section decides
whether to place x into K\^fopt\ on the basis of algorithm efficiency. In fact,
if P(x) > 0, then whether or not x € IC[\j/opt] does affect the error of estima-
tion, the arbitrariness of our decision coming from lack of statistical knowledge
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(too small a sample). Extra criteria can be employed to decide whether an un-
observed structuring pair is placed into JC[\l/opt]. Such criteria produce a dif-
ferent design procedure and therefore different errors of estimation. A key de-
sign method for document processing is the use of differencing representation,
which produces the estimate ^opt from a different representation than the stan-
dard hit-or-miss expansion [9]. For some system models, error of estimation is
less for differencing design; for others, it is less for standard hit-or-miss de-
sign. Even if a structuring pair is observed, it may be observed so few times (a
single observation not being unusual) that we lack confidence in the estimates
e[x(0) and e/,x0)- In such a case we might employ a conditonal decision crite-
rion of the following form: if x is observed at least r times, then decide whether
to place x into IC[\f/Opt] on the basis of Eq. 1-54; otherwise, apply some other
stated criterion. Such conditional decision criteria have their own errors of estima-
tion [9].

1.6 DESIGN PROCEDURE

The design procedure of set operators for binary image analysis is composed of
two main steps: (1) estimation of conditional probabilities and (2) computation
of an operator of minimal cost in accordance with a given loss function and the
estimated conditional probabilities. The detailed design procedure may be outlined
as follows:

1. Shift the window to all pixel locations within the observation image.

2. At each location, record the observed canonical structuring pair.

3. At each location, record the value of the pixel in the ideal image that is colo-
cated with the window origin in the observation image.

4. For each structuring pair, tally the number of times a 1 is observed in the ideal
image and the number of times a 0 is observed.

5. For the operator representation select, for each canonical structuring pair ob-
served, the value (0 or 1) of minimal cost.

6. To reduce the representation cost, perform logic minimization assuming that
the unobserved templates are "don't cares".

Except for the fact that a large sample may be required, the computational cost of
the first five steps is low; however, the computational cost of the sixth step may be
high.

Step 5 creates a truth table defining a family of statistically equivalent Boolean
functions. Each function in the family possesses a large number of representations.
An ideal procedure for logical reduction would give the best representation (i.e.,
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the one using a minimal number of logic gates) among all possible representations
of all equivalent functions. In practical applications, such a procedure is usually
not available. Typically, the canonical representation of one (or, at best, several)
of the equivalent Boolean functions is chosen and the best representation for this
function is found.

In this more modest context, simplification of a Boolean function consists of trans-
forming a given expression into another expression with fewer terms (products) or
literals (variables). A Boolean expression is considered a minimal expression if:
(1) there does not exist an equivalent Boolean expression with a smaller number of
terms or (2) there does not exist an equivalent expression with an equal number of
terms but with a smaller number of literals. Boolean expressions can be simplified
or minimized via the laws of Boolean algebra. We consider two reduction algo-
rithms. Intervals in {0, 1 }n play a key role. If a, b e {0, 1 }n and a ^ b, then the inter-
val (cube) [a, b] = {x e {0, I}'1: a ^ x < b}. The dimension of [a, b], dim([a, b]),
is the difference between the number of 1-valued components in b and a. A cube
of dimension n is called an rc-cube.

A classical simplification algorithm for Boolean expressions is the Quine-
McCluskey (QM) tabular algorithm [13, 14]. This algorithm provides a minimal
expression and is well suited for computer implementation since it systematizes
the simplification process. The QM algorithm is composed of three basic steps:

1. Complete with Is the table describing the Boolean function.

2. Take the set of 1-valued patterns as vertices (points) in an n-dimensional space
and perform a systematic minimization: from the set of vertices (0-cubes), try
to find all adjacent vertices (1-cubes); from the set of 1-cubes, try to find all
adjacent 1-cubes (2-cubes); and so on. The set of cubes resulting at the final
step of the process is called the set of prime implicants.

3. Select the essential prime implicants from the set of prime implicants gener-
ated in step 2. A term is not essential in the set of prime implicants if it can
be represented by two other terms of the set. The central point in this step is
to compute the smallest subset of the set of prime implicants that is sufficient
to represent the function.

Figure 1-5 illustrates the generation of the prime-implicant set in a simple example.
The drawback of the QM algorithm is that step 1 generates an enormous amount
of data, even when the number of known points in the function is small relative to
the size of the domain. The QM algorithm cannot be practically used for functions
of more than twelve variables.

Incremental splitting of intervals (ISI algorithm) has been proposed for functions
having large numbers of variables and relatively small numbers of fixed values,
a common occurrence when learning set operators [8, 15]. The main idea of the
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[pool

Figure 1-5. Generation of prime-implicant set by QM algorithm.

QM algorithm is repetition of a process that joins cubes (from the 0-cubes) to
obtain cubes as large as possible. The main idea of the ISI algorithm is dual to
this: it is a repeated process that splits cubes into lower order cubes while there are
negative examples that must be satisfied. Successive application of this procedure,
with some basic caveats, results in a minimal expression.
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The ISI algorithm is composed of five basic steps:

1. Let T be an initial set of prime implicants. Usually, in a space of dimension
n, T is the set whose single element is the ;t-cube (the set {0, 1}"). If there are
no negative examples, then the algorithm stops and T itself is the output.

2. Separate the cubes in T according to the following criterion: put the cubes of
T that cover the next negative example (shape associated to 0) to be extracted
in A/" and the others in "P. Set M = 0.

3. Split each cube in A/" and represent it by its low-order cubes. The low-order
cubes that were not covered by some cube in V are put in Ai.

4. Put T — V U AA and repeat steps 2 and 3 for the next negative example, while
negative examples exist.

5. Select the essential prime implicants by the method used in the QM algorithm.

Symbolically, the first four steps of the algorithm can be expressed in the following
manner, where all vectors have n binary components, 0 is the zero vector, 1 is the
vector of all 1 s, and [a, b] is the cube in {0, 1 }n determined by a and b:

1. Set T = {[0,1]};

2. Set ̂  = {XG {0, l}n: (x, 0) is a line of the truth table};

3. lfX^0, select xeX, else go to 11;

4. SetAT={[a,b]€T: x€[a,b]};

5. SetV = T-Af;

6. SetA4 = 0;

7. For each [a, b] e N:
• Set S = split of [a, b] by x;

• Set M = M U {[c, d] G S: 3 no [u, v] € V such that [c, d] C [u, v]};

8. S&tT = VUM;

9. Set ; t=: ; f -{x};

10. Go to 3;

11. Return T;

12. END.

A fundamental aspect of the ISI algorithm is splitting a cube by a negative example.
A cube [a, b] is split by a negative example x G [a, b] into a collection of intervals
S in the following manner:

S= j[a,bAz',]: i\ < x} U {[a vzi, b]: zj ^x ;} (1-59)
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where zi denotes a generic vector having exactly one 1-valued component. It can
be proved that

Card(S) = dim([a, b]) (1-60)

where the number on the left is a count of intervals and the number on the right is
a count of elements. Moreover, for any interval [u, v] e S,

dim([u, v]) = Am([a, b]) - 1 (1-61)

Thus, the split of an /i-cube by a negative example produces n cubes of dimension
n — 1. It can be also proved that the intervals of S are maximal.

The ISI algorithm is recursive. Each execution of step 8 gives a set of prime im-
plicants. Iterations of the algorithm can be visualized via a tree, where nodes at a
given level are cubes resulting after the execution of the iteration. If we consider
the root at level zero, then the nodes in the first level are the cubes resulting after the
extraction of the first negative example and so on. The dynamics for minimization
of a function of three variables are shown in Fig. 1-6. The same 3-space process
can be viewed in Fig. 1-7.

For small numbers of variables the ISI algorithm uses much less storage space than
the QM algorithm; however, relative execution time depends on the quantity and
distribution of the examples given. The ISI algorithm can be applied for minimiz-
ing expressions with large numbers of variables that cannot be treated by the QM
algorithm so long as the number of don't cares is also large [8],

We now present some example applications [8] of optimal design of set operators in
binary image analysis using the MAE loss function and the ISI learning algorithm.
We begin with an example that illustrates the complete design process.

Figure 1-6. Minimization of a function of three variables.

XXX
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Figure 1-7. Visualization of 3-space process of the ISI algorithm.
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Figure 1-8. Design process.
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Table 1.2. Observed statistics.

* 1*2*3

000
001

on
101
110
111

108
2
1
0
1
0

0
0
18
19
18
71

Table 1.3. Designed filter.

* 1*2*3 / ( * 1*2*3)

000
001
Oil
101
110
111
100
010

0
0
1
1
1
1
x
x

{ [ 0 1 0 , 1 1 1 ] , [ 1 0 0 , 1 1 1 ] }

Figure 1-9. Application of designed operator.

EXAMPLE 1-1. We design a 3-variable operator to minimize additive and sub-
tractive point noise in an image composed of vertical stripes. Figure 1-8 shows
realizations of the observed and ideal images, along with a diagram with all the
stages composing the design process. Table 1.2 shows the statistics obtained from
the data of the figure and Table 1.3 shows the result of the decision under the MAE
loss function from the data of Table 1.2. Observe that Table 1.3 defines a class of
four operators that are statistically equivalent. These are obtained by specifying the
don't cares (denoted by x) as 0 or 1. Between these four operators we have chosen
one of minimal computational cost. Figure 1-9 shows the basis of the designed
operator and application of the operator to a new realization.

EXAMPLE 1-2 (edge detection). The window is the 3 x 3 square and the training
sample is taken from the images of Fig. l-10(a). The training sample size was
3,844. The number of distinct observed examples was 46: 24 positives and 22
negatives. Learning time was Is. The error measure was zero. The resulting basis
is composed of the following maximal intervals:

X X X

X 1 X

0 x x

0
X

X

X

1
X

X

X

X

X

X

X

X

1
X

0
X

X

X

X

X

X

1
X

X

X

0

Figure 1-10(b) shows application of the learned operator.

0 1



LOGICAL IMAGE OPERATORS 27

(b)

Figure 1-10. Edge detection: (a) training images; (b) application of learned operator

(a)

(b)

Figure 1-11. Edge detection in noise: (a) training images; (b) application of learned oper-
ator.

(a)
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(a)

(b)

Figure 1-12. End-point detection in noise: (a) training images; (b) application of learned
operator.

EXAMPLE 1-3 (edge detection in noise). The window is the 3 x 3 square. The
training sample of size 80,392 was taken from the images of Fig. 1-1 l(a). There
were 363 distinct examples observed: 278 negative and 85 positive. Learning time
was Is. The resulting basis is composed of 44 intervals. The noise is punctual,
additive and subtractive, and uniformly distributed, with density 5%. The error
measure was 0.48%. Figure 1-1 l(b) shows application of the learned operator.

EXAMPLE 1-4 {end-point detection in noise). The window is

W =

where the 0s in the corners mean that these pixels are not part of the window. The
training sample of size 36,290 was taken from two image pairs, one being shown
in Fig. l-12(a). There were 1,545 distinct observed examples: 1,538 negative and

/O 1 1 1 0\
1 1 1 1 1
1 1 1 1 1 ,
1 1 1 1 1

\0 1 1 1 0/
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7 positive. Learning time was Is. The resulting basis is composed of 4 intervals:

Note that, since the corners are not part of the window, each corner pixel in the
basis must be a don't-care pixel. The noise is punctual, additive and subtractive,
and uniformly distributed, with densities of 1% and 0.1%. The error measure was
0.005%. Figure 1—12(b) shows application of the learned operator.

EXAMPLE 1-5 {defect lines). Detection of defect lines in an image of a transver-
sal section of an eutectic alloy is a classical problem in mathematical morphol-
ogy [5, 16]. To apply automatic design, first we have performed a homotopic trans-
formation on the image and a shrink so we can observe defect lines in a low-
resolution image. The transformed image has been divided into two halves, the
first to be used as training data and the second for testing the result. The win-
dow is the 5 x 5 square. Figure 1-13(a) shows the images used for training and
Fig. l-13(b) shows application of the operator. The size of the training sample
was 7,260. There were 3,812 distinct observed examples: 3,519 negatives and 293
positives. Learning time was 30s. The resulting basis is composed of 127 intervals.

1.7 CONSTRAINED OPTIMIZATION

Suboptimality often results from requiring that the chosen filter come from some
subclass of all possible filters: rather than optimize over all logical expansions
of the kind given in Eq. 1-1, optimize over some subclass of logical expansions.
We implicitly assume that constraints are deterministic, meaning that optimiza-
tion is over a filter class defined without reference to the conditional probabilities
P(Y = 1 | x). For unconstrained optimization, the kernel /C[^] can be any subset
of {0, 1 }n; for constrained optimization, there exists a family Q of subsets of {0, 1 }n

that is a proper subfamily of the family of all subsets of {0, l}n such that JC[\j/] e Q.
If \/fcon is the optimal logical function over the constrained filter class, then the in-
crease in error owing to constraint is given by Eq. 1-48 with \l/con in place of ijr.

x x 0 x x
x 0 0 x x
x 0 1 1 1
x 0 0 x x
X X X X X

X X X X X

0 0 0 0 0
0 x 1 0 x
0 x 1 x x
X X 1 X X

x 0 1 0 x
0 x 1 0 0
0 x 1 0 x
x 0 0 x x
X X X X X

x 0 0 0 x
0 x x 0 x
1 1 1 0 x
x x x 0 x
X X X X X
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(a)

(b)

Figure 1-13. Defect lines: (a) training images; (b) application of learned operator.

The error increase is zero if and only if there exists a filter in the constrained class
possessing minimum MAE among all filters.

An independent constraint is one for which the decision whether to place a vector
x in the kernel is constrained by a condition involving only x itself, and no other
vectors. A number of filter conditions can result in independent constraints. Inde-
pendent constraints can result from geometric conditions. Letting W be the 3 x 3
window and reading vectors in the usual raster method, the condition that a pixel
be 1-valued if it is interior to a vertical or horizontal line of pixels produces the
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independent constraints

Ci:xelC[ifr] ifx^010010010

C 2 :x€/C[^] i f O 000111000 ( }

For these independent constraints, a set A of vectors lies in Q if and only if

W[010010010]UW[000111000]C^4 (1-63)

A more refined constraint set occurs if the condition is changed to state that a pixel
must be 1 -valued if it is interior to a vertical or horizontal line of pixels and there
are no other 1-valued pixels in the window. This yields the independent constraints

Ci:xe!C[f] ifx = 010010010
C2:x€lC[f] if x = 000111000 ( }

For these independent constraints, a set A of vectors lies in Q if and only if

{010010010,000111000} CA (1-65)

Independent constraints can arise from algebraic conditions. If we demand that ^
be antiextensive, then there exists a single constraint:

C\\ni K[f] if x ^ 000010000 (1-66)

Independent constraints occur from placing a filter bound on the designed filter * .
For instance, ty(S) D <&(S) [*(5) C <*>(£)] for all S, meaning * ^ <f> [* < <J>].
If $ is increasing with B[(f>] = {x\, x 2 , . . . , xm}, then $ ^ * yields in independent
constraints:

C\\ x G /C[^] if x ^ xi
C2 :x€X:[^] i f x ^ x 2

(1-67)

Cm: x elC[\[f] if x > x m

If Q is increasing with B[co] = {y\, y 2 , . . . , y&} and we desire the bounding con-
straint <f> ^ ^ ^ Q, then, in addition to the constraints C\, C2, . . . , Cm, we have
the independent constraint

C m + i : x ^ JC[\/f] if there does not exist y/ such that x ^ y ; (1-68)

(1-62)
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For the bounding constraint 4> ^ *I> ^ Q, one can design an unconstrained estimate
^P' of the optimal filter and then the estimate of the constrained filter is

\p = (0> v *P') A Q (1-69)

This transformation can take place on the truth table defining * ' , in which case
it effects the following changes: if ^'(x) = 0 and (p(x) = 1, then ^r(x) = 1; if
^'(x) = 1 and co(x) = 0, then i//(x) = 0; if irf(x) is undetermined (because x has
not been seen in training), then ^(x) can be arbitrarily chosen so long as 0(x) ^
ifr(x) ^Q)(x). The ISI algorithm can then be employed. Owing to the constraints,
we do not concern ourselves with any conditional probability P(Y = 1 | x) for
which <f>(x) = 1 or co(x) = 0.

To illustrate filter-bound constraint we use opening, an increasing morphological
filter to be discussed in Chapter 3. Given set A, the opening of set S by structuring
element A, FA(S), is defined as the union of all translates of A that are subsets
of S. If W is a 3 x 3 window and A is a 4-pixel square, then the basis of YA (the
Boolean function for T A) is

B[yA] = {110110000, 011011000, 000110110, 000011011} (1-70)

For the bounding constraint FA ^ *P, we need not concern ourselves with any
conditional probability P(Y = 1 | x) for x e U[B[YA\]-

The error increase resulting from an independent constraint can be computed from
Eq. 1-48 by letting ACQ)n and Ac(m be the sets of vectors deterministically con-
strained to the O-set and 1-set (kernel), respectively:

ErWcon) - Er(%,pr) = ^ |Ad/(x)| (1-71)

For the order constraints of Eq. 1-67, Ac
0

on = 0 and A™" = W[Bas[0]].

Independent constraints can reduce design complexity. If prior probabilities for a
class C of vectors are negligible, then vectors in C can be arbitrarily independently
constrained with Er{^am) — Er(tyopt) ^ /3, where j3 is the sum of the prior prob-
abilities in C. In fact, Er(tycon) — Er{H?opt) is likely to be much less than /J since
many vectors may be correctly constrained and the error factor 11 — 2P(Y = 1 | x)|
may often be substantially less than 1. Should Er{^con) — Er{^opt) be small,
the designed constrained filter can outperform the designed unconstrained filter
because the difference in estimation errors between the constrained and uncon-
strained filters can exceed Er{^con) — Er{tyopt).

So far we have considered independent constraints; a dependent constraint is one
that cannot be applied to each vector independently. This means there are required

xe(J%m-S0Wopt])\J(At™-Sil1ropt])
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Table 1.4. Weighted medians.

X

0000
0001
00 10
001 1
0100
0101
0110
0111
1000
100 1
10 10
10 11
1 100
1101
1110
1111

ai

0
0
0
0
0
0
0
1
0
1
1
1
1
1
1
1

a2

0
0
0
0
0
1
1
1
0
0
0
1
1
1
1
1

0
0
0
1
0
0
1
1
0
0
1
1
0
1
1
1

a4

0
0
0
1
0
1
0
1
0
1
0
1
0
1
1
1

relations among vectors that do not reduce to independent constraints. A simple
constraint is that there are two vectors x and y such that if/(x) v ̂ (y) = 1. Equiva-
lently, x € /C[T^] or y e /C[^]. Typically, dependent constraints result from requir-
ing that the designed filter belong to a given filter class (and it may not be easy to
deduce the dependency relations).

As an illustration, consider the weighted median, which, for the binary values
x\, JC2,..., xn with positive-integer weights ai, 02, . . . , an, is defined by

M*!,^....*.)-!1' *I2=.^(E?=i*')/2 (1-72)
[ 0, otherwise

Constrained optimality occurs when we desire the optimal weighted median with
sum of weights a (which we assume to be odd). Consider the four-point weighted
median with the sum of the weights being 5. There are four possible weight vectors:
ai = ( 2 , l , l , l ) , a2 = ( l , 2 , l , l ) , 83 = 0,1 ,2 ,1) , and 84 = 0 , 1 , 1,2). These
lead to four possible filters defined by the following minimal Boolean functions
(basis expansions):

fJL\ (*i, JC2, *3, X4) = X\X2 + X\X3 + X\X4 + X2X3X4

V>2(X\,X2, X3, X4) = X\X2 + X2X3 + X2X4 + X1X3X4

M3U11 *2, X3, X4) = X\X3 + X2X3 + X3X4 + X1X2X4

/X4(Xi,X2, ̂ 3,^4) =XjX4 + X2X4 + X3X4 + X1X2X3

(1-73)
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The four filters are defined by Table 1.4. Having found all MAEs, filter errors
can be found from the table and the optimal filter in the class is the one possessing
minimum MAE. The increase in error owing to suboptimality is given by Eq. 1—48.
Here it is easy to find the optimal constrained filter because only four filters must be
checked. More generally, the number of filters in a given subclass can be enormous.

1.8 OPTIMAL INCREASING FILTERS

The most studied dependent constraint is that the filter be increasing [17-20]. The
relationship among the vectors is given by: if x ^ y and x e /C[^], then y e lC[i/].
If 3jnc is the class of all increasing operators, then the optimal increasing filter,
^inc, is the operator in 3,-wc possessing minimal MAE. If, for a particular model,
tyOpt is increasing, then ^inc = ^opt and reduction of the logical expansion for
tyopt yields a positive expansion for irinc. From a purely probabilistic standpoint,
derivation of an increasing optimal filter via the conditional expectation and logic
reduction is a valid approach. Nonetheless, given prior knowledge that tyopt is in-
creasing, it can be beneficial to directly design an increasing filter; that is, de-
sign tyopt by means of a procedure that finds the optimal increasing filter, in this
case that being ^opt, itself. Furthermore, there are reasons why it might be ben-
eficial to design the best increasing filter even when it is not fully optimal (when
\&inc -/L tyopt)\ (1) minimal positive representations can significiantly reduce the
logic cost in comparison to nonpositive representations; (2) most important statis-
tically, typically many fewer realizations need be observed during training to obtain
good estimates of optimal increasing filters compared to the number of realizations
required for equivalently good estimates of nonincreasing filters. The present sec-
tion briefly describes direct design of optimal MAE increasing filters. One way to
proceed is to apply a switching algorithm that derives ^inc from tyopt by switching
vectors between So[i/opt] and S\[i/opt] to obtain an increasing filter for which the
switching error is minimal [21, 22]. This approach has a drawback: if ̂ inc cannot
be obtained with a small number of switches, then switching algorithms can be
prohibitively computational.

If B C W, then the single-erosion filter E^ is defined by the Boolean function

sB(x) = mm{xi: t/ = l} (1-74)

where b = (b\, bi,..., bn), and bt — 1 if the ith pixel of W is in B and b[ = 0
otherwise. Filter MAE, denoted by MAE(B), is given by

MAE{B) = E[\Y-sh(X)\]= £ P(x,y) (1-75)
{(x,y): y^sh(x)}

For practical design, MAE(B) is estimated from realizations of the ideal and ob-
served images. The observed realization is eroded pixelwise and compared to the
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ideal-image realization. An estimate of MAE{B) is obtained by dividing the num-
ber of pixels at which the eroded observation and ideal disagree by the total number
of pixels considered.

For an ra-erosion filter *# with basis B = {B\, B2,..., Bm], filter error is given by

MAE(VB) = E[\Y-fB(X)\]

= E[Y - (shl (X) v sh2(X) v • • • v shm(X)]

J2 P(x,y) (1-76)
{(x,y): >'^max/eb.(x)}

An estimate of ty/n6. can be found by estimating MAE^B) over all possible bases
and choosing *,-nt. as the filter corresponding to the basis generating minimal MAE.
If the window has n pixels, then it has 2n subsets, but many are eliminated from
consideration owing to the minimality condition for a basis. Nonetheless, except
for relatively small windows, constraints must be imposed, thereby (it is hoped
slightly) increasing MAE. Constraints include limiting the basis size and constrain-
ing the search to a library (subclass) of all possible structuring elements [18]. Li-
brary constraint, requires some method of choosing the library. In practice, two
techniques have dominated. Expert libraries are collections of structuring elements
whose effects are well known (to experts) or which are basis members of popular
filters known to work reasonably well for similar image models. First-order li-
braries are found by placing into the library some number of structuring elements
possessing the smallest MAEs as single-erosion filters.

As expressed in Eq. 1-76, it would appear that filter design must include obtain-
ing realization-based statistics for every basis, a prohibitive task. In fact, one need
only obtain MAE estimates for single-erosion filters and then recursively obtain
MAE estimates for multiple-erosion filters. According to the morphological MAE
theorem [19], the MAE of an m-erosion filter *Pm can be expressed in terms of a
single-erosion filter with structuring element Bm and two (m — l)-erosion filters
* m _i andOm_r.

MAE(Vm)=MAE(Vm-x)-MAE(<bm-x)+MAE(Bm) (1-77)

where the bases are given by

B[*m-i] = {«i,fi2,.-.,5m-i}

B[*ml - S[*m_i] U {Bm} = {BU B2, • • •, Bm) (1-78)

B[*m_i] - {Si U BW1 B2 U Bm, . . . , fim_i U Bm)

To see how Eq. 1-77 can be used in filter design, suppose we wish to optimize by
selecting bases from some structuring-element collection C — {B\, B2,.. •, Bq).
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For p = 1, 2 , . . . , q, let Cp be the closure of C under unions of p or less elements
within C. Then C\=C and C\ C C2 C • • • C Cq. If we know the MAE for each
structuring element in Cq, then we can proceed recursively. For any 2-element filter
W2 with basis B[^2] = {Bfu $12},

MAE(^2) = MAE(BiU Bi2)

= MAE(Bn)+MAE(Bi2)-MAE{Bn U flf-2) (1-79)

If ^3 is a 3-erosion filter with basis H[*3] = {#/i, 5/2, 5/3 hthen

MAE(^3) = MAE(BiUBmBi3)

= MAE(BiUBi2)+MAE(Bi3)

-MAE(Bn U 5,-3( Bi2U Bi3) (1-80)

All terms on the right-hand side of the equation can be obtained from the previ-
ous stage of the iteration. The MAE theorem allows for evaluation of redundant
structuring-element combinations but reduces to nonredundant forms.

Basis-size constraint, library constraint, and estimation of filter MAEs affect the
relationship between the optimal increasing filter and the designed filter meant to
estimate it. If we simply impose basis-size constraint, say k structuring elements,
then optimization is over the class of increasing operators having at most k terms in
their minimal representations, thereby yielding a suboptimal increasing filter \E*>J.
If there is also first-order-library constraint using the r structuring elements pos-
sessing minimum single-erosion MAE, then there is further suboptimality yielding
a filter *JJ;r) and

MAE^inc) ^ MAE{9™) ^ MAE^f) (1-81)

Since the designed filter is based on estimated MAEs, even without basis-size or
library constraints, it is an estimate *P/WC of */wo and MAE{^inc) ^ MAE{^'mc).
According to theory [12], if the number of observations is large, then MAE$/inc) ^
MAE{^inc)\ from experience, a single 1024 x 1024 realization is usually sufficient
for good estimation. If both basis-size and library constraint are employed, then
we actually estimate ^ ^ r ) from data, so that the designed filter is a statistical es-
timate $ ^ r ) of *!£.r), and MAE{^r)) > MAE(^r)). Experience has shown
that basis-size- and library-constrained estimates are close to optimal in many situ-
ations. Therefore we consider $^ , r ) to be a reasonably good estimate of ̂ c . and
when we speak of the designed filter we are referring to Vf̂ .' . Finally, estimation
of ^inc typically requires far less data than equivalently good estimation of ^Opt*

Owing to error of estimation, *^ . r ) can outperform tyopt even when the optimal
filter is not increasing.
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(a) (b)

MAE

(e)

Figure 1-14. Text restoration: (a) realization of ideal process; (b) realization of degraded
process; (c) MAE-vs-basis-size curve; (d) optimal 5-erosion basis; (e) restored image.
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EXAMPLE 1-6 (text restoration [10]). Figure l-14(a) shows a realization of an
ideal text process and Fig. l~14(b) shows a realization of the degraded process
that results from pixel dropouts and for which MAE = 0.0190. A 300-element
first-order library over a 17-pixel window has been employed in designing an in-
creasing filter. The MAE vs. basis-size curve, optimal 5-erosion basis, and restored
image are shown in Figs. l~~14(c), l-14(d), and l-14(e), respectively. MAE has
been reduced to 0.0074 and the characters have been reconnected without joining
characters.

1.9 ITERATIVE FILTERS

Another important dependent constraint is that the filter possess an iterative de-
composition. Iterative filter design involves finding a statistically optimal filter for
a small observation window that minimizes the error between the desired ideal im-
age and the filtered observed image, finding a second filter that minimizes the error
between the desired ideal image and the filtered output from the first filter, and then
cascading the two filters to obtain a filter whose effective window is the dilation of
the original small window with itself [18, 23]. The class of composite filters that
can be constructed by such cascading is much smaller than the class of all filters
over the large window. Hence, relative to direct optimization over the large win-
dow, an iteratively designed filter is suboptimal. But computation is greatly reduced
by iterative design, often to the point where large-window optimization is compu-
tationally impossible whereas iterative design has no computational impediments.
Moreover, iteratively designed filters often provide only marginally reduced perfor-
mance than filters optimally designed over a large window. Finally, by employing
several iterations, it is possible to achieve better filters that take less design time
than could be achieved by a single-iteration method taking greater design time. We
focus on increasing operators.

The key to iterative design is composition of logical sums of products. Let ^\ and
^2 be increasing W-operators with respective window functions

tftl(xi,X2,...,xn)=:1^2xktiXk,2--XkMk)

* d-82)
^2(X\,X2, ...,Xn) = 2 J * | , l*/,2 * "XiM0

i

The Iterative (composite) filter W2 = * 2 * i is defined by * 2 * i W = *2(*i(«S'))-
Owing to translation invariance, we need only examine *2^i(5) at 0 to arrive at
the form of the window function, iff2, for W2. Specifically, we consider

*2*i(5)(0) = in(t\(snwxi)9 ^ i(sn^2) w s n v j ) (1-83)
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The functional expression on the right defines if/2 and depends on values of S in

m

\JwXi = W®W (1-84)
/=i

which is the Minkowski sum of W with itself. Denoting the varibles in W © W by
z\, Z2, • • •, ZN and applying the representations of Eq. 1-82 to i//2 yields

f 2(zuz2, ...,zN) = J2^sn w^0^(s n ^-2) • • • ^\(snwXiMi))
i

~ zZ [ l2xi,lk,lXi,l,k,2''*xi,hk,m(k) )
i ^ k '

X ( 2^Xit2,k,lxi,2,k72 ' * *.*i,2,*,m(*) 1
^ k /

' ' * X ( ^*i\n(0,JU*i,w(i),*,2 " ' 'Xi,n(i),k,m(k) I (1-85)
^ k '

where the variables of S D WXi . appearing in the kth product forming i/r\ (S D WXi .)
arexijtic,\>Xij,k,29 •• ̂ xi,j,k,m(k) f° r j = 1,2,...,«(/). The resulting sum of prod-
ucts over W © W defines the window function for the iterative filter * 2 = ^ ^ l -
Logic reduction yields product terms corresponding to B[f2]. Since the product
terms for \fr\ and %//2 correspond to 23[i/q] and S t^ ] ? respectively, derivation of
B[ir2] from B[i/\] and i3[^2] is automatically accomplished via logic software.

If we desire an optimal MAE increasing filter over window W © W but window
size makes the problem too computationally intensive, then one way to proceed is
to find an optimal iterative filter. Suppose S is the observed image process and I is
the ideal. An optimal increasing W-filter ^ i is found to minimize MAE for ^ i (S)
as an estimator of I. Next, an optimal increasing W-filter ^2 is found to minimize
MAE for ^2(*i(S)) as an estimator of I. Relative to * 2 , *i(S) is the observed
image. This optimal iterative filter ̂ 2^1 is an increasing (W © W)-filter. ^Vfl is
very likely not optimal over all (W© W)-filters, since this would require that ^2*1
be decomposable into W-filters; nonetheless, since filter design is computationally
limited to relatively small windows, if iteration provides good suboptimal results,
then it permits automatic design for larger windows than could be accomplished
by direct noniterative design.

More generally, we can consider an iteration of n filters,

Vn = %t%^{%t_2 - • - W l (1-86)

Xi,\,k,lxiAX2- -Xi,\,k,m(k)
i k

k

XiXk,\Xi,2,k,2 ' * '*i,2,*,m(*)
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Recursively, tyn = ̂ n^
n~[. If each filter composing tyn is an increasing W-filter,

then tyn is an increasing nW-filter, where

nW = Wl®W2®--eWn (1-87)

and Wl = W for i = 1, 2 , . . . , n. If we optimize recursively to obtain ty", then
tyn is an nW-filter that is suboptimal relative to the optimal filter, ^Opt,n^ over
nW. Since *£ can be the identity filter, it must be that MAE{^k) ^ MAE{^k~~x).
Hence,

MAE(VopUn) < MA£(*/1) < AfA^*11"1) ^ • • • ^ MA^*1) (1-88)

Because the MAEs for the iterative filters form a decreasing sequence, they must
possess a limit; however, the inequality of Eq. 1-88 does not imply that this limiting
MAE is equal to MAE{^optin) for some n. Moreover, unless an optimal Wn-filter is
decomposable, the leftmost inequality is strict for each n. Indeed, a basic problem
of iteration is to determine the number of iterations necessary for further iterations
to produce neglible improvement in MAE. Both the degree of optimality and the
number of iterations necessary to be close to minimal iteratively achievable MAE
are dependent on the window and the signal-noise model.

A measure of difference is needed to compare tyn and ^Opt,n • From a purely logical
perspective, the extent by which two operators disagree can be measured by the
size of their switching set relative to the total number of observation vectors. The
logical difference between operators * and O is defined by Card{Z[^, <3>])/2/2.

From the standpoint of filtering random sets, logical difference is not the key issue.
If %l/(x) ^ 0(x), but the probability of observing x is very small relative to other
observation probabilities, then it matters little that i//(x) ̂  0(x). Their probabilis-
tic difference is defined by P(Z[^, <&]). Applying Eq. 1-28 with the MAE loss
function yields

MAE(^) -MAE(<$>) = J2 P(*)P(Y = 0\x)+ ] T P ( x ) P ( y = l | x )

- ]T P(x)P(K = 0 | x ) - ]T P(x)P(Y=l\x)
xe«S,[0] xeSoW

J2 P(*)[P(Y = 0 | x) - P(y = 1 | x)]

+ J2 P(x)[P(Y = l \x)~P(Y = 0\x)] (1-89)
x€«Si[01-5,W]

Each term in both of the latter sums is bounded by P(x), so that

\MAE{W) -MAE{®)\ ^ P(Z[* , *]) (1-90)

xeSiW xe66[* |

XG5i[01-5,[l/r]
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and the probabilistic difference between two filters serves as an upper bound on
the difference between their MAEs.

In designing iterative filters, it is not unusual for the designed estimates of ty" and
^opt,n to be substantially different while their probabilistic difference is negligible.
Hence, they differ significantly as logical operators but insignficantly as filters on
the observed random set.

EXAMPLE 1-7 (text restoration [24]). To illustrate increasing-filter iterative de-
sign, we consider document restoration. Because we wish to compare optimal fil-
tering over W © W with iterative filtering over W, we employ the small window

/0 1 0\
W= 1 1 1

\0 1 0 /

for which

W© W =

/o o l o o\
0 1 1 1 0
i i i i i
0 1 1 1 0
0 0 1 0 0/

An ideal document image is subjected to dilation and random pepper noise. Iter-
ative filters using both W and W © W are designed to restore the original. Using
W, two iterations achieve essentially the same degree of restoration as a single ap-
plication of the filter designed over W © W. Not only is design much faster for the
iterative filter, were we to employ a 5 x 5 iterative filter, two stages would approx-
imate a 9 x 9 optimal filter, which could not be designed by the increasing-filter
methodology. Figure 1-15 shows a realization of the ideal image, a degraded ver-
sion of the realization, restoration after a single-stage W-filter, restoration after a
two-stage VK-filter, and restoration after a single-stage (W ffi Wr)-filter.

EXAMPLE 1-8 (connected thinning). We desire a thinning (skeletonization) algo-
rithm based on iterative filtering over a 3 x 3 window to thin connected compo-
nents. Figure 1-16 shows a realization of the input process and the results of four
iterations of the designed filter. Note how most of the transformation is accom-
plished in the first iteration and how small "corrections" are made subsequently.
This is not unusual for iterative filtering, where later-stage filters can "correct over
filtering" of early stages [24]. Figure 1-17 shows the realization of Fig. l-~16(a)
with 5% random pepper noise and the result of the designed iterative filter after
four interations. Table 1.5 gives error percentages for each iteration.
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(a) (b)

(c) (d)

rcbotcudycc
gh'ehidirphjt
enaninenho
sinostotetat

(e)

Figure 1-15. Text restoration: (a) ideal realization; (b) degraded realization; (c) restora-
tion with single-stage W-filter; (d) restoration with two-stage W-filter; (e) restoration with

single stage (W 0 W)-filter.

rGbptcUdycc rcbotcudycc
gh^idirbhjt ghehidirohjh
enanjrienho enaninenho
Sfirrpstdtetat sinostotetat

rcbotcudycc ^ ^ ^ ^ M
ghehidirohil' ttl^Hi^MM
enaninenho enaninenho
sinostotetat sinostotetat
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(a) (b)

(c) (d)

(e)

Figure 1-16. Connected thinning: (a) realization of input process; (b) result of first itera-
tion; (c) result of second iteration; (d) result of third iteration; (e) result of fourth iteration.
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Table 1.5. Error percentages for connected thinning.

Iteration Nonnoisy Noisy

1
2
3
4

0.40%
0.20%
0.18%
0.17%

1.20%
0.96%
0.88%
0.83%

it o jy q r i t II v jt z w jr;

ABCDEJFGHIJ

R L M N O P Q R 5

TUVXZWY

abcde ffijiij Icirn

n o p q r s t u T x i w y

(a) (b)

Figure 1-17. Realization of Fig. 1—16(a) with 5% random pepper noise and the result of
the designed iterative filter after four interations.

EXAMPLE 1-9 (character recognition [15]). The present example combines al-
gebraic constraint and iterative filtering for character recognition. It has been per-
formed on an Intel-586 processor and processing time is measured in hours (h),
minutes (m), and seconds (s). The input image is text and the output a set of mark-
ers for a desired character. Operators are constrained to be antiextensive [meaning
S D * ( 5 ) ] , the first training stage uses the SR loss function, subsequent stages use
the MAE loss function, the first filter is over either a 7 x 7 o r 9 x 9 window, and
each subsequent stage uses a window reduced by 2 pixels per side compared to
its preceding stage. Figure 1-18 shows an input image (gray) with markers for the
character 'a' superimposed. Table 1.6 provides some sample results for recognition
of 'a ' .

1.10 MACHINE LEARNING THEORY AND OPTIMAL
OPERATOR DESIGN

Computational learning theory is one of the first attempts to construct a mathemat-
ical model for the cognitive concept-learning process. It provides a framework for
studying a variety of algorithmic processes. We briefly review basic elements of
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Figure 1-18. Character recognition: input gray image with markers for the character 'a'
superimposed.

Table 1.6. Training data.

First training
stage

7 x 7
7 x 7
7 x 7
9 x 9
9 x 9
9 x 9
9 x 9

# Examples
(thousands)

79
88
96
79
88
96

104

# of Stages

1
2
3
1
2
3
4

Basis size

644
726
762
551
700
760
781

Training
time

2 hour/47 min
2 hour/48 min
2 hour/48 min
3 hour/45 min
3 hour/48 min
3 hour/48 min
3 hour/48 min

Relative
error (%)

10.4
1.4
0.5

12.8
0.8
0.5
0.4

the model and then discuss the relationship between automatic design of optimal
W-operators and Haussler's paradigm for learning Boolean concepts in the context
of machine learning theory [8, 25, 26].

Consider a finite set (domain) of objects D structured by an unknown distribu-
tion /A. A concept c is a subset of objects in a predefined domain D or, equivalently,
a Boolean function from D -> {0, 1}. An example of a concept c is a pair (x, b),
where x is an object in D and b is a binary label (0 or 1) indicating whether or not
x e c. If b — 1, then x e c and the example is called positive; otherwise, x <£ c and
the example is called negative. An object is taken randomly from the domain and a
teacher, who knows the concept, classifies the object as a positive or negative ex-
ample. In more sophisticated models, the teacher is assumed to be imperfect, that
is, the teacher may erroneously classify some objects. In the imperfect case, the
teacher is modeled by a conditional distribution P(B | X), where X is the random
process, with distribution /A, representing the domain, and B is a binary random
process labeling a domain object when it is observed.

• • •• ••• B ^ L J ^ ?••• ' i ^ • • %

1 canals at£ «se in
ids incnnsciflrttfttttcri



46 CHAPTER 1

Concept learning is the process by which a learner constructs a good approxima-
tion to an unknown concept from a number of examples and possibly some prior
information about the concept to be learned. After observing labels of a sequence
of objects taken randomly from the domain, the learner obtains a Boolean function
that decides whether an object taken from the domain is an element of the concept
with a small probability of error. The set of all possible concepts to be learned is
called the hypothesis space and denoted by H. The concept t e H to be determined
is called the target concept. The task is to find a concept h e H, called a hypothesis,
that is a good approximation of t.

A training sample s of length m is a sequence of m examples,

S = ((xUbX), (JC2, 62), • • • , (*m, bm)) d-91)

where, for i = 1, 2 , . . . , m, x/ is an object and b\ a label. Assuming that object
selection from the domain is independent, it may happen that an object occurs
more than once in the examples that constitute s. When the teacher does not make
mistakes, the training sample is said to be consistent, that is, if x-t = Xjt then b[ =
bj. When the teacher may err, the training sample is said to be nonconsistent; that
is, it may happen that b[ ̂  bj when JC; = Xj. For fixed m, the class S of training
samples is a random process with

m

P ( S = S) = P ] P ( X = JC/)P(B = 6 I - |X / ) (1-92)
1=1

The probability mass for S is induced by the probability mass on the domain in
conjunction with the conditional labeling probabilities. A learning algorithm is
a function L that assigns to any training sample s, for a target concept t e H, a
hypothesis h e H. We write h = L(s).

Consider a fixed target concept t e H and a given loss function /. Let B be the
Boolean random process describing the label attributed to a domain object when it
is observed in the learning procedure. For any hypothesis h e H, the risk r(h, t) of
choosing hypothesis h for the concept t is defined by

r(h,t) = E[l(B,h(X))] (1-93)

where X is the random process modeling the domain. Because B depends on X,
the distributions of both B and h(X) depend on the distribution of X. Let h* e H
be the hypothesis of minimum risk for t, meaning r(h,t) ^ r(h*,t) for all he H.

Algorithm L is called a probably approximately correct (PAC) learning algorithm
for the hypothesis space H if, given real numbers s (0 < s < 1) and 8 (0 < 8 < 1),
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there exists a positive integer m(e, 8) such that m ^ m(e, 8) implies

P ( | r ( L ( S ) , 0 - r(h\ t)\<s)>l-8 (1-94)

for any target concept t € H, distribution /z on D, and conditional distribution
P(B | X). The value m{e, 8) and the pair (e, 8) are called, respectively, the sample
complexity and precision of the learning algorithm. If H is finite, then the sample
complexity of any PAC learning algorithm L is bounded [26] by

m(e, 8) = - j ( l ogCW(t f ) + log- ) (1-95)

The formulation of PAC learning we have presented is a simplification of Haus-
sler's formulation to concepts understood in the sense defined here. If the loss
function is

/(B,fc(X)) = | B - / i ( X ) | (1-96)

and the training sample for a given target concept / is consistent, then r(h*,t) =
r(r,f) = O,

r(h, t) - fi({x G D: t(x) + h(x)}) (1-97)

the formulation reduces to the original formulation of PAC learning algorithms [27]
and the bound for the sample complexity reduces to

m(e, 8) - -(logCanl(H) + log - ) (1-98)

The complete procedure of estimation of set operators we have proposed (estima-
tion of the conditional probabilities and estimation of the best operator by optimiza-
tion) is equivalent to the learning-concept formulation just presented. VF-operators
are equivalent to Boolean functions, and concepts (in the sense we have defined) are
Boolean functions defined on a given domain. When interpreting W-operators as
concepts, the domain is the set of patterns observed in W; the distribution \x gives
the relative proportions of observed patterns and is determined by the probabilities
P(X = x); and the conditional probability P(B | X) results from nondeterminacy
in the ideal image given an observed pattern and noise affecting the images.

In the hit-or-miss representation, for a hypothesis (Boolean function) h (determin-
ing a W-operator * ) , a loss occurs if and only if (£, F) € C^, where (£\ F) is
the canonical structuring pair equivalent to x, and B = 0 when x is observed, or
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(£\ F) ^ Cy and B = 1 when x is observed. Since (£, F) e Cqj can be equiva-
lently expressed as x e C^ and h(x) = 1 if and only if x e Cy9

r(h,t) = E[l(B,h(X))]

= J^E[l(B,h(x))\x]P(X = x) (1-99)
X

= £E[/(B,1) |X]/>(X = X) + I]4'(B,0)|x]P(X = x)

Assuming the target function Ms a possible hypothesis,

r{hj)-r{tj) = ]T (4/(B,l)|x]-4/(B,0)|x])P(X = x)
xeCy —Ci

+ ]£ (4(B,0)|x]-4/(B,l)|x])P(X = x)
x£Ci-Cy

(1-100)

where C/ is the class of structuring pairs corresponding to the W-operator defined
by the target Boolean function t. Since the r(/i, t) is minimized for h = t, according
toEq. 1-99 applied to r, E[Z(B, 1) |x] < £[ / (B ,0) | x] if xeQ a n d £ [ / ( B , 0 ) |
x] ^ £ [ / (B , 1) | x] if x <£ C[. Hence, Eq. 1-100 reduces to

r(h, t) - r (r , t ) = J 2 \Eil(B' ! ) i x ] - E[l(B9 0 ) | x ] \ P ( X = x ) ( 1 - 1 0 1 )
xedp AC/

which is equivalent to the suboptimality error-increase expression given in terms
of absolute advantages in Eq. 1-48. Interpreting Eq. 1-48 relative to sampling, the
concept-learning precision inequality of Eq. 1-94 takes the form

l-8<P(\Er[Wl)-Er(tyi)\<e) = p( ] T \Adt(E, F)\<e\ (1-102)

(E,F)eClAC!

form ^ m(s, 8).

General machine-learning sample complexity bounds are unrealistically loose
when compared with practical results found in the literature [9, 12, 15]. A salient
reason is use of prior information, which is information that a learner has about
the domain or concept to be learned. If this information is used properly, then the
training-sample size needed to obtain a given precision (e, S) can become smaller
or, equivalently, training samples of a fixed size can give sharper estimates.

A key issue in learning W-operators is the choice of a window W [18]. Window
size should be as small as possible since the size of the domain D is affected ex-

xeCy x(£Cy

(\Er($l)-Er(yl)\<s)
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ponentially by the size of W, Card(D) = 2Card{W). In this task, prior informa-
tion plays an important role. Often knowledge of some geometrical properties ex-
pressed by the concepts is sufficient to properly choose W. For instance, if the
target concept is an operator to detect edges, an edge in digital topology depends
on just a small neighborhood of 4 or 8 pixels, depending on the connectivity re-
quired [28]; if the target concept is a filter of connected components or holes, then
shape recognition can be described by canonical hit-or-miss operators that depend
on the smallest window containing all components to be filtered [29-31].

Window size is related to image resolution: higher resolutions require larger win-
dows. Low resolutions require less training data to achieve a given estimation pre-
cision. For instance, consider a training-data set consisiting of N pairs of square
images with n lines and a square window of r lines, with r <^n. There are m = 2r~
pattern vectors xi, X2,..., xm defining the full observation domain. The training
data yield Nn2 examples (observations) and, owing to repetitions, many fewer than
Nn2 of the potential m patterns are observed to cover the full observation domain
of size m. If images with half the resolution are sufficient for the task, then we
could employ TV square images with n/2 lines and a square window with r/2 lines.
In this case, we observe Nn2/4 examples and the domain size is 2r /4. At half res-
olution, the number of examples is divided by 4, as is the exponent of the domain
size. Choosing a minimum resolution sufficient to solve an imaging problem is a
basic preliminary step.

Practical image analysis is usually restricted to specific contexts, that is, to par-
ticular classes of images for which the operators should perform well. Restriction
to a given context implies that the domain D becomes a subset of the power set
of W. It is typically not easy to estimate the number of patterns in a given context,
but the number is often significantly smaller than 2Carc^w\ The worst probabilistic
structure for the domain is the uniform distribution, which models the most dis-
organized space. This distribution is poor for concept learning because to obtain
small risks for a hypothesis h that estimates a target concept t, a large portion of
the domain must be covered by examples of the training sample. Thus, very large
training samples are needed. The best probability structure for the domain is the
deterministic one, where there is just one pattern with probability 1. Practical ap-
plications involve neither of these extremes and are usually far from both.

Information concerning properties of the target operator is also useful. If the target
operator is a marker for shape recognition, then it is antiextensive; if it is a size
classifier, then it is increasing, antiextensive and idempotent; etc. These kinds of
properties can be interpreted as constraints that characterize families of operators
in the hypothesis space. Under knowledge of target-operator properties, the hy-
pothesis space will be the intersection of the families of operators defined by the
constraints.
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Another kind of prior knowledge is a good initial hypothesis for the target opera-
tor [32]. Instead of learning the target operator directly, we can learn the symmetric
difference between the target operator and the initial hypothesis. The nearer the ini-
tial hypothesis to the target operator, the easier will be the task of learning the sym-
metric difference between them. Use of differencing representation for document
restoration is an example of this kind of prior knowledge and, for it, the identity
is used as the initial hypothesis. When there is a very small amount of noise af-
fecting just the edges of text characters, the identity operator is a reasonable initial
hypothesis.

In general, learning a target concept corresponds to generating a function (the hy-
pothesis) by the specifications of values (labels) for the most probable subsets
of W. For generating the hypothesis, patterns are chosen randomly from the do-
main. If the number of patterns with unknown classification is large, then it will
be necessary to have large training samples to get good precision; otherwise the
training samples may be smaller to get the same precision. Prior information can
reduce the number of subsets of W with an unknown label, thereby yielding smaller
sample complexities. A small window reduces domain size. Context can determine
subsets of W that should be labeled; others are taken as don't-cares. Distributional
knowledge allows patterns with small probabilities to be treated as don't-cares.
Operator properties facilitate deduction of some pattern labels from knowledge of
other pattern labels. An initial hypothesis may label a large number of patterns.

1.11 ROBUSTNESS

A fundamental aspect of any filter is the degree to which its performance degrades
when it is applied to random processes different than the one for which it has been
designed. Qualitatively, a filter is said to be robust when its performance degrada-
tion is acceptable for processes statistically close to the design process. Robustness
is crucial for application because a filter will surely be applied in nondesign set-
tings. This may occur because it is applied to different stationary random processes
or to nonstationary random processes. For instance, an optimal document filter may
be applied to documents using different fonts than the design fonts. Robustness de-
pends on both the ideal and observed images.

To define robustness, consider a parameterized ideal discrete random set I r, where
r is a parameter vector determining the probability law governing I r, and a pa-
rameterized system transformation St, whose probability law is determined by the
parameter t. The observed random set is Sa = 2t(I r) , where a = (r, t), and the fil-
ter problem is to design an optimal filter * a to restore I r by means of the estimator
^ a (S a ) . Taken together, I r, Et, and Sa form a parameterized system model A4a,
and * a is optimal relative to M^ To unify notation, for a = (r, t) we notate all
aspects of the model by a, namely, Ia, 3 a , and Sa, where it is understood that Ia

and S a are each parameterized by separate components of a.
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For a filter ^ , the error of Eq. 1-27 must indexed by the model parameter. Let
£Va<*) denote the error for * relative to the system model Ma. If % is optimal
relative to Mb, then £ra{^b) > £ra{*a): Wa is a better estimator of Ia than is % .
Intuitively, for ^ to be robust, the inequality should not be too great when b is
close to a. Hence, robustness of the optimal filter % for model Mb relative to Ma

is defined by

K(b; a) = £r a (%) - £ra{*a) (1-103)

For the MAE loss function,

/c(b; a) = E[\Ya - ^b(X a) | ] - E[\Ya - fa(Xa)\] (1-104)

where Ya and Xa are the ideal value and observation random vector for model
Ma, and yjr^ and \f/a are the optimal Boolean functions for .Mb and Ma, respec-
tively [33]. /c(b; a) ^ 0 and /c(a; a) = 0. K(b; a) is not symmetric with respect to
a and b, since except in special circumstances Ar(b; a) ^ /<r(a; b).

Practically, we desire some degree of robustness. For robustness of a particular
designed filter ^IV we say \fb is robust to the degree (e, 8) if /c(b; a) ^ s when
|b — a| ^ 8. If the vector (a, b) can vary over some region R, then we say that the
optimal filter is uniformly robust to the degree (s, 8) over R if /c(b; a) ^ s when
|b - a K 8 and (a, b) e R.

Focusing on MAE, some probabilistic calculations show that for a given vector x,
the increase in MAE owing to using the filter % instead of * a for the system Ma

is

Kx(h; a) = |2Pa(F = 1 | x) - 1 |fx(b; a)Pa(x) (1-105)

where fx(b; a) is a n auxiliary function defined by

r 0, if Ph(Y = 1 | x) ^ 0.5, Pa(Y = 1 | x) ^ 0.5
fx(b; a) = | 0, if Pb(Y = 1 | x) < 0.5, Pa{Y = 1 | x) < 0.5 (1-106)

I 1, otherwise

Robustness is obtained by summing /cx(b; a) over all x.

Depending on the model Ma, for any observation vector x there is a set of vectors
I4ax — {m, i i2, . . . , um(x)} arising from realizations of Ia via intersections with Wz

such that the center pixel is 1-valued and the transition u/ -> x is possible with
application of Sa . There also is a collection Va>x = {vi, V2,..., Vn(x)} such that the
center pixel is 0-valued and the transition v ; -> x can occur under Sa . Depending
on the probability law for Sa , each transition has associated with it a conditional
probability Pa(x | u,) or Pa(x | v ;). These probabilities determine the value of the
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optimal filter when x is observed. Specifically, Pa(x) and Pa(Y = 1 | x) can be
found from Pa(x | u,-), Pa(x | V/), Pa(u/) and Pa(v/):

m(x) n(x)

Pa(X) = ^ ^a(U/)Pa(x | U,-) + J 3 Pa(V/)Pa(x | V/) (1-107)
i = l ./=!

m(x)

ft(y=,|1)_'-0'-1-«

^ Pa(ni)Pa(x I u/)

Pa(X) m(x) n(x)

J^ P.(U/)P«(X I U/) + J ] Pa(V/)Pa(x | V/)
/ = 1 7 = 1

(1-108)

thereby providing an analytic formulation for the optimal filter. According to
Eq. 1-105,

/cx(b; a) =
m(x) n(x)

J^ Pa(*i)P*(* I U/) ~ J ] Pa(V;)Pa(x | V;)
/ = 1 7 = 1

^x(b;a) (1-109)

Tractable formulations are achievable with a sparse-noise constraint [33]. Sparse
noise relative to W is degradation for which, if u and x are the ideal and observed
vectors in Wz, then u and x differ at most in a single component. At most one com-
ponent of u is switched by St. Now denote a vector by x = (JCO, *i,;c2, • •. ,-*/i-i)>
where xo is the value at z and the others are observed by raster scanning the remain-
der of Wz. For sparse noise, let x* = (k, x\, X2, •.., *l7_i), k = 0, 1, and x/cj be the
same as x# except that the zth component is switched. Then U& Xo = {x\}, Va Xj =
{x0},

Z 4 , x , = { X i , X i t i , X i , 2 , . . . , X i t W _ i }

(1-110)
V a ! X o = {XO, X0 ,1 , X0 ,2, • • • , X 0 , w - l }

From Eq. 1-108 (and suppressing the subscript "a" in "P a" to ease notation),

/ 2 - 1

P ( x , ) P ( x i \xl) + Y]P(xu)P(xl | x , f / )

p ( y = i | x i ) =
«=1

/ l - l

P ( X i ) P ( X l I Xi) + 2 P ( X U ) P ( X ! | Xi f /) + P(X O )P(X! | X0)

/ = 1

(1-111)
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^ 0 , 2 -^0,3

X1,2

X{0,4 -^0,5 ^ 0 , 6

X 1,3 X 1,4 X 1,5 X1,6

Figure 1-19. Possible transitions for sparse noise.
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P(Y= l | x o ) =
P(xi)P(xo|xi)

7 J - 1

P(xi)P(xo I x,) + P(x0)P(xo I xo) + J2 P(xo.i)P(*o I xo,,0
1=1

(1-112)

thereby providing an analytic formulation of the optimal filter. Letting x' denote
the vector differing from x in component i, regardless of the center value, from
Eq. 1-109,

Kx(b; a) =
n - i

P(x)P(x | x) - P(x°)P(x I x°) +J^P(x')P(x I x')
1=1

?x(b; a)

d-113)
Figure 1-19 depicts the possible transitions for sparse noise when using a 3 x 3
window.

Now suppose the degradation operator is independent of the ideal image. Suppose
u and x are identical except for component j , for which u/^Xj, 0 ̂  / ^ « —
1, and let y denote complementation, so that y(xj) = UJ. The probability of the

1 1 1
1 0 0
1 0 1

1 1 1
1 1 0
1 0 1

0 1 1
1 1 0
1 0 1

Xo

Xl

0 1 1
1 0 0
1 0 1

0 1 1
1 0 0
1 0 0

0 1 1
1 1 0
1 0 0

^0,1

*u
•^0,8

^1,8



54 CHAPTER 1

Figure 1-20. Fonts: (a) triplex; (b) gothic; (c) noisy triplex, p = 0.053; (d) noisy gothic,
p = 0.053.

transition u -» x is

P(u -> x) = P(y(xj) = uj, xi = M/ for i ^ ; )

= / ' ( / (x ; ) = uj)P(xi = ut for i ^ j | y (x7) = uj)

- P ( J / ( ^ ) = II J) (1-114)

where the conditional probability in the second equality is 1 owing to noise sparse-
ness. P(y(xj) = UJ) is the probability that S a flips the ;th component of u, but
this is independent of u. Thus, it is the probability that S a flips a pixel value. By
stationarity, this probability, p, called the intensity of the independent sparse noise,

(c)

(b)

(a)
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x10~

1/11

Figure 1-21. Robustness surface for triplex font.

is common across the entire domain. ( S a does not necessarily act independently at
each pixel, but the probability of flipping a value is common.) Consequently, for
independent sparse noise, P (u —> x) = p if u ̂  x and P(u -> u) = 1 — np. Note
t h a t O ^ p ̂  1/n. Hence, P(x* | xkj) = p for k = 0,1 and/ = 0 , 1 , . . . , n - 1, and
P (x/c I xjc) = 1 — ft/? for £ = 0, 1. Define the ideal-image parameter

n~\

*X = X>(X') (1-115)
/ = i

To specify the window center in the parameter, XXi \ and A.x?o denote that xo = 1 and
XQ = 0, respectively. Using this parameter, Eqs. 1-111, 1-112, and 1-113 reduce
to

p(y = i |x!) =

P(Y = l\xo) =

(l-wp)P(xi) + pX,,i

(1 - np)P(xi) + pkX:1 + pP(x0)

PP(xi)

(1-116)

(1-117)
PP(xi) + (1 - np)P(xo) + plx,o

Kx(b; a) = |(1 - np)P(x) + PX% - pP(x°)j<x(b; a) (1-118)
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1/11

Figure 1-22. Robustness surface for gothic font.

The probabilities and robustness are analytically expressed via ideal-image param-
eters and p, without explicit reference to the observed process.

For independent sparse noise, robustness *:(/?'; p) is a function of two scalar vari-
ables and is geometrically represented by a robustness surface that is zero on the
diagonal p — p . For fixed // , /<:(//; p) gives the robustness relative to design
at pf. typf is qualitatively robust if the curve of #(// ; p) as a function of p is fairly
flat. In terms of two variables, qualitative robustness relates to the flatness of the
surface /<:(//; p) about the diagonal. Since /<:(//; p) only depends on ideal-image
parameters and intensity, the actual degradation operator is inconsequential; only
the noise intensity matters. There are various constrained random point processes
that produce independent sparse noise.

EXAMPLE 1-10. We consider restoration of images degraded by independent
sparse noise using a 3 x 3 window. Robustness for independent sparse noise is
essentially analytic because it is computed from Eq. 1-118, in which only 512
probabilities P(x) must be estimated and these can be estimated with great pre-
cision. Parts a and b of Fig. 1-20 show realizations of triplex and gothic fonts;

x1W
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(a)

NONLINEAR MAGE F>:ROOE
SSTINTG- TK, THE flTH C O N -
FERENCE ON JNIONXJ3NJEAR

(b)

NONLINEAE IMAGE PROCE
SS3N& IX, THE 8 T H CON-
FERENCE OTST JSIOINTOÎ EIAR

(c)

NONLINEAR IMAGE PROCE
SSTNG TK, THE 6 T H CON-
FERENCE ON NONIINEAR

(d)

Figure 1-23. Restoration of noisy triplex font: (a) noisy triplex font, p = 0.030;
(b) restoration by ^0.03; (c) restoration by ^0.06; restoration by ^0.01 •

parts c and d show sparse-noise-degraded versions of these realizations for in-
tensity p = 0.053. Robustness surfaces for triplex and gothic fonts are shown in
Figs. 1-21 and 1-22, respectively, where p values run from 1/11 out to 0 and the
pf (design) axis is to the left. Figure 1-23 shows a noisy realization of triplex font
for p = 0.03 and the results of filtering the realization by the optimal filters for
pf = p,p

f = 0.06, and pr = 0.01. Input MAE (part a) is 0.030 and MAEs for the
filtered images (computed over large realizations) are 0.0123, 0.0129, and 0.0133
for pf = p, p' = 0.06, and p1 = 0.01, respectively. Robustness values are

K(0.03, 0.06) = 0.0006 and K(0.03, 0.01) = 0.0010.

Figure 1-24 shows a noisy realization of gothic font for p = 0.03 and the results of
filtering the realization by the optimal filters for pf = p, pf = 0.06, and pf = 0.01.
Input MAE is 0.030 and MAEs for the filtered images are 0.0167, 0.0182, and
0.0189 for pf = /?, p' = 0.06, and pf = 0.01, respectively,

«:(0.03, 0.06) = 0.0015 and K(0.03, 0.01) = 0.0022.
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(a)

(b)

(c)

(d)

Figure 1-24. Restoration of noisy gothic font: (a) noisy triplex font, p = 0.030;
(b) restoration by ^0.03", (c) restoration by ^o.O6; restoration by ^o.oi-
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