
CHAPTER l
Propaedeutic

Read.Me: If you are someone who never reads Chapter 1, please at least
read Sections 1.0.2 and 1.0.3 before proceeding]

1.0 Preamble

1.0.1 The Purpose of Chapter 1

If the reader learns nothing more from this book, it is a safe bet that
he or she will learn a new word. A propaedeutic1 is a "preliminary body
of knowledge and rules necessary for the study of some art or science"
(Barnhart, 1964). This chapter is just that—a propaedeutic for the study
of speech processing focusing primarily on two broad areas, digital signal
processing (DSP) and stochastic processes, and also on some necessary
topics from the fields of statistical pattern recognition and information
theory.

The reader of this book is assumed to have a sound background in the
first two of these areas, typical of an entry level graduate course in each
field. It is not our purpose to comprehensively teach DSP and random
processes, and the brief presentation here is not intended to provide an
adequate background. There are many fine textbooks to which the reader
might refer to review and reinforce prerequisite topics for these subjects.
We list a considerable number of widely used books in Appendices 1 .A
and l.B.

What, then, is the point of our propaedeutic? The remainder of this
chapter is divided into four main sections plus one small section, and the
tutorial goals are somewhat different in each. Let us first consider the
two main sections on DSP and stochastic processes. In the authors' expe-
rience, the speech processing student is somewhat more comfortable with
"deterministic" DSP topics than with random processes. What we will do
in Section 1.1, which focuses on DSP, therefore, is highlight some of the
key concepts which will play central roles in our speech processing work.
Where the material seems unfamiliar, the reader is urged to seek help in

1 Pronounced "pro'-pa-doo'-tic."
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4 Ch. 1 / Propaedeutic

one or more of the DSP textbooks cited in Appendix 1 .A. Our main ob-
jective is to briefly outline the essential DSP topics with a particular in-
terest defining notation that will be used consistently throughout the
book. A second objective is to cover a few subtler concepts that will be
important in this book, and that might have been missed in the reader's
first exposure to DSP.

The goals of Section 1.2 on random processes are somewhat differ-
ent. We will introduce some fundamental concepts with a bit more for-
mality, uniformity, and detail than the DSP material. This treatment
might at first seem unnecessarily detailed for a textbook on speech pro-
cessing. We do so, however, for several reasons. First, a clear understand-
ing of stochastic process concepts, which are so essential in speech
processing, depends strongly on an understanding of the basic probability
formalisms. Second, many engineering courses rely heavily on stochastic
processes and not so much on the underlying probability concepts, so
that the probability concepts become "rusty." Emerging technologies in
speech processing depend on the basic probability theory and some re-
view of these ideas could prove useful. Third, it is true that the mastery
of any subject requires several "passes" through the material, but engi-
neers often find this especially true of the field of probability and ran-
dom processes.

The third and fourth major divisions of this chapter, Sections 1.3 and
1.4, treat a few topics which are used in the vast fields of statistical pat-
tern recognition and information theory. In fact, we have included some
topics in Section 1.3 which are perhaps more general than "pattern rec-
ognition" methods, but the rubric will suffice. These sections are con-
cerned with basic mathematical tools which will be used frequently, and
in diverse ways in our study, beginning in Part IV of the book. There is
no assumption that the reader has formal coursework in these topics be-
yond the normal acquaintance with them that would ordinarily be de-
rived from an engineering education. Therefore, the goal of these sections
is to give an adequate description of a few important topics which will be
critical to our speech work.

Finally, Section 1.5 briefly reviews the essence and notation of phasors
and steady-state analysis of systems described by differential equations.
A firm grasp of this material will be necessary in our early work on ana-
log acoustic modeling of the speech production system in Chapter 3.

As indicated above, the need for the subjects in Sections 1.3-1.5 is not
immediate, so the reader might wish to scan over these sections, then re-
turn to them as needed. More guidance on reading strategy follows.

1.0.2 Please Read This Note on Notation

The principal tool of engineering is applied mathematics. The lan-
guage of mathematics is abstract symbolism. This book is written with a
conviction that careful and consistent notation is a sign of clear under-
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standing, and clear understanding is derived by forcing oneself to com-
prehend and use such notation. Painstaking care has been taken in this
book to use information-laden and consistent notation in keeping with
this philosophy. When we err with notation, we err on the side of exces-
sive notation which is not always conventional, and not always necessary
once the topic has been mastered. Therefore, the reader is invited (with
your instructor's permission if you are taking a course!) to shorten or
simplify the notation as the need for the "tutorial" notation subsides.

Let us give some examples. We will later use an argument m to keep
track of the point in time at which certain features are extracted from a
speech signal. This argument is key to understanding the "short-term"
nature of the processing of speech. The zth "linear prediction" coefficient
computed on a "frame" of speech ending at time m will be denoted
a{i\ m). In the development of an algorithm for computing the coeffi-
cients, for example, the index m will not be very germane to the develop-
ment and the reader might wish to omit it once its significance is clear.
Another example comes from the random process theory. Numerous ex-
amples of sloppy notation abound in probability theory, a likely reason
why many engineers find this subject intractable. For example, some-
thing like "f(x)n is frequently used to denote the probability density func-
tion (pdf) for the random variable x. There are numerous ways in which
this notation can cause misunderstandings and even subtle mathematical
traps which can lead to incorrect results. We will be careful in this text to
delineate random processes, random variables, and values that may be
assumed by a random variable. We will denote a random variable, for
example, by underscoring the variable name, for example, x. The pdf for
x will be denoted fx(x), for example. The reader who has a clear under-
standing of the underlying concepts might choose to resort to some slop-
pier form of notation, but the reader who does not will benefit greatly by
working to understanding the details of the notation.

1.0.3 For People Who Never Read Chapter 1 (and Those Who Do)

To be entitled to use the word "propaedeutic" at your next social en-
gagement, you must read at least some of this chapter.2 If for no other
reason than to become familiar with the notation, we urge you to at least
generally review the topics here before proceeding. However, there is a
large amount of material in this chapter, and some people will naturally
prefer to review these topics on an "as needed" basis. For that reason, we
provide the following guide to the use of Chapter 1.

With a few exceptions, most of the topics in Sections 1.1 and 1.2 will
be widely used throughout the book and we recommend their review be-
fore proceeding. The one exception is the subsection on "State Space Re-

2If you have skipped the first part of this chapter, you will be using the word without
even knowing what it means.



6 Ch. 1 / Propaedeutic

alizations" in Section 1.1.6, which will be used in a limited way in
Chapters 5 and 12. The topics in Sections 1.3 and 1.4, however, are
mostly specialized subjects which will be used in particular aspects of our
study, beginning in Part IV of the book. Likewise the topic in Section 1.5
is used in one isolated, but important, body of material in Chapter 3.

These latter topics and the "state space" topic in the earlier section
will be "flagged" in Reading Notes at the beginning of relevant chapters,
and in other appropriate places in the book.

1.1 Review of DSP Concepts and Notation

1.1.1 "Normalized Time and Frequency"

Throughout the book, we will implicitly use what we might call nor-
malized time and frequency variables. By this we mean that a discrete
time signal (usually speech), say s(n), will be indexed by integers only.3

Whereas s(n) invariably represents samples of an analog waveform, say
sa(t), at some sample period, T,

s{n) = sa{nT) = sa{t)\t=nT /! = . . . , - 1 , 0 , 1 , 2 , . . . , (1.1)

the integer n indexes the sample number, but we have lost the absolute
time orientation in the argument. To recover the times at which the sam-
ples are taken, we simply need to know T.

To understand the "physical" significance of this mathematical con-
vention, it is sometimes convenient to imagine that we have scaled the
real-world time axis by a factor of T prior to taking the samples, as illus-
trated in Fig. 1.1. "Normalized time," say t', is related to real time as

t' = ± (1.2)

and the samples of speech are taken at intervals which are exactly4 "nor-
malized seconds (norm-sec)." In most cases it is perfectly sufficient to
refer to the interval between samples as the "sample period," where the
conversion to the real-world interval is obvious. However, on a few occa-
sions we will have more than one sampling process occurring in the same
problem (i.e., a resampling of the speech sequence), and in these in-
stances the concept of a "normalized second" is useful to refer to the
basic sampling interval on the data.

Of course, the normalization of time renders certain frequency quanti-
ties invariant. The sample period in normalized time is always unity, and
therefore the sample frequency is always unity [dimensionless, but some-

3Note that we have referred to s(n) as "discrete time" rather than "digital." Throughout
most of this book, we will ignore any quantization of amplitude.

4The reader should note that the normalized time axis is actually dimensionless.
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- Speech waveform

Samples

0 1 5 6 7 8 9 10 11

"Normalized" time, t' (norm-sec)\

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

Real time, t (msec)

FIGURE 1.1. Segment of a speech waveform used to illustrate the concept
of "normalized time." Suppose that samples are to be taken at a rate Fs =
10 kHz so that the sample period is 7=0.1 msec. The lower time axis
represents real time measured in milliseconds, while the upper represents a
normalization of the time axis such that the sample times fall at integers.
Normalized time, f, is related to real time, t, as t' = tjT. We will on a few
occasions refer to the sample period in the scaled case as a "normalized
second (norm-sec)."

times "normalized Hertz (norm-Hz)"], and the sample radian frequency
is always 2n [dimensionless or "normalized radians per second (norm-
rps)"]. Accordingly, the Nyquist frequency is always 0.5 norm-Hz, or n
norm-rps. In general, the conversions between "real" frequencies, say F
(Hz) and Q (rps) and their normalized counterparts, say / and a>, are
given by

f = FT (1.3)

(1.4)

We can easily verify this by examining a single sinusoid at real frequency

xa(t) = A sin(Q,t + q>) = A s in(Q7yr + ??). (1.5)

The rightmost term can be regarded as a sinusoid at a different fre-
quency, Q) = QT, on a different time axis t/ = t/T,

x'a{t') = A sin(ftrt' + p). (1.6)

15,
<

12 1 3A 15 16 , V 8
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Clearly, we obtain the same samples if we sample xa(t) at t = nT, or
x'a(t') at /' = n. A magnitude spectrum is plotted against real and nor-
malized frequencies in Fig. 1.2 to illustrate this concept.

In spite of this rather lengthy explanation of "normalized time and
frequency," we do not want to overemphasize this issue. Simply stated,
we will find it convenient to index speech waveforms by integers (espe-
cially in theoretical developments). This is an accepted convention in
DSP. The point of the above is to remind the reader that the resulting
"normalized" time and frequency domains are simply related to the
"real" time and frequency. When the "normalized" quantities need to be
converted to "real" quantities, this is very easily accomplished if the
sample frequency or period is known. While using the DSP convention
for convenience in many discussions, we will always keep the sampling
information close at hand so the "real" quantities are known. To do oth-
erwise would be to deny the physical nature of the process with which we
are working. In many instances in which practical systems and applica-
tions are being discussed, it will make perfect sense to simply work in
terms of "real" quantities.

60 -i

00

0.1 0.2 0.3 0.4
"Normalized" frequency, /(norm-Hz)

I i i i

0.5

1 2 3

Frequency, F (kHz)

FIGURE 1.2. Magnitude spectrum of a typical speech waveform. This
spectrum is based on the DFT of samples of the waveform taken at
10 kHz. The lower frequency axis represents real frequencies measured in
kHz, while the upper represents a normalization of the frequency axis
concomitant to the time normalization. Normalized frequency, f, is related to
real frequency, F, as f= FT, where T is the nominal sample period in a given
analysis. Accordingly, the "normalized" sampling, say fs, and Nyquist, fN,
frequencies are invariant with the sample rate, with ^ = 1 and ^ = 1 / 2 . We
will sometimes refer to the units of normalized frequencies as "normalized
Hertz (norm-Hz)" or "normalized radians per second (norm-rps)."

°<r
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1.1.2 Singularity Signals

In the continuous time domain, a singularity signal is one for which
one or more derivatives do not exist at one or more time points. Al-
though the concept of a derivative is no longer meaningful in discrete
time, we often borrow the term singularity to describe analogous se-
quences in sampled time. The two for which we will have the most use
are

• The unit sample sequence or discrete-time impulse, defined by

[ 1, if n = 0
S(n)d=f . (1.7)

I 0, otherwise

• The unit step sequence, defined by5

f 1, if « > 0
w(n)d= . (1.8)

[ 0, otherwise

The unit step sequence is much more analogous to its analog counter-
part than the discrete-time impulse in the sense that u(n) simply repre-
sents samples of the analog unit step function (discounting problems that
may arise due to different definitions at time zero). On the other hand,
recall that the analog (Dirac) impulse function, say Sa(t), is defined such
that it apparently has infinite height, zero width, and unity area. Al-
though the discrete-time impulse plays an analogous role to that played
by the analog impulse, it may not be interpreted as its samples.

1.1.3 Energy and Power Signals

There are many ways in which a discrete time signal can be classified.
One useful grouping is into the categories energy signal, power signal, or
neither. Recall that the energy of a discrete time signal is defined as6

CO

Ex
 d=f X k(«)P- (1-9)

n=—co

A signal x(n) is called an energy signal if

0 < ^ < o o . (1.10)

The power in a discrete-time sequence is

5The notation u(n) is widely used to indicate the unit step sequence, but u(n) will also
refer to a very important waveform, the "glottal volume velocity," throughout the book. Be-
cause of the context, there will be no risk of confusion.

6The absolute value signs are included because, in general, x{n) is a complex sequence.
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n=-N

A power signal has finite but nonzero power,

0 < P x < o o . (1.12)

A signal cannot be both a power signal and an energy signal simultane-
ously, since if Ex < oo, then Px = 0. A signal can, however, be neither
when Px = oo or Ex = 0.

For our purposes in speech processing, it is sufficient to associate the
energy category with two broad classes of signals. These are

• Transients, those which decay (usually exponentially) with time. Ex-
amples are

xl(n) = a"u(n), \a\< 1 (1.13)

x2(n) = aMcos(fto;0 +y/), \a\< 1. (1.14)

• Finite sequences, those which are zero outside a finite time duration.
An example is

x3(n) = ePn[u(n + 3) - u(n - 246)], \fi\ < oo. (1.15)

Whereas the energy signals either decay out sufficiently fast or "stop"
completely, the power signals neither decay nor increase in their enve-
lopes. The power signals can be associated with three broad classes of
signals. These are

• Constant signals. An example is

x4(n) = a -oo < a<oo. (1.16)

• Periodic signals, those for which x(n) = x(n + N) for some finite N
and for all n. Examples are

x5(n) = a sin(ncoQ + y/), - o o < c r < o o (1.17)

^6(/i) = W)Loduio5.2= 2 x3(n + i5l2). (1.18)
/=-oo

• Realizations of stationary, ergodic stochastic processes (see Section
1.2.3).

The signals which fall into neither category are the trivial zero signal
and those which "blow up" with time. Examples of the latter are xx{ri)
and x2(n) above with the magnitude of a taken to be greater than unity.

1.1.4 Transforms and a Few Related Concepts

At the heart of much of engineering analysis are various frequency do-
main transforms. Three transforms on discrete-time data will be used ex-
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tensively throughout this book, and it will be assumed that the reader is
familiar with their properties and usage.

The first is the discrete-time Fourier transform (DTFT), which, for the
sequence x{ri), is defined by

oo

X(co)= £ x(n)e-Jwn. (1 .19)
n=—oo

The inverse DTFT (IDTFT) is given by

x(n) = ̂  J nX(co)eJOMdco. (1.20)

The DTFT bears a useful relationship to the continuous-time Fourier
transform in the case in which x(n) represents samples of the analog sig-
nal7 xa(t'). In this case X(co) will be a periodic (with period 2n), poten-
tially aliased version of Xa((o),

X(co) = £ Xa(co-2ni). (1.21)
/=—oo

The existence of the DTFT is not a trivial subject, and we will review
only a few important details. A sufficient condition for the DTFT of a
sequence x{n) to exist is that the sequence be absolutely summable,

£ | * ( H ) | < C O . (1.22)
n=—oo

This follows immediately from (1.19). Moreover, absolute summability of
x(n) is tantamount to absolute convergence of the series lL7=-<x>x(n)e~ja)n

implying that this series converges uniformly to a continuous function of
a) (Churchill, 1960, Sees. 59 and 60). A sequence that is absolutely sum-
mable will necessarily be an energy signal, since

oo r oo ~| 2

n=~oo [_«=-oo J

There are, however, energy signals that are not absolutely summable (see
Problem 1.2). These energy signals will still have DTFTs, but ones whose
series converge in a weaker (mean square) sense. This can be seen by
viewing (1.19) as a conventional Fourier series for the periodic function
X(co) whose coefficients are x(n). One of the properties of Fourier series
is that if the energy in a single period of the function is finite, then the

7Note the use of "normalized time" here. If "real" time is used, (1.21) becomes
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series will converge in mean square (Churchill, 1963). In the present case
(using the Parseval relation),

/ \X(a))\2dco = 2n ] T \x(n)\2 = 2nEx < oo, (1.24)
J-x n=-oo

so the DTFT will converge in the mean square sense. Practically, this
means that the DTFT sum will converge to X(co) at all points of continu-
ity, and at points of discontinuity it will converge to the "average" value
("halfway" between the values on either side of the discontinuity).

Properties of the DTFT are detailed in the textbooks cited in Appen-
dix l.A, and some are reviewed in Problem 1.3. The reader should also
recall the numerous symmetry properties of the transform relation which
can be useful in simplifying various computations and algorithms.

Whereas the DTFT is most useful for theoretical spectral analysis, it is
not computable on a digital computer because it is a function of a con-
tinuous argument. In principle, it also works with a sequence of doubly
infinite length, which also precludes any practical computation. If we re-
strict ourselves to the practical situation in which a sequence of finite
length is being studied, then the discrete Fourier transform (DFT) pro-
vides a mapping between the sequence, say

x(n\ A? = 0, 1,2, . . . , 7V- 1

and a discrete set of frequency domain samples, given by

(1.25)

X(k) =

yv-i
^x{n)e-j{2n/N)kn, k = 0,l,...,N-[
n=0

. 0, other k

The Inverse DFT (IDFT) is given by

(1.26)

x{n) = FIWP' /N)kn

k=0

I o,

H = 0, 1 iV- 1

other n
(1.27)

The DFT represents exact samples of the DTFT of the finite sequence
x(n) at N equally spaced frequencies, cok = (2n/N)k, for k G [0,7V- 1].

The discrete Fourier series (DFS) is closely related to the DFT compu-
tationally, but is quite different philosophically. The DFS is used to rep-
resent a periodic sequence (hence a power signal) with period, say TV,
using the set of basis functions e

J(2n/N)kn for k = 0 , . . . ,7V- 1. These rep-
resent the TV harmonic frequencies that may be present in the signal. For
a periodic sequence y(n), the expansion is

yv-i
y(n) = X C{k)ejJ{2n/N)kn (1.28)

k=0



1.1 / Review of DSP Concepts and Notation 13

where the coefficients are computed as

C{k) = ^Nfiy{n)e-jWN)kn. (1.29)

[In principle, the C(/:)'s may be computed over any period of y(n).]
It is occasionally convenient to use an "engineering DTFT" for a peri-

odic signal that technically has no DTFT. The contrived DTFT com-
posed of analog impulse functions at the harmonic frequencies weighted
by the DFS coefficients is

Y(co) = 2n 2 C(k)sL-kjf\. (1.30)

Such a construction is not always palatable to a mathematician, but it
works for most engineering purposes in the sense that it can be used any-
where that a DTFT is needed for y(n), as long as the rules for continuous-
time impulse functions are carefully followed. Note that this DTFT cor-
rectly asserts, for example, that y(n) has infinite energy at the harmonic
frequencies. Consistency with conventional Fourier transform computa-
tions is obtained by defining the magnitude spectrum of such a DTFT by

|r«u)|̂ 2* £ \C(k)\sL-kg\ (1.31)

One more contrived quantity is sometimes used. The power density spec-
trum (PDS) for a periodic signal y(n), say ry(co), is a real-valued function
of frequency such that the average power in y(n) on the frequency range
co{ to co2 with 0 < col < co2 < 2% is given by

1 f"2
average power in y(ri) o n w e [wpw2] = - I F(o>)dco

K J a>\ y

= 2t\C(k)\\
k=k{

where k{ and k2 represent the integer indices of the lowest and highest
harmonic of y{n) in the specified range.8 It is not difficult to show that a
suitable definition is

ry(a))^{2n 5 \C(k)\2sL-kf-\ (1.33)
A:=-oo \ /

8If o)l and hence k{ are zero, then the lower expression in (1.32) should read

C(0) + 2^\C(k)\\
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[The reader can confirm that this is consistent with (1.32).] By comparing
with (1.30), it is clear why some authors choose to write | F(o;)|2 as a no-
tation for the PDS. The advantage of doing so is that it gives the con-
trived DTFT of (1.30) yet another "DTFT-like" property in the following
sense: |^(o;)|2 is properly called the energy density spectrum for an energy
signal x{ri) and can be integrated over a specified frequency range to find
total energy in that range. |5^(a;)|2 is thus an analogous notation for an
analogous function for a power sequence. The disadvantage is that it in-
troduces more notation which can be easily confused with a more
"valid" spectral quantity. We will therefore use only T^co) to indicate the
PDS of a periodic signal y(n).

The similarity of the DFT to the DFS is apparent, and this similarity
is consistent with our understanding that the IDFT, if used outside the
range n E: [0, N- 1], will produce a periodic replication of the finite
sequence x{ri). Related to this periodic nature of the DFT are the proper-
ties of "circular shift" and "circular convolution" of which the reader
must beware in any application of this transform. A few of these notions
are reviewed in Problem 1.4.

For interpretive purposes, it will be useful for us to note the following.
Although the DTFT does not exist for a periodic signal, we might con-
sider taking the limit9

F < w > - f e 2 ] m - £ ***"*" (L34)

n=-N
in the hope of making the transform converge. A moment's thought will
reveal that this computation is equivalent to the same sum taken over a
single period, say

Y(oj) = ±fjy(n)e-jojn. (1.35)

We shall refer to Y(co), 0 < co < 2n, as the complex envelope spectrum for
a periodic signal y(n). The theoretical significance of the complex enve-
lope is that it can be sampled at the harmonic frequencies to obtain the
DFS coefficients for the sequence. The reader will recall that a similar
phenomenon occurs in the analog domain where the FT of one period of
a periodic signal can be sampled at the harmonics to obtain the FS
coefficients.

Finally, with regard to Fourier techniques, recall that the fast Fourier
transform (FFT) is a name collectively given to several classes of fast al-
gorithms for computing the DFT. The literature on this subject is vast,

9The operator notation J{ •} will be used consistently in the text to denote a time aver-
age of this form. We will formally define the operator when we discuss averages in Section
1.2.3.
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but the textbooks cited above provide a general overview of most of the
fundamental treatments of the FFT. Some advanced topics are found in
(Burris, 1988).

The final transform that will be used extensively in this book is the
(two-sided) z-transform (ZT), defined by

oo

X(z)= 2 x(n)z-\ (1.36)

where z is any complex number for which the sum exists, that is, for
which

oo

]T \x(n)z\~" < ao. (1.37)

The values of z for which the series converges comprise the region of
convergence (ROC) for the ZT. When the series converges, it converges
absolutely (Churchill, 1960, Sec. 59), implying that the ZT converges uni-
formly as a function of z everywhere in the ROC. Depending on the time
sequence, the ROC may be the interior of a circle, the exterior of a cir-
cle, or an annulus of the form rin <\z\ < rout, where rin may be zero and
rout m a y b e infinite. The ROC is often critical in uniquely associating a
time sequence with a ZT. For details see the textbooks in Appendix 1 .A.

The ZT is formally inverted by contour integration,

2nj*(n) = ̂ r <£ X{z)zn~{dz, (1.38)

where C is a counterclockwise contour through the ROC and encircling
the origin in the z-plane, but several useful computational methods are
well known, notably the partial fraction expansion method, and the resi-
due method.

The ZT plays a similar role in DSP to that which the Laplace trans-
form does in continuous processing. A good speech processing engineer
will learn to "read the z-plane" much the same as the analog systems en-
gineer uses the s-plane. In particular, the reader should be familiar with
the correspondence between angles in the z-plane and frequencies, and
between z-plane magnitudes and "damping." The interpretation of pole-
zero plots in the z-plane is also an essential tool for the speech processing
engineer.

Finally, we recall the relationships among the two Fourier transforms
and the ZT. From the definitions, it is clear that

OTFTX(co) = ZTX(eJO)) (1.39)

for any o>, so that the DTFT at frequency a* is obtained by evaluating
the ZT at angle co on the unit circle in the z-plane. This is only valid, of
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course, when the ROC of the ZT includes the unit circle of the z-plane.10

The periodicity with period In of the DTFT is consistent in this regard.
Since the DFT represents samples of the DTFT at frequencies a)k,
k = 0, 1 , . . . ,N- 1, it can be obtained by evaluating the ZT at equally
spaced angles around the unit circle in the z-plane. Therefore,

DFT v n A _ DTFT ̂ / _ 2jT , \ _ ZT YiJ{2n/N)hX(k) = OTFTX\cok = ̂ k\ = "Xie*™"*). (1.40)

Since we use the same "uppercase," for example, X, notation to indicate
all three transforms, it is occasionally necessary in DSP work to explic-
itly denote the particular transform with, for example, a presuperscript as
in (1.40).

1.1.5 Windows and Frames

In all practical signal processing applications, it is necessary to work
with short terms or frames of the signal, unless the signal is of short du-
ration.11 This is especially true if we are to use conventional analysis
techniques on signals (such as speech) with nonstationary dynamics. In
this case it is necessary to select a portion of the signal that can reason-
ably be assumed to be stationary.

Recall that a (time domain) window, say w(ri), is a real, finite length
sequence used to select a desired frame of the original signal, say x(n\ by
a simple multiplication process. Some of the commonly used window se-
quences are shown in Fig. 1.3. For consistency, we will assume windows
to be causal sequences beginning at time n = 0. The duration will usually
be denoted N. Most commonly used windows are symmetric about the
time (N — l ) /2 where this time may be halfway between two sample
points if N is even. Recall that this means that the windows are linear-
phase sequences [e.g., see (Proakis and Manolakis, 1992)] and therefore
have DTFTs that can be written

W(co) = \W(aj)\e'Joj(iN-l)/2\ (1.41)

where the phase term is a simple linear characteristic corresponding to
the delay of the window that makes it causal.12

It will be our convention in this book to use windows in a certain
manner to create a frame of the signal. We first reverse the window in
time13 [w(-rt)], then shift it so that its leading edge is at a desired time,

I0The ROC includes the unit circle if and only if x(n) is absolutely summable. There-
fore, in keeping with our discussion above, only a uniformly convergent DTFT can be ob-
tained by evaluating the corresponding ZT on the unit circle.

11A similar discussion applies to the design of FIR filters by truncation of a desired IIR
(see DSP textbooks cited in Appendix l.A).

l2If the window were allowed to be centered on n = 0, it would have a purely real DTFT
and a zero-phase characteristic.

l3Since we assume windows to be symmetric about their midpoints, this reversal is just
to initially shift the leading edge to time zero.
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FIGURE 1.3. Definitions and example time plots for the rectangular, Kaiser,
Hamming, Hanning, and Blackman windows. All plots are for window lengths
N =101, and for the Kaiser window, /? = 4.

m [w(m - ri)\ A frame of the signal x(n) of length N (same as the dura-
tion of the window) ending at time ra, say f{n\ m), is obtained as

f(n\m) = x{ri)w{rn-ri). (1.42)

This simple concept will be used extensively in future developments in-
volving frames of speech. In fact, much of the time in this book the
frame will be related to a speech sequence denoted s(n) and it will be un-
necessary to employ the subscript s because it will be obvious. We will
only use a subscript in discussions where frames are being created from
more than one signal.

Assume for the moment that x(n) is a stationary signal for all time.
Clearly, the temporal properties of fx(n\m) are distorted with respect to
those of x{n) due to the direct modification of the temporal sequence by
the window. Correspondingly, the spectral properties also differ as the
two transforms are apparently convolved. That is, if Fx(a>\ m) denotes the
DTFT of frame fx(n\ m), then

Fico\ m) IK J-n
X{o)-6)W(-O)e-Jl)mdd. (1.43)

Now the relationship between Fx{co; m) and X(co) will only be clear from
(1.43) to those who are able to visualize the process of convolving com-
plex functions! Most of us do not have such an imagination. However, we
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can get some insight into the spectral distortion by assuming with some
loss of generality that the reversed and shifted window is centered on
time n = 0 [m = (N- l)/2]. Said another way, this simply means that the
true signal transform, X(co), against which we are going to compare our
frame's transform, Fx{cj\m), is the one whose signal is assumed to have
its time origin in the middle of the window. This, of course, is not always
the X(OJ) that represents our standard, but we can use it for insight. In
this case (1.41) can be used in (1.43) to yield

Fx(ar,m) = ± P'x(a)-0)\W(-0)\d0 = ± [X{w-6)\W(d)\de
LU J-* LU J-* (1.44)

where we have replaced |W(-0)| by |W(0)| since the magnitude spectrum
is an even function of 0. In this light it seems that we want our window
to have a magnitude spectrum that approximates an (analog) impulse as
closely as possible,

\W(0)\~2nda{6\ (1.45)

since this will imply Fx(a)\ m)« X(co). When we ponder this for a mo-
ment we realize that, in the extreme case, we have concluded the obvious
because \W(6)\ = 2nSa(6) implies that w(n)= 1 for all n. The "best" win-
dow in terms of preserving the spectrum is no window at all! Of course
such a "window" will also preserve the temporal properties of the signal
perfectly as well.

For any meaningful window, however, it is the extent to which the ap-
proximation (1.45) holds which will determine the preservation of the
spectral features of X(co). Now all commonly used windows tend to have
"lowpass" spectra with one main lobe at low frequencies and various at-
tenuated "sidelobes." This is consistent with the fact that, if viewed as
the (usually finite) impulse response of a filter, the window has an aver-
aging effect. Shown in Fig. 1.4, for example, are the magnitude spectra of
two commonly used windows, the rectangular window, defined as

f 1, « = 0, 1 iV- 1
w(n)=\ (1.46)

[ 0, n otherwise,

and the Hamming window,

0.54-0.46 cos(27tn/N- 1), n = 0, 1, . . . ,N- 1

n otherwise. (1.47)

Each is plotted for the case 7V= 16. For any window spectrum to approxi-
mate Sa(co), therefore, there are two desirable features:

• A narrow bandwidth main lobe.
• Large attenuation in the sidelobes.

w(n) =
0,
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FIGURE 1.4. Magnitude spectra of rectangular and Hamming windows.
Window length A/=16 is used in each case for clarity. Note that the nominal
"bandwidth" (width of main lobe) is 2n/N=n/S for the rectangular case and
about twice that for the Hamming. The sidelobe attenuation for the
Hamming, however, is 20 dB better outside the passband.

Generally speaking, a narrow main lobe will resolve the sharp details of
|jf(a;)| as the convolution (1.44) proceeds, while the attenuated sidelobes
will prevent "noise" from other parts of the spectrum from corrupting
the true spectrum at a given frequency. As one might expect, an engineer-
ing trade-off is encountered in this regard in the choice of a window. The
rectangular window, which exactly preserves the temporal characteristics
of the waveform over a range of N points, but which abruptly truncates
the waveform at the boundaries, has the following spectral characteristics:

• A relatively narrow main lobe (see Fig. 1.4) which decreases with N.
(In fact, the width of all the lobes decreases with N, but remember
that a very large TV begins to defeat the purpose of windowing.)

• The height of all lobes grows with N in such a way that the attenua-
tion in the sidelobes is approximately constant as N grows. This side-
lobe attenuation is not good for the rectangular case, typically -20
dB with respect to the main lobe, allowing lots of undesirable spec-
tral energy to be dragged into the resulting spectrum by the convolu-
tion (1.44) at a given co.

Windows with smoother truncations, such as the Kaiser, Hamming,
Harming, and Blackman are generally used (see Fig. 1.3). These tend to
distort the temporal waveform on the range of N points, but with the

TT

2

0 TT
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benefit of less abrupt truncations at the boundaries. The spectral proper-
ties of these windows are generally described as follows:

• For a given N, all will have a wider main lobe than the rectangular.
Again, this width decreases with increasing N.

• All have better sidelobe attenuation than the rectangular, typically
10-60 dB better. The popular Hamming window, for example, is
-30 dB down in the sidelobes (Fig. 1.4).

Although the choice of windows is somewhat of an art dependent
upon experience rather than an exact science, one can use this discussion
as a guide to an analytical understanding of the effects of such a choice
in the processing of speech or any other signal. Generally, the choice
of smoother windows is made because of their preferable sidelobe
characteristics.

When analyzing a nonstationary signal like speech, the selection of a
window involves another important consideration which is often not
treated in introductory textbooks on digital signal processing. From the
discussion above, we see that when analyzing a stationary signal, increas-
ing the window length, N, has only beneficial consequences regardless of
the type of window used. However, if a window is to be used to sequen-
tially select portions of a nonstationary signal by "sliding" it along in
time, a longer window will require a longer period to cross transitional
boundaries in the signal and events from different quasi-stationary re-
gions will tend to be blurred together more frequently than if the window
were shorter. Therefore another engineering trade-off is encountered in
the choice of window length. A longer window will tend to produce a bet-
ter spectral picture of the signal while the window is completely within a
stationary region, whereas a shorter window will tend to resolve events in
the signal better in time. This trade-off is sometimes called the spectral-
temporal resolution trade-off and will be discussed further in Chapter 4,
where we deal with short-term processing of speech.

1.1.6 Discrete-Time Systems

Elementary Concepts

The following are elementary concepts from discrete time (DT) system
theory that will be used intrinsically and extensively throughout the
book. It is assumed that the reader has a thorough grounding in these
ideas. We list here a number of fundamental topics that will be used
without elaboration. If any are unfamiliar, the reader is advised to review
them in one of the introductory textbooks indicated in Appendix l.A.

1. Linearity.
2. Time (shift) invariance.
3. Linear, constant-coefficient difference equation (time domain

input-output) description of a linear, time-invariant (LTI) DT
system.
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4. DT impulse response of an LTI DT system ["h(n)n].
5. Convolution sum for an LTI DT system.
6. Bounded input-bounded output (BIBO) stability and relationship

to h(n) for an LTI DT system.
7. Causality.
8. System function for an LTI DT system ["//(z)"], poles and zeros.
9. Magnitude spectrum and phase spectrum of an LTI DT system

and their determination from a pole-zero diagram.
10. Relationship between the linear constant coefficient difference

equation and H(z) for an LTI DT system.
11. Relationship between BIBO stability and H(z).
12. Finite impulse response (FIR) and infinite impulse response (IIR)

systems and relationships to H(z) and the difference equation.
13. Canonical computational structures for implementing LTI DT

systems.

State-Space Realizations of LTI DT Systems

Much of contemporary DT and analog system theory is based upon
state-space descriptions, rather than input-output descriptions, of sys-
tems. In the digital signal processing realm, state-space structures for re-
alizing DT systems have been the subject of intense research and they
have been found to have a number of useful numerical properties [e.g.,
see (Jackson, 1989, Sec. 11.6)]. We have two limited and very specific
uses for them in our work, so we review only a few pertinent results here.
The reader can refer to a number of other textbooks for further informa-
tion (see Appendix l.A).

In the proof of a key result concerning linear prediction analysis in
Chapter 5, we will have need of a slight variation of a Type I (Proakis
and Manolakis, 1992, Sec. 7.5) or controllable canonical (Chen, 1984, p.
327) form for a specific LTI DT system with scalar input and output.
This form is derived from the input-output description of the system as
follows: Consider the system to be governed by the linear constant coeffi-
cient difference equation

M Q

y(n) = X a(k)y(n - k) + £ b(k)x{n - k) (1.48)
k= 1 A-=0

for which the direct form II realization is shown in Fig. 1.5. We assume
in that figure and in this discussion that Q<M and we define b(k) = 0
for k> Q. The (internal) state of a DT system at time n0 is defined
to be the quantitative information necessary at time nQ which, together
with the input x(n) for n > «0, uniquely determines the output y{n) for
n > n0. The state variables of the system are the numerical quantities
memorized by the system that comprise the state.

In Fig. 1.5 we have defined the internal variables i\(n),. . . , vM(n).
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FIGURE 1.5. Direct form II realization of the discrete-time system with
input-output description (1.48).

These comprise state variables for this system, as we shall see momentar-
ily. Note that

Vi(n+l)=vi+l(n), / = 1,2 Af- 1

M

vM(n + 1) = x(n) + ^ a(i)vM_i+l(n).

(1.49)

(1.50)

These are the state equations for the system. Note also that the output
can be computed from the state variables at time n using

M

y(n) = b(0) vjn + 1) + ]T b(i) vM_i+l(n) (1.51)

= b(0)x(n) + X [*(0 + H0)a(i)] vM_i+i(n),
/ = 1

which is called simply the output equation for the system. It is clear that
these state variables do comprise a legitimate state for this system ac-

z-1
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cording to the definition. For convenience, the state and output equa-
tions can be written in vector-matrix form as

v(«+ 1) = Av(«) + cx(w) (1.52)

y(n)=bTv(n) + dx(n), (1.53)

in which d is the scalar d=b(0), A is the M X M state transition matrix

0

0

0

1

0

0

0

1

0

0

0

1

0

0

0

• 0

0

0

A =

0 0 0 0 0 ••• 1

a(M) a(M-l) a(M-2) a(M-3) a(M-4) ••• a{\)

(1.54)

and c and b are M-vectors [recall the assumption Q<M and the defini-
tion b(k) = 0 for k>Q]9

= [ o o o ••• o i ] r

b(M) + b(0)a(M)

b(M- l) + 6(0)a(Af- 1)

b(M - 2) + b(0)a(M - 2)

(1.55)

b =

b(l) + b(0)a(l)

(1.56)

Equations (1.52) and (1.53) are very close to the state-space description
of an LTI system that will be needed in our work in a limited way. In
fact, because of the way we have chosen to define the state variables
here, these equations comprise a lower companion form state-space
model, so named because of the form of the state transition matrix A. A
simple redefinition of state variables leads to the upper companion form
model which we explore in Problem 1.5.

Finally, in our study of hidden Markov models for speech recognition
in Chapter 12, we will have need of a state-space description of a system
that has a vector output. In this case the system will naturally arise in a
state-space form and there will be no need for us to undertake a conver-
sion of an input-output description of the system. The system there will
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have a similar state equation to (1.52) except that the state transition
matrix, A, will generally not be of a special form like the one above (in-
dicating more complicated dependencies among the states). The output
equation will take the form

y(«) = Bv(Ai) + dx(») (1.57)

in which y(n) and d are P- vectors (P outputs) and B i s a P X M matrix.
We will have more to say about this system when its need arises.

1.1.7 Minimum-, Maximum-, and Mixed-Phase Signals and Systems

We have discussed the grouping of signals into energy or power catego-
ries. Here we restrict our attention to the subclass of real signals with le-
gitimate DTFTs (those that are absolutely summable) and consider
another useful categorization.

The specification of the magnitude spectrum of a discrete-time signal
is generally not sufficient to uniquely specify the signal, or, equivalently,
the DTFT of the signal. Consider, for example, the magnitude spectrum,
|X(&;)|, shown in Fig. 1.6. This spectrum was actually computed for the
signal xx{n) with z-transform,

o 0.5 2.5 3 IT1 1.5 2
Frequency, CO (norm-rps)

FIGURE 1.6. Common magnitude spectrum for the signals xA(n) and x2(n).
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X(z) = - ^ ^ ^—r^ -1—r, (1.58)

with C, = 0.9/45°, C2 = 0.5, />, = 0.7/135°, and p2 = -0.5, and therefore has
an analytical description

U,(O| = (i - c^-nn - cynti - c2e-Ja>) (1.59)

The true phase characteristic is given by

^^•^("-^'-^•-^l. (1.60,

The magnitude and phase spectra for the signal xx(n) are found in Figs.
1.6 and 1.7, respectively, and the pole-zero diagram is shown in Fig. 1.8.

If the magnitude spectrum were all that were known to us, however, it
would not be possible to deduce this z-transform and corresponding sig-
nal with certainty. Indeed, consider the signal x2{ri) with z-transform

(z-1 - {,)(z-' - Q ( z - ' - Q

(i-piz-i)(\-p]z-i)w-p2z-lym - , , - , . - . ; - , ; • > , - . ' V <'-6i>
which the reader can confirm has an identical magnitude spectrum to
Xx(z) (see Fig. 1.6), but a different phase spectrum that is shown in Fig.
1.7. The pole-zero diagram for the signal x2(n) is found in Fig. 1.8. Fur-
thermore, there are two other z-transforms which have identical magni-
tude spectra but different phase spectra. X2(z) is found from X{(z) by
reflecting both the conjugate zero pair plus the real zero into conjugate
reciprocal locations (outside the unit circle) in the z-plane, plus some
scaling. The other two magnitude spectrum-equivalent z-transforms are
found by reflecting either the conjugate pair or the real zero.

In general, if a real, causal, absolutely summable signal has a z-
transform with C complex pairs of zeros, and R real zeros, then there are
2C+R - 1 other possible signals with identical magnitude spectra but dif-
ferent phase spectra. The signal with all of its zeros inside the unit circle
is called a minimum-phase signal for reasons explained below. If the sig-
nal is the discrete-time impulse response of a system, then the system is
said to be a minimum-phase system or filter. In the other extreme in
which the zeros are completely outside the unit circle, the signal (or sys-
tem) is called maximum phase. All intermediate cases are usually called
mixed phase.

A little thought about the general relationship between the zero config-
uration and the phase spectrum (i.e., think about how one deduces a
phase plot from the pole-zero diagram) will convince the reader that
having all the zeros inside the unit circle will minimize the absolute
value of negative phase at a given co. Conversely, having the zeros outside
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the unit circle will maximize the negative phase (see Figs. 1.7 and 1.8).
Hence the names minimum and maximum phase are reasonable from
this point of view. A more intuitive notion is to found in the time do-
main, however.

Since the (negative) phase at co is directly related to the amount of
temporal delay of a narrowband component at that frequency, we can
infer that the minimum-phase signal is the one which, for a given magni-
tude spectrum, has a minimum delay of each frequency component in
the spectrum. The minimum-phase signal will therefore have the highest
concentration of energy near time n = 0 of any signal with the same mag-
nitude spectrum. Specifically, if xmin(n) is the minimum-phase sig-
nal, and Ex(m) represents the energy in any sequence x(n) in the interval
HG[0,m],

m

Ex{m)^^x\n\ (1.62)

then it will be true that14

E
xJ

m^EW (1-63)

for any absolutely summable signal x(n) with the same magnitude spec-
trum, and for any m. Precisely the opposite holds for the maximum-
phase signal, say xmax(n),

for any absolutely summable signal x(n) with the same magnitude spec-
trum, and for any m. The significance of these expressions can be appre-
ciated in Fig. 1.9, where we show the time domain waveforms for xx{n)
above, which we now know is minimum phase, and for x2(n), which is
maximum phase.

Yet another way to view a minimum-phase signal, particularly when it
represents the impulse response of a system, is as follows: If h(n) repre-
sents a minimum-phase impulse response of a causal stable system, then
the z-domain system function, H(z), will have all of its poles and zeros
inside the unit circle. Hence there exists a causal, stable inverse system,
H~\z), such that

H{z)H~\z)=\ (1.65)

everywhere in the z-plane. If there were even one zero outside the unit
circle in //(z), a stable inverse would not exist, since at least one pole in
the inverse would be obliged to be outside the unit circle. The existence
of a causal stable inverse z-transform for H(z) is therefore a sufficient
condition to assure that the signal h(n) (or its corresponding system) is
minimum phase.

I4A proof of this fact is outlined in Problem 5.36 of (Oppenheim and Schafer, 1989).
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FIGURE 1.9. Time domain plots of minimum-phase signal x^(n) and
maximum-phase signal x2(n). The signals are squared for convenience.

Finally, we note that we have assumed that signals in this discussion
are generally infinite in duration by allowing them to have poles in their
z-transforms. (By restricting our discussion to absolutely summable sig-
nals, however, we have constrained the poles to be inside the unit circle.)
In the case of a real, finite duration ("all zero"), minimum-phase se-
quence of length N (perhaps the impulse response of an FIR filter), it can
be shown that its maximum-phase counterpart is given by

xnJn) = xmJN-\-n)

or

XnJz)-z_ ^-(A^-D
^min^"1)-

(1.66)

(1.67)

The concepts of minimum-phase signals and systems will play a key
role in the theory of linear prediction and surrounding modeling
concepts.

1.2 Review of Probability and Stochastic Processes

We will discover in the next chapter that there are two basic classes of
speech sounds, "voiced" and "unvoiced." Generally speaking, the former
is characterized by deterministic acoustic waveforms, while the latter cor-
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responds to stochastic waveforms. The difference can be heard in the two
sounds present in the word "it," for example. Although random process
theory will be necessary to analyze unvoiced signals, we will find that
even in the case of voiced sounds it will be very useful to employ analyti-
cal techniques which are fundamentally motivated by stochastic process
theory, notably the autocorrelation function. In different ways from those
used to analyze speech waveforms, we will employ concepts from proba-
bility in our study of stochastic models for the coding and recognition of
speech. In these and other aspects of our study of speech processing,
basic concepts from random process theory will be prerequisite to our
pursuits.

As is the case with digital signal processing concepts, it will be neces-
sary for the reader to have a working knowledge of the concepts of prob-
ability and stochastic processes, at least at the level of a typical senior or
entry-level graduate course. Some of the widely used books in the field
are listed in Appendix l.B, and the reader is encouraged to refer to these
textbooks to review concepts as needed.

As noted, one of the central tools of speech processing is the autocor-
relation sequence. Several of the more fundamental concepts, in particu-
lar stationarity and ergodicity, also play key roles in our work. In the
recognition domain, an understanding of basic concepts concerning joint
experiments and statistical independence will be essential. It is our pur-
pose here to briefly review these fundamental notions with the autocorre-
lation sequence and surrounding ideas as a target of this discussion. We
will focus on discrete time random processes because of the nature of our
application. As was the case in our DSP review, a second objective is to
set forth notation for the remainder of the book. This short section is not
intended to substitute for a solid course in random processes and will
not provide an adequate background for a deep understanding of the
stochastic aspects of speech or general signal processing.

1.2.1 Probability Spaces

The science of probability is customarily introduced to engineering
students using an axiomatic approach for the sake of mathematical gen-
erality and formality. In this context, a formal definition of probability
involves the specification of a sample space, a field or algebra of events,
and a probability measure, which is assumed to conform to some basic
axioms. The sample space, say S, is the set of all outcomes of an experi-
ment, plus the null outcome. Each element of S is called a sample point.
Collections of sample points (connected by an OR condition) are called
events. An event may consist of a single sample point.

Although the second component of the probability space is critical to
theoretical developments, it is usually of least concern in typical engi-
neering applications. Generally, it is necessary to give some careful
thought to which events are to be assigned probabilities. In certain cases,
we cannot assign probabilities all possible events, nor can we have too
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few events, and still have a consistent and meaningful theory of probabil-
ity. A proper "event space" will turn out to be a sigma-field or sigma-
algebra over S, which is a set of subsets of S that is closed under
complementation, union, and (if S has an infinite number of elements)
countable union. Let us call the algebra jt. In typical engineering prob-
lems, the algebra of events is often all intervals in some continuum of
possible outcomes, or the "power set" of discrete outcomes if S is finite
and discrete. These and other algebras in different situations are natu-
rally used in problems without much forethought.

The third component, probability, is a normalized measure assigned to
these "well thought out" sets of events that adheres to four basic axioms.
If P(A) denotes the probability of event A, these are

1. P(S)=l.
2. P{A)>0, for all A <E_J.
3. For two mutually exclusive events A, B&^4,

P(A U B) = P{A) + P(B). (1.68)

Mutually exclusive means A n B = 0, where 0 is the null event.
4. For a countably infinite set of mutually exclusive events A. £^4,

/ = 1 , 2 , . . . ,

00

P(U4)=2>(4-). (1-69)

The first three axioms are very intuitive and reasonable, and indeed are
all that are necessary when _J contains a finite set of events. The fourth
axiom is necessary for proving certain important convergence results
when the sample space is infinite (see the textbooks in Appendix l.B not
labeled "elementary"). The probability measure assigned to an event is
usually consistent with the intuitive notion of the relative frequency of
occurrence of that event.

The three components of a probability space are sufficient to derive
and define virtually all important concepts and results in probability the-
ory. Notably, the concepts of statistical independence, and joint and con-
ditional probability, follow from this basic formalism. The two events
A,BG^4 are said to be statistically independent if15

P(A nB) = P(A)P(B). (1.70)

The joint probability of events A,B G^4 is defined simply as P(A n B),
and the conditional probability of B given A is

P(B\A) *%&££. (1.71)

15To conserve space in complicated expressions, later in the book we will begin to write
P(A n B) as P(A, B). That is, the "AND" condition between events will be denoted by a
comma. In these introductory sections, however, we use the explicit "Pi."
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Combined Experiments

This is a good place to review the notion of a combined experiment.
We will have need of this theory only if such experiments have inde-
pendent events, so we will restrict our discussion accordingly. Formally,
an "experiment" is equivalent to the probability space used to treat that
experiment. For example, let experiment 1, €v be associated with a prob-
ability space as follows:

€, = {SVJVP). (1.72)

If we wish to combine a second experiment, £2, we need to have a way of
assigning probabilities to combined events. An example will be useful to
illustrate the points.

Let £{ be concerned with a measurement on a speech waveform at a
specified time that may take a continuum of values between 0 and 10
volts. Therefore,

S{ = {x:0<x< 10). (1.73)

The events to which we will assign probabilities consist of all open and
closed intervals on this range. Therefore,

_AX = {x: x e(fl, b) or (a, b] or [a, b) or [a, b\ where 0 < a < b < 10).
(1.74)

A second experiment, £2, consists of a second measurement at a later
time, which is assumed to be independent of the first. The voltage in this
case ranges from -30 to +30 volts, so

^2 = [ y : - 3 0 < y < 3 0 } (1.75)

and ^42 will again consist of open and closed intervals in S2,

i 2 = [y:ye(a, b) or (a, b] or [a, b) or [a, b\
(1.76)

where -30 < a :< 6 :< 30).

Now suppose that we want to assign probabilities to joint events such as

C = (Event A from £. D Event B from £,)
2 (1.77)

- (1 < x < 5 n 1 5 < y < 2 5 ) .

In this case we simply form a combined experiment or combined proba-
bility space that involves a product sample space and product algebra of
events,

£=£XX£2 = (S, J,P) = (S, XS2, Jx X^2,P). (1.78)

This is illustrated in Fig. 1.10. Formally, the event C 6 J is formed by
intersecting events AXS2 (also in jf) with BXSX (also in jf) to get

C=(AXS2) n (BXS{). (1.79)
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FIGURE 1.10. Combined probability space.

The probability assigned to C will be

P(C) = P(A)PiB), (1.80)

since we are assuming A and B to be independent. These ideas are easily
extended to more than two experiments (see textbooks in Appendix l.B).

1.2.2 Random Variables

Single Random Variables

Note: We henceforth use a simple comma to indicate the AND condition
between two events in the argument of a probability. For example, P(A C\ B)
will be written P(A, B).

5
S2-
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Definition of a Random Variable. A (real) random variable is the mapping
of the sample points in a sample space of an experiment to the real
number line. For example, the sample space, S9 might be the set of all
cities on Earth, and the random variable, say x, a mapping of the city to
its metropolitan population in millions in 1990:

x(Chicago) = 6.1. (1.81)

Throughout the book, we will follow the convention established here of
underscoring a quantity to distinguish it as a random variable (or ran-
dom vector as discussed below).16 Later we will use a similar notation to
indicate a random process. In this context, a lowercase letter which is not
underscored is used to indicate, in the abstract, values of the mapping.
For example, if the variable a represents points in S, then we might write
something like

x(a) = x (1.82)

to indicate that the random variable x maps the outcome a to the real
value x. Note that it is the mapping itself which is the random variable,
not the value of the mapping. Nevertheless, we often say "the random var-
iable is 4," when we mean "the random variable has produced a value 4."

It is customary to employ some notation like Sx to indicate the range
space of x, the intervals and/or points on the reaF line which constitute
the range of the mapping x. It is also formally convenient to consider an
algebra of events in Sx, say ^4x9 to which we might want to assign
probabilities.

There are certain conditions that must be met for x to be a random
variable. Each is ultimately concerned with the concept of measurability,
a property which allows us to assign probabilities to events in ^4x. Gener-
ally speaking, every event in Jx must be traceable back to a well-defined
event in the original jt probability space so that we know what probabil-
ity to assign to it. One important criterion is that x not be a one-to-many
mapping. (A deeper discussion of this issue is found in the textbooks of
Appendix l.B not labeled "elementary.")

The random variable in some engineering problems is only an abstract
formality in the sense that the original outcomes of experiments are al-
ready real numbers and no mapping is actually necessary. Such will often
be the case in this book where the "outcomes of experiments" will be
values of a speech sequence at a given point in time. Accordingly, we will
encounter no problems with measurability.

A random variable can be either continuous, discrete, or mixed, refer-
ring to whether the mapping produces continua of outcomes, discrete
points, or a mixture of the two types. In our speech analysis work, the

l6Some textbooks use uppercase letters to indicate random variables; still others use
boldface. Uppercase letters will have many other significances in this book and boldface
quantities are used to indicate vectors or matrices.
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random variables will usually represent speech amplitudes; we will pri-
marily work with the continuous case. (Remember that we usually ignore
amplitude quantization in this book! The important exception will be in
Chapter 7, where we actually consider the issue of quantizing speech for
compression purposes.) Later in our recognition work, the random varia-
bles will be found to be primarily discrete.

Denoting Probabilities. The outcomes of random variable x (elements of
_AX) are formally assigned probabilities using traceback to the original
event space _d. The "events" in ^4X with which we will be concerned in
this book are points x = x, and intervals that may be open or closed at ei-
ther end, for example, a<x<b or x> 6. Probabilities of these events
will be denoted in the expected way, such as P(a <x<b) or
P(x > 6). The generalization to multiple random variables is obvious, for
example, P(x < a, ft < y < y). A nuance occurs when describing the prob-
abilities of point outcomes. When it is obvious which random variable(s)
is (are) involved, we may write P{x) instead of P(x = x), or P(x,y)
instead of P(x = x,y = y). Frequently, for absolute clarity, we will retain
the random variable in the argument. If the reader finds this unnecessary
in certain cases, then he or she should simply use the abbreviated form
in any notes or solutions.

As noted above, when a random variable can take only a countable
number of values, it is called a discrete random variable.17 In this case
the statistical description of, say x, is modeled entirely by its probability
distribution P(x = xt), / = 1,2, Occasionally, we will want to refer to
the probability distribution of x in general, and we will write simply18

P(x).

cdf and pdf. Associated with a random variable, x, is a cumulative distri-
bution function (cdf), say Fx(x), defined as

Fx(x)d=P{x<x), (1.83)

where P(x < x) means the probability that the random variable x pro-
duces a value less than or equal to x. Of more use to us is the probability
density function (pdf),

m^-fcFM). (1.84)

We use the derivative in the "engineering" sense in which discontinuities
in Fx(x) (caused by discrete points with nonzero probability) produce im-
pulses in fx(x). The continuous part of Fx(x) might not be differentiable
in certain "cases which will not concern us [e.g., see (Wong and Hajek,

17Carefully note that this term has nothing whatsoever to do with discrete time.
18A notation which is more consistent with^(jc) would be Px(x\ but this has other obvi-

Jx\

ous disadvantages. For example, how would we denote the probability of the event x > x ?
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1984, Ch. 1) for details]. Note that a discrete random variable will have
a pdf that will consist entirely of impulses at the point outcomes of
the random variable. The weighting on the impulse at xt is P(x = xi).

Returning to (1.84), from the Fundamental Theorem of Calculus, we
have

- J a -
P(a<x<b) = Fx(b) - Fx(a) = fj£) d£, (1.85)

- - J a -

implying the well-known result that the area under the pdf on the range
{a, b] yields the probability that x produces a value in that interval.19

Some of the commonly used pdf's in speech processing are

1. Gaussian:

'^•VKJH-TS- (1'86)
where jux is the average or mean of x, and a\ is the variance, or
ax is the standard deviation (discussed below).

2. Uniform:

r l a<x<b
f{x)=\b-a> — — (1.87)
- 0, otherwise

for some b > a.

3. Laplacian:

/ ^ ) = - ^ e x p - V f J ^ i , (1.88)

where ox is the standard deviation of x.

Finally, let us recall the meaning of the conditional cdf and conditional
pdf, which are just natural extensions of the theory,

Fx{x\D) ^P{x*x\D)-P{Z*x£> (1.89)

and

fx(x\D)^^Fx(x\D), (1.90)

where D is any outcome (event or point) of x of nonzero probability.

"Care must be taken with impulse functions at the limits of integration if they exist.

'2 \x
°x

exp
^
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Multiple Random Variables

Preliminaries. We are gradually building toward a review of random pro-
cesses. The next step is to consider relationships among several random
variables. We begin by considering relationships between two random
variables, noting that many of the concepts we review here have natural
generalizations to more than two random variables. At the end of the
section, we focus on random vectors in which some of these generaliza-
tions will arise.

In combining experiments above, we encountered the task of combin-
ing two sample spaces at the fundamental level. We assumed that the
events in the individual sample spaces were independent. Here we im-
plicitly assume that two random variables, say x and y, map the same S
into two different range spaces, Sx and S . The joint range space is sim-
ply a product space,

S^Sx_XSy_, (1.91)

formed in a similar manner to product sample spaces for combined ex-
periments. The joint event algebra, say Jxy, are events chosen from S .
For most purposes, these will be open and closed rectangles and points in
S . A significant difference between this theory and that of combined
experiments is that we do not assume that events in the individual
range spaces, Sx and Sy, are independent. We formally assign probabilities
to events in _J by tracing them back to ji to see what event they repre-
sent there.

These ideas are readily extended to more than two random variables.

Joint cdf and pdf; Conditional Probability. The joint cdf and joint pel/are
defined formally as

xy

and

F(x,y)=P{x<x,y<y) (1.92)

respectively. Some properties of the these functions are studied in the
problems at the end of the chapter. A prevalent joint pdf in engineering
is the joint Gaussian,
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Q(X'y) \-p\y {(, \ 1
(y-M

-Hz

(1.95)

in which fix and juy are the means of x and y, ^ and ay are the standard
deviations, and px is the correlation coefficient. These quantities are
special moments, which are reviewed below.

The conditional probability of event A e^4x given the occurrence of
event B E Jy is defined in the usual way,

P(A GjjB <EJy) =f ̂ ^ , (1.96)

where the numerator and denominator are determined by traceback to
_d. If A is the interval x < x, then we have the conditional cdf,

F,\M\B)=P{[x^x\^\BSESy) = P{xf{X>B) (1.97)

and the conditional pdf,

f^x\B)Ag ^{x\B). (1.98)

All the usual relationships between the cdf and pdf hold with the condi-
tioning information added. For example,

F^2\B)-FAy(x,\B)- l*fyz\B)dt. (1.99)

Independence. Two random variables, x and y, are statistically indepen-
dent if and only if for any two events, A G_d and BELJ,

— 2.
P(A,B) = P(A)P(B). (1.100)

It follows immediately for two statistically independent random variables
that

F^(x,y) = F£(x)Fy(y) (1.101)

and

fx_y(x,y)=fM)fy{y). (i.i02)

Statistical independence is a very strong condition. It says that out-
comes of x and y tend not to be related in any functional way, linear or
nonlinear. When two random variables are related linearly, we say that
they are correlated. To say that x and y are uncorrelated is to say that
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there is no linear dependence between them. This does not say that they
are necessarily statistically independent, for there can still be nonlinear
dependence between them. We will see this issue in the topic of vector
quantization (Section 7.2.2), where there will be an effort made to ex-
tract not only linear dependency (correlation) out of the speech data, but
also nonlinear dependency, to produce efficient coding procedures.

Expectation and Moments. The statistical expectation or statistical aver-
age of a scalar function of a random variable, say g(x), is defined by

g(x)fx(x)dx (1.103)

assuming that the pdf exists. When g(x) = x, this produces the average or
mean value of x, jux. Note that when x produces only discrete values,
say xv JC2, . . . , then the pdf consists of impulses and the definition
produces

oo

£{g(x)}=^xlP(x = xl). (1.104)
/=!

The definition is readily generalized to functions of two or more random
variables. For example,

Too Too

£{g{x,y)}™ g(x,y)f(x,y)dxdy. (1.105)
J-oo •/-oo -

Particularly useful averages are the moments of a random variable.
The z'th moment of the random variable x is the number

f°°
£{x'}= xlfx(x)dx. (1.106)

J-00 -

Obviously, the first moment is the mean of x, jux. The /th central moment
of the random variable x is the number

~ •'— OO ~ ~

A special central moment is the second one (/' = 2), which we call the
variance and denote ax. The square root of the variance, ax, is called
the standard deviation "of x.

The /, k joint moment between random variables x and y is the
number

£{*'/}= [°° r xYfJx9y)dxdy (1-108)
J— oo •'—oo —
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and the /, k joint central moment is the number

Too Too

efa-nJiy-rf}- I I (x-pJiy-tfUwXlxdy.
~ - - - > J-co J-co - - - ( 1 1 Q 9 )

When / = k = 1, the joint moment is called the correlation between x and
y, and the joint central moment, the covariance. Let us call these num-
bers r and cYV, respectively. A parameter frequently used in the
statistical analysis of data (and which appears in the joint Gaussian pdf
above) is the correlation coefficient given by

v% <'•"»>
We see that the correlation coefficient is the covariance between x and y
normalized to the product of the individual standard deviations.

Correlation and covariance will occur repeatedly in our study of
speech, and it is advisable to master their meanings if they are not al-
ready very familiar. This is especially true because the terms "autocorre-
lation" and "covariance" are used in ways that are not consistent with
their definitions in some aspects of speech processing. A related pair of
somewhat unfortunate terms20 is the following: x and y are said to be or-
thogonal if their correlation is zero, and uncorrelated if their covariance
is zero. Finally, we note that the covariance and correlation are related as

The conditional expectation of y, given some event related to random
variable x9 say B G^4x, is defined as

Too

£{y\B}={ ]_jfy\p\B)dy- ( i . i i2)

It is well known that the best predictor of y, in the sense of least square
error, given some event concerning x is given by the conditional expecta-
tion. If x and y are also joint Gaussian, then the conditional expectation
also provides the linear least square error predictor (see textbooks in Ap-
pendix l.B).

Random Vectors. In discussing more than one random variable at a time,
say x^x2,... ,xN, it is frequently convenient to package them into a ran-
dom vector,

x =[xlx2---xK] • (1.H3)

20Speech processing engineers are not responsible for this terminology!
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Note that the vector is indicated by a boldface quantity, and the fact that
it is a random vector is indicated by the line beneath it. The pdf associ-
ated with a random vector is very simply the joint pdf among its compo-
nent random variables,

fx{xx, x 2 9 . . . , xN) - f 4 P x 2 , . . . , ^ ( * , 9 x 2 9 . . . , x N ) . (1.114)

Operations among random vectors follow the usual rules of matrix
arithmetic. For example, the operations of inner and outer products of
random vectors will be significant in our work. Recall that the inner
product or l2 norm of a vector (in this case a random vector, say
x = [xx • • • xN]T), is the sum of its squared components. This can be writ-
ten in a variety of ways,

yv

||x||2 = x^ = £*?• (1 .115)

Note that the inner product of a random vector is itself a random varia-
ble. The outer product, on the other hand, is the product xx r which cre-
ates a random matrix whose (ij) element is the random variable XjXj. Of
course, the inner and outer products may be computed between two dif-
ferent random vectors.

The expectation of a random vector (or matrix) is just the vector (or
matrix) of expectations of the individual elements. For example, £{x) is
simply the vector of means [jux • • • fix ]

T, which we might denote \ix.
Another important example is the expectation of the outer product,

Rx= f£{xx r}, (1.116)

which is called the autocorrelation matrix for the random vector x, since
its (ij) element is the correlation between random variables xi and xy

The matrix

C/=£{(x-(O(x-^n (1.117)

is called the covariance matrix for x for the similar reason.
An example that occurs frequently in engineering problems is the

Gaussian random vector for which any subset of its random variable
components has a joint Gaussian pdf. In particular, the joint pdf among
the entire set of N is an TV-dimensional Gaussian pdf. That is, if x is a
Gaussian random vector, then

fx\Xv . . . , XN) -Jx xv\X\> • m ' >XN)
~ ~ (1.118)

1 expf4(x-nxrc-(x~nji

where x denotes the vector of arguments [*,-•• xN]T and Cx and ^ix are
the covariance matrix and mean vector as defined above. It can be
shown that this form reduces to (1.94) in the two-dimensional case.
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1.2.3 Random Processes

Basic Concepts

Definition of a Random Process. A (real) discrete21 random, or stochastic,
process is defined as a collection of random variables, each indexed by a
point in discrete time. For example, the following set comprises a ran-
dom process:

{. . . ,x(- l ) ,x(0) ,x( l) , . ..} = {x(n\ n E (-co, oo)}, (1.119)

where each random variable represents a model for the generation of val-
ues at its corresponding time. There will be many occasions when we will
want to refer to a random process by a name. For example, it is too
clumsy to write something like "the random process {. . . , x ( - l ) , x(0),
x( l ) , . ..} is used to model the speech signal...." What shall we call the
random process? This is one place where we shall bow to convention and
use a less-than-ideal choice. It is common to refer to a random process
by the same name as that used for the random variables which constitute
it. For example, the random process in (1.119) would be called simply x,

x = {.. . ,x(- l ) ,x(0) ,x( l ) , . . .} = \x(n), n E (-co, oo)}, (1.120)

so that we can write "the random process x is used to model the speech
signal...." Of course, the problem which arises is that x may refer to a
random variable or a random process. We could further distinguish a
random process by using yet another notation, for example, x, but this
will turn out to be unnecessary in almost every circumstance. From con-
text, it should always be clear whether an underscored quantity is a ran-
dom variable or a random process. Note carefully that the notation x
never refers to both. Once it is known that x is a random process, then
all associated random variables should have time indices, for example,
x(n). Finally, it should be noted that the random variables in a random
process will almost always be indexed by integers in parentheses to indi-
cate their association with discrete time. There will be only limited use
for continuous-time random processes in this book.

An example will illustrate how a random process is related to a physical
problem. Suppose that we define a simple experiment in which an integer
representing one of L digitized speech waveforms is selected at random.
For illustrative purposes, we plot segments of all of the waveforms (for
L = 3) in Fig. 1.11. We can imagine that each time is governed by a ran-
dom variable, say x(n) at time n, and the ordered collection of these ran-
dom variables is the underlying random process, x. When the experiment
is complete, each random variable will go to work mapping the outcome,
for example, "waveform 2," to an amplitude level corresponding to that
outcome. For example, x(S) maps the outcome "waveform 2" to a value
82 in our figure. For this one experiment, therefore, the totality of all the

21 We will focus on the discrete case because of our primary interest in discrete signals in
this book.
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Random variable x (8)

80

FIGURE 1.11. An ensemble of speech waveforms modeled by random
process x with random variables x(n). (Figure continued on p. 44.)
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800

600 -

400 -

200 -

-200 -

-400 -

-600
20 40 60

Time, n (norm-sec)

80 100

FIGURE 1.11. (continued)

random variables will produce a particular waveform from the experimen-
tal outcome, each random variable being responsible for one point. This
one waveform is called a sample function or realization of the random
process. The collection of all realizations (resulting from all the experi-
ments) is called an ensemble. It should be clear that if we select a time, we
will get a random variable. If we select an experimental outcome, we get a
realization. If we select both a time and an outcome, we get a number,
which is the result of the mapping of that outcome to the real line by the
random variable at the time we select.

pdf for a Random Process. Associated with any / random variables in a
random process is an /th order pdf. For example, for x(nx\ x(n2)9 and
x(n2), we have the third-order density ~

Jx(n\),x{n2),x(n3)\€ii S2' S3 j - (1.121)

This is consistent with our previous convention of listing all random var-
iables in the joint pdf as subscripts of /

Independence of Random Processes. We have reviewed the meaning of in-
dependence of random variables above. We must also recall the meaning
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of independent random processes. Two random processes, x and y, are
statistically independent if, for any times nvn2, . . . ,nt, and~ra,, m~...,
nij, the random variable group ^(n^x^),... ,*(/*,•) is independent of
y(m1) ,y(m2) , . . . ,y(mj). This, in turn, requires that the joint pdf be fac-
torable as

Jx\(ni),...,xi(ni),y](ml),...,yj(mj)\€v ' ' ' ' S' VV ' ' * ' Vj) ,. ^ x

= Jxl{nl),...,x,(ni)[€\9 • - - ^i)jyx(mx\...,yj{mj)\VV ' ' ' Vj\

Stationarity. A random process x is said to be stationary to order i or /th-
order stationary if

/ * i ( « i ) , . . . , £ / ( « / ) V > P • • • ' S v ~ / x , ( « i + A ) , . . . , x , ( « / + A ) ( > P • • • ' S v ( 1 - 1 2 3 )

for any times « p « 2 , . . . , ni and any A. This means that the joint pdf
does not change if we consider any set of / random variables from x with
the same relative spacings as the original set (which is arbitrary). If x is
stationary to any order, then it is said to be strict sense, or strong sense,
stationary (SSS). We will review a weaker form of stationarity below.

Stationarity has important implications for engineering analysis of a
stochastic process. It implies that certain statistical properties of the
process are invariant with time, making the process more amenable to
modeling and analysis. Consider, for example, the case in which x is
first-order stationary. Then

for any n and A, from which it follows immediately that every random
variable in x has the same mean. In this case, it is reasonable to talk
about the average of the random process, but in general there are as
many averages as random variables in a random process. This leads us to
the important issue of ergodicity.

Ergodicity and Temporal Averages. Consider a random process, x, known
to be first-order stationary. We might find ourselves in the lab with only
one realization of the process, say xx(n), n G (-oo, oo), wondering whether
we could somehow estimate the average of x, say /i£. In principle, we
should acquire a large number of realizations and use them to compute
an empirical average (estimate) of any random variable, say x(n) at time
n. (It wouldn't matter which n, since the averages should all be the same
due to stationarity.) This estimate, obtained by averaging down through
the ensemble at a point, is referred to as an ensemble average. The en-
semble average represents an attempt to estimate £{x{ri)} at time n,
hence to estimate the average of process. Since we do not have an ensem-
ble, it would be tempting to estimate JJLX by computing a temporal average
of the realization, xAri),
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^ = Jt[Xi(n)} d=f Jim ^ ^ V r t *.(">• d-125)
n=-N

Note that we have explicitly used a signal name, x p as a subscript of// to
indicate that it has been computed using the realization rather than an
ensemble. Note also the operator JC used to indicate the long-term time
average. This notation will be used consistently:

•*H-&2Am-£„{•}• ( U 2 6 )

When will /A , the time average, equal /ix9 the ensemble or statistical
average? Generally speaking, a random process is ergodic if ensemble av-
erages can be replaced by time averages.22 In our example, if juX[ = jux, x is
said to be mean-ergodic, since this property holds for the mean.
Ergodicity will be an important assumption in our work with speech be-
cause we frequently will have only one realization with which to compute
averages. In particular, second-order ergodicity will play an important
role and we will look more carefully at this concept shortly.

Correlation and Covariance Applied to Random Processes

Consider two random variables, say x(n{) and x(n2), taken from a ran-
dom process x. Recall that the correlation of these two random variables
is ^{^(n^x^)}. Since the two random variables in this case are drawn
from the same random process, we give this the name autocorrelation
and feature it with a special notation

rAnvn2) = £{x{nx)x{n2)). (1.127)

Similarly, the autocovariance function is given by

^ n p « 2 ) ^ { [ i ( » . ) - ^ ( « 1 ) } M « 2 ) - ^ ( « 2 ) } ] } - (1-128)
It is a simple matter to show that

It follows immediately from the definition of stationarity that if the
random process x is at least second-order stationary, then the value of
the autocorrelation does not depend on which two random variables are
selected from x, but rather their separation in time. In this case, we
adopt the somewhat sloppy, but very conventional, notation

rx(rj) = autocorrelation of any two random variables in x,
which are separated by Y\ in time (1.130)

= £[x(n)x(n- rj)} for any n.

22This definition of ergodicity is entrenched in engineering textbooks, but it is not
strictly accurate [see (Gray and Davisson, 1986, Ch. 7)].
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If a random process is /th-order stationary, it is also (/'— l)th-order sta-
tionary. Therefore a second-order stationary process is also first order
and has a constant mean,

V£ = £{x(n)} for any n. (1.131)

This leads us to the definition of a weak form of stationarity, which is
often sufficient to allow many useful engineering analyses.

A random process x is said to be wide sense, or weak sense, stationary
(WSS) if

1. Its autocorrelation is a function of time difference only as in
(1.130).

2. Its mean is constant as in (1.131).

We note that

SSS => second-order stationarity => WSS, (1.132)
but neither of the implications reverses except in the special case of joint
Gaussian random variables (see Problem 1.11).

Finally, but very important, note that if x is correlation-ergodic, then
the autocorrelation can be computed using a temporal average

1 A

rx(n) = J{x(n)x(n - r,)} = jim ^ q r j X *(">*(* " i)> (lA33>>
~* n=-N

where x{n) is some realization of x. This is an extension of the idea of
ergodicity discussed above, to a second-order case. Note carefully that
the subscript on r is a signal name x, indicating the use of a signal to
compute a time average, rather than random variables to compute an en-
semble average. We have already introduced this notation, but it is worth
reiterating here so that the reader is clear about its significance.

Since speech processing is an applied discipline, we will frequently use
temporal, rather than ensemble, averages in our developments. Of course,
this is because we have signals, rather than stochastic models, to deal
with. On the other hand, there is often much to be gained by modeling
speech as a stochastic process. Accordingly, when a speech signal is
thought of as a realization of a stochastic process, the underlying process
must be assumed to have the appropriate stationarity and ergodicity
properties to allow the computation of meaningful temporal statistics.23

23A philosophical point is in order here. A moment's thought will reveal that speech, if
thought of as a random process, cannot possibly comprise a stationary random process,
since speech is a very dynamic phenomenon. This is an indication of the need for "short-
term" analytical tools which can be applied to short temporal regions of assumed
stationarity. At this point we begin to use formal theory in some rather ad hoc and ad lib
ways. Of course, it is often the case in engineering problems that we use formal theories in
rather loose ways in practice. However, the ability to understand the implications of our
sloppiness, and the ability to predict and explain success in spite of it, depends entirely on
our understanding of the underlying formal principles. In this book, we will stress the de-
pendency of ad hoc methods on formal principles.
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Multiple Random Processes

We now extend these ideas to the case of two random processes. As a
natural extension of the concept of stationarity we have the following:
Two random processes, x and y, are said to be jointly SSS if

~~/xi(rt, + A), . . . , Xi(fii + A)y\(m\ + A),. . . , yj(mj + A ) l > P " ' * ' S> ^ P " * ' ' Vj)

for any / random variables from x, and any j from j/ , and for any A. It
follows that if JC and y are jointly SSS, then each is individually SSS.

From random variables x(nx) and y(n2), chosen from x and y, respec-
tively, we can form the cross-correlation,

'«(». . »2)"*{*(».)*(«2)}. d-135)

and the cross-covariance,

cxjn{,n2) *£{\x(nl)-£{x(nMlL(»2)-£{z(»2)}]}> d-136)
Similarly to (1.129), we obtain

y^P«2) = y^P«2)-^W«i)K{y(^)}. d.137)

As we did in the individual random process case, it will be useful to
have a weaker form of stationarity between two random processes. The
following conditions are required for x and y to be declared jointly WSS:

1. JC and y are individually WSS;
2. r^{nvn2) is a function of rj = n2-n{ only.

It is easy to show that joint SSS => joint WSS (but not the converse).
Also, simply by definition, we see that joint WSS => individual SSS, but,
again, the converse is not generally true.

As an extension of the concept of ergodicity to the joint random proc-
ess case, we note that the cross-correlation can be computed using a
temporal average over two realizations if the processes are jointly
correlation-ergodic:

1 N

rjt]) = J{x(n)y(n - rjj\ = jirn JJ^—J £ x(n)y(n - rj). (1.138)
n=-N

Such a computation, of course, makes no sense unless the two random
processes are at least jointly WSS.

Power Density Spectrum

Single Random Process. A general discussion of this important topic is
unnecessary for our work with speech and would take us too far afield.
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We refer the reader to the textbooks in Appendix l.B for a general back-
ground. For our purposes, it is sufficient to define the power density spec-
trum of a WSS random process x as the DTFT of its autocorrelation
function,

oo

I>)^ X r^e-*"1. (1.139)
rj=—oo

Accordingly, the autocorrelation can be computed from the power den-
sity spectrum as

rjjl) = 2^ £ W e * * do. (1.140)

If x is also correlation-ergodic and the autocorrelation is computed using
time averaging, then, according to our convention, the subscripts will de-
note realizations. For example,

CO

I » = £ rx{n)e
i0>\ (1.141)

7/=-OO

The total24 power in a second-order stationary real random process is
defined as

Px
d=£{x2(n)} for any n. (1.142)

To make sense of this definition, we recall the definition of the power in
a signal, which according to (1.11) is given by25

Px = J{\x(n)\2}. (1.143)

If x(ri) happens to be a realization of x, and x is second-order ergodic,
then we see that these two computations are equivalent.

As an aside, we recall that realizations of stationary, ergodic, sto-
chastic processes were listed as a class of power signals in Section 1.2.3.
Indeed, we now can appreciate that this is the case. If x(n) is such a real-
ization and is not a power signal, then

Px = Px = {0 or oo} (1.144)

and we encounter a contradiction.
Now that the definition of Px makes sense, we note that

P*- = 1k £ r > ) d t u = i j/M)dco = rx_(0). (1.145)

24The word total is used here to connote that the power in all frequencies is considered.
25The absolute value signs appear here because x(n) was assumed to be complex-valued

in general in definition (1.11). Since we have focused exclusively upon real random pro-
cesses, they are superfluous in this discussion.
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This result follows immediately from definitions and says that the scaled
total area under Tx(a)) yields the total power in x, making it a sort of
density of power on frequency, much like the pdf is a probability density
on its variable of interest. In fact, to find the power in any frequency
range, say col to a>2, for x, we can compute

1 f"2

= — r ,Power in x in frequencies a>] to a>2 = — I Fx(co)da). (1.146)

Finally, we remark that some stochastic processes have all of their
power concentrated at discrete frequencies. For example, a process x
whose random variables are [x(n) = cos(a)0n + 6), n G (-00,00)} with 6 a
random variable, will have all power concentrated at frequency co0. In
this case, the autocorrelation (ensemble or temporal) will be periodic
with the same frequency, and we must resort to the use of impulses in
the PDS much like our work with the PDS for a periodic deterministic
process.

Two Random Processes. Let us focus here on jointly WSS random pro-
cesses, x and y, with cross-correlation rx (//). In this case the cross-power
spectral density is given by

y^) = S rjn)*-*"1- (1-147)
7/=OO

We can compute the cross power between the two processes,

^inljd^^ (U48)

which is interpretable as the power that the two random processes gener-
ate over and above their individual powers due to the fact that they are
correlated.

Noise
Realizations of stochastic processes often occur as unwanted distur-

bances in engineering applications and are referred to as noise. Even
when the stochastic signal is not a disturbance, we often employ the term
noise. Such will be the case in our speech work, for example, when a
noise process appears as the driving function for a model for "unvoiced"
speech sounds. (Consider, e.g., the sound that the letter "s" implies.)

One of the most important forms of noise in engineering analysis is
(discrete-time) white noise, defined as a stationary process, say w, with
the property that its power density spectrum is constant over the Nyquist
range,

rw(co) = In, for co e [-n, n). (1.149)
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Accordingly, the autocorrelation function for white noise is

rM = S(r,). (1.150)

The reader is cautioned to distinguish between continuous-time white
noise and the phenomenon we are discussing here. Continuous white
noise has infinite power and a flat power density spectrum over all fre-
quencies. Just as the discrete-time impulse cannot be considered as sam-
ples of the continuous time impulse, so discrete-time white noise should
not be considered to be samples of continuous time white noise. In fact,
discrete-time white noise may be thought to represent samples of a con-
tinuous time stochastic process, which is bandlimited to the Nyquist
range and which has a flat power density spectrum over that range.

Random Processes and Linear Systems

It will be useful for us to review a few key results concerning the anal-
ysis of LTI discrete time systems with stochastic inputs. Let us restrict
this discussion to WSS, second-order ergodic, stochastic processes.

Consider first an LTI system with discrete-time impulse response h(n).
Suppose that x{ri), a realization of random process x, is input to the sys-
tem. The output, say y(n), is given by the convolution sum,

y(n)= f^x{n-i)h{i). (1.151)
/=—oo

Of course, the same transformation occurs on the input no matter which
realization of x it happens to be. We could denote this fact by replacing
x(n - i) by its corresponding random variable, x(n - /), on the right side
of (1.151). Without a rigorous argument,26 it is believable that the map-
ping of these random variables by the convolution sum will produce an-
other random variable (for a fixed n), y(n), so we write

y(n) = £ X ( H - / ) * ( / ) . (1-152)

As n varies, a second random process is created at the output, y We have
assumed x to be WSS and second-order ergodic. Let us show that the
same is true of y

By applying the expectation operator to both sides of (1.152) and in-
terchanging the order of summation on the right, we have

£{y(")}= f,£{x(n-i)}h(i) O-153)
/'=—oo

or

26This argument centers on concepts of stochastic convergence that are treated in many
standard textbooks (see books in Appendix l.B not labeled "elementary").
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/=—oo

Since this result does not depend on n, we see that y is stationary in the
mean. A similar result obtains with juy and juy replaced by pix and juy if we
begin with (1.151) and use temporal averages, so that y is also ergodic in
the mean.

In a similar way (see Problem 1.14) we can show that the autocorrela-
tion of y is dependent only on the time difference in the arguments and
is given by

oo oo
rpl)= X £ h(i)h(k)r£(t] + k-i), (1.155)

or, in terms of temporal autocorrelations,

r ^ ) = 2 £ h(i)h(k)rx(r, + k-i). (1.156)
/=—oo k=—co

We conclude, therefore, that a WSS correlation-ergodic input to an LTI
system produces a WSS correlation-ergodic output. This is a fundamental
result that will be used implicitly in many places in our work.

Finally, we recall the important relationship between the input and
output power spectral densities in the case of LTI systems with WSS
inputs,

r^HtfM'W (1.157)
This result is derived by taking the DTFT of both sides of (1.155).

1.2.4 Vector-Valued Random Processes

At several places in this book, we will encounter random processes
that are vector-valued. A vector-valued random process x is a collection of
random vectors indexed by time,27

x d ={. . . ,x( - l ) ,x(0) ,x( l ) , . . .} . (1.158)

Realizations of these random processes comprise vector-valued signals of
the form

{.. . ,x(-l) ,x(0),x(l) , . . .}, (1.159)

which we customarily denote simply x(n). (Note: We are now employing
boldface to indicate vector quantities.)

27Again, we will restrict our attention to real processes, but the complex case is a simple
generalization.
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These sequences will arise in two different ways in our work. In the
first case, the elements of each random vector will be random variables
representing scalar signal samples, which for some reason are conven-
iently packaged into vectors. For example, suppose we have a scalar sig-
nal (random process) x = {... ,x(-l), x(0), x ( l ) , . . .} . We might find it
necessary to break the signal into 100-point blocks for coding purposes,
thereby creating a vector random process

x = ,x(0) =

x(0)

x(l)

x(99)

, x(l) =

x(100)"

x(101)

x(199)

, x(2) =

x(200)~

x(201)

x(299)

, . . .

J

(1.160)

Note that the "time" indices of the vector random process represent a re-
indexing of the sample times of the original random process.

A second type of vector random process will result from the extraction
of vector-valued features from frames of speech. We might, for example,
extract 14 features from 160-point frames of speech. These frames may
be overlapping, as shown in Fig. 1.12. In some cases we might choose to
index the resulting random vectors by the end-times of the frames; in
others we might reindex the vector sequence using consecutive integers.
In either case, it is clear that the vector sequence comprises a vector-
valued random process.

For a vector random process, the mean vector takes the place of the
mean in the scalar case, and the autocorrelation matrix plays the role of
the autocorrelation. These are

and
M*o =*(*(«>}

RxK,,2)d^{x(^x>2)},

(1.161)

(1.162)

respectively. Note that the mean vector contains the mean of each of the
component random variables and the correlation matrix contains the
cross-correlations between each component pair in the vectors. We can
also speak of the covariance matrix of the vector random process x, de-
fined as

Cinvn2)^£{[x{nx)-HnJ^n2)-H(j}. (1.163)

When the vector random process is WSS, we have a stationary mean vec-
tor, and correlation and covariance matrices that depend only on time
difference. These are defined, for an arbitrary n, as follows:
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FIGURE 1.12. A vector random process created by extracting vector-valued
features from frames of a speech process at periodic intervals. Note: Here
we index the features by sequential integers. Later we will establish the
convention of indexing features by the time of the leading edge of the
sliding window.

def
h =>*„> = <?{*(«)}

defRM = R*(", n-f]) = €{x{n)^(n - rj)}

(1.164)

(1.165)

CM d= Cs(», n-rj) = £{[x(n) - tiJxT(n -n)- MJ7}. (1.166)

Frequently, we are specifically interested in the "zero lag" correlations
(or covariance) matrix of a stationary vector random process that plays
the role of the variance of the process. For this case, we will write

and

Rx =fRx(0)

C x
d=C(0)

(1.167)

(1 .168)

for simplicity. The reader should carefully compare these notations with
(1.116) and (1.117) and discern the difference in meaning.

Finally, we note that there are temporal versions of these three key sta-
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a
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!
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tistical matrices that are meaningful when appropriate ergodicity condi-
tions hold. These are, for an arbitrary n,

XJiti) d=J{x(n)xT(n-t,)} (1.170)

Csft)
 d= J}[[x(n)-fix][xT(n-ri)-Vix]

T}. (1.171)

We also define

and

Rx= fRx(0) (1.172)

C x = f C(0) . (1.173)

1.3 Topics in Statistical Pattern Recognition

Reading Note: Most of the material in this section will not be used until
Parts IV and V. The exception is Section 1.3.1, which will first be encoun-
tered in Chapter 5.

As in the previous two subsections of this chapter, the material treated
here represents a very small sampling of a vast research discipline, with a
focus on a few topics which will be significant to us in our speech pro-
cessing work. Unlike the other two subsections, however, we make no
assumption here or in the main text that the reader has a formal back-
ground in pattern recognition beyond a casual acquaintence with certain
ideas that are inherent in general engineering study. A few example text-
books from this field are listed in Appendix l.C.

Much of speech processing is concerned with the analysis and recogni-
tion of patterns and draws heavily on results from this field. Although
many speech processing developments can be successfully understood
with a rather superficial knowledge of pattern recognition theory, ad-
vanced research and development are not possible without a rigorous un-
derstanding. A few advanced speech processing topics in this book will
need to be left to the reader's further pursuit, since it is not intended to
assume this advanced pattern recognition background, nor is it possible
to provide it within the scope of the book.

There are two main branches of pattern recognition—statistical and
syntactic. Generally speaking, the former deals with statistical relation-
ships among features in a pattern, while the latter approaches patterns as
structures that can be composed of primitive patterns according to a set
of rules. Although these branches are not exactly distinct, they are quite
different in philosophy. In our work, the use of the latter is confined to
the special problem of language modeling in automatic speech recogni-
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tion.28 We therefore defer any discussion of syntactic pattern recognition
concepts to Chapter 13. Statistical pattern recognition methods, however,
are quite prevalent in many aspects of speech processing, and it will be
expedient for us to introduce a few key concepts before starting our
study of speech.

We reemphasize that we are only discussing a few small topics in a
vast and complex subject. Notably missing from our discussion, for ex-
ample, is an analysis of how one chooses and evaluates in a rigorous
sense the features representing a pattern. Frequently, this is accomplished
in a rather ad hoc manner in speech processing, but the reader should be
aware that a rich theory embracing this issue has been developed. A sec-
ond example pertains to the covergence of clustering algorithms used to
group features into classes. This issue will also be left for further study.

1.3.1 Distance Measures

Given two vectors x and y in a multidimensional space, we will fre-
quently be interested in knowing "how far apart" they are. These vectors
will often correspond to two time points in a realization of a vector-
valued random process, or perhaps vectors drawn from two random pro-
cesses. For the sake of discussion, let us just refer to x and y.

It is sufficient for us to be concerned with vectors drawn from
Cartesian spaces. The N-dimensional real Cartesian space, denoted RN is
the collection of all N-dimensional vectors with real elements. A metric,
d(-, -), on RN is a real-valued function with three properties: For all
x,y,zef,

1. d(x,y)>0.
2. d(x, y) = 0 if and only if x = y.
3. </(x,y)<</(x,z) + rf(z,y).

These properties coincide well with our intuitive notions about a proper
measure of distance. Indeed, a metric is often used as a distance measure
in mathematics and in engineering.29

Any function that meets the properties in the definition above is a le-
gitimate metric on the vector space. Accordingly, there are many metrics,
each having its own advantages and disadvantages. Most of the true met-
rics that we use in speech processing are particular cases of the
Minkowski metric, or close relatives. This metric is defined as follows:
Let xk denote the kth component of the N-vector x. Then the Minkowski
metric of order s, or the / metric, between vectors x and y is

28In fact, syntactic pattern recognition has its roots in the theory of formal languages
that was motivated by the study of natural languages (see Chapter 13).

29We will, however, encounter some distance measures later in the book that are not true
metrics.
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^y)^Xk-yJ ( ' (i.i74)
\ k=i

Particular cases are

1. The l{ or city block metric,

4(*,y)=£k-yJ- < U 7 5 >
A:—1

2. The L or Euclidean metric,

di(^y) = J £ \xk-yk\
2=y/[x-yY[x-y]- (1.176)

3. The /^ or Chebyshev metric (corresponds to the Minkowski metric
as s—>oo),

djx,y) = max\xk-yk\. (1.177)

We should note that the ls norm of a vector x, denoted \\x\\s9 is defined
as

(1.178)

It follows immediately that the ls metric between the vectors x and y is
equivalent to the ls norm of the difference vector x - y,

ds(x,y) = \\x-y\\s. (1.179)

An important generalization of the Euclidean metric is called variously
the weighted Euclidean, weighted /2, or quadratic metric,30

d2w(x,y)=f\/[x-y}TW[x-y] . (1.180)

where W is a positive definite matrix that can be used for several pur-
poses discussed below.

Before proceeding, we should be careful to point out that, in theoreti-
cal discussions, we might wish to discuss the distance between two sto-
chastic vectors, say x and y. In this case we might write, for example,
something like

30The quadratic metric is often defined without the square root, but we employ the
square root to make the distance more parallel to the Euclidean metric.

Hxll def / Y I Is



58 Ch. 1 / Propaedeutic

<U*z)= V[*-yfw[*-y] • (1.181)

The left side must be interpreted as a random variable that only takes a
value when outcomes for x and y are known. The existence of this "ran-
dom distance" depends upon concepts in stochastic calculus that will not
concern us here (see textbooks in Appendix l.B not labeled "elemen-
tary"). For our purposes, we just consider this notation to be a formal
way of packaging together all possible outcomes of the distance that de-
pend upon the random values of x and y.

1.3.2 The Euclidean Metric and "Prewhitening" of Features

In this section we briefly make some points about the use of the Eu-
clidean distance in engineering, which can have important consequences
for performance of resulting algorithms and systems. The concepts dis-
cussed here have broader implications for abstract Hilbert spaces, but we
will confine the remarks to simple vector spaces. The reader interested in
a more formal and comprehensive treatment of these ideas should con-
sult textbooks on linear algebra and functional analysis such as (Hoffman
and Kunze, 1961, Ch. 2; Nobel, 1969, Ch. 14; Naylor and Sell, 1971;
Lusternik and Sobolev, 1974).

Of the formal metrics in RN, the Euclidean metric is probably the
most widely used in engineering problems. The reason for its popularity
is that it fits precisely with our physical notion of distance. When the
representation of a vector is based upon an orthonormal basis set, then
the Euclidean distance between two vectors in the space conforms exactly
to the "natural" distance between them. However, when vector represen-
tations are based upon a basis set that is not orthonormal (even if the set
is orthogonal), then the Euclidean distance will yield "unnatural" results
unless a linear operation is applied which transforms the vector represen-
tations to ones based on orthonormal vectors.

These ideas are illustrated in 2-space in Fig. 1.13. The representations
of the vectors a and b with respect to the "natural" basis set p, and P2 are

'V —- and y = (1.182)

respectively. By this we mean, for example, that

x = (1.183)

where

a = *iPi+*2P2 (1.184)

1

2

1

1
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FIGURE 1.13. Vectors used to illustrate concepts of the Euclidean distance
metric.

With this construction, everyone would agree that the distance between
the vectors a and b is appropriately given by the Euclidean metric be-
tween the representations,

</2(x,y)=l. (1.185)

Consistent with our discussion above, it is also true that the distance is
given by the /2, or Euclidean, norm of the difference vector,

l l x - y | | 2 = l . (1.186)

Suppose, however, that the given basis vectors were p', and $'2. In this
case, the representations of a and b are

x =
-1

1
and y' = (1.187)

respectively. In spite of the fact that a and b have not moved, the Euclid-
ean distance between these representations is

</2(x',y')=Vi. (1.188)

We note that the distance would be "incorrect" even if the new basis vec-
tors were orthogonal but not normalized.

^

i-
1

_ 3~
2
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What is "wrong" in the second case is the basis upon which the repre-
sentations are assigned coordinates. The two "coordinates" with the sec-
ond assignment of basis vectors are not distinct information. Moving in
the direction of $\ also includes motion in the direction of p2, and con-
versely. Only when these bases are made to correspond to distinct (ortho-
normal) pieces of information does our sense of distance come back into
focus and the Euclidean distance become meaningful. Algebraically, if the
basis vectors were made to correspond to a proper orthonormal set, then
the Euclidean distance would be appropriate. This would require that we
transform the vector representations x' and y' to their representations on
a "proper" set of basis vectors before computing the Euclidean distance.
In this case, let us just choose to go back to the orthonormal basis set pt

and P2, in which case we know that x' and y' are transformed back to the
original x and y. Let us call the transformation V. We have, then,

x = Vx' and y = Vy'. (1.189)

In this contrived example, V can be found from (1.189) using simple al-
gebra, because we happen to know what the transformed vectors are. In
general, however, finding the transformed representation of a vector cor-
responding to a change of basis is a simple generalization of the follow-
ing [see, e.g., (Chen, 1984, p. 17)]. We take the two columns of V to be:
the representation of p', with respect to basis set {pp P2}, and the repre-
sentation of p2 with respect to {pp p2), respectively.

Now consider computing the Euclidean distance of the transformed
vectors to obtain a meaningful measure of their distance apart,

tff2(Vx',Vy') = yJ\Vx'-\y']T[yx'-Yy']

= ^[x'-y']TYTY[x'-y'] (1.190)

= d2w(x\y').

The last line in (1.190) denotes the weighted Euclidean distance with
weighting matrix W = VrV. We see that the "meaningful" Euclidean dis-
tance for the vectors whose bases are not conducive to proper distance
computation can be obtained by using a weighting matrix equivalent to
the "square" of the transformation matrix.

It is sometimes desirable that a linear transformation of coordinates not
change the rank ordering of distances from some reference vector. If in the
above, for example, there were some vector z such that

</2(x',z') <rf2(y',z'), (1.191)
then it might be desirable that

</2(x,z) <</2(y,z). (1.192)
Whereas we would want the transformation to make the distance more mean-
ingful, we might not wish to have the rank ordering changed in the new fea-
ture space. In general, the (weighted) Euclidean distance does not preserve
this ordering.
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In effect, what we have done in the above example is removed the re-
dundant information in the "bad" vector representations that skews our
sense of how naturally far apart they are. This is accomplished by linear
transformation of the space, or, equivalently, weighting of the distance
metric. This example was meant to build intuition about a more realistic
and important problem in pattern recognition. We often encounter (ran-
dom) vectors of features whose elements are highly correlated, or inap-
propriately scaled. The correlation and scaling effects will occur, for
example, when multiple measurements are made on the same process
and mixed in the same feature vector. For example, we might measure
the average number of zero crossings31 per norm-sec in a speech frame,
and also the average energy. Clearly, there is no reason to believe that
these numbers will have similar magnitudes in a given frame, since they
represent quite different measurements on the sequence. Suppose, for ex-
ample, that in one frame we measure 240 "joules," and 0.1 zero crossing,
per norm-sec. In the next, we measure 300 and 0.05. Are these vector
representations based on an appropriate orthonormal basis set so that
Euclidean distances are meaningful? This answer could be argued either
way, but the question is really academic. Our satisfaction with the dis-
tance measure here will depend upon how faithfully it reflects the differ-
ence in the frames in light of the measurements. So let us explore the
question: Do these two frames represent the same sound? If so, we would
like the distance to be small.

In answering this question, we should notice two things about the
measurements. First, there could be less information in these measure-
ments than we might assume. It could be the case that zero crossings
tend to decrease when energy increases (correlation) so that the combina-
tion of changes does not make the two frames as different as the out-
come might suggest. This point is reminiscent of the nonorthonormal
basis case above. Second, note that the zero crossing measure is so rela-
tively small in amplitude that its effect on the distance is negligible. In
order for this feature to have more "discriminatory power" (which does
not potentially get lost in numerical roundoff errors32), the relative scale
of the features must be adjusted. (This corresponds to basis vectors of
grossly different lengths, orthogonal or not.) An approach to solving this
scaling problem is to simply normalize the feature magnitudes so that
each has unity variance. Presumably, smaller features will have smaller
variances (and conversely) and this will tend to bring the measurements
into an appropriate relative scale. The "decorrelation" process is also not
difficult; in fact, the scaling can be accomplished simultaneously using
the following.

3"The average number of times the sequence changes sign. This gives a rough measure of
frequency content.

32Also as a practical matter, the measurement on a "low amplitude" feature is poten-
tially much more susceptible to roundoff error problems in numerical computations, and
the presence of grossly misscaled features can cause other numerical problems such as an
ill-conditioned covariance matrix (Nobel, 1969, Sec. 8.2).
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Suppose that the feature vectors between which we are trying to com-
pute a distance are x' and y'. Each is an outcome of random vector x'
with mean \ix, and covariance matrix Cx,. We would like to transform the
original random variable x' to a representation, say x, in which all com-
ponents are uncorrelated and are individually of unity variance. This
means that the new covariance matrix Cx should equal I, where I is the
identity matrix. According to the heuristic arguments above, Euclidean
distance computed on these vectors will then be intuitively appealing. As
in the simple vector example above, we will show that the proper Euclid-
ean distance can be computed using an appropriate weighting matrix in
the computation.

The requisite transformation on the feature vectors is easily discov-
ered by focusing on the covariance matrix. Since Cx, is a symmetric ma-
trix, it can be written [see, e.g., (Nobel, 1969, ChT 10)]

CX=<1>A<PT, (1.193)

where O is an orthogonal matrix whose columns are the normalized
eigenvectors of Cx,, and A is a diagonal matrix of eigenvalues of Cx,.
Therefore,

<DA<fcr = £ {[x' - | i j [ X ' - j i j 7 ] , (1.194)

from which it follows that

I = ^{A"I /2*r[x'-M^][x'-|v]W l /2}. (1.195)

Clearly, therefore, if we transform the feature vectors using the
transformation

x = A" 1 / 2 *V, (1.196)

we will be dealing with uncorrelated random vectors for which the Eu-
clidean metric will provide a proper measure of distance. In this case,

^2(A"1 / 20)V,A"1 / 2OV)= yj[* - y/]r4>A~1/2A~1/20>r[x/ - y']

= V[*;-y'}T<s>A-l<i>T[x'-r}

= V[x-yfq/[x-y1 ( M 9 ? )

We see again that a meaningful Euclidean distance between correlated
feature vectors can be computed if an appropriate weight is used. It is
worth noting that the weighted Euclidean distance which has arisen here
is very similar to the Mahalanobis distance that we discuss below.
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The linear operation applied to the feature vectors in this procedure is
frequently referred to as a prewhitening transformation, since it produces
feature vectors whose components are uncorrelated and normalized. This
terminology is somewhat abusive because the "white" concept applies to
(usually scalar) random processes that are not being considered here, and
also because "white" features would have zero means. This latter point
would require, for a better analogy, that Rx, rather than Cx be I. Never-
theless, the terminology is widely used and is well understood by signal
processing engineers.

Simplifications of the prewhitening procedure are sometimes em-
ployed to avoid the computational expense of using the full covariance
matrix in the distance expression. The most common simplification is to
assume that the features are mutually uncorrelated, but inappropriately
scaled relative to one another. In this case Cx, (it is assumed) has the
form

C5, = A, (1.198)

where A is a diagonal matrix whose diagonal elements in general are un-
equal. The transformation that need be done on each incoming vector is
represented by A~1/2x. This amounts to simply normalizing each feature
to its standard deviation so that all features may contribute equally to
the distance.

1.3.3 Maximum Likelihood Classification

We frequently encounter problems in engineering in which a pattern
representation is to be associated with one of a number of classes of pat-
terns. This paradigm will occur in several significant places in our work.
The purpose of this section is to explore a few underlying concepts with
a particular interest in studying the distance measures that are often used
in this endeavor.

Suppose that we have a set of classes, indexed by integers, say c = 1,
2 , . . . , K, which are outcomes of the class random variable, c. Suppose
that we also have a feature vector modeled by the random vector x. For
example, the classes might represent the words in a vocabulary, and the
feature vector a list of acoustic features extracted from the utterance of a
word to be recognized. Ideally, given a feature vector outcome x = x, we
would select the class for which the conditional probability is highest.
That is, c* is the selected class (word) if

c* = argmaxP(<c = c |x = x). (1.199)

Unfortunately, the training process usually does not permit characteriza-
tion of the probabilities P(c = c\x = x). Instead what we learn is the prob-
ability that a given class will generate certain feature vectors, rather than
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the converse. The training process yields conditional probabilities of the
form P(x = x\c = c). So we ask whether it makes sense to select

c* = argmaxP(x = x\c = c). (1.200)

By definition

P ( C = . | X = X) = JP (- = C ' - = X ) (1.201)
P(x = x)

and

p(x=x|c=c)=f(y;;yx), d.202)

from which we have

Clearly, the choice of c that maximizes the right side will also be the
choice of c that maximizes the left side. Therefore,

<;* = a rgmax P(c = c\x = x ) = a rgmax P(x = x\c = c)P(c = c).
C C (1.204)

Furthermore, // the class probabilities are equal,

P(c = c) = ±, c=U 2,...9K, (1.205)

then

c* = a rgmax P{c = c\x = x ) = a rgmax P(x = x\c = c). (1.206)

Therefore, under the condition of equal a priori class probabilities, the
class decision

c* = argmax P(x = x\c = c) (1.207)

is equivalent to the more desirable (1.199) for which we do not have
probability distributions.

A quantity related to the probability of an event which is used to
make a decision about the occurrence of that event is often called a like-
lihood measure. Hence, our decision rule based on given feature vector
x is to choose the class c that maximizes the likelihood P(x = x\c = c).
This is called the maximum likelihood decision.

There is an implicit assumption in the discussion above that the ran-
dom feature vector may only assume one of a finite number of outcomes.
This is evident in the writing of probability distribution P(x = x\c = c).
Where this is not the case, it is frequently assumed that feature vectors
associated with a given class are well modeled by a multivariate Gauss-
ian distribution [cf. (1.118)],
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/x|£(^p--->^k)=/xi£(xk)
(1.208)

V(27r)/vdetCx\c

exp j-^x-^fC^x-^)!,

where x denotes the N-vector of arguments (features) [xx — - xN]T and Cx|c

and fix|c are the class-conditional covariance matrix and mean vector.
Without belaboring the issue, it is believable based on our previous dis-
cussion that an appropriate likelihood measure for this case is the class-
conditional density fx^c(x|c). The class decision is based on maximizing
the likelihood,

c* = argmax/x|c(x|c). (1.209)

We can rid ourselves of the need to compute the exponential by electing
instead to maximize In ^.c(x|c). This leads to the decision rule

^=aigmin{[x-ni|/C-(t[x-|4,c] + ln{detQ|c}. (1.210)

Note that the maximization has become a minimization because we have
removed a superfluous minus sign from the computation. Notice also
that the first term on the right has the form of a weighted Euclidean dis-
tance. Let us further develop this point.

The term on the right side of (1.210) is sometimes considered a dis-
tance between the given feature vector and the cth class mean, ji . .
Accordingly, it provides a measure of "how far x is from class c." For
generality, let us replace the specific outcome of the feature vector,
x, with its random variable, x, and define the maximum likelihood dis-
tance as

^ / ( ^ ^ | c ) = ̂ - ^ | c r C - ; j x - ^ k ] + ln{detC,|c). (1.211)

We see that for a multiclass, multivariate Gaussian feature problem,
choosing the class that minimizes this distance is equivalent to choosing
the maximum likelihood class.

A simplification occurs when all classes share a common covariance
matrix, say

^x ^ Cx | j = Cx ( 2 = • • • = C^K. (1.212)

In this case Cx(c can be replaced by Cx in (1.211) and the final In {•} can
be ignored, since it simply adds a constant to all distances. In this case,
we obtain

^(x.ft5 |c) = [ * - ^ , c f c ; l [ x - | 4 | c ] . (1-213)

This distance is frequently called the Mahalanobis distance (Mahala-
nobis, 1936). We see that for a multiclass, multivariate Gaussian feature
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problem in which the classes share a common covariance matrix (the way
in which features are correlated is similar across classes), choosing the
class to which the given feature vector is closest in the sense of the
Mahalanobis distance is tantamount to choosing the maximum likeli-
hood class.

Interestingly, we have come full circle in our discussion, for it is ap-
parent that the Mahalanobis distance is nothing more than a "covariance
weighted" (squared) Euclidean distance33 between the feature vector and
a special set of deterministic vectors—the means of the classes. Never-
theless, the name Mahalanobis distance is often applied to this distance
in this special maximum likelihood problem. Based on our previous dis-
cussion, it should be apparent that the Mahalanobis distance represents
an appropriate use of the l2 metric, since the inverse covariance weight-
ing removes the correlation among the features in the vectors.

1.3.4 Feature Selection and Probabilistic Separability Measures

In the preceding section, we discussed a general problem in which a
feature vector was associated with one of a number of classes. A subject
that we avoided was the selection of features (this process is often called
feature extraction) and their evaluation in terms of classification per-
formance. These tasks are inseparable, since performance evaluation is
often integrated into the search for appropriate features. In this section
we make a few brief comments about these issues. One of the objectives
is to let the reader know what material is not being covered with regard
to this topic, and why. Another is to touch on the subject of probability
separability measures and entropy measures, and to explain their specific
relationship to speech processing.

Feature selection and evaluation is a vast subject on which much re-
search has been performed and many papers and books written. To at-
tempt to address this subject in any detail would take us too far afield
from the main subject of this book. Several excellent textbooks address
this field authoritatively and in detail, and we refer the reader to these
books and the research literature for detailed study.34 Second, the impor-
tance of feature evaluation procedures is diminished relative to the early
days of speech processing. Although statistical pattern recognition tech-
niques are central to the operation and performance of many speech
processing tasks (particularly speech recognition), decades of research
and development have led to convergence on a few (spectrally based) fea-

33Again, we could introduce a square root into the definition to make this distance ex-
actly a Euclidean metric as defined in (1.180), but that would be breaking with convention.
The Mahalanobis distance is almost invariably defined without the square root, and it
should be clear that for the maximum likelihood problem, whether the distance is squared
or not is of no consequence.

34For example, see the textbooks in Appendix l.C and the IEEE Transactions on Pattern
Analysis and Machine Intelligence.
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tures that perform well, and appear to be enduring. This is not to say
that new features have not been tried, and that the field is not evolving.
Indeed, we have seen, for example, "cepstral" type of features supplant
the "LP" type parameters in certain speech recognition tasks during the
1980s. This shift, however, was between two closely related sets of fea-
tures and was to some extent motivated by computational expediencies.
Further, the most frequently cited study behind this shift relies on experi-
mental evidence of improved recognition performance (Davis and
Mermelstein, 1980). Although the course of research is very unpredicta-
ble, for the foreseeable future, there appears to be no compelling prob-
lems that will demand a deep analysis of features.

As if to contradict the statement above, lurking in one little corner of
our study (Section 12.2.7) we will mention some directions in speech rec-
ognition research that are based on the notions of probabilistic separ-
ability and entropy measures. These measures are customarily encoun-
tered in the advanced study of feature extraction and evaluation. We
conclude this section by broadly discussing the types of feature evalua-
tion, putting the topic of probabilistic separability measures and entropy
measures into perspective.

Probabilistic Distance Measures

Ideally, features would be evaluated on their performance in terms of
minimizing the rate of classification error. However, error rate is gener-
ally a very difficult quantity to evaluate, and other techniques must be
employed. Almost all commonly used techniques for feature evaluation
involve some attempt to measure the separation of classes when repre-
sented by the features.

The simplest techniques for measuring class separation (or interclass
distance) are based on distance metrics in multidimensional space, espe-
cially the Euclidean distance and its variants, which we discussed exten-
sively above. These measures generally do not utilize much of the
probabilistic structure of the classes and therefore do not faithfully repre-
sent the degree of overlap of the classes in a statistical sense. The proba-
bilistic separability measures represent an attempt to capture that
information in the evaluation. There are two related types of probabilis-
tic separability measures, the "probabilistic distances" and the "probabi-
listic dependencies."

To illustrate what is meant by a "probabilistic distance," consider the
two-class problem for which class-conditional pdf's are shown for two
different features, x and y, in Fig. 1.14. Let us assume that the a priori
class probabilities are equal, P(c = 1) = P(c = 2). In the first case features
(scalars, so we can draw a picture in two dimensions) characterized by
random variable x are employed, and fxlc(x\\) and f^c(x\l) are well
separated with respect to the feature values. The classes appear to be al-
most fully separable based on these densities. On the other hand, when
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FIGURE 1.14. Class-conditional pdf's for two feature models, x and y, used
to introduce the concept of probabilistic distance.

features y are used, the separation is extremely poor. In this case^ | c(y| 1)
and^ | c (y |2) are identical and the classes would be completely insepara-
ble based on this feature. That is, this feature would provide no better
performance than simply guessing, or random assignment, of the class
identity.

Probabilistic distance measures attempt to capture the degree of over-
lap of the class pdf's as a measure of their distance apart. In general,
these measures take the form

J== \ j{f*{c(Ac\P{c = c\c=\a,-.-,K\dx, (1.214)

where g( •) is some function, and /_^ (*) dx indicates the integral over
the entire iV-dimensional hyperplane with TV the dimension of the feature
vector x. Probabilistic distance measures have the following properties
(Devijver and Kittler, 1982):

1. J is nonnegative, / > : 0 .
2. J attains a maximum when all classes in the feature space are dis-

joint, / is maximum if fxl£(\\c) = 0 when fxic(x\c') =£ 0 for all
c*c'.

3. J=0 when/s |£(x|l)=/5|£(x|2)=---=/s |£(x|^).

Two examples of probabilistic distance measures for a two-class problem
are the Bhattacharyya distance,

Too
JB= ~ln L V/5i^l1)/S|/x|2)^,

(1.215)

fyjy")=fylpw



1.3 / Topics in Statistical Pattern Recognition 69

and the divergence,

^ = l j - 4 i / x l 1 ) - - 4 i c ( x l 2 ) ] l n | 7 ^ ^ ' <L216)
both of which reduce to a Mahalanobis-like distance in the case of
Gaussian feature vectors and equal class covariances (see Problem 1.19).

Probabilistic Dependence Measures

Another method for indirectly assessing class pdf overlap is provided
by the probabilistic dependence measures. These measures indicate how
strongly the feature outcomes depend upon their class association. In the
extreme case in which the features are independent of the class affilia-
tion, the class conditional pdf's are identical to the "mixture" pdf (pdf of
the entire universe of feature vectors),

f*\Mc)=fM)> for all c. (1.217)

Conversely, when the features depend very strongly on their class asso-
ciation, we expect fxic(x\c) to be quite different from the mixture pdf.
Therefore, a good indicator of the effectiveness of a set of features at
separating the classes is given by the probabilistic dependence measures
which quantify the difference between the class conditional pdf's and the
mixture pdf. These measures adhere to the same properties noted above
for the probabilistic distance measures and are generally of the form

J= j j{f^x\c)JJ,x),P{c = c),c=\,2,...,K}dx, (1.218)

and they adhere to the same properties as those listed above for probabi-
listic distance measures.

An example of a probabilistic dependence measure that we will en-
counter in the study of hidden Markov models (Chapter 12) is the aver-
age mutual information,

K foo Tc» f (x\r\

M(c,a)=lP(c = c) ••• / x | c X x | C ) l o g / j ^ J _ U

(1.219)

where the integral is taken over the multidimensional feature space. We
note that if x takes only a finite number of values, say {xp . . . , xL}, then
(1.219) becomes
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(1.220)

This measure, which can be seen to be an indicator of the average devia-
tion of fx\c(x\c) from fx(x) [or P(x|c) from P(x)] will be given another
interpretation when we discuss entropy concepts in Section 1.5.

Entropy Measures

Entropy measures are based on information-theoretic concepts that
quantify the amount of uncertainty associated with the outcome of an
experiment. In the pattern recognition context, these measures relate how
much uncertainty remains about the class membership once a feature
measurement is made. This knowledge quantifies the effectiveness of a
set of features at conveying information that assists classification. Al-
though we will have no direct use for entropy measures in this book, we
will have several occasions to use the concepts of information and en-
tropy. We will therefore address these issues in the next section, and, for
completeness, include some comments on entropy measures in pattern
recognition at the end of that section.

1.3.5 Clustering Algorithms

The previous discussions were based on the assumption that labeled
(according to class) training features were available from which to infer
the underlying probability structure of the classes. In some problems,
however, information about the class membership of the training vectors
is not provided. It is possible that we might not even know the number
of classes represented by the training features. The problem of automati-
cally separating training data into groups representing classes is often
solved by a clustering algorithm.

The process of clustering is part of a more general group of techniques
commonly referred to as unsupervised learning. As the name would
imply, unsupervised learning techniques are concerned with the problem
of forming classes from training data without benefit of supervision re-
garding class membership. Within this group of techniques, clustering
algorithms represent a rather ad hoc approach to learning classes, which
do not attempt to employ deep analysis of the statistical structure of
the data. The more formal unsupervised learning methods are called
mode separation techniques (Devijver and Kittler, 1982, Ch. 10), and we
shall not have any use for these methods in our study of speech. Rather,
clustering methods are based on the heuristic argument that vectors rep-
resenting the same class should be "close" to one another in the feature
space and "far" from vectors representing other classes. Accordingly, one
of the distance metrics discussed above is usually employed in the
analysis.
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There are two basic classes of clustering algorithms. In dynamic clus-
tering, a fixed number of clusters (classes) is used. At each iteration, fea-
ture vectors are reassigned according to certain rules until a stable
partitioning of the vectors is achieved. We give an important example
below. In hierarchical clustering, each feature vector is initially a separate
cluster, then at each step of the algorithm, the two most similar clusters
(according to some similarity criteria) are merged until the desired num-
ber of clusters is achieved.

There are a variety of clustering algorithms, but we focus on only one
example of an iterative approach which is widely used in speech process-
ing for a number of tasks. This is usually called the K-means algorithm,
but the "K" simply refers to the number of desired classes and can be re-
placed by any desired index. The operation of the AT-means algorithm is
straightforward. Feature vectors are continuously reassigned to clusters,
and the cluster centroids updated, until no further reassignment is neces-
sary. The algorithm is given in Fig. 1.15.

The version of AT-means given here is sometimes called the isodata al-
gorithm. It is different from the original Af-means algorithm in that it re-
assigns the entire set of training vectors before updating the cluster
centroids. If means are recomputed after each vector is considered, then
the algorithm terminates only after a complete scan of the training set is
made without reassignment.

FIGURE 1.15. The /C-means algorithm.

Initialization: Choose an arbitrary partition of the training vectors {x} into K
clusters, denoted Â ., k= 1, 2 , . . . , K, and compute the mean vector (centroid) of
each cluster, \k, k = 1,2,. . . , K.

Recursion:

1. For each feature vector, x, in the training set, assign x to A,,.,, where

£* = argmin d(x,xk). (1.221)
k

d( •, •) represents some distance measure in the feature space.
2. Recompute the cluster centroids, and return to Step 1 if any of the cen-

troids change from the last iteration.

A brief history and more details of the K-means approach from an in-
formation theory perspective is given in the paper by Makhoul et al.
(1985). In an unpublished 1957 paper [more recently published, see
(Lloyd, 1982)], Lloyd, independently of the pattern recognition research
efforts, had essentially worked out the isodata algorithm for scalar quan-
tization in pulse code modulation. The generalization of the J^-means al-
gorithm to "vector quantization," a technique which we will first
encounter in Chapter 7, is sometimes called the generalized Lloyd algo-
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rithm (Gray, 1984). A further generalization involves the fact that the
A -̂means approach can also be applied to representations of the clusters
other than centroids, and to measures of similarities other than distance
metrics (Devijver and Kittler, 1982). A measure of similarity which does
not necessarily adhere to the formal properties of a distance metric is
often called a distortion measure. Linde et al. (1980) were the first in the
communications literature to suggest the use of vector quantization with
A -̂means and nonmetric distortion measures. Consequently, the A -̂means
algorithm (particularly with these generalizations) is frequently called the
Linde-Buzo-Gray or LBG algorithm in the speech processing and other
communications literature.

Generally, the objective of the LBG algorithm is to find a set of, say,
K feature vectors {codes) into which all feature vectors in the training set
can be "quantized" with minimum distortion. This is like adjusting the
levels of a scalar quantizer to minimize the amount of distortion in-
curred when a signal is quantized. This set of code vectors comprises a
codebook for the feature space. The method is generally described in Fig.
1.16. A slight variation on the LBG method is also shown in Fig. 1.16,
which differs in the way in which the algorithm is initialized. In the lat-
ter case, the number of clusters is iteratively built up to a desired num-
ber (power of two) by "splitting" the existing codes at each step and
using these split codes to seed the next iteration.

FIGURE 1.16- The generalized Lloyd or Linde-Buzo-Gray (LBG) algorithm.

Initialization: Choose an arbitrary set of K code vectors, say x ,̂ k = 1,2,..., K.

Recursion:

1. For each feature vector, x, in the training set, "quantize" x into code x̂ *,
where

£* = argmin d(x,xk). (1.222)
k

Here d( •, •) represents some distortion measure in the feature space.
2. Compute the total distortion that has occurred as a result of this

quantization,

Z) = Xd[x,Q(x)], (1.223)

where the sum is taken over all vectors x in the training set, and Q(x) indi-
cates the code to which x is assigned in the current iteration. (This is an es-
timate of £{d[x,Q(x)]\.) If D is sufficiently small, STOP.

3. For each /c, compute the centroid of all vectors x such that xA, = Q(x) during
the present iteration. Let this new set of centroids comprise the new
codebook, and return to Step 1.
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Alternative LBG algorithm with "centroid splitting."

Initialization: Find the centroid of the entire population of vectors. Let this be
the (only) initial code vector.

Recursion. There are / total iterations where 27 code vectors are desired. Let the
iterations be / = 1,2, . . . , / . For iteration /,

1. "Split" any existing code vector, say x, into two codes, say x(l +e) and
x(l - e ) , where £ is a small number, typically 0.01. This results in 2' new
code vectors, say xĵ  k = 1,2,. . . , 2'.

2. For each feature vector, x, in the training set, "quantize" x into code xj^,
where A:* = argmin d(x,x!k). Here d{ •, •) represents some distortion mea-

sure in the feature space.
3. For each k, compute the centroid of all vectors x such that x'k = Q(x) during

the present iteration. Let this new set of centroids comprise the new code-
book, and, if i<I, return to Step 1.

1.4 Information and Entropy

Reading Note: The material in this section will not be needed until Parts IV
and V of the text.

The issues discussed here are a few necessary concepts from the field of
information theory. The reader interested in this field should consult one
of many widely used books on this subject (see Appendix l.D).

Note that our need for this material in this text will usually occur in
cases in which all random vectors (or variables) take discrete values. We
will therefore focus on such cases. Similar definitions and developments
exist for continuous random vectors [e.g., (Papoulis, 1984)].

1.4.1 Definitions

At a rudimentary level, the field of information theory is concerned
with the amount of uncertainty associated with the outcome of an exper-
iment. Once the experiment is performed and the outcome is known, the
uncertainty is dispelled. The amount of information we receive when the
outcome is known depends upon how much uncertainty there was about
its occurrence.

In the pattern recognition problem above, for example, learning which
of the K classes (e.g., words) represents the correct answer is informative.
How uncertain we were before the answer was revealed (and therefore
how much information we receive) depends on the probability distribu-
tion of the classes. For example, consider the extreme cases,

P{c = c) = j?, for all c (1.224)

and
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(1.225)

In the first case in which the class probabilities are uniformly distrib-
uted, we have complete uncertainty about the association of a given fea-
ture vector, and gain the maximum information possible (on the average)
when its true association is revealed. On the other hand, in the second
case we have no doubt that true class is c\ and no information is im-
parted with the revelation of the class identity. In either case, the infor-
mation we receive is in indirect proportion to the probability of the
class.35

The same intuitive arguments apply, of course, to the outcomes of any
random variable—the quantity c need not model class outcomes in a
pattern recognition problem. Let us therefore begin to view c as a general
discrete random variable. In fact, for even broader generality, let us begin
to work with a random vector, c, recognizing, of course, that the scalar
random variable is a special case. According to the notion that informa-
tion is inversely proportional to outcome likelihood, Shannon (1948) pro-
posed the following formalism. We define the information associated
with a particular outcome, c, of a discrete random vector, c, to be

/(c = c) d=5flog2 p ^ y = -log2P(c = c). (1.226)

The information is a measure of uncertainty associated with outcome
c-the less likely is the value c, the more information we receive. Al-
though information may be defined using any logarithmic base, usually
base two is used, in which case / ( • ) is measured in bits. The sense of
this term is as follows: If there are K equally likely outcomes, say
c p . . . , cK, and each is assigned an integer 1, 2 , . . ., K, then it requires a
binary number with log2 K bits to identify the index of a particular out-
come. In this case, we receive exactly that number of bits of information
when it is revealed that the true outcome is c,

/(c = c) = -log2 p( c = c) = log2A:. (1.227)

/(c = c) can therefore be interpreted as the number of binary digits re-
quired to identify the outcome c if it is one of 2/(£=c) equally likely
possibilities.

In general, of course, information is a random quantity that depends
on the outcome of the random variable. We denote this by writing sim-
ply /(c). The entropy is a measure of expected information across all out-
comes of the random vector,

35According to Papoulis (1981), Planck was the first to describe the explicit relationship
between probability and information in 1906.

r i, c=cf

P(c = c)=\
I 0, c # c'.



1.4 / Information and Entropy 75

H(c)=t£{I{c)} = -fjP{c = cl)log2P{c = cl). (1.228)
/ = 1

Now consider N random vectors, say x ( l ) , . . . ,x(N), each of which
produces outcomes from the same finite set,36 {xp . . . ,xL}. By a natural
generalization of the above, the information associated with the revela-
tion that x(l) = x ^ , . . . ,x(N) = xk is defined as

7[x(l)= xki,. .. ,x(N) = x j d^f-log2P[x(l) = xki,... ,x(N) = x j ,

(1.229)
and the entropy associated with these random variables is

H[x(l),... ,x(N)] d= <C{/[x(l),... ,x(N))}

= " I ••• i / > f e 1 ) = x/,,...,x(AO = xJ

Xlog2Jp[x(l) = X/ ,x(N) = x,].
(1.230)

7[x(l) , . . . ,x(N)] and H[x(l),... ,x(N)] are called the joint information
and joint entropy, respectively. If random vectors x ( l ) , . . . ,x(N) are inde-
pendent, then

/[ x( l ) , . . . , x(N)]=fjl[x(n)] (1.231)

and

H[x(l% ... 9x(N)] = X H[x(n)]. (1.232)

In particular, if x ( l ) , . . . ,x(iV) are independent and identically distributed,
then

Z/[x(l) , . . . ,x(A0] = Atf/[x(?2)] for arbitrary n. (1.233)

Intuitively, the information received when we learn the outcome, say
x ,̂ of a random vector, x, will be less if we already know the outcome,
say y7, of a correlated random vector, y. Accordingly, we define the condi-
tional information and conditional entropy, respectively, as

I(* = xk\i= y ) = - l o g 2
 p{* = x * |y = y) (1.234)

36This definition is easily generalized to the case in which all random vectors have dif-
ferent sets of outcomes, but we will not have need of this more general case.
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and

H(x\l) = £x,{l(*\l)}^ v - ' - / J (1.235)
K L

k=\ 1 =

where £x denotes the expectation with respect to both random vec-
tors x and y and where we have assumed that y takes discrete values

Finally, we need to introduce the notion of "mutual information." The
pairing of random vector outcomes intuitively produces less information
than the sum of the individual outcomes if the random vectors are not in-
dependent. Upon arriving at the airport, we receive less information
when the ticket agent tells us that (1) we missed the plane, and (2) the
plane left 15 minutes ago, than either of those pieces of information
would provide individually. This is because the two pieces of information
are related and contain information about each other. Formally, this
means that

'(x^'W+^y)- d-236)

The "shared" information that is inherent in either of the individual out-
comes is called the mutual information between the random vectors,

M*x) '= ['(«) +'(Z)W(*Z)- d-237)
It follows from the definitions above that

M^y) = l o g 2 - f ^ - . d.238)

P(x)P(y)

Equation (1.238), in turn, leads to the conclusion that
Mi*,l) = K*)-K*\l) = I(l)-l(l\x)- (1-239)

This result clearly shows the interpretation of the mutual information as
the information that is "shared" by the random vectors.

Likejm entropy measure, the average mutual information, which we
denote A/(x,y), is the expected mutual information over all values of the
random vectors,

M(x x) d-̂ f P (loe V T ' V , 1M(*>I) - ^y[ l og2p(x)p(y)j

(1.240)
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Note from (1.238) and (1.240) that

M{x,y) = H{x)-H(x\y) = H{y)-H{y\x), (1.241)

which immediately leads to the conclusion that if x and y are indepen-
dent, then there is no average mutual information (no "shared" informa-
tion on the average).

We will see entropy concepts play a role in several areas of speech
coding and recognition in Chapters 7 and 12. The mutual information
will be used in an important speech recognition technique in Chapter 12.
We illustrate the use of some entropy concepts in pattern recognition in
Section 1.4.3.

1.4.2 Random Sources

In several places in our work, we will need to characterize the infor-
mation conveyed by a (vector) random process, say

x = {. . . ,x(-l) , x(0), x(l) , . . .} , (1.242)

in which each random vector takes a finite number of discrete outcomes,
say x p . . . ,xL. In communications applications, the random process will
often characterize the output of a transmitter where it is given the name
random source. Nevertheless, from a mathematical point of view, a ran-
dom source is equivalent to a random process.

How then do we characterize the information from a random source?
The usual method is to indicate the entropy per sample (per random vec-
tor), which, if the process is37 stationary with independent random vec-
tors, is equivalent to the entropy associated with any random vector,

H{x) d=H[x(n)] = - £ P[x(n) = x,]log2 P[x(n) = xj. (1.243)

However, if the random vectors are not independent, then we must use38

H(x)^-hm X ..- ip[x(D-x/;,...,x(7V) = xJ
yv-"°° ir\ iN=\

(1.244)

Xlog2P[x(l) = x p . . . 9x(N) = x j .

If the random vectors are uncorrelated beyond some finite N, then the
expression need not contain the limit. Definition (1.244) is useful for
theoretical discussions, but it becomes practically intractable for N's

37A stationary source with discrete, independent random variables (or vectors) is called
a discrete memoryless source in the communications field [see, e.g., (Proakis, 1989, Sec.
2.3.2)].

38We assume here that the random process starts at n = 0.
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much larger than two or three. We will see one interesting application of
this expression in our study of language modeling in Chapter 13.

1.4.3 Entropy Concepts in Pattern Recognition

Entropy measures are used in pattern recognition problems. To pro-
vide an example of the use of the entropy concepts described above, and
also to provide closure to our discussion of probabilistic separability
measures, we briefly consider that task here. The material here will turn
out to be very similar to a development needed in our study of speech
recognition. One disclaimer is in order before we begin the discussion.
Because we have only studied entropy concepts for the case of discrete
conditioning vectors, we will only consider the case of discrete feature
vectors here. This is consistent with our need for this material in the
text, but is at variance with our discussion of features in Section 1.4. The
more general case is found in (Devijver and Kittler, 1982, Sec. 5.3.5).

Generalized entropy measures are used to assess the effectiveness of a
set of features at pattern classification. The properties of such measures
are quite complex, and are described, for example, in (Devijver and
Kittler, 1982, App. C). A special case of a generalized entropy measure is
what we would simply call the conditional entropy for the set of classes,
characterized by random variable c, conditioned upon knowledge of a
feature vector, modeled by random vector x. From (1.235)

K L
H(£\*)= X Z p ( £ = c ^ = x/)l082^(£ = ^5 = x/)- O-245)

This quantity provides a measure of the average quality of the chosen
features over the entire feature space. H(c\x) is sometimes called the
equivocation. We would want the equivocation to be small, meaning that,
on the average, the feature vector x greatly reduces the uncertainty about
the class identity.

A related way to view the feature effectiveness is to examine the aver-
age mutual information between the random variable c and random vec-
tor x, M(c, x). Ideally, this measure is large, meaning that a given feature
outcome contains a significant amount of information about the class
outcome. From (1.240) we can write

# ( & 5 ) - i 2r(c-c,x = xl)]Og2
P}£~C'-~X') (1.246)

c = l / - l P(C = c)P(x = Xl)

The reader can confirm that this measure is identical to (1.220) dis-
cussed above.

It might also be of interest to characterize the average mutual informa-
tion between two jointly stationary random sources, say x and y. By this
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we will simply mean the average mutual informationjpetween two ran-
dom variables at any arbitrary time n. We will write M(x,y) to empha-
size that the random variables are taken from the stationary random
sources,

M(±l)=l i j> (x -x , i - y j l og 2 p
f / - = X / : - : y J , (1-247)

Here we have assumed that the sources are vector random processes that
take discrete vector values. Versions of (1.247) for other cases, for exam-
ple, scalar random processes that take continuous values, require obvious
modifications [cf. (1.219)].

1.5 Phasors and Steady-State Solutions

In our work with analog acoustic modeling of the speech production sys-
tem, we will be concerned with the solution of a linear, constant coeffi-
cient, differential equation (LCCDE). This short section is intended to
remind the reader of some commonly used techniques and notation.

Consider a continuous time system described by an LCCDE

ta'§m=tb>§x{t)> (1-248)
i=\

where x(t) and y(t) are the input and output, respectively. It is often
desired to know the steady-state response of the system (response af-
ter all transients have diminished) to a sinusoidal input, say x(t) =
X cos(£2/ + (px). It is frequently convenient to replace the cosine (or sine)
by a complex exponential,

x(t) = Xemt+*\ (1.249)

recognizing that the solutions to the real (cosine) and imaginary (sine)
parts of the exponential will remain separated in the solution because of
linearity. Further, it is also frequently useful to rewrite (1.249) as

x(t)=XeJQt, (1.250)

where X is the complex number

X = Xej\ (1.251)

which is called a phasor for the exponential signal x(t). Also due to
linearity, we know that the input (1.249) will produce an output of the
form y(t) = Yej{at+(py]', which may also be written in terms of a phasor,
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y(t) = Yejnt, (1.252)

where Y= Yej\ Putting the forms (1.250) and (1.252) into (1.248), it is
found immediately that the terms ejQt cancel and the differential equa-
tion solution reduces to one of solving an algebraic equation for Y in
terms of X, powers of Q, and the coefficients a. and br Engineers often
take advantage of this fact and solve algebraic phasor equations directly
for steady-state solutions, sidestepping the differential equations com-
pletely. We have developed constructs such as "impedance" to assist in
these simplified solutions (see below).

In fact, recall that phasor analysis amounts to_steady-state frequency
domain analysis. In principle, the phasors X and Y are frequency depen-
dent, because we may enter a variety of inputs (actually an uncountably
infinite number!) of the form x{t) = X cos(Q/ + q>x), each with a different
frequency, Q; amplitude, X\ and phase, <px, to produce corresponding out-
puts of form y(t) = Y cos(Q,t + (py) with frequency-dependent amplitudes
and phases. We may reflect this fact by writing the phasors as X(£2) and
7(Q). Plugging forms (1.250) and (1.252) into (1.248) with these explic-
itly frequency-dependent phasors immediately produces the general ex-
pression for the output phasor

F(Q) = ——„ X(Q). (1.253)

The ratio H(Q) d= Y(Q)/X(Q.), is of course the (Fourier) transfer func-
tion for the system. Other ratios, in particular, impedances and admit-
tances, result from similar analyses. If, for example, y{t) is a voltage
across a discrete electrical component in response to current x(t), then
the phasor ratio Z(Q) = F(Q)/J(Q) resulting from the (usually simple)
differential equation governing the component is the impedance (fre-
quency dependent) of that component. The algebraic equations resulting
from phasor-based solutions of differential equations mimic the simple
"Ohm's law" type relations that arise in DC analysis of resistive circuits.
As electrical engineers, we sometimes become so familiar with these sim-
ple phasor techniques that we forget their fundamental connection to the
underlying differential equation.

In connection with the concepts above, we note that the ratio of
phasors is always equivalent to the ratio of complex signals they
represent,

Y(Q) Y(£l)ejQt y{t)
^r-J- = _ o / = — . (1.254)
X(Q) X(Cl)ejnt x(t)

This fact is sometimes useful in theoretical discussions in which phasor
notations have not been defined for certain signals.
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We will make use of these ideas in our early work (Chapter 3) con-
cerning analog acoustic modeling of the speech production system. If
necessary, the reader should review these topics in any of a number of
engineering textbooks [e.g., (Hayt and Kimmerly, 1971)] or textbooks on
differential equations [e.g., (Boyce and DiPrima, 1969)].

1.6 Onward to Speech Processing

Thus ends our review and tutorial of selected background material pre-
requisite to the study of speech processing. The reader will probably
want to refer back to this chapter frequently to recall notational conven-
tions and basic analytical tools. Before beginning our formal study, we
make a few introductory comments about the speech processing field,
and about the organization of the book.

Brief History. The history of speech processing certainly does not begin
with the digital signal processing engineer, nor even with the work of
electrical engineers. In an interesting article39 surveying some of the his-
tory of speech synthesis, Flanagan (1972) notes humankind's fascination
with speech and voice from ancient times, and places the advent of the
scientific study of speech in the Rennaisance when clever mechanical
models were constructed to imitate speech. The first well-documented ef-
forts at mechanical speech synthesis occurred in St. Petersburg and
Vienna in the late eighteenth century. The 1930s, a century and a half
later, are often considered to be the beginning of the modern speech
technology era, in large part due to two key developments at Bell Labora-
tories. The first was the development of pulse code modulation (PCM),
the first digital representation of speech (and other waveforms) which
helped to pioneer the field of digital communications. The second was
the demonstration of the Vocoder (Voice Coder) by Dudley (1939), a
speech synthesizer, the design of which first suggested the possibility of
parametric speech representation and coding. The subsequent decades
have seen an explosion of activity roughly concentrated into decades. We
mention a few key developments: intense research on the basic acoustical
aspects of speech production and concomitant interest in electronic syn-
thesizers in the late 1940s through the 1960s (Fant, 1960), which was
spurred on by the invention of the spectrograph in 1946 (Potter et
al., 1966); advances in analysis and coding algorithms (linear prediction,
cepstrum) in the 1960s (see Chapters 5 and 6 in this book) made possible
by the new digital computing machines and related work in digital signal
processing [e.g., (Cooley and Tukey, 1965)]; development of temporally
adaptive speech coding algorithms in the 1970s (see Chapter 7); and vast

39Also see (Schroeder, 1966). Each of these papers, as well as others describing early
work, are reprinted in (Schafer and Markel, 1979).



82 Ch. 1 / Propaedeutic

interest in speech recognition research in the 1970s and 1980s and con-
tinuing into the 1990s, grounded in the development of dynamic pro-
gramming techniques, hidden Markov modeling, vector quantization,
neural networks, and significant advances in processor architectures and
fabrication (see the chapters of Part V).

Research Areas and Text Organization. There is no precise way to parti-
tion the speech processing research field into its component areas.
Nevertheless, we offer the following first approximation to a partition
that can roughly be inferred from the discussion above:

Speech Science (Speech Production and Modeling) (Part II of this book)
Analysis (Part III)
Coding, Synthesis, Enhancement, and Quality Assessment (Part IV)
Recognition (Part V)

We have organized the book around these themes.
Part II is concerned with providing necessary topics in speech science

and with early efforts to model speech production, which are grounded
in the physics of the biological system. By speech science we mean the
use of engineering techniques—spectral analysis, modeling, and so
on—in work that is specifically aimed at a better understanding of the
physiological mechanisms, anatomy, acoustic, phonetic, and linguistic as-
pects of normal and abnormal voice and speech production. Naturally,
such work is highly interdisciplinary and is least concerned with immedi-
ate application of the research results. Needless to say, however, speech
science research has been, and continues to be, central to progress in the
more applied fields. In Chapter 2, the first chapter in Part II, we exam-
ine speech science concepts necessary to "engineer" speech. Our goal is
to learn enough about speech to be able to converse with interdisci-
plinary researchers in various aspects of speech science and speech pro-
cessing, and to be able to build useful mathematical models of speech
production. Chapter 3 begins the quest for a useful mathematical model
by building on the science of speech production discussed in Chapter 2.
The journey takes us through a discussion of fundamental attempts to
model speech production based on the physics of acoustic tubes. These
real acoustic models are revealing and provide a firm foundation for the
widely used discrete time model, which will be employed throughout the
remainder of the book and whose description is the culmination of the
chapter.

Speech analysis research is concerned with processing techniques that
are designed to extract information from the speech waveform. In Part
III we take up the most important contemporary tools for analyzing
speech by computer. Speech is analyzed for many reasons, including
analysis for analysis' sake (basic research into phonetics or better models
of speech production), but also to reduce it to basic features for coding,
synthesis, recognition, or enhancement. Part III of the book, therefore,
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comprises the engineering foundation upon which speech processing is
built. In the first of these topics (Chapter 4) we examine the general issue
of processing short terms of a signal. Most engineering courses ignore the
fact that, in the real world, only finite lengths of signals are available for
processing. This is particularly true in speech where the signal remains
stationary for only milliseconds. The remaining chapters (5 and 6) of
Part III introduce the two most important parameterizations of speech in
contemporary processing—linear prediction coefficients and cepstral co-
efficients—their meaning, and the analysis techniques for obtaining
them. These parameters are widely used for spectral representations of
speech in the areas mentioned above. We shall therefore use them repeat-
edly as we progress through the material.

Part IV consists of three chapters that cover a rather wide range of
topics. This part of the text is concerned with those aspects of speech
processing which most directly intersect with the communications tech-
nologies. Here we will be concerned with efficient coding for the trans-
mission of speech across channels and its reconstruction at the receiver
site. Since the task of synthesis is closely coupled with transmission and
reconstruction strategies, we will examine some of the widely used ana-
lytical techniques for synthesis in the context of this study. Synthesis for
voice response systems, in which a machine is used in place of a human
to dispense information, is also an important application domain, and
many of the techniques used in communications systems are equally ap-
plicable to this problem.

The effectiveness of a coding scheme at preserving the information
and the natural quality of the speech can be ascertained by using results
from quality assessment research. Accordingly, we include this topic in
Part IV (Chapter 9). Related to the assessment of quality is the enhance-
ment of speech that has been corrupted by any of a number of natural or
human-made effects, including coding. This issue will also be addressed
in Part IV (Chapter 8).

Speech recognition deals with the related problems of designing algo-
rithms that recognize or even understand40 speech, or which identify the
speaker (speech recognition versus speaker recognition).41 In Part V, we
take up the first of these problems, that of recognizing the speech itself.
Chapter 10 overviews the problems encountered in trying to recognize
speech using a computer. Chapters 11 and 12 introduce the two most
widely used techniques for recognizing speech—dynamic time-warping
algorithms and the hidden Markov model. The first is a template match-

40A speech recognizer simply "translates" the message into words, while a speech under-
standing system would be able to ascertain the meaning of the utterance. Speech under-
standing algorithms can be used as an aid to recognition, by, for example, disallowing
nonsensical concatenations of words to be tried, or by "expecting" certain utterances in var-
ious conversational contexts.

41A slight variation on the latter problem is speaker verification, in which the recognizer
accepts or rejects the speaker's claim of identity.



84 Ch. 1 / Propaedeutic

ing method following the classical paradigm of statistical pattern recogni-
tion with the interesting special problem of time registration of the
waveform. The latter is a stochastic method in which statistical charac-
terizations of utterances are automatically learned from training utter-
ances. Chapter 13 introduces the basic principles of language modeling,
techniques that reduce entropy by taking advantage of the higher-level
structure of spoken utterances to improve recognizer performance. Chap-
ter 14 is a brief introduction to a radically different approach to speech
recognition based on massively parallel computing architectures or "arti-
ficial neural networks." This field is in its relative infancy compared with
techniques based on sequential computing, and it offers interesting chal-
lenges and possibilities for future research and development.

Applications. The applications of speech processing are manifold and di-
verse. In a general way, we have alluded to some of the basic areas above.
Among the principal "drivers" of speech processing research in recent
years have been the commercial and military support of ambitious en-
deavors of large scale. These have mainly included speech coding for
communications, and speech recognition for an extremely large array of
potential applications—robotics, machine data entry by speech, remote
control of machines by speech for hazardous or "hands-free" (surgery)
environments, communications with pilots in noisy cockpits, and so on.
Futuristic machines for human/machine communication and interaction
using speech are envisioned (and portrayed in science fiction movies),
and in the meantime, more modest systems for recognition of credit
card, telephone, and bank account numbers, for example, are in use. In
addition, speech processing is employed in "smaller scale" problems such
as speaker recognition and verification for military, security, and forensic
applications, in biomedicine for the assessment of speech and voice dis-
orders (analysis), and in designing speech and hearing aids for persons
with disabilities (analysis and recognition). Inasmuch as speech is the
most natural means of communication for almost everyone, the applica-
tions of speech processing technology seem nearly limitless, and this field
promises to profoundly change our personal and professional lives in
coming years.

What Is Not Covered in This Textbook. Speech processing is an inher-
ently interdisciplinary subject. Although the boundaries among academic
disciplines are certainly not well defined, this book is written by electri-
cal engineers and tends to focus on topics uiai nave Deen most actively
pursued by digital signal processing engineers.

Significant contributions to this field, especially to speech recognition,
have come from research that would usually be classified as computer
science. A comprehensive treatment of these "computer science" topics is
outside the intended scope of this book. Examples include (detailed dis-
cussions of) parsing algorithms for language modeling (see Chapter 13),
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and knowledge-based and artificial intelligence approaches to recogni-
tion42 [e.g., (Zue, 1985)]. Although we briefly discuss the former, we do
not address the latter. Another example concerns the use of "semantic"
and "pragmatic" knowledge in speech recognition (see Chapters 10 and
13). Semantics and pragmatics are subjects that are difficult to formalize
in conventional engineering terms, and their complexity has precluded a
significant impact on speech recognition technology outside the labora-
tory. We treat these issues only qualitatively in this book.

The speech (and hearing) science domains—anatomy and physiology
of speech production, acoustic phonetics, linguistics, hearing, and psy-
chophysics—are all subjects that are fundamentally important to speech
processing. This book provides an essential engineering treatment of
most of these subjects, but a thorough treatment of these topics obvi-
ously remains beyond the scope of the book. The reader is referred to
Appendix l.E for some resources in the area.

Finally, the explosive growth in this field brought about by digital
computing has made it impossible for us to provide a thorough account
of the important work in speech processing prior to about 1965. Essential
elements of the analog acoustic theory of speech, upon which much of
modern speech processing is based, are treated in Chapter 3 and its ap-
pendix. A much more extensive treatment of this subject is found in the
book Speech Analysis, Synthesis, and Perception by J. L. Flanagan (1972).
This book is a classic textbook in the field and no serious student of
speech processing should be unfamiliar with its contents. Other impor-
tant papers with useful reference lists can be found in the collection
(Schafer and Markel, 1979).

Further Information. The appendixes to this chapter provide the reader
with lists of books and other supplementary materials for background
and advanced pursuit of the topics in this book. In particular, Section
1 .E of this appendix is devoted to materials specifically on speech pro-
cessing. Among the sections are lists of other textbooks, edited paper col-
lections, journals, and some notes on conference proceedings.

1.7 PROBLEMS

1.1. Whereas the unit step sequence, u(n), can be thought of as samples
of the continuous time step, say ua(t), defined as

f 1, f > 0
ua(t)=\ , (1.255)

10, * < 0

42This and other papers on knowledge-based approaches are reprinted in (Waibel and
Lee, 1990).
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a similar relationship does not exist between the discrete-time "impulse,"
S(n) and its continuous-time counterpart Sa{t).

(a) Consider sampling the signal ua(t) with sample period T to
obtain the sequence u(n) d=ua(nT). If we now subject u(n) to
the customary ideal interpolation procedure in an attempt to
reconstruct ua(t) (Proakis and Manolakis, 1992, Sec. 6.3), will
the original ua{t) be recovered? Why or why not?

(b) Roughly sketch the time signal, say ua(t), and the spectrum
| Ua(Q) | of the signal that will be recovered in part (a).

(c) That Sa(t) cannot be sampled fast enough to preserve the infor-
mation in the time signal is apparent, since the signal has infi-
nite bandwidth, that is, Afl(Q) = 1. However, to show that any
attempt to sample Sa(t) results in an anomalous sequence, con-
sider what happens in the frequency domain with reference to
(1.21). What is the anomaly in the time sequence that causes
this strange frequency domain result?

(d) Carefully sketch and numerically label the time signal, say Sa(t),
and its spectrum Aa(Q) that results from an ideal interpolation
of the unit sample sequence,

f 1, « = 0
S(n)=\ . (1.256)

[ 0, otherwise

1.2. Consider the following sequences:

f 1/fl, n>0
(i) y(n) = \

[ 0, n < 0

(ii) x(ri) = [sin(cocn)] /nn, restrict CDC as 0 < coc < n
(a) In each case, classify the sequence according to whether it rep-

resents an energy signal, power signal, or neither.
(b) In each case, determine whether the sequence is absolutely

summable.
(c) In each case comment on the existence of the DTFT and

whether the z-transform ROC includes the unit circle.

1.3. (a) Verify the properties of the DTFT shown in Table 1.1.
(b) Prove Parseval's relation:

oo . Cn
E*=

 B S J * ( " ) | 2 = ^ JjX(co)\2dco. (1.257)

1.4. (a) Verify the properties of the DFT shown in Table 1.2. The nota-
tion W = e~

j2n/N j s used for convenience and all time se-
quences are assumed to be of length N.

(b) Prove Parseval's relation:
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TABLE 1.1. Properties of the DTFT.

Property

Linearity
Delay
Modulation

Time reversal

Multiplication

Convolution
Conjugation

Differentiation

Time Domain

ax{{n) + bx2(n)

x{n-d)

ej(o«nx(n)

x(-n)

x(n)y(n)

x(n)*y(n)
x\n)

nx(n)

Frequency Domain

aX,(co) + bX2(oj)

e~j0JdX(w)

X(oj-w0)

X(-co)

i LX(OY((o ~Qd£ = X(co) * Y(co)

X(co)Y(co)

XX-aS)

. dX(co)
J dco

«=0 k=0
(1.258)

1.5. Suppose that we redefine state variables in Fig. 1.5. The new set,
[v\{n% is such that v\{n) = vN{n\ v'2{ri) = vN_x(n),..., v'N(ri) = vx{n\ where
the v^nYs are defined in the figure. Develop an upper companion form
state space model of the form

v7(/7+ \) = A'\'(n) + c'x(n)

y(n) = b/T\'(n) + d'x{n),

(1.259)

(1.260)

in which A' is obtained from the lower companion form matrix A of
(1.54) by reflecting all elements around the main diagonal.

1.6. (a) How many sequences are there with P nonzero, finite poles and
Z < P nonzero, finite zeros that have identical magnitude spec-
tra? The sequences need not be real.

(b) How many of these are causal and "stable"? That is, how many
are absolutely summable, meaning that their z-transform ROCs
include the unit circle? How many are noncausal and "stable"?

(c) If Z > P, how do your answers in part (b) change?

TABLE 1.2. Properties of the DFT.*

Property Time Domain Frequency Domain

Linearity
Circular shift
Modulation
Circular convolution

axx(n) + bx2(n)
x(n ~ d)modN

Wlnx(n)
x(n)modN*y(n)

aXx{k) + bX2(k)
WkdX(k)

X(k+DmodN

X(k)Y(k)

"The notation W = e ~J2n/N and all sequences are assumed to be of length N.
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(d) Of the causal sequences in part (b), how many are minimum
phase? Maximum phase?

1.7. (Computer Assignment) Using a signal processing software package,
replicate the experiment of Section 1.1.7, that is, reproduce Figures
1.6-1.8.

1.8. Given the joint probability density function f^(x, y) for two jointly
continuous random variables x and y verify the following using a picto-
rial argument:

[X2 Cy2

P{xx<x<x2,y,<y<y2)=\ f(x,y)dxdy

J -oo J -oo -

fx2 pi pi p2

fjx,y)dxdy- \ fjx,y)dxdy
J —oo J —oo — J —oo J —oo —

+ I ' ) fj,x,y)dxdy.
J-oo J-a

Jxyy

(1.261)

1.9. Formally verify that, for two jointly continuous random variables x
and y,

£{£{h{y)\x)} = ̂ Ky)\ d-262)
where h( •) is some "well-behaved" function of y Assume that all rele-
vant pdf's exist.

1.10. For a random process x with random variables x(n), show that

1.11. In this problem we will show that the implications in (1.132) re-
verse in the special case in which random variables within a random
process are known to be joint Gaussian. Consider a random process x,
known to be WSS. (Note: This means that the mean and correlations are
time independent, which we denote by writing jux, ax, and px.) If two ran-
dom variables, x(n{) and x(n2) for any n{ and n2, in x are joint Gaussian,

f (x x) = ^-l/2<2Ui-*2) (\ lfsA\

where

Q(x{,x2) =

1 - ^ l l - ^ i ^4-a-=Jl-cr--j + l - ^ i J' d.265)
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show that the process is also second-order stationary. Show, in fact, that
the process is SSS.

1.12. For a WSS random process x, verify that

P^h LTz{0))dc0 = n jy^)dco = rx_(Ol (1.266)

1.13. Show that, if a WSS random process x, which is ergodic in both
mean and autocorrelation, is used as input to a stable, linear, time-
invariant discrete time system with impulse response h(n), then the out-
put random process y is also ergodic in both senses.

1.14. Verify (1.155) and (1.156).

1.15. Verify (1.157).

1.16. Show that (1.210) follows from (1.209).

1.17. Repeat the analysis leading to (1.190) starting with the basis vec-
tors ft = [2 0] r and PJ> = [0 10]r- I n this case the basis vectors are orthogo-
nal, but grossly out of scale. This corresponds to the case of two features
which are uncorrelated but which have widely different variances. What
is the form of the eventual weighting matrix, W, for this case? Is it clear
what the weighting matrix is doing "physically?" Explain.
1.18. Consider a nonsingular N x N matrix W which operates on three
TV-vectors, x', y', and z', to produce three new vectors x = Wx', y = Wy',
and z = Wz'. The original vectors are arbitrary except that x' is closer to T!
when the Euclidean metric is used to measure distance:

d2(x',z')<d2(y',z'). (1-267)
Show that the linear transformation need not preserve the relative distances
by finding a vector triplet satisfying (1.267) and a nonsingular W such that

d 2 (x ,z)>d 2 (y ,z) . (1.268)
Can you find conditions on W so that the relative distances are preserved?

1.19. An example of a probabilistic separability measure for a two-class
problem is the Bhattacharyya distance

JB = -In f" V/x|c(x|0/8,j(x|2)&. (1.269)
•/—CO ~ ~ ~ ~

Show that this measure reduces to a Mahalanobis-like distance in the
case of Gaussian feature vectors and equal class covariances. Hint: Use
the fact that

- - (x - | L 5 | 1 ) ' C-1 (x - ^ | i ) + - (x - ^ | 2 ) ' C- 1 (x - n.x|2) = (1-270)

(equation continues next page)
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(M-xjl ~ M-X12)7 r ,_1 (M-x|l ~ M-x|2) f ( ^ j l + ^ | 2 ) ] 7 \ \ (M-x|l +>ix|2)"|
2 * 2 + L X 2 J ^ LX 2 J '

1.20. Two stationary binary sources, x and y, are considered in this prob-
lem. In each case the random variables of the source, for example, x(n),
n = 1,2, . . . , are statistically independent.

(a) Given P[x(n) = 1] = 0.3 for any n, evaluate the entropy of
source x,H(x).

(b) In the source y, the entropy is maximal. Use your knowledge of
the meaning of entropy to guess the value P[y(n) = 1]. Explain
the reasoning behind your guess. Formally verify that your con-
jecture is correct.

(c) Given that P[x(n) = x,y(n) = y] = 0.25 for any n and for any
possible outcome, (x, y) = (0,0), (0,1), (1,0), (1,1), evaluate the
average mutual information, say Af(x, j/), between the jointly
stationary random sources x and y.

(d) Find the probability distribution P[x(n), yin)] such that the two
jointly stationary random sources have no average mutual
information.

1.21. Verify (1.231)-(1.233).
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Academic Press, 1972.

Jain, A. K., and R. C. Dubes. Algorithms for Clustering Data. Englewood
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Press, 1981.
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York: John Wiley & Sons, 1968.
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Hill, 1976.
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Furui, S. Digital Speech Processing. New York: Marcel Dekker, 1989.
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Fallside, F, and W. A. Woods, eds., Computer Processing of Speech. Lon-
don: Prentice Hall International, 1985.

Lea, W. A., ed., Trends in Speech Recognition. Apple Valley, Minn.:
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1.E.3 Journals

Among the most widely read journals in English covering the field of
speech processing are the following:43

43IEEE is the Institute of Electrical and Electronics Engineers, the world's largest profes-
sional organization whose membership is over 300,000. The Signal Processing Society of
the IEEE, the society most directly concerned with speech processing, has a membership
exceeding 15,000. Other societies of the IEEE also publish transactions which occasionally
contain papers on speech processing. Among them are the Transactions on Information The-
ory, Computers, Communications, Pattern Analysis and Machine Intelligence, Automatic
Control, Systems Man and Cybernetics, Neural Networks, and Biomedical Engineering. IEE
is the Institute of Electronics Engineers, the professional electrical engineering society based
in the United Kingdom.
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AT&T Technical Journal (Prior to 1985, Bell System Technical Journal).
Computer Speech and Language.
IEE Proceedings F: Communications, Radar, and Signal Processing.
IEEE Transactions on Signal Processing (Prior to 1991, IEEE Transac-

tions on Acoustics, Speech, and Signal Processing, and prior to 1974,
IEEE Transactions on Audio and Electroacoustics).

IEEE Transactions on Audio and Speech Processing (initiated in 1993).
Journal of the Acoustical Society of America**
Speech Communication: An Interdisciplinary Journal.

In addition, the Proceedings of the IEEE and the IEEE Signal Processing
Magazine occasionally have special issues or individual tutorial papers
covering various aspects of speech processing.

1.E.4 Conference Proceedings

The number of engineering conferences and workshops that treat
speech processing is vast—we will make no attempt to list them. How-
ever, the most widely attended conference in the field, and the forum at
which new breakthroughs in speech processing are often reported, is the
annual International Conference on Acoustics, Speech, and Signal Pro-
cessing, sponsored by the Signal Processing Society of the IEEE. The so-
ciety publishes an annual proceedings of this conference. By scanning the
reference lists in these proceedings, as well as those in the journals
above, the reader will be led to some of the other important conference
proceedings in the area.

Also see Section 1.G.3 of this appendix.

1.F Example Textbooks on Speech and Hearing
Sciences

Borden, G., and K. Harris. Speech Science Primer: Physiology, Acoustics,
and Perception. Baltimore, Md.: Williams & Wilkins, 1980.
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Harper and Row, 1968.
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Hillsdale, N.J.: Erlbaum, 1981.

Flanagan, J. L. Speech Analysis, Synthesis, and Perception, 2nd ed. New
York: Springer-Verlag, 1972.

Ladefoged, P. A Course in Phonetics. New York: Harcourt Brace
Jovanovich, 1975.

44Of the journals listed, this one is most oriented toward the presentation of basic sci-
ence results in speech and hearing.
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LeHiste, I., ed., Readings in Acoustic Phonetics. Cambridge, Mass.: MIT
Press, 1967.

Lieberman, P. Intonation, Perception, and Language, Cambridge, Mass.:
MIT Press, 1967.

MacNeilage, P. The Production of Speech. New York: Springer-Verlag,
1983.

Minifie, F, T. Hixon, and F. Williams, eds., Normal Aspects of Speech,
Hearing, and Language. Englewood Cliffs, N.J.: Prentice Hall, 1973.

Moore, B. An Introduction to the Physiology of Hearing. London: Aca-
demic Press, 1982.

O'Shaughnessy, D. Speech Communication: Human and Machine. Read-
ing, Mass.: Addison-Wesley, 1987.

Perkell, J., and D. Klatt, eds., Invariance and Variability in Speech Pro-
cesses. Hillside, N.J.: Lawrence Erlbaum Associates, 1986.

Zemlin, W. Speech and Hearing Science, Anatomy and Physiology.
Englewood Cliffs, N.J.: Prentice Hall, 1968.

1.G Other Resources on Artificial Neural Networks

1.G.1 Textbooks and Monographs

Kohonen, T. Self Organization and Associative Memory, 2nd ed. New
York: Springer-Verlag, 1988.

Kosko, B. Neural Networks and Fuzzy Systems. Englewood Cliffs, N.J.:
Prentice Hall, 1992.

Morgan, D. P., and C. L. Scofield. Neural Networks and Speech Process-
ing. Norwell, Mass.: Kluwer, 1991.

Rumelhart, D. E. Parallel Distributed Processing, Vol. 1: Foundations, Vol
2: Psychological and Biological Models. Cambridge, Mass.: MIT
Press, 1986.

Simpson, P. K. Artificial Neural Systems. Elmsford, N.Y.: Pergamon
Press, 1990.

Zurada, J. M. An Introduction to Artificial Neural Systems. St. Paul,
Minn.: West Publishing, 1992.

1.G.2 Journals

A few of the widely read journals on ANNs in English are the
following:

IEEE Transactions on Neural Networks.
International Journal of Neural Systems.
Neural Computation.
Neural Networks Journal.

In addition, many of the journals listed in Section I.E.3 of this appendix
publish articles on neural network applications to speech processing.
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1.G.3 Conference Proceedings

The number of conferences devoted to neural network technology is
very large. These are two of the important ones:

IEEE International Conference on Neural Networks.
International Joint Conference on Neural Networks.

Many papers on ANNs related to speech processing are also presented at
the IEEE International Conference on Acoustics, Speech, and Signal Pro-
cessing, which is discussed in Section I.E.4 of this appendix.


