
Chapter

1
UNCERTAINTY MANAGEMENT IN
MEDICAL APPLICATIONS
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1. INTRODUCTION

In biology and medicine, as well as in many other domains, imperfect knowledge
cannot be avoided. It is difficult to construct automatic systems to provide classification
or pattern recognition tools or help specialists make a decision. There exist two kinds of
difficulties: (1) those related to the type of imperfection we have to consider (partial
information, uncertainties, inaccuracies) and (2) those due to the type of problem we
have to solve (e.g., images to process, expert rules, databases).

Which mathematical model are we supposed to choose to manage this imperfect
knowledge? What is the best knowledge representation for a given problem? The
answers to such questions are not obvious, and our purpose is to present several frame-
works available to represent and manage imperfect knowledge, particularly in biologi-
cal and medical domains. We indicate principles, interest and limits of these
frameworks. We give more details about numerical approaches that have given rise
to more practical applications than about symbolic approaches, which will be men-
tioned only briefly.

2. IMPERFECT KNOWLEDGE

2.1. Types of Imperfections

Imperfections may have several forms, which we present briefly.

2.1.1. Uncertainties

Imperfections are called uncertainties when there is doubt about the validity of a
piece of information. This means that we are not certain that a statement is true or false
because of

• The random behavior of a phenomenon (for instance, the factors of transmis-
sion of genetic features) related to probabilistic uncertainty.

• The reliability or limited soundness of an observer of the phenomenon who
expresses the statement, or of the sensor used for a measurement. The uncer-
tainty is then nonprobabilistic.
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Uncertainties can be represented either by numbers, such as probabilities or con-
fidence degrees indicating the extent to which we are certain of the validity of a state-
ment, or by phrases such as "I believe t h a t . . . " or "it is possible that "

2.1.2. Imprecisions

The second type of imperfection is imprecision, when some characteristics of a
phenomenon cannot be described accurately. Imprecisions have two main forms:
approximate values (for instance, the limits of the normal glycemia level at a given
age are not sensitive to a variation of l%o) or vague descriptions using terms of natural
language (for instance, "a high temperature" or "frequent attacks").

2.1.3. Incompleteness

Incomplete knowledge is the last kind of imperfection, in which there is a lack of
information about some variables or criteria or elements of a given situation. Such
incompleteness can appear because of defaults in knowledge acquisition (for instance,
the age of a patient has not been recorded) or because of general rules or facts that are
usually true but admit a few exceptions, the list of which is impossible to give (for
instance, generally, the medication X does not cause any drowsiness).

2.1.4. Causes of Imperfect Knowledge

These imperfections may have various causes:

• They can be related to conditions of observation that are insufficient to obtain
the necessary accuracy (for instance, in the case of radiographic images).

• They can be inherent in the phenomenon itself. This is often the case in biology
or medicine, because natural factors often have no precise value or precise limit
available for all patients. Conditions or values of criteria vary in a given situa-
tion (e.g., the size and shape of malignant microcalcifications in breast cancer).

It happens that several forms of imprecision cannot be managed independently.
For instance, uncertainties are generally present at the same time as inaccuracies, and
incompleteness entails uncertainties. It is then necessary to find the knowledge repre-
sentation suitable for all the existing imperfections.

2.2. Choice of a Method

The choice of a method to process data is linked to the choice of knowledge
representation, which can be numerical, symbolic, logical, or semantic, and it depends
on the nature of the problem to be solved: classification, automatic diagnosis, or
decision support, for instance. The available knowledge can consist of images or data-
bases containing factual information or expert knowledge provided by specialists in the
domain. They are, in some cases, directly managed by an appropriate tool, such as an
expert system or pattern recognition method if the object to identify on images is not
too variable, for instance. In other cases, learning is necessary as a preliminary step in
the construction of an automatic system. This means that examples of well-known
situations are given and assigned to a class, a diagnosis, a decision, or more generally
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Section 2 Imperfect Knowledge 3

a label by a specialist. On the basis of these examples, a general method is constructed
to perform a similar assignment in new situations, for instance, by inductive learning,
case-based reasoning, or neural networks.

It is also possible that explanations are required for the reasons leading the system
to a given diagnosis or choice of a label. It is, for instance, interesting if the conceived
automatic system has training purposes. Such problems of human-machine commu-
nication are studied in artificial intelligence.

We indicate briefly in Table 1 the main knowledge representation and management
methods corresponding to the three kinds of imperfection we have mentioned. In the
following, we will focus on the numerical methods listed in the bold frame in Table 1.

There are other kinds of methods that are not directly dedicated to one of the
imperfections we have mentioned but provide numerical approaches to data manage-
ment, such as chaos, fractals, wavelets, neural networks, and genetics-based program-
ming, which are also intensively used, especially in medicine.

All these tools have their own advantages as well as some disadvantages. It is
therefore interesting to use several of them as complementary elements of a general
data processing system, taking advantage of synergy between them such that qualities
of one method compensate for disadvantages of another one. For instance, fuzzy logic
is used for its ability to manage imprecise knowledge, but it can take advantage of the
ability of neural networks to learn coefficients or functions. Such an association of
methods is typical of so-called soft computing, which was initiated by L.A. Zadeh in
the 1990s and provides interesting results in many real-world applications. In the next
sections, we present the fundamentals of the main numerical methods mentioned in
Table 1. For more details, see the books or basic papers indicated at the end of this
chapter [1-10].

TABLE 1 Classification of Methods for the Management of Imperfect Knowledge

Type of imperfection Representation method Management method

Modal logic
Symbolic beliefs Truth maintenance systems

Autoepistemic logic

Uncertainties Probabilities

Confidence degrees
Belief, plausibility measures
Possibility, necessity degrees

Fuzzy sets
Error intervals
Validity frequencies

Probabilistic logic
Bayesian Induction
Belief networks
Propagation of degrees
Evidence theory
Possibilistic logic
Fuzzy logic
Fuzzy set-based techniques
Interval analysis
Numerical quantifiers

Imprecisions

General laws, exceptions Hypotheses Hypothetical reasoning
Default rules Default reasoning
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3. FUZZY SET THEORY

3.1. Introduction to Fuzzy Set Theory

Fuzzy set theory, introduced in 1965 by Zadeh [11] provides knowledge represen-
tation suitable for biological and medical problems because it enables us to work with
imprecise information as well as some type of uncertainty. We present such a repre-
sentation using an example. Let us think of the glycemia level of patients. We can use a
threshold of 1.4 g/1, providing two classes of levels: those at most equal to the threshold,
labeled "normal," and those greater than the threshold, labeled "abnormal."

The transition from one label to the other appears too abrupt because a level of
1.39 g/1 is considered normal and a level of 1.41 g/1 is considered abnormal. Instead, we
can establish a progressive passage from the class of normal levels to the class of
abnormal ones and consider that the level is normal up to 1.3 g/1; that the greater the
level between 1.3 and 1.5 g/1, the less normal this level; and finally that the level is
considered really abnormal when greater than 1.5 g/1. We then define a fuzzy set A of
the set X of possible values of the glycemia level by means of a membership function/A,
which associates a coefficient /A(x) in [0,1] to every element x of X. This coefficient
indicates the extent to which x belongs to A (see Figure 1).

The main novelty of fuzzy set theory compared with classical set theory is the
concept of partial membership of an element in a class or a category. This corresponds
to the idea that a level can be "somewhat abnormal." The possibility of representing
gradual knowledge stems from this concept, such as "the more the value increases
between given limits, the more abnormal the level," and of allowing progressive passage
from one class (the class of normal levels) to another one (the class of abnormal levels).
This possibility justifies the use of such a knowledge representation for modeling bio-
logical phenomena, in which there is generally no strict boundary between neighboring
situations.

Such a representation is also interesting because it can be adjusted to the environ-
ment. If the observed patients are elderly, the membership function of the class of
abnormal glycemia levels indicated in Figure 1 must be shifted 0.4 g/1 to the right.
Another advantage of this approach is that one can set up an interface between numer-
ical values (1.3 g/1) and symbolic ones expressed in natural language (normal level). For
instance, a young patient with a glycemia level of 1.7 g/1 (numerical value) is associated
with the symbolic value "abnormal." Conversely, a new patient with no record in a
hospital can indicate that he had an abnormal glycemia level in the past; this symbolic

Figure 1 Fuzzy set A representing the cate-
gory "abnormal" of the glycemia rate.
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Section 3 Fuzzy Set Theory 5

information will be taken into account together with measured (numerical) levels
obtained in the future.

It is easy to see that fuzzy sets are useful for representing imprecise knowledge with
ill-defined boundaries, such as approximate values of vague characterizations (see
Figure 2). Such a representation is also compatible with the representation of some
kinds of uncertainty by means of possibility theory, which we will develop later.

Figure 2 Fuzzy set B representing the
approximate value "about 1.4g/l" of the gly-
cemia rate. 1.3 1.4 1.5

3.2. Main Basic Concepts of Fuzzy Set Theory

3.2.1. Definitions

For a given universe X, a classical subset C is defined by a characteristic function
Xc lying in {0, 1}, and a fuzzy set A is defined by a membership function fA : X -> [0, 1],
A classical (or crisp) subset of X is then a particular case of a fuzzy set. We note that
classical (or crisp) subsets of X are particular cases of fuzzy sets, corresponding to
membership functions taking only the value 0 or 1.

Some particular elements are of interest in describing a fuzzy set:

Its support:

suppG4) = {*£X//4(x)^0} (1)

Its height:

h(A) = supxeXfA(x) (2)

Its kernel or core:

kn(A) = {xeX/fA(x) = l} (3)

Its cardinality:

\A\ = jyA(x) (4)

Fuzzy sets with a nonempty kernel and a height equal to 1 are called normalized.

fs
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In the example given in Figure 1, with a continuous membership function, we have
KerOO = [1.5, +oo[, Supp(^) = [1.3, +oo[, h(A) = 1.

Let us remark that a fuzzy set can have several interpretations, depending on the
situation:

• Partial membership (fA(x) is the membership degree of x in the class A)
• Preference (fA(x) is the degree of preference attached to x)
• Typicality (fA(x) is the degree of typicality of x in the class A)
• Possibility (fA(x) is the degree of possibility that x is the value of a variable

defined on X)

Two fuzzy sets A and B of X are equal if and only if

VxeX fA(x)=fB(x) (5)

3.2.2. Operations on Fuzzy Sets

We define the inclusion of fuzzy sets of X as a partial order such that A is included
in B, and we note A c B, if and only if

VxeX fA(x)<fB(x) (6)

with:

• The empty set (Vx e X fA(x) = 0) as smallest element
• The universe itself (Wx e X fA(x) = 1) as greatest element

It is then necessary to define operations on fuzzy sets extending the operations on
crisp subsets of X.

The intersection of A and B (Figure 3) is defined as the fuzzy set C = A n B of X
with the following membership function:

WxeX VxeX (fc{x) = min/<(*), fB{x)) (7)

The union of A and B (Figure 4) is defined as the fuzzy set D = A U B of X with the
following membership function:

VxeX fD(x) = mBx(fA(x),fB(x)) (8)

X Figure 3 Intersection of fuzzy sets A and B.
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Figure 4 Union of fuzzy sets A and B.

J AviR

X

Figure 5 Complement of a fuzzy set A.

The properties of intersection and union of crisp subsets of X are preserved by
these definitions: associativity of Pi and U, commutativity of n and U, AD0 = A,
AUX = X, Ar\X = A, AD 0 = 0, AUB^A-DADB, and distributivity of D over
U and, conversely, of U over n.

We now define the complement of a fuzzy set A of X (Figure 5) as the fuzzy set Ac

of X with the following membership function:

VxeX fAx)=l-fA(x) (9)

This definition preserves almost all the properties available in classical set theory,
except the following ones:

• Ac n A i=- 0
• ACUA^X

which means that a class and its complement may overlap, in agreement with the basic
idea of partial membership in fuzzy set theory.

In some cases, it can be interesting to lose some other properties and to use
definitions of intersection and union with a slightly different behavior.

The most common alternative operators are triangular norms (t-norms) T: [0, 1] x
[0, 1] -» [0, 1] to define the intersection and triangular conorms (t-conorms) _L: [0, 1] x
[0, 1] -> [0, 1] to define the union. These operators have been introduced in probabilistic
metric spaces and they are

• Commutative
• Associative
• Monotonous
• Such that T(x, 1) = x, JL(x, 0) = x for any x in [0, 1]

7
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It is easy to check that min is a t-norm and max a t-conorm, which are dual in the
following sense:

• l-T(x,y) = ±(l-x9 \-y)
m l-±(x,y) = T(l-x, 1 -y)

The other widely used t-norms are the product T{x, y) = xy and the so-called
Lukasiewicz t-norm T(x, y) = max(x -\-y —1,0), respectively dual from the following
t-conorms: ±(x, y) = x + y — xy and _L(JC, y) = min(x + y, 1) (Figures 6 and 7).

*AnB T(x,y) = max(x+y-\,0)

fA fa

Figure 6 Intersection of A and B based on
X the Lukasiewicz t-norm.

JAKJB
JL (JC, y) = min(x +y,\)

Figure 7 Union of A and B based on the
X Lukasiewicz t-conorm.

When several universes are considered simultaneously—for instance, several cri-
teria to make a decision, attributes to describe an object, variables to control a system—
it is necessary to define the Cartesian product of fuzzy sets of the various universes. This
situation is very frequent, because a decision, a diagnosis, the recognition of a class, and
so forth are generally based on the use of several factors involved simultaneously.

Let us consider universes Xi,X2,.. .,Xr and their Cartesian product
X = X\ x X2 x • • • x Xr, the elements of which are r-tuples (x\, x2,..., xr), with
xx e X\,. ..,xr e Xr. From fuzzy sets A\, A2,..., An respectively defined on
X\, X2,..., Xn we construct a fuzzy set of X denoted by A = Ax x A2 x • • • x Ar, con-
sidered as their Cartesian product, with membership function

Vx = (xl9x2,...,xr)eX fA(x) = min(fAl (xx),... JAr(xr)) (10)

3.2.3. The Zadeh Extension Principle

Another important concept of fuzzy set theory is the so-called Zadeh extension
principle, enabling us to extend to fuzzy values the operations or tools used in classical
set theory or mathematics. Let us explain how it works. Fuzzy sets of X are imperfect
information about the elements of X. For instance, instead of observing x precisely, we

l
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Section 3 Fuzzy Set Theory 9

can only perceive a fuzzy set of X with a high membership degree attached to x. The
methods that would be available to manage the information regarding X in the case of
precise information need to be adapted to be able to manage fuzzy sets.

We consider a mapping 0 from a first universe X to a second one Y, which can be
identical to X. The Zadeh extension principle defines a fuzzy set B of Y from a fuzzy set
A of X, in agreement with the mapping 0, in the following way:

VjeF fs(y) = supx^(y/A(x) if 0*0) 7^0 (11)

and/gO) = 0 otherwise, with 0*0) = {x e X/y = 0(x)} if 0: X -> F, and 0*0) = (JCG
Z / J ; G 0(x)} if 0: X -> P(7) (i.e., 0 is multivalued).

If 4̂ is a crisp subset of X reduced to a singleton [a], the Zadeh extension principle
constructs a fuzzy set i? of Y reduced to 0({<z}).

If 0 is a one-to-one mapping, then

VyeY fB(y)=fA(<p-l(y)) (12)

If we consider the Cartesian product of universes X = Xx x X2 x • • • x Xr and A
the Cartesian product of fuzzy sets of these universes A — A\ x A2 x • • • x An the
Zadeh extension principle associates a fuzzy set B of Y with A as follows:

V7 € Y fB(y) = supjM:Clf...iJCr)€^)min(^1(x1),... ,/^(xr)) if 0*0) ^ 0 (13)

and /tfO) = 0 otherwise
For example, let us consider the fuzzy set A representing "about 1.4" on the

universe X = [0, +oo[, as defined in Figure 2. If we know that the value of variable
W defined on X is greater than the value of variable V and that the value of V is about
1.4, we can characterize the value of W by the fuzzy set B obtained by applying the
extension principle to the order relation on [0, +oo[. We have Y = [0, +oo[ and
(j){x) = {yeY/y>x}. We get

YyeF fB(y) = supy>xfA(x)

fB(y) = 0 if x< 1.3, /aG0=lifj>>1.4

which corresponds to a representation of "greater than about 1.4."
Another example of application of application of the extension principle defines a

distance between imprecise locations. Let us consider a set of points Z = {a, b, c, d}. The
distance between any pair of points of Z is defined by a mapping 0: Z x Z -» [0, +oo[.
If the points are observed imprecisely, we need to extend the notion of distance to fuzzy
sets.

We use the extension principle with X — Z x Z and Y = [0, +oo[, and we get a
fuzzy set C of [0, +oo[ with a membership function defined for any d e [0, +oo[ by

fc(d) = sup{Oc^x^yMXiy)^rr^(fA(x)JB(y))

if [(x, y)eX,x^y, 0(x, y) = d) ^ 0 (15)

fc(d) = 0 otherwise
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This kind of distance can be used, for instance, in image processing.
The Zadeh extension principle is fundamental for extending to fuzzy sets all the

concepts we are familiar with in classical set theory, for instance, in reasoning or
arithmetic.

3.3. Fuzzy Arithmetic

Arithmetic is precisely one of the domains where fuzzy sets are widely used. Many
applications use the universe M of real numbers, with fuzzy sets representing imprecise
measurements of real-valued variables (e.g., distance, weight). The membership func-
tions are generally chosen as simple as possible, compatible with the intuitive represen-
tation of approximations. This simple form of functions corresponds to convex fuzzy
sets.

A fuzzy set F on X is convex if it satisfies the following condition:

V(x, j ) eRxRVzGfc y] fF(z) > min(fF(x)JF(y)) (16)

• A fuzzy quantity Q is a normalized fuzzy set of R.

• A model value of Q is an element m of M in the kernel of Q such that/g(m) = 1.

• A fuzzy interval I is a convex fuzzy quantity. It corresponds to an interval of IR
with imprecise boundaries.

• A fuzzy number M is a fuzzy interval with an upper semicontinuous membership
function, a compact support, and a unique modal value. It corresponds to an
imprecisely known real value.

It is often necessary to compute the addition or the product of imprecisely known
real values. For instance, if a patient has lost approximately 5 pounds during the first
week and 3 pounds during the second one, how much has he lost during these two
weeks? Symbolically, we can conclude that he has lost approximately 8 pounds, but we
need to formalize this operation to define automatic operations for more complex
problems. We use the Zadeh extension principle to extend the classical arithmetic
operations to fuzzy quantities. We do not go into detail with the general definition of
fuzzy quantities. We focus on particular forms of membership functions for which the
main operations are easily computable. They are called L-R fuzzy intervals.

An L-R fuzzy interval I is a fuzzy quantity with a membership function// defined
by means of four real parameters (m, m\ a, b) with a and b strictly positive, and two
functions L and R, defined on R+, lying in [0, 1], upper semicontinuous, nonincreasing,
such that

L(0) = i*(0) = 1
L(l) = 0 or L(x) > 0 Vx with l i m ^ ^ L(x) = 0
R(\) = 0 or R(x) > 0 Vx with l i n v ^ R(x) = 0 (17)

The membership function of an L-R fuzzy interval defined by m, m\ a, and b is
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fj(x) = L((m — x)/a) if x < m

fI(x)=l ifm<x<m' (18)

fj(x) = R((x - mf)/b) if x > rri

We note / = (m, m', a, b)LR. It can be interpreted as "approximately between m and
m'r

The particular case of an L-R fuzzy interval (n, n, a, b)LR is an L-R fuzzy number
denoted by M — (n, a, b)LR. It can be interpreted as "approximately «."

Fuzzy quantities often have trapezoidal or triangular membership functions. They
are then L-R fuzzy intervals or numbers, with R(x) = L(x) = max(0,1 - x). It is also
possible to use functions such as max(0, 1 - x2), max(O, 1 - x)2 or exp(-x) to define R
and L.

Given two L-R fuzzy intervals defined by the same functions L and R, respectively
denoted by 7 = (rn, m', a, b)LR and / = (n, n', c, d)LR, the main arithmetic operations
can be computed very simply, as follows:

• For the opposite of /: — / = (—rn', —rn, b, a)LR

• For the addition: / @J = (rn + n, rn' + ri,a + c,b-\- d)LR

• For the subtraction: / 0 J = (m — n',m —n,a + d,b + c)LR if L = R

• For the product: / <g> / is generally not an L-R fuzzy interval, but it is possible to
approximate it by the following L-R fuzzy interval:

/ 0 / = (mn, rn'n', me + na, md + nb)LR (19)

These operations satisfy the classical properties of the analogous operations in
classical mathematics except for some of them. For instance, Q 0 (-Q) is different
from 0, but it accepts 0 as its modal value; it can be interpreted as "approximately
null."

For example, if / is a triangular fuzzy number with modal value 4 and support
]3, 5[ and / a triangular fuzzy number with modal value 8 and support ]6, 10[, we
represent them as L-R fuzzy numbers / = (4,4 — 3, 5 — 4)LR = (4, 1, l)LR,
J = (8, 8 - 6, 10 - S)LR = (8, 2, 2).

Then we obtain the following results:

• —/ = (—4, 1, l)LR is a triangular fuzzy number with modal value —4 and with
support ] — 5, —3[.

• / 0 / = (12, 3, 3)LR is a fuzzy number with modal value 12 and support ]9, 15[.

• 7 0 7 = (8 - 4 , 2 + 1 , 2 + l)L/? = (4, 3, 3)LR is a triangular fuzzy number with
modal value 4 and support ]1, 7[.

3.4. Fuzzy Relations

Because fuzzy set theory represents a generalization of classical set theory, we need
to generalize all the classical tools available to manage crisp data. Fuzzy relations are
among the most important concepts in fuzzy set theory.

A fuzzy relation R between X and Y is defined as a fuzzy set o f l x Y.
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An example of fuzzy relation can be defined on X = Y = U to represent approx-
imate equality between real values, for instance, with the following membership func-
tion:

VxeXVyeY /Re(x, y) = ——i 3 (20)
l+(x-yY

Another example, also defined on X = Y = R, is a representation of the relation
"y is really greater than x" with the following membership function:

, ( m i n f l , ^ ^ ) ify>x
V(x,j)e!R2 Mx,y)=\ V 0 / (21)

[ 0 otherwise

for a parameter f$ > 0 indicating the range of difference between x and y we accept.
If we have three universes X, Y, and Z, it is useful to combine fuzzy relations

between them. The max-min composition of two fuzzy relations ^ o n l x Y and R2 on
Y x Z defines a fuzzy relation i? = i?t o i?2 on I x Z, with membership function:

V(x,z)eXxZ fR(x,2) = supy€7minfo(x,j),/*2(y,*)) (22)

The main utilizations of fuzzy relations concern the representation of resemblances
("almost equal") or orders ("really smaller"). We need to define general classes of fuzzy
relations suitable for such representations, based on particular properties of fuzzy
relations: symmetry, reflexivity, transitivity, antisymmetry, extending the analogous
properties of classical binary relations.

A similarity relation is a symmetrical, reflexive and max-min transitive fuzzy rela-
tion. It corresponds to the idea of resemblance and it can be used in classification,
clustering, and analogical reasoning, for instance.

A fuzzy preorder is a reflexive and transitive fuzzy relation JR. If R is also anti-
symmetrical, R is a fuzzy order relation. It corresponds to the idea of ordering or
anteriority and it is useful in decision making, for instance, for the analysis of prefer-
ences or for temporal ordering of events.

4. POSSIBILITY THEORY

4.1. Possibility Measures

Fuzzy set theory provides a representation of imprecise knowledge. It does not
present any immediate representation of uncertain knowledge, which is nevertheless
necessary to reason with imprecise knowledge. Let us consider the precise and certain
rule "if the patient is at least 40 years old, then require a mammography." Imprecise
information such as "the patient is approximately 40 years old" leads to an uncertain
conclusion, "we are not certain that the mammography is required." This simple
example proves that imprecision and uncertainty are closely related.

Possibility theory was introduced in 1978 by Zadeh [12] to represent nonprobabil-
istic uncertainty linked with imprecise information in order to enable reasoning on
imperfect knowledge. It is based on two measures defined for any subset of a given
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universe X, the possibility and the necessity measure. Let P(X) denote the set of subsets
of the universe X.

A possibility measure is a mapping II: P(X) -> [0, 1], such that

i. n(0) = o , n t r ) = i, (23)
ii. VAX e p{x)9 A2 e P(x)... n(u,=1,2...^-) - suP/==1,2.. n ( ^ ) . (24)

In the case of a finite universe X, we can reduce ii to ii', which is a particular case of
ii for any X:

ii'. MA £ P(X),B £ P{X) U(A U B) = max(II(i4), 11(5)) (25)

We can interpret this measure as follows: n(^4) represents the extent to which it is
possible that the subset (or event) A of X occurs. If U(A) = 0, A is impossible; if
U(A) — 1, A is absolutely possible.

We remark that the possibility measure of the intersection of two subsets of X is
not determined from the possibility measure of these subsets. The only information we
obtain from i and ii is the following:

VA € P(X), B £ P(X) U(A HB)< min(nO4), U(B)) (26)

Let us remark that two subsets can be individually possible (U(A) / 0, U(B) ̂  0)
but jointly impossible (Ti(A DB) = 0).

Let us consider the example of identification of a disease in a universe
X = {d\, d2,, d3, d4). We suppose that it is absolutely possible to be in the presence of
disease dx or disease d2, disease d3 is relatively possible, and disease d4 is impossible, and
we represent this information as follows:

n({dud2}) = 1, n({d3}) = 0.8, Tl({d4}) = 0 (27)

We deduce that it is absolutely possible that the disease is one of {d{, d2, d4], since

U({dud2, d4}) = max(l, 0) = 1 (28)

It is relatively possible that the disease is one of d3, d4 since

n({rf3, d4}) = max(0.8, 0) = 0.8 (29)

but the intersection {d4} of these two subsets {d{, d2,d4) and {d3i d4] of X corresponds to
a possibility measure equal to 0.

We deduce from conditions i and ii that

n is monotonous with respect to the inclusion of subsets of X:

If A D B then U(A) > U(B) (30)

If we consider any subset A of X and its complement Ac, at least one of them is
absolutely possible. This means that either an event or its complement is absolutely
possible:
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VA e P(X) max(n(,4)? n(^ c)) = 1

n(A) + n(^c) > i

It is easy to see that possibility measures are less restricting than probability
measures, because the possibility degree of an event is not necessarily determined by
the possibility degree of its complement.

4.2. Possibility Distributions

A possibility measure II is completely defined if we assign a coefficient in [0,1] to
any subset of X, In the example of four diseases, we need 16 coefficients to determine n .
It is easier to define possibility degrees if we restrict ourselves to the elements (and not
to the subsets) of X and we use condition ii to deduce the other coefficients.

A possibility distribution is a mapping it: X -> [0,1] satisfying the normalization
condition:

supx€Jr^W = 1 (32)

A possibility distribution assigns a coefficient between 0 and 1 to every element of
X, for instance, to each of the four diseases d\, d2, d3, d4. Furthermore, at least one
element of X is absolutely possible, for instance, one disease in {di,d2, d3, d4] is abso-
lutely possible. This does not mean that this disease is identified, because several of
them can be absolutely possible and other information is necessary to make a choice
between them.

Possibility measure and distribution can be associated. From a possibility distribu-
tion 7T, assigning a coefficient to any element of X, we construct a possibility measure
assigning a coefficient to any subset of X as follows:

VA € P(X) U(A) = supxeAn(x) (33)

Conversely, from any possibility measure n , we construct a possibility distribution
as follows:

VxeX n(x) = U({x}) (34)

For instance, a possibility distribution such as

n(di) = 1, 7t{d2) = 0.4, 7t(d3) = 0.8, n{dA) = 0 (35)

is compatible with the preceding possibility measure, which is not given completely as
only 3 of the 16 coefficients are indicated.

In the case of two universes X and F, we need to define the extent to which a pair
(x, y) is possible, with x e X and y e Y.

The joint possibility distribution n{x, y) on the Cartesian product X x Y is defined
for any x e X and y e Y and it expresses the extent to which x and y can occur
simultaneously.

The global knowledge of X x Y through the joint possibility distribution 7r(x, y)
provides marginal information on X and Y by means of the marginal possibility dis-
tributions, for instance on Y:
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VyeY 7TY(y) = supxeXn(x, y) (36)

which satisfy:

Vx € X VyeY n(x, y) < min(7tx(x), nY(y)) (37)

We remark that a joint possibility distribution provides uniquely determined mar-
ginal distributions, but the converse is false. Determining a joint possibility distribution
7t on X x Y from possibility distributions nx on X and nY on Y requires information
about the relationship between events on X and Y. If we have no information, TC cannot
be known exactly.

The universes X and Y are noninteractive if

V x e l VyeY n(x, y) = mm{7ix(x), jtY(y)) (38)

This possibility distribution JT(X, y) is the greatest among all those compatible with
nx and TTY. TWO variables respectively defined on these universes are also called non-
interactive.

The effect of X on Y can also be represented by means of a conditional possibility
distribution nYjX such that

VxeXVyeY JT(X, y) = nY/x(x, y) * itx{x) (39)

for a combination operator *, generally the minimum or the product.
For example, if we consider again the universe X = {dx, d2,d3, dA) of diseases and

we add a universe Y = {su s2, s3, s4, s5, s6} of symptoms, 7tY(Si) is the possibility degree
that a patient presents symptom sf and nx(dj) is the possibility degree that a patient
suffers from disease dj. For a disease dj and a symptom sh we define the possibility
degree jv(dj, Sj) that the pair (dj, st) is possible. X clearly has an influence on Y and the
universes are interactive. We can have nx(dj) = 1, 7tY(Si) = 1, but n(dj, st) = 0.05. We
can also define the conditional possibility degree nYjX{dj, st) that the symptom is sf

given that the disease is dj. For instance, if the available information provides the values
7ix(d3) = 0.8 and 7tY/x(d3, s() = 1, then n(d3, s() = 0.8, since n(d3, si) = nY/x(d3, si) * ixx

(d3) = 1 * 0.8 = 0.8, when we choose the minimum or the product for the operator *.
This means that if disease d3 is relatively possible for a given patient and if symptom s-%

is completely possible when disease d3 is present, then it is relatively possible that the
given patient presents both disease d3 and symptom s{.

4.3. Necessity Measures

In this example, we see that a possibility measure provides an information on the
fact that an event can occur, but it is not sufficient to describe the uncertainty about this
event^asd to obtain a conclusion from available data. For instance, if Tl(A) = 1, the
event A is absolutely possible, but we can have Ti(Ac) = 1, which proves that we have
an absolute uncertainty about A. A solution to this problem is to complete the infor-
mation on A by means of a measure of necessity on X.

A necessity measure is a mapping N: P(X) -> [0,1], such that

iii. N((Z>) = 0, N(X) = 1, (40)
iv. \/Al€P(X),A2eP(X)... N(nMt..Ai)=wfi=h2.M4)> (41)
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In the case of a finite universe X, we can reduce iv to iv' which is a particular case
of iv for any X:

iv7. \/A e P(X), B e P(X) N(A nB) = min(N(A),N(B)) (42)

We can interpret this measure as follows: N(A) represents the extent to which it is
certain that the subset (or event)^4 of X occurs. If N(A) = 0, we have no certainty about
the occurrence of the event A\ if N(A) = 1, we are absolutely certain that A occurs.

Necessity measures are monotonous with regard to set inclusion:

if A D B, then N(A) > N(B) (43)

The necessity degree of the union of subsets of X is not known precisely, but we
know a lower bound:

VA e P(X), B € P(X) N(A UB)> m&x(N(A), N(B)) (44)

We deduce also from iii and iv a link between the necessity measure of an event A
and its complement Ac:

VA e P(X) min(N(A), N(AC)) = 0
(45)

N(A) + N(AC) < 1

We see that the information provided by a possibility measure and that provided
by a necessity measure are complementary and their properties show that they are
linked together. Furthermore, we can point out a duality between possibility and neces-
sity measures, as follows.

For a given universe X and a possibility measure FI on X, the measure defined by

VA e P(X) N(A) = 1 - U(AC) (46)

is a necessity measure on X ifAc denotes the complement of A in X. We are certain that
A occurs (N(A) = 1) if and only if Ac is impossible (U(A°) = 0) and then n(^) = 1.

If n is defined from a possibility distribution n, we can define its dual necessity
measure by

VAeP(X) N(A) = MxeX(l-7r(x)) (47)

which means we need only one collection of coefficients between 0 and 1 associated with
the elements of the universe X (the values of n(x)) to determine both possibility and
necessity measures.

With the previous example, the certainty on the fact that the patient suffers from
disease d\ is measured by Af({ î}) and it can be deduced from the greatest possibility
that the patient suffers from one of the three other diseases:

#({<*!}) = 1 - n({</2, d3, d4}) = 1 - max(7r(J2), n(d3), n(d4)) (48)

The duality between n and N also appears in the following relations, satisfied
WA e P(X):
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• T[(A)>N(A\

• max(n(^), l-N(A)) = l,
• If N(A) # 0, then U(A) = 1,

• If Tl(A)^l9 then N(A) = 0.

These properties are important if we elicit the possibility and necessity measures
from a physician. For instance, if the physician provides first possibility degrees U(A)
for events A, we should not ask the physician to give necessity degrees for events with
possibility degrees strictly smaller than 1, because N(A) = 0 in this case. If the physician
provides first degrees of certainty, corresponding to values of a necessity measure, we
should not ask for possibility degrees for events with necessity degrees different from 0,
as U(A) = 1 in this case.

4.4. Relative Possibility and Necessity of Fuzzy
Sets

Possibility and necessity measures have been defined for crisp subsets of X, not for
fuzzy sets. In the case in which fuzzy sets are observed, analogous measures are defined
with a somewhat different purpose, which is to compare an observed fuzzy set F to a
reference fuzzy set A of X.

The possibility of F relative to A is defined as

nCf; A) = supxeX min(fF(x)JA(x)) (49)

We remark that U(F; A) = 0 indicates that F n A = 0, and Yl(F; A) = 1 indicates
that FDA^0.

The dual quantity defined by N(F; A) — 1 — FI(JPC; A) is the necessity of F with
regard to A, defined as

N(F; A) = MxeX max(/>(x), 1 -fA(x)) (50)

These coefficients are used, among other things, to measure the extent to which F
is suitable with A. For example, with the universe X of real numbers, we can evaluate
the compatibility of the glycemia level F of a patient, described as "about 1.4 g/1"
(Figure 2), with a reference description of the glycemia level as "abnormal" (Figure
1), by means of Tl(F; A) and N(F:, A), and this information will express the extent to
which the glycemia level can be considered abnormal.

5. APPROXIMATE REASONING

Possibility theory, as presented in Section 4, is restricted to crisp subsets of a universe.
The purpose of its introduction was to evaluate uncertainty related to inaccuracy. We
need to establish a link between both approaches.

5.1. Linguistic Variables

A linguistic variable is a 3-tuple (V, X, 7 » , defined from a variable V (e.g., dis-
tance, glycemia level, temperature) defined on a universe X and a set Tv = {A{, A2 ...}
of fuzzy characterizations of V. For instance, with V = glycemia level, we can have
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7> = {normal, abnormal} (Figure 8). We use the same notation for a linguistic char-
acterization and for its representation by a fuzzy set of X. The set Tv corresponds to
basic characterizations of V.

We need to construct more characterizations of V to enable efficient reasoning
from values of V.

A linguistic modifier is an operator m yielding a new characterization m(A) from
any characterization A of V in such a way that fm^A) = tm(fA) for a mathematical
transformation tm associated with m.

For a set M of modifiers, M{TV) denotes the set of fuzzy characterizations deduced
from Tv. For example, with M = {almost, very}, we obtain M(TV) = {very abnormal,
almost normal...} from Tv = {normal, abnormal} (Figure 9).

Examples of linguistic modifiers are defined by the following mathematical defini-
tions, corresponding to translations or homotheties:

• fm(A)(x) =fA(x)2 (very) introduced by Zadeh
• fm(A)ix) =/*W1 / / 2 (more or less) introduced by Zadeh
• fm(A)(x) = min(l, kfA(x))9 for A > 1 (approximately)
• fm(A)(x) = rnax(0, v<j)(x) + 1 — v), for a parameter v in [1/2, 1] (about)
• fm(A)(x) = min(l, max(0, <fcx) + flj), with 0 < 0 < 1 (rather)
• tm(fA(x) =fA(x + a)> f°r a r e a l parameter a (really or rather, depending on the

sign of a) where <p is the function identical tofA on its support and extending it
out of the support.

Figure 8 Set Tv of fuzzy characterizations
associated with the variable V = glycemia
rate.

Abnormal

Almost abnormal

Very abnormal

Figure 9 Representation of the effect of lin-
guistic modifiers almost and very on "abnor-
mal."
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5.2. Fuzzy Propositions

We consider a set L of linguistic variables and a set M of linguistic modifiers.
For a linguistic variable (F, X, Tv) of L, and elementary proposition is defined as

" F is A" ("the glycemia level is abnormal") by means of a normalized fuzzy set A of X
in 7> or in M(TV).

The more suitable the precise value of V with A, the more true the proposition " V
is A" The truth value of an elementary fuzzy proposition " F is A" is defined by the
membership function/* of A.

A compound fuzzy proposition is obtained by combining elementary propositions
" F is A" "W is B" ... for noninteractive variables F.

The simplest fuzzy proposition is a conjunction of elementary fuzzy propositions
"V is A and W is 5" (for instance, "the glycemia level is abnormal and the cholesterol
level is high"), for two variables V and W respectively defined on universes X and Y. It
is associated with the Cartesian product A x B of fuzzy sets of X and Y, characterizing
the pair (F, W) on X x 7. Its truth value is defined by mm(fA{x), fB(y)) or more
generally T(fA(x),fB(y)) for a t-norm T9 in any (x, j) o f l x 7. Such a fuzzy proposi-
tion is very common in rules of knowledge-based systems and in fuzzy control.

Analogously, we can combine elementary propositions by a disjunction of the form
" F is A or W is J5" (for instance, "the glycemia level is abnormal and the cholesterol
level is high"). The truth value of the fuzzy proposition is defined by max(fA(x),fB(y)),
or more generally J-(/̂ CxO,/5(j/)) for a t-conorm J_, in any (x,y) o f l x Y.

An implication between two elementary fuzzy propositions provides a fuzzy pro-
position of the form "if F is A then W is B" (for instance, "if the glycemia level is
abnormal then the suggestion is sulfonylurea"), and we will study this form of fuzzy
proposition carefully because of its importance in reasoning in a fuzzy framework.

More generally, we can construct fuzzy propositions by conjunction, disjunction,
or implication on already compound fuzzy propositions.

A fuzzy proposition based on an implication between elementary or compound
fuzzy propositions, for instance, of the form "if F is A and W is B then U is C" ("if the
glycemia level is medium and the creatininemia level is smaller than k, then the sugges-
tion is not sulfonylurea") is & fuzzy rule, "F is A and W is 2?" is its premise, and "U is
C" is its conclusion.

5.3. Possibility Distribution Associated
with a Fuzzy Proposition

The concepts of linguistic variable and fuzzy proposition are useful for the man-
agement of imprecise knowledge when we associate them with possibility distributions
to represent uncertainty.

A fuzzy characterization A such as "abnormal" is prior information and its mem-
bership function fA indicates to what extent each element x of X belongs to A. A fuzzy
proposition such as "the glycemia level is abnormal" is posterior information, given
after an observation, which describes to what extent it is possible that the exact value of
the glycemia level is any element of X.

An elementary fuzzy proposition induces a possibility distribution nVtA on X,
defined from the membership function of A by
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VxeX I M ( I )=/ ,W (51)

From this possibility distribution, we define a possibility and a necessity measure
for any crisp subset D of X, given the description of V by A:

^vAD) = ™pxeDnv,A(x)

NKA(D)=l~nKA(Dc)

Analogously, a compound fuzzy proposition induces a possibility distribution on
the Cartesian product of the universes. For instance, a fuzzy proposition such as ' T is
A and W is 1?," with V and W defined on universes X and Y, induces the following
possibility distribution:

VxeX,VyeY x{VtW),AxB(x,y) = mm(fA(x)JB(y)) (53)

Such a connection between membership functions and degrees of possibility, or
equivalently between imprecision and uncertainty, appears clearly if we again use the
example given in Figure 1. We see that a value of the glycemia level equal to 1.4 g/1
belongs to the class of abnormal levels with a degree equal to 0.5. Conversely, if we
know only that a given glycemia level is characterized as "abnormal," we deduce that

It is impossible that this level is less than 1.3 g/1, which means that the possibility
degrees are equal to zero for the values of the glycemia level smaller than 1.3 g/1.
It is absolutely possible that this level is at least equal to 1.5 g/1, which means
that the possibility distribution assigns a value equal to 1 to levels at least equal
to 1.5 g/1.

It is relatively possible, with a possibility degree between 0 and 1, that the glycemia
level is between 1.3 and 1.5 g/1.

In the case of an uncertain fuzzy proposition such as "V is A, with an uncertainty
6," for A e Tv, no element of the universe X can be rejected and every element x of X
has a possibility degree at least equal to e. Such a fuzzy proposition is associated with a
possibility distribution:

n'(x) = max(7tVA(x), e) (54)

For instance, a fuzzy proposition weighted by an uncertainty, such as "it is pos-
sible that the glycemia level is abnormal, with an uncertainty 0.4" or, equivalently, "it is
possible that the glycemia level is abnormal, with a certainty 0.6," is represented by a
possibility distribution n' as indicated in Figure 10 by using the possibility distribution

Figure 10 Possibility distribution of an
uncertain fuzzy proposition.0 1.3 1.5 g/1

1

0.5

£
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nv,A deduced from the membership function of "abnormal" given in Figure 1 and the
value 0.4 of €.

5.4. Fuzzy Implications

The use of imprecise and/or uncertain knowledge leads to reasoning in a way close
to human reasoning and different from classical logic. More particularly, we need:

To manipulate truth values intermediate between absolute truth and absolute
falsity
To use soft forms of quantifiers, more gradual than the universal and existential
quantifiers V and 3
To use deduction rules when the available information is imperfectly compatible
with the premise of the rule.

For these reasons, fuzzy logic has been introduced with the following character-
istics:

Propositions are fuzzy propositions constructed from sets L of linguistic variables
and M of linguistic modifiers.
The truth value of a fuzzy proposition belongs to [0,1] and is given by the member-
ship function of the fuzzy set used in the proposition.
Fuzzy logic can be considered as an extension of classical logic and it is identical
to classical logic when the propositions are based on crisp characterizations of
the variables.

Let us consider a fuzzy rule "if V is A then W is 2?," based on two linguistic
variables (F, X, Tv) and (W, 7, TV).

A fuzzy implication associates with this fuzzy rule the membership function of a
fuzzy relation R on X x Y defined as

V(x,y)eXxY fR(x,y) = F{fA(x)JB(y)) (55)

for a function F chosen in such a way that, if A and B are singletons, then the fuzzy
implication is identical to the classical implication.

There exist many definitions of fuzzy implications. The most commonly used are
the following:

fR(x, y) = 1 -fA(x) +fA(x) -fB{y) Reichenbach
fR(x, y) = max(l -fA(x), mm(fA(x)JB(y)) Willmott
/R(X, y) = max(l -fA(x)JB(y)) Kleene-Dienes
/R(X, y) = min(l -fA(x) +fB(y), 1) Lukasiewicz
fR(x,y) = min(fB(y)/fA(x), 1) if fA(x) # 0 and 1 otherwise Goguen
fR(x>y) == 1 if/4OO <fB(y) a nd 0 otherwise Rescher-Gaines
fR(x>y) = 1 if /A(X) ^ /BOO and/sQO otherwise Brouwer-Godel
fR(x, y) = mm{fA(x)JB(y)) Mamdani*

/*(*. y) =/A(X) -hiy) Larsen*„*
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The last two quantities (*) do not generalize the classical implication, but they are
used in fuzzy control to manage fuzzy rules.

Generalized modus ponens is an extension of the scheme of reasoning called modus
ponens in classical logic. For two propositions/? and q such that/? => q, ifp is true, we
deduce that q is true. In fuzzy logic, we use fuzzy propositions and, ifpf is true, with/?'
approximately identical to /?, we want to get a conclusion, even though it is not q itself.

Generalized modus ponens (g.m.p.) is based on the following propositions:

Rule if V is A then W is B
Observed fact V is Af

Conclusion W is B'

The membership function fB> of the conclusion is computed from the available
information:/R to represent the rule,/^ to represent the observed fact, by means of the
so-called combination-projection rule:

Vj € Y fB'{y) = supxeXT(fAx), fR(x, y)) (56)

for a t-norm T called a generalized modus ponens operator.
The choice of T is determined by the compatibility of the generalized modus

ponens with the classical modus ponens: if A = A1, then B = B\
The most usual g.m.p. operators suitable with this condition are the following:

The Lukasiewicz t-norm T(u, v) = max(w + v — 1,0) with any of the fuzzy impli-
cations mentioned above.
The product t-norm F(w, v) = u.v with the five last fuzzy implications of our list
The min t-norm T(w, v) = min(«, v) with the four last ones

5.5. Fuzzy Inferences

The choice of a fuzzy implication is based on its behavior. Some fuzzy implications
entail an uncertainty about the conclusion (Kleene-Dienes implication, for instance),
whereas other provide imprecise conclusions (Reichenbach, Brouwer-Godel, or
Goguen implication, for instance). Some of them entail both types of imperfection
(Lukasiewicz implication, for instance).

Let us consider the following example (see Figure 11):

Rule: "if the glycemia level is abnormal then sulfonylurea is suggested," with the
universe of distances X = R+ and the universe of degrees of suggestion Y = [0,1].
Observation: the glycemia level is 1.4 g/1.
Conclusion:

• It is relatively certain that sulfonylurea is suggested (with the Kleene-Dienes
implication).

• It is relatively certain that sulfonylurea is rather suggested (with the
Reichenbach, Brouwer-Godel, or Goguen implication).

• It is relatively certain that sulfonylurea is rather suggested (with the
Lukasiewicz implication).

Fuzzy inferences are used in rule-based systems, when there exist imprecise data,
when we need a flexible system, with representation of the linguistic descriptions
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If glycemia level abnormal then sulfonylurea suggested

23

Glycemia level very
abnormal

Sulfonylurea suggested

Sulfonylurea suggested
is relatively certain

Glycemia level
rather abnormal

OR

Glycemia level
equal to 1.4 g/1

Kleene-Dienes

Sulfonylurea more or less Brouwer-Godel
suggested is relatively certain

Figure 11 Example of a generalized modus ponens with various forms of observa-
tions A' and various fuzzy implications.
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depending on the environment of the system or its conditions of utilization, when we
cope with categories with imprecise boundaries, and when there exist subjective vari-
ables described by human agents.

6. EXAMPLES OF APPLICATIONS OF NUMERICAL
METHODS IN BIOLOGY

There exist many knowledge-based systems using fuzzy logic. The treatment of glyce-
mia, for instance, has given rise to several automatic systems supporting diagnosis or
helping patients to take care of their glycemia level [13-15]. An example in other
domains is a system supporting the prescription of antibiotics [16].

Some general systems, which are expert system engines using fuzzy logic, have been
used to solve medical problems. MILORD is particularly interesting for its module of
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expert knowledge elicitation [17] and FLOPS takes into account fuzzy numbers and
fuzzy relations and is used to process medical images in cardiology [18]. Also,
CADIAG-2 provides a general diagnosis support system using fuzzy descriptions and
also fuzzy quantifiers such as "frequently" or "rarely" [19].

The management of temporal knowledge in an imprecise framework can be solved
by using fuzzy temporal constraints, and such an approach has been used for the
management of data in cardiology [20], for instance.

It is also interesting to use fuzzy techniques for diagnosis support systems taking
into account clinical indications that are difficult to describe precisely, such as the
density, compacity, and texture of visual marks. Such systems have been proposed
for the diagnosis of hormone disorders [21] or the analysis of symptoms of patients
admitted to a hospital [22].

In medical image processing, problems of pattern identification are added to the
difficulty in eliciting precise and certain rules from specialists, even though they are able
to make a diagnosis from an image. A system for the analysis of microcalcifications in
mammographic images has been proposed [23], a segmentation method based on fuzzy
logic has been described [24], and the fusion of cranial magnetic resonance has been
explained [25].

Databases can also be explored by means of imprecise queries, and an example of
an approach to this problem using fuzzy concepts has been proposed [26].

In this section, we have listed the main directions in using fuzzy logic in the
construction of automatic systems in medicine on the basis of existing practical appli-
cations. This list is obviously not exhaustive. More applications are discussed elsewhere
[27].

7. CONCLUSION

We have presented the main problems concerning the management of uncertainty and
imprecision in automatic systems, especially in medical applications. We have intro-
duced methodologies that enable us to cope with these imperfections.

We have not developed evidence theory, also called Dempster-Shafer theory,
which concerns the management of degrees of belief assigned to the occurrence of
events. The main interest lies in the combination rule introduced by Dempster that
provides a means of aggregating information obtained from several sources.

Another methodology used in medical applications is the construction of causal
networks, generally regarded as graphs, the vertices of which are associated with situa-
tions or symptoms or diseases. The arcs forward probabilities of occurrence of events
from one vertex to another and enable us to update probabilities of hypotheses when
new information is received or to point out dependences between elements.

As we focused on methods for dealing with imprecisions, let us point out the
reasons for their importance [1,2]: fuzzy set and possibility theory are of interest
when at least one of the following problems occurs;

• We have to deal with imperfect knowledge.
• Precise modeling of a system is difficult.
• We have to cope with both uncertain and imprecise knowledge.
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• We have to manage numerical knowledge (numerical values of variables "100
millimeters") and symbolic knowledge (descriptions of variables in natural lan-
guage, "long") in a common framework.

• Human components are involved in the studied system (observers, users of the
system, agents) and bring approximate or vague descriptions of variables, sub-
jectivity (degree of risk, aggressiveness of the other participants), qualitative
rules ("if the level is too high, reduce the level"), and gradual knowledge
("the greater, the more dangerous").

• We have to take into account imprecise classes and ill-defined categories ("pain-
ful position").

• We look for flexible management of knowledge, adaptable to the environment
or to the situation we meet.

• The system is evolutionary, which makes it difficult to describe precisely each of
its states.

The number of medical applications developed since the 1970s justifies the devel-
opment we have presented.
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