
Chapter

1
NONLINEAR DYNAMICS TIME
SERIES ANALYSIS

Bruce Henry, Nigel Lovell, and Fernando Camacho

1. INTRODUCTION

Much of what is known about physiological systems has been learned using linear
system theory. However, many biomedical signals are apparently random or aperiodic
in time. Traditionally, the randomness in biological signals has been ascribed to noise
or interactions between very large numbers of constituent components.

One of the most important mathematical discoveries of the past few decades is that
random behavior can arise in deterministic nonlinear systems with just a few degrees of
freedom. This discovery gives new hope to providing simple mathematical models for
analyzing, and ultimately controlling, physiological systems.

The purpose of this chapter is to provide a brief pedagogic survey of the main
techniques used in nonlinear time series analysis and to provide a MATLAB tool box
for their implementation. Mathematical reviews of techniques in nonlinear modeling
and forecasting can be found in Refs. 1-5. Biomedical signals that have been analyzed
using these techniques include heart rate [6-8], nerve activity [9], renal flow [10], arterial
pressure [11], electroencephalogram [12], and respiratory waveforms [13].

Section 2 provides a brief overview of dynamical systems theory including phase
space portraits, Poincare surfaces of section, attractors, chaos, Lyapunov exponents,
and fractal dimensions. The forced Duffing-Van der Pol oscillator (a ubiquitous model
in engineering problems) is investigated as an illustrative example. Section 3 outlines the
theoretical tools for time series analysis using dynamical systems theory. Reliability
checks based on forecasting and surrogate data are also described. The time series
methods are illustrated using data from the time evolution of one of the dynamical
variables of the forced Duffing-Van der Pol oscillator. Section 4 concludes with a
discussion of possible future directions for applications of nonlinear time series analysis
in biomedical processes.

2. DYNAMICAL SYSTEMS THEORY

2.1. Deterministic Chaos

A dynamical system is any system that evolves in time. Dynamical systems whose
behavior changes continuously in time are mathematically described by a coupled set of
first-order autonomous ordinary differential equations

1

The components of the vector ~x(t) are the dynamical variables of the system, the
components of the vector ~jt are parameters, and the components of the vector field
F are the dynamical rules governing the behavior of the dynamical variables. There is
no loss of generality in the restriction to autonomous systems, where F is not an explicit
function of t, since a nonautonomous system in W1 can be transformed into an auton-
omous system in D5M+1. If the vector field is affine, i.e.,

—1 = /x(l - x\)x2 - x\ +f cos x3

Chapter 1 Nonlinear Dynamics Time Series Analysis

d-^=-p(t(t),it) (i)

t(?,t)=4ptyz+~Z<$) (2)

for some constant matrix £ and vector b, then the dynamical system is said to be
linear. Otherwise it is nonlinear. In linear dynamical systems any linear combination of
solutions is also a solution.

An example of a nonlinear dynamical system with numerous applications in engi-
neering is the single well-forced Duffing-Van der Pol oscillator [14]

^ - M (l - J 2) J + J3=/cos«? (3)

where \x, / , co are parameters. This second-order nonautonomous equation can be
written as the first-order system

(4)
dx\ _
~d7 = Xl

(5)

—r- = CO

dt

2

by denning dynamical variables xx = y, x2 = dy/dt, x3 = cot.
Dynamical systems whose behavior changes at discrete time intervals are described

by a coupled set of first-order autonomous difference equations

(6)

-f(n+l) = ~G(t(n),t) (V)

In this equation G describes the dynamical rules and time is represented by the integer
n. A discrete dynamical system may be obtained from a continuous dynamical system
(1) by sampling the solution of the continuous dynamical system at regular time inter-
vals T—the dynamical rule relating successive sampled values of the dynamical vari-
ables is called a time T map, and (2) by sampling the solution of the continuous
dynamical system in Rn at successive transverse intersections with a surface of section
of dimension Rn~l—the dynamical rule relating successive sampled values of the dyna-
mical variables is called a Poincare map or & first return map. For example, in the forced
Duffing-Van der Pol oscillator a surface of section could be defined by x3 = 0Q where

Section 2 Dynamical Systems Theory 3

0O € (0, lit) is a constant. In this case the Poincare map is equivalent to a time T map
with T = 2JT/<W.

Under modest smoothness assumptions about the dynamical rules, the solutions of
dynamical systems are unique and the dynamical system is deterministic, that is, the
state of the dynamical system for all times is uniquely determined by the state at any
one time. The existence of unique solutions does not necessarily mean that explicit
algebraic representations exist. However, if explicit algebraic solutions do exist and
they can be used to predict the future behavior of the system for all initial conditions,
then the system is said to be integrable. All linear dynamical systems are integrable.
Explicit solutions can be constructed for linear systems by first transforming to a new
set of dynamical variables in which the governing equations become decoupled.

One of the surprising and far-reaching mathematical discoveries of the past few
decades has been that the solutions of deterministic nonlinear dynamical systems may be
as random (in a statistical sense) as the sequence of heads and tails in the toss of a fair
coin [15]. This behavior is called deterministic chaos. The discovery of deterministic
chaos is surprising because randomness has been traditionally associated with unknown
external disturbances (noise). What makes the discovery far reaching is that most
dynamical systems are nonlinear and most nonlinear systems have random solutions.
Deterministic chaos has immediate ramifications for constructing mathematical models
for systems characterized by random signals. A fundamental question in this regard is:
Are all random signals equally random? It turns out that they are not. Random signals
generated by noise are fundamentally different from random signals generated by
deterministic dynamics with small numbers of dynamical variables. The difference is
not revealed by statistical analysis but is instead revealed by dynamical analysis based
on phase space reconstruction.

2.2. Phase Space—Attractors

Phase space is an abstract mathematical space spanned by the dynamical variables
of the system. The state of the dynamical system at a given instant in time can be
represented by a point in this phase space. If there are n dynamical variables, then
the state at a given time can be represented by a point in the Euclidean space K". As the
dynamical variables change their values in time, the representative point traces out a
path in the phase space—a continuous curve in the case of a continuous dynamical
system and a sequence of points in the case of a discrete dynamical system.

For an idealized simple pendulum there are two physical dynamical variables, the
angular position 0 and velocity 0, so the phase space can be taken to be R2. If the energy
is conserved in this system and the angular oscillations are small, then E = \62 + \02

constrains the phase space variables to lie on a circle. The radius of the circle is
determined by the system energy. A realistic pendulum dissipates energy to the sur-
roundings via friction and air resistance. The phase space path in this case is a spiral in
toward a final resting point called a fixed point attractor. The starting radius for the
spiral again depends on the initial energy in the system, but the location of the fixed
point attractor is independent of this starting energy. Most physical systems are dis-
sipative and their long-time dynamical behavior can be described by an attractor in
phase space. In Figure 1 phase space portraits are shown for the Duffing-Van der Pol
oscillator, Eqs. 4-6 for initial conditions x\ — 1, x2 ~ 0, x3 = 0, and four sets of para-
meters: (a) \i = 0.0,/ = 0.0; (b) /x = 0.2,/ = 0.0; (c) fi = 0.2,/ = 1.0, co = 0.9; and (d)

Figure 1 Phase space portraits for the Duffing-Van der Pol oscillator for parameters
(a) 11 = 0.0, / = 0.0; (b) \L = 0.2, / = 0.0; (c) fi = 0.2, / = 1.0, co = 0.90;
(d) fi = 0.2, f= 1.0, o> = 0.94.

\x = 0.2,/ = 1.0, &> = 0.94. In cases (c) and (d) it is convenient to choose as coordinate
axes the dynamical variables x\, x2, sin(x3). The initial transient behavior is not shown
in these figures.

For the parameters in case (a), there is no dissipation and the path is topologically
similar to that of the idealized pendulum. The distortion away from a circle is due to
nonlinear restoring forces. In case (b), dissipation is included (/x ^ 0) and the path is a
limit cycle attractor. In case (c), the dissipation (// ^ 0) is balanced by external forcing
if ^ 0) and another periodic orbit results [14]. The conditions in case (d) are very
similar to the conditions in case (c) but the slightly different forcing frequency in
case (d) results in a very different orbit—a chaotic strange attractor [14]. The
Poincare surface of section equivalent to the time in/co map for the two sets of para-
meters, case (c) and case (d), is shown in Figure 2a and b, respectively. Again, the initial
transient behavior is not shown.

Appendix I contains MATLAB programs for numerically integrating three
coupled differential equations (Appendix LA), generating three-dimensional phase

4

0.8

0.6

0.4

0.2

>? 0

-0.2

-0.4

-0.6

-0.8-1 -0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1

(a) (b)

3

2

1

>? 0

- 1

- 2

~-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Chapter 1 Nonlinear Dynamics Time Series Analysis

2
1

0.5

0

-0.5

V-

(c) (d)

1

0.5

0
-0.5

- 1
4-

3
2

1

*2 0

-1
_2

-3
-4

-2 .5 -2 - 1 . 5 -1 -0 .5

XX

0 0.5 1 1.5 2 2.52.51.5 2
0.5

*1

0-0.5-11.5-2-2.5
-4"

-3
-2

-1
*2 0

1
2-

3

Section 2 Dynamical Systems Theory

Figure 2 Poincare surfaces of section for the Dufflng-Van der Pol oscillator for
parameters (a) \L = 0.2, / = 1.0, co = 0.9; (b) fi = 0.2,/ = 1.0, to = 0.94.

space portraits (Appendix I.B), and constructing two-dimensional Poincare surfaces of
section (Appendix I.C).

The concepts of dissipation and attractors are defined more precisely for a con-
tinuous dynamical system as follows. A dynamical system is conservative if

XT.F=O (8)

A dynamical system is dissipative if on average (where the average is over all initial
conditions)

^ ? < 0 (9)

In a dissipative dynamical system, phase space volume elements contract as the system
evolves. In the forced Duffing-Van der Pol oscillator,

so that the system is dissipative for x\ > 1; \x > 0.
A point ~x is a fixed point (or equilibrium point) if

(10)

(11)

(12)

for some nonzero T. The period is the minimum nonzero T for which Eq. 12 holds. It is
convenient to represent a phase space path by

(a) (b)

v/? = - ^ - i)

~F(t) = 0

A phase space trajectory x (t) is periodic if

-2(f) = -?(t+T)

*1
- 3 - 2 - 1 0 1 2 3

4

3

2

1

>? 0

-1

-2

- 3

- 4

*i

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

3

2

1

$ 0

-1

_2

- 3

An colimit set is a set of w-limit points corresponding to a set of initial points
Xo = {"x*0 , ~x0 , . . . , "3f0 }. An attracting set is an co-limit set to which all orbits
starting in the neighborhood of the set of initial points Xo tend as t ~> oo. An attractor
is an attracting set that contains a dense orbit. A system must be dissipative in order to
have an attractor. Since phase space volume elements contract in time in dissipative
systems, it follows that attractors must occupy zero volume in phase space. A limit cycle
attractor is a periodic attractor.

A strange attractor is an aperiodic attractor with the additional properties that
(1) phase space paths through all points on the attractor diverge on average at an
exponential rate and (2) the dimension of the set of points comprised by the attractor
is not an integer.

2.3. Lyapunov Exponents

Lyapunov exponents quantify the average exponential separation between nearby
phase space trajectories. An exponential divergence of initially nearby trajectories in
phase space coupled with folding of trajectories (to ensure that solutions remain finite)
is the generic mechanism for generating deterministic randomness and unpredictability.
Indeed, the existence of a positive Lyapunov exponent for almost all initial conditions
in a bounded dynamical system is a widely used definition of deterministic chaos.

Let ~xo(t) denote a reference trajectory passing through ~XQ(0) at time t = 0 and let
'x'i(t) denote a trajectory passing through "x*i(0) at time / = 0. The (maximum)
Lyapunov exponent A.(~?o) *

s defined with respect to the reference orbit ~t0 by [16,17]

6 Chapter 1 Nonlinear Dynamics Time Series Analysis

(13)t(t) = *'-*C$)

where </> is the flow that maps an initial point ~£0 e W and time / € IR onto the solution
~x(t). An w-limit point of "3^0

 ls a phase space point x such that

(14)lim0'''°n?o)-*^

*Ofo)=Iim lim I l o g J ^ L
'-*00

 ||A^(O)|KO
 t IIA-?(0)||

(15)

where ||A"^(0)|| is the Euclidean distance between the trajectories ~x$(f) and ~it\{f) at
an initial time / = 0 and ||A"5?(f)|| is the Euclidean distance between the trajectories
*o(O a n d x i(t) at a later time t. In this definition ~X\(i) can be any trajectory that

is initially infinitesimally close to ~xQ{0) at time t = 0. The correspondence between
sensitivity to initial conditions and a positive Lyapunov exponent is obvious in the
rearrangement

||A^(/)|| ~ ||A-?(0)||e*' (16)

A dynamical system in OS"1 has associated with it m Lyapunov exponents

(17)A, > A2 > • • • > km

Section 2 Dynamical Systems Theory 7

To define the full set of exponents, consider an infinitesimal ra-dimensional sphere of
initial conditions that is anchored to a reference trajectory. As the sphere evolves, it
becomes deformed into an ellipsoid. Let/>,-(*) denote the length of the ith principal axis,
ordered from most rapidly growing to least rapidly growing. Then [16,18]

A., = lim ± l o g f ^ i = l , 2 , . . . , # w (18)

defines the set of Lyapunov exponents ordered from largest to smallest. Volume ele-
ments in phase space evolve in time as [19]

V(t) - F(0) exp Hh kA

The sum of the Lyapunov exponents is equal to the divergence of the vector field; i.e.,

m

(20)

Thus, in dissipative systems the average of the sum of the Lyapunov exponents is
negative. Furthermore, for bounded trajectories that do not approach a fixed point
at least one of the Lyapunov exponents is zero.

In numerical computations of Lyapunov exponents the limit || A"?(0)|| -> 0 can be
effectively realized by evolving A~£(t) with the linear variational equation [20]

^ | W = D^(?0(0)A-3f(0 (21)

In this equation ~Xo(t) is the reference orbit obtained by integrating the original dyna-
mical system and DXF is a matrix with components dFJdXj evaluated along the refer-
ence orbit. If the system has a positive Lyapunov exponent, then direct numerical
integration of the linear variational equation will eventually lead to numerical overflow.
This problem can be avoided by renormalizing the solution of the linear variational
equation at a periodic intervals T. The maximum Lyapunov exponent is then equiva-
lently given by [20]

^ = i^(^g logl |A^(T)l1 (22)

where A ^ (r) are solutions of the variational equations for renormalized initial vectors

A?, (0) =
A ^ ' (t)

A |A^_,(r)|
(23)

A similar renormalization using the Gram-Schmidt reorthonormalization scheme can
be employed to measure the full set of Lyapunov exponents [21,22]. In Table 1 the full

(19)

= 12

8 Chapter 1 Nonlinear Dynamics Time Series Analysis

TABLE 1 Lyapunov Exponents for the Duffing-Van der Pol Oscillator for Parameters

Parameters'1

(a)
(b)
(c)
(d)

0.000
0.000
0.000
0.0254

k2

0.000
-0.133

0.000
0.000

-0.049
-0.0285

a (a), fi = 0.0,/ = 0.0; (b), \x = 0.2,/ = 0.0; (c), fi = 0.2,/ = 1.0, co = 0.90; (d), fi = 0.2,/ = 1.0, © = 0.94.

set of Lyapunov exponents is listed for each of the four sets of parameters used in
Figure 1. Note that case (d) has a positive Lyapunov exponent and the sum of the
exponents is negative. This is consistent with chaotic dynamics on a strange attractor.

A MATLAB code for measuring the Lyapunov exponents for three coupled dif-
ferential equations is listed in Appendix I.D.

2.4. Fractal Dimensions

A geometrical object can be fully represented by a set of points in a Euclidean
space Um provided that m is sufficiently large to be able to uniquely locate the position
of each point in the object. Each set in Um has assigned to it a topological dimension d
that is an integer in the range [Q,m]. If the set is all of Um, then d = m. In Euclidean
geometry, points have dimension d = 0, lines have dimension d— 1, plane surfaces
have dimension d = 2, solids have dimension d — 3, etc.

A fractal dimension D is any dimension measurement that allows noninteger values
[23]. A fractal is a set with a noninteger fractal dimension [23]. Standard objects in
Euclidean geometry are not fractals but have integer fractal dimensions D = d. The
primary importance of fractals in dynamics is that strange attractors are fractals and
their fractal dimension D is simply related to the minimum number of dynamical
variables needed to model the dynamics of the strange attractor.

The simplest way (conceptually) to measure the dimension of a set is to measure
the Kolmogorov capacity (or box-counting dimension). In this measurement a set is
covered with small cells (e.g., squares for sets embedded in two dimensions, cubes for
sets embedded in three dimensions) of size e. Let M(e) denote the number of such cells
that contain part of the set. The dimension is then defined as

P = limlQ^f
<-+o l o g ®

(24)

For n isolated points, M(e) = n and D = 0; for a straight line of length L, M(e) = L/e
and D = 1; for a plane region of area A, A/(e) = A/e2 and D = 2. In practical applica-
tions the limit € is not attainable. Instead, the number M(e) is measured for a range of
small values of € and the dimension D is estimated as the slope of the straight line
portion of the plot of log(M(0) versus log(l/e).

A mathematical example of a set with a noninteger fractal dimension is the Cantor
set, which is defined as the limiting set in a sequence of sets. Consider the set in U2

defined by the following sequence of sets. At stage k = 0 (Figure 3a) let So denote a
square with sides of length /. At stage k = 1 (Figure 3b) divide the set So into nine
squares of uniform size and remove the middle square. The remaining set is labeled S}.

Section 2 Dynamical Systems Theory

(a) (b) (c)

Figure 3 First three stages in the construction of a Cantor set in U2; (a) stage k = 0;
(b) stage k=\;(c) stage k = 2.

At stage k = 2 (Figure 3c) divide each remaining square in S\ into nine squares of
uniform size and remove the middle squares. This new set is labeled S2. The process of
subdividing and removing is continued iteratively to obtain a sequence of sets S0,S\,
S2> • • • and the Cantor set is defined as the limiting set

It is straightforward to measure the Kolmogorov capacity for this Cantor set. At stage
k = 0 the set So is covered with one square of size a. Thus for k = 0; e = a and
M(e) = 1. At stage k = 1 the set S\ is covered with eight squares of size a/3. Thus
for k = 1; e — a/3 and M(e) = 8. At stage k = 2 the set S2 is covered with 64 squares of
size a/9. Thus for k = 2; € = a/9 and M{e) — 64. For general k it follows by induction
that the set Sk is covered with e — a/3k and M(e) = 8*. The fractal dimension of the
limiting Cantor set is thus

9

D= lim (26)

(27)

The fractal dimension less than two means that this Cantor set does not fill an area in
ire2.

When computing the box-counting dimension, a box is counted whenever it con-
tains part of the set. This counting does not differentiate between whether a box con-
tains many points of the set or few points of the set. More elaborate dimension
measurements are available that take into account inhomogeneities or correlations in
the set. The dimension spectrum defined by Hentschel and Procaccia [24],

D< = lim • - » 3 3 M , g=0,,,2,...
H /•-•o q — 1 log r

provides a set of fractal dimension measurements that take into account higher order
correlations as q is increased. In the dimension spectrum, M(r) is the number of m-
dimensional cells of size r (e.g., hypercubes of side r) needed to cover the set and pt =
NJN is the probability of finding a point of the set in hypercube i; TV is the total number

S= lim Sn (25)

(28)

= 1.892

log(8fc)

log(f)

10 Chapter 1 Nonlinear Dynamics Time Series Analysis

of points in the set and N(is the number of points of the set in hypercube i. It can be
readily seen that the box-counting dimension is equivalent to Do.

The dimension D{ is called the information dimension. This is defined by taking the
limit q -> 1, i.e.,

D{ = lim D2 (29)
q-»\

= limE^iog/>,- (30)
r-+o log r

The information dimension has also been related to the Lyapunov exponents through a
conjecture of Kaplan and Yorke [25]:

In Eq. 31, kt are the Lyapunov exponents of the attractor ordered from largest to
smallest and Y^i=\ ^/ - 0j Z £ i h < ®- As a n example consider the strange attractor
in the Duffing-Van der Pol oscillator with parameters /A, = 0.2, / = 1.0, co = 0.94,
Figure Id. The Lyapunov information dimension for this case is, from the values in
Table 1 (d), Dx = 2.84. The noninteger value confirms that the attractor is a strange
attractor.

The dimension D2 is called the correlation dimension. This can be written as

i ^ l i m 1 ^ (32)
/•->o log r

where

M(r)

C(r) = J^Pi (33)
/=i

is the correlation sum, which is essentially (exact in the limit N -> oo) the probability
that two points of the set are in the same cell.

For a given set, the dimensions are ordered DQ> D{ > D2 > • • •. If the set is a
homogeneous attractor then

Pt=h (34)

and all dimensions, Eq. 28, are equal; otherwise the set is called a multifractal. The
major difficulty in calculating Dq is the practical difficulty of covering the set with cells
of very small size. In general, this requires too much computer storage and time to
obtain convergence to a limit r -> 0.

When q = 2 the dimension estimate can be made computationally tractable by
using an algorithm proposed by Grassberger and Procaccia [26]. This algorithm has

Di =j + Hi*i
IV1I

(31)

Section 2 Dynamical Systems Theory 11

become the most widely used method for estimating fractal dimensions of experimental
data sets.

2.5. Grassberger-Procaccia Algorithm

The Grassberger-Procaccia algorithm [26] is based on the following approxima-
tion: The probability that two points of the set are in the same cell of size r is approxi-
mately equal to the probability that two points of the set are separated by a distance p
less than or equal to r. Thus C{r) is approximately given by

Ef=u>,e(>--P(^^))
CW ±N(N-1) (35)

where the Heaviside function is defined as

_ , f 1 if j > 0 , _

®(s) = \ . f - (36)
I 0 if s < 0 v '

The approximation in Eq. 35 is exact in the limit N -> oo; however, this limit cannot be
realized in practical applications. The limit r -> 0 used in the definition of D2 is also not
possible in practice. Instead, Procaccia and Grassberger propose the (approximate)
evaluation of C(r) over a range of values of r and then deduce D2 from the slope of
the straight line of best fit in the linear scaling region of a plot of log C(r) versus log r.

The most common metric employed to measure the distance p in Eq. 35 is the
Euclidean metric,

nil

p(Zh -Zj) = Jj2(*i(k) - xj(k)f (37)
V*=i

However, other metrics have also been considered. In any case, the choice of metric
should not affect the scaling of the correlation sum with r.

The reliability of estimating the slope in the linear scaling region is the most serious
possible source of error in the Grassberger-Procaccia algorithm. Clearly, the linear
scaling regime will be bounded above by the maximum separation distance between
points in the set and bounded below by the minimum separation distance between
points in the set. Essentially, the idea is to measure the slope for the smallest r values
possible while avoiding the problems of sparse numbers when r is close to the minimum
separation. One ad hoc scheme that has received some popularity is to plot log C(r)
versus log r for a number of equally spaced values of log r between log rmin and log rmax.
Then deduce the slope of the straight line of best fit over the middle third of the vertical
range of the plot. This method should be used with caution as it is possible that the
middle third straddles two different straight line behaviors—noise and deterministic
chaos. In particular, if the system contains noise on a scale r* then for an m-dimensional
embedding the correlation sum will scale as

where the Heaviside function is defined as

(35)C(r)**

The approximation in Eq. 35 is exact in the limit N -*• oo; however, this limit cannot be

1 if s

C(r) ~
r™ for r < r*
rD for r > r*

(38)

12 Chapter 1 Nonlinear Dynamics Time Series Analysis

Thus a plot of log C{r) versus log r will reveal a change of slope from m to D with the
crossover at r* providing an estimate of the level of noise in the system.

Figure 4 shows a plot of log C{r) versus log r for each of the phase space paths of
the Duffing-Van der Pol oscillator shown in Figure 1. The straight lines of best fit using
data across the domain from 10~~2 to 10"1 are also shown. Estimates of the correlation
dimension based on the slopes of these straight line portions are (a) D2 = 1.01, (b)
D2 = 1.01, (c) D2 = 2.17, (d) D2 = 2.67.

A MATLAB code for implementing the Grassberger-Procaccia algorithm to mea-
sure the correlation dimension of a phase space trajectory is listed in Appendix I.E.

There have been several estimates of the minimum number of data points Nmin

required for estimates of D to be reliable using the Grassberger-Procaccia algorithm. A
"rule of thumb" estimate due to Ruelle [27] is that

Nmm = \&>n (39)

Figure 4 Plots of the logarithm of the correlation sum versus the logarithm of the
separation distance for phase space trajectories of the Duffing-Van der Pol
oscillator for parameters (a) fi == 0.0, / = 0.0; (b) \x = 0.2, / = 0.0;
(c) fi = 0.2, / = 1.0, to = 0.90; (d) fi = 0.2, / = 1.0, co = 0.94.

10~4 10~3 10"2 10"1 10°
% of Maximum radius

(d)

10"4 10"3 10~2 10"1 10°
% of Maximum radius

(c)

10°

IO-1

lO" 2

io-3

io-4

10~5

1 0-6

io - 7

10~8

S3

a
|
O

1
O

1

10°

io-1

io-2

io-3

10~4

io-5

10~6

io-7

io-8

(b)(a)

10-4 1 0-3 10-2 1 0 - i l o o

% of Maximum radius

10°

io-1

io-2

io-3

io-4

io-5

10~6

io-7

IO-8

u

12

t
o

I
o

10°

io-1

io-2

io-3

io-4

lO"5

io - 6

lO"7

i o - 8

1 0 -4 jQ-3 1Q-2 1Q-1 | 0 0

% of Maximum radius

a
I

Section 3 Time Series Analysis 13

Thus, estimates of D > 2 log10 N obtained from time series analysis should be regarded
as unreliable. A simple derivation of this estimate is as follows: The correlation sum
scales as

C(r) - ArD (40)

Assume that this scaling applies up to the maximum separation distance rmax. Then

A ^ v max) / A t \

A ~ —^ (41)
'max

but at the limiting separation

C(rmax)^i7V2 (42)

Combining the preceding three equations now yields

L Vmax/

Clearly, the correlation sum is bounded below by C(rmin) = 1, hence C(r) > 1 and

2 1ogiV>/)(logrm a x- logr) (44)

The Ruelle conjecture, Eq. 39, now follows immediately from the reasonable expecta-
tion that the linear scaling regime in the log-log plot (if it exists) should persist over at
least one decade in the range of r. The theoretical basis of the Ruelle conjecture has
been questioned and other theoretical requirements on the sample size have been pro-
posed [28,29]. However the rule of thumb, Eq. 39, has been found to be relevant in
many experimental studies [27]. Moreover, all theoretical results for requirements on
sample size reveal an exponential growth with dimension.

3. TIME SERIES ANALYSIS

The techniques in this section are illustrated using data from numerical integrations of
the Duffing-Van der Pol oscillator Eqs. 4-6 with initial conditions X\ = 1, x2 = 0, x3 =
0 and the four sets of parameters (a) /x = 0.0,/ = 0.0; (b) /x = 0.2,/ = 0.0; (c) \i = 0.2,
/ = 1.0, co = 0.90; (d) [i = 0.2,/ = 1.0, to = 0.94. A time series yn is constructed from
the numerical solution for the single dynamical variable X\{t) sampled at intervals
A£ = 0.1, i.e., yn = x{(nAt). The results in this section based on the time series analysis
of a single variable can be compared with the results in Section 2 based on the direct
analysis of the evolution of all dynamical variables. Time series for the Duffing-Van der
Pol oscillator with this set of parameters are shown in Figure 5.

3.1. Power Spectrum and Autocorrelation

The power spectrum reveals periodic components of a signal and it should always
be employed in time series analysis whether the primary analysis is statistical or dyna-

C(r)~
N2

2
r

D

(43)

14 Chapter 1 Nonlinear Dynamics Time Series Analysis

Figure 5 Time series data for the Duffmg-Van der Pol oscillator for parameters
(a) fi = 0.0, / = 0.0; (b) p. = 0.2, / = 0.0; (c) fi = 0.2, / = 1.0, co = 0.90;
(d) fi = 0.2, f= 1.0, co = 0.94.

mical. If the signal is periodic then the power spectrum will consist of discrete lines,
whereas in a stochastic signal the power will be spread over a continuous range of
frequencies. Consider a time series

The discrete Fourier transform is defined by

(45)

i J V - l

Zm = - Y, yn exp(-f2^(m - \){n - \)/N) (46)

and the power spectrum is defined as

*m — \Zfn\ — Xm + Ym (47)

2

1.5

1

0.5

-0.5

-1

-1.5

-2
200 210 220 230 240 250 260 270 280 290 300

Time
(a)

2

1.5

1

0.5

-0.5

-1

-1.5
-2

200 210 220 230 240 250 260 270 280 290 300
Time
(b)

2

1.5

1

0.5

-0.5

-1

-1.5
^

200 210 220 230 240 250 260 270 280 290 300
Time

(c)

2

1.5

1

0.5

f °
-0.5

-1

-1.5

-2
200 210 220 230 240 250 260 270 280 290 300

Time

(d)

yn=y(nAt), « = 1,2 iV

Section 3 Time Series Analysis 15

where X and Y are the real and imaginary parts of Z. Each value of m for which there is
a peak in the power spectrum corresponds to a frequency component

in the original time series.
The autocorrelation function also provides a diagnostic tool for discriminating

between periodic and stochastic behavior. In a periodic signal the autocorrelation is
periodic, whereas in a stochastic signal the autocorrelation will be irregular. The auto-
correlation function is defined by

where periodic boundary conditions

ys+k = yk (50)

are imposed to extend the times series beyond yN. This function provides a simple
quantitative measure of the linear correlation between data points.

Fourier transforms of the time series data yn = Xi(nAt) in the Duffing-Van der Pol
oscillator are shown for four sets of parameters in Figure 6. The autocorrelation func-
tions for the same sets of data are shown in Figure 7. The "grassy appearance" of the
Fourier transform in Figure 6d and the aperiodicity of the autocorrelation function in
Figure 7d are characteristic of a chaotic signal, whereas the sharp peaks in Figure 6a-c
and the periodicities in Figure 7a-c are characteristic of periodic signals. The horizontal
lines in Figure 7 show the value l/e.

3.2. Phase Space Reconstruction

The essential problem in nonlinear time series analysis is to determine whether or
not a given time series is a deterministic signal from a low-dimensional dynamical
system. If it is, then further questions of interest are: What is the dimension of the
phase space supporting the data set? Is the data set chaotic?

The key to answering these questions is embodied in the method of phase space
reconstruction [30], which has been rigorously justified by the embedding theorems of
Takens [31] and Sauer et al. [32,33]. Takens' embedding theorem asserts that if a time
series is one component of an attractor that can be represented by a smooth d-dimen-
sional manifold (with d an integer) then the topological properties of the attractor (such
as dimension and Lyapunov exponents) are equivalent to the topological properties of
the embedding formed by the ra-dimensional phase space vectors

~Xt = (y(iAt), y(i^t + r), y(iAt + 2r),.. . , y(iAt + (m - l)r)) (51)

whenever m > 2rf+ 1. In Eq. 51 T is called the delay time and m is the embedding
dimension. Different choices of x and m yield different reconstructed trajectories.
Takens' theorem has been generalized by Sauer et al. to the case where the attractor

fm =
m

NAt
(48)

(49)CJ =
1

N

N

E ytyi+j

16 Chapter 1 Nonlinear Dynamics Time Series Analysis

Figure 6 Absolute value Fourier transforms for time series data from the Duffing-
Van der Pol oscillator for parameters (a) /x = 0.0, / = 0.0; (b) fi = 0.2,
/ = 0.0; (c) ti = 0.2, / = 1.0; co = 0.90; (d) fi = 0.2, / = 1.0, co = 0.94.

is a strange attractor with a fractal dimension D. The embedding of a strange attractor
using time delay coordinates is one to one if m > ID + 1.

There are several technical issues to bear in mind in nonlinear time series
analysis. Foremost is the quality of the time series itself. If there is a simple deter-
ministic rule governing the evolution of the time series, then the time interval
between data points should be sufficiently small, the length of the data should be
sufficiently long, and the level of noise should be sufficiently low to allow detection
of the deterministic dynamics and subsequent forecasting. In biomedical signals the
sampling rate, the signal length, and the noise level are typically limited by techno-
logical considerations.

A MATLAB code for phase space reconstruction is listed in Appendix II.A.
The next two sections describe the problem of finding optimal values for m

(Section 3.2.1) and r (Section 3.2.2). Two possible definitions of an optimal embedding
are that (1) an embedding is optimal if it delivers the best possible estimates for the
topological properties of the attractor and (2) an embedding is optimal if it provides the
most accurate forecast of the time series.

5000

4500

4000

3500

g 3000

^2500

fe 2000
1500

1000

500

°0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Frequency (Hz)

(a)

5000

4500

4000

3500

§3000

^2500

fe 2000
1500

1000

500

°0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Frequency (Hz)

(b)

5000

4500

4000

3500

g 3000

^ 2 5 0 0

t£ 2000

1500

1000

500

°0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Frequency (Hz)

(c)

5000

4500

4000

3500

§ 3000

^ 2 5 0 0

^ 2 0 0 0

1500

1000

500

°0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Frequency (Hz)

(d)

Section 3 Time Series Analysis 17

Figure 7 Autocorrelation functions for time series data from the Dufflng-Van der
Pol oscillator for parameters (a) /x = 0.0, / = 0.0; (b) \x = 0.2, / = 0.0;
(c) fi = 0.2,/ = 1.0, co = 0.90; (d) /i = 0.2/ = 1.0; co = 0.94. The horizon-
tal line is the value 1/e.

3.2.1. Optimal Embedding Dimension

Partial answers to the problem of finding an optimal embedding dimension have
been provided by Sauer et al. [33]. If the attractor has box-counting dimension Z)o? then
an embedding dimension of m > 2D0 -f 1 is sufficient to ensure that the reconstruction
is a one-to-one embedding. The one-to-one property is in turn a necessary requirement
for forecasting. If the attractor has correlation dimension D2, then an embedding
dimension of m > D2 is sufficient to measure the correlation dimension from the
embedding. The condition m > D2 is also a necessary but not sufficient condition for
forecasting (Section 3.3.1). A clear difficulty with these formal bounds is that the fractal
dimensions Do and D2 are generally unknown a priori.

In practical applications the Grassberger-Procaccia algorithm can be employed to
measure the correlation dimension of reconstructions for different embedding dimen-
sions. The minimum embedding dimension of the attractor is raH-1, where m is the
embedding dimension above which the measured value of the correlation dimension D2

remains constant.

l

0.8

0.6

•̂ 0.4

^ 0.2

,*• •

H -0.2

H^-0.4
-0.6

-0.8
- 1 0 5 10 15 20 25 30

Time

(a)

1

0.8

0.6

•̂ 0.4

§ °-2

H -0.2
^ -0.4

-0.6

-0.8

~l0 5 10 15 20 25 30
Time

(b)

1

0.8

0.6

•-, 0.4

S °-2

P 4 -O.2

- 1 ^ -0.4

-0.6

-0.8
- 1 0 5 10 15 20 25 30

Time

(c)

1

0.8

0.6

•-, 0.4

^ 0.2

H -0.2

H * -0.4
-0.6

-0.8

- 1 0 5 10 15 20 25 30
Time

(d)

18 Chapter 1 Nonlinear Dynamics Time Series Analysis

An optimal embedding dimension for forecasting can be found in the following
utilitarian fashion [34,35]. Forecasts based on the first half of a time series can be
constructed for a range of different embedding dimensions. These forecasts can then
be compared with the actual time series data from the second half of the time series to
find the best forecast (Section 3.3.1) for a given embedding dimension.

3.2.2. Optimal Delay Time

A one-to-one embedding can be obtained for any value of the delay time r > 0.
However, very small delay times will result in near-linear reconstructions with high
correlations between consecutive phase space points and very large delays might
obscure the deterministic structure linking points along a single degree of freedom. If
the delay time is commensurate with a characteristic time in the underlying dynamics,
then this too may result in a distorted reconstruction. The optimal delay time for
forecasting can be determined using the approach of Holton and May described in
the previous section for finding an optimal embedding dimension.

There have been various proposals for choosing an optimal delay time for topo-
logical properties based on the behavior of the autocorrelation function. These include
the earliest time T at which the autocorrelation drops to a fraction of its initial value [36]
or has a point of inflection [37]. These definitions seek to find times where linear
correlations between different points in the time series are negligible, but they do not
rule out the possibility of more general correlations.

Fraser and Swinney [38] argue that a better value for r is the value that corre-
sponds to the first local minimum of the mutual information where the mutual infor-
mation is a measure of how much information can be predicted about one time series
point given full information about the other. Liebert and Schuster [39] have shown that
the values of r at which the mutual information has a local minimum are equivalent to
the values of r at which the logarithm of the correlation sum (Eq. 33) has a local
minimum. In seeking a local minimum of C(r, r) as a function of T it is necessary to
fix r. Liebert and Schuster suggest employing the smallest value of r where C(r, x) scales
as r~D.

Some authors have suggested that it is more appropriate to define an optimal
embedding window r(ra — 1) rather than optimal values for m and r separately [40-42].

It is not clear which method if any is superior for all topological properties.
However, optimal values based on the behavior of the autocorrelation function are
the easiest to compute.

Figure 8a-d show phase space reconstructions using a time delay of r = 1 for the
Duffing-Van der Pol time series with parameters as in Figure 5a-d, respectively. These
phase space reconstructions compare favorably with the original phase space portraits
in Figure la-d. The time delay r = 1 is optimal in the sense that these are the times at
which the autocorrelation function has first decreased to l/e of its original value (see
Figure 7). Also shown in Figure 8 are reconstructions of the chaotic time series (Figure
5d) with nonoptimal choices of the time delay. In Figure 8e, r = 0.1 and the reconstruc-
tion is stretched along the diagonal of the embedding, whereas in Figure 8f, r = 20, and
the reconstruction appears to fill a region of the embedding space.

Figure 9 shows a plot of the fractal dimension, measured using the Grassberger-
Procaccia algorithm, versus the embedding dimension for the reconstructed phase por-
trait shown in Figure 8d. The fractal dimension saturates at about D % 2.5. This

Section 3 Time Series Analysis 19

Figure 8 Phase space reconstructions (a)-(d) with embedding dimension three and
r = 1 for time series data from the Duffing-Van der Pol oscillator shown in
Figure 5a-d, respectively. Reconstructions are also shown for the time
series in Figure 5d with (e) r = . 1 and (f) r = 20.

1

0.8

0.6

0.4

_ 0.2

i °
^ - 0 . 2

-0.4

-0.6

-0.8

-1
-1 -0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1

x(t)

(a)

2

1.5

1

0.5

i °
-0.5

-1

-1.5

-2
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

I

2

1

0
_ 1

- 2

I

H

I

(e)

I

(0

X(t)

(b)

2

1

0

-1
x(t-t)

__2

-3 -2 -1

(d)

x(t)
o I

332I0

x(/)

(c)

-1
-2-3

-2

-1

X(t-T)
0

2
1
0

- 1

- 2

2

1

2

1

0

-]

-2

2

1

0
X(t-T)

-1

-2
-2 -1

*(0
o i

2 3

2 •

J

0
x(t~r)

- l

2

I

0

- I

- 2

-2

-3 -2 -1
*(/)

0 1 2 3

20 Chapter 1 Nonlinear Dynamics Time Series Analysis

Embedding dimension

Figure 9 Plot of the fractal dimension versus the embedding dimension for phase
space reconstructions of the time series data from the Duffing-Van der Pol
oscillator with parameters \x = 0.2, / = 1.0, co = 0.94. The time delay was
set to r = 1 in the reconstructions.

suggests that the minimum embedding for the time series in Figure 5d is three. The
value of the fractal dimension based on the time series for just one of the system's
dynamical variables is also in good agreement with the measured value of the fractal
dimension using all three dynamical variables (Section 1.5).

3.2.3. Measuring Lyapunov Exponents from Time
Series

The first algorithms for calculating Lyapunov exponents from a time series were
proposed independently by Wolfe et al. [18] and Sano and Sawada [43] in 1985. The first
step in these methods is to construct an appropriate embedding of the experimental
time series using the method of time delays described in Section 3.2. The maximum
Lyapunov exponent can now be calculated as follows. Choose a reference point labeled

X(0) and the "closest" (see further comments below) neighboring point labeled X (0)
from the set of reconstructed phase space vectors and calculate

||AX0(0)|| = | |X(0) -X (0)|| (52)

•(i)—> —>Kl)

Evolve the two points X(0) and X (0) forward in the reconstructed phase space for ;
time T\ and calculate the new separation distance

\\AX(Tl)\\ = \\x(Tl)-x (roil (53)

5

§ 4

1
I 3
1
£ 2

1

0
0 1 2 3 4 5 6 7

Section 3 Time Series Analysis 21

->(2)
An approximate renormalization is now performed by finding a point X (0) that

—>(2) _^
satisfies the dual requirement that (1) X (0) is a neighboring point to X(TX) and (2)

Hi)- l l Ylozdj(i)
Kl)-~iKt~M=~i^m'dM)

J—*•

where dj(i) is the separation distance between the 7th pair of "nearest" neighbors after /
discrete time steps.

3.3. Reliability Checks

3.3.7. Forecasting

Holton and May [35] argue that prediction is the sine qua non of determinism and
hence the reliability of forecasts should be a fundamental tool for discriminating
between deterministic chaos and noise-induced randomness. The following algorithm
for predicting time series essentially follows Farmer and Sidorowich [45]. Consider a
time series

and AX(Ti) are in approximately the same direction. The two points X{T{) and
—>(2)
X (0) are now evolved for a time T2 in the reconstructed phase space to calculate

The renormalization process of finding a neighboring point to the current point that has
a similar orientation to the previous replacement point is repeated N times and then the
maximum Lyapunov exponent is calculated as [18]

This calculation should then be averaged over several different initial starting points. In
implementing the method it is important not to accept as the "closest" neighboring
point a point that is temporally separated by a distance less than the delay time r. This
is to avoid choosing adjacent points on the same trajectory. Thus the times Tx,..., TN

should be greater than r. On the other hand, these times should be small enough to
obtain exponential separations.

If the system is ergodic so that the reconstruction phase space attractor is sampled
uniformly over time, then the numerical renormalization process can be avoided by
following the short-time evolutions of neighboring pairs of points on the attractor and
estimating the maximum Lyapunov exponent from [43,44]

A^O(^I) = ̂ (r,) - /2)(0) (54)

|| A~X(TY + 72)|| = \\~X(T{ + T2) - ~X{2\T2)\\ (55)

1 " IIAx(EJLi7})ll
k — —jj > log r» —

Ek=iTkfr(\\AX0(Tk)\\
(56)

(57)

y(At),y(2At),...,y(nAt) (58)

22 Chapter 1 Nonlinear Dynamics Time Series Analysis

where At is the sampling interval. The aim is to predict y(nAt + T) for some small time
T. The first step is to embed the time series to obtain the reconstruction

~X(iAi) = (y(iAt),y(iAt - r) , . . . , y(iAt -(m- l)r)) i = n,n-l,...,n-n* (59)

where n* = n - (m - l)r is the number of reconstructed vectors for a time series of
length n. Note that the reconstruction slides backward through t te data set here. The
next step is to measure the separation distance between the vector X(nAt) and the other

->0) ->(2) ->(«*-l)
reconstructed vectors and thus to order the reconstructed vectors X , X ,... X
so that the separation distance is from smallest to largest i.e.,

The unknown coefficients cij can be solved using a least-squares method. Finally, the
coefficients <z; can be used to construct the prediction

y(nAt +T) = xx{nAt + T) = a0 + axxx(nAt) + -- + amxm{nAt) (64)

The system of equations, Eqs. 62, 63, may be inconsistent or incomplete, in which case
the forecast is ignored or k is increased.

Holton and May [35] use the reliability of forecasts to determine optimal values for
the delay time and the embedding dimension. The first step in this procedure is to
reconstruct the attractor with a delay time r and an embedding dimension m.
Forecasts are then made over times t for N different starting points using the first
half of the time series data. The correlation coefficient

(A < (*(*:, 0 - < x(k, t) >)(y(k, Q - < y(k91) >) >

y < (*(*, 0 - < x(k, t) >)2 > y < (y(k, 0 - < y{k91) >)2 >

->(0
The metric II. II is the usual Euclidean metric. Since the X are ordered with respect to
-> ->(0
X{nAt), they may be_^written as X (nAt). The next step is to map the k > m+ 1
nearest neighbors of X(nAi) forward in the reconstructed phase space for a time T.

->(0
These evolved points are X (nAt + T). Suppose that the components of these vectors
are as follows:

~X(l\nAt +T)= (xf(nAt + T), xf(nAt + T),..., x^{nAt + J1)) (61)

Now assume a local linear approximation and fit an affine model of the form

x\l)(n + At + T) = a0 + axx
{
x\nAt) + • • • + amx{£{nAt) (62)

xf \n + At + T) = a0 + axxf{nAt) + • • • + amx{^\nAt) (63)

\ \ x - x \ \ < \ \ x - x \ \ < - - - < \ \ x - x || (60)

(65)

Section 3 Time Series Analysis 23

is then computed as a function of the forecast time t. In Eq. 65, x(k, i) denotes the first
component of the evolved vector x in the embedding for the fcth forecast after time t,
y(k, t) denotes the actual data value corresponding to the &th forecast after time t, and
the angular brackets < > denote an average over the k forecasts.

A MATLAB code for forecasting a time series is listed in Appendix II.B.

3.3.2. Surrogate Data

The method of using surrogate data in nonlinear time series analysis was intro-
duced by Theiler et al. in 1992 [46]. This section contains a brief sketch of some of the
ideas and methods in that reference. The starting point is to create an ensemble of
random nondeterministic surrogate data sets that have the same mean, variance, and
power spectrum as the experimental time series data of interest. The measured topo-
logical properties of the experimental time series are then compared with the mea-
sured topological properties of the surrogate data sets. If both the experimental time
series data and the surrogate data sets yield the same values for the topological
properties (within the standard deviation measured from the surrogate data sets),
then the null hypothesis that the experimental data set is random noise cannot be
ruled out.

The method of calculating surrogate data sets with the same mean, variance, and
power spectrum but otherwise random is as follows: First construct the Fourier
transform of the experimental time series data, then randomize the phases, then
take the inverse Fourier transform. An explicit algorithm for achieving this is as
follows [47]:

1. Input the experimental time series data x(tj), j = 1 , . . . N into a complex array

z(n) = x(n) + iy(n), n = l , . . . N (66)

where x(n) = x(tn) and y(n) = 0.
2. Construct the discrete Fourier transform

Z{m) = X{m) + ,T(m) = ^ £ ^-2^-1)0,- .) /* (6 ?)

n=l

3. Construct a set of random phases

<pme[0,n], /fi = 2 , 3 , . . . y (68)

4. Apply the randomized phases to the Fourier transformed data

[Z(m)
Z(m)' = \ \Z(m)\e"""

I \Z(N -m + 2)|e-'^-»'+2

for m = 1 and m = j + 1
for m = 2, 3 , . . . , f (69)
f o r m = f + 2, f + 3, ...,N

24 Chapter 1 Nonlinear Dynamics Time Series Analysis

5. Construct the inverse Fourier transform of Z(m)f

(70)

A MATLAB code for creating surrogate data using the preceding algorithm is
listed in Appendix II.C. Figure 10a shows a surrogate data time series sharing the same
spectral properties as the time series data for the Duffing-Van der Pol oscillator with
parameters as in Figure 5d. A phase space reconstruction for the surrogate data time
series using an embedding dimension m = 3 and a time delay r = 1 is shown in Figure
10b.

The phase space portrait for this surrogate data set appears to be more space filling
(noisy) than the phase space portrait for the original time series (Figure 8d). Forecasts
based on the original time series data and the surrogate time series data using phase
space reconstructions with m = 3 and r = 1 in each case are compared in Figure l l a
and b, respectively. In Figure l ie the correlation coefficient is computed for 100 fore-
casts for both the original time series data (solid line only) and the surrogate data (line
with crosses). From Figure 11 it is clear that the forecast for the original time series is
clearly superior. This is consistent with the apparent randomness in the original time
series being due to nonlinear dynamics rather than noise.

4. DISCUSSION

This chapter provided a tutorial-style introduction to the problem of detecting, analyz-
ing and forecasting low-dimensional deterministic chaos in experimental time series.
The chapter also contains a set of MATLAB programs for this type of analysis. The
detection of deterministic chaos may be considered as a first but very important step

Figure 10 Surrogate data time series (a) and phase space reconstruction (b) with m =
3 and r = 1. The surrogate data have the same spectral properties as the
time series data from the Duffing-Van der Pol oscillator for parameters
fi = 0.2, f= 1.0, a; = 0.94.

Z(n)' = x(n)> + iy{n)' = I]T Z^^^'N

2

1.5

1

0.5

f °
-0.5

-1

-1.5
^

200 210 220 230 240 250 260 270 280 290 300
Time

(a)

?!
w -1

V
"V̂ -1 0

x{t)

T 2 ^

(b)

Section 4 Discussion 25

Figure 11 Comparison between forecasts (*) and actual data (solid lines) for (a) time
series data from the Dufflng-Van der Pol oscillator for parameters
fi = 0.2, / = 1.0, co = 0.94 and (b) surrogate data time series sharing the
same spectral properties. The correlation coefficient based on 100 such
forecasts is shown in (c) for the original time series data (solid line only)
and the surrogate data (line with crosses).

[48] in a more ambitious program aimed at modeling [49] and ultimately controlling [50]
time series data. The methods, algorithms, and computer programs in this chapter
constitute a tool box for nonlinear time series analysis in much the same way that
standard statistical packages are part of the trade of social scientists. On the other
hand, the tool box should not be treated as a black box that can be applied indiscrimi-
nately. Some of the questions to address in this process include: Is the time interval
between data points in the experimental data set sufficiently small and is the data set
sufficiently free from noise to retain deterministic structure if it exists? Has the experi-
mental signal been filtered in any way? Is the time series sufficiently long to permit a
reliable reconstruction of the full phase space trajectory? Is the scaling regime in fractal
dimension measurements unambiguous? Is the convergence of the fractal dimension of
the reconstructed trajectory unambiguous? Is the measured maximum Lyapunov expo-
nent homogeneous over the reconstructed trajectory? If it has a positive value, is this

2

1.5

1
to

g 0.5
I 0
1 - 0 . 5

a -•
-1.5

- 2

-2.5 0 1 2 3 4 5 6 7 8 9 10

2.5

2

cS 0.5
-o

i o
| - 0 . 5

- 1

-1.5

- 2 0 1 2 3 4 5 6 7 8 9 10

1

0.9

g °-8

| 0.7

8 0.6

.1 0.5

I 0.4

3 0.3

0.2

0.1
0 1 2 3 4 5 6 7 8 9 10

Time

(a)

Time

(b)

Time

(c)

26 Chapter 1 Nonlinear Dynamics Time Series Analysis

value significantly different from zero? Can the irregularities in the experimental data be
accounted for equally well using linear statistical analysis?

With careful attention to these and other questions, nonlinear time series analysis
will provide a valuable adjunct to linear statistical analysis of apparently random-
looking biomedical data.

REFERENCES

[1] H. Tong, A personal overview of non-linear time series analysis from a chaos perspective.
Scand. J. Stat. 22:399-445, 1995.

[2] T. Mullin, A dynamical systems approach to time series analysis. In The Nature of Chaos, T.
Mullin, (ed.), Chap. 2. Oxford: Oxford University Press, 1993.

[3] V. Isham, Statistical aspects of chaos: a review. In Networks and Chaos—Statistical and
Probabilistic Aspects, O. E. Barndorff-Nielsen, J. L. Jensen, and W. S. Kendall, (eds.), Chap.
3. London: Chapman & Hall, 1993.

[4] M. Casdagli, Chaos and deterministic versus stochastic non-linear modelling. J. R. Stat. Soc.
B. 54:303-328, 1992.

[5] N. Gershenfeld, An experimentalist's introduction to the observation of dynamical systems.
In Directions in Chaos, Vol. 2, Hao Bai-Lin, (ed.), pp. 310-383. Singapore: World Scientific,
1988.

[6] M. R. Guevara, L. Glass, and A. Shrier, Phase locking, period doubling bifurcations, and
irregular dynamics in periodically stimulated cardiac cells. Science 214:1350-1352, 1981.

[7] D. R. Chialvo, D. C. Michaels, and J. Jalife, Supernormal excitability as a mechanism of
chaotic dynamics of activation in cardiac Purkinje fibers. Circ. Res. 66:525-545, 1990.

[8] K. M. Stein, N. Lippman, and P. Kligfield, Fractal rhythms of the heart. J. Electrocardiol.
24(Suppl.):72-76, 1992.

[9] Z. S. Huang, G. L. Gebber, S. Zhong, and S. Barman, Forced oscillations in sympathetic
nerve discharge. Am. J. Physiol. 263:R564-R571, 1992.

[10] K. P. Yip, N. H. Holstein-Rathlou, and D. J. Marsh, Chaos in blood flow control in genetic
and renovascular hypertensive rats. Am. J. Physiol. 261:F400-F408, 1991.

[11] C. D. Wagner, R. Mrowka, B. Nafz, and P. B. Persson, Complexity and "chaos" in blood
pressure after baroreceptor denervation of conscious dogs. Am. J. Physiol. 269:H1760-
H1766, 1996.

[12] C. A. Skarda and W. J. Freeman, How brains make chaos in order to make sense of the
world. Behav. Brain Sci. 10:161-195, 1987.

[13] D. Hoyer, K. Schmidt, R. Bauer, U. Zwiener, M. Kohler, B. Luthke, and M. Eiselt,
Nonlinear analysis of heart rate and respiratory dynamics. IEEE Eng. Med. Biol. Mag.
16(1): 31-39, 1997.

[14] W. Szemplinska-Stupnicka and J. Rudowski, Neimark bifurcation, almost periodicity and
chaos in the forced van der Pol-Duffing system in the neighbourhood of the principal
resonance. Phys. Lett. A 192:201-206, 1994.

[15] J. Ford, How random is a coin toss? Phys. Toady 36(4):40, 1983.
[16] V. I. Oseledec, A multiplicative ergodic theorem. Trans. Moscow. Math. Soc. 19:197-231,

1968.
[17] G. Benettin, L. Galgani, and J. M. Strelcyn, Kolmogorov entropy and numerical experi-

ments. Phys. Rev. A 14:2338-2345, 1976.
[18] A. Wolfe, J. B. Swift, H. L. Swinney, and J. A. Vastano, Determining Lyapunov exponents

from a time series. Physica D 16:285-317, 1985.
[19] H. Fujisaka, Multiperiodic flows, chaos and Lyapunov exponents. Prog. Theor. Phys.

68:1105-1119, 1982.

References 27

[20] M. Casartelli, E. Diana, L. Galgani, and A. Scotti, Numerical computations on a stochastic
parameter related to Kolmogorov entropy. Phys. Rev. A 13:1921-1925, 1976.

[21] I. Shimada and T. Nagashima, A numerical approach to ergodic problem of dissipative
systems. Prog. Theor. Phys. 61:1605-1613, 1979.

[22] G. Benettin, L. Galgani, A. Giorgilli, and J.-M. Strelcyn, Lyapunov characteristic exponents
for smooth dynamical systems: A method for computing all of them. Meccanica 15:9-19,
1980.

[23] B. Mandelbrot, The Fractal Geometry of Nature. New York: Freeman, 1982.
[24] H. G. E. Hentschel and I. Procaccia, The infinite number of generalized dimensions of

fractals and strange attractors. Physica D 8:435-444, 1983.
[25] J. Kaplan and J. Yorke, Functional differential equations and the approximation of fixed

points. In Lecture Notes in Mathematics, No. 730. Berlin: Springer-Verlag, 1979.
[26] P. Grassberger and I. Procaccia, Characterization of strange attractors. Phys. Rev. Lett.

50:346-349, 1983.
[27] D. Ruelle, Deterministic chaos: The science and the fiction. Proc. R. Soc. Lond. A 427:241-

248, 1990.
[28] C. Essex and M. A. H. Nerenberg, Comments on "Deterministic chaos: the science and the

fiction" by D. Ruelle. Proc. R. Soc. Lond. A 435:287-292, 1991.
[29] S.-Z. Hong and S.-M. Hong, An amendment to the fundamental limit on dimension calcu-

lations. Fractals 2:123-125, 1994.
[30] N. H. Packard, J. P. Crutchfield, J. D. Farmer, and R. S. Shaw, Geometry from a time

series. Phys. Rev. Lett. 45:712-716, 1980.
[31] F. Takens, Detecting strange attractors in turbulence. In Dynamical Systems and Turbulence,

D. A. Rand and L. S. Young, eds. Berlin: Springer, 1981.
[32] T. Sauer and J. A. Yorke, Rigorous verification of trajectories for computer simulation of

dynamical systems. Nonlinearity 4:961-979, 1991.
[33] T. Sauer, J. Yorke, and M. Casdagli, Embedology. J. Stat. Phys. 65:579-616, 1994.
[34] G. Sugihara and R. M. May, Nonlinear forecasting as a way of distinguishing chaos from

measurement error in time series. Nature ?>4A:1?>4-1A\, 1990.
[35] D. Holton and R. M. May, Distinguishing chaos from noise. In The Nature of Chaos, Chap.

7. Oxford: Oxford University Press, 1993.
[36] A. M. Albano, J. Muench, C. Schwartz, A. I. Mees, and P. E. Rapp, Singular-value

decomposition and the Grassberger-Procaccia algorithm. Phys. Rev. A 38:3017, 1988.
[37] G. P. King, R. Jones, and D. S. Broomhead, Phase portraits from a time series: A singular

system approach. Nucl. Phys. B 2:379, 1987.
[38] A. M. Fraser and H. Swinney, Independent coordinates for strange attractors from mutual

information. Phys. Rev. A 33:1134-1139, 1986.
[39] W. Liebert and H. G. Schuster, Proper choice of the time delay for the analysis of chaotic

time series. Phys. Lett. A 142:107, 1989.
[40] A. M. Albano, A. Passamante, and M. E. Farrell, Using higher-order correlations to define

an embedding window. Physica D 54:85, 1991.
[41] J. M. Martinerie, A. M. Albano, A. I. Mees, and P. E. Rapp, Mutual information, strange

attractors, and the optimal estimation of dimension. Phys. Rev. A. 45:7058, 1992.
[42] M. T. Rosenstein, J. J. Collins, and C. J. de Luca, Reconstruction expansion as a geometry-

based framework for choosing proper delay times. Physica D 73:82-98, 1994.
[43] M. Sano and Y. Sawada, Measurement of the Lyapunov spectrum from a chaotic time

series. Phys. Rev. Lett. 55:1082-1085, 1985.
[44] M. T. Rosenstein, J. J. Collins, and C. J. de Luca, A practical method for calculating largest

Lyapunov exponents from small data sets. Physica D 65:117-134, 1994.
[45] J. D. Farmer and J. J. Sidorowich, Predicting chaotic times series, Phys. Rev. Lett. 59:

845-848, 1987.

28 Chapter 1 Nonlinear Dynamics Time Series Analysis

[46] J. Theiler, B. Galdrikian, A. Longtin, S. Eubank, and J. D. Farmer, Using surrogate data to
detect nonlinearity in time series. In Nonlinear Modeling and Forecasting, M. Casdagli and S.
Eubank, eds. New York: Addison-Wesley, 1992.

[47] J. Mazaraki, Dynamical methods for analysing and forecasting chaotic data. Honours
thesis, Applied Mathematics, University of New South Wales, 1997.

[48] D. Ruelle, Where can one hope to profitably apply the ideas of chaos? Phys. Today July: 24-
30, 1994.

[49] B. R. Noack, F. Ohle, and H. Eckelmann, Construction and analysis of differential equa-
tions from experimental time series of oscillatory systems. Physica D 56:389-405, 1992.

[50] E. Ott and M. Spano, Controlling chaos. Phys. Today May: 34-40, 1995.

Appendix 29

APPENDIX

I. Dynamical Systems Analysis—MATLAB Programs

A Numerical Integration of Three Coupled ODEs

% File: VanDerPolSolv.m
%
% Numerical integration of Duffing-Van Der Pol Oscillator.
% Ordinary differential equation solver using in-built
% Matlab function (ode45).
%
% Uses: VanDerPol.m
% Set initial conditions for the three differential equations
xO=[l;O;O];
% Set integration time
timePoints=5000:0.3:7500;
% Solve equations
options=odeset('RelTol',le-10,'AbsTol',le-12);
[t,x]=ode45('VanDerPol',timePoints,x0);

function xp-VanDerPol(t,x)
%
% Duffing-Van Der Pol equations expressed as a first order system
% (see equations 3-5). Parameter values (mu, f and omega)
% can be chosen to demonstrate various trajectories (see text).
%
% IN:
% t: time (not used, but necessary for ODE solver)
% x: Input vector
%
% OUT:
% xp: dx/dt
% Current parameters demonstrate chaotic behavior of the oscillator.
mu=0.2; f=1.0; omega=0.94;
% define equations
xp(l)=x(2);
xp(2)=mu*(l-x(l)*2)*x(2)-x(l)A3+f*cos(x(3));
xp(3)=omega;
% transpose into column vector for ODE solver
xp=xp';

B. Three-Dimensional Phase Space Plots

% File: PSplot.m
%
% Three-dimensional phase space plot of three coupled ODEs
% (data assumed to be stored in matrix 'x' from VanDerPolSolve.m).
%
% Transform x3 to sin(x3)
xnew=x;
xnew(:,3)=sin(x(:,3)) ;
% Generate 3D plot
plot3(xnew(:,1),xnew(:,2),xnew(:,3));
xlabel('xl') ;
ylabeK fx2') ;
zlabeK 'sin(x3) ')
title('Duffing-Van der Pol oscillator.');
rotate3d on
view([-5,58]) ;

30 Chapter 1 Nonlinear Dynamics Time Series Analysis

C. Two-Dimensional Surface of Section

% Fi le : SurfaceOfSection.m
%
% Two dimension Poincare surface of section on plane x3=0
% (data assumed to be stored in matrix 'xnew' generated from PSplot.m).
%
% Start with empty surface
clear Surface
OldDistance=0;
k=l;
for i=l:size(xnew)*[l;0]

NewDistance=xnew(i,3);
if (NewDistance>=0 * OldDistance<0)
% Add new point to the surface
TotalDistance=NewDistance-OldDistance;
Surface(k,:)=xnew(i-l,:)-(OldDistance/Total Distance)* ...

(xnew(i,:)-xnew(i-1,:));
k=k+l;

end
OldDistance=NewDistance;

end
% Generate 2D plot
plot(Surface(:,1),Surface(:,2),'*');
xlabeK 'xl') ;
ylabeK 'x2') ;
title('Poincare Surface of Section.');

D. Lyapunov Exponents for Three Coupled ODEs

% File: LyapunovSolver.m
%
% Calculate all the Lyapunov exponents for the Duff ing-Van der Pol oscillator .
%
% Uses: IntegrateVDPSystem.m, GramSchmidt.m
% Step 1: Construct a unit hypersphere (Dimension=Dim; axis at time 0:
% a(l)=[l;0;0...;0], a(2)=[0;1;0...;0],...,
a(n)=[0;0;0...;l]
% centered on an initial point (x(l,:))
% n=number of iterations to average
n=5000;
% tau
tau=0.1;
Sigma=zeros(n,3) ;
% Initial conditions
x0=[l;0;0];
a0=eye(3);
x=zeros(3,n);
% j=l (Iteration variable)
for j=l:n

% Step2: Integrate the nonlinear equation of motion over a
% characteristic time scale tau to obtain x(j*tau).
% Integrate the variational equations to obtain the evolved
% axis vectors (al,a2,...,an) for time tau.
[xpoint,a]=IntegrateVDPSystem(xO,aO,tau);
% x: numerical solution of the system {NumberOfPoints.Dim}
x(:,j)=xpoint;
% Step3: Apply Gram-Schmidt re-orthonormalization to the axis vectors.
[aUnit]=GramSchmidt(a);
%Step4: Compute Sigma where
% Sigma(j,l)=log(norm(a(l)),
Sigma(j,2)=log(norm(a(2)),...,

Appendix 31

% Sigma(j,n)=log(norm(a(n))
for i=l:3

aOrth(:,i)=dot(a(:,i),aUnit(: ,i))*aUnit(:, i) ;
end
for i=l:3

Sigma(j,i)=log(norm(aOrth(:, i),2));
end
xO=xpoint;
aO=aUnit;

end
% Step 5: Compute the Lyapunov exponents
Lyapunov=(l/(n*tau))*sum(Sigma,1);

function [x, a]=IntegrateVDPSystem(xO,aO,tau)
%
% This function integrates the Duffing-Van der Pol equations
% and the variational equations returning the final result at time tau
% for initial conditions xO and aO (3 vectors associated with variational
% equations).
%
% IN:
% xO: Vector {3} of initial conditions
% aO: Matrix {3,3} with initial vectors associated with variational equations.
% tau: Final time.
%
% OUT:
% x: Vector {3} with solution at time tau
% a: Matrix {3,3} with solution of 3 vectors at time tau.
%
% Uses: VanDerPolVarEqu.m
sO=zeros(12,l);
sO=xO;
for i=l:3

sO(i*3+l:i*3+3)=aO(:,i);
end

to=o
tfinal=tO+tau;
options=odeset('RelTol', le-10,'AbsTol',le-12);
[t,s]=ode45('VanDerPolVarEqu',[tO tfinal], sO);
DataLength=size(s)*[l;0];
x=s(DataLength,1:3)';
for i=l:3

a(: ,i)=s(DataLength,i*3+l:i*3+3) ' ;
end

function sp=VanDerPolVarEqu(t,s)
%
% Duffing-Van Der Pol equations expressed as a first order system
% (see equations 3-5). Parameter values (mu, f and omega)
% can be chosen to demonstrate various trajectories (see text).
% Includes Variational Equations necessary to solve Jacobian sp(4:12).
%
% Current parameters demonstrate chaotic behavior of the oscillator.
%
% IN:
% t: time (not used, but necessary for ODE solver)
% s: Input Vector
%
% OUT:
% sp: ds/dt
%
% Dimension of the system
n=3;
% Initial parameters describing chaotic behavior
mu=0.2; f=0.0; omega=1.0;

32 Chapter 1 Nonlinear Dynamics Time Series Analysis

% define equations
sp(l)=s(2);
sp(2)=mu*(l-s(l)*2)*s(2)-s(l) A3+f*cos(s(3));
sp(3)=omega;
for i=l:n

sp(n*i+l)=s(n*i+2);
sp(n*i+2)=(-2*mu*s(l)*s(2)-3*s(l)*2)*s(n*i+l)+...

mu*(l-s(l)*2)*s(n*i+2)+f*s(n*i+3);
sp(n*i+3)=0;

end
% transpose into column vector for ODE solver
sp=sp';

function [ReNormMatrix]=GramSchmidt(Matrix)
%
% Compute a set of normal-orthogonal vectors using the Gram-Schmidt algorithm.
% Matrix contains vector Matrix(:,1),Matrix(:,2),..., Matrix(:,3)
%
% IN:
% Matrix: Matrix containing original vectors.
%
% OUT:
% ReNormMatrix: Matrix with the renormalized set of vectors
Dim=size(Matrix)*[l;0];
ReNormMatrix=zeros(size(Matrix));
ReNormMatrix(:,l)=Matrix(:,1)/norm(Matrix(:,1),2);
for j=2:Dim

z=Matrix(:,j);
for i=j-l:-l:l

z=z-dot(Matrix(:,j),ReNormMatrix(:,i))*ReNormMatrix(:,i);
end
ReNormMatrix(:,j)=z/norm(z,2);

end

£ Grassberger-Procaccia Algorithm

% File: CorrDim.m
%
% Implements the Grassberger-Procaccia algorithm to measure the correlation
% dimension (data assumed tobe stored in matrix 'x' f rom VanDerPolSolve . m) .
%
% Uses: Distance.m, BinFilling.m, Slope.m
% Transform x3 to sin(x3)
xnew=x;
xnew(:,3)=sin(x(:,3));
% Number of valid points in xnew matrix.
NoPoints=[size(xnew)*[l;0] size(xnew)*[l;0] size(xnew)*[l;0]];
% Calculates 32 equi-spaced bins on a logarithmic scale
[Radius]=Distance(xnew, NoPoints);
% Fills bins with the number of pairs of points with separation given by Radius .
[BinCount]=BinFilling(xnew,NoPoints,Radius);
MaxEmDim=3;
% Normalizes the matrix Radius, by its maximum value
% (for each dimension independently).
for i=l:MaxEmDim

max=Radius(32,i);
RadiusNormal(:,i)=Radius(:,i)/max;

end
% Plots the BinCount for specific Radius for all Embedding Dimensions,
figure(1);
for i-l:MaxEmDim

ifi==l
hold off

end
loglog(RadiusNormal(:,i),BinCount(:,i),'+-');

Appendix 33

if i==l
hold on

end
end
% Plot correlation Integral
ok=l;
title(strcat('Correlation Integral'));
xlabeKstrcat ('% of Maximum Radius, MaxEmDim=',num2str (MaxEmDim) ,')'));
ylabel('% of Number of Points');
% Find the slope for all the dimensions,
for i=l:MaxEmDim

[Slopes(i), SlopeErrors(i)]=Slope(Radius(:fi),
BinCount(:,i), .6 .125);

end
% Plot Fractal Dimensions
figure(2)
Dim=l:MaxEmDim;
errorbar(Dim,Slopes,SlopeErrors, 'b*-');
axis([O MaxEmDim+1 0 MaxEmDim]);
grid on
zoom on;
title(strcat('Data Set: ','Duffing VanDerPol Oscillator'));
xlabeK 'Dimension') ;
ylabel('Fractal Dimension');

function [Radius]^Distance(Portrait, NoPoints);
%
% IN:
% Portrait: Is the matrix {Number of data points, MaxEmDim} in which
% the trajectories are contained.
% NoPoints: Is the vector {1,MaxEmDim} in which the number of valid
% points for each dimension is contained.
%
% OUT:
% Radius: Is the matrix {32,MaxEmDim} in which the difference between
% the maximum and minimum distances from one point to any other , is divided
% into 32 logarithmically equal intervals (for all dimensions).
%
% Uses: DistVectPoint.m, ElimZero.m
MaxEmDim=size(Portrait)*[0;l];
NoPointsEnd=[NoPoints 1];
MinDist=ones(1,MaxEmDim)*le20;
MaxDist=zeros(1,MaxEmDim);
Radius=zeros(32,MaxEmDim);
for EmDim=l:MaxEmDim

minval=zeros(l,EmDim);
minloc=zeros(l,EmDim),
maxval=zeros(l,EmDim),
maxloc=zeros(l,EmDim),
for i=NoPointsEnd(EmDim):-1:NoPointsEnd(EmDim+1)+1

% Calculates the distances from point Portrait(i,1: EmDim) to all the
% points in matrix Portrait (1:i-1,l:EmDim)
Distances=DistVectPoint(Portrait(1:1-1,1:EmDim), Portrait(i,1:EmDim));
% Eliminates all points with distance less than Tolerance=le-10
DistanceNoZero=ElimZero(Distances, le-lO);
[minval,minloc]=min(DistanceNoZero,[],1);
[maxval,maxloc]=max(Distances,[],1);
for j=l:EmDim;

if MinDist(j)>minval(j)
MinDist(j)=minval(j);

end
if MaxDist(j)<maxval(j)

MaxDist(j)=maxval(j);
end

end

34 Chapter 1 Nonlinear Dynamics Time Series Analysis

end
end
% Fill 32 bins (equally spaced logarithmically)
for k-l:32

Radius(k,:)exp(log(MinDist)+k*(log(MaxDist)-log(MinDist))/32);
end

function [Distance]=DistVectPoint(data,point);
%
% This function calculates the distance from all elements of the matrix
% {n,MaxDim} to the point {l,MaxDim}, for all the dimensions.
%
% IN:
% data: Is a matrix {n,MaxDim} of n points to which 'point' is going

to be compared.
% point: Is a vector {1,MaxDim} that represents the 'point' in MaxDim
% dimensions.

% OUT:
% Distance: Is a matrix {n,MaxDim} that contains the distances from
% 'point' to all other points in 'data' (for dimensions 1 to MaxDim).
%
% Example: data=[0
% 0
% 0
% 1
% 1
% point=[0
% Distance=[0
% 0
% 0
% 1.0000
% 1.0000
Diffe=zeros(size(data));
for i=l:size(data)*[0;l]

Diffe(:,i)=data(:,i)-point(i);
end
% Calculate Euclidean distance
Diffe=Diffe.A2;
Distance=cumsum(Diffe,2);
Distance=sqrt(Distance);

0
0
1
0
1
0
0
0
1.0000
1.0000
1.4142

0
1
1
1
1
0
0
1
1
1
1

];
];

.0000

.4142

.4142

.7321]

function DistanceNoZero=ElimZero(Distance, Tolerance);
%
% Replaces all points with distance less than Tolerance with le20.
% This is necessary in the bin-filling algorithm.
%
% IN:
% Distance: Is a matrix {n,MaxDim} that contains the distances from
% 'point' to all other points in 'data' (for dimensions 1 to MaxDim).
% Tolerance: Is a scalar that determines the minimum distance to be
considered.
%
% OUT:
% DistanceNoZero: Is a matrix {n,MaxDim} equal to Distance, but with all
% elements smaller than Tolerance replaced with le20
SigDist=Distance-Tolerance;
SigDist=((sign(sign(SigDist.*-l)-0.5))+l)*le20;
DistanceNoZero=Distance+SigDist;

function [BinCount]=BinFilling(Portrait,NoPoints,Radius)
%
% IN:
% Portrait: Is the matrix {Number of data points, MaxEmDim} in which the
% trajectories are contained.

Appendix 35

% NoPoints : Is the vector {l,MaxEmDim} in which the number of points for each
% dimension is contained.
% Radius: Is the matrix {32,MaxEmDim} in which the difference between the
% maximum and minimum distances from one point to any other , is divided
into
% 32 logarithmically equal intervals (for all dimensions)
%
% OUT:
% BinCount: Is a matrix {32 ,MaxEmDim} with the total count of pair of points
% with a distance smaller than that specified by Radius for the 32
intervals.
%
% Uses: DistVectPoint.m, CountPoints.m
MaxEmDim=size(Portrait)*[0;1];
BinCount=zeros(32,MaxEmDim);
NoPointsEnd=[NoPoints 1] ;
for EmDim=l:MaxEmDim

for i=NoPointsEnd(EmDim):-1:NoPointsEnd(EmDim+1)+1
Distances=zeros(i-l,EmDim);
Distances=DistVectPoint(Portrait(1:i-1,l:EmDim),
Portrait(i,l:EmDim));
for j=l:32

BinCount(j,1:EmDim)^BinCount(j,l:EmDim)+...
CountPoints(Distances,Radius(j,l:EmDim));

end
end

end
BinCount-BinCount./(((ones(32,1)*NoPoints).*(ones(32,1)*NoPoints-l))/2);

function [CountVect]=CountPoints(Distances,Threshold);
%
% IN:
% Distance: Is amatrix {n,MaxDim} that contains the distances from 'point'
% to all other points in 'data' for dimensions 1 to MaxDim.
% Threshold: Is the upper bound on Distance.
%
% OUT:
% CountVect: Is a vector {l,MaxDim] with the count of distances smaller
% than Threshold
VectLength=length(Threshold);
NumOfPoints=size(Distances)*[l;0];
CountVect=zeros(l,VectLength);
ThresholdMatr=ones(NumOfPoints,1)*Threshold;
CountVect=sum((Distances<ThresholdMatr),1);

function [Slope, SlopeError]=Slope(RadiusV, BinCountV, center, high)
%
% This function gives the slope and error for a line (in a logarithmic scale)
% given by the points RadiusV, BinCountV. The only relevant points are the ones
% that are contained in the band center-high/2, center+high/2.
%
% The values for center define the position of the center of the band and can
% range from 0 to 1 with 1 at the top.
%
% IN:
% RadiusV: Vector with the radii limits of a specific Dimension.
% BinCountV: Vector containing the counts of pairs of elements with distance
% smaller than radius.
% Center: Center position where the slope is to be evaluated.
% High: Band size around center.
%
% OUT:
% Slope: Slope evaluated in the region center-high/2, center+high/2.
% SlopeError: Error of the evaluated fitted line to the original data.
lnRadiusV=log(RadiusV);
lnBinCountV=log(BinCountV);

36 Chapter 1 Nonlinear Dynamics Time Series Analysis

Max=O;
Min=lnBinCountV(l);
IntervalHigh=(Max-Min)*high;
Top=-((Max-Min)*(l-center))+(IntervalHigh/2);
Base=-((Max-Min)*(l-center))-(IntervalHigh/2);
k=l;
for i=l:32

if ((lnBinCountV(i)>=Base & lnBinCountV(i)<=Top))
RelDataX(k)=lnRadiusV(i);
RelDataY(k)=lnBinCountV(i);
k=k+l;

end
end
[P,S]=polyfit(RelDataX,RelDataY,l);
Slope=P(l);
SlopeError=S.normr;

Appendix 37

II. Time Series Analysis—MATLAB Programs

A Phase Space Reconstruction

function [Portrait, NoPoints, MaxPosEmDim]=...
Trajectory(SigData, MaxEmDim, TimeDelay)

%
% This function creates a matrix containing the MaxEmDim trajectories generated
% for a specified time delay and a given set of data (SigData).
%
% IN:
% SigData: Vector (of the form n,l) to be analyzed.
% MaxEmDim: The maximum embedding dimension for which the trajectory
(portrait)
% is to be constructed.
% TimeDelay: Time delay in number of points.
%
% OUT:
% Portrait: Matrix in which each row is a point in the reconstructed trajectory.
% Each point in the row is the coordinate of that point.
% NoPoints: Number of points for each dimension. For any dimension EmDim,
% NoPoints=length(SigData)-(EmDim-1)*TimeDelay.
% MaxPosEmDim: Maximum possible embedding dimension for the number of
points in
% SigData.
DataLength=length(SigData);
MaxPosEmDim=floor(2*loglO(DataLength));
clear NoPoints
for i=l:MaxEmDim

NoPoints(i)=DataLength-((i-1)*TimeDelay);
end
clear Portrait;
Portrait=zeros(NoPoints(1),MaxEmDim);
for i=l:MaxEmDim

Portrait(1:DataLength-((i-1)*TimeDelay),i)=...
SigData(((i-1)*TimeDelay)+1:DataLength);

end

B. Forecasting

function [yFuture]=Forecast(y,NoPointsForcast,TimeDelay,EmDim,Redund)
%
% IN:
% y: Vector with original data.
% NoPointsForcast: Number of points to forecast.
% TimeDelay: Time delay for the trajectory reconstruction.
% EmDim: Dimension for the trajectory reconstruction.
% Redund: Number of redundant points to evaluate forecasting parameters.
%
% OUT:
% yFuture: Vector {NoPointsForcast} with forecast data.
%
% Uses: BackEmbedding.m, ClosestPoints.m, EvalFuture.m,
yFuture=zeros(NoPointsForcast,1) ;
% Backward embedding
[x,NoPoints]=BackEmbedding(y,TimeDelay,EmDim);
% Find closest points
xO=x(NoPoints,:) ;
% EmDim+1 is the minimum to solve the problem.
% Can be increased to evaluate more points.

38 Chapter 1 Nonlinear Dynamics Time Series Analysis

k=(EmDim+l) +Redund;
[xClosest,PosClosest]=ClosestPoints(x(l:NoPoints-NoPointsForcast,:),xO,k);
for i=l:NoPointsForcast
[xClosestFuture]=EvalFuture (x,PosClosest,i,k);

% Calculate the set of parameters 'a' that best generate the forecast of
% xClosestFuture from xClosest.
k=size(xClosest)*[l;0];
a=regress(xClosestFuture(:,1),[ones(k,1),xClosest]);
% Forecast y
yFuture(i,:)=[l, xO]*a;

end

function [xClosest, PosClosest]=ClosestPoints(x,xO,N)
%
% Searches for the N closest points to xO in matrix x.
%
% IN:
% x: Matrix {of the form n,EmDim} with n points of dimension EmDim.
% xO: Vector {of the form 1, EmDim} to where the closest points
% in x are search.
% N: Number of points to look for.
%
% OUT:
% xClosest: Matrix {of the form N, EmDim} with the N closest points
% of x to xO.
% PosClosest: Vector {of the form N,l} with the position of the
% closest points.
[NoPoints, EmDim]=size(x);
Distance=sum(((x-ones(NoPoints,1)*xO).A2),2);
[Distance, I]=sort(Distance);
xClosest=zeros(N,EmDim);
PosClosest=zeros(N,1);
for i=l:N

xClosest(i,:)=x(I(i),:) ;
end
PosClosest=I(l:N);

function [xClosestFuture]=EvalFuture(x,PosClosest,NoPoints Forcast,N)
%
% Evaluate the trajectory (x) for each point indicated by the vector
% PosClosest N steps in the future.
%
% IN:
% x: Matrix {of the form n,EmDim} with n points of dimension
% EmDim.
% PosClosest: Vector {of the form N,l} with the position of the
% closest points.
% NoPointsForcast:
% N: Number of points.
%
% OUT:
% xClosestFuture: Matrix {of the form N, EmDim} with the evolved
% points in matrix PosClosest, NoPoints ahead in the future.
[NoPoints,EmDim]=size(x);
xClosestFuture=zeros(length(PosClosest),EmDim);
for i=l:N

xClosestFuture(i,:)=x(PosClosest(i)+NoPointsForcast,:);
end

Appendix 39

C. Surrogate Data

function [VectorOut]=SurrDataFFT(VectorIn)
%
% This function assigns random phases for all frequencies of the input
% vector (Vectorln{n,1}) in its Fourier representation.
%
% IN:
% Vectorln: Vector {of the form n,l} with original data.
%
% OUT:
% VectorOut: Vector {of the form n,l} with surrogate data.
VectorLength=length(VectorIn);
% FFT of original Signal
Vectorfft=fft(Vectorln);
% Randomize Phase
NRel=ceil((VectorLength-1)/2)+1;
NChange=VectorLength-NRel;
RelVector=zeros(NRel,1);
RelVector=Vectorfft(l:NRel);
RandAngles=rand(NChange,1)*2*pi;
RelVector(2:NChange+l)=(cos(RandAngles)+sin(RandAngles)*i).*...

abs(Vectorfft(2:Nchange+l));
VectorRandom=zeros(VectorLength,1);
NRel=ceil((VectorLength-1)/2)+l;
VectorRandom(l:NRel)=RelVector;
for i=VectorLength:-l:NRel+l

j=VectorLength-i+2;
VectorRandom(i)=conj(RelVector(j));

end
% IFFT to generate new signal
VectorOut=real(ifft(VectorRandom));
% VectorOut: Vector {of the form n,l} with surrogate data.

