
Chapter One

Introduction and Channel Models

A DAPTIVE antenna arrays have long been an attrac-
tive solution to a plethora of problems related to

signal detection and estimation. An array of antenna ele-
ments can overcome the directivity and beamwidth limita-
tions of a single antenna element, and when it is combined
with methods from statistical detection and estimation and
control theory, a self-adjusting or adaptive system emerges.
This key capability was recognized in 1967 by Widrow and
his colleagues in their publication in the IEEE Proceedings,
with which this book opens. This paper offers a valuable
introduction to the adaptive antenna concepts.

A smart antenna system relies heavily on the spatial
characteristics of the operational environment to improve
the output signal. In order to study the performance of

adaptive algorithms in radio operational environments
(Chapters 2 and 3), it is essential to employ suitable channel
models that provide both spatial and temporal information.
For that reason, three papers are included in this chapter.
There is still a lot of work to be done in terms of character-
izing the radio channel and producing propagation models
capable of providing all the information needed to effi-
ciently study wideband systems that also exploit the spatial
dimension. This need was recently underlined by the inter-
national standardization organisations, and several re-
search activities are already under way (e.g., subgroup on
spatial propagation models of the COST—European
Union Forum for Cooperative Scientific Research—
Action 259).
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Abstract—A system consisting of an antenna array and an adaptive
processor can perform filtering in both the space and the frequency domains,
thus reducing the sensitivity of the signal-receiving system to interfering
directional noise sources.

Variable weights of a signal processor can be automatically adjusted by a
simple adaptive technique based on the least-mean-squares (LiVIS) algorithm.
During the adaptive process an injected pilot signal simulates a received signal
from a desired "look" direction. This allows the array to be "trained" so
that its directivity pattern has a main lobe in the previously specified look
direction. At the same time, the array processing system can reject any
incident noises, whose directions of propagation are different from the
desired look direction, by forming appropriate nulls in the antenna directivity
pattern. The array adapts itself to form a main lobe, with its direction and
bandwidth determined by the pilot signal, and to reject signals or noises
occurring outside the main lobe as well as possible in the minimum mean-
square error sense.

Several examples illustrate the convergence of the LMS adaptation
procedure toward the corresponding Wiener optimum solutions. Rates of
adaptation and misadjustments of the solutions are predicted theoretically
and checked experimentally. Substantial reductions in noise reception are
demonstrated in computer-simulated experiments. The techniques described
are applicable to signal-receiving arrays for use over a wide range of fre-
quencies.

INTRODUCTION

THE SENSITIVITY o( a signal-receiving array to
interfering noise sources can be reduced by suitable
processing of the outputs of the individual array ele-

ments. The combination o( array and processing acts as a
filter in both space and frequency. This paper describes a
method o( applying the techniques of adaptive filtering111

to the design of a receiving antenna system which can extract
directional signals from the medium with minimum dis-
tortion due to noise. This system will be called an adaptive
array. The adaptation process is based on minimization of
mean-square error by the LMS algorithm.[2!~~[4} The
system operates with knowledge of the direction of arrival
and spectrum of the signal, but with no knowledge of the
noise field. The adaptive array promises to be useful when-
ever there is interference that possesses some degree of
spatial correlation; such conditions manifest themselves
over the entire spectrum, from seismic to radar frequencies.
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The term "adaptive antenna" has previously been used
by Van Atta[5] and others [b] to describe a self-phasing an-
tenna system which reradiates a signal in the direction from
which it was received. This type of system is called adaptive
because it performs without any prior knowledge of the
direction in which it is to transmit. For clarity, such a sys-
tem might be called an adaptive transmitting array; whereas
the system described in this paper might be called an adap-
tive receiving array.

The term "adaptive filter11 has been used by Jakowatz,
Shuey, and White[?1 to describe a system which extracts an
unknown signal from noise, where the signai waveform
recurs frequently at random intervals. Davisson[8] has
described a method for estimating an unknown signal wave-
form in the presence of white noise of unknown variance.
Glaser[9] has described an adaptive system suitable for the
detection of a pulse signal of fixed but unknown waveform.

Previous work on array signal processing directly related
to the present paper was done by Bryn, Mermoz, and Shor.
The problem of detecting Gaussian signals in additive
Gaussian noise fields was studied by Bryn,[l01 who showed
that, assuming K antenna elements in the array, the Bayes
optimum detector could be implemented by either K2 linear
filters followed by "conventional" beam-forming for each
possible signal direction, or by K linear filters for each
possible signal direction. In either case, the measurement
and inversion of a 2K by 2K correlation matrix was required
at a large number of frequencies in the band of the signal.
Mermoz1111 proposed a similar scheme for narrowband
known signals, using the signal-to-noise ratio as a perfor-
mance criterion. Shor [ l 2 ] also used a signal-to-noise-ratio
criterion to detect narrowband pulse signals. He proposed
that the sensors be switched off when the signal was known
to be absent, and a pilot signal injected as if it were a noise-
free signal impinging on the array from a specified direction.
The need for specific matrix inversion was circumvented
by calculating the gradient of the ratio between the output
power due to pilot signal and the output power due to
noise, and using the method of steepest descent. At the same
time, the number of correlation measurements required was
reduced, by Shor's procedure, to 4K at each step in the
adjustment of the processor. Both Mermoz and Shor have
suggested the possibility of real-time adaptation.

This paper presents a potentially simpler scheme for ob-
taining the desired array processing improvement in real
time. The performance criterion used is minimum mean-
square error. The statistics of the signal are assumed

Reprinted from IEEE Proceedings, Vol 55, No. 12, pp. 2143-2159, December 1967.
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to be known, but no prior knowledge or direct measure-
ments of the noise field are required in this scheme. The
adaptive array processor considered in the study may be
automatically adjusted (adapted) according to a simple
iterative algorithm, and the procedure does not directly
involve the computation of any correlation coefficients or
the inversion of matrices. The input signals are used only
once, as they occur, in the adaptation process. There is no
need to store past input data; but there is a need to store the
processor adjustment values, i.e., the processor weighting
coefficients ("weights"). Methods of adaptation are pre-
sented here, which may be implemented with either analog
or digital adaptive circuits, or by digital-computer realiza-
tion.

DIRECTIONAL AND SPATIAL FILTERING

An example of a linear-array receiving antenna is shown in
Fig. l(a) and (b). The antenna of Fig. l(a) consists of seven
isotropic elements spaced Ao/2 apart along a straight line,
where Ao is the wavelength of the center frequency f0 of
the array. The received signals are summed to produce an
array output signal. The directivity pattern, i.e., the relative
sensitivity of response to signals from various directions,
is plotted in this figure in a plane over an angular range of
— n/2<6<n/2 for frequency /0. This pattern is symmetric
about the vertical line 9 = 0. The main lobe is centered at
0 = 0. The largest-amplitude side lobe, at 0 = 24 , has a
maximum sensitivity which is 12.5 dB below the maximum
main-lobe sensitivity. This pattern would be different if it
were plotted at frequencies other than /0.

The same array configuration is shown in Fig. l(b); how-
ever, in this case the output of each element is delayed in
time before being summed. The resulting directivity pattern
now has its main lobe at an angle of i]/ radians, where

\jj = sin" '•o<*/o = sin"1 I — (1)

in which

f0 = frequency of received signal
AQ = wavelength at frequency /0

S = time-delay difference between neighboring-element
outputs

d = spacing between antenna elements
c = signal propagation velocity = AOJ/O.

The sensitivity is maximum at angle \j/ because signals re-
ceived from a plane wave source incident at this angle, and
delayed as in Fig. l(b), are in phase with one another and
produce the maximum output signal. For the example
illustrated in the figure, d = X0/2, <5 = (0.12941/%), and there-
fore \l/ = sin"1 (25/0)= 15°.

There are many possible configurations for phased arrays.
Fig. 2(a) shows one such configuration where each of the
antenna-element outputs is weighted by two weights in
parallel, one being preceded by a time delay of a quarter of

a cycle at frequency f0 (i.e., a 90° phase shift), denoted by
l/(4/0). The output signal is the sum of all the weighted
signals, and since all weights are set to unit values, the direc-
tivity pattern at frequency f0 is by symmetry the same as that
of Fig. l(a). For purposes of illustration, an interfering
directional sinusoidal "noise" of frequency f0 incident on
the array is shown in Fig. 2(a), indicated by the dotted
arrow. The angle of incidence (45.5°) of this noise is such
that it would be received on one of the side lobes of the
directivity pattern with a sensitivity only 17 dB less than
that of the main lobe at 0 = 0°.

If the weights are now set as indicated in Fig. 2(b), the
directivity pattern at frequency /0 becomes as shown in that
figure. In this case, the main lobe is almost unchanged from
that shown in Figs. l(a) and 2(a), while the particular side
lobe that previously intercepted the sinusoidal noise in
Fig. 2(a) has been shifted so that a null is now placed in the
direction of that noise. The sensitivity in the noise direction
is 77 dB below the main lobe sensitivity, improving the noise
rejection by 60 dB.

A simple example follows which illustrates the existence
and calculation of a set of weights which will cause a signal
from a desired direction to be accepted while a "noise" from
a different direction is rejected. Such an example is illus-
trated in Fig. 3. Let the signal arriving from the de-
sired direction 0 = 0 be called the "pilot" signal p(t)=P
sin a)ot, where OJ 0 4 2n /0, and let the other signal, the noise,
be chosen as n{t) = N sin tvot, incident to the receiving array
at an angle 0 = n/6 radians. Both the pilot signal and the
noise signal are assumed for this example to be at exactly
the same frequency /0. At a point in space midway between
the antenna array elements, the signal and the noise are
assumed to be in phase. In the example shown there are
two identical omnidirectional array elements spaced /.0/2
apart. The signals received by each element are fed to two
variable weights, one weight being preceded by a quarter-
wave time delay of l/(4yo). The four weighted signals are
then summed to form the array output.

The problem of obtaining a set of weights to accept p(t)
and reject n(t) can now be studied. Note that with any set
of nonzero weights, the output is of the form A sin (ajor4-$),
and a number of solutions exist which will make the output
be p(t). However, the output of the array must be indepen-
dent of the amplitude and phase of the noise signal if the
array is to be regarded as rejecting the noise. Satisfaction of
this constraint leads to a unique set of weights determined as
follows.

The array output due to the pilot signal is

P[(wl + w3)sinoj0r + (w2 + w4)sin(o;0f - n,'2)\ (2)

For this output to be equal to the desired output of p(t) = P
sin co0t (which is the pilot signal itself), it is necessary that

Wi -f w3 = 1

w2 + w4 = 0
(3)

4



d - X . / 2

ARRAY OUTPUT
SIGNAL

0°

**/5V

T,.._ a —9—!-d —->—d •?—d i-—o—d —;>

!"~8~! ^ i s l [3S~i r ^ s l ^ 5 8 : 6 8
——1 __,—1 1—, i—,—I ___1 u_r_

A Y S " ' ^ ^ ^

in) ARRAY OUTPUT
3 SIGNAL

Fig. 1. Directivity pat tern for a linear array, (a) Simple array,

(b) Delays addled.

DIRECTIVITY
PATTERN-,

° - DIRECTION

(NOISE AT FREQ. f j

WEIGHTS '•

( a )
ARRAY OUTPUT

SIGNAL

DIRECTIONAL
NOISE

« , - 0.099 wB = - l 2 3 3 1 ARRAY OUTPUT

w 2 »-1 .255 w B = - O l 8 2 " SIGNAL

w3 = - 0 266 w o = - 1.610

w4 = - I 5 18 w,,- 0 266

w3 « 0.1 8 2 w12=> - I 5 19

w s - - l 6 l 0 wf,= - 0 999

w7 » 0.000 wM- - I 255

Fig. 2. Directivity pattern of linear array, (a) With equal weighting,

(b) With weighting tor noise elimination.

Fig. 3. Array configuration for noise elimination example.

d = Xo/2

iO°

^0.

24»

ANTENNA
ELEMENTS

y-—-SJ
( a )

M rajH I4TJ isl L5J [jjy

d = X o / 2

LOOK
DIRECTION

(0-

1 /

d = X o / 2

WEIGHT VALUES

( b )

LOOK
DIRECTION

iO°

_ ARRAY
3OUTPUT

•k-rt

/"NOISE"
n(t) = Nsmtu

6" -

"PILOT" SIGNAL

p(t)=Psincuot

kJ a
V 3@

(T;

5

®© SxS) @© ©© ®© ©© ©
4Tli

1 1[ T
i |M

KL
»RRAY OUTPUT

SIGNAL



With respect to the midpoint between the antenna ele-
ments, the relative time delays of the noise at the two an-
tenna elements are ± [l/(4/0)] sinn/6= ±l/(8/0) = ±Ao/(8c),
which corresponds to phase shifts of ±n/4 at frequency f0.
The array output due to the incident noise at 6 = n/6 is then

f / n\ / 3TC
N Wi sin I co0t - - \ + w2 sin lo;0r - —

+ w3 sin ((o0t + - 1 + w4 sin I co0t — -

For this response to equal zero, it is necessary that

w t + w4 = 0

w2 - w3 = 0

(4)

(5)

Thus the set of weights that satisfies the signal and noise
response requirements can be found by solving (3) and (5)
simultaneously. The solution is

Wl = 2, YV- = h W3 — I* W4. — (6)

With these weights, the array will have the desired proper-
ties in that it will accept a signal from the desired direction,
while rejecting a noise, even a noise which is at the same
frequency f0 as the signal, because the noise comes from a
different direction than does the signal.

The foregoing method of calculating the weights is more
illustrative than practical. This method is usable when there
are only a small number of directional noise sources, when
the noises are monochromatic, and when the directions of
the noises are known a priori. A practical processor should
not require detailed information about the number and the
nature of the noises. The adaptive processor described in
the following meets this requirement. It recursively solves
a sequence of simultaneous equations, which are generally
overspecified, and it finds solutions which minimize the
mean-square error between the pilot signal and the total
array output.

CONFIGURATIONS OF ADAPTIVE ARRAYS

Before discussing methods of adaptive filtering and signal
processing to be used in the adaptive array, various spatial
and electrical configurations of antenna arrays will be
considered. An adaptive array configuration for processing
narrowband signals is shown in Fig. 4. Each individual
antenna element is shown connected to a variable weight
and to a quarter-period time delay whose output is in
turn connected to another variable weight. The weighted
signals are summed, as shown in the figure. The signal,
assumed to be either monochromatic or narrowband, is
received by the antenna element and is thus weighted by a
complex gain factor A^. Any phase angle </>=— tan"1

(w2/
wi) can be chosen by setting the two weight values, and

the magnitude of this complex gain factor A = N/wf+ w\
can take on a wide range of values limited only by the range
/imitations of the two individual weights. The latter can
assume a continuum of both positive and negative values.

Fig. 4. Adaptive array configuration for receiving narrowband signals.

^ 0 <$_ § J
Fig. 5. Adaptive array configuration lor receiving broadband signals.

Thus the two weights and the 1 (4y0) time delay provide
completely adjustable linear processing for narrowband
signals received by each individual antenna element.

The full array of Fig. 4 represents a completely general
way of combining the antenna-element signals in an ad-
justable linear structure when the received signals and noises
are narrowband. It should be realized that the same
generality (for narrowband signals) can be achieved even
when the time delays do not result in a phase shift of exactly
7T/2 at the center frequency /0. Keeping the phase shifts
close to nil is desirable for keeping required weight values
small, but is not necessary in principle.

When one is interested in receiving signals over a wide
band of frequencies, each of the phase shifters in Fig. 4 can
be replaced by a tapped-delay-line network as shown in
Fig. 5. This tapped delay line permits adjustment of gain
and phase as desired at a number of frequencies over the
band of interest. If the tap spacing is sufficiently close, this
network approximates the ideal filter which would allow
complete control of the gain and phase at each frequency
in the passband.

ADAPTIVE SIGNAL PROCESSORS

Once the form of network connected to each antenna
element has been chosen, as shown for example in Fig. 4
or Fig. 5, the next step is to develop an adaptation procedure
which can be used to adjust automatically the multiplying
weights to achieve the desired spatial and frequency filtering.
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The procedure should produce a given array gain in the
specified look direction while simultaneously nulling out
interfering noise sources.

Fig. 6 shows an adaptive signal-processing element. If
this element were combined with an output-signal quantizer,
it would then comprise an adaptive threshold logic unit.
Such an element has been called an "Adaline"[133 or a
threshold logic unit (TLU).[14] Applications of the adaptive
threshold element have been made in pattern-recognition
systems and in experimental adaptive control sys-
temsm,[3],[141-[17]

In Fig. 6 the input signals xx(t\ • • •, xt(t), • • •, xn(t) are the
same signals that are applied to the multiplying weights
wl5 • •, wh • - •, wn shown in Fig. 4 or Fig. 5. The heavy lines
show the paths of signal flow; the lighter lines show func-
tions related to weight-changing or adaptation processes.

The output signal s(t) in Fig. 6 is the weighted sum

x,(t) o

5(0 = Z Xi(t)Wi (7)
i = i

where n is the number of weights; or, using vector notation

s{t) = WTX(t) (8)

where WT is the transpose of the weight vector

~vv,

W±

and the signal-input vector is

X(t) A

Xl(t)

xM

Xn(t\

For digital systems, the input signals are in discrete-time
sampled-data form and the output is written

s(j) - WTX(j) (9)

where the index; indicates the7th sampling instant.
In order that adaptation take place, a "desired response"

signal, tl(t) when continuous or d(j) when sampled, must be
supplied to the adaptive element. A method for obtaining
this signal for adaptive antenna array processing will be
discussed in a following section.

The difference between the desired response and the out-
put response forms the error signal e(/):

Fig. 6. Basic adaptive element.

This signal is used as a control signal for the ''weight ad-
justment circuits" of Fig. 6.

Solving Simultaneous Equations

The purpose of the adaptation or weight-changing pro-
cesses is to find a set of weights that will permit the output
response of the adaptive element at each instant of time to
be equal to or as close as possible to the desired response.
For each input-signal vector X(j\ the error e(j) of (10)
should be made as small as possible.

Consider the finite set of linear simultaneous equations

WTX(\) =J (1)

WTX(2) = d(2)

WTX(j) =d(j)
(11)

WTX{N) = d(N)

where N is the total number of input-signal vectors; each
vector is a measurement of an underlying rc-dimensional
random process. There are N equations, corresponding to
N instants of time at which the output response values are
of concern; there are n "unknowns," the n weight values
which form the components of W. The set of equations (11)
will usually be overspecified and inconsistent, since in the
present application, with an ample supply of input data, it is
usual that N»n. [These equations did have a solution in
the simple example represented in Fig. 3. The solution is
given in (6). Although the simultaneous equations (3) in that
example appear to be different from (11), they are really the
same, since those in (3) are in a specialized form for the case
when all inputs are deterministic sinusoids which can be
easily specified over all time in terms of amplitudes, phases,
and frequencies.]

When N is very large compared to H, one is generally
interested in obtaining a solution of a set of N equations
[each equation in the form of (10)] which minimizes the
sum of the squares of the errors. That is, a set of weights W
is found to minimize

«#) = d{j) ~ WTX(j). (10)

N
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When the input signals can be regarded as stationary
stochastic variables, one is usually interested in finding a set
of weights to minimize mean-square error. The quantity of
interest is then the expected value of the square of the error,
i.e., the mean-square error, given by

E[e2(j)] 4 ?. (13)

The set of weights that minimizes mean-square error can
be calculated by squaring both sides of (10) which yields

fi2(/) = d2d) + WTX(j)X{j)rW~ 2d(j)WTX(j) (14)

and then taking the expected value of both sides of (14)

E[e2(j)] = E[d2 + WTX{j)XT(j)W - 2WTd(j)X<J)]

= E[d2] + WTO(x, x)W- 2WT<b(x, d) (15)

where

X ^ XlX2-XlXn~

<D(*, x)AE[X(j)XT{j)]AE x2x, • • • x2xn (16)

_xnxl xnxn

a n d

~Xlj-

4>(x,d)±E[X(j)d(j)]±E • • (17)

x,J

xnd

The symmetric matrix O(.Y, X) is a matrix of cross correla-
tions and autocorrelations of the input signals to the adap-
tive element, and the column matrix <D(.Y, d) is the set of
cross correlations betweeen the n input signals and the de-
sired response signal.

The mean-square error defined in (15) is a quadratic
function of the weight values. The components of the gradi-
ent of the mean-square-error function are the partial
derivatives of the mean-square error with respect to the
weight values. Differentiating (15) with respect to W yields
the gradient V£[82], a linear function of the weights,

V£[e2] = 20>(x, x)W- 24>C*, cl). (18)

When the choice of the weights is optimized, the gradient
is zero. Then

O ( * , * ) » L M S = <*>{*, d)
WLMS = O " *(*, x)0>(x, d). (19)

The optimum weight vector MKLMS is the one that gives the
least mean-square error. Equation (19) is the Wiener-Hopf
equation, and is the equation for the multichannel least-
squares filter used by Burgfl8J and Claerbout[19J in the
processing of digital seismic array data.

One way of finding the optimum set of weight values is

to solve (19). This solution is generally straightforward, but
presents serious computational problems when the number
of weights n is large and when data rates are high. In addi-
tion to the necessity of inverting an n x n matrix, this method
may require as many as n(n+ 1 )/2 autocorrelation and cross-
correlation measurements to obtain the elements of O(.v, x).
Furthermore, this process generally needs to be continually
repeated in most practical situations where the input signal
statistics change slowly. No perfect solution of (19) is pos-
sible in practice because of the fact that an infinite sta-
tistical sample would be required to estimate perfectly the
elements of the correlation matrices.

Two methods for finding approximate solutions to (19)
will be presented in the following. Their accuracy is limited
by statistical sample size, since they find weight values based
on finite-time measurements of input-data signals. These
methods do not require explicit measurements of correla-
tion functions or matrix inversion. They are based on
gradient-search techniques applied to mean-square-error
functions. One of these methods, the LMS algorithm, does
not even require squaring, averaging, or differentiation in
order to make use of gradients of mean-square-error func-
tions. The second method, a relaxation method, will be
discussed later.

The LMS Algorithm

A number of weight-adjustment procedures or algorithms
exist which minimize the mean-square error. Minimization
is usually accomplished by gradient-search techniques. One
method that has proven to be very useful is the LMS
algorithm.111"*31'1171 This algorithm is based on the method
of steepest descent. Changes in the weight vector are made
along the direction of the estimated gradient vector.
Accordingly,

W[j+ 1 )= W(j) + ksV(j) (20)

where

W(j) = weight vector before adaptation
W{j + 1) = weight vector after adaptation

ks = scalar constant controlling rate of convergence
and stability (ks<0)

V{j) = estimated gradient vector of tr with respect
to W

One method for obtaining the estimated gradient of the
mean-square-error function is to take the gradient of a
single time sample of the squared error

*(J) = V[£
2(7)] = 2£(;)V[,;U)].

From (10)

V[c(7)] = V[d(j) - WT(j)X(j)]

= ~ X{j)-

Thus

V U ) = -2c(j)X(j), (21)

The gradient estimate of (21) is unbiased, as will be shown
by the following argument. For a given weight vector W{j\

(18)

(19)
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the expected value of the gradient estimate is

E[%')] = - 2 £ [ ( d ( y ) - WT(j)X(j)}X(j)]
= -2[<D(x, d) - WT(j)<t>(x. x)]. (22)

Comparing (18) and (22), we see that

£[%)] = V£[c2]

and therefore, for a given weight vector, the expected value
of the estimate equals the true value.

Using the gradient estimation formula given in (21), the
weight iteration rule (20) becomes

W(j+ 1)= W(j) - 2kstij)X(j) (23)

and the next weight vector is obtained by adding to the
present weight vector the input vector scaled by the value
of the error.

The LMS algorithm is given by (23). It is directly usable
as a weight-adaptation formula for digital systems. Fig.
7(a) shows a block-diagram representation of this equation
in terms of one component w,- of the weight vector W. An
equivalent differential equation which can be used in
analog implementation of continuous systems (see Fig. 7(b))
is given by

4^(0= -2M0XU).
Lit

This equation can also be written as

Wt)= -2A-J 4Z)Xlc)dl
J o

Fig. 8 shows how circuitry of the type indicated in Fig.
7(a) or (b| might be incorporated into the implementation
of the basic adaptive element o\^ Fig. 6.

Convergence of the Mean of the Weight Vector

For the purpose of the following discussion, we assume
that the time between successive iterations of the LMS
algorithm is sufficiently long so that the sample input
vectors X(j) and X[j+ 1) are uncorrelated. This assumption
is common in the field of stochastic approximation.[20|"[221

Because the weight vector W(j) is a function only of the
input vectors X(j- 1), X(j~2\ • • •, X(0) [see (23)] and be-
cause the successive input vectors are uncorrelated. W(j)
is independent of X(j). For stationary input processes
meeting this condition, the expected value £"[W(/)] of the
weight vector after a large number of iterations can then
be shown to converge to the Wiener solution given by
(19). Taking the expected value of both sides of (23), we
obtain a difference equation in the expected value of the
weight vector

E[W(j + 1)]= E[W(j)] - 2ksE[\cl(j) - Wr(j)X(j)}X(j)]

= [/ + 2ksQ>(x. x)]E[W(j)] - 2ks<t>i.x. d) (24)

where / is the identity matrix. With an initial weight vector
W(0)J+ 1 iterations of (24) yield

dw (t)
WEIGHT
SETTING

(b)

Fig. 7. Block diagram representation of LMS algorithm,
(a) Digital realization, (b) Analog realization.

Kig. 8. Analog digital implementation of LMS
weight-adjustment algorithm.

E[W(J + i )] = [/ + :/vs<t>u\ x)]j^[ W(0)

- 2ks y [/ + 2fc,<D(.v. A-)]'<i><A', d). (25)

Equation (25) may be put in diagonal form by using the
appropriate similarity transformation Q for the matrix
<J>(.\\.Y), that is.

4M.\\.Y) = Q~lEQ

where

£ A

\>x 0

0 e,

0 0

is the diagonal matrix of eigenvalues. The eigenvalues are
all positive, since O(.v, x) is positive definite [see (16)].
Equation (25) may now be expressed as

E[W(j + 1)]= [/ + 2ksQ'lEQy+lW[0)

-2ks t [/ + 2ksQ-iEQ]i<t>(x,d)
; = o

= Q-t[l + 2ksE]j+lQW(0)

- 2ksQ- ' t[I+ ikJEy&IXx, d). (26)
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Consider the diagonal matrix [/ + 2/cJE]. As long as its
diagonal terms are all of magnitude less than unity

lim[/ + 2/csErp+1-0
y-»oo

and the first term of (26) vanishes as the number of iterations
increases. The second term in (26) generally converges to a
nonzero limit. The summation factor ££ s s0[/ + 2fcsfs]

1' be-
comes

- 1

lim t [/+2/cs£]^-^£-1

2k.

where the formula for the sum of a geometric series has
been used, that is,

,?o (1 + 2Kep)t = 1 - (1 + 2ksep)
 = Tkj;

Thus, in the limit, (26) becomes

lim E\W(j + 1)]= Q'E'QWx.d)

= <b~l(x,x)<b(x,d).

Comparison of this result with (19) shows that as the
number of iterations increases without limit, the expected
value of the weight vector converges to the Wiener solution.

Convergence of the mean of the weight vector to the
Wiener solution is insured if and only if the proportionality
constant ks is set within certain bounds. Since the diagonal
terms of [/ + 2/c5£] must all have magnitude less than unity,
and since all eigenvalues in £ are positive, the bounds on ks

are given by

|1 + 2ksemzx\ < 1

or

- 1
< K < o (27)

where emax is the maximum eigenvalue of <l>(x, x). This con-
vergence condition on ks can be related to the total input
power as follows.

Since

where

emax ^ trace [<D(x, x)]

trace [O(x, x)] 4 E[XT(j)X(;)]

(28)

= X ^[x?l = to ta* *nPUt power,
i= 1

it follows that satisfactory convergence can be obtained with

- 1

I *[*?]
< ks < 0.

i = i

« /cc < 0.

i = 1

(29)

It is the opinion of the authors that the assumption of
independent successive input samples used in the fore-
going convergence proof is overly restrictive. That is, con-
vergence of the mean of the weight vector to the LMS
solution can be achieved under conditions of highly cor-
related input samples. In fact, the computer-simulation
experiments described in this paper do not satisfy the con-
dition of independence.

Time Constants and Learning Curve with LMS Adaptation
State-variable methods, which are widely used in modern

control theory, have been applied by Widrow[1] and Koford
and Groner[2] to the analysis of stability and time constants
(related to rate of convergence) of the LMS algorithm. Con-
siderable simplifications in the analysis have been realized
by expressing transient phenomena of the system adjust-
ments (which take place during the adaptation process) in
terms of the normal coordinates of the system. As shown by
Widrow,m the weight values undergo transients during
adaptation. The transients consist of sums of exponentials
with time constants given

1
Tn =

2(-fcs)tfp

• p = 1 , 2 . • • - . n (30)

where ep is the pth eigenvalue of the input-signal correlation
matrix <D(x, x).

In the special case when all eigenvalues are equal all
time constants are equal. Accordingly.

1
T —

2(~ks)e

One very useful way to monitor the progress of an adap-
tive process is to plot or display its "learning curve."" When
mean-square error is the performance criterion being used,
one can plot the expected mean-square error at each stage
of the learning process as a function of the number of adapta-
tion cycles. Since the underlying relaxation phenomenon
which takes place in the weight values is of exponential
nature, and since from (15) the mean-square error is a
quadratic form in the weight values, the transients in the
mean-square-error function must also be exponential in
nature.

When all the time constants are equal, the mean-square-
error learning curve is a pure exponential with a time
constant

1

4(-fcs)e

In practice, when slow, precise adaptation is desired, ks is
usually chosen such that

The basic reason for this is that the square of an exponential
function is an exponential with half the time constant.
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Estimation of the rate of adaptation is more complex when
the eigenvalues are unequal.

When actual experimental learning curves are plotted,
they are generally of the form of noisy exponentials because
of the inherent noise in the adaptation process. The slower
the adaptation, the smaller will be the amplitude of the
noise apparent in the learning curve.

Misadjustment with LMS Adaptation

All adaptive or learning systems capable of adapting at
real-time rates experience losses in performance because
their system adjustments are based on statistical averages
taken with limited sample sizes. The faster a system adapts,
in general, the poorer will be its expected performance.

When the LMS algorithm is used with the basic adaptive
element of Fig. 8, the expected level ot^ mean-square error
will be greater than that of the Wiener optimum system
whose weights are set in accordance with (19). The longer the
time constants of adaptation, however, the closer the ex-
pected performance comes to the Wiener optimum per-
formance. To get the Wiener performance, i.e., to achieve
the minimum mean-square error, one would have to know
the input statistics a priori, or, if (as is usual) these statistics
are unknown, they would have to be measured with an
arbitrarily large statistical sample.

When the LMS adaptation algorithm is used, an excess
mean-square error therefore develops. A measure of the
extent to which the adaptive system is misadjusted as com-
pared to the Wiener optimum system is determined in a
performance sense by the ratio of the excess mean-square
error to the minimum mean-square error. This dimension-
less measure of the loss in performance is defined as the
"misadjustment" M. For LMS adaptation of the basic
adaptive clement, it is shown by Widrow111 that

1 " I
Misadjustment M = - ]T — •

- p= i XP

(31)

The value of the misadjustment depends on the time
constants (settling times) of the filter adjustment weights.
Again, in the special case when all the time constants are
equal, M is proportional to the number of weights and in-
versely proportional to the time constant. That is.

n
(32)

Although the foregoing results specifically apply to
statistically stationary processes, the LMS algorithm can
also be used with nonstationary processes. It is shown by
Widrow12 31 that, under certain assumed conditions, the rate
of adaptation is optimized when the loss of performance
resulting from adapting too rapidly equals twice the loss in
performance resulting from adapting too slowly.

ADAPTIVE SPATIAL FILTERING

If the radiated signals received by the elements of an
adaptive antenna array were to consist of signal components
plus undesired noise, the signal would be reproduced (and
noise eliminated) as best possible in the least-squares sense
if the desired response of the adaptive processor were made
to be the signal itself. This signal is not generally available
for adaptation purposes, however. If it were available,
there would be no need for a receiver and a receiving array.

In the adaptive antenna systems to be described here,
the desired response signal is provided through the use of
an artificially injected signal, the "pilot signal", which is
completely known at the receiver and usually generated
there. The pilot signal is constructed to have spectral and
directional characteristics similar to those of the incoming
signal of interest. These characteristics may, in some cases,
be known a priori but, in general, represent estimates of the
parameters of the signal of interest.

Adaptation with the pilot signal causes the array to
form a beam in the pilot-signal direction having essentially
flat spectral response and linear phase shift within the pass-
band of the pilot signal. Moreover, directional noises
impinging on the antenna array will cause reduced array
response (nulling) in their directions within their passbands.
These notions are demonstrated by experiments which will
be described in the following.

Injection of the pilot signal could block the receiver and
render useless its output. To circumvent this difficulty,
two adaptation algorithms have been devised, the "one-
mode" and the "two-mode." The two-mode process alter-
nately adapts on the pilot signal to form the beam and then
adapts on the natural inputs with the pilot signal off to
eliminate noise. The array output is usable during the second
mode, while the pilot signal is off. The one-mode algorithm
permits listening at all times, but requires more equipment
for its implementation.

The Two-Mode Adaptation Algorithm

Fig. 9 illustrates a method for providing the pilot signal
wherein the latter is actually transmitted by an antenna
located some distance from the array in the desired look
direction. Fig. 10 shows a more practical method for pro-
viding the pilot signal. The inputs to the processor are con-
nected either to the actual antenna element outputs (during
"mode II"), or to a set of delayed signals derived from the
pilot-signal generator (during "mode I"). The filters
<$i> " ' ' I$K (ideal time-delays if the array elements are identi-
cal) are chosen to result in a set of input signals identical
with those that would appear if the array were actually
receiving a radiated plane-wave pilot signal from the de-
sired "look" direction, the direction intended for the main
lobe of the antenna directivity pattern.

During adaptation in mode I, the input signals to the
adaptive processor derive from the pilot signal, and the
desired response of the adaptive processor is the pilot signal
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Fig. 9. Adaptation with external pilot-signal generator. Mode I: adap-
tation with pilot signal present; Mode II: adaptation with pilot signal
absent.

Fig. 10. Two-mode adaptation with internal pilot-signal generator.
Mode I: adaptation with pilot signal present: Mode II: adaptation
with pilot signal absent.

itself. If a sinusoidal pilot signal at frequency /0 is used, for
example, adapting the weights to minimize mean-square
error will force the gain of the antenna array in the look
direction to have a specific amplitude and a specific phase
shift at frequency /0.

During adaptation in mode II, all signals applied to the
adaptive processor are received by the antenna elements
from the actual noise field. In this mode, the adaptation
process proceeds to eliminate all received signals, since the
desired response is set to zero. Continuous operation in
mode II would cause all the weight values to tend to zero,
and the system would shut itself off. However, by alternat-
ing frequently between mode I and mode II and causing
only small changes in the weight vector during each mode of
adaptation, it is possible to maintain a beam in the desired
look direction and, in addition, to minimize the reception of
incident-noise power.

The pilot signal can be chosen as the sum of several sinus-
oids of differing frequencies. Then adaptation in mode I
will constrain the antenna gain and phase in the look direc-
tion to have specific values at each of the pilot-signal fre-
quencies. Furthermore, if several pilot signals of different
simulated directions are added together, it will be possible
to constrain the array gain simultaneously at various fre-
quencies and angles when adapting in mode I. This feature
affords some control of the bandwidth and beamwidth in
the look direction. The two-mode adaptive process essen-
tially minimizes the mean-square value (the total power)

Fig. 11. Single-mode adaptation with pilot signal.

of all signals received by the antenna elements which are
uncorrelated with the pilot signals, subject to the constraint
that the gain and phase in the beam approximate predeter-
mined values at the frequencies and angles dictated by the
pilot-signal components.

The One-Mode Adaptation Algorithm
In the two-mode adaptation algorithm the beam is

formed during mode I, and the noises are eliminated in the
least-squares sense (subject to the pilot-signal constraints)
in mode II. Signal reception during mode I is impossible
because the processor is connected to the pilot-signal
generator. Reception can therefore take place only during
mode II. This difficulty is eliminated in the system o( Fig.
11, in which the actions of both mode 1 and mode II can be
accomplished simultaneously. The pilot signals and the
received signals enter into an auxiliary, adaptive processor,
just as described previously. For this processor, the desired
response is the pilot signal /?(/). A second weighted processor
(linear element) generates the actual array output signal,
but it performs no adaptation. Its input signals do not con-
tain the pilot signal. It is slaved to the adaptive processor
in such a way that its weights track the corresponding
weights of the adapting system, so that it never needs to
receive the pilot signal.

In the single-mode system of Fig. 11, the pilot signal is on
continuously. Adaptation to minimize mean-square error
will force the adaptive processor to reproduce the pilot
signal as closely as possible, and, at the same time, to reject
as well as possible (in the mean-square sense) all signals re-
ceived by the antenna elements which are uncorrelated with
the pilot signal. Thus the adaptive process forces a directiv-
ity pattern having the proper main lobe in the look direction
in the passband of the pilot signal (satisfying the pilot sig-
nal constraints), and it forces nulls in the directions of the
noises and in their frequency bands. Usually, the stronger
the noises, the deeper are the corresponding nulls.

COMPUTER SIMULATION OF ADAPTIVE ANTENNA SYSTEMS

To demonstrate the performance characteristics of
adaptive antenna systems, many simulation experiments,
involving a wide variety of array geometries and signal-
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Fig. 13. Evolution of the directivity pattern while learning to eliminate
a directional noise and uncorrelated noises. (Array configuration of
Fig. 12.) T= number of.elapsed cycles of frequency j'o (total number of
adaptations = 2071.

and noise-field configurations, have been carried out using
an IBM 1620-11 computer equipped with a digital output
plotter.

For simplicity of presentation, the examples outlined in
the following are restricted to planar arrays composed of
ideal isotropic radiators. In every case, the LMS adaptation
algorithm was used. All experiments were begun with the
initial condition that all weight values were equal.

Narrowband Processor Experiments

Fig. 12 shows a twelve-element circular array and signal
processor which was used to demonstrate the performance
of the narrowband system shown in Fig. 4. In the first com-
puter simulation, the two-mode adaptation algorithm was

used. The pilot signal was a unit-amplitude sine wave
(power = 0.5, frequency/0) which was used to train the array
to look in the 0 = 0° direction. The noise field consisted of a
sinusoidal noise signal (of the same frequency and power as
the pilot signal) incident at angle 0 = 40°, and a small
amount of random, uncorrelated, zero-mean, "white"
Gaussian noise of variance (power) = 0.1 at each antenna
element. In this simulation, the weights were adapted using
the LMS two-mode algorithm.

Fig. 13 shows the sequence of directivity patterns which
evolved during the "learning" process. These computer-
plotted patterns represent the decibel sensitivity of the array
at frequency/0. Each directivity pattern is computed from
the set of weights resulting at various stages of adaptation.
The solid arrow indicates the direction of arrival of the
interfering sine-wave noise source. Notice that the initial
directivity pattern is essentially circular. This is due to the
symmetry of the antenna array elements and of the initial
weight values. A timing indicator 71, the number of elapsed
cycles of frequency /0 , is presented with each directivity
pattern. The total number of adaptations equals 207" in
these experiments. Note that if fo=\ kHz, T—l corre-
sponds to 1 ms real time: if y0 = I MHz, T= 1 corresponds
to 1 x̂s, etc.

Several observations can be made from the series of
directivity patterns of Fig. 13. Notice that the sensitivity
of the array in the look direction is essentially constant
during the adaptation process. Also notice that the array
sensitivity drops very rapidly in the direction of the sinus-
oidal noise source; a deep notch in the directivity pattern
forms in the noise direction as the adaptation process
progresses. After the adaptive transients died out, the array
sensitivity in the noise direction was 27 dB below that of
the array in the desired look direction.

The total noise power in the array output is the sum of the
sinusoidal noise power due to the directional noise source
plus the power due to the "white" Gaussian, mutually un-
correlated noise-input signals. The total noise power gener-
ally drops as the adaptation process commences, until it
reaches an irreducible level.

A plot of the total received noise power as a function of
Tis shown in Fig. 14. This curve may be called a "learning
curve." Starting with the initial weights, the total output
noise power was 0.65, as shown in the figure. After adapta-
tion, the total output noise power was 0.01. In this noise
field, the signal-to-noise ratio of the array1 after adaptation
was better than that of a single isotropic receiving element
by a factor of about 60.

A second experiment using the same array configuration
and the two-mode adaptive process was performed to
investigate adaptive array performance in the presence of
several interfering directional noise sources. In this exam-
ple, the noise field was composed of five directional sinus-

1 Signal-to-noise ratio is defined as

array output power due to signal
array output power due to noise
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oidal noises, each o£ amplitude 0.5 and power 0.125, acting
simultaneously, and, in addition, superposed uncorrelated
"white" Gaussian noises o( power 0.5 at each of the an-
tenna elements. The frequencies of the five directional
noises are shown in Table I.

Fig. 15(a) shows the evolution of the directivity pattern,
plotted at frequency /0, from the initial conditions to the
finally converged (adapted) state. The latter was achieved
after 682 cycles of the frequency /0. The learning curve for
this experiment is shown in Fig. 15(b). The final array
sensitivities in the five noise directions relative to the array
sensitivity in the desired look direction are shown in Table I.
The signal-to-noise ratio was improved by a factor of about
15 over that of a single isotropic radiator. In Fig. I5(b),
one can roughly discern a time constant approximately
equal to 70 cycles of the frequency f0. Since there were 20
adaptations per cycle of f0, the learning curve time constant
was approximately TmSe=1400 adaptations. Within about
400 cycles of/0> the adaptive process virtually converges to
steady state. If f0 were 1 MHz, 400 /*s would be the real-
time settling time. The misadjustment for this process can
be roughly estimated by using (32), although actually all
eigenvalues were not equal as required by this equation:

24 6
= 0.43 percent.M =

4 i n 4 i n 1400

This is a very low value of misadjustment, indicating a very
slow, precise adaptive process. This is evidenced by the

Fig. 15. Evolution of the directivity pattern while learning to eliminate
live directional noises and uneorrelated noises. (Array configuration
of Fig. 12.) (a) Sequence of directivity patterns during adaptation,
(b) Learning curve (total number of adaptations = 207").

learning curve Fig. 15(b) for this experiment, which is very
smooth and noise-free.

Broadband Processor Experiments

Fig. 16 shows the antenna array configuration and signal
processor used in a series of computer-simulated broad-
band experiments. In these experiments, the one-mode or
simultaneous adaptation process was used to adjust the
weights. Each antenna or element in a five-element circular
array was connected to a tapped delay line having five
variable weights, as shown in the figure. A broadband pilot
signal was used, and the desired look direction was chosen
(arbitrarily, for purposes of example) to be 0= — 13 . The
frequency spectrum of the pilot signal is shown in Fig-
17(a). This spectrum is approximately one octave wide
and is centered at frequency f0. A time-delay increment of
l/(4/o) was used in the tapped delay line, thus providing a
delay between adjacent weights of a quarter cycle at fre-
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quency f0, and a total delay-line length of one wavelength
at this frequency.

The computer-simulated noise field consisted of two
wideband directional noise sources2 incident on the array
at angles 0 = 50° and 0= -70° . Each source of noise had
power 0.5. The noise at 0 = 50° had the same frequency
spectrum as the pilot signal (though with reduced power);
while the noise at 6= —70° was narrower and centered at
a slightly higher frequency. The noise sources were un-
correlated with the pilot signal. Fig. 17(b) shows these fre-
quency spectra. Additive "white" Gaussian noises (mutually
uncorrelated) of power 0.0625 were also present in each of
the antenna-element signals.

To demonstrate the effects of adaptation rate, the experi-
ments were performed twice, using two different values
(-0.0025 and -0.00025) for fcs, the scalar constant in (23).
Fig. 18(a) and (b) shows the learning curves obtained under
these conditions. The abscissa of each curve is expressed
in cycles of/0, the array center frequency; and, as before,
the array was adapted at a rate of twenty times per cycle
of f0. Note that the faster learning curve is a much more
noisy one.

Since the statistics of the pilot signal and directional
noises in this example are known (having been generated in
the computer simulation), it is possible to check measured
values of misadjustment against theoretical values. Thus
the <t>{x, x) matrix is known, and its eigenvalues have been
computed.3

Using (30) and (31) and the known eigenvalues, the mis-
adjustment for the two values of k5 is calculated to give the
following values:

-0.0025
-0.00025

Theoretical Experimental
Value of M Value o( Yf

0.1288 0.134
0.0129 0.0170

The theoretical values of misadjustment check quite well
with corresponding measured values.

From the known statistics the optimum (in the least-
squares sense) weight vector WLMS can be computed, using
(19). The antenna directivity pattern for this optimum weight
vector WLMS is shown in Fig. 19(a). This is a broadband
directivity pattern, in which the relative sensitivity of the
array versus angle of incidence 6 is plotted for a broadband
received signal having the same frequency spectrum as the
pilot signal. This form of directivity pattern has few side
lobes, and nulls which are generally not very deep. In Fig.

2 Broadband directional noises were computer-simulated by first
generating a series of uncorrelated ("white") pseudorandom numbers,
applying them to an appropriate sampled-data (discrete, digital) filter to
achieve the proper spectral characteristics, and then applying the re-
sulting correlated noise waveform to each of the simulated antenna ele-
ments with the appropriate delays to simulate the effect of a propagating
wavefront.

3 They are: 10.65, 9.83, 5.65, 5.43, 3.59, 3.44, 2.68, 2.13, 1.45, 1.35, 1.20,
0.99, 0.66, 0.60, 0.46, 0.29, 0.24, 0.20, 0.16, 0.12, 0.01, 0.087 0 083 0 075
0.069.

19(b), the broadband directivity pattern which resulted
from adaptation (after 625 cycles of/0, with ks = -0.0025)
is plotted for comparison with the optimum broadband
pattern. Note that the patterns are almost indistinguishable
from each other.

The learning curves of Fig. 18(a) and (b) are composed
of decaying exponentials of various time constants. When
ks is set to -0.00025, in Fig. 18(b), the misadjustment is
about 1.3 percent, which is a quite small, but practical value.
With this rate of adaptation, it can be seen from Fig. 18(b)
that adapting transients are essentially finished after about
500 cycles of f0. If j 0 is 1 MHz, for example, adaptation
could be completed (if the adaptation circuitry is fast
enough) in about 500 /.is. If j 0 is 1 kHz, adaptation could
be completed in about one-half second. Faster adaptation
is possible, but there will be more misadjustment. These
figures are typical for an adaptive antenna with broadband
noise inputs with 25 adaptive weights. For the same level
of misadjustment, convergence times increase approxi-
mately linearly with the number of weights.111

The ability of this adaptive antenna array to obtain
"frequency tuning" is shown in Fig. 20. This figure gives
the sensitivities of the adapted array (after 1250 cycles of
f0 at ks= — 0.00025) as a function of frequency for the
desired look direction. Fig. 20(a), and for the two noise
directions, Fig. 20(b) and (c). The spectra of the pilot signal
and noises are also shown in the figures.

In Fig. 20(a), the adaptive process tends to make the
sensitivity of this simple array configuration as close as
possible to unity over the band of frequencies where the
pilot signal has finite power density. Improved performance
might be attained by adding antenna elements and by add-
ing more taps to each delay line; or, more simply, by band-
limiting the output to the passband of the pilot signal. Fig.
20(b) and (c) shows the sensitivities of the array in the direc-
tions of the noises. Illustrated in this figure is the very strik-
ing reduction of the array sensitivity in the directions of
the noises, within their specific passbands. The same idea is
illustrated by the nulls in the broadband directivity patterns
which occur in the noise directions, as shown in Fig. 19.
After the adaptive transients subsided in this experiment,
the signal-to-noise ratio was improved by the array over
that of a single isotropic sensor by a factor of 56.

IMPLEMENTATION

The discrete adaptive processor shown in Figs. 7(a) and
8 could be realized by either a special-purpose digital ap-
paratus or a suitably programmed general-purpose ma-
chine. The antenna signals would need analog-to-digital
conversion, and then they would be applied to shift regis-
ters or computer memory to realize the effects of the tapped
delay lines as illustrated in Fig. 5. If the narrowband scheme
shown in Fig. 4 is to be realized, the time delays can be
implemented either digitally or by analog means (phase
shifters) before the analog-to-digital conversion process.

The analog adaptive processor shown in Figs. 7(b) and 8
could be realized by using conventional analog-computer
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Fig. 20. Array sensitivity versus frequency, for broadband experiment of
Fig. 19. (a) Desired look direction, fl=-I3 . (b) Sensitivity in one
noise direction, 0 = 50\ (c) Sensitivity in the other noise direction,
fl=-70.

apparatus, such as multipliers, integrators, summers, etc.
More economical realizations that would, in addition, be
more suitable for high-frequency operation might use field-
effect transistors as the variable-gain multipliers, whose
control (gate) signals could come from capacitors used as
integrators to form and store the weight values. On the
other hand, instead of using a variable resistance structure
to form the vector dot products, the same function could
be achieved using variable-voltage capacitors, with ordinary
capacitors again storing the weight values. The resulting

structure would be a capacitive voltage divider rather than a
resistive one. Other possible realizations of analog weights
include the use of a Hall-effect multiplier combiner with
magnetic storage[24] and also the electrochemical memistor
of Widrowand Hoff.1251

Further efforts will be required to improve existing
weighting'elements and to develop new ones which are
simple, cheap, and adaptable according to the requirements
of the various adaptation algorithms. The realization of the
processor ultimately found to be useful in certain applica-
tions may be composed of a combination of analog and
digital techniques.

RELAXATION ALGORITHMS AND THEIR IMPLEMENTATION

Algorithms other than the LMS procedure described in
the foregoing exist that may permit considerable decrease
in complexity with specific adaptive circuit implementa-
tions. One method of adaptation which may be easy to
implement electronically is based on a relaxation algorithm
described by Southwell.1261 This algorithm uses the same
error signal as used in the LMS technique. An estimated
mean-square error formed by squaring and averaging this
error signal over a finite time interval is used in determining
the proper weight adjustment. The relaxation algorithm
adjusts one weight at a time in a cyclic sequence. Each
weight in its turn is adjusted to minimize the measured
mean-square error. This method is in contrast to the simul-
taneous adjustment procedure of the LMS steepest-descent
algorithm. The relaxation procedure can be shown to pro-
duce a misadjustment that increases with the square of the
number of weights, as opposed to the LMS algorithm whose
misadjustment increases only linearly with the number of
weights. For a given level of misadjustment, the adaptation
settling time of the relaxation process increases with the
square of the number of weights.

For implementation of the Southwell relaxation algo-
rithm, the configurations of the array and adaptive proces-
sor remain the same, as does the use of the pilot signal. The
relaxation algorithm will work with either the two-mode
or the one-mode adaptation process. Savings in circuitry
may result, in that changes in the adjustments of the weight
values depend only upon error measurements and not upon
configurations of error measurements and simultaneous
input-signal measurements. Circuitry for implementing the
LMS systems as shown in Fig. 7(a) and (b) may be more
complicated.

The relaxation method may be applicable in cases where
the adjustments are not obvious "weight" settings. For
example, in a microwave system, the adjustments might be a
system of motor-driven apertures or tuning stubs in a wave-
guide or a network of waveguides feeding an antenna. Or
the adjustments may be in the antenna geometry itself. In
such cases, the mean-square error can still be measured,
but it is likely that it would not be a simple quadratic func-
tion of the adjustment parameters. In any event, some very
interesting possibilities in automatic optimization are pre-
sented by relaxation adaptation methods.
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OTHER APPLICATIONS AND FURTHER WORK ON

ADAPTIVE ANTENNAS

Work is continuing on the proper choice of pilot signals
to achieve the best trade-off between response in the desired
look direction and rejection of noises. The subject of tfcnull-
steerine:," where the adaptive algorithm causes the nulls of
the directivity pattern to track moving noise sources, is also
being studied.

The LMS criterion used as the performance measure in
this paper minimizes the mean-square error between the
array output and the pilot signal waveform. It is a useful
performance measure for signal extraction purposes. For
signal detection, however, maximization of array output
signal-to-noise ratio is desirable. Algorithms which achieve
the maximum SNR solution are also being studied.
Goode [27 ] has described a method for synthesizing the
optimal Bayes detector for continuous waveforms using
Wiener (LMS) filters. A third criterion under investigation
has been discussed by Kelley and Levint28] and, more re-
cently, applied by Capon et al.ll9] to the processing of large
aperture seismic array (LASA) data. This filter, the maxi-
mum-likelihood array processor, is constrained to provide
a distortionless signal estimate and simultaneously mini-
mize output noise power. Griffiths[30] has discussed the
relationship between the maximum likelihood array pro-
cessor and the Wiener filter for discrete systems.

The examples given have illustrated the ability of the
adaptive antenna system to counteract directional inter-
fering noises, whether they are monochromatic, narrow-
band, or broadband. Although adaptation processes have
been applied here exclusively to receiving arrays, they ma>
also be applied to transmitting systems. Consider, for exam-
ple, an application to aid a low-power transmitter. If a tixed
amplitude and frequency pilot signal is transmitted from
the receiving site on a slightly different frequency than that
of the carrier of the low-power information transmitter, the
transmitter array could be adapted (in a receiving mode)
to place a beam in the direction of this pilot signal, and,
therefore, by reciprocity the transmitting beam would be
directed toward the receiving site. The performance of such
a system would be very similar to that of the retrodirective
antenna systems,[51'[6] although the methods of achieving
such performance would be quite different. These systems
may be useful in satellite communications.

An additional application of interest is that of "signai
seeking.1' The problem is to find a coherent signal of un-
known direction in space, and to find this signal by adapt-
ing the weights so that the array directivity pattern receives
this signal while rejecting all other noise sources. The de-
sired response or pilot signal for this application is the re-
ceived signal itself processed through a narrowband filter.
The use of the output signal of the adaptive processor to
provide its own desired response is a form of unsupervised
learning that has been referred to as "bootstrap learn-
ing/'1311 Use of this adaptation algorithm yields a set of
weights which accepts all correlated signals (in the desired
passband) and rejects all other received signals. This system

has been computer simulated and shown to operate as ex-
pected. However, much work of a theoretical and experi-
mental nature needs to be done on capture and rejection
phenomena in such systems before they can be reported
in detail.

CONCLUSION

It has been shown that the techniques of adaptive filtering
can be applied to processing the output of the individual
elements in a receiving antenna array. This processing
results in reduced sensitivity of the array to interfering
noise sources whose characteristics may be unknown a
priori. The combination of array and processor has been
shown to act as an automatically tunable filter in both
space and frequency.
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Abstract
Throughout the history of wireless communications, spatial antenna diversity has been important in improving the radio link between wireless
users. Historically, microscopic antenna diversity has been used to reduce the fading seen by a radio receiver, whereas macroscopic diversity

provides multiple listening posts to ensure that mobile communication links remain intact over a wide geographic area. In recent years, the con-
cepts of spatial diversity have been expanded to build foundations for emerging technologies, such as smart (adaptive) antennas and position
location systems. Smart antennas hold great promise for increasing the capacity of wireless communications because they radiate and receive

energy only in the intended directions, thereby greatly reducing interference. To properly design, analyze, and implement smart antennas and to
exploit spatial processing in emerging wireless systems, accurate radio channel models that incorporate spatial characteristics are necessary. In
this tutorial, we review the key concepts in spatial channel modeling and present emerging approaches. We also review the research issues in

developing and using spatial channel models for adaptive antennas.

Overview of Spatial Channel Models for
Antenna Array Communication Systems

RICHARD B. ERTEL AND PAULO CARDIERI, VIRGINIA POLYTECHNIC INSTITUTE

KEVIN W. SOWERBY, UNIVERSITY OF AUCKLAND, NEW ZEALAND

THEODORE S. RAPPAPORT AND JEFFREY H. REED,

VIRGINIA POLYTECHNIC INSTITUTE

• • • • • J B M H H J T itt:ith the advent of antenna array
systems for both interference cancellation and position loca-
tion applications comes the need to better understand the
spatial properties of the wireless communications channel.
These spatial properties of the channel will have an enormous
impact on the performance of antenna array systems; hence,
an understanding of these properties is paramount to effective
system design and evaluation.

The challenge facing communications engineers is to devel-
op realistic channel models that can efficiently and accurately
predict the performance of a wireless system. It is important
to stress here that the level of detail about the environment a
channel model must provide is highly dependent on the type of
system under consideration. To predict the performance of
single-sensor narrowband receivers, it may be acceptable to
consider only the received signal power and/or time-varying
amplitude (fading) distribution of the channel. However, for
emerging wideband multisensor arrays, in addition to signal
power level, information regarding the signal multipath delay
and angle of arrival (AOA) is needed.

Classical models provide information about signal power
level distributions and Doppler shifts of the received signals.
These models have their origins in the early days of cellular
radio when wideband digital modulation techniques were not
readily available. As shown subsequently, many of the emerg-
ing spatial models in the literature utilize the fundamental
principles 01 the classical channel models. However, modern
spatial channel models build on the classical understanding of
fading and Doppler spread, and incorporate additional con-

This work was partially supported by the DARPA GloMo program, Vir-
ginia Tech's Federal Highways Research Center of Excellence, Virginia
Tech's Bradley Foundation, the Brazilian National Science Council —
CNPq, and .\'SF Presidential Faculty Fellowship.

cepts such as time delay spread, AOA. and adaptive array
antenna geometries.

In this article, we review the fundamental channel models
that have led to the present-day theories of spatial diversity
from both mobile user and base station perspectives. The evo-
lution of these models has paralleled that of cellular systems.
Early models only accounted for amplitude and time-varying
properties of the channel. These models were then enhanced
by adding time delay spread information, which is important
when dealing with digital transmission performance. Now,
with the introduction of techniques and features that depend
on the spatial distribution of the mobiles, spatial information
is required in the channel models. As shown in the next sec-
tions, more accurate models for the distribution of the scatter-
ers surrounding the mobile and base station are needed. The
differentiation between the mobile and base station is impor-
tant. Classical work has demonstrated that models must
account for the physical geometry of scattering objects in the
vicinity of the antenna of interest. The number and locations
of these scattering objects are dependent on the heights of the
antennas, particularly regarding the local environment.

This article, then, explores some of the emerging models
for spatial diversity and adaptive antennas, and includes the
physical mechanisms and motivations behind the models. A
literature survey of existing RF channel measurements with
AOA information is also included. The article concludes with
a summary and suggestions for future research.

Wireless Multipath Channel Models
This section describes the physical properties of the wireless
communication channel that must be modeled. In a wireless
system, a signal transmitted into the channel interacts with the
environment in a very complex way. There are reflections
from large objects, diffraction of the electromagnetic waves

Reprinted from IEEE Personal Communications Magazine, Vol 5, No. 1, pp. 10-22, February 1998.

20



I Figure 1. Multipart propagation channel: a) side view; b) top view.

around objects, and signal scattering. The result of these com-
plex interactions is the presence of many signal components,
or multipath signals, at the receiver. Another property of wire-
less channels is the presence of Doppler shift, which is caused
by the motion of the receiver, the transmitter, and/or any
other objects in the channel. A simplified pictorial of the mul-
tipath environment with two mobile stations is shown in Fig.
1. Each signal component experiences a different path envi-
ronment, which will determine the amplitude ALk, carrier
phase shift cp/̂ , time delay i/jt, AOA 6/ ,̂ and Doppler shift/^
of the /th signal component of the Arth mobile. In general,
each of these signal parameters will be time-varying.

The early classical models, which were developed for nar-
rowband transmission systems, only provide information about
signal amplitude level distributions and Doppler shifts of the
received signals. These models have their origins in the early
days of cellular radio [1-4] when wideband digital modulation
techniques were not readily available.

As cellular systems became more complex and more accu-
rate models were required, additional concepts, such as time
delay spread, were incorporated into the modei. Representing
the RF channel as a time-variant channel and using a base-
band complex envelope representation, the channel impulse
response for mobile 1 has classically been represented as [5]

L[t)-\

/ = 0

if.ilfk5(r-TM(0) (1)

where L(t) is the number of multipath components and the
other variables have already been defined. The amplitude A^
of the multipath components is usually modeled as a Rayleigh
distributed random variable, while the phase shift q>/̂ . is uni-
formly distributed.

The time-varying nature of a wireless channel is caused by
the motion of objects in the channel. A measure of the time
rate of change of the channel is the Doppler power spectrum,
introduced by M. J. Gans in 1972 [2]. The Doppler power
spectrum provides us with statistical information on the varia-
tion of the frequency of a tone received by a mobile traveling
at speed v. Based on the flat fading channel model developed
by R. H. Clarke in 1968, Gans assumed that the received sig-
nal at the mobile station came from all directions and was
uniformly distributed. Under these assumptions and for a XI4
vertical antenna, the Doppler power spectrum is given by [5]

5(/) =

1.5

n/;,,,;1- f-fc

0

\f-fc\<fm

elsewhere

where/),, is the maximum Doppler shift given by v/X where X
is the wavelength of the transmitted signal at frequency/i-

Figure 2 shows the received signals at the base station,
assuming that mobiles 1 and 2 have transmitted narrow pulses
at the same time. Also shown is the output of an antenna
array system adapted to mobile 1.

The channel model in Eq. 1 does not consider the AOA of
each multipath component shown in Figs. 1 and 2. For nar-
rowband signals, the AOA may be included into the vector
channel impulse response using

Ui)-\
M'.*)= I -A/jUW^^^e/lr))^/-!;!/)) (2)

i=D

where~7?(6/(f)) is the array response vector. The array response
vector is a function of the array geometry and AOA. Figure 3
shows the case for an arbitrary array geometry when the array
and signal are restricted to two-dimensional space. The result-
ing array response vector is given by

exp(-M.i) •

a{d,(t))= exp(-./>/3)

exp(-/>/.:)

exp(-./>/3)

exP(-M.,ii

where \\fu(t) =[.r,cos(6/(f)) + y,-sin(8,(0)]P and |3 = 271/1 is the
wavenumber.

The spatial channel impulse response given in Eq. 2 is a
summation of several multipath components, each of which
has its own amplitude, phase, and AOA. The distribution of
these parameters is dependent on the type of environment. In
particular, the angle spread of the channel is known to be a
function of both the environment and the base station anten-
na heights. In the next section, we describe macrocell and
microcell environments and discuss how the environment
affects the signal parameters.

Macrocell vs. Microcell
Macrocell Environment — Figure 4 shows the channel on the
forward link for a macrocell environment. It is usually
assumed that the scatterers surrounding the mobile station are
about the same height as or are higher than the mobile. This
implies that the received signal at the mobile antenna arrives
from all directions after bouncing from the surrounding scat-
terers as illustrated in Fig. 4.

Under these conditions, Gans1 assumption that the AOA is
uniformly distributed over [0, 27i] is valid. The classical
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1 Figure 2. Channel impulse responses for mobiles 1 and 2: a) received signal from mobile 1 to the base station; b) received signal from
mobile 2 to the base station; c) combined received signal from mobiles I and 2 at the base station; d) received signal at the base station
when a beam steered toward mobile 1 is employed.

Rayleigh fading envelope with deep
fades approximately A./2 apart
emanates from this model [5].

However, the AOA of the received
signal at the base station is quite dif-
ferent. In a macrocell environment,
typically, the base station is deployed
higher than the surrounding scatter-
ers. Hence, the received signals at
the base station result from the scat-
tering process in the vicinity of the
mobile station, as shown in Fig. 5.
The multipath components at the
base station are restricted to a small-
er angular region, QBIV-

 a n ^ [he dis-
tribution of the AOA is no longer
uniform over [0.2K]. Other AOA dis-
tributions are considered later in this
article.

The base station model of Fig. 5 was used to develop the
theory and practice of base station diversity in today's cellular
system and has led to rules of thumb for the spacing of diver-
sity antennas on cellular towers [31.

M Figure 3. Arbitrary antenna array
configuration.

Mobile
station

Base
station Top view

Base
station

81 Figure 4. Macrocell environment — the mobile station perspective.

Microcell Environment - In the micro-
cell environment, the base station
antenna is usually mounted at the same
height as the surrounding objects. This
implies that the scattering spread of
the AOA of the received signal at the
base station is larger than in the
macrocell case since the scattering pro-
cess also happens in the vicinity of the
base station. Thus, as the base station
antenna is lowered, the tendency is for
the multipath AOA spread to increase.
This change in the behavior of the
received signal is very important as far
as antenna array applications are con-
cerned. Studies have shown that statis-
tical characteristics of the received
signal are functions of the angle

spread. Lee [3] and Adachi [6] found that the correlation
between the signals received at two base station antennas
increases as the angle spread decreases.

This section has presented some of the physical properties
of a wireless communication channel. A mathematical expres-
sion that describes the time-varying spatial channel impulse
response was given in Eq. 2. In the next section, several mod-
els that provide varying levels of information about the spatial
channel are presented.

Space: The Final Frontier
Details of the Spatial Channel Models

In the past when the distribution of angle of arrival of multi-
path signals was unknown, researchers assumed uniform dis-
tribution over [0, 2K] [7]. In this section, a number of more
realistic spatial channel models are introduced. The defining
equations (or geometry) and the key results for the models
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are described. Also provided is an exten-
sive list of references.

Table 1 lists some representative active
research groups in the field and their Web
site addresses where more information on
the subject can be found. (Note that this is
by no means an exhaustive list.)

The Gaussian Wide Sense Stationary
Uncorrelated Scattering (GWSSUS),
Gaussian Angle of Arrival (GAA), Typi-
cal Urban (f U), and Bad Urban (BU)
models described below were developed
in a series of papers at the Royal Institute
of Technology and may be downloaded
from the Web site. Further details of the
Geometrically Based Single Bounce
(GBSB) models are given in theses at Vir-
ginia Tech, which are available at http://etd.vt.edu/etd/
index.html.

These various models were developed and used for differ-
ent applications. Some of the models were intended to pro-
vide information about only a single channel characteristic,
such as angle spread, while others attempt to capture all the
properties of the wireless channel. In the discussion of the
models, an effort is made to identify the original motivation of
the model and to convey the information the model is intend-
ed to provide.

Lee's Model
In Lee's model, scatterers are evenly spaced on a circular ring
about the mobile as shown in Fig. 6. Each of the scatterers is
intended to represent the effect of many
scatterers within the region, and hence
are referred to as effective scatterers. The
model was originally used to predict the
correlation between the signals received
by two sensors as a function of element
spacing. However, since the correlation
matrix of the received signal vector of
an antenna array can be determined by
considering the correlation between
each pair of elements, the model has
application to any arbitrary array size.

The level of correlation will deter-
mine the performance of spatial diversi-
ty methods [3, 9]. In general, larger

angle spreads and element spacings result
in lower correlations, which provide an
increased diversity gain. Measurements of
the correlation observed at both the base
station and the mobile are consistent with
a narrow angle spread at the base station
and a large angle spread at the mobile.
Correlation measurements made at the
base station indicate that the typical radius
of scatterers is from LOG to 200 wave-
lengths [3].

Assuming that N scatterers are uniform-
ly placed on the circle with radius R and
oriented such that a scatterer is located on
the line of sight, the discrete AOAs are [9]

, R . (In.
3. ~ —sin — /

1 D { N
for /= 0,1 / V - l .

kl

From the discrete AOAs, the correlation of the signals
between any two elements of the array can be found using [9]

p(^e0,/?,D) = -iXexp[-y27i t/cos(e0+9,)l

where d is the element spacing and 9Q is measured with respect
to the line between the two elements as shown in Fig. 6.

The original model provided information regarding only
signal correlations. Motivated by the need to consider small-
scale fading in diversity systems, Stapleton et al. proposed an
extension to Lee's model that accounts for Doppler shift by
imposing an angular velocity on the ring of scatterers [10. 1 lj.
For the model to give the appropriate maximum Doppler

shift, the angular velocity of the scatter-
ers must equal v/R where v is the vehi-
cle velocity and R is the radius of the
scatterer ring [II]. Using this model to
simulate a Rayleigh fading spatial chan-
nel model, the BER for a JT/4 differen-
tial quadrature phase shift keyed
(DQPSK) signal was simulated, t h e
results were compared with measure-
ments taken in a typical suburban envi-
ronment. The resulting BER estimates
were within a factor of two of the actual
measured BER, indicating a reasonable
degree of accuracy for the model [10].

When the model is used to provide

Research group ftMSBfeaEftfe!

Center for Communications Research — University of Bristol

Center for Personkommunikation — Aalborg University

Center for Wireless Telecommunications — Virginia Tech

Mobile and Portable Radio Research Group — Virginia Tech

Research Group for RF Communications — University of Kaiserlautern

Royal Institute of Technology

Smart Antenna Research Group — Stanford University

Telecommunications and Information Systems Engineering —
1 University of Texas at Austin

! Wireless Technology Group — McMaster University
i

http://www.fen.bris.ac.uk/elec/research/ccr/ccr.html

http://www.kom.auc.dk/CPK/

http://www.cwt.vt.edu/

http://www.mprg.ee.vt.edu

http://www.e-technik.uni-kl.de/

http://www.s3.kth.se

http://www-isl.stanford.edu/groups/SARG

http://www.ece.utexas.edu/projects/tise/

http://www.crl.mcmaster.ca

I Table 1. Some active research groups in the field of adaptive antenna arrays.
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joint AOA and time of arrival (TOA)
channel information, one finds that the
resulting power delay profile is "U-
shaped" [12]. By considering the inter-
sections of the effective scatterers by
ellipses of constant delay, one finds that
there is a high concentration of scatter-
ers in ellipses with minimum delay, a
high concentration of scatterers in
ellipses with maximum delay, and a
lower concentration of scatterers
between. Higher concentrations of
scatterers with a given delay corre-
spond with larger powers, and hence
larger values on the power delay pro-
file. The U-shaped" power delay
profile is not consistent with measure-
ments. Therefore, an extension to
Lee"s model is proposed in [II] in
which additional scatterer rings are
added to provide different power
delay profiles.

While the model is quite useful in
predicting the correlation between any
two elements of the array, and hence
the array correlation matrix, it is not well suited for simula-
tions requiring a complete model of the wireless channel.

Discrete Uniform Distribution
A model similar to Lee"s model in terms of both motivation
and analysis was proposed in [9]. The model (referred to here
as the discrete uniform distribution) evenly spaces ,V scatter-
ers within a narrow beamwidth centered about the line of
sight to the mobile as shown in Fig. 7. The discrete possible
AOAs, assuming :V is odd. are given by [9]

From this, the correlation of the signals present at two
antenna elements with a separation of rf is found to be

v-i

Figure 7. Discrete uniform geometry.

Scatterer region

Figure 8. Circular scatterer density geometry.

P(j,e0.esvv) = - £ exp[-727^cos(60+e,)].

Measurements reported in [9] suggest that the AOA statis-
tics in rural and suburban environments are Gaussian dis-

tributed (see the discussion of the GAA
model later). However, in practice the
AOA will be discrete (i.e., a finite num-
ber of samples from a Gaussian distribu-
tion), and therefore it is not valid to use
a continuous AOA distribution to esti-
mate the correlation present between
different antenna elements in the array.
The correlation that results from a con-
tinuous AOA distribution decreases
monotomically with element spacing,

whereas the correlation that results
from a discrete AOA has damped
oscillations present. Therefore, a con-
tinuous AOA distribution will under-
estimate the correlation that exists
between the elements in the array [9].

In [9], a comparison is made
between the correlation obtained
using the discrete uniform distribution
model, Lee?s model, and a continuous
Gaussian AOA as a function of ele-
ment spacing. The comparisons indi-
cate that, for small element
separations (two wavelengths), the

three models have nearly identical correlations. For larger ele-
ment separations (greater than two wavelengths), the correla-
tion values using the continuous Gaussian AOA are close to
zero, while the two discrete models have oscillation peaks
with correlations as high as 0.2 even beyond four wavelengths.
Additionally, it was found that the correlation of the discrete
uniform distribution falls off more quickly than the correla-
tion in Lee's model.

Again, while the model is useful for predicting the correla-
tion between any pair of elements in the array (which can be
used to calculate the array correlation matrix), it fails to
include all the phenomena, such as delay spread and Doppler
spread, required for certain types of simulations.

Geometrically Based Single-Bounce
Statistical Channel Models

Geometrically Based Single-Bounce (GBSB) Statistical Chan-
nel Models are defined by a spatial scatterer density function.
These models are useful for both simulation and analysis pur-
poses. Use of the models for simulation involves randomly
placing scatterers in the scatterer region according to the form

2 1.5

I
•t °-5

£ o
£M).5

-5
Angle of arrival (degrees) Time of arrival (p.s) Angle of arrival (degrees) Time of arrival ((is)

I Figure 9. Joint TOA and AOA probability density function at
the base station, circular model (log-scale).

I Figure 10. Joint TOA and AOA probability density function at
the mobile, circular model (log-scale).
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I Figure 11. Elliptical scatterer density geometry.

of the spatial scatterer density
function. From the location of
each of the scatterers, the AOA,
TOA, and signal amplitude are
determined.

From the spatial scatterer den-
sity function, it is possible to derive
the joint and marginal TOA and
AOA probability density functions. Knowledge of these statis-
tics can be used to predict the performance of an adaptive
array. Furthermore, knowledge of the underlying structure of
the resulting array response vector may be exploited by beam-
forming and position location algorithms.

The shape and size of the spatial scatterer density function
required to provide an accurate model of the channel is sub-
ject to debate. Validation of these models through extensive
measurements remains an active area of research.

Geometrically Based Circular Model (Macrocell Model) - The
geometry of the Geometrically Based Single Bounce Circular
Model (GBSBCM) is shown in Fig. 8. It assumes that the scat-
terers lie within radius Rm about the mobile. Often the require-
ment that Rm < D is imposed. The model is based on the
assumption that in macrocell environments where antenna
heights are relatively large, there will be no signal scatterering
from locations near the base station. The idea of a circular
region of scatterers centered about the mobile was originally
proposed by Jakes [13] to derive theoretical results for the cor-
relation observed between two antenna elements. Later, it was
used to determine the effects of beamforming on the Doppler
spectrum [14. 15] for narrowband signals. It was shown that
the rate and the depth of the envelope fades are significantly
reduced when a narrow-beam beamformer is used.

The joint TOA and AOA density function obtained from
the model provides some insights into the properties of the
model. Using a Jacobian transformation, it is easy to derive
the joint TOA and AOA density function at both the base sta-
tion and the mobile. The resulting joint
probability density functions (PDFs) at the
base station and the mobile are shown in
the box on this page [16].

The joint TOA and AOA PDFs for the
GBSBCM are shown in Figs. 9 and 10 for
the case of D = 1 km and Rm = 100 m
from the base station and mobile perspec-
tives, respectively. The circular model pre-
dicts a relatively high probability of
multipath components with small excess
delays along the line of sight. From the
base-station perspective, all of the multi-
path components are restricted to lie with-
in a small range of angles.

The appropriate values for the radius
of scatterers can be determined by equat-
ing the angle spread predicted by the
model (which is a function of Rm) with
measured values. Measurements reported
in [9] suggest that typical angle spreads
for macrocell environments with a T-R
separation of 1 km are approximately two
to six degrees. Also, it is stated that the
angle spread is inversely proportional to
the T-R separation, which leads to a
radius of scatterers that ranges from 30 to
200 m [16]. In [3], it is stated that the
active scattering region around the mobile
is about 100-200 wavelengths for 900

MHz, which provides a range of
30-60 m, roughly the width of
wide urban streets.

The GBSBCM can be used to
generate random channels for
simulation purposes. Generation
of samples from the GBSBCM is
accomplished by uniformly plac-

ing scatterers in the circular scatterer region about the mobile
and then calculating the corresponding AOA., TOA, and
power levels.

Geometrically Based Elliptical Model (Microcell Wideband
Model) - The Geometrically Based Single Bounce Elliptical
Model (GBSBEM) assumes that scatterers are uniformly dis-
tributed within an ellipse, as shown in Fig. 11, where the base
station and mobile are the foci of the ellipse. The model was
proposed for microcell environments where antenna heights
are relatively low, and therefore multipath scattering near the
base station is just as likely as multipath scatterering near the
mobile [17, 18].

A nice attribute of the elliptical model is the physical inter-
pretation that only multipath signals which arrive with an
absolute delay < xm are accounted for by the model. Ignoring
components with larger delays is possible since signals with
longer delays will experience greater path loss, and hence
have relatively low power compared to those with shorter
delays. Therefore, provided that xm is chosen sufficiently
large, the model will account for nearly all the power and
AOA of the multipath signals.

The parameters am and bm are the semimajor axis and
semiminor axis values, which are given by

,. -Urn.

bm=-. -xm--D~.

At the base station:

c + x2c3 -2xc2Dcos(Qh)

47<(Dcos(e,)-tc)

D2 ~2xcDcos(dh) + x2c

xc-Dcos(Qh)
<2*L

0 else.

I

C + T2C3-2TC2DCOS(9W))

47t/?2(Dcos(9m)-Tc)

D2-T2c2

Dcos(<dm)-xc
<2Rm

else.

where % and Qm are the angle of arrival measured relative to the line of sight
from the base station and the mobile, respectively.
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9 Figure 12. Joint TOA and AOA probability density function,
elliptical model (log-scale).

where c is the speed of light and xm is the maximum TOA to
be considered. To gain some insight into the properties of this
model, consider the resulting joint TOA and AOA density
function. Using a transformation of variables of the original
uniform scatterer spatial density function, it can be shown that
the joint TOA and AOA density function observed at the base
station is given by [16]

V - T V ) ( D 2 C - + T V -2tr2Dcos(0,)) ^ <
< T < T i n

4iMmAm(Dcos(efc)-tc)J

0 elsewhere.
where 9/, is AOA observed at the base station. A plot of the
joint TOA and AOA PDF is shown in Fig. 12 for the case of
D = 1 km and xm = 5 us. From the plot of the joint TOA and
AOA PDF, it is apparent that the GBSBEM results in a high
probability of scatterers with minimum excess delay along the
line of sight.

The choice of xm will determine both the delay spread and
ansle spread of the channel. Methods for selecting an appro-
priate value of xm are given in [18]. Table 2 summarizes the
techniques for selecting xm where Lr is the reflection loss in
dB, n is the path loss exponent, and r0 is the minimum path
delay.

To generate multipath profiles using the GBSBEM, the
most efficient method is to uniformly place scatterers in the
ellipse and then calculate the corresponding AOA. TOA, and
power levels from the coordinates of the scatterer. Uniformly
placing scatterers in an ellipse may be accomplished by first
uniformly placing the scatterers in a unit circle and then scal-
ing each x and y coordinate by am and bm, respectively [16].

Gaussian Wide Sense Stationary
Uncorrelated Scattering

The GWSSUS is a statistical channel model that makes
assumptions about the form of the received signal vector
[19-22]. The primary motivation of
the model is to provide a general
equation for the received signal cor-
relation matrix. In the GWSSUS
model, scatterers are grouped into
clusters in space. The clusters are
such that the delay differences with-
in each cluster are not resolvable
within the transmission signal band-
width. By including multiple clus-
ters, frequency-selective fading
channels can be modeled using the

GWSSUS. Figure 13 shows the geometry assumed for the
GWSSUS model corresponding to d = 3 clusters. The mean
AOA for the kth cluster is denoted Gô . It is assumed that the
location and delay associated with each cluster remains con-
stant over several data bursts, b. The form of the received sig-
nal vector is

d

k=\

where vkb is the superposition of the steering vectors during
the bin data burst within the kin cluster, which may be
expressed as

where Nk denotes the number of scatterers in the /cth cluster,
QLki is the amplitude, (j)̂  is the phase, 8 ,̂ is the angle of arrival
of the /th reflected scatterer of the A:th cluster, and a(0) is the
array response vector in the direction of 9 [9]. It is assumed
that the steering vectors are independent for different k.

If Sk is sufficiently large (approximately 10 or more [19])
for each cluster of scatterers, the central limit theorem may be
applied to the elements of vjt> Under this condition, the ele-
ments of Vfc t) are Gaussian distributed. Additionally, it is
assumed that v*./, is wide sense stationary. The time delays xk
are assumed to be constant over several bursts, b, whereas the
phases ©*.; change much more rapidly. The vectors \k h are
assumed to be zero mean, complex Gaussian wide sense, sta-
tionary random processes where b plays the role of the time
argument. The vector v ^ is a multivariate Gaussian distribu-
tion, which is described by its mean and covariance matrix.
When no line of sight component is present, the mean will be
zero due to the random phase ®ki, which is assumed to be
uniformly distributed in the range 0 to 2TC. When a direct path
component is present, the mean becomes a scaled version of
the corresponding array response vector £"{v>/;} oc a(9(^) [9].
The covariance matrix for the klh cluster is given by [21]

Rk = f{i U?vk
v,

= ! > * . / • •

H 1

£{a(6Ok H.i y[i 'Ok-M-

Fixed maximum delay, %m

Fixed threshold T in dB

Fixed delay spread, c?t

Fixed max. excess delay, x€

Expression- -
• •-, ., . ; - . ; - .£

xm =

*m =

Tm =

*m ~

constant

3.244oT + T0

T0 + Te

• Table 2. Methods for selection i.

The model provides a fairly general result for the form of the
covariance matrix. However, it does not indicate the number
or location of the scattering clusters, and hence requires some
additional information for application to typical environments.

Gaussian Angle of Arrival
The Gaussian Angle of Arrival (GAA) channel model is a
special case of the GWSSUS model described above where
only a single cluster is considered (d = 1), and the AOA
statistics are assumed to be Gaussian distributed about some

nominal angle, 90, as shown in Fig.
14. Since only a single cluster is con-
sidered, the model is a narrowband
channel model that is valid when
the time spread of the channel is
small compared to the inverse of
the signal bandwidth; hence, time
shifts may be modeled as simple
phase shifts [23].

The statistics of the steering vec-
tor are distributed as a multivariate
Gaussian random variable. Similar
to the GWSSUS model, if no line of
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9 Figure 13. GWSSUS geometry. I Figure 14. GAA geometry.

sight is present, then £{v^/,} = 0; otherwise, the mean is pro-
portional to the array response vector a(0(^.). For the special
case of uniform linear arrays, the covariance matrix may be
described by

R(eo ,a9)- /7a(0o)a / /(eo)®B(eo ,ae),
where the (k.l) element of B(9Q, a0) is given by

£ ( e o , a G ) u = exp[-2(7cA(* - / ) ) 2 a§ cos2 e],

p is the receiver signal power, A is the element spacing, and ®
denotes element-wise multiplication [23].

Time-Varying Vector
Channel Model (Raleigh's Model)

Raleigh's time-varying vector channel model was developed to
provide both small scale Rayleigh fading and theoretical spa-
tial correlation properties [24]. The propagation environment
considered is densely populated with large dominant reflec-
tors (Fig. 15). It is assumed that at a particular time the chan-
nel is characterized by L dominant reflectors. The received
signal vector is then modeled as

Ht)-\
x(0= X a ( e / ) a / ( ^ ( r - i ) + n(r).

/=o
where a is the array response vector, a/(r) is the complex path
amplitude, s(t) is the modulated signal, and n(t) is additive
noise. This is equivalent to the impulse response given in Eq. 2.

The unique feature of the model is in the calculation of
the complex amplitude term, af(t), which is expressed as

a i ( 0 = P / ( 0 ' V r / - v ( T / ) .

where F/ accounts for log-normal fading, x|/(i/) describes the
power delay profile, and |3/(/) is the complex intensity of the
radiation pattern as a function of time. The complex intensity
is described by

•v/
P/(0 = * I Cn (9/)exp(M/ cos^,,.,)/),

n = [

where N[ is the number of signal
components contributing to the /th
dominant reflecting surface, K
accounts for the antenna gains
and transmit signal power, C,,(0/)
is the complex radiation of the /ith
component of the /th dominant
reflecting surface in the direction
of 9/, ©</ is the maximum Doppler
shift, and Clnj is the angle toward
the /7th component of the /th dom-
inant reflector with respect to the
motion of the mobile. The result-
ing complex intensity, P/(0,
exhibits a complex Gaussian distri-

bution in all directions away from the mobile
[24].

Both the time and spatial correlation prop-
erties of the model are compared to theoreti-
cal results in [24]. The comparison shows that
there is good agreement between the two.

Two Simulation Models (Til and BU)
Next we describe two spatial channel models
that have been developed for simulation pur-
poses.

The Typical Urban (TU) model is designed
to have time properties similar to the GSM-TU defined in
GSM 05.05, while the Bad Urban (BU) model was developed
to model environments with large reflectors that are not in
the vicinity of the mobile. Although the models are designed
for GSM,'DCS 1800, and PCS1900 formats, extensions to
other formats are possible [251].

Both of these models obtain the received signal vector
using

x(r) = ̂ a , , ( O e X p - ; 2 ^ . - ^ + /3 r_!A!l + At ueii(l))

Base station

I Figure 15. Raleigh's model signal environment.
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where N is the number of scatterers, fc the carrier frequency, c
is the speed of light, ln(t) the path propagation distance, p a
random phase, and A, random delay. In general, the path
propagation distance ln(t) will vary continuously with time;
hence, Doppler fading occurs naturally in the model.

Typical Urban (Til) - In the TU model, 120 scatterers are ran-
domly placed within a 1 km radius about the mobile [25]. The
position of the scatterers is held fixed over the duration in
which the mobile travels a distance of 5 m. At the end of the 5
m, the scatterers are returned to their original position with
respect to the mobile. At each 5-m interval, random phases are
assigned to the scatterers as well as randomized shadowing
effects, which are modeled as log-normal with distance with a
standard deviation of 5-10 dB [25]. The received signal is
determined by brute force from the location of each of the scat-
terers. An exponential path loss law is also applied to account
for large-scale fading [21]. Simulations have shown that the TU
model and the GSM-TU model have nearly identical power
delay profiles, Doppler spectrums, and delay spreads [25]. Fur-
thermore, the AOA statistics are approximately Gaussian and
similar to those of the GAA model described above.

Bad Urban (BU) - The BU is identical to the TU model with
the addition of a second scatterer cluster with another 120
scatterers offset 45° from the first, as shown in Fig. 16. The
scattercrs in the second cluster are assigned 5 dB less average
power than the original cluster [25]. The presence of the sec-

ond cluster results in an increased
angle spread, which in turn
reduces the off-diagonal elements
of the array covariance matrix.
The presence of the second cluster
also causes an increase in the delay
spread.

Uniform Sectored Distribution
The defining geometry of Uniform
Sectored Distribution (USD) is
shown in Fig. 17 [26j. The model
assumes that scatterers are uni-
formly distributed within an angle
distribution of 0#^ and a radial

Scatterers

kth scatterer cluster

k i .

,9ok X

Scatterer cluster
L y

F0k y

Dominant
reflectors

| OQCOS'0-2(7CA(*-/)B{*Q'Oo)kt--

P/(0 = * I Cn (9/)exp(M/ cos^,,.,)/),
n = [
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V
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range of AR centered about the mobile.
The magnitude and phase associated with
each scatterer is selected at random from
a uniform distribution of [0,1] and [0, 2TC],
respectively. As the number of scatterers
approaches infinity, the signal fading
envelope becomes Rayleigh with uniform
phase [26]. In [26], the model is used to
study the effect of angle spread on spatial
diversity techniques. A key result is that
beam-steering techniques are most suit-
able for scatterer distributions with widths
slightly larger than the beamwidths.

Modified
Saleh-Valenzuela's Model

Saleh and Valenzuela developed a multipath channel model for
indoor environment based on the clustering phenomenon
observed in experimental data [27]. The clustering phenomenon
refers to the observation that multipath components arrive at
the antenna in groups. It was found that both the clusters and
the rays within a cluster decayed in amplitude with time. The
impulse response of this model is given by

M0=££a/;8(r-ri-T,y) (3)
/ = ()y = 0

where the sum over / corresponds to
the clusters and the sum over; repre-
sents the rays within a cluster. The vari-
ables a,y are Rayleigh distributed with
the mean square value described by a
double-exponential decay given by

ajj =ar)Oexp(-7;/r)exp(T,>/y)

where F and y are the cluster and ray
time decay constant, respectively. Moti-
vated by the need to include AOA in
the channel mode, Spencer et ai pro-
posed an extension to the Saleh-Valen-
zuela's model [28], assaming that time
and the angle are statistically indepen-
dent, or

h(t$) = h(t)h(Q).

Similar to the time impulse response in Eq. 3, the pro-
posed angular impulse response is given by

A(0=££o,yS(e-ei--co1j)

where a,j is the amplitude of the y'th ray in the /th cluster. The
variable 0, is the mean angle of the /th cluster and is assumed
to be uniformly distributed over [0, 2K]. The variable co,y cor-
responds to the ray angle within a cluster and is modeled as a
Laplacian distributed random variable with zero mean and
standard deviation a:

Primary
cluster

I Figure 16. Bad Urban vector chan-
nel model geometry.

Base station

I Figure 17. Geometry of the uniform
sectored distribution.

/(CD) = —?=- ex
V2co

This model was proposed based on indoor measurements
which will be discussed in the fourth section.

Extended Tap-Delay-Line Model
A wideband channel model that is an extension of the tradi-
tional statistical tap-delay-line model and includes AOA infor-

mation was developed by Klein and Mohr
[29]. The channel impulse response is rep-
resented by

h(x,t,Q)= iaw(0S(T-Tw)8(e-ew).

This model is composed by W taps,
each with an associated time delay xw,
complex amplitude aw, and AOA 9VV. The
joint density functions of the model
parameters should be determined from
measurements. As shown in [29], measure-
ments can provide histograms of the joint

distribution of \a |, x, and 9, and the density functions, which
are proportional to these histograms, can be chosen.

Elliptical Subregions Model
(lu, Lo, and Litva's Model)

Lu et ai [30] proposed a model of multipath propagation
based on the distribution of the scatterers in elliptical subre-
gions, as shown in Fig. 18. Each subregion (shown in a differ-
ent shade) corresponds to one range of the excess delay time.

This approach is similar to the GBS-
BEM proposed by Liberti and Rappa-
port [18] in that an ellipse of scatterers
is considered. The primary difference
between the two models is in the selec-
tion of the number of scatterers and the
distribution of those scatterers. In the
GBSBEM, the scatterers were uniformly
distributed within the entire ellipse. In
Lu, Lo, and Litva's model, the ellipse is
first subdivided into a number of ellipti-
cal subregions. The number of scatterers
within each subregion is then selected
from a Poisson random variable, the
mean of which is chosen to match the
measured time delay profile data.

It was also assumed that the multi-
path components arrive in clusters due
to the multiple reflecting points of the
scatterers. Thus, assuming that there
are L scatterers with K[ reflecting points

each, the model proposed is represented by

"("o) = j>(4 ( ))
/ = l

x X a <* e *P( - (2^o + Yit ))S(t- rik)Er{0ik)

where a^, t,*, and y,̂  correspond to the amplitude, time delay,
and phase of the signal component from the ikth reflecting
point, respectively./^ is the Doppler frequency shift of each
individual path, 9^ is the angle between the ikth path and the
receiver-to-transmitter direction, and 9,-') is the angle of the
/th scatterer as seen from the transmitter. £r(9) and £r(9) are
the radiation patterns of the transmit and receive antennas,
respectively. The variable %k was assumed to be Gaussian dis-
tributed.

Simulation results using this model were presented in [30],
showing that a 60° beamwidth antenna reduces the mean
RMS delay spread by about 30-43 percent. These results are
consistent with similar measurements made in Toronto using
a sectorized antenna [31].
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Measurement-Based
Channel Model

A channel model in which the parameters are based on mea-
surement was proposed by Blanz et ai. [32], The idea behind
this approach is to characterize the propagation environment,
in terms of scattering points, based on measurement data. The
time-variant impulse response takes the form

2K

0

where/(t) is the impulse response representing the joint
transfer characteristic of the transmission system components
(modulator, demodulator, filters, etc.), and g(x, 8) is the char-
acteristic of the base station antenna. The term 0(x, r, G) is
the time-variant directional distribution of channel impulse
response seen from the base station. This distribution is time-
variant due to mobile motion and depends on the location,
orientation, and velocity of the mobile station antenna and
the topographical and morphographical properties of the
propagation area as well. Measurement is used to determine
the distribution t)(i, r, 9).

Ray Tracing Models |
The models presented so far are
based on statistical analysis and
measurements, and provide us
with the average path loss and
delay spread, adjusting some
parameters according to the envi-
ronment (indoor, outdoor,
obstructed, etc.). In the past few
years, a deterministic model, called
ray tracing, has been proposed
based on the geometric theory and
reflection, diffraction, and scatter-
ing models. By using site-specific
information, such as building databases or architecture draw-
ings, this technique deterministically models the propagation
channel [33-36], including the path loss exponent and the
delay spread. However, the high computational burden and
lack of detailed terrain and building databases make ray trac-
ing models difficult to use. Although some progress has been
made in overcoming the computational burden, the develop-
ment of an effective and efficient procedure for generating
terrain and building data for ray tracing is still necessary.

Channel Model Summary
Table 3 summarizes each of the spatial models presented above.

Spatial Signal Measurements
There have been only a few publications relating to spatial
channel measurements. In this section, references are given to
these papers, and the key results are described.

In [38], TOA and AOA measurements are presented for
outdoor macrocellular environments. The measurements were
made using a rotating 9° azimuth beam directional receiver
antenna with a 10 MHz bandwidth centered at 1840 MHz.
Three environments near Munich were considered, including
rural, suburban, and urban areas with base station antenna
heights of 12.3 m, 25.8 m, and 37.5 m, respectively. The key
observations made include [38]:
• Most of the signal energy is concentrated in a small interval

of delay and within a small AOA in rural, suburban, and
even many urban environments.

I Figure 18. Elliptical subregions spatial scauerer
density.

• By using directional antennas, it is possible to reduce the
time dispersion.
Another set of TOA and AOA measurements is reported

in [39] for urban areas. The measurements were made using a
two-element receiver that was mounted on the test vehicle
with an elevation of 2.6 m. The transmitting antenna was
placed 30 m high on the side of a building. A bandwidth of 10
MHz with a carrier frequency of 2.33 GHz was used. The
delay-Doppler spectra observed at the mobile was used to
obtain the delay-AOA spectra. The second antenna element is
used to remove the ambiguity in AOA that would occur if
only the Doppler spectra were known. The results indicate
that it is possible to account for most of the major features of
the delay-AOA spectra by considering the large buildings in
the environment.

Motivated by diversity combining methods, earlier mea-
surements were concerned primarily with determining the
correlation between the signals at two antenna elements as
a function of the element separation distance. These stud-
ies found that, at the mobile, relatively small separation
distances were required to obtain a small degree of corre-
lation between the elements, whereas at the base station

very large spacing was needed.
. These findings indicate that

there is a relatively small angle
spread observed at the base sta-
tion [6].

Previously, an extension to
Saleh-Valenzuela's indoor model,
including AOA information, was
presented. This extension was
proposed based on indoor mea-
surements of delay spread and
AOA at 7 GHz made at Brigham
Young University [40]. The
AOAs were measured using a 60
cm parabolic dish antenna that
had a 3 dB beamwidth of 6°. The

results showed a clustering pattern in both time and angle
domain, which led to the proposed channel model described
in [28]. Also, it was observed that the cluster mean angle of
arrival was uniformly distributed [0, 2K]. The distribution of
the angle of arrival of the rays within a cluster presented a
sharp peak at the mean, leading to the Laplacian distribu-
tion modeling. The standard deviation found for this distri-
bution was around 25°. Based on these measurements, a
channel model including delay spread and AOA informa-
tion was proposed, supposing that time and angle were
independent variables.

In [41], two-dimensional AOA and delay spread mea-
surement and estimation were presented. The measure-
ments were made in downtown Paris using a channel
sounder at 900 MHz and a horizontal rectangular planar
array at the receiver. The estimation of AOA, including
azimuth and elevation angle, was performed using 2D uni-
tary ESPRIT [42] with a time resolution of O.lj-is and angle
resolution of 5°. The results presented confirmed assump-
tions made in urban propagation, such as the wave-guiding
mechanism of streets and the exponential decay of the
power delay profile. Also, it was observed that 90 percent of
the received power was contained in the paths with eleva-
tion between 0° and 40° with the low elevated paths con-
tributing a larger amount.

Finally, in [43] measurements are used to show the varia-
tion in the spatial signature with both time and frequency.
Two measures of change are given, the relative angle change
given by
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Lee's Model

Discrete Uniform
Distribution

i
f — — • — --•• •••

: Geometrically Based
Circular Model

i (Macrocell Model)

| Geometrically Based
! Elliptical Model (Microcell
j Wideband Model)

!

j Gaussian Wide Sense
| Stationary Uncorrelated
! Scattering (GWSSUS)

; Gaussian Angle of Arrival
(GAA)

; Time-Varying Vector
! Channel Model
\ (Raleigh's Model)

Typical Urban

Bad Urban

Uniform Sectored
i Distribution

i Modified Saleh-
Valenzuela's Model

; Extended Tap-Delay-Line
\ Model

j Spatio-Temporal Model
; (Lu, Lo, and Litva's Model

j

: Measurement-Based
Channel Model

! Ray Tracing Models

I

Effective scatterers are evenly spaced on a circular ring about the mobile
Predicts correlation coefficient using a discrete AOA model
Extension accounts for Doppler shift

N scatterers are evenly spaced over an AOA range
Predicts correlation coefficient using a discrete AOA model
Correlation predicted by this model falls off more quickly than the correlation in Lee's model

Assumes that the scatterers lie within circular ring about the mobile
AOA, TOA, joint TOA and AOA, Doppler shift, and signal amplitude information is provided
ntended for macrocell environments where antenna heights are relatively large

Scatterers are uniformly distributed in an ellipse where the base station and the mobile
are the foci of the ellipse

AOA, TOA, joint TOA and AOA, Doppler shift, and signal amplitude information is provided
Intended for microcell environments where antenna heights are relatively low

N scatterers are grouped into clusters in space such that the delay differences within each
cluster are not resolvable within the transmission signal BW

Provides an analytical model for the array covariance matrix

Special case of the GWSSUS model with a single cluster and angle of arrival statistics
assumed to be Gaussian distributed about some nominal angle

Narrowband channel model
Provides an analytical model for the array covariance matrix

Assumes that the signal energy leaving the region of the mobile is Rayleigh faded
Angle spread is accounted for by dominant reflectors
Provides both Rayleigh fading and theoretical spatial correlation properties

Simulation model for GSM, DCS1800, and PCS1900
Time domain properties are similar to the GSM-TU defined in GSM 05.05
120 scatterers are randomly placed within a 1 km radius about the mobile
Received signal is determined by brute force from the location of each of the

scatterers and the time-varying location of the mobile
AOA statistics are approximately Gaussian

Simulation model for G5M, DCS1800, and PCS1900
Accounts for large reflectors not in the vicinity of the mobile
Identical to the TU model with the addition of a second scatterer cluster offset 45°

from the first

Assumes that scatterers are uniformly distributed within an angle distribution of SBW and
a radial range of AR centered about the mobile

Magnitude and phase associated with each scatterer are selected at random from a
uniform distribution of [0,1] and [0f 2n], respectively

An extension to the Saleh-Valenzuela model, including AOA information in the channel model
Assumes that time and the angle are statistically independent
Based on indoor measurements

Wideband channel model
Extension of the traditional statistical tap-delay-line model which includes AOA information
The joint density functions of the model parameters should be determined from measurements

Model of multipath propagation based on the distribution of the scatterers in elliptical
subregions, corresponding to a range of excess delay time

Similar to the GBSBEM

Parameters are based on measurement
Characterizes the propagation environment in terms of scattering points

Deterministic model based on the geometric theory and reflection, diffraction, and
scattering models

Uses site-specific information, such as building databases or architecture drawings

[3,9, 11]

[9]

[12-14,
16,37]

[17,18]

[19-22]

[23]

[20]

[21,22,25]

[21,22,25]

[26]

[28]

[29]

[30]

[32]

[33-36]

i Table 5. Summary of spatial channel models.
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Relative Angle Change (%) = 100 x 1-

and the relative amplitude change, found using

Relative Amplitude Change(dB) = 201og|0^

where a/ and ay are the two spatial signatures (array response
vectors) being compared. The measurements indicate that
when the mobile and surroundings are stationary, there are
relatively small changes in the spatial signature. Likewise,
there are moderate changes when objects and the environ-
ment are in motion and large changes when the mobile itself
is moving. Also, it was found that the spatial signature changes
significantly with a change in carrier frequency. In particular,
the measurements found that the relative amplitude change in
the spatial signal could exceed 10 dB with a frequency change
of only 10 MHz. This result indicates that the uplink spatial
signature cannot be directly applied for downlink beamform-
ing in most of today's cellular and PCS systems that have 45
MHz and 80 MHz separation between the uplink and down-
link frequencies, respectively.

Application of
Spatial Channel Models

The effect that classical channel properties such as delay
spread and Doppler spread have on system performance has
been an active area of research for several years and hence is
fairly well understood. The spatial channel models include the
AOA properties of the channel which are often characterized
by the angle spread. The angle spread has a major impact on
the correlation observed between the pairs of elements in the
array. These correlation values specify the received signal vec-
tor covariance matrix, which is known to determine the per-
formance of linear combining arrays [44]. In general, the
higher the angle spread the lower the correlation observed
between any pair of elements in the array. The various spatial
channel models provide different angle spreads and hence will
predict different levels of system performance.

The channel models presented here have various applica-
tions in the analysis and design of systems that utilize adaptive
antenna arrays. Some of the models were developed to pro-
vide analytical models of the spatial correlation function,
while others are intended primarily for simulation purposes.

Simulation
More and more companies are relying on detailed simulations
to help design and develop today's wireless networks. The
application of adaptive antennas is no exception. However, to
obtain reliable results, accurate spatial channel models are
needed. With accurate simulations of adaptive antenna array
systems, researchers will be able to predict the capacity
improvement, range extension, and other performance mea-
sures of the system, which in turn will determine the cost
effectiveness of adaptive array technologies.

Algorithm Development
The availability of channel models also opens up the possibili-
ty of developing new maximum likelihood smart antennas and
AOA estimation algorithms based on these channel models.
Good analytical models that will provide insights into the
structure of the spatial channel are needed.

Conclusions

As antenna technology advances, radio system engineers are
increasingly able to utilize the spatial domain to enhance sys-
tem performance by rejecting interfering signals and boosting
desired signal levels. However, to make effective use of the
spatial domain, design engineers need to understand and
appropriately model spatial domain characteristics, particular-
ly the distribution of scatterers, angles of arrival, and the
Doppler spectrum. These characteristics tend to be dependent
on the height of the transmitting and receiving antennas rela-
tive to the local environment. For example, the distributions
expected in a microcellular environment with relatively low
base station antenna heights are usually quite different from
those found in traditional macrocellular systems with elevated
base station antennas.

This article has provided a review of a number of spatial
propagation models. These models can be divided into three
groups:
• General statistically based models
• More site-specific models based on measurement data
• Entirely site-specific models.

The first group of models (Lee's Model, Discrete Uniform
Distribution Model, Geometrically Based Single Bounce Sta-
tistical Model, Gaussian Wide Sense Stationary Uncorrelated
Scattering Model, Gaussian Angle of Arrival Model, Uniform
Sectored Distributed Model, Modified Saleh-Valenzuela's
Model, Spatio-Temporal Model) are useful for general system
performance analysis. The models in the second group
(Extended Tap Delay Line Model and Measurement-Based
Channel Model) can be expected to yield greater accuracy but
require measurement data as an input. An example from the
third group of models is Ray Tracing, which has the potential
to be extremely accurate but requires a comprehensive
description of the physical propagation environment as well as
measurements to validate the models.

Further research is required to validate and enhance the
models described in this article. Bearing in mind that an
objective of modeling is to substantially reduce the amount of
physical measurement required in the system planning pro-
cess, it is important for design engineers to have reliable mod-
els of AOA, TDOA, delay spread, and the power of the
multipath components. Further measurement programs that
focus on spatial domain signal characteristics are required.
These programs would greatly benefit from the development
of improved measurement equipment.

Armed with improved spatial channel modeling tools and a
greater understanding of signal propagation, engineers can
begin to meet the challenges inherent in designing future
high-capacity/high-quality wireless communication systems,
including the effective use of smart antennas.
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Antenna Systems for Base Station Diversity
in Urban Small and Micro Cells

Patrick C. F. Eggers, J0rn Toftgard, and Alex M. Oprea

Abstract—This paper describes cross-correlation properties for
compact urban base station antenna configurations, nearly all
resulting in very low envelope cross-correlation coefficients of
about 0.1 to 0.3. A focus is set on polarization diversity systems
for their potential in improving link quality when hand-held
terminals are involved. An expression is given for the correlation
function of compound space and polarization diversity systems.
Dispersion and envelope dynamic statistics are presented for the
measured environments. For microcell applications, it is found
that systems such as GSM having a bandwidth of 200 kHz or
less can use narrowband cross-correlation analysis directly.

I. INTRODUCTION

AS the bandwidths of newer digital land/mobile and per-
sonal communications systems increase, radio channel

time dispersion can produce noticeable frequency-selective
fading within the band. The capacity demand on such systems
is also increasing, leading to network layouts with smaller
cell sizes. A way to assist with cell layout, and to combat
interference and fading degradation, is to use base station
diversity. A normal figure of merit for narrowband antenna
diversity systems is the envelope cross-correlation coefficient
/•Ji2nnv- r?or phase-modulated systems, the phase decorrelation
is also relevant especially for predetection combining, and here
the complex cross-correlation coefficient i>\2 can be used.

The work presented in this paper falls in two areas. The
paper describes investigations of the overall diversity poten-
tial for antenna systems used in urban small and microcells
(predominantly range lengths up to 3000 m and 300 m, re-
spectively), and the degree of overall radio channel dispersion
by considering the temporal and spatial domain separately.

Two base station sites have been investigated. One microcell
site has antenna heights of a few meters above rooftops and
range lengths from 50 to 800 m. On the other site, the antennas
were elevated approximately 30 m above rooftops and ranges
from 200 to 3000 m were used. Antenna configurations with
vertical and horizontal separations have been used, as well
as compound space and polarization diversity configurations.
Hand-held terminals in existing mobile systems and upcoming
personal systems will most likely have low polarization and
will be subject to varying handset orientation. Under such con-
ditions, polarization diversity is an obvious way of improving
link quality.
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supported by the Danish Technical Research Board. This work was presented
in part at the Fifth Digital Mobile Radio Conference, Helsinki. Finland,
December 1-3, 1992.

The authors are with the Mobile Communications Group, Aalborg Univer-
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Digital transmission using antenna diversity in frequency-
selective fading channels has been investigated in [1]. The
investigations were based on simulations and assuming fully
decorrelated branch signals with uncorrelated scattering [(US),
i.e., full decorrelation along the temporal axis], with the same
average power delay profile (PDP) at each branch. This paper
presents an extensive measurement campaign, performed in
an urban environment. The radio channel has been sampled
simultaneously in the spatial and temporal domains on two
antenna branches. Achievable figures of the degree of antenna
signal correlation, dispersion, and fading for practical systems
are presented, giving a base of comparison to some of the
assumptions used in [1],

II. MOBILE RADIO CHANNEL CHARACTERIZATION

The mobile radio channel is often modeled by a superposi-
tion of the following three major effects:

a) Large variations, i.e., range dependency (median pathloss)
b) Local variations, i.e., shadowing, (generally considered

log-normal distributed)
c) Short-term variations, i.e., multipath fading (shown to

follow Rayleigh or Rician distributions)
In general, the mobile radio channel is both time variant and

nonstationary. The measurements reported here have mostly
been performed in low-density and low-velocity traffic situa-
tions. The roof of the measuring van (2.2 m) was higher than
most of the other moving vehicles (scatterers). Thus, a time-
invariant channel situation is assumed during the measurement,
although channel condition details may have changed for a
later measurement at the same location (note it would be very
difficult to find exactly the same location in practice). This
assumption allows a comparison of the statistics. The mea-
surement runs used have been short, so that global variation
statistics (pathloss) are assumed "frozen." Thus, we consider
the multipath fading being superimposed with local variations
(shadowing) affecting only the mean values of the envelope
signal. A removal of the estimated shadowing component is
possible. This will stabilize the mean to a quasiconstant value.
Thus, a wide sense stationary (WSS) short-term fading channel
is extracted for analysis (described in more detail later). Since
thfc WSS mobile radio channel may be visualized as a linear
F;i.er at a given time, it can be described either by its impulse
response or by its transfer function. Alternatively, the spatially
variant behavior of the radio channel can be investigated. This
has the advantage of providing a stable channel, invariant to
change in mobile terminal velocity.

Reprinted from IEEE Journal on Selected Areas in Communications, Vol. 11, No. 7, pp. 1046-1057, September 1993.
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The spatially variant impulse response h(r,x) provides
a direct illustration of the multipath phenomenon, where r
is the temporal lag (delay) and x is the spatial position
along the travelled path. The frequency Doppler transfer
function H(f,fd) gives an appropriate picture of the spatial-
varying behavior via Doppler shifts. These two functions,
which describe adequately a deterministic spatially variant
channel, form a two-dimensional Fourier pair.

The following subsections describes the statistical parame-
ters used for evaluation of the radio channel considered WSS
in the spatial domain and fully stationary in the temporal
domain.

A. Spatial Domain

Often, a CW measurement has been used to determine
the correlation between fading signals from two diversity
antennas. This corresponds to the DC response along the
temporal axis, i.e., the complex envelope of the radio channel
is found by integration as

g(x) = I h(T.x)dr (1)

corresponding to the DC component of the spatial-variant
frequency transfer function H(0,x). For wide bandwidth
systems, a Received Signal Strength Indicator (RSS1) signal
may also be used for driving a diversity combiner. The
RSSI signal represents the total power over the band and
will, in frequency-selective channels, exhibit reduced fading
dynamics. The RSSI signal is real and is found by integration
of the spatially variant frequency transfer function weighted
with the receiver filter, i.e.,

i.</u)i2= r
./ ~ -

\H(f..,:t\Htiht.t(ftdf. (2)

The normalized spatial complex correlation coefficient func-
tion is

C9 l ,2(Ax)

where the cross covariance of lag Ax is

(3)

and

C f l i g 2 (Ax) = Rgig-2(Ax) - fi*gl • iig2

R,llg2(Ax) = ElgKx) • g2(x + ±x)}.
fig = E[g(x)}.

envelope correlation coefficient Pi2env is a specialization of
(3) when the real envelope functions \g(r,x)\ are used instead
of the complex functions g(r,x). Thus, pnenv becomes a
real function. For analysis purposes, the power correlation
coefficient pi2pow has also been used (see Appendix A).

B. Temporal Domain

For the temporal domain, the power delay profile (PDP) is
used as the basis for overall dispersion analysis

(4)

Rgig2 a nd flg a r e t ne complex cross-correlation functions
and complex mean of the CW or RSSI signals following (1)
or (2). E['} is the expectation value (mean value) operator.
For a continuous random variable (RV) V with probability
function (pdf) f(v), E[V] = J^vf^dv. Similarly, a
discrete RV of sampled data V = [vi • -VN] is treated with
ensemble averaging E[V] = (V) = (1/N) ^ = 1 vn. The
parameter of most interest when considering antenna systems
is the correlation function with zero lag, i.e., Ax = 0. The
value of (3) at zero lag is normally just referred to as the
correlation coefficient, i.e., pgi92(0) — pn- The widely used

PDP(r)= / \h{r,x)\2dx.
J — oo

(5)

The PDP is an average power density impulse response.
The frequency correlation function (FCF) follows by inverse
Fourier transform via the Wiener-Khintchine Theorem as

FCF(A/) = J"~1[PDP(r)]. (6)

The coherence bandwidth is found at a given correlation level
from the normalized FCF and describes the overall dispersion
strength represented in the frequency domain. The RMS delay
spread (5) is widely used to describe the overall degree of
dispersion in the time domain [6], and is given as the square
root of the second central moment of the PDP

S' = £[(r-r)2l= T {T-T
_S2 PDP(r)

Pt
dr (7)

where Pt is the total power in the PDP. For high temporal
resolution systems, the absolute delay function must be taken
into account in (5) through (7). The temporal resolution in our
experiments is approximately 1 /is corresponding to a 300 m
spatial resolution. As each measurement run was limited to
51 m, we consider the absolute delay from base to mobile
being constant over the integration of PDP in (5). We can
then use (7) without modifications.

III. THE MEASUREMENT SETUP

Usually, the choice of channel sounding technique depends
upon the application foreseen for the collected data. To permit
a study of the instantaneous behavior of the mobile radio chan-
nel later on, a direct pulse technique was chosen. The channel
sounder, having a time resolution capability of approximately
1 [is and an instantaneous dynamic range of about 26 dB,
was operated at 970 MHz. To achieve adequate resolution of
Doppler shifts, a sampling interval of 6 cm was used. The
following subsections describe the hardware implementation
of the measurement system.

A. Transmitter

All frequencies used in the transmitter are derived from a
stable 10 MHz frequency standard. The maximum transmitted
power was a 5 W peak, the signal being radiated from a
quarter-wavelength monopole mounted on the metal roof of
the measuring vehicle. The cross-polarization discrimination
(XPD) of the transmitter was difficult to measure, but field
tests indicated a figure of up to 20 dB. This is quite high
compared to XPD figures for normal vehicle mounted whip
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antennas, but in our case the measuring van (Ford Transit-L)
has a large flat roof, providing a better ground plane than
most personal cars.

B. Receiver

A dual-branch receiver is used to investigate the complex
cross-correlation between the two antenna signals. Each branch
is a conventional quadrature detection receiver and, as in the
transmitter, all frequencies used are synthesized from a stable
10 MHz frequency standard. The dominating output filters
limit the bandwidth ( - 3 dB single sided) to 0.6 MHz. A linear
input signal dynamic range of - 4 5 to -105 dBm is available.
The / and Q signals from the two branches of the receiver
are simultaneously sampled at a 3.3 MHz rate and stored on
a hard disk.

Two identical planar array directional antennas with an
azimuth and elevation 3 dB beam width of 60° were used.
Thus, the same illumination of the environment is achieved for
both the copolarized and cross-polarized cases. The antennas
have a gain of 8 dBi and a XPD better than 30 dB, ensuring
sufficient suppression of the unwanted polarization to provide
usable figures for the XPD of the radio environment.

C. Measurement Data

The length of each test run was 51 meters. The data was
stored on a PC, consisting of three consecutive complex
impulse responses for both receiver branches at every spatial
sampling point. The data transfer rate of the PC limited the
vehicle speed to 3 m/s.

IV. MEASUREMENT SCENARIOS

Two series of field trials were conducted in Aalborg, a
medium-sized European city. The principal variable during
these trials was the receiver antenna configuration at the base
station. Fig. 1 shows a map of the test area with the base
station and measurement site location.

In the first experiment, a typical urban environment was
covered, corresponding to a microcell. The base station (BSl)
was located on the roof of one of Aalborg University's build-
ings, some 18 m above ground level. The antenna position was
just above the rooftop level of the surrounding buildings. The
test route was chosen in a relatively flat and heavily built-up
urban area consisting mostly of five-story buildings which are
in close proximity to each other. A square of 0.75 by 0.75 km
was covered by 14 measurement sites (shown by numbered
circles on the map). Data were recorded on each of the 14 sites
for 12 antenna configurations at the base station (Table I).

In the second experiment, a small ceil was considered. The
base station (BS2) antennas were located on Hotel Hvide Hus,
a 15 story building in Aalborg, some 30 m higher than the
rooftop level of the surrounding buildings. The first part of the
route was similar to that of the first experiment. The second
part was chosen in an undulating environment, starting some
1.5 km from the base station, across a 500 m wide river which
splits the town in two. On the N0rre Sundby side of the river,
the ground slopes upward reaching a height of 45 m at 2.6 km
(site 14) from the base station and the area changes gradually

Fig. 1. Map showing test areas used with BS1 and BS2. Circles: BSl
measurement locations. Triangles: BS2 measurement locations. The numbers
refer to each specific location.

into a suburban one. There were 18 measurement sites chosen
(shown by numbered triangles on the map), half in Aalborg
and half in N0rre Sundby, the furthest point being around 3 km
away from the base station. Data were collected for each of the
18 measurement sites for six antenna configurations (Table II).
The higher elevation and longer range lengths at BS2 will
lower the effective beam width of the incoming scattered
signal. Thus, larger antenna separations have been used at BS2
to obtain comparable decorrelation to the configurations used
at BSl.

V. DATA PROCESSING

The measured diversity data have been processed collec-
tively for a block of measurements with the same base station
antenna configuration. A measurement series consists of a
measurement file for each location. The measured data are
stored in the measurement files with a recorded impulse
response for each diversity branch. Three consecutive in-
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TABLE I
ANTENNA CONFIGURATIONS USED AT BS1. THE NUMBER IN THE BRACKETS

REFER TO THE ELEVATION OF THE LOWEST ANTENNA WITH

RESPECT TO THE BASE STATION ROOF.

stantaneous impulse responses were recorded for each spatial
position. Through coherent (complex) averaging of these three
impulse responses, a noise suppression of almost 5 dB was
obtained.

To retrieve the fast fading components of the recorded
signal, the log-normal shadowing component was compensated
for. The log-normal component of the data was extracted by
performing a moving average filtering in the spatial domain.
Two consecutive rectangular windows with lengths of 10 and
6.7 m were used.

The PDP's for each branch were calculated by averaging
the power of instantaneous impulse responses over the full
51m run length. The statistical parameters extracted from the
PDP's are delay spread (5), mean delay (r), and total power
(Pt). The FCFs were found by inverse Fourier transform of
the PDP's. The coherence bandwidths have been found for
0.9, 0.7, and 0.5 correlation levels of the normalized FCF.

Three fading envelope signals have been generated from
each data set—one CW signal and two RSSI signals. The
RSSI signals have been extracted for the full bandwidth of the
measuring equipment (1.2 MHz-3 dB double sided) and for a
GSM-like bandwidth (200 kHz-3 dB double sided). A square
cosine filter \H(f)mtJ

2 = COS 2 (0 .5TT( / - /o)/200) kHz
has been used for the GSM-like signal (truncated to 0 outside

(/ ~ fo) = ±200 kHz). This filter provides a power spectrum
closely resembling the main lobe of a GSM/GMSK power
spectrum.

For the CW signals, several correlations between the an-
tenna signals have been calculated: p12, Pi2env, Pi2pow, and
Pn, PIQ (see Appendix A). For the RSSI signals, only enve-
lope correlations have been calculated. For all three envelope
signal types and each antenna, the 1% level of the cumula-
tive envelope distribution (cdf) is found. This information is
valuable in assessing necessary fading margins in radio net-
work design. Also, assumptions of Rayleigh fading signals (see
Appendix A) can be coarsely validated in a compact manner.
For a true Rayleigh fading signal, the 1% cdf level corresponds
to a signal level 20 dB below the mean of the signal.

VI. RESULTS OF THE ANALYSIS

In the following discussions, all data from all antenna
configurations are considered in the figures (unless specifically
noted otherwise).

A. Radio Environment

From [2] and [3], it is found that short-term fading statistics
are independent of impulse response shape and only depend on
RMS delay spread (5) [as long as the delay spread bandwidth
product is much smaller than unity, i.e., S • BW << 1].
This is referred to as a low-dispersive channel situation. For
low-dispersive situations, the envelope correlation coefficient
will be fully relevant, as all large phase and timing jitter
variations are associated with fades in the instantaneous total
power (RSSI signal). Thus, a classical envelope-controlled di-
versity combining scheme can also suppress the radio channel-
introduced phase and timing jitter.

Previous investigations [4] have shown log-normal shadow-
ing with a = 8 dB from the area covered by BS1. Short-term
effect investigations in [5] indicate Rayleigh-distributed fading
behavior for most of the strong power components of the
PDP, for the areas covered by BS2. Line-of-sight (LOS)
peaks, however, show distinctly Rician distributed envelope
fading. Fig. 2 shows the 1% level of the cumulative envelope
distribution dependence versus normalized delay spread, i.e.,
5 • BW. For the plotting of the CW case, a 25 kHz bandwidth
has been used. As expected, the CW signals are insensitive
to radio dispersion whereas the RSSI signals reduce dynamics
with higher dispersion and larger bandwidth. From Table IV,
it follows that the mean 1% cumulative CW envelope levels
are indeed close to —20 dB corresponding to Rayleigh fading.
For the RSSI signals, it follows that there is a strong increase
in the 1% envelope level for higher bandwidths, and that this
increase is approximately 2 dB stronger for BS2 than for BS1.
This is due to a higher degree of radio dispersion (S) at BS2
compared to BS1. The higher dispersion, the more frequency-
selective the channel becomes and the probability of total
power vanishing within the band is decreased.

The transmitter/receiver equipment filters limit the resolu-
tion of the measured channel impulse response. The RMS
delay spreads found from the PDP's were compensated for
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M l

BS1 Antenna Configurations

2m

(3m)

M2
(3m)

2m

M3
(3m)

2m

M4
7m

(3m)
M5

- lm-

1.45m

(1.5m)

M6
t-lm-

1.45m

(1.5m)

M7 1.45m

(1.5m)

M8
(1.5m)

1.45m M9 0.2m

(1.5m)

M10 3m

(2. lm)
Mil

(2. lm)

3m

M12
3m

(2. lm)

M21

BS2 Antenna Configurations

2.9m\ M22 29m M23 2.9m

M24 3.8m M26 3.8m M26 3.8m

TABLE II
ANTENNA CONFIGURATIONS USED AT BS2. SYMBOLS USED

FOLLOW SAME NOMENCLATURE AS USED IN TABLE I.
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Fig. 2. Cumulative envelope distribution at \% level versus normalized delay
spread.
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Fig. 3. RMS delay spread versus normalized (excess) path loss.

this time interference by simple variance subtraction [6], i.e..

^channel ~~ ^
•2
measured - s2

•quipinent • (8)

It is, thus, possible to obtain RMS delay spread figures
with finer resolution than the time resolution of the trans-
mitter/receiver equipment initially would permit. This makes
the RMS delay spread figure also relevant to systems having
higher bandwidths than the 1.2 MHz used by the sounding
system. Fig. 3 indicates a dependence between excess path loss
and RMS delay spread, i.e., larger delay spreads for increasing
excess path loss (where the excess path loss is the path loss
relative to the free-space path loss). The indicated dependence
can be explained by a lower probability of LOS paths with an
increased excess path loss, as LOS paths will generally have
lower excess attenuation than scattered and reflected paths.
Thus, LOS paths tend to dominate (increase) the total power
and reduce the effective width (dispersion) of the PDP.

Fig. 4 shows the cumulative coherence bandwidth for all
measurement locations and antenna systems for BS1 and BS2.
For BS1 [Fig. 4(a)], it is observed that the 0.7 coherence

£ 0.8
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£ 0.6

8
5 0.4

O

£ 0.2

100 200 300 400 500

BW[kHz]
(a)

"0 100 200 300 400 500

BW [kHz]
(b)

Fig. 4. Coherence bandwidth at 0.5, 0.7, and 0.9 correlation level for (a) BS1
and (b) BS2.

bandwidth is larger than 200 kHz for 90% of the locations.
In most cases, this justifies using narrowband considerations
for a GSM-like system in this environment. The coherence
bandwidth function for BS2 [Fig. 4(b)] shows a large discon-
tinuity around the 70-80% level. This is due to the rather
harsh environment picked for this cell type. A river splits the
town in two and allows free propagation for strong echoes
across the river. Many PDP's exhibit a double-spike shape with
about 4 fis separation (corresponding to twice the river width).
This shows up as a strong periodicity in the FCF and, thus
gives rise to the plateau in the cumulative coherence bandwidth
function. For bandwidths over 500 kHz, a direct narrowband
description alone cannot give a satisfactory description of
the propagation conditions for the micro or the small cell
environment investigated.

The GSM system has incorporated a slow frequency hop-
ping option over 5 MHz. From Fig. 4, it follows that if the
hopping frequency is just over 400 kHz neither the micro nor
small cell environment will have locations with a FCF having
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Fig. 5. Cross polarization discrimination versus range length.

levels greater than 0.5. This indicates effective frequency
diversity gain by use of the slow frequency hopping option.

B. Cross Polarization

The possibility of using polarization decorrelation
(PpowA-poi) at a base station has been reported by [9], where
the XPD was found in the range around 6 dB for urban areas at
920 MHz. Compact, compound, horizontal, and vertical space
diversity antenna systems and polarization decorrelation have
also been reported in [10], where macrocells (10-20 km cell
radius) were investigated. For urban areas (partly the same
area as used for the experiments in this paper), the XPD
was around 4 dB in the 900 MHz band. For suburban areas,
XPD was found in the range around 12 dB. Fig. 5 shows
the XPD versus the range for all antenna configurations at
BS1 and BS2. It follows from Fig. 5 that there is a large
spread of XPD for both BS1 and BS2. From Table IV, it
follows that the urban (BS1) mean XPD is higher (7.4 dB) for
small and microcells compared to the macrocells previously
investigated. This is expected, as the depolarization is related
to the number of reflections, diffractions, etc., that each path is
subject to. For small cells, fewer possible pertubating objects
will be in the signal path. For longer range lengths, the
mean XPD is 11.4 dB (BS2), which can be explained by
the environment having a more suburban character with few
obstructions between base and mobile. The higher XPD's
found for small and microcells means a reduced diversity
gain by using polarization decorrelation compared to macrocell
case.

Appendix A gives a simple extension of the work of
Vaughan [12]. The result of the analysis shows that
polarization and space decorrelation effects are independent
and multiplicative for compound antenna systems, as
given in (9). The assumptions are noncorrelated Rayleigh
fading polarizations, equal XPD (F) at the antennas, and
the quadrature components of the vertical and horizontal
polarizations exhibit approximately equal space decorrelation
properties. In practice, this means that the radiation patterns
of the antennas must be identical and rotationally symmetric.

1
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0.4

-0.2
0 0.5 1

Envelope correlation

Fig. 6. Equation (9) with /vnv.vPoi o n ly (PcnvV = 1) and with measured
/>.MIV\' versus envelope correlation coefficient for physically slant antenna
systems.

Experimental test cases are given in Appendix A to support
these assumptions. The power correlations are related as:

/->powl2 - /V>wt'/'pow.Ypol(r.rt)

r + f - 2
,Mpow\'

r + T + 7̂ 7777 + t a n 2 ( a )
(9)

where <\ is the antenna rotation angle (see Appendix A). This
expression will also hold closely for envelope correlations,
due to the strong relation as shown in Fig. 10. For co-
located antennas, p,.nvr = 1, and only the cross-polarization
term (/vnv.\"poi) will provide decorrelation. In this situation,
the expression is equal to the original one given in [12].
Thus, a compound space and polarization diversity system
will achieve the envelope decorrelation of the product of
space and polarization decorrelation effects. Fig. 6 shows
the calculated correlation coefficient using (9) with a =
45°. / w r , and XPD figures from Ml, M3, M10, M12,
M21, M23, M24, and M26 against the compound antenna
system correlation /W12 found from M2, Mil , M22, and
M25 (Tables I and II). It is seen that (9) provides a very
good fit to measurements (correlation cc = 0.87), whereas
disregarding the space decorrelation (penvV = 1) in (9) leads
to a significantly decreased fit (cc = 0.36).

For predetection combiners, the polarization decorrelation
potential is invariant with a but, for postdetection combiners,
equal antenna branch powers (equal SNR in all branches)
is an advantage. This can be obtained with tilted antennas
with a — 45°. Taking the polarization decorrelation term
ponvAPoi(r.a = 45°) from (9) with the mean XPD values
from Table IV, we find that for BS1 /wxpoi = 0-48 and
for BS2 PenvApoi = 0.75. These decollations seem worth-
while to utilize either alone or combined with space diversity
decorrelation, as normally a figure of 0.7 for the envelope
correlation coefficient is considered satisfactory for noticeable
diversity gain. It follows from Table III that these mean
polarization decorrelations are indeed found when comparing
the pure space antenna systems. Hand-held terminals are likely
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TABLE III
AVERAGE (<>) AND STANDARD DEVIATION (O) VALUES OF CW ENVELOPE

CORRELATION COEFFICIENT AND BRANCH POWER DIFFERENCE.

Antenna

system

M l

M2

M3

M4

MS

M6

M7

M8

M9

M10

M i l

M12

M21

M22

M23

M24

M25

M26

flu —

< >

0.14

0 0 7

0.21

0.09

0 07

0.23

0.70
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0 0 9

0.13

0.04

0.12

0.30
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0.37

0.64

0.36

0.54

CW

a

0 12

0.08

0.27

0.12

0.09
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TABLE IV
AVERAGE (<>) AND STANDARD DEVIATION (or) VALUES OF S, XPD, AND

1% LEVEL OF CUMULATIVE RSSI ENVELOPE DISTRIBUTION (cdf) FOR
CW, 200 kHz, AND 1.2 MHz BANDWIDTHS.

Base

BS1

BS2

S

< >
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Fig. 7. RMS delay spread for decoupled (horizontal) polarization versus
RMS delay spread for the co-polarized (vertical) signal.

to couple more power into the cross-polarized component,
thereby increasing the polarization diversity gain potential.

The PDP's observed for both the co- and cross polarization
showed very similar shapes except in the case of a dominant
LOS peak in the copolarized case. Fig. 7 shows the RMS delay
spread for the co- (vertical) and cross polarization. It is seen
that most of the data lie around the 1:1 line, although some
stray points are present. This indicates equal strength of the
mean radio dispersion effects on the two polarizations.
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Fig. 8. Envelope correlation coefficient versus range length

C. Antenna Systems

The overall decorrelation properties of each antenna system
are given in Table III. Recent theoretical work into base
station cross correlation [11] has shown a model that can
predict decorrelation of horizontal as well as vertical spaced
antenna combinations. The model shows how the correlation
increases with range length. The analysis in [11] is, though,
mainly concentrated on longer range lengths (5 km) and larger
antenna separations (10-20 A) than used in our experiments.
However, some comparisons can be made. From Table III,
it follows that most antenna configurations have an average
envelope correlation around 0.1 to 0.3 with a standard de-
viation around 0.2. Only the pure vertical space diversity
systems show a significantly higher correlation of 0.6 to 0.7.
For BS2, somewhat lower correlations are found compared
with the examples given in [11] (cases with approximately
10 A horizontal or vertical separation), with the horizontal
separation being very sensitive to model parameter variation.
For BS1, the base station antenna height is so low that
the model assumptions in [11] are questionable and lead to
much lower measured correlations than the model examples
given. The modeling of compact spaced configurations, thus,
seems to pose higher difficulty for cross correlation prediction,
especially for very low base antenna heights as found in
microcell implementations.

A trend of cross correlation depending on range (as expected
from [11]) is clearly visible in Fig. 8, where cross correlation
versus range is shown for some selected antenna systems.
Local variations in environment may mask this effect (i.e.,
make it less pronounced), although the measurement area
covering the locations around BS1 was chosen for its fairly
homogenous nature with respect to building heights, street
widths, and building density.

Fig. 9(a) shows the envelope correlation coefficient increase
for the RSSI signals, compared to the CW signals, versus
normalized delay spread S • BW. There does not seem to
be any clear dependence on radio dispersion for the overall
data as expected from the high frequency selectivity of the
channel, apart from a slight increase in correlation variability
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Fig. 9. (a) Envelope correlation increase with normalized delay spread,
(b) RSSI versus CW envelope correlation coefficients.

with increasing dispersion. A very close agreement between
CW and RSSI envelope correlations is seen in Fig. 9(b). Here
it is shown that there is a slight mean and standard deviation
increase of correlation for increasing bandwidth Thus, the
analysis for compound space and polarization systems, given
in Appendix A, may also apply for wideband systems using
RSSI driven combining even though the RSSI signals do not
exhibit Rayleigh fading as assumed in the development of (9).

Generally, the antenna systems with pure vertical space
separation diversity exhibit marginal decorrelation properties.
All the other antenna systems exhibit very strong decorrelation
properties, promising a high diversity gain.

VII. CONCLUSION

The main findings in this paper are in three areas.
1) From the general radio environment related investigations

of the micro- and small cell areas, it follows that:

1) For the microcell area, the 0.7 coherence bandwidth
exceeds 200 kHz at 90% of the locations. This justifies the
use of narrowband considerations for GSM, in most cases.

ii) For the micro- and small cell areas, no location shows
a 0.5 coherence bandwidth exceeding 400 kHz. Thus, the
frequency hopping option of GSM will have a high frequency
diversity gain potential.

iii) The cross polarization discrimination shows a large
variance with location and mean values of 7.4 and 11.4 dB
for the micro- and small cell areas. These means are larger
than previously reported for macrocells in the same type
environment.

2) The general evaluation of the antenna systems show:
i) The pure vertical space separation of an antenna system

can yield acceptable decorrelation properties (mean penW

around 0.6 to 0.7) for both micro- and small cell areas.
ii) All other antenna systems provide very high decorrelation

efficiency (mean penv around 0.1 to 0.3) and, thus, high
diversity gain potential.

iii) Polarization diversity provides extra decorrelation in the
compound antenna systems with about equal strength as the
space decorrelation effect.

3) The analysis and experimental treatment of antenna
system cross-correlation dependencies show that:

i) The polarization and space decorrelation effects in com-
pound antenna systems are independent and multiplicative.

ii) RSSI signal decorrelation are largely insensitive to rela-
tive dispersion (bandwidth and RMS delay spread) for GSM-
type systems.

The information contained in this paper verifies the effec-
tiveness (diversity gain potential) of very compact antenna
systems in micro- and small cell environments. The dimen-
sions of the antenna systems lead to much easier mounting and
site considerations than for standard mast-mounted macrocell
implementations.

APPENDIX

DERIVATION AND EXPERIMENTAL VERIFICATION

OF COMPOUND ANTENNA SYSTEM

CROSS-CORRELATION FUNCTION

We will now develop an expression for the CW envelope
correlation coefficient for two tilted (orthogonal) antennas
with respect to the CW envelope correlation coefficient for
co-polarized antennas [(9) in Section VI]. In this analysis,
however, power correlations are considered as they are easier
to handle than envelope correlations. This is analytically
justified by a close relation in value between the two [7]. This
can also be seen experimentally in Fig. 10, where a very strong
correlation (cc) of 0.99 is found between power and envelope
correlation coefficients for the data presented in this paper.
This relation has also been experimentally displayed in [8] for
two vertically separated antennas with a slightly poorer fit,
although |p,2|

2 was used instead of ppow. While theoretically
Ipizl2 = Ppow [7] for Rayleigh fading signals, it follows from
Fig. 13 that experimentally this equality is slightly poorer than
the approximate relation between the envelope and power
correlation as shown in Fig. 10. Higher variances for the
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Fig. 11. Envelope correlation coefficient for decoupled (horizontal) polari-
zalion versus envelope correlation coefficient for the co-polarized (vertical)
signal.

IP12I2 = Ppow relation can be explained by two factors. For
the relation to hold, the signals must be truly Rayleigh fading
while both power and envelope correlations have proven to
be fairly insensitive to changes in envelope dynamics (not
all experimental results being Rayleigh distributed). Secondly,
the experimental results allow for negative correlations but
|pi2|

2 does not. The field components are assumed to have
Rayleigh-distributed envelopes (r) with random uniformly
distributed phases (0) and Gaussian-distributed quadrature
components. The field components of the two polarizations
at both antennas are assumed uncorrelated in envelope and
phase. For the envelope, this assumption is supported by [9],
[12], and Table III.

Following Vaughan's [12] procedure, we find each antenna
has vertical and horizontal Rayleigh fading field compon-
ents as

Evii = rvl2cos((i)t + 6Vh2);

EH\,2 = 0/1,2 COS(O)J + 0tfU) (A-l)

with subscript 1 and 2 denoting the field at antennas 1 and 2,
respectively.

Assuming the two antennas are horizontally and/or verti-
cally displaced (space diversity), we have two power cor-
relation coefficients (ppowK and p^H for the vertical and
horizontal components, respectively). From [10] and Fig. 11
(showing envelope correlations), it follows that:

PpowV ~ Ppow// (A-2)

is a reasonable assumption. The correlation (cc) between the
two is larger for macrocells (cc = 0.88) [10] than for the
small and microcells considered here (cc = 0.77). In practice,
this relation implies that the antennas have approximately
equal radiation patterns, and that the radiation patterns in the
vertical and horizontal plane are approximately equal, i.e.,
rotation symmetry of the radiation pattern around the axis of
the main lobe. Fig. 12 shows the 1% cumulative envelope
level for the cross and copolarized signals. It is seen that the
envelope dynamics are also approximately equal for the two

Vertical 1% cdf [dB]

Fig. 12. 1% cumulative envelope levels for decoupled (horizontal) polariza-
tion versus co-polarized (vertical) signal.

polarizations. Furthermore, it follows from [10] and Table III
that it is reasonable to assume approximately equal mean
power at the two antennas for each polarization.

E[Pvl] « E[PV2]; E[PHx] « E[PH2\ (A-3)

Thus, the XPD (r = E[Pvl]/E[Pm] « E[PV2]IE[PH2]) is
assumed approximately equal at the two antennas. The powers
are PV12 = r2

Vh2, PHX2 = r2
Hl<2. As the envelopes of

both the polarizations at each antenna (rv>m<2) are assumed
Rayleigh distributed, the following relationship holds:

E[P\,m,2\ = 2E[PVMl,2]\

Using (A-4) and (A-3), we get the correlations

_ E[PV<mPyH2] — E[PVj.[<]2

Ppow I/// TTf£ „ •

(A-4)

(A-5)
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2)-

Comparing the two polarization correlations by substituting
(A-5) into (A-2), we have

E[PviPvi] ~ T*E[PmPm].

e two antennas beine rotatt

(A-6)

Now consider the two antennas being rotated to an angle a
to the vertical polarization axis. Then, the voltages received at
antennas 1 and 2 are proportional to

U{ = aEvl + bEm: U2 = bEV2 - aEH (A-7)

with a = cos(ai) and b = (sin(a) as the antenna signal
quadrature weights. Following Vaughan's [12] procedure and
substituting (A-l) into (A-7) and squaring, the antenna branch
powers can be found as

Py = [arV{ cos(^i ) + brm cos(0wl)]2

+ [arvi s i n ^ ) + brm sin(0Wi)]2

= a2Pvl + b2Pm + 2abrvlrm cos(6vl - 6Hl)

Pi = b2PV2 + a2PH2 - 2abrV2rH2 cos(6V2 - 6H2). (A-8)

The antenna branch voltages in (A-7) are a sum of two
Rayleigh fading signals which produce a new Rayleigh fading
signal as the quadrature components are Gaussian distributed).
Then, the power relationship of (A-4) applies for Px and P2

as well, and the power correlation coefficient ppowl2 for the
two tilted antennas is

_E[PlP2}~E[Px\E[P2]
PPOW 1 2 E[PX]E[P2] (A-9)

The mean power moments are found as [and reduced via
(A-3)]

+ 2abE[rvl]E[rHl]E[cos(dvl - 0Hl)]

= a2E[Pvl] + b2E[PHl] = E[Pvx][a
2 + ^

E[P2] = b2E[PV2] + a2E[PH2] - E[Pvl][b
2 + pi

_ Tb2 + a2

-E[Px]Y*Tb2 (A-10)

due to the phases being random, uniformly distributed, and un-
correlated between the polarizations. The cross-power moment
is found as [and reduced via (A-3) and (A-6)]

E[PXP2\ = aV{E[PvlPV2\ + E[PmPH2\)

+ a<E{Pvl]E[PH2]

+ bAE[PV2]E[PHl]+R(UuU2)

~a2b2(l+YiJE[PvlPvl]

, (a4 + fr4)'-E[PV1]
2 + R(UU U2). (A-l l )

M.

RiUi, U2) can be expressed directly by the quadrature com-
ponents of field components given in (A-l) as

R{UUU2) = ~4a2b2(E[IVIIV2]E[IHlIH2]

+ E[QviQV2]E[QHlQH2]

+ E[IviQv2]E[ImQH2]

+ E[IV2Qvl]E[IH2Qm]) (A-12)

where the in-phase components are IV,H\,I = rv,mi
cos(6KHl2) and the quadrature components Qv,m,2 =
rVMU2 ?»m{dvm2). As for each polarization, the signals are
assumed Rayleigh fading and the in-phase and quadrature
components are Gaussian distributed with zero mean and equal
variances {or2, = a2

Q). Using (A-3), the ratio between the
variances for each polarization is

E[P] = (T2 + (T2
Q = 2(T2

<TIV,H\ — °"QV,m ^ CT/V.W2 = CQK//2

r-4-
<TH

(A-13)

The quadrature component correlation coefficient is then found
as

_ E[IViHlIVH2] __ E[Qvm Qv,H2]
PIIV.H ~ Frj2 7— ~ —TTTyi—]—

_ 2E[IvmIVM2]

E[Pv.m] '

Similarly, the cross quadrature expectation becomes

E[Iv,H\Qv,Hl\ = ~E[Qv,H\h,Hl\ = PlQV,H 7T^

(A-14)

(A-15)

For Rayleigh fading signals, it can be found that plQ = -pQI

and pu = pQQ [13]. Furthermore, the complex correlation
is related as p12 = 1/2(P// + pQQ) + jlI2(PlQ - pQ1 =
Pu + JPIQ. From [7], it follows that p), + p)Q = |Pl2|2 =
ppowi/. This is shown in Fig. 13 for the data presented in this
paper. The quadrature component correlations (offset by 0.4
for clarity) have an extremely high correlation (cc = 0.995)
with the squared complex correlation coefficients. The power
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Fig. 14. Horizontal versus vertical (a) inter-in-phase (p,,) and (b) cross-
quadrature (p/Q) correlation coefficients for BS2.

correlation coefficients have a slightly poorer correlation (cc =
0.96), but are still very high.

With the previous discussion, we can reduce (A-12) (with
the use of (A-14) and (A-15) and rearranging) to

into (A-ll), the power correlation coefficient in (A-9) reduces
to the expression (9) shown in Section VI.
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R(UX U2) = ~2^E[Pvl]
2(pIIVpllH + PIQVP!QH).

(A-16)

It follows from Fig. 14, that it is reasonable to assume that the
quadrature component correlations are approximately equal for
the two polarizations, though the shown data only represent
BS2. At BS1, the antenna cables were changed between
the vertical and horizontal polarization experiment. Thus, the
phase offset on the complex correlations will be changed from
the vertical to horizontal experiment. Consequently, the pu

and piQ relations between the two polarizations at BS1 are al-
tered and not usable. With this discussion and inserting (A-16)
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A Statistical Model for Angle of Arrival in Indoor
Multipath Propagation

Quentin Spencer, Michael Rice, Brian Jeffs, and Michael Jensen
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Abstract— Multiple antenna systems are a useful way of
overcoming the effects of multipath interference, and can
allow more efficient use of spectrum. In order to test the
effectiveness of various algorithms such as diversity combin-
ing, phased array processing, and adaptive array processing
in an indoor environment, a channel model is needed which
models both the time and angle of arrival in indoor envi-
ronments. Some data has been collected indoors and some
temporal models have been proposed, but no existing model
accounts for both time and angle of arrival. This paper dis-
cusses existing models for the time of arrival, experimental
data that were collected indoors, and a proposed extension
of the Saleh-Valenzuela model [1], which accounts for the
angle of arrival. Model parameters measured in two differ-
ent buildings are compared with the parameters presented
in the paper by Saleh and Valenzuela, and some statistical
validation of the model is presented.

I. INTRODUCTION

There have been many different approaches for overcom-
ing the problem of multipath interference, both in outdoor
and indoor applications. Some of them include channel
equalization, directional antennas, and multiple antenna
systems, each being more particularly suited to different
applications. The use of multiple antenna systems can
be particularly useful for indoor applications such as lo-
cal area networks, because they allow the possibility of
communicating with multiple users simultaneously over a
single frequency band, increasing throughput and mak-
ing efficient use of frequency spectrum. The signals from
different antennas can be combined in various ways, in-
cluding diversity combining, phased array processing, and
adaptive array algorithms. Adaptive array sytems are be-
coming increasingly feasible for high bandwidth applica-
tions with continuing improvements in digital signal pro-
cessors. In addition, the availability of new, higher fre-
quency bands has made wireless networks an increasinly
attractive and feasible option. The effects of multipath
interference have been studied extensively in various out-
door scenarios. However, the study of the indoor multipath
channel is relatively new. In order to be able to predict
the performance of indoor communications systems, mod-
els are needed that accurately model the behavior of radio
transmissions in indoor environments.

Several other researchers have already collected various
types of data on indoor mulipath propagation. The foun-
dation for much of today's work was by Turin, et al [2],
which was a study of outdoor multipath propagation in
an urban environment. The first model for indoor multi-
path propagation was proposed by Saleh and Valenzuela

[1], whose work was based on the work of Turin. Their
work consisted of collecting temporal data on indoor prop-
agation, from which they proposed a time domain model
for indoor propagation.

Most indoor propagation research has dealt with the
time of arrival and paid little attention to the angle of
arrival. In order to predict the performance of adaptive
array systems, the angle of arrival is very important in-
formation. Some recent papers have begun to address the
angle of arrival. Lo and Litva [3] found that multipath
arrivals tend to occur at varying angles indoors, but were
not able to arrive at any conclusions based on their limited
data. Guerin [4] collected angular and temporal data sepa-
rately, but did not correlate the two. Wang, et al [5], used
a rectangular array to estimate both the elevation and az-
imuth angles of arrival for major multipaths, but did not
measure the corresponding time of arrival. Litva, et al,
[6] collected simultaneous time and angle of arrival data,
similar to the format of the data used in this paper. They
came to the preliminary conclusion that it is possible to
make accurate measurements of this type and learn more
about what is happening in the indoor multipath chan-
nel. However, their experiment was not extensive enough
to make any conclusions about the channel.

This paper presents an extension to the Saleh-Valenzuela
model which accounts for the angle of arrival. This is based
on data that includes information about both the time and
angle of arrival, presented in [7]. The Saleh-Valenzuela
model is explained, and the new data is discussed. Model
parameters based on the new data are derived and com-
pared to the parameters found by Saleh and Valenzuela at
a lower frequency.

II. THE SALEH-VALENZUELA MODEL

The model proposed by Saleh and Valenzuela is based
on a clustering phenomenon observed in their experimental
data. In all of their observations, the arrivals came in one
or two large groups within a 200 ns observation window.
It was observed that the second clusters were attenuated
in amplitude, and that rays, or arrivals within a single
cluster, also decayed with time. Their model proposes that
both of these decaying patterns are exponential with time,
and are controlled by two time constants: F, the cluster
arrival decay time constant, and 7, the ray arrival decay
time constant. Fig. 1 illustrates this, showing the mean
envelope of a three cluster channel.

Reprinted from IEEE Vehicular Technology Conference, pp. 1415-1419, May 1997.
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The impulse response of the channel is given by:

oo oo

h(t) - YYPuSit-Tt-ru),
1=0 k=0

(i)

where the sum over I represents the clusters, and the sum
over k represents the arrivals within each cluster. The am-
plitude of each arrival is given by 0ki, which is a Rayleigh
distributed random variable, whose mean square value is
described by the double-exponential decay illustrated in
Fig. 1. Mathematically it is given by:

tfM = P2(Thrkl)
= 02(O,O)e-T'/re-Tk'^,

(2)

(3)

where /32(0,0) is the average power of the first arrival of
the first cluster. This average power is determined by the
separation distance of transmitter and receiver.

The time of arrival is described by two Poisson pro-
cesses which model the arrival times of clusters and the
arrival times of rays within clusters. The time of arrival of
each cluster is an exponentially distributed random vari-
able conditioned on the time of arrival of the previous clus-
ter. The case is the same for each ray, or arrival within
a cluster. Following the terminology used by Saleh and
Valenzuela, rays shall refer to arrivals within clusters, so
that the cluster arrival rate implies the parameter for the
intercluster arrival times and the ray arrival rate refers to
the parameter for the intracluster arrival times. The dis-
tributions of these arrival times are shown in equations 4
and 5:

Pm\Ti-i) = A e - A ^ - T ' - ) (4)
p{Tu\Tik-i)i) = Ae-A(T"-r<*- ><>, (5)

where A is the cluster arrival rate, and A is the ray arrival
rate. In their data, Saleh and Valenzuela did not have any
information on angle of arrival, and assumed that the an-
gles of arrival were uniformly distributed over the interval
[0,2TT).

Other indoor multipath models have been proposed, such
as the model proposed by Ganesh and Pahlavan [8], but
they will not be discussed here. The data used in this pa-
per fit the Saleh-Valenzuela model well, and as a result
the model was chosen as the basis for the extended model
presented here.

III. EXPERIMENTAL DATA

In order to analyze and model the indoor multipath
channel, a data gathering apparatus was designed which
was able to take simultaneous measurements of the time
and angle of arrival. The frequency band was from 6.75 to
7.25 GHz. Using the system, a total of 65 data sets were
collected in two buildings on the Brigham Young Univer-
sity Campus. In the Clyde building, a reinforced concrete
and cinder block building, 55 data sets were collected. For
comparison, ten additional data sets were collected in the

Crabtree Building, constructed mostly of steel and gypsum
board. Each data set can be viewed as an image plot, with
angle as one axis, and time as the second axis. A typical
data set is pictured in Fig. 2. The images were processed
to remove blurring effects so that the precise time, angle
and amplitude of each major multipath arrival is known.
The data collection and processing is discussed in greater
detail in [7].

Visual observation of the data showed that clustering
like that observed by Saleh and Valenzuela was present in
the data. The nature of the clustering tended to follow the
model of Saleh and Valenzuela quite well. In general, the
strength of clusters tended to decay with increasing delay
times, and arrivals within each cluster showed a similar
pattern of decay. One difference from the Saleh-Valenzuela
data is the higher average number of clusters per data set.

IV. A PROPOSED TIME/ANGLE MODEL FOR INDOOR
MULTIPATH PROPAGATION

In this section we propose a statistical model for the in-
door multipath channel that includes a modified version of
the Saleh-Valenzuela model, and incorporates an angle-of-
arrival model. In addition, methods of estimating param-
eters from the data are discussed.

A. Time of Arrival

The time and amplitude of arrival portion of the com-
bined model is represented by h(t) in equation (1), where,
as before, (3'lt is the mean square value of the fcth arrival
of the Zth cluster. This mean square value is described by
the exponential decay given in equation (3) and illustrated
in Fig. 1.

As before, the ray arrival time within a cluster is given
by the Poisson distribution of equation (5), and the first
arrival of each cluster is given by T/, described by the Pois-
son distribution of (4). The inter-ray arrival times, r^, are
dependent on the time of the first arrival in the cluster Tj.
In the Saleh-Valenzuela model, the first cluster time T\
was dependent on To which was assumed to be zero. With
the estimated parameter in [1] of I/A w 300 ns, the first
arrival time will typically be in the range of 200 to 300
ns, which is a reasonable figure. However, a problem with
this was found when the A parameter in the new data was
discovered to be very low, but the delay time to the first
arrival was often still on the order of 200 ns. Under the
Saleh-Valenzuela model, this would make any long delays
which would occur at larger separation distances between
transmitter and receiver highly improbable. To remedy
this problem, it is proposed that To be the line of sight
propagation time:

To = - ,
c

(6)

where c is the speed of light, and r is the separation dis-
tance. This allows for the time of the first arrival to be
more directly dependent on the separation distance.
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B. Angle of Arrival
It will be assumed that time and angle are statistically-

independent. If there were a correlation, it would be ex-
pected that a longer time delay would correspond to a
larger angular variance from the mean of a cluster. This
was not observed in the data, so at this point an assump-
tion of independence is reasonable, but further study of
the correlation structure may be warranted. The conse-
quence of this independence is that the complete impulse
response with respect to both time and angle, which we
will call h(t,9), becomes a separable function:

h(t,9) h{t)h{6). (7)

As a result, h(6) can be be addressed separately from h(t).
We propose an independent angular impulse response of

the system, similar to the time impulse response of the
channel given in 1:

hW = ££j8jw^-©J-wfc<), (8)
/=0 fc=O

where, as before, j3ki is the ray amplitude for the kth. arrival
in the /th cluster, given in equations (2) and (3). 0/ is the
mean angle of each cluster, which is distributed uniformly
on the interval [0,27r). We propose that the ray angle
within a cluster, U>M, be modeled as a zero mean Laplacian
distribution with standard deviation a:

p{9) = l-\V20M

' V2a
(9)

The correlation of these distributions to the data is shown
in the next section.

C. Parameter Estimation

This section outlines methods of deriving the distribu-
tions and estimating the parameter a given in the previous
section. The distribution parameters of the cluster means,
0j, is found by identifying each of the clusters in a given
data set. The mean angle of arrival for each cluster is cal-
culated. In order to remove the specific room geometry
and orientation, the first arrival (in time) for each data
set is taken as the reference. The relative cluster means
are calculated by subtracting the mean of the reference
cluster from all other cluster means. To estimate the dis-
tribution of cluster means over the ensemble of all data
sets, a histogram can be generated of all relative cluster
means, disregarding the first clusters (since their relative
mean is always 0).

The procedure to estimate a is similar. The cluster mean
is subtracted from the absolute angle of each ray in the
cluster to give a relative arrival angle with respect to the
cluster mean. The relative arrivals are collected over the
ensemble of all data sets, and a histogram can be gener-
ated. Using a least mean square algorithm, the histogram
is fit to the closest Laplacian distribution, which gives the
value for a.

D. Using the Model

The extended model for h(t, 0) is useful for analysis or
simulation of array processing algorithms that might be
used in an indoor environment. In order, for example, to
conduct a Monte Carlo simulation of an array antenna pro-
cessor, it is necessary to generate a random channel using
the statistical model. This section outlines the procedure
for doing so.

The first step is to choose the transmitter/receiver sep-
aration distance r, which can be chosen either randomly
or arbitrarily. Knowing r, the next step is to determine
/32(0, 0), the mean power of the first arrival, which is given
by

/52(0,0)
G(lm)r-

7A~
(10)

where G(lm) is the channel gain at r = 1 meter, and a
is a channel loss parameter. 7 and 0 are respectively the
ray decay parameter and ray arrival rate in the model for
h(t). Equation (10) is derived and the characteristics of a
in the indoor environment are discussed in greater detail
in[l]-

After /32(0,0) is determined, the next step is to deter-
mine the cluster and ray arrival times. The correspond-
ing distributions are given in equations (4) and (5), where
TQ = r/c. After the times are determined, the mean am-
plitudes (3ki are determined by equation 3. The actual am-
plitudes for each arrival, /3/./, are determined by sampling
a Rayleigh distribution whose mean is 0ki.

The angles are determined by first randomly choosing
the cluster angles, which are uniformly distributed from 0
to 27r. Relative ray angles are then determined by sampling
a Laplacian distribution as given in equation (9).

V. MODEL PARAMETERS FROM THE DATA

The intercluster time decay constant, F, was estimated
by normalizing the cluster amplitudes (the amplitude of
the first arrival) so that the first one had an amplitude of
1 and a time delay of 0. All of the cluster amplitudes were
superimposed as shown in Fig. 3. The estimate for F was
found by curve fitting the line (representing an exponential
curve) to minimize the mean squared error. The values for
F and 7 were estimated for both buildings in a similar
manner. In this particular example, the fit is less than
ideal, but it was better in the other cases, especially when
there were more data points. In their data, Saleh and
Valenzuela did not have exact amplitudes available, and
as a result were not able to use curve fitting or generate
plots as in Fig. 3. Their parameters were as a result very
rough estimates, but they did observe the same general
decay trend as in this data, which supports the exponential
decay model.

The Poisson parameters, A and A, representing the in-
tercluster and intracluster arrival rates were estimated by
subtracting each arrival time from its predicessor to pro-
duce a set of conditional arrival times p(rki\r^k-i)i)- The
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Clyde Crabtree Saleb-

Table 1. A comparison of model parameters for the two buildings and
from the Saleh-Valenzuela paper [1]

probability distribution of these with the best fitting pdf
(for the Clyde Building) is shown in Fig. 4.

Fig. 5 shows a CDF of the relative cluster angles for the
Clyde Building, illustrating the relatively uniform distribu-
tion of clusters in angle. The same was true in the Crabtree
Building. The distribution of the ray arrivals with respect
to the cluster mean is shown in Fig. 6. The sharp peak
at the mean is characteristic of a Laplacian distribution.
The superimposed curve is a Laplacian distribution that
was fit by integrating a Laplacian PDF over each bin, and
matching the curves using a least mean square goodness
of fit measure. The Laplacian distribution turns out to be
a very close fit in both buildings.

Table 1 shows a comparison of the model parameters
estimated for the Clyde Building, the Crabtree Building,
and those estimated by Saleh and Valenzuela from their
data. The most obvious discrepancy is in the estimates
for the value of A. This is due to the fact that there were
significantly more clusters observed in both the Clyde and
Crabtree buildings compared to an average of 1-2 clusters
observed by Saleh and Valenzuela. This may be partly due
to the higher RF frequency, but the more likely cause is
the ability of our testbed to see clusters that were close to-
gether in time, but separated in angle. Another interesting
phenomenon is that F is very low in the Clyde Building,
and 7 is larger than F in the Crabtree Building, mean-
ing that the Clyde Building tends to attenuate more than
the Crabtree Building. The values of a were close in both
buildings, and there is no precedent for comparison with
other data.

VI. CONCLUSION

Many aspects of the model have plausible physical expla-
nations. Because an absolute angular reference was main-
tained during the collection of the data, it was possible
to compare the processed data with the geometry of each
configuration. The strongest cluster was almost always
associated with the direct line of sight, even when there
were walls blocking the line of sight path. Apparent causes
of weaker clusters were back wall reflections and doorway
openings. It is likely that each cluster corresponds to a
major path to the receiver, and the arrivals within each
cluster are likely the result of smaller, closely associated
objects that are part of a very similar group of paths to
the receiver. These paths will take slightly longer to ar-

rive than the first arrival in the cluster, and are usually
attenuated relative to this first arrival.

The amplitudes of clusters and rays within clusters both
follow the same pattern of exponential decay over time ob-
served by Saleh and Valenzuela. The differences in model
parameters are likely due to the difference in frequency
(Saleh and Valenzuela used 1.5 GHz). The other discrep-
ancy is in the markedly faster cluster arrival rate, which is
most likely explained by the larger overall number of clus-
ters resulting from a more sensitive data gathering appa-
ratus. The model parameters for the Clyde and Crabtree
Buildings were in general very similar. The most notable
exception is the extremely slow amplitude decay of rays
within a cluster in the Crabtree building. In general, the
model seemed to be able to accurately describe the differ-
ing multipath characteristics in both buildings, regardless
of their very different construction. This implies that the
model could possibly provide a general representation for
many different types of buildings, and model parameters
could therefore be found for other types of buildings.

The angle-of-arrival model presented here, though yet
unconfirmed, is a strong alternative to only previous option
for simulation: random assignment of angles or guessing at
the anglular properties of the channel. The most impor-
tant area for continued research is applying the model for
its intended purpose-comparison of array processing algo-
rithms. This can be done either by mathematical analysis
or Monte Carlo simulation. A mathematical analysis is
likely intractible due to the large number of variables in
the model, but the model can be a very useful tool for the
generation of random multipath channels for simulation.
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parameter Building Building Valenzuela
T 33.6 ns 78.0 ns 60 ns
7 28.6 ns 82.2 ns 20 ns
I/A 16.8 ns 17.3 ns 300 ns
I/A 5.1 ns 6.6 ns 5 ns
a 25.5° 21.5° —



Fig. 1. An illustration of exponential decay of mean cluster power and
ray power within clusters

Fig. 4. CDF of Relative Arrival Times Within Clusters in the Clyde
Building (I/A = 5.1ns)

Fig. 2. A typical raw data set
Fig. 5. CDF of relative mean cluster angles in the Clyde Building with
respect to the first cluster in each set.

Fig. 3. Plot of normalized cluster amplitude vs. relative delay for the
Clyde Building, with the curve for T = 33.6 ns superimposed.

Fig. 6. Histogram of relative ray arrivals with respect to the cluster
mean for the Clyde Building. Superimposed is the best fit Laplacian
distribution (a = 25.5°).
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