
The Magnetic Field

1. Historical

The writings of Thales, the Greek, establish that the power of loadstone,
or magnetite, to attract iron was known at least as long ago as 600 B.C. It
has been claimed that the Chinese used the compass sometime before
2500 B.C. That magnetite can induce iron to acquire attractive powers,
or to become magnetic, was mentioned by Socrates. Thus permanent
and induced magnetism represent two of man's earliest scientific discoveries.
However, the only real interest in magnetism in antiquity appears to be
concerned with its use in the construction of the compass. For example,
it is illuminating that it was not until many centuries later that Gilbert
(1540-1603) realized that the earth was a huge magnet, even though the
operation of the compass depends on this very fact.

The discovery of two regions called magnetic poles, or sometimes just
"poles," which attracted a piece of iron more strongly than the rest of the
magnetite, was made by P. Peregrines about 1269 A.D. Coulomb (1736-
1806), in accurate quantitative experiments with the torsion balance,
investigated the forces between magnetic poles of long thin steel rods.
His results form the starting point of this treatise on magnetism.

2. The Magnetic Field Vector H

Coulomb found that there were two types of poles, now called positive
or north, and negative, or south. Like poles repel one another and unlike



where F is the force,1 m1 and m2 the pole strengths, r the distance between
the poles, and r0 a unit vector directed along r. The constant of pro-
portionality k that occurs permits a definition of pole strength. In the
cgs system of units two like poles are of unit strength if they repel each
other with a force of 1 dyne when they are 1 cm apart; that is, k = 1.
Other systems of units and their relationship to the cgs system are
discussed in Appendix I.

It is convenient to consider F as separated into two factors. One factor
is just one of the poles, say m2i usually called the test pole. The other
factor depends on the other pole, called the source, and on the location
with respect to it; it is called the magnetic field H. This field is defined
as the force the pole exerts on a unit positive pole, or

H = ^2r0. (1-2.2)

In addition to this use of H as the field at a point, we will employ the
same symbol H as the set of values of the magnetic field at all points:
no confusion should result, since the correct meaning will be clear from
the context. The cgs unit of magnetic field is the oersted, although the
term gauss is still frequently used. Should several poles be present,
experiments show that the field is the vector sum of the forces on the test
pole.

Instead of the vector field quantity H, it is often convenient to use a
scalar potential cp. The quantity <p is defined so that its negative gradient
is the magnetic field

H = -V<p, (1-2.3)
where the operator \7 is
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Here i, j , k, are the unit vectors of a Cartesian coordinate system, and
(x9 y, z) are the coordinates at the point where the field or potential is
under consideration.

1 Boldface type indicates a vector quantity.

2 THE MAGNETIC FIELD

poles attract one another. This force of attraction or repulsion is pro-
portional to the product of the strength of the poles and inversely pro-
portional to the square of the distance between them. This is Coulomb's
law, which can be stated mathematically as

F = fc^pr0) (1-2.1)



3. The Magnetization Vector M

Isolated magnetic poles have never been observed in nature, but occur
instead in pairs, one pole being positive, the other negative. Such a pair
is called a dipole. The magnetic moment of a dipole is defined as

H = md, (1-3.1)

where d is a vector pointing from the negative to the positive pole and
equal in magnitude to the distance between the poles assumed to be
points. If d approaches zero and m increases so that [i = md is a constant,
then in the limit in which d = 0 the dipole is said to be ideal.

Atomic theory has shown that the magnetic dipole moments observed
in bulk matter arise from one or two origins: one is the motion of electrons
about their atomic nucleus (orbital angular momentum) and the other is
the rotation of the electron about its own axis (spin angular momentum).

2 This is the work done against the magnetic force; to compute the work done by it,
the limits of the integration are reversed.

THE MAGNETIZATION VECTOR M 3

It follows immediately that for an isolated pole

?-£. (1-2.4)
r

The work done in bringing a unit test pole from infinity to the point
(x, y, z) a distance r from m is found by integrating (1-2.2) along the path.2

This turns out to be equal to <p and provides a simple physical meaning
of the scalar potential.

Consider the work done in taking a unit pole from point 1 to 2 in a
field H given by the line integral

CH • ds = f Hs ds. (1-2.5)
J2 J2

Here ds is a line element of the path from point 1 to point 2. Now, since
Hs = —dcp/ds, we get

f ' H • ds = q>2 - (px. (1-2.6)
J2

This integral has the same value for any path having the same first
and final point; that is, the work done is independent of the path.
Mathematically this is stated as

(j) H • ds = 0. (1-2.7)
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The nucleus itself has a magnetic moment. Except in special types of
experiments, this moment is so small that it can be neglected in the
consideration of the usual macroscopic magnetic properties of bulk
matter.

It turns out that a magnetic field H interacts with the electrons of an
atom in such a way that a magnetic moment is induced. This phenomenon
is called diamagnetism. Since all matter contains electrons moving in
orbits, diamagnetism occurs in all substances.

Depending on the electronic structure of an atom, it may or may not
have a permanent magnetic moment. All magnetic effects other than
diamagnetism result because of permanent atomic magnetic moments.
If the coupling between the moments of different atoms is small or zero,
the phenomenon of paramagnetism results. In the absence of an applied
field H such materials will exhibit no net magnetic moment. If the
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Fig. 1-3.1. F is the field point at which the potential produced by the dipole is calcu-
lated. F' is a point located a step d from F.

coupling between the atomic moments is very large, there are three
important classifications. If the atomic moments are aligned parallel,
the substance is said to be ferromagnetic. The magnetic moments may
be aligned parallel within groups, usually two. If pairs of groups are
aligned antiparallel and the atomic moments of the groups are equal, the
substance is antiferromagnetic. However, the atomic moments of the
groups may not be equal—for example, when two different elements are
present; thus when they are aligned antiparallel there is a net moment.
This phenomenon is called ferrimagnetism; some writers consider it to be
just a special case of antiferromagnetism.

Because magnetic poles occur in pairs, it is of interest to calculate the
magnetic field produced by such a combination. The dipole shown in Fig.
1-3.1 is considered to be almost but not quite ideal, so that d « r. The
potential it produces at the field point F, <pF, is due to both the positive
and negative poles, that is,

<PF = <PF+ + <PF~-

Now let the point a step d from Fbe called F'. Except for sign, the potential
—m produces at F is the same +m produces at F'. Hence

= - d • VF<pF
+.
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Here VF indicates differentiation with respect to the field coordinate
(x, 2/, z) and not the source coordinate (xi9 yi9 zt) since

v,i.-v.i.
r r

where

r = [(x- xf + (y- Vif + (z- zff.
Now, the point source +m produces a potential at F given by

+ m
<PF = — -

r
Therefore

<PF
 == ~~m^ • V - .

r

Now suppose the dipole to be ideal, that is, d = 0. In the limit we have

Since

r r L r r r A
we get

^ = —p. - \ 7 - = — p.-r = — !fx| cos 0. (1-3.2)
r r r

The magnetic field HF is then

. _ t+ati*. d-3.3)
r3 r5

For substances that have a net magnetic moment it is usual to define a
magnetization vector M as the ratio of the magnetic moment of a small
volume at some point to that volume. The size of the volume chosen
must be large enough so that a somewhat larger volume will still yield
the same result for M; in this way we ensure that atomic fluctuations are
negligible. If M is constant for the specimen, the material is said to be
uniformly magnetized. From the definition of M it is clear that it is also
the pole strength for a unit area perpendicular to M, that is

a = M • n, (1-3.4)



(a) (b)

Fig. 1-3.2. In (a) each arrow represents a dipole, each with the same magnetic moment.
The uncompensated charges for this dipole distribution are shown in (b). This
illustrates the origin of volume charges for a simple case.

be due to two causes. One, the surface charge (or pole) density a, and,
two, a volume charge density p. The first of these can be easily pictured
as arising from the uncompensated ends of the dipoles that end on the
surface. The volume density may be pictured as the uncompensated
poles that arise from an inhomogenity of the distribution of the moments,
as illustrated in Fig. 1-3.2.

4. Magnetic Induction, the Vector B

The magnetic forces that must exist inside a ferro- or ferrimagnetic
medium pose some special problems. Such forces have meaning only if
it is possible to specify a method of measuring them. The approach
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where a is the pole strength per unit area and n is a unit vector normal
to the surface.

Introduction of the vector M permits generalization of equation 1-3.2
for bulk material. Summing over the dipoles gives the total potential
at a point external to the specimen as

r

= -JM.VF±dvs. (1-3.5)

A special form of Green's theorem gives

<pF = f - M • n dS - f - Vs • M dv (1-3.6)
J r J r

or

where dS is an element of area. This result permits an interesting physical
interpretation to be made. The magnetic potential can be considered to

- + +

— > - +
—> +
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adopted by Maxwell was to consider the medium as a continuum and to
make a cavity around the point at which the force on the test pole was to
be determined. However, the force per unit pole depends on the shape
of the cavity, since this force depends partly on the pole distribution
around the cavity, so that there exist an infinite number of ways that the
field could be defined. In fact, two particular cavity shapes are chosen.

The field H is defined as the field vector in a needle-shaped cavity with
an infinitesimally small diameter. The reason for this choice is that the
field defined in this way satisfies equation 1-2.7. The field vector obtained
when the cavity is a disk of infinitesimally small height is called the
magnetic induction B; the reason for this choice is that Maxwell's
equation V • B = 0 is then satisfied. With the aid of Gauss's theorem,
we can show that B and H are related by3

B = H + 4TTM; (1-4.1)

B is said to be in the units of gauss in the cgs system.
The magnetic flux O is defined as the flux of the vector B through a

surface of area A; that is,

<X> = B - n
JA

dS. (1-4.2)

The unit of flux is called the maxwell. Thus the induction in gauss, at
some field point, is equal to the flux density, the number of maxwells
per square centimeter. The foregoing definition of flux is possible only
because V • B = 0, one of Maxwell's equations. Often a graphical
meaning is given to the flux. It can be represented as lines or tubes
whose density is equal to B and direction is along B.

When the vectors B, H, and M are parallel, it is useful to define the
permeability // by

B = pH (1-4.3)

and the susceptibility % by
M = %H. (1-4.4)

The susceptibility per unit mass %p is defined as %/p, where p is the density.
The atomic or molar susceptibility %A or %m then is found by multiplying
Xp by the atomic or molecular weight. From (1-4.1) it follows immediately
that

ju = 1 + 4TT£. (1-4.5)

3 A good treatment of this problem for the analogous electrical case may be found in
C. J. F. Bottcher, Theory of Electric Polarization, Elsevier Publishing Co., New York
(1952), Ch. II.
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If the magnetic vectors are not parallel, the components of B and H
relative to an arbitrarily chosen Cartesian coordinate system can be
related by the set of equations:

The quantities /itj are components of the permeability tensor jx. Similarly,
the relationship between M and H can be expressed with the aid of a
susceptibility tensor x-

It is an experimental result that % is negative for diamagnetic materials
and positive for the other types of magnetism, being very large for ferri-
and ferromagnetic substances.

The magnetization of dia-, para-, and antiferromagnetic substances
disappears if the applied field is removed. This is in contrast to the
behavior of ferro- and ferrimagnetic materials, which usually retain at
least part of their induced magnetic moment in the absence of an applied
field. For these materials the susceptibility is a function of the applied
field, the temperature, and the history of the samples. Discussion of the
temperature and field dependence of the susceptibility is left until later.

5. The Demagnetization Factor D

The field H' inside a specimen is different from the applied field H
because of the magnetization or equivalently, the poles. Consider a
ferromagnet with ellipsoidal shape in a uniform external field H. As
discussed later, the magnetization of the ellipsoidal specimen will also be
uniform. The poles that appear on the surface, indicated in Fig. 1-5.1,
produce a uniform internal field, H' — H, opposite in direction to H.
For specimens with an ellipsoidal shape it is usual to write

H' = H - DM, (1-5.1)

where D is called the demagnetization factor. D depends on the geometry
of the specimen. For diamagnets Hf > H; for all other magnets
H' < H. The difference in the field H' and H can usually be neglected
for dia- and paramagnets, but it can be very large for ferro- and ferri-
magnets. From the reasoning of Section 1-4, it can be seen that for a
disk D = 4TT for the direction perpendicular to the plane of the disk.
In general the demagnetizing factor is a tensor D.

Bx = pnHx + p12Hy + fi13Hs,

^ = [1Z1HX + / / 3 2 ^ + }1ZZHZ.
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H'-H

(a) (b)
Fig. 1-5.1. (a) A uniformly magnetized ellipsoid and (/>) the equivalent poles. The
uncompensated surface poles produce a uniform internal field H' ~ H and an external
field that is identical to that of an equivalent dipole positioned at the ellipsoid's center.
H is a uniform applied field.

important result that equations derived in potential theory may be used
to find tp, next Hf - H, and finally D.

It is instructive to consider the derivation of the foregoing result by a
simple physical argument.4 Let T be the potential due to gravitation, or
the electric charge of the body assumed of uniform density p. Now, if
the body is moved a distance —dx in the direction of x, the change of the
potential at any point will be — (dWjdx) dx. Instead, if we consider the
body to be moved dx, and its original density p changed to — p, then
—{dWjdx) dx is the resultant potential due to the two bodies (Fig. 1-5.2).

To any element of volume, mass, or charge p dv, there will correspond
an element of the shifted body of —p dv a distance —dx away. Hence
the dipole moment of these two elements is p dv dx, and the magnetization

4 J. C. Maxwell, Treatise on Electricity and Magnetism, 3rd ed., Oxford University
Press, Oxford (1891), vol. ii, p. 66. [Reprinted Dover Publications, New York (1954).]

In the easiest general case to calculate M is uniform. In equation
1-3.6,

<p = \ -M-ndS - \ -V -Mdv, (1-5.2)

the second term is zero, and the potential, and therefore the field, is due
only to the surface pole distribution. Also, in expression 1-3.5 for cp, M
can be taken outside the integral sign, and we have

(p= _M.( V-dv. (1-5.3)
J r

Now — J V(l/r) dv is the gravitational force due to a volume of uniform
unit mass density (the gravitational constant G = 1 here) or the electric
force due to a volume of unit charge density. We therefore have the
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is p dx. Therefore if —{d^Yjdx) dx is the magnetic potential of the body
of magnetization p dx, then —dWjdx is the potential for a body of
magnetization p(= M).

In the volume common to the two bodies the density is effectively zero.
A shell of positive charge or density resides on one side of the matter
and one of negative on the other, each of density p cos e, e being the angle

between the outward normal and the axis x.
This then corresponds exactly to the first term of
equation 1-5.2 and gives an immediate physical
picture of the mathematics.

The ^-component of H' — H is —(dy/dx) =
Mx(d

2Y/dx% Therefore, for M to be uniform,
which implies that H' is uniform, T must be a
quadratic function of the coordinates. From po-
tential theory5 this occurs only when the body is
bounded by a surface of second degree. The only
physically possible body is then an ellipsoid.

The derivation of the expressions for W is beyond the scope of this book
and belongs to potential theory.5 For completeness, and because of their
practical usefulness, some of the important formulas for the demag-
netization factor of ellipsoids of revolution are given.

We define a as the polar semiaxis and b as the equatorial semiaxis with
m = ajb. Then for the prolate spheroid (m > 1)

Fig. 1-5.2. Uncompen-
sated charges or poles
for two ellipsoids of
opposite charge densities
and a distance dx apart.

D - - ( ^ l l f c ^ I n [ m + ( m ! - 1 ) M 1 - ' } (1-54)
and

Db = K4ir - Dtt), (1-5.5)

where Da is the demagnetization factor for a and Z)b along b.
In terms of the eccentricity e2 = 1 — (Z>/#)2

For the oblate spheroid (m < 1)

1 — m2L (1 — m2y2 J
or

^.^[.-ii^v;,,,-.,]. (1.5.8)
5 W. Thomson and P. G. Tait, Treatise on Natural Philosophy, 2nd ed., Vol. i, Part ii,

Cambridge University Press, Cambridge (1883).
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For the sphere e approaches zero and

D = — . (1-5.9)

Appendix II lists some values of D calculated by Stoner,6 and Osborn7

has calculated the demagnetization factor for the general ellipsoid.
Practical specimens are seldom ellipsoidal in shape but may be in the

form of bars or rods, in which case the second term of (1-3.6) may be
comparable with the first. The solution of the problem requires approxi-
mations and is very laborious. Bozorth and Chapin8 have studied the
demagnetization factors of rods.

6. Energy of Interaction

The potential energy of a dipole in a pre-existing magnetic field,
sometimes called the mutual or interaction energy, is equal to the work
done in bringing the dipole from infinity. To calculate this energy,
consider the dipole as two poles, — m and -\-m,
distance d apart, brought to the position shown
in Fig. 1-6.1. If the potential at the poles is y_m

and cp+m respectively, the work done is —m<p__m

and +mcp+m. The potential energy is then
g Fig. 1-6.1. Dipole in an

W= m(<p+ni — cp_m) = md — , applied magnetic field H.
ds

where s denotes the direction between — m and +ra. Then

W= [I- Vcp= - f i . H (1-6.1)

when H is the pre-existing magnetic field. The interaction energy of a
permanent magnet is found by summing (1-6.1) over all the dipoles,
giving

= j M • Vcp dv = - I M • H dv. (1-6.2)

In addition, a permanent magnet will have potential energy because
of its own field. To calculate this self-energy, consider the work done in
bringing up a sequence of dipoles, a, b, c • • • n, whose sum makes up the
permanent magnet. No work is done in bringing a into position. Let
us denote by WJJb), the work done in bringing dipole b into position in a
field due to dipole a. Further, the work done in positioning dipole c due

6 E. C. Stoner, Phil. Mag. 36, 816 (1946).
7 J. A. Osborn, Phys. Rev. 67, 351 (1945).
8 R. M. Bozorth and D. M. Chapin, J. Appl. Phys. 13, 320 (1942).

W
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to fields of a and b will be Wa{c) + Wb(c). For the n dipoles the total
work done W is

W = Wa(b)

+ Wa(c) + Wb(c)

+
+ Wa(n) + Wb(n) + Wlri) +•••+ W^n).

On the other hand, if the dipoles had been brought up in the reverse
order, we would get

W = Wb(a) + Wc{a) + + Wn{a)

+ Wc(b) + + Wn{b)

+
+ Wn(n - 1)

Adding, we get

2W= Wh(a) + Wc(a) + + Wn{a)
+ Wa(b) + Wc{b) + + Wn(b)

+ Wa{c) + Wb(c) + Wlc) + + Wn{c)

+
+ Wa{n) + Wb{n) + + W^in)-

Therefore n

W=\-%W{ri), (1-6.3)
n=a

where W(a) is the energy of a dipole placed in a field due to the assembly
of dipoles [Wa(a) = 0, etc.]. If the dipoles have a moment jx, then by
(1-6.1)

W(n) = [JL • V<p
and

= ~hIl>"H, (1-6.4)

where H is understood not to include the field of the dipole being summed.
We now wish to extend equation 1-6.4 for a permanent magnet. Direct

passage from the sum to an integral over a volume element di\ in analogy
to the step from equation 1-6.1 to equation 1-6.2, is not valid here.9 The
reason is that the field intensity which acts on a volume element dv, exclusive
of its own field, depends on the shape of dv. One way out of this difficulty

9 E. C. Stoner, Phil. Mag. 23, 833 (1937); W. F. Brown, Jr., Revs. Mod. Phys. 25,
131 (1953).
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is to consider a cubic lattice of dipoles and to assume that the dipoles
vary linearly (in direction) with position, to within negligible error, over
distances containing many lattice spacings. It will also be assumed that
there is no strain. The field acting on a dipole can then be evaluated by
a method developed by Lorentz.

This method is as follows. A dipole on which the local field is to be
calculated is considered as the center of a sphere of radius R that is large
compared to the interdipole distance but small compared to macroscopic
distances (Fig. 1-6.2). The difference between the field Hx of matter
outside the sphere and the macroscopic field H is now computed. Both
fields can be found from equation 1-3.6 by applying equation 1-2.3.

Fig. 1-6.2. The calculation of the Lorentz field.

However, H^ differs from H by omitting the volume integral over the
interior of the sphere R and by including instead a surface integral over
the surface of the sphere R. Now because of the assumption of the
linear variation of (JL, hence M, with position V • M = constant, and
the volume integral vanishes by symmetry. For the surface integral the
expansion of M about the center contributes zero by symmetry, and M
may be set equal to its value at the center of the sphere. Thus computation
of the surface integral is elementary and gives for the difference Hx — H
just (4?7/3)M. We must also compute the field H2 because of the dipoles
inside the sphere. If the dipoles are parallel, it can be shown that H2 = 0;
otherwise H2 ^ 0 in general. If H2 = 0, the total field Hx + H2 ( = Hx)
is known as the Lorentz field and is given by

If H2 76 0, the small energy term that results will not be considered as
magnetic energy but will be lumped into other energy terms, such as
anisotropy energy, to be discussed in Chapter 6.

HLorentz = H + y M . (1-6.5)
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In extending equation 1-6.4 to a permanent magnet, we make the
following replacements:

p-+Mdv H -* H + ~ M 2 -* f

so that

W = - | J M • ( H + — M) dv

= - i J M • H dv - — fM2 dv.

For a permanent magnet with ellipsoidal shape M is a constant, and the
second term can be neglected by shifting the zero point of energy. Then
we have

W= -ijlM-Hdv. (1-6.6)

The result also holds for a system of permanent magnets, the integration
then being over all the magnetic specimens. The \ factor of equation
1-6.6 is the usual one found in all self-energy expressions.

For a permanent magnet its self-field is given by (1-5.1) as

H = -DM.
Substituting in (1-6.5) gives

W= \DM* (1-6.7)
per unit volume.

Expressions 1-6.5 and 1-6.6 indicate the energy to be localized at the
magnetic particle. We now develop an equation which shows that the
energy can be considered to be in the field, distributed throughout space.
This result is in accordance with the ideas of Faraday and Maxwell.

First, we establish two relationships that will be useful in the derivation.
By the divergence theorem

f V • (Hep) dv = f n • H<p dS.

Now consider the integration as being taken over the surface of an
infinite sphere. Since (p cc \/r2, dS oc r2, and n • H = 0, we get

f V • (H<p) dv = 0. (1-6.8)

By similar reasoning

fv • (My) dv = 0. (1-6.9)
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Now, returning to (1-6.6)

W= ~ | JM-Hdi;

The integration can now be considered to be taken over all space, since
M equals zero everywhere except in the permanent magnet. By virtue of
equation 1-6.9

W = - i f [ V . ( M < p ) - M-Vtp]dv

= -i\(V.M)(pdv. (1-6.10)

Now, since

M = j - ( B - H )

W = - — ( [V • (B - K)]q> dv.

It is one of Maxwell's fundamental relationships that V • B = 0. By
using equation 1-6.8,

W = - — f [V • (Hep) - (V • H)<p] dv
OTT J

= - — | H • Vw dv

= l-(H*dv, (1-6.11)
OTT J

and this is the equation we set out to develop.

7. Magnetic Effects of Currents. The Magnetic Shell.
Faraday's Law

In 1820 Oersted discovered that an electric current produced a magnetic
field. It was found by Ampere's experiments that the work per unit pole
or the value of the line integral § H • ds (see equation 1-2.7) was no longer
zero if the path taken enclosed the wire. Instead, it was directly propor-
tional to-the current i. Since the units of H have already been defined,



The work done is no longer independent of the path. The use of the
concept of the magnetostatic scalar potential to determine the magnetic
field is thus limited to permanent magnet problems and situations in which
the expression § H • ds is evaluated along paths that do not enclose
current-carrying wires.

3 ( © ) P
(b) (c)

(a)

Fig. 1-7.1. The toroid is shown from above in (a) and in a vertical cross section in (b).
The result when R ->- oo is the solenoid shown in (c).

Application of (1-7.1) leads quickly to the calculation of H for a steady
current if there is some symmetry to the problem. For example, if the
path of integration for a straight wire of circular section is a concentric
circle about the axis, and since by symmetry H is a constant, then
irrrH = Am and therefore H = 2i\r.

Consider now a toroid wound uniformly with n turns of wire per unit
length. Figure 1-7.la shows a view of the toroid from above a plane
passing through its axis, whereas Fig. 1-7.\b shows a cross section for a
plane perpendicular to the axis. Suppose the toroid is described by the
radii R and r. We wish to determine the field when the toroid carries a
current i. First we find the field outside the coil. On a circumferential
path such as ABC of Fig. 1-7.la no current is enclosed and H = 0. On a
path such as CDE (Fig. 1-7.1Z?) one turn is crossed and § H • ds = 4ni.
Usually n is fairly large and / very small, so that Airi can be neglected.
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this result permits a definition of the unit of current. For i to be in
electromagnetic units, the constant of proportionality is taken as 4-zr so
that

/•
d ) H - & =4TT/. (1-7.1)

c_
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Hence the field outside the toroid is essentially zero. For a path inside
the toroid and lying in a plane perpendicular to the axis no current is
enclosed and therefore H = 0. For a path along the axis of the toroid
(FGH) the field is

H = Arrni. (1-7.2)

Thus the only field is one inside the toroid and parallel to its axis. If now
we let R approach infinity, in the limit the toroid becomes an infinitely
long cylinder called a solenoid. The field inside the solenoid is parallel
to the axis and uniform, equal to Armi. If i is in amperes, the units are
converted by dividing this result by 10; if it is in electrostatic units, the
results are divided by c = 3 x 1010.

When the solenoid is of finite length and its length is appreciably
larger than its radius, equation 1-7.2 is still accurate to a good degree at
points not too close to the ends.

Often a solenoid is employed experimentally as a source of a uniform
magnetic field. Practical difficulties limit the magnitude of the field that
can be obtained when reasonable uniformity is required over a volume of
several cubic centimeters. With only air cooling a rather husky coil is
required to produce a continuous field in excess of 2000 oe. By passing
cooling water through copper tubing, steady fields in the vicinity of
10,000 oe can be achieved.

Special winding arrangements, coupled with 2-Mw, high-current
generators and large capacity cooling systems have permitted the attain-
ment of static fields of over 100,000 oe10; the production of fields of
250,000 oe are planned for the future.11 Besides water, organic fluids such
as kerosene and orthodichlorobenzene, have been employed as coolants.
Liquid N2 and H2 have also been used for cooling.12 Low temperatures
have the great advantage that the resistance of the electrical conductors
is decreased by a factor of about 5. Hence the energy dissipated in the
coil and the power source are also reduced by a factor of five.

10 J. D. Cockroft, Phil. Trans. Roy. Soc. (London) 227, 325 (1928); F. Bitter, Rev.
Sci. Instr. 7, 482 (1936), 10, 373 (1939); J. M. Daniels, Proc. Phys. Soc. (London)
B-63, 1028 (1950); F. Gaume, / . Reck. Centre Natl. Rech. Sci. 43, 93 (1958); D. de
Klerk, Ned. Tijdschr. Natuurk. 26, 1 (1960), 26, 345 (1960); S. Maeda, High Magnetic
Fields, John Wiley and Sons, New York (1962), p. 406; R. S. Ingarden, ibid.,
p. 427.

11 B. Lax, / . Appl. Phys. 33, 1025 (1962).
12 T. W. Adair, C. F. Squire, and H. B. Utley, Rev. Sci. Instr. 31, 416 (1960); C. E.

Taylor and R. F. Post, Advan. Cyrog. Eng., Plenum Press, New York (1960), Vol. 5;
E. S. Borovik, F. I. Busel, and S. F. Grishin, Zhur. Tekh. Fiz. 31, 459 (1961) [trans.
Sov. Phys.-Tech. Phys. 6, 331 (1961)]; J. R. Purcell, High Magnetic Fields, John Wiley
and Sons, New York (1962) p. 166; H. L. Laquer, ibid., p. 156.
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Larger fields can be created by pulse techniques.13 These methods
consist of discharging a bank of condensers through a coil by means of
some kind of switch. Fields of 150,000 oe are comparatively easy to
make; with care, useful fields of close to 500,000 oe can be generated.
Actually, fields in the neighborhood of 1 million oe have been produced,
but the stresses on the coil are so great that it is usually destroyed. Pulsed
fields have the disadvantage that special systems are required to detect
the transient response.

Even larger fields have been produced by starting with a pulse field and
then explosively reducing the volume of the flux container. The walls of
the container act as perfect conductors; hence the total flux is conserved.14

As a result the magnetic field is momentarily greatly increased. Fields in
excess of 10 million oe lasting about 10~6 sec have been attained with this
implosion technique.15

Solenoids constructed with hard superconductors are, at present,
important sources of large continuous magnetic fields. They are likely,
in the future, to be used even more widely. Hard superconductors are
materials with zero electrical resistance that have the ability to remain
superconducting in the presence of large magnetic fields. Hard super-
conductors are discussed at some length in Section 5-10. Finally, electro-
magnets, which are solenoids with soft iron cores, are also important
sources of continuous magnetic fields; they will be considered in Section
1-9.

The magnetic shell. The magnetic effects of a current can be computed
by using the concept of the equivalent magnetic shell. Such a shell is
defined as a thin sheet of magnetic material, uniformly magnetized
normal to its surface, the two surfaces having equal and opposite surface
pole densities, +a and — a. The boundary of the shell is taken to coincide
with the current-carrying wire. If the surfaces of the shell are a small
distance / apart, the moment or strength of the shell x is defined as

T = lim aln
O—+CO

at = constant,
13 P. Kapitza, Proc. Roy. Soc. {London) A-115, 658 (1927); H. P. Furth and R. W.

Waniek, Rev. Sci. Instr. 27, 195 (1956); S. Foner and H. H. Kolm, Rev. Sci. Instr. 28,
799 (1957); I. S. Jacobs and P. E. Lawrence, Rev. Sci. Instr. 29, 713 (1958); D. H.
Birdsall, Rev. Sci. Instr. 30, 600 (1959); Y. B. Kim, Rev. Sci. Instr. 30, 524 (1959);
J. C. A. van der Sluijs, High Magnetic Fields, John Wiley and Sons, New York (1962),
p. 290; L. W. Roeland and F. A. Muller, ibid., p. 287; H. Zijlstra, ibid., p. 281; M. A.
Levine, ibid., p. 277.

14 la. P. Terletskii, /. Exptl. Theoret. Phys. (USSR) 32, 387 (1957) [trans. Soviet
Phys.-JETP, 301 (1957)].-

15 C. M. Fowler, W. B. Garn, and R. S. Caird, / . Appl. Phys. 31, 588 (1960).
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where n is a unit normal vector drawn outward from the surface with
positive pole density. Thus the moment or strength of a shell is the magnetic
moment per unit area. A uniform shell is one for which T is everywhere
constant; hence a uniform shell need not be plane. Obviously the total
dipole moment of the shell is given by the product of T and the area of
the shell A.

(a) (h)
Fig. 1-7.2. S is the shell with wire-carrying current / as its boundary. For simplicity
the shell is considered to be plane. The dotted curve is the path along which a unit
pole is taken, (b) shows the points P+, P_ at which the path crosses the shell of definite
although infinitesimal thickness.

The potential at a point P due to a magnetic shell is easily calculated.
By employing equation 1-3.5, we get

* P - / / * < « - V . ( i ) ,

where dS is an element of area of the shell so that its moment (strength)
is T dS and r is the vector from P to dS. Now, since Vs(l/r) = —r/r3

[[ cos0 ._

where 6 is the angle between T and r. But dQ, = ±(cos 0/r2) dS is the
solid angle of dS as seen at P. Therefore

<pP=^rdQ.

Here dQ. is taken as positive if P faces the positive side of the shell. If r
is constant (uniform shell), then

ipP = TQ. (1-7.3)

Next we compute the work done on taking a unit pole around a path
that crosses the magnetic shell once (Fig. 1-7.2).

By considering the potential, first of a plane surface distribution of
poles, and then of a second plane with a surface distribution of poles of
opposite sign, it may be shown16 that the magnetic field between the layer

16 M. Abraham and R. Becker, Electricity and Magnetism, Blackie and Son, London
(1942), pp. 26-29.
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is 4TTCT, which becomes infinite when a -> oo, plus a term that remains
finite in the limit. The line integral of the field through the layer is
— ATTOI = — 4TTT, a constant, plus a term that vanishes in the limit. The
work done on the rest of the path is the difference in potential across the
shell 9?+ — q)_. Since the solid angle change is Q. = 4TT, we get cp+ — cp_ =
4TTT; hence the total work is zero. The field of a current differs from the
field inside of the double layer by the singular term Arrr\ that is, the work
done on traversing a circuit is Am (equation 1-7.1). Hence the field
arising from a current-carrying circuit can be derived from a potential
if complete traversals of the path are prevented by introducing a barrier
surface. It then follows that a magnetic shell such as that defined above
can be used to compute the field produced by a current if the magnetic
moment r is taken equal to the current /.

It is worth mentioning that other approaches are possible. A double
layer can be defined as a surface distribution of dipoles, in which a dipole
is defined as the limiting case of a pair of poles. Then, if a dipole is
defined as the limiting case of a small circuit, we get a "double layer"
with precisely the properties of a finite circuit. The little circuits side by
side cancel each other everywhere except at the periphery.

Faraday's law. An effect, equally important as that investigated by
Oersted and Ampere, was discovered by Faraday. He observed that a
time-varying magnetic field caused a current to flow in a closed electrical
circuit. Experimentally, it was found that

6 E . ds = - - B • n dS, (1-7.4)
•/circuit dt *A

where A is a surface which has the circuit as its boundary. Here E is the
electrostatic field, or force per unit charge, so that the left-hand side of
equation 1-7.4 is just the work done on taking a unit electric charge about
the path of the circuit (compare with equation 1-2.6). It is usual to refer
to this term as the induced emf (electromotive force) 8. By employing
equation 1-4.2 we obtain

The results of this section can be used to compute the energy required
to change the magnetization of a material. Suppose that the material,
of cross-sectional area A and length L, is placed in the solenoid, also of
length L. If the solenoid is long and narrow, the magnetic field produced
by a current i is given by equation 1-7.2,

H = 4™/.
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The induction in the solid is just (equation 1-4.1)

B = H + 477-M;

hence the total flux threading the solenoid is

O = BnLA.

Suppose that this flux is changing with time; then an emf will be induced
in the solenoid, given by equation 1-7.5 as

During this time work must be done to keep the current flowing; this
energy is supplied by some power source such as a battery. If the amount
of charge moved is dQ, the work that must be done is

dW= ZdQ

= -id®

= - — d[(H + 47rM)nLA]
Aim

T A
= - — (tf dH + 4TT/J dM).

Per unit volume of the material, the work done is

r_r A\J

dW= -tU±£L _ H dM.
477

The first term is the work done to change the field H to H + dH\ it is of
no interest to us here. Let us take this term to the left-hand side of the
equation and incorporate it into dW\ for convenience this energy will
still be called dW. This new dW is just the work done on increasing the
magnetization of the material by an amount dM. Hence for a magnetic
material we have17

dW= -HdM. (1-7.6)

17 This result can be obtained from a field, rather than a lumped parameter point of
view. See, for example, E. A. Guggenheim, Proc. Roy. Soc. {London) A-155, 49, 70
(1936).
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If the solenoid's current, hence its field, is increased or decreased slowly,
the total amount of work done on the solid per unit volume is given by

W= - [H dM, (1-7.7)

where the limits of the integral are the initial and final values of M. If
the material is isotropic so that equation 1-4.4 holds and the magnetic
field is increased from 0 to H, the amount of work done per unit volume is

W = - %H dH
Jo

= -hH2. (1-7.8)

It can be shown that the form of equations 1-7.6 and 1-7.7 also holds
if the body placed in the solenoid is ellipsoidal and so small that poles
must be considered. By employing the equation for the self-field, H =
— DM (equation 1-5.1) we rederive equations 1-6.5 and 1-6.6.

8. Maxwell's and Lorentz's Equations

As a consequence of the experimental observations of Ampere and
Faraday, Maxwell was led to the following equations:

V D = 4TTP, (1-8.1)

V • B = 0, (1-8.2)

V x E = - ^ , (1-8.3)
c dt

V X H = -(47rj + | ? y (1-8.4)
c\ dt I

These equations are in gaussian units. Here E is the electric field, or force
per unit charge, D is the displacement vector, j is the current density, and
p is the electric charge volume density. D is related to E by the equation

D = E + 4TTP, (1-8.5)

where P is the polarization of the electric dipole moment per unit volume.
This relation is analogous to equation 1-4.1. D and E can also be related
by

D = eE, (1-8.6)

where e is the dielectric constant. Often Maxwell's equations are
considered as postulates instead of being derived from the foregoing
experiments. The ability of the equations to predict vast numbers of
experimental results correctly is then considered proof of their validity.
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Because of equation 1-8.2 and since V • V x A = 0, a vector potential
A can be defined as

B = V x A. (1-8.7)

If the permeability /u is equal to 1, a dipole moment \i will have a vector
potential given by

A = - f i x V^-j = I | t x r. (1-8.8)

This follows since
H = B = V x A

as in equation 1-2.3. The vector potential is used when currents that
cannot be replaced by magnetic shells are present. It is also useful to
introduce an electric scalar potential cpE, defined by

1 dA
E = -V<pE---?-. (1-8.9)

c dt
Frequently the equation that expresses the force on a moving charge

is required. Lorentz showed that this force is given by

F = eE + - v x H , (1-8.10)
c

where v is the velocity of the charge.
It is of interest to consider the transformation of Maxwell's equations

to coordinate systems moving linearly with respect to the original frame
of reference. According to the special theory of relativity, the length
element

ds2 = dx2 + dy2 + dz2 - c2 dt2

is an invariant quantity; that is ds'2 = dx'2 + dy'2 + dz'2 — c2 dt'2 = ds2.
The linear transformations which keep ds2 invariant are known as Lorentz
transformations. If we let xx = x, x2 = y, x3 = z, and #4 = ict, the

The term JJL V2(l/r) = 0 except at r = 0. Therefore

= — \7<p
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Lorentz transformation may be written

< = i > ^ - > 1=1 ,2 ,3 ,4 . (1-8.11)

For a frame of reference 2 ' moving with a velocity v parallel to the y-a.x\s
of the 2 frame the transformation coefficients are given by

(1 0 0 0 \

o o i o I' (1"8'12)

0 -iyr/? 0 yj
where /? = v/c and yT = 1/̂ /1 — (y/c)2.

It is desirable to rewrite Maxwell's equations so that their terms, although
not invariant, transform with the same properties; when this is done,
the equations are said to be covariant in form. Covariance may be
achieved by writing the current j and charge density p as the four-vector

ji = Q,icP)9 (1-8.13)

the vector potential A and the electric scalar potential <pE as the four-
vector

^ = (A, *>E), (1-8.14)

and the field quantities E and H by the antisymmetric tensor of rank two,

(
0 H3 -Ht -iE\

-Hz 0 H^ -iEA3 1 I. (1-8.15)
H2 -Hx 0 -iEA

iEx iE2 iE3 0 /

Equations 1-8.1 and 1-8.4 then take the form
2 ^ - ^ 4 , 1 = 1,2,3,4. (1-8.16)
j=l OXj C

To be covariant, this equation must take the form

i5&'_fe A . (I.8.17)
1=1 OX{ C

in the 2 ' reference frame. That this is indeed true is easily seen by applying
the transformation of equation 1-8.11; equation 1-8.17 then becomes

i=X \j=1 CXj C I
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Similarity, equations 1-8.2 and 1-8.3 reduce to

a ^ + ^ + a^.o. d-8.18)
axk oxi dxi

Finally, the Lorentz force (equation 1-8.10) has the covariant form

F, = -#;</ , . (1-8.19)
c

It is instructive to see how the field quantities themselves transform.
For a coordinate system 2 ' moving with a velocity v relative to the
reference frame 2 , it follows from the general transformation relation
J«y = aikan^kl and equation 1-8.12 that

rp i rp TT i rr
L\\ — l̂l> 1̂1 ~ 1̂1

and

E ± ' = y ^ E j . + - x H ) , H ± ' = yr(u± - I x E ) , (1-8.20)

where the subscripts || and _]_ refer to directions parallel and perpendicular,
respectively, to v. It is clear that E and H are not unique with respect to
linear transformations. The physical origin of these results is closely
related to the laws of Ampere and Faraday. Consider a charge or a
permanent magnet at rest in the system 2 . In 2 ' the charge or permanent
magnet will be moving with respect to the axes. There will then be
additional electric (v/c x H) and magnetic (v/c x E) fields present.
Further details on the relativistic formulation of electrodynamics may be
found in a number of standard textbooks.18

9. The Magnetic Circuit

The magnetic circuit, a concept analogous to the electric circuit, is of
considerable use in solving many practical problems such as the design
of electromagnets. We now develop this concept.

The work done on taking a unit pole around a closed path that goes
through a solenoid of TV turns is, by equation 1-7.1,

f AnNi
(pH'Js = ,
J 10

18 P. G. Bergmann, Introduction to the Theory of Relativity, Prentice-Hall, Englewood
Cliffs, N.J. (1942) Ch. 1-9; R. Becker, Theorie der Elektrizitdt,B. G. Teubner, Leipzig
(1949), Sections 24-66; W. K. H. Panofsky and M. Phillips, Classical Electricity and
Magnetism, Addison-Wesley, Cambridge, Mass. (1955), Ch. 14 and 15; J. D. Jackson,
Classical Electrodynamics, John Wiley and Sons, New York (1962), Ch. 11.



where O is the flux from equation 1-4.2. For the usual situation in which
B is uniform,

ft = — , (1-9.2)
JJLA

where / is the length of the circuit, A the cross-sectional area, and ju the
permeability. When the magnetic circuit is made up of parts of length
/z-, areas Ai9 and permeabilities /^, equation 1-9.2 becomes

Usually a certain flux density in an air gap in the magnetic circuit is
desired. Therefore for some particular system it is necessary to find the
required value of the product Ni, or the ampere-turns. Since for air
JU = 1 and for a common ferromagnetic material such as iron JU = 1000,
the reluctance in the short air gap is much greater than that in the iron
part of the circuit. As stated in Section 1-4, /u is not a constant for iron
but depends on the value of H or Ni. As a result, the solution of the mag-
netic circuit problem often involves a numerical successive approximation
technique. This occurs most often in problems in which Ni is given and
B is to be calculated.19

The magnetic flux in an air gap tends to spread out and have a larger
value of cross-sectional area Ag than in the iron (A). A useful rule of
thumb, based on experiment, is to increase each linear dimension of A by
twice the length of the air gap in order to find Ag. If the air gap is very
large, as, for example, in a "horseshoe" magnet, the reluctance can be

19 R. A. Galbraith and D. W. Spence, Fundamentals of Electrical Engineering,
Ronald Press, New York (1955), Ch. 9.
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where i is in amperes. The integral § H • ds is often called the magneto-
motive force (mmf) since it is similar to the definition of the electromotive
force (emf, equation 1-7.5). The mmf can be considered responsible for
the production of the flux in a magnetic circuit, just as the emf causes
current to flow in an electric circuit. In analogy to electrical resistance a
magnetic reluctance is defined as

f f
(b H • ds <b H • ds

% = 1 = J y (U9A)
B • n dS

31 = 2 - ^ - . (1-9.3)
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found by plotting the flux lines in the gap and drawing the corresponding
magnetic equipotential lines.20

Examples of the design of some electromagnets are the following:
Uppsala University magnet. L. Dreyfus, Arch. Electrotech. 25, 392

(1931); ASEAJ. 12,8(1935).
Leiden. G. Haden, Siemens-Z. 10, 481 (1930).
Academie des Sciences. S. Rosenblum, Compt. rend. (Paris) 188, 1401

(1929).
Cambridge University. J. D. Cockcroft, / . Sci. Instr. 10, 71 (1933).
Very large magnets for synchrocyclotrons, etc. For example, H. L.

Anderson et al. Rev. Sci. Instr. 23, 707 (1952).

10. Dipole in a Uniform Field

If a dipole of moment jx is placed in a uniform field, it is subjected to a
torque L, given by

dW
L = - — = -[ i i f sin (9, (1-10.1)

dO
where 6 is the angle between \L and H and W is given by equation 1-6.1.
In vectors, remembering that the cross product anticommutes, this can
be rewritten as

L = fx x H. (1-10.2)
The action of the uniform field H is thus to tend to rotate the dipole until
it is parallel to H. This action, illustrated in Fig. 1-10.1, develops
because we have assumed that the dipole acts like a conventional mechanical
system, that is, that the dipole is a rigid body, capable only of rotation
about an axis. In order to discuss the dynamical behavior of the dipole,
we must consider how a dipole moment originates. For simplicity we

F = -H/n

Fig. 1-10.1. Torque on a dipole produced by an external field H.

20 For example, see W. B. Boast, Principles of Electric and Magnetic Fields, Harper
and Bros, New York (1948), Ch. 14.

-I
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will assume that the dipole moment jx arises from the motion of an
electron in a circular orbit. Let r be the radius of the orbit, e its charge,
and T the period of rotation. The moving electron can be considered
essentially as a current flowing in a wire that coincides with the orbit.
The magnetic effects can then be deduced by
considering the equivalent magnetic shell.
From Section 1-7 we have |x = TA, in which
fx is the total dipole moment of the shell, T
the strength of the shell, and A the shell
area. Since r = i, and the current in this
case is e/T, with e in gaussian units, we get

jx = i d n (A = rrr2). (1-10.3)
Tc

Now, if m is the mass of the electron,
the angular momentum is given by G =
/to = mr2u> = mr\2TTJT)i\, in which / is the
moment of inertia and co ( = dft/dt) is the
angular frequency. Substituting this into (1-10.3) gives

Fig. 1-10.2. Physical interpre-
tation of equation 1-10.7.

fx = — G .
2mc

(1-10.4)

Because the electron is negatively charged, the value to be inserted into
this equation is e — —4.80 x 10~10; that is, the vectors [x and G are
antiparallel. Equation 1-10.4, together with Newton's law for angular
momentum, dGjdt = L, and equation 1-10.2 give finally

dG

dt 2mc
H x G.

Let us set

2mc

(1-10.5)

(1-10.6)

then (1-10.5) can be written as

dG =o>L x Gdt. (1-10.7)

Consideration of Fig. 1-10.2 shows that this equation represents the
equation of motion of a vector G precessing with an angular velocity
a)L = dftjdt.

The action, therefore, of a uniform field H on such a dipole is to cause
the moment fx to precess about H with an angular frequency eHjlmc.
This is in addition to the motion possessed by the electron before the
application of the field. The precession is called the Larmor precession

G
^G + dG



where 0 is the angle between M and r. Show that for r < a

4TT

q> = -— Mr cos 0.

1-2. From the result of problem 1-1, show that for a sphere D = 4TT/3.
1-3. Show that the self-interaction energy of a permanent magnet is

2 P<P dv + i \a(P ds>

where the symbols have the meaning used in the text.
1-4. Use the result of problem 1-3 to calculate the energy of an ellipsoidal

specimen, volume y2, which contains an ellipsoidal cavity, volume v2.
[Hint. Assume first an ellipsoid, volume vl9 with uniform magnetization M,
then another volume u2, with uniform magnetization —M, and consider the
interaction between these ellipsoids. See W. F. Brown Jr., and A. H. Morrish,
Phys. Rev. 105,1198 (1957).]

1-5. Show that a permanent magnet, permeability //, permanent magnetic
moment A/o, has the field energy

W = — \f*H*dv.
8vr J

[Hint. W = \DM^ and Mo is defined by the equation
M = Mo + Gu - D/477/f.]

1-6. An electromagnet whose magnetization M is uniform has truncated pole
pieces of base radius b and gap face radius a. The center of the air gap coincides
with the cone from which the truncated pieces are fashioned. Show that the
field at the center of the air gap is given by

4TTM[I - cos 0 + sin2 0 cos 0 loge - I,

PROBLEMS 29

frequency, after the physicist who first derived it. These results also hold
for noncircular orbits, provided only that the forces acting on the electron
are central. In this derivation we have assumed that the angular momentum
is left unchanged by the application of H. This is true to a first-order
term in H (see problem 1-8). The precession phenomenon is the origin of
diamagnetism and is discussed further in Chapter 2.

Problems

1-1. Show that for a uniformly magnetized sphere of radius a, the magnetic
potential at a point distance r > a,

4TT COS 0,
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where 0 is the angle of the cone. If the poles on the flat face of the pole pieces
are neglected, show that the maximum field is achieved for 0 = 54° 44'.

1-7. Show that the energy in a magnetic field caused (equation 1-6.11) by
circuits carrying currents is given by J £/3> where <E> is the flux that threads the
current /.

1-8. Consider an electron moving in a circular orbit about a nucleus of charge
e. Use the Lorentz equation to set up a force equation when a magnetic field H
is applied and show a> = ± [(eH/2mc)2 + (e2lmr3)]^ - (eH/lmc). Consider the
magnitudes of the terms and make a suitable approximation to obtain the
Larmor frequency.
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