
CHAPTER 1

PHYSICS OF MAGNETISM

1.1 INTRODUCTION

The aim of this book is to characterize the magnetization that results in a material
when a magnetic field is applied. This magnetization can vary spatially because of
the geometry of the applied field. The models presented in this book will compute
this variation accurately, provided the scale is not too small. In the case of
particulate media, the computation cells must be large enough to encompass a
sufficient number of basic magnetic entities to ensure that the deviation from the
mean number of particles is a small fraction of the number of particles in that cell.
In the case of continuous media, the computation cells must be large enough to
encompass many inclusions. The study of magnetization on a smaller scale, known
as micromagnetics, is beyond the scope of this book. Nevertheless, we will see that
it is possible to have computation cells as small as the order of micrometers.

This book presents a study of magnetic hysteresis based on physical principles,
rather than simply on the mathematical curve-fitting of observed data. It is hoped
that the use of this method will permit the description of the observed data with
fewer parameters for the same accuracy, and also perhaps that some physical
insight into the processes involved will be obtained. This chapter reviews the
physics underlying the magnetic processes that exhibit hysteresis only in sufficient
detail to summarize the theory behind hysteresis modeling; it is not intended as an
introduction to magnetic phenomena.
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This chapter's discussion begins at the atomic level, where the behavior of the
magnetization is governed by quantum mechanics. This analysis will result in a
methodology for computing magnetization patterns called micromagnetism. For a
more detailed discussion of the physics involved, the reader is referred to the
excellent books by Morrish [1] and Chikazumi [2].

Since micromagnetic problems involve hysteresis, there are many possible
solutions for a given applied field. The particular solution that is appropriate
depends on the history of the magnetizing process. We view the magnetizing
process of hysteretic media as a many-body problem with hysteresis. In this
chapter, we start by reviewing some physical principles of magnetic material
behavior as a basis for developing models for behavior. Special techniques are
devised in future chapters to handle this problem mathematically. The Preisach and
Preisach-type models, introduced in the next chapter, form the basic framework for
this mathematics. The discussion presented relies on physical principles, and we
will not discuss the derived equations with mathematical rigor. There are excellent
mathematical books addressing this subject, including those by Visintin [3] and by
Brokate and Sprekels [4]. In subsequent chapters, when we modify the Preisach
model so that it can describe accurately phenomena observed in magnetic materials,
we will see all these physical insights and techniques.

1.2 DIAMAGNETISM AND PARAMAGNETISM

Both diamagnetic and paramagnetic materials have very weak magnetic properties
at room temperature; neither kind displays hysteresis. Diamagnetism occurs in
materials consisting of atoms with no net magnetic moment. The application of a
magnetic field induces a moment in the atom that, by Lenz's law, opposes the
applied field. This leads to a relative permeability for the medium that is slightly
less than unity.

Paramagnetic materials, on the other hand, have a relative permeability that is
slightly greater than 1. They may be in any material phase, and they consist of
molecules that have a magnetic moment whose magnitude is constant. In the
presence of an applied field, such a moment will experience a torque tending to
align it with the field. At a temperature of absolute zero, the electrons or atoms with
a magnetic moment in assembly would align themselves with the magnetic field.
This would produce a net magnetization, or magnetic moment per unit volume,
equal to the product of their moment and their density. This is the maximum
magnetization that can be achieved with this electron concentration, and thus it will
be called the saturation magnetization Ms. Atoms possess a magnetic moment that
is an integer number of Bohr magnetons. The magnetic moment of an electron, mB,
is one Bohr magneton, which in SI units is 0.9274 x 10 ~23 A-m2. We note that the
permeability of free space jm0, and Boltzmann's constant, k, are in SI units
4n x 10"7and 1.3803 x 10"23J/mole-deg, respectively.

Paramagnetic behavior occurs when these atoms form a reasonably dilute
electron gas. At temperatures above absolute zero, for normal applied field
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strengths, thermal agitation will prevent them from completely aligning with that
field. Let us define B as the applied magnetic flux density, and T as the absolute
temperature. Then if we define the Langevin function by

US) = coth 5 - 1 , ( L 1 )

then the magnetization is proportional to the Langevin function, so that

M = Ms US), (1.2)

where

HogJmBH \iQmH

* " kT kT ' ( L 3 )

Here the moment of the atom, m, is the product of g, the gyromagnetic ratio, J the
angular momentum quantum number, and mB the Bohr magneton. It can be shown
that the distribution of magnetic moments obeys Max well-Boltzmann statistics [5].
Figure 1.1 shows a plot of the Langevin function and its derivative. It is seen that
for small ^ the function is linear with slope 1/3 and saturates at unity for large £.

The susceptibility of the gas, the derivative of the magnetization with respect
to the applied field, is given by

m = ™ = mi [i _ cschy. (14)
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Figure 1.1 Langevin function (solid line) and its derivative (dashed line).
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Figure 1.2 Paramagnetic susceptibility as a function of temperature.
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For small £, the quantity in brackets approaches 1/3. Thus, when the applied fields
are small, the susceptibility, x0 is g i v e n by

The small field susceptibility as a function of temperature is shown in Fig. 1.2.
At room temperature, the argument of the Langevin function is very small, and

this effect is very weak; that is, the misalignment due to thermal motions is much
greater than the effect of the applied field. Thus, this effect is not significant in the
description of hysteresis; however, when discussing ferromagnetic materials, we
will see that their behaviors above the Curie temperature are similar, except that the
susceptibility diverges at the Curie temperature rather than at absolute zero.

The previous analysis did not include quantization effects. Since the magnetic
moment can vary only in integer multiples, the Langevin function must be replaced
by the Brillouin function, /?/£). The Brillouin function is defined by

BJ® = ^ H c o t h ^ i £ - i-coth-1. ( 1 6 )
J 27 2/ 27 27 y }

Thus, the magnetization M{T) at temperature T, is given by

M(T) = Nm^JBfi), (1.7)

where, N is the number of atoms per unit volume, g is 0.5 for the electron, and 7,
an integer, is the angular momentum quantum number. The Brillouin function is
zero if £ is zero, and approaches one if £ becomes large, as seen in Fig. 1.3.
Therefore, from (1.7) we have
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Figure 1.3 Plot of Bj (£) and the linear function, &T as a function of £ for J = 1.

1.3 FERRO-, ANTIFERRO- AND FERRIMAGNETIC MATERIALS

In accordance with the Pauli exclusion principle, electrons obey Fermi-Dirac
statistics; that is, only one electron can occupy a discrete quantum state at a time.
When atoms are placed close together as they are in a crystal, the electron wave
functions of adjacent atoms may overlap. Here, it is found that given a certain
direction of magnetization for one atom, the energy of the second atom is higher for
one direction of magnetization than the other. This difference in energy between the
two states is called exchange energy. Furthermore, when the parallel magnetization
is the lower energy state, the exchange is said to be ferromagnetic, but when the
antiparallel magnetization is the lower energy state, the exchange is said to be
antiferromagnetic. In ferromagnetic materials, this energy is very large and causes
adjacent atoms to be magnetized in essentially the same direction at normal
temperatures. Pure metal crystals of only three elements, iron, nickel, and cobalt,
are ferromagnetic.

M(0) = NmBgJ, (1.8)

and so

For small £, the Brillouin function is given approximately by

i /
0 ^ 1 V, A

5
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Since the electron wave functions are very localized, the overlap of wave
functions between adjacent atoms decreases very quickly to zero as a function of
the distance between them. Thus, exchange energy is usually limited to nearest
neighbors. Sometimes the intervening atoms in a compound can act as a medium so
that more distant atoms can be exchange coupled. Here, the resulting exchange is
called super exchange. This, can also be either ferromagnetic or antiferromagnetic.
Thus, compounds such as chromium dioxide can also be ferromagnetic.

The effect of exchange energy can be accounted for by an equivalent exchange
field. Thus, the field, H, that an atomic moment experiences is given by

H= HA + NWM, (1.11)

where HA is the applied field, Nw is the molecular field constant, and NWM is the
exchange field. Substituting this into (1.3), one sees that £ is now given by
The remanence is obtained by setting H equal to zero in this equation and solving

kT

for M(T). Thus,

and we can use (1.8) to write this as follows:

M(0) ^g2mB
2J2mw ' ( L 1 4 )

Since this must also be equal to the Brillouin function, we can obtain a graphical
solution by plotting the two functions on the same graph, as illustrated in Fig. 1.3.
For low temperatures, the slope of (1.14) is very small, so the intersection occurs
at large values of £, and thus normalized magnetization approaches unity. As the
temperature increases, the slope also increases, and thus, the magnetization
decreases.

At the Curie temperature, 0 , the slopes of (1.14) and that of the Brillouin
function are equal. This intersection occurs at a point where both £ and the
magnetization are zero. The Curie temperature can be computed, since from (1.10),
the slope of the Brillouin function is given by

« u -£°m- <u5>

Thus, the Curie temperature is



Becker and Doring [6] computed the saturation magnetization as a function of
temperature and the total angular momentum. A comparison with measured values
for iron and nickel, as shown in Fig. 1.4, appears to be a good fit with theory if J
is taken to be either 0.5 or 1.

Above the Curie temperature, the material acts as a paramagnetic medium with
the susceptibility diverging at a temperature called the Curie-Weiss temperature
rather than at absolute zero degrees. The latter temperature is close to the Curie
temperature for most materials. This type of behavior occurs regardless of whether
the material is single crystal or consists of many particles or grains that are larger
than a certain critical size. However, for small particles or grains another effect
occurs. We will show in Section 1.6 that if these grains are sufficiently small, they
may have only two stable states separated by an energy barrier. It is then possible
that at a temperature smaller than the Curie temperature, called the blocking
temperature, the thermodynamic energy kT will become comparable to the barrier
energy. In that case, the particles or grains can spontaneously reverse and the
material no longer will appear to be ferromagnetic. Above the blocking
temperature, it behaves like a paramagnetic material with grains that have moments
much larger than the spin of a single electron. This type of behavior is called

Figure 1.4 Temperature variation of saturation magnetization for atoms with different total angular
momentum. [After Becker and Doring, 1939.]
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superparamagnetism. As the temperature is raised from below, the material
appears to lose its remanence and has a sudden large increase in its susceptibility.
For a medium with a distribution of grain sizes, there is a distribution in energy
barriers so that the blocking temperature is diffuse.

If the exchange energy is negative, it is convenient to think of the material as
composed of two sublattices magnetized in the opposite directions. If the
magnitude of the magnetization is the same for these two antiparallel sublattices,
the net magnetization will be zero, and the material is said to be antiferromagnetic
and appears to be nonmagnetic. On the other hand, if the magnitude differs, the
material will have a net magnetization; such a material is said to bz ferrimagnetic.

Ferrimagnetic materials usually have smaller saturation magnetization values
than ferromagnetic materials, because the two sublattices have opposite
magnetization. These materials are important, since they usually occur in ceramics
that either are insulators or have very high resistivity. Such materials will support
negligible eddy currents and so will be useful to very high frequencies.

The materials will be ferrimagnetic for all temperatures below a critical
temperature, known as the Neel temperature. Above that temperature the materials
also become superparamagnetic, similar to the way ferromagnetic materials
behave above the Curie temperature. Since the two sublattices may have different
temperature behavior, it is possible that at a given temperature the two moments
may be equal but opposite in sign, as illustrated in Fig. 1.5. At this temperature,
known as the compensation temperature, the two sublattices have equal
magnetization so that the net magnetization is zero. This magnetization is the
magnitude of the difference between the two sublattice magnetizations and will be
positive, since above or below the compensation temperature, the material will
become magnetized in the direction of an applied field.

The compensation temperature occurs above, below, or at room temperature,
depending on the elements in the crystal. Unlike the demagnetized state above the
Curie temperature, this state "remembers" its magnetic state, and changing its
temperature from the compensation temperature reproduces the previous magnetic
state. This property is useful in magneto-optical disks to render the stored
information impervious to stray fields. This is done by choosing a compensation
temperature that is close to the storage temperature. For practical devices the
storage temperature is usually room temperature.

1.4 MICROMAGNETISM

In this section we assume that the temperature is fixed so that material parameters,
such as saturation magnetization, may be regarded as constants. We then compute
the equilibrium magnetization patterns in a ferromagnetic medium. The dynamics
of magnetization are discussed in later sections. Thus, we choose the magnetization
variation that minimizes the total energy. This total energy is the sum of the
exchange energy, the magnetocrystalline anisotropy energy, and the Zeeman
energy.
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Figure 1,5 A ferrimagnetic material with a compensation temperature of approximately
65% of its Neel temperature.

The exchange energy, the source of the ferromagnetism, is given by

Kx = Y,JSi'Sj> (1.17)
n.n.

where n.n. denotes that the sum is carried out over all pairs of nearest neighbors,
J is the exchange integral, and S is the spin vector. Since the wave functions are not
isotropic, the exchange energy is not only a function of the difference in orientation
of adjacent spins, but is also a function of the direction of the spins. Since a spin
interacts with several nearest neighbors, the orientation energy depends upon the
crystal structure. This variation in the exchange energy with spin orientation is
called the magnetocrystalline anisotropy energy. We take it into account by adding
an anisotropy energy density term to (1.17). For cubic crystals, the simplest form
of this is given by

W *.. = Kid c t + c t c c + c 6 ( x ) n IQ\
cubic v x y y z z V \I.LOJ

where the a's are the direction cosines with respect to the crystalline axes, and K
is the anisotropy constant. If K is positive, the minimum anisotropy energy density
occurs along each of the three axes of the crystal. On the other hand, if K is
negative, the minimum anisotropy energy density occurs along the four axes that
make equal angles with respect to the three crystal axes. Higher order terms may
be added to this in certain cases.
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Another type of anisotropy energy density that commonly occurs is the
uniaxial anisotropy energy density. This is given by

Wu = Kusm2d, (1.19)

where Ku is the uniaxial anisotropy constant, 0 is the angle the magnetization
makes with respect to the z axis, and z is the easy axis if Kn is positive. If j£u is
negative, then z is the hard axis, and the plane perpendicular to the z axis is the easy
plane. We will denote the anisotropy energy density by Wanis whether it is cubic or
uniaxial.

For the present, we will consider only one additional energy term, the Zeeman
energy, which is the energy that a magnetic dipole m has due to a magnetic field.
This energy is given by

Ẑeeman = m B » (1.20)

where B is the total magnetic field, which is the sum of the external applied field
and the demagnetizing field of the body. We will decompose this term into the sum
of the applied field energy and the demagnetizing energy. The energy of a
magnetized body in an external field is given by

WH - / B-H dV.
V

Since B is |LIO(H + M), and since M2 is constant, by choosing a different reference
energy, this reduces to

WH = Mo/M-HrfV, ( 1 2 2 )

V

where H is that applied field and V is the volume of the material. Similarly, the
self-demagnetizing energy is given by

= -y/M-H^v, (1.23)
V

where HD is the demagnetizing field.
Thus, the total energy of the body is given by

W = WeK + Wanis + WD + WH. (1.24)

The magnetization pattern is then determined by adjusting the orientation of the
magnetization at each point in the material to minimize the total energy. In principle
we could find the orientation of the magnetization of each atom in the medium, but
unless the object is very small, this would involve too many computations. Instead,
in micrornagnetism, we will define a continuous function whose value at each
atomic site is the magnetization of that atom.
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Micromagnetism is the study of magnetization patterns in a material at a level
of resolution at which the discrete atomic structure is blended into a continuum, but
the details are still visible. Thus, the orientation of the magnetization in the medium
is obtained from a continuous function defined over the medium. Summations are
replaced by integrations, and differences by derivatives. In particular, if r is the
position of an atom and a is the relative position of a neighbor, the exchange
energy density between them is given by

r 2/s(r)-s(r+a)wex = -Hm l i - i >. ( 1 2 5 )
fl-o a3

Since the magnetization and the spin vector are in the same direction, we can
replace s by sM/Ms, where s is the magnitude of the spin vector and Ms is the
magnitude of M. Then, if we expand S(r+a) in a Taylor series, we get

*«y - Aw>.je& *£2sa* , (,.26,
Ms[ dx 2 dx2

where a is the distance to the nearest neighbor atom in the x direction and lx is a
unit vector in the x direction. Then

/ w i % *2[i KM, \ 3M(r) a2
A/f, , 62M(r) 1s(r>s(r+a:y = — 1 + aM(r)--—12 + —M(r)- 12 + • • . ( 1 2 7 )

Mp dx l dx1 J '

The first term in the Taylor series is a constant and can be omitted by choosing a
different energy reference. Since

M. aM = \*£
dx 2 dx

and since M2 is a constant, the second term in (1.27) is zero. If we sum the terms
in the y and z directions as well, then for a simple cubic crystal, the total exchange
energy becomes

aw - - A . f M - f ^ i + ^ • ^L)dV
eX M2Jv \dx2 dy2 dz2>

At , ( L 2 9 )

Mpy

where

A = — . (1.30)
a

Because of the additional atoms in a unit cell, for a body-centered cubic lattice the
exchange constant A is twice the value of a simple cubic lattice, and for a face-
centered cubic lattice it is four times the value of a simple cubic lattice.
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It is noted that (1.29) is approximate in two respects. First, the Taylor series
is truncated. Thus, the change in magnetization between adjacent atoms is assumed
to be small to allow the series to converge rapidly. This assumption is usually valid.
The second approximation is more subtle in that we are approximating a discrete
function by a continuous function. Since M2 is constant, the second derivative of
the magnetization diverges at the center of a vortex. Thus, (1.29) would calculate
an infinite energy, although 7s(r) • s ( r + a l x ) remains finite at the center of the
vortex.

The equilibrium magnetization in a medium is obtained by varying the
direction of the magnetization so as to minimize the total energy. This can be done
by directly minimizing the energy or by solving the Euler-Lagrange partial
differential equation corresponding to this variational problem. The resulting
magnetization pattern is referred to as the micromagnetic solution. This calculation
must be performed numerically, except for a few cases, two of which are discussed
in the next two sections. This introduces an additional discretization error that
calculates a finite energy at the center of the vortex. This energy is incorrect unless
the discretization distance is the same as the size of the magnetic unit cell.

If one is interested in the details of the magnetization change when the applied
field changes, the dynamics of the process must be introduced. Two such effects —
eddy currents, in materials with finite conductivity, and gyromagnetism — are
discussed later.

1.5 DOMAINS AND DOMAIN WALLS

An equilibrium solution to the micromagnetic problem in an infinite medium is
uniform magnetization along an easy axis. Then, both the exchange energy and the
anisotropy energy are zero. Such a region of uniform magnetization is called a
domain. In an infinite medium that is not uniformly magnetized, we will now see
that the equilibrium solution is the division of the medium into many domains that
are separated by domain walls that have essentially a finite thickness. Domain walls
of many types are possible, but in this section we discuss only the two simplest
types: the Block wall and the Neel wall. Furthermore, domain walls are classified
by the difference in the orientations of the domains that they separate, expressed
in degrees. For brevity, we limit ourselves to 180° walls.

We will consider a domain wall whose center is at x = 0, which divides a
domain that is magnetized in the y direction as x goes to infinity and that is
magnetized in the - y direction as x goes to minus infinity. As one goes from one
domain to the other, if the magnetization rotates about the x axis, it remains in the
plane of the wall, and the wall is said to be a Block wall. On the other hand, if the
magnetization rotates about the z axis, the wall is said to be a Neel wall.
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1.5.1 Bloch Walls

Let us consider a Bloch wall that lies in the yz plane and that separates two
domains: one magnetized in the y direction and the other magnetized in the -y
direction. If the domain magnetized in the y direction lies in the region of positive
x, and the domain magnetized in the - y direction lies in the region of negative x,
then the magnetization can be written as

MW = Ms {cos[0(x)]ly + sin[6C*)]lJ. (1.31)

with the boundary conditions 0( - °°) = 0 and 0(<») = n. That is, the magnetization
is in the z direction for large negative values of x and in the - z direction for large
positive values of x. Differentiating twice with respect to JC, we have

^r • AT)1- <'•»>
dx2 V dxf

so that

M - f • -<(£) •
If there is no applied field, and since there is no demagnetizing field, the Zeeman
energy is zero. Summing the remaining energies, the anisotropy energy and
exchange energy, from (1.29), the energy in a domain wall per unit area is as
follows:

W = J A[^J + SlBtold*, (1.34)

where #[0(A;)] is the volume density anisotropy energy function.
We obtain the domain wall shape by finding the 0(x), which minimizes this

integral subject to the constraints that 0( - «>) = 0 and 0(«>) = TC. This minimum is
found, using the calculus of variations, by solving the corresponding Lagrange
differential equation corresponding to the minimization of this integral. In this case,
this is given by

If we integrate this from 0 to 0, since g(0) is zero and since dQldx\x=_oo is zero,
we obtain
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m,j-^,j'j[f)\-A{f)\ (1.36)
Jo dx2 J-oodx^ dx' V dx'

or

'•f'&- °-3 7 )

For crystals with uniaxial anisotropy, from (1.19),
g(8) = Kucos26. (1.38)

Then

, = \I(9j*..!~JiJ), (L39)
^ Ku h sin6 it \ 2 / V '

where /„, is the classical wall width given by

/w = TCV/47^. (1.40)

For iron, this is approximately 42 nm, or roughly 150 atoms wide. Solving for 0,
one gets

0=tanfexP^) =gdff)-f (1.41)

where gd, defined by this equation, is called the Gudermannian. Figure 1.6 plots
0 as a function of x. It is seen that more than half of the rotation in angle takes
place between ±/w In fact, in the equal angle approximation all the rotation takes
place between ±/w. Since for many magnetic materials /w is the order of 0.1 |im, the
domain wall is very localized. Substituting (1.36) into (1.34), we see that the total
energy density per unit wall area is given by

full Ar fn.2 ,
w = 2 S ( 0 ) - ^ 9 = 2 yfA^&jdQ. (1.42)

Thus, for uniaxial materials, this becomes
fn/2 i ~ - .

w = 2j JAK usin2QdQ = 4jAKu. (1.43)
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Figure 1.6 Variation of the magnetization angle for a Bloch wall: Dashed line indicates the equal
angle approximation to the angle variation.

1.5.2 Neel Walls

For an infinite Neel wall, the magnetization is given by

M = Ms [COS6(JC)1X + sin0(x)lz], (I.44)

where 0 goes from 0 to TE as x goes from - °° to ». The only difference between
this and the Bloch wall is that the magnetization now turns so that when x is zero
it points from one domain to the other. In this case, the divergence of M is no
longer zero, and there is a Zeeman term in the total energy. Since the divergence
of B is zero, the divergence of M is the negative of the divergence H. In particular,

div M = — £ = Af-cos0(jc)— = -div H. (1.45)
dx dx

Since H has only an x component, when we integrate this equation and use the
boundary conditions that H( - <») = H(«>) = 0, we are led to the conclusion that
Hx = ~MS. From (1.23), the demagnetizing energy of the moments in this field is
given by

_ . f f i = Mô  = MX
^ 2 2 2

Comparison with (1.38) shows that this has the same variation as the uniaxial
anisotropy energy. Thus, a N6el wall has the same shape as a Bloch wall whose
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anisotropy energy is given by Ku + \xMs
2. Since the wall energy is proportional to

the square root of K^ it is seen that the Neel wall will have greater energy than a
Bloch wall. Thus, in infinite media, Bloch walls are energetically preferable to Neel
walls. Furthermore, since the wall width is inversely proportional to the square-root
of Ku, it is seen that the Neel wall will be thinner than a Bloch wall.

We have just discussed domain walls in infinite media. In finite media, the
walls will interact with boundaries. Thus, in thin films, 180° walls between
domains magnetized in the plane of the film tend to be N£el walls, to minimize
demagnetizing fields. Furthermore, at the junction of two walls of opposite
rotation, complex wall structures can form, such as cross-tie walls. This subject is
beyond the scope of this chapter.

1.5.3 Coercivity of a Domain Wall

In the continuous micromagnetic case, the energy is not a function of the position
of the domain wall. Thus the slightest applied field will raise the energy of the
domain on one side of the wall with respect to the other, and there will be nothing
to impede its motion, thus predicting zero coercivity. In a real crystal, the
magnetization is not continuous because there are preferred positions of the domain
wall, so there is a very small coercivity. The sources of coercivity in a real material
are the imperfections in the crystal structure. We will briefly discuss imperfections
of two types: inclusions and dislocations in the crystal lattice.

Inclusions are small "holes" in the medium, usually formed by the entrapment
of bits of foreign matter. The inclusions either are nonmagnetic or have a much
smaller magnetization than their surroundings. Such an inclusion will have
magnetic poles induced on its surface, which will repel an approaching domain
wall, thus impeding its progress. The equilibrium position of this wall in the
absence of an applied field will be between the inclusions. The absence of
exchange and anisotropy energy in the inclusion implies that the domain wall will
have lower energy when it is situated on the inclusion also impeding its progress.

When a field is applied to a material with inclusions, the wall will bend in a
direction that increases the volume of the domain that is closer to being parallel to
the applied field. When the field is increased beyond a critical value, the domain
will snap past that inclusion and become attached to another inclusion. We will
denote the applied field behavior of the magnetization of the volume swept out by
this motion as a hysteron. Even if it were possible to sweep that volume back, the
field required to sweep the domain wall back generally would differ from the
negative of the preceding field, which is now being restrained by different
inclusions. Furthermore, these two fields are statistically independent of each other.

Dislocations in the crystal lattice also interact with domain walls. In some
cases, the easy axes on the two sides of the dislocation may be aligned differently.
This permits walls to be noninteger multiples of 90°. If the dislocations are
sufficiently severe, the exchange interaction between atoms on the two sides of the
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wall may become negligible and a domain wall might not be able to cross the
boundary.

A hysteron can switch either by rotation of the magnetization in the domain,
as discussed in the next section, or by wall motion. In the latter case, if there is a
wall, it has to be translated past the inclusions. On the other hand, if the material
had been saturated, so that all the domain walls were annihilated, a new wall would
have to be nucleated. The nucleation of a reversed domain requires a much higher
field than that required to move a wall past each inclusion. Thus, nucleation usually
takes place only when there are no domain walls anywhere in the crystal. If one
measures the hysteresis loop of a material by controlling the rate of change of
magnetization to a very slow rate, the field required for the initial change in
magnetization is found to be larger than that needed for subsequent changes in
magnetization. The resulting loop is said to be reentrant. Such a loop is shown in
Fig. 1.7. The random variation in width is due to the variation in coercivity from
inclusion to inclusion.

1.6 THE STONER-WOHLFARTH MODEL

A magnetic medium consisting of tiny particles can have a much higher coercivity
than a continuous medium with inclusions. A model to analyze this case by means
of an ellipsoidal particle was proposed by Stoner and Wohlfarth [7], who used a
theorem, shown by Maxwell, that the demagnetizing field of a uniformly
magnetized ellipsoid is also uniform. Thus, it is possible to have an object in which
the applied field, the demagnetizing field, and the magnetization are all uniform.
This model is called the coherent magnetization model. Other magnetization modes
are possible if the material is large enough, but for bodies whose largest dimension
is smaller than the width of a domain wall, only the uniform magnetization mode

f£ i i Applied field

Figure 1.7 A typical reentrant hysteresis loop.
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is possible. In such cases, we say that the particle is a single domain particle. Of
course if the particle is too small, thermal energy might be sufficient to
demagnetize it, and the particle would become superparamagnetic. That is, it
would behave like a paramagnetic particle with a very large moment.

The Stoner-Wohlfarth model assumes that the particle is an ellipsoid and that
its long (easy) axis is aligned with its magnetocrystalline uniaxial easy axis. It is
also assumed that as the magnetization rotates, its magnitude remains constant.
Because we assume that the particle is single domain, that is, it is uniformly
magnetized, its exchange energy is seen to be zero. As the magnetization of the
particle is rotated, the demagnetizing field changes in magnitude, and thus the
demagnetizing energy changes because the demagnetizing factors along the
different axes of the particle differ. This energy is referred to as shape anisotropy
energy. Then magnetization will be oriented in such a way that the total energy —
the sum of the applied field energy, the demagnetizing energy, and the shape
anisotropy energy — is minimized. The sum of the latter two energies will be
referred to simply as the anisotropy energy.

We will assume that a field is applied horizontally to a particle whose long axis
makes an angle p with it, as shown in Fig. 1.8. All angles are measured in the
counterclockwise direction, so that 0, the angle the magnetization makes with
respect to the particle's long axis, as pictured, is negative. We will presently see
that if the applied field is zero, the magnetization will lie along the easy axis of the
particle; however, it could be oriented either way along that axis. Thus, the
anisotropy energy will be doubly periodic as the magnetization rotates. We will
also see that the applied field energy is unidirectional and thus is singly periodic.

Maxwell showed that for a uniformly magnetized general ellipsoid, the
demagnetizing field is also uniform, though not antiparallel to it. The
demagnetizing field can be written as the product of the demagnetization tensor and
the magnetization. The demagnetization tensor is diagonalized if the coordinate
axes are chosen to be the principal axes of the ellipsoid. In that case, the diagonal
elements are referred to as the demagnetizing factors, and the demagnetizing field

Figure 1.8 Stoner-Wohlfarth description of a spheroidal particle.
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HD is given by
HD = D

XKh + DyMyh + DM1,' (1.47)

where Dv Dyt Dz are the demagnetizing factors along the three principal axes of the
ellipsoid. Maxwell also showed that

^ x * D , + D t ' l . (1.48)

For a spheroid, an ellipsoid of revolution, if the y and z are the two equal axes, then

1-2),
D,'DM" - y i . (1.49)

It is well known that for this spheroid

Dx = — L - a In|a+i/a2-lj - 1 , for a > 1, (1 5 0 )

and

Z>x = - L j l - — 5 _ s i n - ' y T ^ , for a < 1, (1 51 )
1 tt I y i - a

2

where a is the ratio of the length of the particle along the x axis to the length of the
particle along other axes (see Bozorth [8]). It can be shown that as a approaches
one for both formulas, the demagnetization factor approaches 1/3, the value for a
sphere. It can also be shown that when a = 0, then Dx=l, and for large a (1.50)
becomes

Dx = ±(in2<x - 1), {L52)

a2

and thus, goes to zero essentially as I/a2. A graph of D as a function of a,
illustrating that 0 <, Dx < 1, is shown in Fig. 1.9.

Using the variables illustrated in Fig. 1.8 and the expression for demagnetizing
energy in (1.23), it is seen that the demagnetizing energy is given by

W = JSl.HDK = -^^IDX cos28 + - ^ W e ) . (1.53)D 2 D 2 [ x 2 )

lfDx is less than 1/3, then WD is a minimum when 0 = 0. If the applied field is now
nonzero, then we have to add an applied field energy, WH, to this, where according
to (1.21),

WH= - n 0 H - M F = -\i0MsV[HxcosQ+H^iaQ]. (1.54)
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Figure 1.9 The demagnetizing factor of a spheroid as a function of its aspect ratio.

If the body remains uniformly magnetized, then the exchange energy is
constant. Since the uniaxial magnetocrystalline anisotropy has the same spatial
variation as the demagnetizing field, if their easy axes coincide, the two can be
combined into a single term, and the effective demagnetizing factor must be
increased by Ku. However, if the long particle axis does not line up with the
magnetocrystalline axis, an effective easy axis between the two must be computed.
A plot of the total energy, the sum of (1.53) and (1.54), is shown in Fig 1.10, for
three applied field values: zero, HJ2, and Hh where Hk = 2K/M is called the
anisotropy field. It is seen that for zero applied field, the energy has two equal
minima 180° apart. Then the magnetization could be oriented along either of these
directions. As the field is increased, the minimum near 180° decreases in energy
and moves to the left while the minimum near 0° increases and moves to the right.
At the critical field, the minimum near 0° disappears, and above that field there is
only a single minimum. When the field is decreased back to zero, the energy barrier
between the two minima prevents the magnetization from going to the minimum
near 0°. Thus, saturating a magnetic material is one method of putting it in a unique
magnetic state.

In order to solve for the minimum energy, we take the total energy given by

differentiate it with respect to 0, and set it equal to zero. Thus, after dividing by |i0

Ms V, we get

W = -nnM-VT//cos0+// sin0] - M° S \D cos26+ isin26 , (1.55)
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Figure 1.10 Energy as a function of magnetization angle for three applied fields.

Since the system seeks an energy minimum, this quantity must be positive at a
stable equilibrium. To find the critical field, Hh that is, the value of the field at
which one of the minima disappears, we solve for the value that makes the second
derivative zero. Thus, we obtain

//xcos0 + //ysin0 + C(sin20 - cos20) = 0. (1.59)

We can solve for cos 0 by multiplying (1.56) by sin 0, multiplying (1.59) by cos 0,
and adding the results. Then one obtains

!—§K = H sin0 - Hcosd - Csin6cos8 = 0, n *fV>

where

1 - 3D
C = Af- - . (1.57)5 2 J

It is noted that for prolate particles, Dx is less than 1/3, so that C will be positive.
To determine whether this is a minimum or a maximum, we take the second
derivative of the energy with respect to 0, and obtain

\—^K = Hxcosd + HysmQ + C(sin20 - cos26). (L58)

1.51 1 1 1 r

CT A / \ N \ / / / v

\ ^ J jy«o
*-S H=HJl

-1.5' ' ' ' '
0 90 180 270 360

8 (degrees)



Similarly, we can solve for sin 6 by multiplying (1.59) by sin 6, multiplying
(1.56) by -cos 8, and adding the results, yielding

sinG = ~(Hy/Q
m or Hy = -Csin36. (1.61)

The solution to this equation is called the Slonczewski asteroid [9], which is
illustrated in Fig. 1.11.

To determine the magnetization and its stability for a Stoner-Wohlfarth
particle, one plots the vector magnetic field from the origin, as shown for two field
vectors in Fig. 1.11. The direction of the magnetization is obtained by drawing a
tangent from the asteroid to the tip of the field vector. The magnetization vector is
obtained by drawing a vector whose length is given by MSV along that line. It is
seen that when H, is applied, the tip of the field vector falls outside the asteroid,
and there is a unique state for the magnetization, indicated by Mf, however, when
H2 is applied, it falls inside the asteroid, and there are two stable states for the
magnetization, both of which are indicated by M2.

Figure 1.11 Slonczewski asteroid used to determine the state of a Stoner-Wohlfarth
particle.
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cosG = (HJQm or Hx = Ccos30. (1.60)

Since sin26 + cos20 = 1, we can eliminate 6 from (1.60) and (1.61). Thus,

fff + H™ = C™. (1.62)

y-(c/AoM
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Figure 1.12 Variation of 0 with the applied field for p = 0.5.

The applied field that achieves this magnetization can be obtained by solving
(1.56) as

g - C*in(28). ( 1 6 4 )

2sin(6 + p) ( L 6 4 )

r
\V

lagnet zation

—--——.

switcl

1 -r -

ies

The variation of 0 with applied field is illustrated in Fig. 1.12. It is seen that for
positive fields, 0 approaches - p monotonically as the magnetization tries to align
itself with the applied field. For negative fields, 0 increases until it reaches its
maximum, and then it switches.

We will define the critical angle QM as the angle at which the particle switches.
It is obtained by solving for the value of 0 that makes (1.58) equal to zero. It is thus
possible to plot m as a function of H by varying 0 between - P and QM. That is,
one must solve the transcendental equation

Hcos$ + dM)-Ccos(2dM) = 0. (1.65)

If we substitute (1.64) into this, and use the tangent trigonometric identities, we
obtain

tan0M = (tanP)1/3. (1.66)

If one plotted the component of the magnetization along the applied field's
axis, that is, M5cos(8 + P), as a function of the applied field, one would obtain the
hysteresis loops shown in Fig. 1.13 for three values of p. These loops show that for
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Figure 1.13 Possible Stoner-Wohlfarth particle hysteresis loops for P = 2°, 25°, and 45°.

If one plotted the component of the magnetization along the applied field's
axis, that is, M5cos(0 + P), as a function of the applied field, one would obtain the
hysteresis loops shown in Fig. 1.13 for three values of p. These loops show that for
particles in the negative state, when the applied field reaches the critical field Hk,
the particle abruptly switches to the positive state. If the magnetization was still
negative before switching, this field is also the coercivity. On the other hand, if the
magnetization was already positive, Hk is larger than that of the coercivity. The
largest value of P for which Hk is equal to the coercivity is 45°. It is seen that all
the hysteresis loops have two critical fields that are the same in magnitude but
opposite in sign.

The critical field of a particle as a function of particle angle p with respect to
the applied field can then be computed, from (1.62), as

As shown in Fig. 1.14, this field is a maximum when p = 0 or n/2. When p
increases from 0, the critical field of the particle decreases until P = n/4, and then
increases back to the value it had at P = 0 when P = n/2.

For values of p beyond TU/4, as the field is increased from negative saturation,
the magnetization goes through zero before the magnetization switches. Thus, we
have to distinguish between the critical field, the field at which the magnetization
switches, and the coercivity, the field at which the magnetization is zero. The
coercivity follows the critical field until TT/4. Beyond that it obeys (1.64) with 0 set

H = C
* ~ (cosp2/3

+sinp2/3)3/2' ( L 6 7 )

r'/< !
(45V' I Ij

|i J \\ Applied field
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Figure 1.14 Coercivity and critical field variation with particle angle.

to the complement of P, as illustrated in Fig. 1.14. So the field at which the lower
section of the curve crosses the H axis is a monotonic decreasing function of p.

For particles that are larger but still single domain, other nonuniform reversal
modes are possible. These modes are characterized by smaller values of Hc and are
sometimes referred to as incoherent reversal modes. Although these modes have
a different P dependence, they have the same properties as the Stoner-Wohlfarth
particles: two stable states, a monotonic decreasing function of Hc with p, and a
maximum in Hc when P is 0 or rc/2.

Real particles are generally ellipsoidal but with "corners." These corners
permit magnetization reversals to be nucleated with fields considerably smaller
than those necessary to nucleate reversals in ellipsoids. Since the shape of the
particles prevents the existence of analytical solutions for them, reversal modes of
these types have been studied numerically [10,11]. It was seen that for real
particles, although their specific properties differ in magnitude and in various
details, their general properties are the same as those of Stoner-Wohlfarth
particles: that is, they have two stable states for a certain range of particle sizes;
their switching field at first decreases with angle and then increases; and their
coercivity is a monotonic decreasing function of angle.

One difference between ellipsoidal and nonellipsoidal particles is that for the
latter there is a nucleation volume that, once reversed, causes the whole particle to
reverse. This is also referred to as the activation volume, and it usually has an
aspect ratio of unity. It may be thought of as the largest sphere that can be inscribed
within the particle.
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1.7 MAGNETIZATION DYNAMICS

Hysteresis is a rate-independent phenomenon; that is, the final state is the same no
matter how fast the input changes to the final value. In fact, hysteresis is only a
function of the field extrema. Thus, to obtain the possible final states, it is
necessary only to solve the static equilibrium problem. To choose the particular
magnetization pattern that is appropriate for a given input sequence if only
hysteresis were involved, one would have to be sure only that the energy, in the
sequence of magnetization patterns that were traversed by this magnetizing process,
was a monotonically decreasing function of time. Other dynamic effects, which we
will now discuss, may alter this sequence of equilibria.

There are two categories of dynamic effects: those that have time constants
much slower than the rate of the applied field, and those that are comparable to or
faster than the rate of the applied field. The former type includes magnetic
aftereffect, which causes the magnetization to drift with time, while the latter type
includes eddy currents and gyromagnetic effects. A rate-independent effect
sometimes confused with these is accommodation. Accommodation is another
process that causes the magnetization to drift; however, this process requires a
change in applied field to trigger it. It is observed that repetitive minor loops
apparently drift toward an equilibrium loop. As such, it is a rate-independent
process and is discussed in Chapter 5.

Aftereffect refers to the slow change in magnetization with time that results
from thermal processes. The magnetization is held in an equilibrium pattern by
energy potential barriers. They may be surmounted by thermal energy according to
the Arrhenius law. When this happens, the magnetization will find another local
energy minimum. The higher the potential barrier, the longer it will take to be
surmounted, but given enough time, any barrier may be surmounted. With this
process, a magnetization pattern will change from a local energy minimum to a
global energy minimum. For soft materials, with small energy barriers, this process
will take the order of many minutes, but with harder materials, with
correspondingly larger energy barriers, it may take centuries. This also is discussed
in greater detail in Chapter 5.

1.7.1 Gyromagnetic Effects

We now turn our attention to gyromagnetic effects. When a magnetic field is
applied to an electron, it creates a torque T on its magnetic moment m to align it
with the magnetic field B. That is,

T = mxB. (1.68)

Since an electron also has an angular momentum, k, we write
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sail &
m = -——k = -yk, (1.69)

2m

where the minus sign is due to the sign of the charge of the electron, e/m is the ratio
of the charge to the mass of an electron, and g is the gyromagnetic ratio, which is
one for orbital motion and two for spin motion. The term Y is normally referred to
as the gyromagnetic ratio of an electron. Thus, when an electron is subject to an
applied magnetic field, its magnetization is unable to align itself with the field, but
instead its magnetization precesses about the magnetic field. The precession
frequency (o0 is given by

<*>o = VB- (1.70)

This rotating magnetic moment radiates energy, thus permitting the electron to
eventually align itself with the magnetic field. Therefore, the time rate of change
of angular momentum is given by the Landau-Lifshitz equation

— = -YmxB - amx(mxB), (1.71)
dt

where a is the damping factor. For small damping factors, the moment will precess
many times about the applied field, but for large damping factors, the moment will
make a small fraction of a revolution about the applied field as it approaches
equilibrium.

When an alternating rf magnetic field with frequency w is applied to a material
that is magnetized by a dc field acting along the ^-direction, the material appears
to have a nonreciprocal permeability tensor given by

1 +X^ Xxy 0

M =M0 -X* 1+X* 0 , (1.72)

0 0 1

where the reciprocal susceptibility is given by

Xxx 2 7 ' (1-73)
G>0-0)2

and the nonreciprocal susceptibility is given by

" ~ 777? ' (L74)
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It is noted that B is the internal field in the material, which in ferromagnetic
materials is given by

B = \xQMD, (1.75)

where D is the demagnetizing factor along the axis on which the material is
magnetized. The nonreciprocal nature of this permeability permits one to build
nonreciprocal passive devices, such as isolators, circulators, and other similar
microwave devices.

1.7.2 Eddy Currents

When a field parallel to the magnetization on one side of a domain is applied, the
domain wall experiences a "pressure" in a direction that would make the domain
parallel to the applied field grow. In conductors, eddy currents are induced by
Faraday's law whenever the applied field changes and consequently the
magnetization changes. The eddy current field opposes the applied field and
generally shields the interior of the material from it. For low frequencies, the
applied field eventually penetrates the entire material. For high frequencies, the
induced currents and the applied fields are limited to a very thin region close to the
surface of the conductor, and so this effect is called the skin effect.

1.7.3 Wall Mobility

We will now address the question of how a domain wall moves in view of the
constraints imposed by the Landau-Lifshitz equation. Consider a 180° Bloch wall
between two domains magnetized in the +z direction and the ~z direction. A z-
directed field applies a pressure on the wall tending to move it in a direction such
that the domain magnetized in the z direction would grow. This field would not
apply a torque on the magnetic moments in either domain, since it has no
component perpendicular to the magnetization. The atoms in the wall, however,
experience a torque and will start to precess about the applied field. If this
continues, the Bloch wall will become a Neel wall and will experience a
demagnetizing field perpendicular to the applied field. The magnetic moments in
the wall can now precess about this new field, and thus propagate the wall.

The larger the applied field, the faster the atoms in the domain wall will
precess, and the more the Bloch wall will convert into a Neel wall. This will
produce a larger demagnetizing field in the wall, causing it to precess faster, and
thus the wall will move faster. Therefore, the wall's velocity will be proportional
to the applied field, and its motion will be characterized by a mobility. This linear
variation of wall velocity with the applied field terminates when the wall has
completely converted to a Neel wall, and then the wall will have achieved a limiting
velocity, referred to as the Walker velocity. This velocity depends on the material,
but for most materials it is of the order of meters per second. The slowness of this
motion was a limiting factor in bubble memories.
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1.8 CONCLUSIONS

Modeling magnetic materials can be performed at various levels of detail: the
atomic level, the micromagnetic level, the domain level, and finally at the nonlinear
level. The first of these involves the use of quantum mechanics to compute the
magnetization of individual electrons in atoms. The second level smears out the
effect of individual atoms into a continuous function, and one can see the variation
of the magnetization in the medium on a greater scale. At the domain level, the
details of domain walls are invisible, and one sees only uniformly magnetized
domains separated by domain walls of zero thickness. Finally, at the nonlinear
level, one averages the magnetization over many thousands of atoms in order to
replace the constituent equations that complete the definition of magnetic fields
along with Maxwell's equation.

Preisach modeling, which we will describe in the subsequent chapters, falls
into the nonlinear level of magnetization detail. This type of modeling describes not
only gross effects, such as the major hysteresis loop, but also the details of minor
loops. When coupled with the appropriate equations, it can describe dynamic
effects as well. Finally, it can be coupled with phenomena of other types to
describe hysteresis in such effects as magnetostriction.

The solution for the magnetization involves the calculation of the magnetic
state of the system, since the behavior depends upon this. Then one can compute
the magnetization of the system under the influence of an applied field when the
magnetization is in this state. This type of problem is similar to a many-body
problem, except that the system displays hysteresis. Thus, it can be referred to it as
the hysteretic many-body problem.

In modeling coercivity, the quantities of interest are the discrete magnetization
states and the Barkhausen jumps that occur when going from one state to another.
The minimum change of state is the reversal of a single hysteron or magnetic entity.
When there are many interacting hysterons, one is solving a hysteric many-body
problem. Then one can go to the limit of a continuous density of hysterons.
Preisach modeling is one of the mathematical tools for handling such densities.

The definition of the magnetic state will be based on the Preisach definition
of hysteron, that is, a region that switches as a single entity and has two magnetic
states. For hard materials, this region might be a single particle in particulate media
or a single grain in thin-film media; for soft materials, it might be the volume
switched by a single Barkhausen jump. A discrete entity with more than two states
can be decomposed into several hysterons. Thus, the basic approach is identical for
hard and soft materials, but the parameters chosen will differ. The classical
Preisach model, which is discussed in the next chapter, is able to describe
hysteresis in general, but the details do not accurately describe real-world
phenomena. Subsequent chapters modify this model to correct these errors, using
the physical principles just discussed.
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