

L
inux L

ibrary

 P
art 1

 H
o

w
 T

h
in

g
s W

o
rk

Part 1

How Things Work

Featuring:

�

The commands that constitute the command portion of the SMTP
command/response protocol

�

The SMTP response codes and what they mean

�

The structure of a basic mail message

�

The ESMTP and MIME extensions for multi-media mail

�

The POP and IMAP mailbox protocols

�

The meaning of MUA, MSA and MTA and the role these things play in
mail delivery

�

The role that Sendmail plays in you mail architecture

�

The interaction between Sendmail and DNS

�

How Sendmail is run to collect inbound mail

�

How to control Sendmail at startup and how to control it with signals

�

How to install the Sendmail binaries with RPM

�

How to compile Sendmail for a Linux system

CO
PYRIG

HTED
 M

ATERIA
L

1

Internet Mail Protocols

T

he complexity of Sendmail configuration is legendary. Tales of administrators
becoming entrapped in the maze of terse commands that make up the Sendmail configu-
ration file are part of the folklore of Linux system administration. Surprisingly, the net-
work protocols that underlie Sendmail are very simple.

A

network protocol

 is the set of rules that computer systems must follow in order to
exchange information over a network. Network protocols that operate over the Internet
are part of the Internet Protocol suite. Unlike most Internet protocols that need to be
explained at the network packet level, the e-mail protocols are simple command/response
protocols that you can easily understand and manipulate. This chapter will both explain
the e-mail protocols and show examples of how they can be easily observed and manip-
ulated by the average user.

Understanding the e-mail protocols can help you understand what Sendmail does, which
in turn can help you understand when and why certain configuration options are neces-
sary. The ability to directly manipulate e-mail protocols from the Linux console is also a
useful troubleshooting tool. And beyond these practical applications lies an equally
important reason: True mastery of any subject requires that you really understand how
the thing works.

Chapter 1

Internet Mail Protocols

4

The Internet Protocol Suite

The Internet is built with the Internet Protocol suite. The Internet Protocol (IP) is the
foundation of the protocol suite, and the Simple Mail Transport Protocol (SMTP) is the
mail delivery protocol in that suite.

IP defines the network addressing, thus the term

IP address

, and it defines the basic unit
of information that moves though the network. This unit of information is a block of
data, called a

datagram

, that contains addressing and administrative information as well
as application-specific data. Because the datagram carries its own addressing information
with it, it can move through the network independent of any other datagram. The benefits
of this independence are robustness and efficiency. Robustness comes from the fact that
each datagram can choose its own path through the network. If part of the network fails,
the datagram can move around it on any available path. Efficiency comes from the min-
imal overhead involved in this scheme. Because each packet is independent, there is no
need to keep track of other packets in the flow, which simplifies processing. The weakness
of this independence is that sometimes the application data must span multiple data-
grams. The IP protocol does not provide a way to sequence the data across datagrams.

The Transmission Control Protocol

(TCP) offers applications a way to address the weak-
nesses of IP. When an application needs to send a stream of related data, TCP provides
the features necessary for the data to arrive at the remote location reliably and in
sequence. It maintains the sequence by embedding sequence numbers in the stream of
transmitted data and ensures reliability by requiring acknowledgements from the remote
end. SMTP creates a connection between the source and the destination of the e-mail. It
uses TCP to create and manage this connection, and to guarantee that the information
sent to the destination arrives in sequence and without errors. SMTP systems communi-
cate over TCP port 25. The stream of data sent over the connection contains the com-
mands of the SMTP protocol as well as the e-mail message.

A Simple Mail Transport Protocol

The SMTP protocol is defined in RFC 821 (“A Simple Mail Transport Protocol”). It is a
cleartext command/response protocol. The e-mail source sends a command to the desti-
nation and waits for a response to the command. Table 1.1 lists the SMTP commands
defined in RFC 821.

A Simple Mail Transport Protocol

5

H
ow

 T
hi

ng
s

W
or

k

PART 1

RFC 821 defined some other commands that were not widely implemented. These obso-
lete commands are:

SEND

Sends the mail message to a terminal.

SOML

Sends the mail message to a terminal or delivers it to a mailbox.

Table 1.1

Basic SMTP Commands

Command Syntax Purpose

Hello

HELO <

sending-host

>

Opens the SMTP session and
identifies the source host.

From

MAIL FROM:<

from-address

>

Specifies the sender’s mail
address.

Recipient

RCPT TO:<

to-address

>

Specifies the mail address of the
recipient.

Data

DATA

Signals the start of the mail mes-
sage. The mail ends when a line
containing only a dot (.) is sent.

Reset

RSET

Aborts a message.

Verify

VRFY <

address

>

Verifies an e-mail address.

Expand

EXPN

<

list-name>

Displays the e-mail addresses con-
tained in the specified mailing list.

Help

HELP

 [

<

command>

]

Displays a summary of all sup-
ported commands or, optionally,
information about a specific
command.

No Op

NOOP

Asks the destination host to do
nothing except send an “OK”
response.

Quit

QUIT

Ends the SMTP session.

Chapter 1

Internet Mail Protocols

6

SAML

Sends the mail message to a terminal and delivers it to a mailbox.

TURN

Turns the connection around so that the mail source is now the destination
and the mail destination is now the source.

RFC 821 was written way back in 1982 when central computers with user terminals were
in widespread use.

SEND

,

SOML

, and

SAML

 assumed that there would be times when the
source system would want to display a message on the recipient’s terminal in a manner
similar to the Linux

write

 command. In reality, SMTP turned into a pure mail system
that sends e-mail to a mailbox and does not send messages to a terminal.

The

TURN

 command reverses the role between the sending and receiving mail systems. In
a normal connection, the system that initiates the connection is the system that has mail
to send. With the

TURN

 command, the system that initiates the connection does not nec-
essarily have mail to send. The initiating system is hoping to receive mail. It creates the
connection to find out if the remote system has any mail to send to it. In a global Internet
it is, of course, impossible to know what systems have mail to send you. So the

TURN

 com-
mand was really intended as a way to move mail from a mailbox server to a client that
has limited network service. Mailbox protocols like POP and IMAP, covered later in this
chapter, reduced the demand for

TURN

, as did the wide deployment of full-time Internet
access. Security concerns about the

TURN

 command killed it.

For these reasons,

SEND

,

SOML

,

SAML

, and

TURN

 were never widely implemented and you
can safely ignore them when you see them in RFC 821. The 10 commands listed in Table
1.1 are the basic SMTP commands implemented on most systems.

As you’ll see in the following sections, SMTP is such a simple protocol that it is possible
to watch the protocol in action and to understand what is happening when you do.
This is both a useful way to learn how the protocol functions and to detect when it is
malfunctioning.

Using SMTP through

telnet

The SMTP protocol is simple enough for you to “do it yourself.” Use

telnet

 to connect
to port 25 on a destination host and manually type in a few SMTP commands. The example
in Listing 1.1 was created on a Red Hat system running Sendmail 8.11.0.

Listing 1.1 Telnetting to the SMTP Port

[craig]$ telnet wren.foobirds.org 25

Trying 127.0.0.1...

Connected to wren.foobirds.org.

Escape character is '^]'.

220 wren.foobirds.org ESMTP Sendmail 8.11.0/8.11.0; Mon, 23 Oct 2000

 11:23:14 -0400

A Simple Mail Transport Protocol 7

H
ow

 T
hi

ng
s

W
or

k

PART 1

helo robin

250 wren.foobirds.org Hello robin [172.16.5.2], pleased to meet you

help

214-2.0.0 This is Sendmail version 8.9.3

214-2.0.0 Topics:

214-2.0.0 HELO EHLO MAIL RCPT DATA

214-2.0.0 RSET NOOP QUIT HELP VRFY

214-2.0.0 EXPN VERB ETRN DSN AUTH

214-2.0.0 STARTTLS

214-2.0.0 For more info use "HELP <topic>".

214-2.0.0 To report bugs in the implementation send email to

214-2.0.0 sendmail-bugs@sendmail.org.

214-2.0.0 For local information send email to Postmaster at your site.

214 2.0.0 End of HELP info

vrfy <norm>

250 2.1.5 <norm@24seven.wrotethebook.com>

vrfy <frank>

550 5.1.1 <frank>... User unknown

expn <staff>

250 2.1.5 <becky@ani>

250 2.1.5 <sara@hawk>

250 2.1.5 <david@ani>

250 2.1.5 Craig Hunt <craig@24seven.wrotethebook.com>

250 2.1.5 <kathy@robin>

quit

221 wren.foobirds.org closing connection

Connection closed by foreign host.

In Listing 1.1, a sample user sitting at the computer robin uses telnet to connect to the
SMTP port on wren. The first three messages displayed (Trying, Connected, and Escape)
are telnet messages that have nothing to do with SMTP or Sendmail. The first SMTP
message begins with the code 220. This message comes from the remote server wren, and
is issued in response to the TCP connection created by telnet. This message lets the local
system know that the remote system will accept SMTP commands. This first message pro-
vides several pieces of information. The message

� identifies the remote host as wren.foobirds.org
� states that the remote system is running ESMTP, which is extended SMTP, a topic

covered later in this chapter
� says that wren is running Sendmail version 8.11.0
� displays the time the connection is made

Chapter 1 Internet Mail Protocols8

The first command entered by the user is HELO, which identifies the local system as robin
and starts the SMTP session. The remote server responds with a message that begins with
code 250, and indicates that the session has begun. In Listing 1.1, the user then types in
the HELP command. In response to that, the remote system displays 10 lines, all of which
start with the code 214. The most interesting part of this response are the commands
listed under the heading Topics. These are the SMTP commands supported by wren.

NOTE There are more commands listed in response to the HELP command in
Listing 1.1 than are listed as part of RFC 821 in Table 1.1. That is because three of
the commands in Listing 1.1 are extended SMTP commands that we have not yet
discussed, two are new security protocol keywords (AUTH and STARTTLS), and
one (VERB) is a non-standard command supported by Sendmail that is also dis-
cussed later.

The next two commands entered by the user are VRFY commands, which verify whether
or not an e-mail address is valid. Listing 1.1 shows two different responses. One tells us
that norm is a valid e-mail address and the other tells us that frank is not. If the address
entered in a VRFY command does not contain a domain name or contains the domain
name of the local computer, it is checked against both the user accounts and the aliases
available on the system. If the address contains the domain name of a remote host, the
address is only checked to see that it is syntactically valid. The system assumes that
an address on a remote host will be forwarded to that host and that it is the responsibility
of the remote host to determine whether or not the address is valid and the mail can be
delivered.

The EXPN command is used to expand a mailing list. In Listing 1.1, the name of the mail-
ing list is staff. The system responds to the query by listing all of the e-mail addresses
contained in that mailing list.

The strangest thing about the HELP, VRFY, and EXPN commands is that they are designed
more for interactive use than for communications between e-mail programs. The HELP
command is clearly designed for interactive users. Program-to-program communications
do not use the EXPN command because the responsibility for expanding a mailing list and
delivering to the members of that list falls to the destination program. Therefore, the
source program does not need to check the contents of the list. Even the VRFY command,
which on the surface appears to have some utility in program-to-program communica-
tions, is not needed because the e-mail addresses are verified by default at the start of the
delivery process, as shown below:

mail from: <craig@24seven>

250 <craig@24seven>... Sender ok

A Simple Mail Transport Protocol 9

H
ow

 T
hi

ng
s

W
or

k

PART 1

rcpt to: <frank>

550 <frank>... User unknown

The user closes the SMTP session in Listing 1.1 with the QUIT command. The remote sys-
tem responds with a message that starts with the code 221. The last line in Listing 1.1 is
not part of the SMTP session. The line that starts with “Connection closed” is a message
from telnet.

SMTP Response Codes

Listing 1.1 shows that all of the response messages from the remote SMTP server begin
with a numeric code. Table 1.2 lists the response codes defined in the RFCs.

Table 1.2 SMTP Server Response Codes

Response Code Meaning

211 This is a system status message.

214 This is a help message.

220 hostname The SMTP service is ready.

221 hostname The SMTP connection is closing.

250 The requested action was completed successfully.

251 The recipient address is not local, and the mail will be forwarded.

252 The address cannot be verified, but it will be accepted for
forwarding.

354 The destination server is ready to accept the mail data.

421 hostname The requested service is not available, and the connection is closing.

450 The requested action was not performed.

451 The requested action aborted because of an error.

452 The requested action failed because of insufficient disk space.

500 The command was not recognized.

Chapter 1 Internet Mail Protocols10

Every SMTP command elicits a response. A command is sent and a response comes back.
From the explanations of the response codes in Table 1.2, it is easy to tell that response
codes in the 200s and 300s indicate a successful transaction, while codes in the 400s and
the 500s indicate failure, as shown by the few lines below:

RCPT TO: <craig>

503 Need MAIL before RCPT

The response code is only returned to the user who sent the message when the code indi-
cates a failure. Most of the time, of course, you don’t see these codes. Cooperating Send-
mail programs on the local system and the remote system go about their business silently
exchanging SMTP commands and responses. To watch Sendmail interact with the remote
system, run the sendmail command in verbose mode.

501 The command had a syntax error in its parameters or arguments.

502 The command is not implemented on this server.

503 The sequence of commands is incorrect.

504 A parameter included with the command is not implemented on this
server.

550 The requested action was not performed.

551 The recipient address is not local, and the mail must be manually
forwarded.

552 The requested action was aborted because of insufficient disk
space.

553 The mailbox name was invalid.

554 The transaction failed.

Table 1.2 SMTP Server Response Codes (continued)

Response Code Meaning

A Simple Mail Transport Protocol 11

H
ow

 T
hi

ng
s

W
or

k

PART 1

Observing SMTP with Verbose Mode

Using telnet to connect to the SMTP port is a useful way to get a feel for the SMTP pro-
tocol, and it can be a useful test technique when you want to completely bypass your local
copy of Sendmail to test the responses of a remote Sendmail server. But it is by its nature
artificial. A user typing in SMTP commands approximates the exchange of protocol
information based on a best guess of how the two systems will interact. In most cases, it
is much better to sit back and observe the systems actually interacting. The -v (verbose)
option of the sendmail command lets you do exactly that. Listing 1.2 shows a piece of
mail being sent with verbose mode enabled.

Listing 1.2 The Protocol as Displayed by Verbose Mode

[craig]$ sendmail -v -t

To: craig@wren

From: craig@ani

Subject: Test

Please ignore this test.

^D

craig@wren... Connecting to wren.foobirds.org. via esmtp...

220 wren.foobirds.org ESMTP Sendmail 8.11.0/8.11.0; Mon, 23 Oct 2000

 11:42:34 -0400

>>> EHLO ani.foobirds.org

250-wren.foobirds.org Hello root@ani.foobirds.org [172.16.12.1],
 pleased to meet you

250-ENHANCEDSTATUSCODES

250-EXPN

250-VERB

250-8BITMIME

250-SIZE

250-DSN

250-ONEX

250-ETRN

250-XUSR

250-AUTH DIGEST-MD5

250 HELP

>>> MAIL From:<craig@ani.foobirds.org> SIZE=73

250 <craig@ani.foobirds.org>... Sender ok

>>> RCPT To:<craig@wren.foobirds.org>

250 <craig@wren.foobirds.org>... Recipient ok

>>> DATA

Chapter 1 Internet Mail Protocols12

354 Enter mail, end with "." on a line by itself

>>> .

250 NAA01047 Message accepted for delivery

craig@wren... Sent (NAA01047 Message accepted for delivery)

Closing connection to wren.foobirds.org.

>>> QUIT

221 wren.foobirds.org closing connection

In addition to the verbose option, the sendmail command in Listing 1.2 is invoked with
the -t option that accepts the mail message directly from the keyboard. In Listing 1.2, the
user types in the To: address, the From: address, a Subject: line, and a one-line message.
The user input is terminated by a Ctrl+D. Everything else in Listing 1.2 is output dis-
played by Sendmail.

Three of the lines displayed are informational messages directly from Sendmail. The first
line displays the delivery triple: the delivery address craig@wren, the remote server name
wren.foobirds.org, and the internal mailer name esmtp. You’ll hear much more about
the delivery triple later on. The other two lines created by Sendmail appear near the bot-
tom of Listing 1.2. The first of these two lines displays the message identifier used to send
the message, which is NAA01047 in the example. The second line informs us that Send-
mail is ready to close the connection.

Most of the output displayed by sendmail is the SMTP protocol interaction. Every line
that begins with >>> is a command sent from the local system to the remote system. Every
line that begins with a response code is a response from the remote system. Only six com-
mands are used to send the message:

EHLO This is the hello command. It is different from the one shown in Table 1.1
because this is the extended hello used by Extended SMTP, which is covered later in
this chapter.

MAIL From: This is the From: address. Addresses used in the SMTP protocol
exchange are called envelope addresses and are distinct from the header addresses
sent as part of the message data, although header addresses and envelope addresses
usually contain the same values. You’ll hear more about these different address types
when we discuss address rewriting and testing in Chapter 8, “Understanding
Rewrite Rules.”

RCPT To: This is the To: address. It is also an envelope address.

DATA The DATA command marks the beginning of the message.

. The dot (.) is used to mark the end of the message.

QUIT The QUIT command closes the session.

The SMTP protocol exchange is simple and straightforward and can easily be observed
using the sendmail -v option. Observing an SMTP session shows you if the mail is leaving

A Basic Mail Message 13

H
ow

 T
hi

ng
s

W
or

k

PART 1

your system and whether or not it is accepted by the remote system. This can be valuable
information when you suspect a problem.

The one thing that is not shown in Listing 1.2 is the mail message that Sendmail sends
between the DATA command and the closing dot (.). The exchange of protocol commands
and responses is only a small part of the information that flows over an SMTP connec-
tion. The real purpose of SMTP is to carry data in the form of mail messages.

A Basic Mail Message
The format of the basic e-mail message is defined in RFC 822 (“Standard for the Format
of ARPA Internet Text Messages”). According to RFC 822, an e-mail message consists of
two parts: headers and a message body. As the name implies, the headers come at the head
of the message before the message body. The message body is separated from the headers
by a blank line—a line that contains nothing but a carriage return/line feed (CRLF) char-
acter. The message body is composed of lines, each of which contains fewer than 1000
bytes of seven-bit ASCII text.

Message Headers

Headers are individual lines of text that begin with a header name (also called a field
name in RFC 822) separated by a colon from the variable data related to that header (this
data is also called the field body in the RFC). Headers provide a record of the information
used to deliver the mail. Headers tell you whom a message is bound for, whom it came
from, when it was sent, and what computers handled the message as it moved through the
network.

Message headers are distinct from the envelope headers we saw in the SMTP protocol
exchanges. Envelope headers are limited to the From: and To: addresses. There are From:
and To: headers in the message, but there are also a large number of other possible head-
ers, which provide more information about how a message was handled than observing
the SMTP interaction does. Listing 1.3 shows the headers that were created for the mes-
sage sent in Listing 1.2.

Listing 1.3 A Complete Mail Message

From craig@ani.foobirds.org Mon Oct 23 11:42:34 2000

Return-Path: <craig@ani.foobirds.org>

Received: from ani.foobirds.org (root@ani.foobirds.org [172.16.12.1])

 by wren.foobirds.org (8.9.3/8.9.3) with ESMTP id NAA01047

 for <craig@wren.foobirds.org>; Mon, 23 Oct 11:42:33 -0400

From: craig@ani.foobirds.org

Chapter 1 Internet Mail Protocols14

Received: (from craig@localhost)

 by ani.foobirds.org (8.11.0/8.11.0) id JAA01401;

 Mon, 23 Oct 2000 09:47:44 -0400

Date: Mon, 23 Oct 2000 09:47:44 -0400

Message-Id: <200007291347.JAA01401@ani.foobirds.org>

To: craig@wren.foobirds.org

Subject: Test

Please ignore this test.

Listing 1.3 is the e-mail sent in Listing 1.2 as it was stored in /var/spool/mail/craig on
wren, which is a Red Hat Linux system. /var/spool/mail is the directory that holds user
mail. Each user is given a mailbox that is identified by the user’s name. In this example,
the mail was sent to the user craig, so the mail was written to the mailbox /var/spool/
mail/craig.

The first line in Listing 1.3 is not a real message header. It is a special line, inserted by
Sendmail to mark the beginning of each message in a mailbox. The line is sometimes
called the Unix header or the Unix From line. The second line is the first message header.
This message has a total of eight message headers:

Return-Path: This header contains the sender address from the envelope, which
can be different than the sender address shown by the From: header. The address in
the Return-Path: header is used only to notify the source of a message if a delivery
error occurred.

Received: A Received: header is created by each site that handles a piece of mail.
There are as many Received: headers as there are sites that processed the mail. In
Listing 1.3, there are two Received: headers—one from ani, which was the site that
originated the message, and one from wren, which was the site that accepted the mes-
sage. The fact that there are only two Received: headers shows that the mail went
directly from ani to wren. The first Received: header tells us that a message, which
ani identified with message ID NAA01047, was received from ani by wren for the
user craig.

From: This header identifies whom the mail is from.

Received: This second Received: header records the fact that the local host also
handled the mail. The local host, wren, assigned a message ID of JAA01401 to the
message.

Date: This header specifies the date and time the message was received.

Message-Id: This header provides a unique identifier for the message, composed of
the time the message was received, the local message ID, and the domain name of the
local computer.

Multipurpose Internet Mail Extensions 15

H
ow

 T
hi

ng
s

W
or

k

PART 1

To: This header identifies who is to receive the mail.

Subject: This header contains the subject line entered by the originator of the
message.

Even though Listing 1.3 contains eight header lines, there are only seven different header
types because Received: is repeated. These seven different header types are the set found
on most pieces of mail. There are, however, many other headers besides these. Sendmail
supports more than 30 different types of headers, and not all of the headers in a mail mes-
sage are inserted by Sendmail. Some come directly from the user, as did the To:, From:,
and Subject: headers in Listing 1.3. Others come from the user’s mailer when it formats
the mail. Sendmail ensures that all of the headers are correctly formatted and that all of
the necessary headers are provided.

A blank line immediately follows the headers. This line separates the headers from the
message body. In Listing 1.3, the message body is composed of only a single line of text.
RFC 822 defines a protocol that can carry only text messages. Modern e-mail systems
need to carry a much wider variety of data, so the e-mail protocols have been extended
to do just that.

Multipurpose Internet Mail Extensions
RFC 822 defines a mail message that is composed completely of lines of seven-bit ASCII
text. No provisions are made in that RFC to carry any other type of data. This is a major
limitation for a modern network because it does not provide support for languages with
a larger character set than U.S. English, and it does not support binary data. Imagine the
complaints you would receive if your mail server could not handle the binary data pro-
duced by your users’ favorite applications! RFC 822 also does not provide support for
complex message bodies. In fact, it says almost nothing about the content and structure
of the message body. The focus of RFC 822 is almost entirely on defining message headers.

The Multipurpose Internet Mail Extensions (MIME) were defined to address these weak-
nesses. MIME defines encoding techniques to carry a wide variety of data, and it defines
a structure for complex message types. RFC 2045 (“Multipurpose Internet Mail Exten-
sions (MIME) Part One: Format of Internet Message Bodies”) defines two new headers
that are used to give the mail message structure, to identify the type of data the message
is carrying, and to identify the encoding techniques used for that data.

Chapter 1 Internet Mail Protocols16

The Content-Type Header

The Content-Type: header identifies the type of data that the message is carrying. The
general format of this header is:

Content-Type: type////ssssuuuubbbbttttyyyyppppeeee [attribute====vvvvaaaalllluuuueeee;;;; ...]

The type field of the header defines the major type of data, and the subtype field defines
the specific type of data. An example of this is application/msword, which defines the
message as application data for Microsoft Word. The optional attribute=value pairs are
used with some data types to provide additional information about the data carried in the
message. An example of this is text/plain; charset=us-ascii, which states that the
message is plain text composed of U.S. ASCII characters. RFC 2046 (“Multipurpose
Internet Mail Extensions (MIME) Part Two: Media Types”) defines seven fundamental
media types:

text Basic text data. Examples of subtypes that go with the text type are plain,
enriched, and html.

image Still graphic images. Some common subtypes for image data are jpeg, gif,
and tiff.

audio Audio data. The subtype described in RFC 2046 is basic, which is the name
for Pulse Code Modulation (PCM) data.

video Moving graphic images. Subtype examples of video are mpeg and
quicktime.

application Binary data or data that must be processed by a specific program.
Subtype examples include octet-stream, which is eight-bit binary data, and
msword, which is data that is to be processed by a specific word processor.

multipart A message composed of several independent parts, each of which can
contain its own type of data. The RFC defines four subtypes for this:
� mixed, in which each part is completely independent
� alternative, in which each part contains the same data in different formats
� parallel, in which each part should be viewed simultaneously
� digest, in which each part of the message is an encapsulated message

message The data is an encapsulated mail message, which can in turn contain any
valid message type.

In addition to the seven data types, a few subtypes are mentioned in RFC 2046. But that
is just the tip of the iceberg. There are literally hundreds of data subtypes. Vendors reg-
ister the subtype of their data following the instructions in RFC 2048 (“Multipurpose
Internet Mail (MIME) Part Four: Registration Procedures”). The large number of data

Multipurpose Internet Mail Extensions 17

H
ow

 T
hi

ng
s

W
or

k

PART 1

subtypes that have been registered indicates the number of applications that want to
move data via e-mail. To see the latest listing of registered data types, download the
file media-types from the in-notes/iana/assignments directory at ftp.isi.edu.

Because of the fact that MIME adds structure to a mail message, headers are no longer
limited to the beginning of a message. Content-Type: headers can occur multiple times in
a message. Listing 1.4 shows a mail message from a Caldera Linux system that uses
MIME to encapsulate a message within the message.

Listing 1.4 A Message with MIME Headers

Received: from localhost (localhost)

 by ani.foobirds.org (8.9.3/8.9.3) with internal id IAB01301;

 Sat, 29 Jul 2000 08:13:52 -0400

Date: Sat, 29 Jul 2000 08:13:52 -0400

From: Mail Delivery Subsystem <MAILER-DAEMON@ani.foobirds.org>

Message-Id: <200007291213.IAB01301@ani.foobirds.org>

To: craig@ani.foobirds.org

MIME-Version: 1.0

Content-Type: multipart/report; report-type=delivery-status;

 boundary="IAB01301.964872832/ani.foobirds.org"

Subject: Returned mail: User unknown

Auto-Submitted: auto-generated (failure)

Status:

This is a MIME-encapsulated message

--IAB01301.964872832/ani.foobirds.org

The original message was received at Sat, 29 Jul 2000 08:13:12 -0400

from root@localhost

 ----- The following addresses had permanent fatal errors -----

frank@wren

 ----- Transcript of session follows -----

.... while talking to wren.foobirds.org.:

>>> RCPT To:<frank@wren.foobirds.org>

<<< 550 <frank@wren.foobirds.org>... Relaying denied

550 frank@wren... User unknown

Chapter 1 Internet Mail Protocols18

--IAB01301.964872832/ani.foobirds.org

Content-Type: message/delivery-status

Reporting-MTA: dns; ani.foobirds.org

Arrival-Date: Sat, 29 Jul 2000 08:13:12 -0400

Final-Recipient: RFC822; frank@wren.foobirds.org

Action: failed

Status: 5.1.1

Remote-MTA: DNS; wren.foobirds.org

Diagnostic-Code: SMTP; 550 <frank@wren.foobirds.org>... Relaying denied

Last-Attempt-Date: Sat, 29 Jul 2000 08:13:52 -0400

--IAB01301.964872832/ani.foobirds.org

Content-Type: message/rfc822

Return-Path: <craig>

Received: (from root@localhost)

 by ani.foobirds.org (8.9.3/8.9.3) id IAA01301;

 Sat, 29 Jul 2000 08:13:12 -0400

Date: Sat, 29 Jul 2000 08:13:12 -0400

Message-Id: <200007291213.IAA01301@ani.foobirds.org>

To: frank@wren.foobirds.org

From: craig@ani.foobirds.org

Subject: Test

Please ignore this test.

--IAB01301.964872832/ani.foobirds.org--

The message in Listing 1.4 contains three different Content-Type: headers, each of which
I marked in bold to make them easier to find. The first one identifies this as a message of
type multipart. It is in fact a message composed of three distinct parts. The subtype of
this multipart message is report. (The subtype report was not defined in RFC 2046; it
was added later.) Two parameters are also defined on the first Content-Type: header. The
report-type argument tells us this is a delivery-status report. The boundary argument
defines the line that is used to separate each part in this multipart message. The boundary
lines are also in bold to make them easier to find in the listing.

The second Content-Type: header declares that the second message in the multipart mes-
sage is also a delivery status message. The third and final Content-Type: header states that

Multipurpose Internet Mail Extensions 19

H
ow

 T
hi

ng
s

W
or

k

PART 1

the last message in the multipart message is an RFC 822 message. This is a copy of the
original message that generated the error.

MIME allows for complex message bodies, as Listing 1.4 illustrates. However, everything
in Listing 1.4 is basic ASCII text. MIME permits a wider range of data types.

The Content-Transfer-Encoding Header

The large number of data types supported by MIME means that not everything can be
sent as seven-bit ASCII data. The Content-Transfer-Encoding: header identifies the type
of encoding used for the data in a MIME message. RFC 2045 defines five types of encoding:

7bit This is the standard seven-bit U.S. ASCII that e-mail has always supported.
The data in this message is composed of lines of U.S. ASCII characters. Each line is
less than 1000 characters long. This type identifies the encoding inherent in the data.
No additional encoding is done.

8bit This is eight-bit binary data formatted into lines that are less than 1000 octets
long. This type identifies the encoding inherent in the data. No additional encoding
has been done.

binary This is eight-bit binary data that is not formatted into lines less than 1000
octets long. There is no difference between the eight-bit encoding type and the binary
encoding type except for the fact that binary data is not restricted to a maximum line
length. This type identifies the encoding inherent in the data. No additional encoding
is done.

quoted-printable This is encoded text data. The bulk of the data in a quoted print-
able message is printable ASCII text, which is sent unencoded. Bytes of data that are
not normally printable—those with a hexadecimal value less than 33 or greater than
127—are encoded as a string made up of the equal sign and characters representing
the hexadecimal value of the desired byte. Thus, a byte containing the ASCII form
feed, which has a hexadecimal value of 0C, would be sent as the three-byte string
=0C. The equal sign itself is sent as =3D.

base64 This is encoded binary data. Three octets (24 bits) of binary data are sliced
into four six-bit pieces. Two zero bits are prepended to each six-bit chunk to create
four eight-bit characters. All of the characters created in this manner are a subset of
U.S. ASCII that can be handled by any mail system. This allows encoded binary data
to pass through any mail server. The disadvantages of base64 encoding are that it
increases the size of a binary file by at least 33 percent and it has a maximum line
length of 76 bytes that can further increase the size of the file by adding newline char-
acters to meet this line-length requirement.

Of the five encoding techniques specified in RFC 2045, two are techniques for encoding
the data in a message and three are used to identify the encoding already there. The

Chapter 1 Internet Mail Protocols20

quoted-printable and base64 techniques make it possible to send data through any e-mail
system. 7bit encoding is compatible with any system, because it is the original e-mail
encoding system. The other two techniques, 8bit and binary, require a new mail system
that can handle these new data formats without additional encoding. SMTP was
extended to handle these new formats and the requirements of MIME mail.

Extended SMTP
SMTP was not designed to handle multiple data types; thus, it needed enhancements to
handle MIME data. RFC 1869 (“SMTP Service Extensions”) defines an extensible ver-
sion of SMTP, not by defining specific service extensions, but by specifying a technique
that systems can use to negotiate which SMTP extensions they support. RFC 1869 defines
a new version of the SMTP HELO command named EHLO.

A system that runs ESMTP sends EHLO as the hello greeting to start the session. If the
receiving system does not run ESMTP, it rejects EHLO as an error. The sending system can
then initiate the session with the old HELO command or terminate the session. If the receiv-
ing system runs ESMTP, it responds to the EHLO command by sending a listing of the
extended SMTP features it supports. Each feature is identified by a standard keyword.
Thus the sending system knows the capabilities of the receiving system and can use any
of the features that the remote system advertises.

Listing 1.2 shows a full ESMTP session. It opens with an EHLO command and the list of
keywords sent in response to those commands. That EHLO command and response are
excerpted in Listing 1.5.

Listing 1.5 The EHLO Command and Response

>>> EHLO ani.foobirds.org

250-wren.foobirds.org Hello root@ani.foobirds.org [172.16.12.1],

 pleased to meet you

250-ENHANCEDSTATUSCODES

250-EXPN

250-VERB

250-8BITMIME

250-SIZE

250-DSN

250-ONEX

250-ETRN

250-XUSR

250-AUTH DIGEST-MD5

250 HELP

Extended SMTP 21

H
ow

 T
hi

ng
s

W
or

k

PART 1

The format of the EHLO command is simple—just the keyword EHLO followed by the
domain name of the sending system. The response from the receiving system is the stan-
dard hello acknowledgement followed by a list of keywords. The keywords shown in
Listing 1.5 are from a Red Hat Linux system running Sendmail version 8.11.0. By its very
nature, the EHLO command evokes different responses from different systems.

Extended Service Keywords

Two of the advertised services are basic SMTP commands defined in RFC 821. HELP
provides access to the online help system, and EXPN displays the addresses in a mailing
list. This system advertises these services in the keyword list because many sites do not
implement these basic commands.

Some of the keywords in the list indicate service extensions that are defined in various RFCs.

ENHANCEDSTATUSCODES This server uses the enhanced status codes that go
with Delivery Status Notifications (DSNs). The enhanced status codes are defined in
RFC 1893, “Enhanced Mail System Status Codes.”

8BITMIME This keyword indicates that the server can accept eight-bit binary
data, which means that 8bit and binary data types can be sent to this system with-
out any additional encoding. This extension was defined in RFC 1652 (“SMTP Ser-
vice Extension for 8bit-MIMEtransport”).

SIZE This server supports the SIZE extension, which was defined in RFC 1870
(“SMTP Service Extension for Message Size Declaration”). The sending system uses
SIZE to tell the receiving system how large the message is in bytes. The receiving sys-
tem uses the information to decide whether or not it can accept the e-mail. The
MAIL From: line in Listing 1.2 is an example of the SIZE extension in action:

>>> MAIL From:<craig@ani.foobirds.org> SIZE=73

In this example, the SIZE keyword tells the receiving system that the message con-
tains 73 bytes.

DSN This server can provide delivery status notification. For example, the remote
user can request a return receipt notification when the message is read. This
extension is defined in RFC 1891 (“SMTP Service Extension for Delivery Status
Notifications”).

ETRN This server allows remote sites to retrieve messages from the server’s queue
that are bound for the remote site . ETRN is an updated version of the TURN command
that fixes the security problems that existed in TURN. This extension is defined in
RFC 1985 (“SMTP Service Extension for Remote Message Queue Starting”).

Chapter 1 Internet Mail Protocols22

AUTH DIGEST-MD5 The AUTH keyword advertises the type of authentication
supported by this server. In this case, the server supports Message Digest 5 (MD5)
for authentication. The AUTH extension is defined in RFC 2554 (“SMTP Service
Extension for Authentication”).

There are also a few keywords in this list that are not standard services. VERB sets the
remote mail server in verbose mode. ONEX limits the SMTP session to the transfer of a
single message. XUSR is used when a user mail agent sends mail directly to a remote
server instead of passing it through a mail transfer agent, such as Sendmail. (I don’t know
of any user mail agents designed to work this way.) VERB, ONEX, and XUSR are specific
to Sendmail version 8; they are not defined in an RFC.

Mailbox Protocols
SMTP moves mail between e-mail servers, and MIME allows that mail to contain any-
thing the user wants to send. SMTP is the protocol implemented by Sendmail, but it is not
the only protocol used in delivering the mail to the end user. As we saw in Listing 1.3,
Sendmail stores the mail it receives in a mailbox on the Linux server. Any user that can
log in to the server can read their mail there. Many users, however, cannot or don’t want
to read their mail on the server. Those users want to move the mail from the server mail-
box to a mail reader located on their desktop systems. There are two popular protocols
designed to move mail from the mailbox server to the desktop client: Post Office Protocol
(POP), which is the traditional mailbox protocol, and Internet Message Access Protocol
(IMAP), which has recently become more popular.

A Sendmail server turns into a mailbox server when it runs either the POP or the IMAP
daemon. All Linux systems can run both. Both POP and IMAP can be installed during the
initial installation or later using a package manager like RPM. The POP and IMAP pro-
tocols are simple command/response protocols very similar to SMTP.

Post Office Protocol

The POP protocol verifies the user’s login name and password, and moves the user’s mail
from the server to the user’s local mail reader. There are two versions of POP: POP2 and
POP3. Both protocols perform the same basic functions, and they both create connections
using TCP to ensure reliability and data sequencing. But the two protocols are incompat-
ible. POP2 uses TCP port 109 and POP3 uses TCP port 110. Linux systems come with
both versions of POP, but most clients use POP3. For that reason, this section describes
only the POP3 protocol.

Mailbox Protocols 23

H
ow

 T
hi

ng
s

W
or

k

PART 1

POP3 is defined in RFC 1939 (“Post Office Protocol —Version 3”). It is a simple request/
response protocol like SMTP. The client sends a command to the server and the server
responds to the command. Table 1.3 shows the set of POP3 commands defined in
RFC 1939.

Table 1.3 POP3 Commands

Command Function

USER username The username required for the login.

PASS password The user’s password required for the login.

STAT Requests the number of unread messages/bytes.

RETR msg Retrieves message number msg.

DELE msg Deletes message number msg.

LAST Requests the number of the last message accessed.

LIST [msg] Requests the size of message msg or of all messages.

RSET Undeletes all messages and resets the message
number to 1.

TOP msg n Prints the headers and the first n lines of message
number msg.

NOOP Does nothing except request an OK response from
the remote server.

APOP mailbox string Identifies a mailbox and provides an MD5 digest string for
authentication. Used as an alternative to USER/PASS.

UIDL [msg] Requests the unique ID for the specified message number,
or a listing of unique IDs for all messages.

QUIT Ends the POP3 session.

Chapter 1 Internet Mail Protocols24

Like SMTP, the POP3 protocol is simple enough to be done by hand over a telnet con-
nection. Listing 1.6 shows a sample POP3 session that demonstrates the function of sev-
eral of the protocol commands.

Listing 1.6 Using the POP Protocol with telnet

[craig]$ telnet localhost 110

Trying 127.0.0.1...

Connected to ani.foobirds.org.

Escape character is '^]'.

+OK POP3 ani.foobirds.org v7.64 server ready

USER craig

+OK User name accepted, password please

PASS Wats?Watt?

+OK Mailbox open, 4 messages

STAT

+OK 4 8184

LIST

+OK Mailbox scan listing follows

1 1951

2 1999

3 2100

4 2134

.

RETR 1

+OK 1951 octets

... an e-mail message 1951 bytes long ...

.

DELE 1

+OK Message deleted

QUIT

+OK Sayonara

Connection closed by foreign host.

The first three lines after the telnet command (Trying, Connected, and Escape) are out-
put from the telnet command, as is the very last line (Connection closed). All of the other
lines in Listing 1.6 are POP3 commands and responses. Positive responses start with the
string +OK, which indicates that the command executed successfully. When a command
fails, the response begins with the string -ERR. The first +OK response in Listing 1.6 is in
reply to the connection request from telnet. The response indicates that the POP server
is ready.

Mailbox Protocols 25

H
ow

 T
hi

ng
s

W
or

k

PART 1

The user then logs in with the USER and PASS commands. The username and password
provided here must match a valid username and password found in the /etc/passwd file.
Notice that the password is sent as clear text. POP3 provides a more secure MD5 login
mechanism that is discussed in Chapter 12, “Sendmail Security.”

The STAT command and the LIST command are used to inquire about the messages stored
in the mailbox. STAT shows that there are four messages with a combined length of 8184
bytes. The LIST command shows the size of each individual message in the mailbox.
When it comes to mail, size matters because the system downloading the mail needs to
know it has sufficient disk space to store the mail. In Listing 1.6, all of the mail messages
are small so storage is not an issue.

The first message from the mailbox is downloaded with the RETR 1 command. It is then
removed from the server mailbox with the DELE 1 command. Normally, messages are
retrieved in order and are deleted after they are retrieved, but they don’t have to be. When
using telnet to input the POP commands, you’re in complete control. You can download
messages out of order, you don’t need to delete the messages you download, and you
don’t need to download messages you delete. Deleting messages instead of downloading
them is often very useful. On occasion a corrupted or overly large message stored on the
server causes download problems for the desktop client. From the client the user can log
on via telnet and delete the offending message to get everything running normally again.

Of course, a POP connection is not normally run manually over a telnet connection.
This is only done here to illustrate the function of the protocol. You will only telnet to
the POP port for testing. Using your knowledge of the protocol and the configuration,
you can telnet to the POP port and test whether your server responds. The telnet test
proves that the daemon is available, installed, and ready to run.

Internet Mail Access Protocol

IMAP is an alternative to POP. It provides the same basic service as POP and adds fea-
tures to support mailbox synchronization. Mailbox synchronization is the ability to read
individual mail messages on a client or directly on the server while keeping the mailboxes
on both systems completely up-to-date. On an average POP server, all contents of the
mailbox are moved to the client and either deleted from the server or retained as if never
read. Deletion of individual messages on the client is not reflected on the server because
all of the messages are treated as a single unit that is either deleted or retained after the
initial transfer of data to the client. IMAP provides the ability to manipulate individual
messages on the client or the server and to have those changes reflected in the mailboxes
of both systems.

Chapter 1 Internet Mail Protocols26

IMAP uses TCP for reliable, sequenced data delivery. The IMAP port is TCP port 143.
Like the POP protocol, IMAP is also a request/response protocol with a small set of com-
mands. Table 1.4 lists the basic set of IMAP commands from version 4 of the IMAP pro-
tocol as defined in RFC 2060 (“Internet Message Access Protocol—Version 4rev1”).

NOTE The /etc/services file lists two different ports for IMAP: 143 and 220.
Port 220 is used by IMAP3. However, the current IMAP, which is IMAP4, was
derived from IMAP2, which used port number 143. Confused? Don’t be. Just
remember that the correct port is 143.

Table 1.4 IMAP4 Commands

Command Use

CAPABILITY Lists the features supported by the server.

NOOP Literally “No Operation,” but sometimes used as a way to poll for
new messages or message status updates.

LOGOUT Closes the connection.

AUTHENTICATE Requests an alternative authentication method.

LOGIN Opens the connection and provides the username and password
for plain text authentication.

SELECT Opens a mailbox.

EXAMINE Opens a mailbox as read-only.

CREATE Creates a new mailbox.

DELETE Removes a mailbox.

RENAME Changes the name of a mailbox.

SUBSCRIBE Adds a mailbox to the list of active mailboxes.

UNSUBSCRIBE Deletes a mailbox name from the list of active mailboxes.

LIST Displays the requested mailbox names from the complete set of all
available mailbox names.

Mailbox Protocols 27

H
ow

 T
hi

ng
s

W
or

k

PART 1

This command set is more complex than the one used by POP because IMAP does more.
These commands clearly illustrate the “mailbox” orientation of IMAP. The protocol is
designed to remotely maintain mailboxes that are stored on the server. The protocol com-
mands show that. Despite the increased complexity of the protocol, it is still possible
to run a simple test of your IMAP server using telnet and a small number of the
IMAP commands. Listing 1.7 shows just such a test.

Listing 1.7 Telnetting to the IMAP Port

[craig]$ telnet localhost 143

Trying 127.0.0.1...

Connected to ani.foobirds.org.

Escape character is '^]'.

LSUB Displays the requested mailbox names from the set of active
mailboxes.

STATUS Requests the status of a mailbox.

APPEND Adds a message to the end of the specified mailbox.

CHECK Forces a checkpoint of the current mailbox.

CLOSE Closes the mailbox and removes all messages marked for deletion.

EXPUNGE Removes from the current mailbox all messages that are marked
for deletion.

SEARCH Displays all messages in the mailbox that match the specified
search criterion.

FETCH Retrieves a message from the mailbox.

STORE Modifies a message in the mailbox.

COPY Copies the specified messages to the end of the specified mailbox.

UID Searches for or fetches messages based on the message’s unique
identifier.

Table 1.4 IMAP4 Commands (continued)

Command Use

Chapter 1 Internet Mail Protocols28

* OK ani.foobirds.org IMAP4rev1 v12.252 server ready

a0001 login craig Wats?Watt?

a0001 OK LOGIN completed

a0002 select inbox

* 3 EXISTS

* 0 RECENT

* OK [UIDVALIDITY 965125671] UID validity status

* OK [UIDNEXT 5] Predicted next UID

* FLAGS (\Answered \Flagged \Deleted \Draft \Seen)

* OK [PERMANENTFLAGS (* \Answered \Flagged \Deleted \Draft \Seen)]

* OK [UNSEEN 1] first unseen message in /var/spool/mail/craig

a0002 OK [READ-WRITE] SELECT completed

a0003 fetch 1 body[text]

* 1 FETCH (BODY[TEXT] {1440}

... an e-mail message that is 1440 bytes long ...

* 1 FETCH (FLAGS (\Seen))

a0003 OK FETCH completed

a0004 store 1 +flags \deleted

* 1 FETCH (FLAGS (\Seen \Deleted))

a0004 OK STORE completed

a0005 close

a0005 OK CLOSE completed

a0006 logout

* BYE ani.foobirds.org IMAP4rev1 server terminating connection

a0006 OK LOGOUT completed

Connection closed by foreign host.

Again, the first three lines and the last line come from telnet; all other messages come
from IMAP. The first IMAP command entered by the user is LOGIN, which provides the
username and password from /etc/passwd used to authenticate this user. Notice that the
command is preceded by the string A0001. This is a “tag,” which is a unique identifier gen-
erated by the client for each command. Every command must start with a tag. When you
manually type in commands for a test, you are the source of the tags.

IMAP is a mailbox-oriented protocol. The SELECT command is used to select the mailbox
that will be used. In Listing 1.7, the user selects a mailbox named “inbox.” The IMAP
server displays the status of the mailbox, which contains three messages. Associated with
each message are a number of flags. The flags are used to manage the messages in the
mailbox by marking them as Seen, Unseen, Deleted, etc.

In Sum 29

H
ow

 T
hi

ng
s

W
or

k

PART 1

The FETCH command is used to download a message from the mailbox. In Listing 1.7, the
user downloads the text of the message, which is what you normally see when reading a
message. It is possible, however, to download only the headers or flags.

After the message is downloaded, it is deleted. This is done by writing the Deleted flag
with the STORE command. The DELETE command is not used to delete messages; it deletes
entire mailboxes. Individual messages are marked for deletion by setting the Deleted flag.
Messages with the Deleted flag set are not deleted until either the EXPUNGE command is
issued or the mailbox is explicitly closed with the CLOSE command, as is done in Listing 1.7.
The session in Listing 1.7 is then terminated with the LOGOUT command.

Clearly, the IMAP protocol is much more complex than SMTP or POP. It is just about at
the limits of what can reasonably be typed in manually. Of course, you don’t really enter
these commands manually. The desktop system and the server exchange them automat-
ically. They are only shown here to give you a sense of the IMAP protocol. About the only
IMAP test you would ever do manually is to test if imapd is up and running. To do that,
you don’t even need to log in. If the server answers the telnet, you know it is up and run-
ning. All you then need to do is send the LOGOUT command to gracefully close the connection.

IMAP and POP are not part of Sendmail. Sendmail provides SMTP but other daemons are
needed for POP and IMAP. Those protocols are covered here, however, because they are
an important part of building a complete e-mail architecture for your enterprise. In the
next chapter, we discuss the selection and placement of servers for your e-mail architec-
ture. Mailbox servers running IMAP or POP will be an important part of that discussion.

In Sum
The simplicity of the protocols that underlie Sendmail stand in stark contrast to the com-
plexity of Sendmail itself, particularly to the complexity of Sendmail configuration. The
number of configuration options and the difficult concepts embodied in some of the con-
figuration choices are the enemies of understanding Sendmail as a whole. The details of
Sendmail can easily overwhelm the important concepts. It is the proverbial problem of
not being able to see the forest because of all the trees. To attack this problem, the sum-
mary of each chapter will include a “complexity summary” to show the relative impor-
tance of the details covered, to reinforce the key concepts covered, and to provide some
hints about how you can filter out the unneeded complexity. This chapter, however, does
not need a “complexity filter” because the protocols used by Sendmail have a surprising
lack of complexity.

Chapter 1 Internet Mail Protocols30

The protocols that are the basis of the global e-mail system are simple command/response
protocols that are so easy to understand that a system administrator can manually inter-
act with a mail server over a telnet connection. Internet mail is carried by the Simple
Mail Transport Protocol. SMTP, which is implemented by the Sendmail program, moves
mail from server to server. The MIME extensions and ESMTP permit the mail system to
move any kind of data. IMAP and POP move the mail from the mailbox located on the
server to the mail reader located on the user’s desktop. These protocols make it possible
to move any type of data through the mail from any user to any other user in the world.
Planning a complete enterprise e-mail architecture constructed from these protocols is the
subject of our next chapter.

2
Understanding E-Mail

Architecture

The capabilities of the network protocols described in Chapter 1, “Internet Mail
Protocols,” define the technical boundaries of the Internet mail architecture. The global
scope of Internet mail makes it obvious that these protocols can create a flexible archi-
tecture supporting an enormous amount of e-mail traffic.

SMTP provides direct end-to-end mail delivery. This is one of its great strengths. In Chap-
ter 1, telnet was used to simulate an SMTP connection for the purpose of examining the
protocol interactions. Another thing the telnet test showed is that SMTP runs over the
reliable, connection-oriented TCP transport. Using TCP means that end-to-end mail
delivery is guaranteed. The person at the remote end might not read your mail, you may
accidentally address it to the wrong person, or the server may redirect your mail, but you
can rely on the fact that your mail message arrives intact.

Because of the direct delivery model, SMTP systems like Sendmail can provide immediate
feedback about delivery. Everyone, at one time or another, has sent a message and gotten
an immediate response saying that user so-and-so does not have an account on the remote
host to which the mail was directed. This immediate feedback is available because the
local system directly connects to the remote host, delivers the mail to that host, and
accepts responses back from that host. If the response is an error, the error message can
be immediately returned to the sender.

Chapter 2 Understanding E-Mail Architecture32

Some other mail systems use store-and-forward protocols like UUCP and X.400 that
move mail toward its destination one hop at a time, storing the complete message at each
hop and then forwarding it on to the next system. The message proceeds in this manner,
one hop at a time, until final delivery is made. With a system like UUCP, your server will
communicate directly only with hosts that are directly attached to your server. UUCP is
a particularly good example of the store-and-forward model because the traditional
UUCP bang address format clearly shows the path that the mail takes to its destination.
In the UUCP bang address format, each host in the forwarding sequence is explicitly
named and the last value in the address is the name of the user to whom the mail is
addressed. Figure 2.1 uses UUCP and SMTP to illustrate both store-and-forward and
direct delivery mail systems.

Figure 2.1 Direct delivery versus store-and-forward

Direct delivery allows SMTP to deliver mail without relying on intermediate hosts. If the
delivery fails, the local system knows it right away. It can inform the user that sent the
mail or queue the mail for later delivery without reliance on remote systems. The disad-
vantage of direct delivery is that it requires both systems to be fully capable of handling
mail. Sometimes that’s not the case, particularly with small systems such as PCs or mobile
systems such as laptops. These systems are usually shut down at the end of the day and
are frequently offline. Mail directed from a remote host fails with a “cannot connect”
error when the local system is turned off or is offline. To handle these cases, SMTP can
simulate the store-and-forward model by delivering the message to a mail server instead
of delivering it to the end system. The remote mail server is then responsible for moving
the mail to the end system.

Sara’s
mailbox

local
mailer mouse shark hawk

local
mailer hawk.foobirds.org

mouse! shark! hawk! sara

Store-and-Forward Delivery

sara@hawk.foobirds.org

Direct Delivery

The Role of DNS 33

H
ow

 T
hi

ng
s

W
or

k

PART 1

The Domain Name System (DNS) tells the SMTP server when mail needs to be routed to
another server instead of the end system.

The Role of DNS
All Internet connections depend on IP addresses. DNS is a distributed database system
that maps hostnames to IP addresses. However, DNS can do much more than just map
addresses. Address (A) database records are only part of the story. DNS running on Linux
supports about 40 different database record types.

NOTE Some knowledge of DNS is needed to fully understand e-mail architec-
ture. However, this is not a book about DNS. If you need to run a DNS server, see
Linux DNS Server Administration by Craig Hunt (Sybex, 2000), part of the Craig
Hunt Linux Library.

DNS database records all have the same basic format. For the purposes of this book, the
format of DNS database records can be simplified to three basic fields:

� The name field contains the name of the object to which the record applies. Gener-
ally, this is a domain name or hostname.

� The type field contains the database record type. For example, an address record has
a type field that contains the letter A.

� The data field contains the data specific to the type of record. For example, an
address record contains an IP address in the data field.

Of the forty possible record types, only a handful are used to build real DNS databases.
Of this handful of records, one of the most important is the Mail Exchange (MX) record.
MX records tell Sendmail where to deliver mail. The name field of an MX record contains the
hostname that appears in the e-mail address, and the data field contains the hostname of
the server to which the mail should be delivered. Two MX records that define the mail serv-
ers for the foobirds.org domain might contain the following:

 foobirds.org. MX 10 wren.foobirds.org.

 foobirds.org. MX 20 parrot.foobirds.org.

The name field contains the domain name foobirds.org., meaning that these records
pertain to the entire domain. If mail is addressed to user@foobirds.org, the mail is
directed to the mail exchangers defined by these records. This is a popular configuration,
particularly when combined with the ability of the mail server to masquerade the host-
name in outbound mail. Masquerading makes it look as if the mail sent by the local user

Chapter 2 Understanding E-Mail Architecture34

came from user@domain, which creates a balanced addressing scheme for both inbound
and outbound mail.

NOTE See Chapter 9, “Special m4 Configurations,” for detailed information
about masquerading hostnames.

The first sample MX record says that wren is the mail server for the foobirds.org domain
with a preference of 10. The second MX record identifies parrot as a mail server for
foobirds.org with a preference of 20. The lower the preference number, the more pre-
ferred the server is. The record with the preference of 10 is used before the record with
the preference of 20, meaning wren is the preferred mail server for the foobirds.org
domain and parrot is the backup server.

A backup mail exchange server is used only when the preferred server is down or offline.
The backup server holds the mail and periodically attempts to send it on to the preferred
server. When the preferred server comes back online, the backup server sends the mail to
the preferred server. At that point, the backup server’s job is done. A backup mail
exchange server never deals directly with the mail recipient. Its only job is to get the mail
to the preferred server.

The sample MX records redirect mail addressed to the domain foobirds.org, but they do
not redirect mail addressed to an individual host. Therefore, if mail is addressed to
jay@hawk.foobirds.org, it is delivered directly to hawk; it is not sent to a mail server.
This is a very flexible configuration that permits people to use e-mail addresses of the
form user@domain when they like, or to use direct delivery to an individual host when
they want that.

Some systems are not capable of handling direct-delivery e-mail. An example is a
Microsoft Windows system that doesn’t run an SMTP mailer daemon. Mail addressed to
such a system would not be successfully delivered, and worse, would probably be
reported to you as a network error! To prevent this, MX records are generally assigned to
these individual hosts to redirect mail addressed to the hosts to a valid mail server. Here
are two examples:

puffin.foobirds.org. MX 5 wren.foobirds.org.

robin.foobirds.org. MX 5 wren.foobirds.org.

These MX records redirect mail addressed to puffin or robin to wren. In both cases, only
one mail server is named for each host. With these records, mail addressed to
daniel@puffin.foobirds.org is delivered to daniel@wren.foobirds.org. Sendmail
does not need to select a server. All of the mail goes to wren. The next section examines
how Sendmail uses the DNS responses.

The Role of DNS 35

H
ow

 T
hi

ng
s

W
or

k

PART 1

Processing MX Records

When Sendmail has mail to deliver, it queries DNS for the MX records for the hostname
in the e-mail address. It then sorts those MX records by preference number. Thus, the lower
the preference number, the earlier in the list a server appears, which makes servers with
low preference numbers preferable to servers with high preference numbers.

Sendmail then tries to deliver the mail to each mail server in order. It stops processing the
list if it finds a server that will accept the mail or if it finds its own hostname in the mail
exchange server list. If it cannot deliver the mail to any of the servers, it will use the
address of the host and attempt to deliver directly to that host.

NOTE The process of first querying for MX records and then querying for
address records is an idealized process described in RFC 974 (“Mail Routing and
the Domain System”). In reality, Sendmail uses the DNS ANY query to get any
and all records about a host. That one query retrieves the MX records and the
A records.

A backup mail exchange server determines how to deliver mail just like any other server
by querying DNS for a list of MX records. However, it cannot just send the mail to each
server in turn in the MX list because, in the hands of an MX server, MX records have the
potential to create mail-routing loops.

Assume that we have three MX servers in this order of preference: wren, parrot, and jay.
wren is down so the mail is delivered to parrot. parrot fetches the MX records and
attempts to deliver the mail to wren. wren is still down. parrot would queue the mail and
not attempt to deliver it to any other server on the MX list. This is to avoid loops. If parrot
tries to deliver the mail to itself, a tight loop will ensue. If parrot tries delivering the mail
to jay, a bigger loop ensues because jay would then start sending the mail back to
parrot, who would send it back to jay, and so on. To avoid these loops, a mail server
stops attempting to deliver the mail when it finds itself in the MX list and queues the mail
for later delivery. In effect, a backup server only attempts to deliver mail to MX servers that
are more preferred than it is. Thus, in this list of three servers, parrot will try to deliver
mail only to wren.

Using the same three servers, wren, parrot, and jay, assume that both wren and parrot
are down:

1. The mail comes to jay.

2. jay discovers that the more preferred servers are down.

3. jay queues the mail for later delivery.

4. Later, jay processes its queue. wren is still down but parrot is back in operation.

Chapter 2 Understanding E-Mail Architecture36

5. This time, jay delivers the mail to parrot and it becomes parrot’s responsibility to
deliver the mail.

6. parrot keeps the mail in its queue until wren finally comes back online.

By sending mail only to more-preferred servers, mailers avoid mail-routing loops and
gradually move mail closer to its final destination.

The MX record is only the first step in creating a mail server. The MX record is necessary to
tell the remote computer where it should send the mail, but for the mail server to success-
fully deliver the mail to the intended user, it must be properly configured. How wren han-
dles the mail as the preferred mail exchange server is a function of how Sendmail is
configured on wren. DNS identifies servers and Sendmail is configured to create different
types of servers. These servers are the components of mail architecture.

The Components of Mail Architecture
Conceptually, mail delivery is a simple thing—you want to get a message from point A to
point B. All of the components of the mail system focus on doing this one task. They vary
in how they do it and when they are needed to do it. A terminology has grown up to
describe the different roles of the pieces of the mail architecture. Some of the terms are
formally defined and others are loosely used. Understanding the terminology used to
describe mail architecture and the role of the various components is a necessary part of
understanding the mail system.

Formal Definitions

Most mail starts and ends its life in a message user agent (MUA). The MUA is the mail
interface with which the user interacts. It is the application program that the user uses to
read and write mail. pine, elm, and Netscape Messenger are some examples. Sendmail
itself can be used as an MUA by running the sendmail command from the shell prompt,
although this is generally only done for testing. MUA is the formal term used to describe
the programs with which users create and read mail. Sometimes an MUA will be loosely
called a mail “client,” but as with most generalized terminology, calling an MUA a client
is not very accurate because even a server can be a client in the right circumstances.

NOTE The word “message” is sometimes replaced by the word “mail” in these
acronyms. Message user agent (MUA), message transfer agent (MTA), and mes-
sage submission agent (MSA) are also commonly called mail user agent, mail
transfer agent, and mail submission agent, respectively.

The Components of Mail Architecture 37

H
ow

 T
hi

ng
s

W
or

k

PART 1

Message transfer agents (MTAs) move mail through the network. In the case of the Inter-
net, an MTA is a program that uses SMTP to move complete mail messages over the net-
work. Sendmail is the most widely used MTA for Linux systems. The Sendmail daemon
runs a listener that attaches to TCP port 25, the SMTP port, to collect inbound mail com-
ing from remote MTAs. MTA is a formal definition. An MTA is sometimes loosely
referred to as a mail relay or a mail hub; however, relays and hubs do much more than
just transfer mail.

As formally defined, an MTA is supposed to receive and send complete mail messages.
Because the messages are complete, the MTA limits any modifications it makes to the
message to just those mail headers that should be updated by every agent that handles the
mail, such as the Received: header. When Sendmail receives mail from a remote server, it
is clearly acting as an MTA. But when it receives mail directly from an MUA, Sendmail
does more than modify a few headers—it may add headers and correct addresses. In this
latter case, Sendmail is acting as a message submission agent (MSA). An MSA is the first
MTA after the MUA, and it is permitted to make modifications to the message before
transferring the mail. An MSA is sometimes loosely called a mail server; however, the
term “server” encompasses many meanings.

TCP port 587 is used by MSAs. During start-up, the Sendmail daemon attaches a listener
to port 587 to accept mail from MUAs that speak SMTP. On Linux systems, most MUAs
do not speak SMTP to the Sendmail daemon through port 587. Instead, individual instan-
tiations of Sendmail are launched by the MUAs to act as MSAs for outbound mail. They
move the message to Sendmail using some form of interprocess communication—e.g., a
pipe. The MUAs then rely on Sendmail to properly format the mail and handle the SMTP
communication with the remote server.

NOTE At one time, an MUA that spoke SMTP could use it to communicate with
Sendmail by invoking the sendmail command with the -bs option. Now, the MUA
can send the SMTP traffic to port 587 without invoking a separate instantiation of
Sendmail.

Formal language is needed by protocol developers to accurately define the functions of
the various components of the system. But just reading a paragraph full of MUA, MSA,
and MTA is enough to make your head ache. People simply don’t talk that way. Most of
the time, the components of the e-mail architecture are described with more general
terms.

Chapter 2 Understanding E-Mail Architecture38

Commonly Used Terminology

Most people do not use the terms MUA, MSA, and MTA when speaking about e-mail
architecture. The more commonly used terms are described below.

Client A mail client is generally the end system on which mail is read or written.
This could be an MUA, or a POP or IMAP client. However, the term “client” can
also be applied to a remote system that is acting as a client during a protocol
exchange. For example, later in this book you will see a variable named client_
addr that holds the client’s IP address. In that case, however, the “client” is not an
end system at all; it is the remote MTA that initiated an SMTP connection. Look at
the context in which the term “client” is used to discern the proper meaning.

Server A mail server is any system that handles either MSA or MTA functions. Any
Linux system running Sendmail can be called a server. “Server” is the most general
term. There are several different types of servers.

Hub A mail hub is a server that acts as a central collection point for all of its clients’
mail. The mail hub may handle all of the mail processing for its clients. An extreme
example of dependence on a hub is the Sendmail nullclient configuration. In a
nullclient configuration, all mail, even messages between two users of the client
system, is sent to the hub for processing and is stored on the hub. Generally, the term
is used to refer to any server that is a collection point for mail.

Mailbox server A mailbox server is a server that holds mail until its clients are
ready to read the mail. It is similar to a hub server except that “mailbox server” is
generally used only when the clients are POP or IMAP clients. The terms “hub
server” and “mailbox server” are often used interchangeably.

Relay A relay server acts as an MTA for its clients. It accepts mail from clients and
sends that mail on to the destination address. Proper relay configuration is an impor-
tant part of setting up Sendmail, particularly in the fight against spam e-mail. Chap-
ter 11, “Stopping Spam,” covers relay configuration extensively.

A mail server may handle more than one of these functions. A server may be called a relay
when referring to its role in handling outbound mail. That same server may be called a
hub or a mailbox server when referring to its role in storing inbound mail for its clients.
And when it is referred to in general terms, it may just be called a mail server.

Client configuration acknowledges the dual role of mail servers. The configuration of a
Windows client shown in Figure 2.2 identifies a Linux server to act as a POP3 mailbox
server for inbound mail and a separate Linux server to act as a relay for outbound mail.

The Components of Mail Architecture 39

H
ow

 T
hi

ng
s

W
or

k

PART 1

Of course, these could be the same Linux system, and they often are. In the example, two
different systems are used to emphasize the two major server roles.

Figure 2.2 A PC client configuration

Often the simple view of the configuration seen from a Windows client does not reflect
the true e-mail architecture of a network. In the next section, we examine two sample net-
works to put the components of e-mail architecture into context.

Sample Mail Architectures

The first sample architecture can be seen in Figure 2.3. It shows an engineering depart-
ment in which every user has a Linux desktop. The cloud represents the outside world.
The directional arrows indicate the flow of mail into and out of each system. As this figure
illustrates, each Linux system is acting as its own server. It collects inbound mail and
sends outbound mail for its own users. It does not, however, act as a relay or hub for any
client systems or for any users on other systems.

Chapter 2 Understanding E-Mail Architecture40

Figure 2.3 A sample engineering department

This configuration is surprisingly easy to create because it is the default configuration of
a Linux system running Sendmail. The default Linux configuration runs the Sendmail
daemon, which provides an SMTP listener on port 25 to collect inbound mail, and all of
the MUAs running on Linux know about Sendmail and use it to send outbound mail. Fur-
ther, the default Sendmail configuration blocks relaying from outside systems.

The configuration for the engineering department is simple, but maintenance is complex.
Every system needs to be kept up to date with the latest Sendmail patches. In a department
with just a few systems this is not too bad, but if the network grows very large, keeping
all of the systems updated could be a big headache. To cope with a configuration like this
you need sophisticated users who can help with the maintenance, which is why we
showed this as a configuration for a small engineering department. Less sophisticated
users require a more complex architecture.

Figure 2.4 shows a sales department. Pre- and post-sales technical support personnel and
top sales people get Linux desktops. Sales trainees and clerical personnel get Windows
desktops. The dashed arrows indicate that the Windows clients periodically retrieve mail
from the server using POP or IMAP; the solid arrows to the Linux clients indicate that
mail is immediately forwarded to those clients via SMTP.

The server is configured as both a relay and a mailbox server. The relay configuration is
carefully created so that all systems within the local network can relay through the server
but no remote systems can relay mail though the server. The server is also configured to
forward all of the mail it receives for its Linux clients on to those clients. The Linux clients
are configured to send all outbound mail through the server. (In Sendmail configuration,
all mail can be sent through a single server by defining a SMART_HOST value in the config-
uration of the client.)

External
world

Linux
Workstation

Linux
Workstation

Linux
Workstation

Sendmail’s Roles 41

H
ow

 T
hi

ng
s

W
or

k

PART 1

Figure 2.4 A sample sales department

The fact that all mail flows through one server simplifies maintenance. Patches can be
applied to a single system and yet benefit the entire network. Mail can be filtered at a sin-
gle point. If a firewall is put in place, it only needs to allow mail through to a single sys-
tem. The biggest problem with this configuration is that it creates a potential single point
of failure.

In these two simple sample networks, Sendmail systems are used as both clients and serv-
ers. Sendmail performs multiple tasks that are essential for efficient mail delivery, and
Sendmail systems take on multiple roles in the e-mail architecture.

Sendmail’s Roles
MSA, MTA, relay, and server are all terms used to describe the functions of components
within the e-mail architecture. These words will appear again and again throughout this
book. Understanding them is essential. Sendmail also has its own language to describe the
functions it performs. Mailers, rulesets, rewrite rules, and aliasing are all words used to
describe the work that Sendmail does. To read this book and understand the role of Send-
mail, you need to know what each of these terms means. This section introduces “Send-
mail speak” and links this new terminology to the roles that Sendmail plays in the e-mail
architecture.

External
world

Windows
Client

Linux
Server

Windows
Client

Linux
Workstation

Linux
Workstation

Chapter 2 Understanding E-Mail Architecture42

The tasks that a Sendmail server performs can be divided into two basic functional
groups: the roles that Sendmail performs as a message submission agent and as a message
transport agent. The distinctions between these roles can be subtle, and the roles some-
times overlap. But these two basic roles incorporate all of the tasks performed by a Send-
mail server and help explain what various configuration values do and why they need to
be defined. Much of the Sendmail configuration is used to specify how Sendmail should
handle its duties as a message submission agent.

A Message Submission Agent

The functions of Sendmail described in this section might not meet the RFC definition of
an MSA, but they come mighty close. An MTA that accepts a message directly from an
MUA and takes an active role in formatting a complete mail message is an MSA. Sendmail

� accepts mail from an MUA
� determines the mail delivery program for the mail
� reformats the mail addresses for the selected mailer
� adds the headers required by the mailer
� sends the message to the mailer for delivery

In this book I’m using “message submission agent” to describe the role that Sendmail fills
as the interface between the user’s e-mail program (the MUA) and the mail delivery pro-
gram (the MTA). Even when Sendmail is the MTA, things must be done to the mail
received from the MUA to prepare it for delivery, and, of course, Sendmail is not the only
MTA that can run on a Linux system. A user can create a wide variety of mail with an
e-mail program. The mail entered by the user could be local mail bound for another local
user; it could be Internet mail bound for a remote user; it could be data bound for a Linux
program; it could even be mail bound for any one of a large number of obsolete mail sys-
tems. (See Appendix A, “m4 Macro Command Reference,” for a full list of the mailers
supported by Sendmail.) All that a user mail program running on a Linux system needs
to do is pass the mail message on to Sendmail. Sendmail is equipped to select the appro-
priate delivery agent and to properly prepare the mail for that delivery agent.

Sendmail Mailers

The mail delivery programs are called mailers in Sendmail terminology. The mailers avail-
able to Sendmail are defined inside the Sendmail configuration file. A mailer definition
assigns an internal mailer name to a mail delivery program. These names are arbitrary,
but most Linux systems use the standard mailers defined by the default Sendmail config-
uration. Chapter 5, “Understanding a Vendor’s Configuration,” describes each of the default
mailers.

A mailer definition also provides Sendmail with the full pathname of the mail delivery
program and the command-line arguments Sendmail should use when it launches that

Sendmail’s Roles 43

H
ow

 T
hi

ng
s

W
or

k

PART 1

mailer. If the mail delivery program is Sendmail itself, as it is for all of the SMTP mailers,
a symbolic name, either IPC, which stands for Inter-Process Communication, or TCP,
which stands for Transmission Control Protocol, is used instead of a pathname.

Mailer definitions take up a substantial portion of the Sendmail configuration file. Each
mailer definition provides the instructions that Sendmail needs to properly prepare a mes-
sage for a given mailer. This includes the commands that are used to process sender
addresses and recipient addresses for the mailer. There are also flags associated with each
mailer. The flags define optional processing required by the mailer and identify the mes-
sage headers needed for the mailer. The number and type of headers vary from mailer to
mailer.

The Sendmail configuration contains several mailers. Sendmail must select the correct
mailer to deliver a piece of mail.

Determining the Delivery Triple

When Sendmail receives a piece of mail from an MUA, it determines what mailer will
deliver the mail. Sendmail determines this from the delivery address included in the mail.
It does this by literally converting the delivery address into a delivery triple. A delivery
triple contains up to three values:

� the recipient’s e-mail address
� the name of the mail server to which the mail will be sent
� the internal name of the mailer that will deliver the mail to the server

You can see the delivery triple that is produced for any given address by running the
sendmail command with the -bv option and the address you want processed. Listing 2.1
shows the output of sendmail -bv for two different delivery addresses.

Listing 2.1 Examining the Delivery Triple

[craig]$ sendmail -bv ed@xy.com

ed@xy.com... deliverable: mailer esmtp, host xy.com, user ed@xy.com

[craig]$ sendmail -bv craig

craig... deliverable: mailer local, user craig

The first line in Listing 2.1 is a command that asks Sendmail to evaluate the delivery
address ed@xy.com. Sendmail responds that the address is deliverable—which in this case
means only that it is properly formatted, because the copy of Sendmail running on your
server does not have any direct knowledge of whether or not the remote host can actually
deliver mail to this address. The delivery triple for the address is also displayed. The name
of the internal mailer that Sendmail will use to transport mail to this address is esmtp,
which is the default name used for the extended SMTP mailer. The host to which Send-
mail will transfer the mail is named xy.com, and the e-mail address that the mail will be
delivered to is ed@xy.com.

Chapter 2 Understanding E-Mail Architecture44

The second command in Listing 2.1 is slightly different. It evaluates the delivery address
craig. Because the address has no hostname part—i.e., no at-sign (@) followed by a host
or domain name—the address is assumed to be the name of a user on the local system.
Sendmail checks that the username is deliverable on the local host. The host value is not
provided as part of the delivery triple for local mail delivery because no remote host is
involved. The internal mailer name for local mail delivery is local, and in Listing 2.1 the
user value that would be passed to the local mailer is craig.

Formatting E-Mail Addresses

Once Sendmail selects a mailer, it must properly format the mail for that mailer. Sendmail
uses commands called rewrite rules to transform the e-mail address received from the
MUA into the format required by the MTA. The bulk of the Sendmail configuration file
is composed of rewrite rules. These are individual lines that define a pattern match and
a transformation. If the input address matches the pattern defined in a rule, it is rewritten
using the transformation defined in that rule.

Rules are grouped together into rulesets, which are internally identified by a name or a
number. Rulesets can be called like functions from individual rewrite rules to process
complex addresses. Certain rulesets are assigned special roles by Sendmail and are used
to process different types of addresses. For example, delivery addresses are processed by
the canonify ruleset (also known as ruleset 3), which processes all addresses to put them
into the format expected by Sendmail, and then by the parse ruleset (also known as
ruleset 0), which creates the delivery triple.

You can watch the rulesets in action by running the sendmail command with the -bt
option. -bt places Sendmail in test mode. Once it is running in test mode, it will accept
a list of rulesets and an address to process through those rulesets. In Listing 2.2, the
sendmail command is run with the -bt argument and asked to process ed@xy.com
through rulesets canonify and parse.

Listing 2.2 Watching Rewrite Rules in Action

[craig]$ sendmail -bt

ADDRESS TEST MODE (ruleset 3 NOT automatically invoked)

Enter <ruleset> <address>

> canonify,parse ed@xyz.com

canonify input: ed @ xyz . com

Canonify2 input: ed < @ xyz . com >

Canonify2 returns: ed < @ xyz . com >

canonify returns: ed < @ xyz . com >

parse input: ed < @ xyz . com >

Parse0 input: ed < @ xyz . com >

Sendmail’s Roles 45

H
ow

 T
hi

ng
s

W
or

k

PART 1

Parse0 returns: ed < @ xyz . com >

ParseLocal input: ed < @ xyz . com >

ParseLocal returns: ed < @ xyz . com >

Parse1 input: ed < @ xyz . com >

Mailertable input: < xyz . com > ed < @ xyz . com >

Mailertable input: xyz . < com > ed < @ xyz . com >

Mailertable returns: ed < @ xyz . com >

Mailertable returns: ed < @ xyz . com >

MailerToTriple input: < > ed < @ xyz . com >

MailerToTriple returns: ed < @ xyz . com >

Parse1 returns: $# esmtp $@ xyz . com $: ed < @ xyz . com >

parse returns: $# esmtp $@ xyz . com $: ed < @ xyz . com >

> ^D

The sendmail -bt command shows much more detail than -bv did. Listing 2.2 shows
that before the canonify ruleset returns a value the Canonify2 ruleset is run, and before
the parse ruleset returns five other rulesets are run. This shows that rulesets can be called
by a rule from within other rulesets. That’s what’s happening in Listing 2.2. In all, eight
rulesets process this delivery address. The result is the delivery triple. Notice here, how-
ever, that the label mailer is replaced by the symbol $#, the label host is replaced by $@,
and the label user is replaced by $: in the triple. As you’ll see in Chapter 8, symbols are
heavily used in Sendmail rewrite rules.

The delivery address is only one type of address handled by Sendmail. Sendmail also pro-
cesses the sender address and the recipient address. The sender address is the name of the
user or process that initiated the mail. The recipient addresses are the list of recipients pro-
vided with the mail. The recipients are distinct from the delivery address in that only one
address at a time from the list of recipients is used as the delivery address but the entire
list of recipients is processed and included in each outbound mail message.

All addresses are processed through rewrite rules to convert the input addresses into a for-
mat that is acceptable for the mailer that will be transporting the mail. Because the rewrit-
ing is dependent on which mailer will be handling the mail, the delivery address is
processed first to determine which mailer will be used. Once the mailer is selected, the
other addresses can be processed through the standard rulesets and those that are specific
to the mailer.

Processing and rewriting e-mail addresses is a central part of what Sendmail does. It is a
large and complex topic. Chapter 8 covers the topic in detail.

Chapter 2 Understanding E-Mail Architecture46

Formatting Headers

In addition to modifying the mail addresses to make them correct for the mail delivery
program, Sendmail ensures that all of the headers required by the mail delivery program
are provided and are properly formatted. As noted above, the flags in a mailer definition
identify the headers required for that mailer.

The Sendmail configuration file contains header templates that define the proper format
for the various message headers. Each template has an associated flag. If a matching flag
is found in the mailer definition, Sendmail knows that the mailer requires that particular
header and adds it if it is not already contained in the mail message. The mail headers con-
tained in the message that Sendmail receives from the MUA are maintained and for-
warded to the mail delivery program. The flags and the header templates ensure that all
of the required headers are provided even if the MUA fails to provide them.

The role of a message submission agent is central to what Sendmail is. Sendmail receives
mail from the user’s mail program, selects the correct mail delivery program for that mail,
and properly formats the message headers and e-mail addresses for the selected mailer.
The MSA function is very complex and it is the focus of most Sendmail configurations.
Despite its complexity, serving as a message submission agent is not the only Sendmail
function.

A Message Transfer Agent

Sendmail acts as an MTA when it receives mail from an external system because it is not
the first-hop MTA and it doesn’t modify the mail message. Therefore, Sendmail isn’t act-
ing as an MSA. The mail may be inbound mail destined for someone on the local system
or mail being relayed through the local system to a remote server.

Sendmail is designed to deliver mail to the correct recipient. Outbound mail is handled by
formatting it and passing it to the correct mailer for delivery. Inbound mail is handled by
passing it to the correct user or system.

In certain circumstances, inbound mail needs to be forwarded before final delivery can be
made. The To: address on the mail may be an alias for the real recipient. The recipient
may define private forwarding for their mail. It is even possible that the hostname in the
To: address is not the name of the local host and that the mail needs to be forwarded to
a remote host for delivery. Three Sendmail features, aliasing, forwarding, and relaying,
handle these three types of delivery.

Sendmail’s Roles 47

H
ow

 T
hi

ng
s

W
or

k

PART 1

Sendmail Aliases

Sendmail aliases perform important functions that are an essential part of creating a mail
server. Mail aliases do the following:

Specify nicknames for individual users. Nicknames can be used to direct mail
addressed to special names, such as postmaster or root, to the real users who do
those jobs. When used in conjunction with the domain MX records covered earlier,
aliases can be used to create a standard e-mail address structure for a domain.

Forward mail to other hosts. Sendmail aliases automatically forward mail to the
host address included as part of the recipient address.

Define mailing lists. An alias with multiple recipients is a mailing list.

Mail aliases are defined in the aliases file, which is the database Sendmail uses to deter-
mine where to deliver inbound mail. Processing an address through the aliases database
is called aliasing. It is a multi-step process.

1. First, Sendmail determines whether or not the address is a local address. Only mail
addressed to the local system is processed through the aliases database. Mail is
considered to be addressed to the local system when the recipient address has no host
part—i.e., no @hostname—or the hostname in the host part of the address is either
the name of the server itself or one of the names it recognizes as a local host alias.
Local host aliases are not the same thing as aliases. Aliases are usernames defined in
the aliases database. Local host aliases are hostnames defined in the local-host-
names file. If Sendmail decides the mail is addressed to the local system, aliasing con-
tinues. Otherwise, the mail is processed for relaying. (Relaying is described in the
next section.)

2. Next, the username from the recipient address is used as the key for an aliases data-
base lookup. If the database does not return a value for the lookup, the mail is deliv-
ered to the user defined in the recipient address.

3. If the aliases database returns a value for the lookup, the value becomes the new
database key.

4. Another lookup is done using the new key. If no value is returned for the lookup, the
mail is delivered to the address that was used as the last key. If a value is returned,
Sendmail goes back to step 3. Sendmail can loop through steps 3 and 4 up to ten
times, because aliases can point to other aliases and can be nested up to ten levels deep.

5. If Sendmail loops through steps 3 and 4 the maximum number of times without
resolving the aliases, it returns an error and does not deliver the mail.

Chapter 2 Understanding E-Mail Architecture48

Another level of aliasing occurs after the recipient is processed through the aliases data-
base. The aliases database defines mail forwarding for the entire system. The .forward
file, which can be created in any user’s home directory, defines mail forwarding for an
individual user. Once Sendmail identifies the user to which the mail will be delivered, it
looks for a .forward file in the user’s home directory. If the .forward file is found, the
mail is forwarded to the e-mail address contained in that file. If the file is not found or is
empty, the mail is delivered directly to the user’s account.

NOTE The aliases database, the local-host-names file, and the .forward
file are all described in Chapter 6, “Using Sendmail Databases.”

The Sendmail terms “forwarding” and “relaying” are often used interchangeably, but
there is a slight difference. Forwarding refers to the act of transferring to another host
mail that was originally addressed to the local host. For example, if mail addressed to
norm on the local host is sent to normane@hawk.foobirds.org as a result of aliasing, you
would say the mail has been forwarded to hawk.foobirds.org. Relaying, which is the
next topic, is subtly different.

Mail Relaying

Relaying occurs when mail is transferred on toward its destination and neither the source
nor the destination address of the mail is the address of the local system. For example: If
a server named wren.foobirds.org receives mail from ibis.foobirds.org that is
addressed to craig@wrotethebook.com and re-sends that mail to the host
wrotethebook.com, wren is acting as a mail relay.

At one time mail relaying was the default configuration for Sendmail systems, but no
more. Spammers used unsuspecting mail servers to relay their spam in order to hide the
true origin of the nuisance mail. Now the default configuration is to relay no mail at all.
In Figure 2.1, the sample systems use this default configuration. Each system sends its
own e-mail. None of the systems accepts mail for relaying from any other system. It is up
to you to loosen those restrictions if you need to provide mail relaying for some of your
clients. (Proper relay configuration is described in Chapter 11.) In Figure 2.2, the server
system is configured as a relay for the systems on the local area network.

By default, Sendmail does not relay mail. A server accepts mail addressed to the server
itself or any of its local hostname aliases. It rejects all other mail. To enable relaying, the
specific names of the hosts or domains that should be allowed to relay mail must be pro-
vided to Sendmail. The hostnames of relay clients can be provided in the relay-domains
file or through the access database. Both of these files are covered in Chapter 6.

In Sum 49

H
ow

 T
hi

ng
s

W
or

k

PART 1

A Client

One possible role for a Linux system running Sendmail that is frequently overlooked is
the role of a client. By default, every Linux system is a Sendmail server. It is a limited
server, because it is set up to handle only mail from users who are directly logged in to the
system, but it is a server nonetheless. Turning a Linux system into a true client takes some
configuration effort, and it is rarely worth the effort. While the nullclient configuration
is touched upon in Chapter 9, the true focus of this book is to properly configure the
Sendmail server functions for every Linux system from a laptop to an enterprise server.

In Sum
The SMTP protocol runs on top of the TCP protocol. TCP is a reliable, connection-
oriented protocol. It ensures that mail is always delivered, and it means that SMTP
directly delivers mail to the remote system without dependence on intervening systems.
This is a great mail-delivery model because it provides immediate feedback from the
remote server about whether or not the mail was successfully delivered. However, this
system demands a remote system that is fully capable of accepting SMTP mail. Unfortu-
nately, that is not always the case. Sendmail queries DNS and uses the MX records it pro-
vides to route mail to a fully capable SMTP server for those systems that cannot handle their
own SMTP mail.

The fact that both direct delivery to end systems and delivery to intervening mail servers
are available to Sendmail creates the possibility of a variety of e-mail architectures. There
are clients and servers, and the servers can be described in several different ways. Servers
that collect inbound mail are described as hubs or mailbox servers. Servers that handle
outbound mail are called relays or simply servers. To clarify the vagueness of this lan-
guage, Internet standards documents define the functions of message user agents (MUAs),
message submission agents (MSAs), and message transfer agents (MTAs).

Even with the narrowly defined terms MUA, MSA, and MTA, there can be confusion
because most functions do not match any definition exactly. Various functions overlap
across systems and things are not easily tied up in neat packages. The easiest way to avoid
making the language of e-mail architecture overly complex is simply to use a little judg-
ment. Don’t be too rigid in interpreting the meaning of a term. Always look at things in
context. Sendmail frequently uses the same word to describe two different things. Con-
text is the clue to understanding.

Sendmail is the software that turns a Linux system into an e-mail server. It acts as an MSA
and an MTA and can even be used as an MUA. Chapter 3, “Running Sendmail,” looks
at how Sendmail is installed on a Linux system and how it is run once it is installed.

3
Running Sendmail

Chapter 2, “Understanding E-Mail Architecture,” illustrates the importance of
Sendmail for a Linux system. Sendmail implements the SMTP protocol for Linux systems.
It sends and receives SMTP mail for the system, and it acts as an interface between the
user’s mail program and the Internet. These vital tasks make Sendmail a basic component
of most Linux systems.

Sendmail is such an essential part of a Linux system that it is usually installed by default
and run at start-up. If it is not installed on your system, you need to know how to install
it. Additionally, you need to know how to compile the Sendmail program for those times
when you want to install the latest source code distribution of Sendmail on an existing
Linux system. This chapter covers both of those topics. It also examines how and why the
Sendmail process runs at start-up, and you’ll look at the tools used to control whether or
not starting the Sendmail daemon is part of the Linux boot process on your system.

Running Sendmail at Start-Up
Sendmail runs in two distinct modes: real-time mode for outbound mail delivery and dae-
mon mode for collecting inbound mail and queue processing. When a mail user agent
(MUA) has mail to send, it creates an instantiation of the Sendmail program to deliver
that piece of mail. The instantiation of Sendmail lives long enough to deliver that one
piece of mail. If it cannot successfully deliver the mail, it writes the mail to the mail queue
and terminates. Most Sendmail processes have a very short life. The Sendmail daemon, on

Chapter 3 Running Sendmail52

the other hand, runs the entire time the system is running, constantly listening for
inbound mail and periodically processing the queue to deliver undelivered mail. The
Sendmail daemon, like most other daemons, is started at boot time.

The ps command reveals whether or not Sendmail is running on your system:

[root]# ps -C sendmail

 PID TTY TIME CMD

 542 ? 00:00:36 sendmail

The low process ID (PID) shows that this process was started during the boot. Running
this ps command on most Linux systems will show that Sendmail is running because, gen-
erally, Sendmail becomes part of the boot process when you first install Linux.

Many systems are running the Sendmail daemon unnecessarily. It is not necessary to run
Sendmail as a daemon in order to send mail. Running the sendmail command with the
-bd option is required only if your system directly receives SMTP mail. A Linux mail client
can collect inbound mail from the mailbox server using POP or IMAP and can relay out-
bound mail through the mail relay server without running the Sendmail daemon. Decid-
ing which systems should run the Sendmail daemon is part of the process of planning your
e-mail architecture. Unneeded daemons consume system resources and provide holes
through which network intruders can slither. Take care when selecting which systems
really need any daemon, including Sendmail.

It is possible to enable or disable Sendmail after the system is installed, and there are sev-
eral tools to do this. These tools vary depending on the type of start-up procedures used.
Some Linux systems use BSD-style start-up procedures, while others use System V–style
procedures.

On Linux distributions that use System V–style boot procedures, the script that starts
Sendmail is usually found in the /etc/rc.d/init.d directory, where it is stored under a
name such as sendmail, mail, or mta. On distributions that use BSD-style boot proce-
dures, the commands that start Sendmail are stored in one of the rc scripts. For example,
on Slackware 4.0, the commands to start Sendmail are found in the rc.M script located
in the /etc/rc.d directory. Regardless of the name of the script used for this purpose,
some start-up script is used to start Sendmail at boot time.

TIP To locate the Sendmail start-up script on your Linux system, go to the direc-
tory that holds start-up scripts and run the command grep sendmail * to search
every file for references to Sendmail. Not sure where the start-up scripts are
stored? Go to /etc and look for files or directories that begin with the string rc.
Those are start-up files and directories.

Running Sendmail at Start-Up 53

H
ow

 T
hi

ng
s

W
or

k

PART 1

On a BSD-Style Linux System

Linux systems such as Slackware that use BSD-style boot procedures start Sendmail by
executing the sendmail command directly from one of the main start-up files. The code
that runs the Sendmail daemon in the Slackware Linux /etc/rc.d/rc.M start-up script is
very straightforward, as shown in Listing 3.1.

Listing 3.1 Starting Sendmail from a Slackware Boot Script

Start the sendmail daemon:

if [-x /usr/sbin/sendmail]; then

 echo "Starting sendmail daemon"

 /usr/sbin/sendmail -bd -q 15m

fi

Listing 3.1 shows a Slackware system ready to run Sendmail. The first line is a comment,
as indicated by the fact that it starts with a pound sign (#). The next lines are an if state-
ment that checks whether or not the sendmail command is available. If the command is
found, a message is displayed on the console indicating that Sendmail is starting and then
the sendmail command is run.

The code in Listing 3.1 runs the sendmail command with the -bd and the -q options. In
addition to listening for inbound mail, the Sendmail daemon periodically checks to see
whether there is mail waiting to be delivered. It’s possible that a Sendmail process that
was started to send a message was not able to successfully deliver the mail. In that case,
the process writes the message to the mail queue and counts on the daemon to deliver it
at a later time. The -q option tells the Sendmail daemon how often to check the unde-
livered mail queue. In the Slackware example, the queue is processed every 15 minutes
(-q15m).

To prevent Slackware from starting Sendmail at boot time, comment the lines shown in
Listing 3.1 out of the rc.M script by placing a pound sign at the beginning of each line.
To restore Sendmail to the boot process, remove the pound signs. These techniques are
easy and they work, but they are far from elegant.

Directly editing a start-up script is easy, but dangerous. Most system administrators
worry that an editing error will have a major negative impact on the next boot. I have
never really had a major boot problem cause by an editing error, but I understand the
fear. Distributions that use System V–style start-up procedures alleviate this fear by mak-
ing it unnecessary to directly edit the start-up file.

Chapter 3 Running Sendmail54

On a System V–Style Linux System

Most Linux distributions use a System V–style boot process that allows the system to be
initialized in different ways depending on the runlevel. All of the service initialization
scripts are located in a single directory, usually called /etc/rc.d/init.d on Linux sys-
tems that use this style of start-up. The initialization scripts are indirectly invoked by links
contained in directories assigned to each runlevel. Caldera and Red Hat are good exam-
ples of System V–style Linux systems.

NOTE A detailed description of the Linux boot process is beyond the scope of
this book. To learn more about the boot process, runlevels, and start-up scripts,
see Linux Network Servers 24seven by Craig Hunt (Sybex, 1999).

The code that Caldera and Red Hat use to start the Sendmail daemon is found in the
/etc/rc.d/init.d/sendmail script. It is more complex than the code used by Slackware,
because Red Hat and Caldera use script variables read from an external file to set the
command-line options. The file they read is /etc/sysconfig/sendmail, which normally
contains these two lines:

DAEMON=yes

QUEUE=1h

Changing the values in the /etc/sysconfig/sendmail file controls the daemon configu-
ration. The QUEUE variable sets the time value of the -q option. In this case, it is one hour
(1h), which is a value that I like even more than the 15 minutes used in Slackware con-
figuration. Don’t set this time too low. Processing the queue too often can cause problems
if the queue grows very large due to a delivery problem such as a network outage.

If the variable DAEMON is equal to “yes,” the sendmail command is run with the -bd
option. If you are configuring a mail client and don’t want to run Sendmail as a daemon,
you could directly edit the /etc/sysconfig/sendmail file to set DAEMON=no.

TIP While changing the DAEMON value is one way to do this, it is generally a bet-
ter idea to remove the sendmail script from the start-up as described below than
it is to edit the contents of a script.

With System V–style start-up, you don’t have to directly edit start-up files. One of the
advantages of the System V–style boot procedure is that major services have their own
start-up scripts and those scripts are indirectly invoked, which makes it possible to con-
trol whether or not a service is started at boot time by controlling whether or not the

Running Sendmail at Start-Up 55

H
ow

 T
hi

ng
s

W
or

k

PART 1

script is invoked. The sendmail script is invoked indirectly from the runlevel directories
by the S80sendmail script (see Listing 3.2). An examination of that script shows that it
is just a symbolic link to the real sendmail script.

Listing 3.2 The Sendmail Link for Runlevel 3

[craig]$ cd /etc/rc.d/rc3.d

[craig]$ ls -l S80sendmail

lrwxrwxrwx 1 root root 18 Dec 26 1999 S80sendmail -> ../init.d/sendmail

To enable or disable the sendmail start-up script for a specific runlevel, simply add or
remove the symbolic link in that runlevel’s directory. In and of itself this would be simple
enough, but Linux systems make it even easier by providing tools to manage the runlevel
directories.

Enabling Sendmail with tksysv

tksysv is an X Windows tool provided for the purpose of controlling scripts started at
each runlevel. Figure 3.1 shows the main tksysv screen.

Figure 3.1 Enabling Sendmail with tksysv

Chapter 3 Running Sendmail56

All of the scripts that can be controlled by tksysv are listed on the left-hand side of the
screen. On the right are the services that are started and stopped for runlevels 2, 3, 4, and
5. To disable a service for a specific runlevel, simply highlight the service in the Start list
for that runlevel and click the Remove button. For example, to remove Sendmail from
runlevel 5, which is traditionally used as the runlevel for dedicated X Windows worksta-
tions, click sendmail in the Start list under runlevel 5 and then click Remove. After that,
Sendmail will no longer start when the system boots under runlevel 5.

To add Sendmail to a runlevel, highlight sendmail in the Available list and click Add.
You’ll be asked to select a runlevel. An example might be runlevel 3, which is traditionally
the default runlevel for multiuser servers. Select the runlevel and click Done. You’re then
asked to select a script number. Use the default, which is 80 for the sendmail script. Click
Add and the script is added to the start-up. The next time the system reboots under run-
level 3, Sendmail will be started.

TIP Of course you don’t want to reboot your system just to run the sendmail
start-up script. Use the Execute button to run the sendmail script immediately.

tksysv has a couple of nice features. First, it comes bundled with different versions of
Linux. It runs just as well on Caldera as it does on Red Hat, and it runs just as well under
Red Hat 6 as it does under Red Hat 7. Second, a clone of tksysv called ntsysv runs in
text mode and therefore doesn’t require X Windows. A dedicated e-mail server might not
be running X Windows. In that case, you want a tool like ntsysv that runs in text mode.

Enabling Sendmail with ntsysv

ntsysv is even easier to use because it doesn’t bother you with lots of questions about run-
levels. It assumes the current runlevel as a default unless it is run with the --level argu-
ment. ntsysv presents you with a list of services that can be automatically started at boot
time. One of these is Sendmail. The start-up script for every item in the list that has an
asterisk next to it will be run during the next boot. Use the arrow keys to scroll down to
the sendmail entry in the list and then use the space bar to select or deselect sendmail.
When the settings are just what you want, tab over to the OK button and press Enter.
That’s all there is to it. Figure 3.2 shows the main ntsysv screen.

Running Sendmail at Start-Up 57

H
ow

 T
hi

ng
s

W
or

k

PART 1

Figure 3.2 Enabling Sendmail with ntsysv

Enabling Sendmail with linuxconf

Another tool that is popular on Red Hat systems is linuxconf. linuxconf is a general-
purpose system administration tool. One of the features it provides is a way to manage
the start-up scripts. Figure 3.3 shows the linuxconf screen.

Figure 3.3 Enabling Sendmail with linuxconf

Chapter 3 Running Sendmail58

From the menu on the left-hand side of the linuxconf window, select Control � Control
Panel � Control Service Activity. A list of services appears on the right-hand side of the
window; it is the same list of services displayed by ntsysv. Again, as with ntsysv, you
don’t have to worry about runlevels. Simply enable or disable the sendmail script by
selecting the appropriate button next to the sendmail entry.

Enabling Sendmail with chkconfig

One final tool that can be used to control the scripts that are run at boot time is
chkconfig. This is a command-line tool based on the chkconfig program from the Sili-
con Graphics IRIX version of Unix. The Linux version has some enhancements, such as
the ability to control which runlevels the scripts run under. The --list option of the
chkconfig command displays the current settings:

[craig]$ chkconfig --list sendmail

sendmail 0:off 1:off 2:on 3:on 4:on 5:on 6:off

To enable or disable a script for a specific runlevel, specify the runlevel with the --level
option, followed by the name of the script you wish to control and the action you wish
to take, either on to enable the script or off to disable it. For example, to disable sendmail
for runlevel 2, enter the command shown in Listing 3.3.

Listing 3.3 Controlling Sendmail with chkconfig

[root]# chkconfig --level 2 sendmail off

[root]# chkconfig --list sendmail

sendmail 0:off 1:off 2:off 3:on 4:on 5:on 6:off

Manually Running the Start-Up Script

The previous sections discussed several different ways to do essentially the same thing—
enable or disable Sendmail at boot time. All of these approaches work. Choose the one
that is compatible with the version of Linux you’re running and that suits your tastes. But
remember, most of the time you will install and enable Sendmail during the initial system
configuration and will never again need to fiddle with the boot files.

It is far more likely that you will need to stop or restart a Sendmail process that is already
running on your system. On most systems, this can be done by manually invoking the
boot scripts. The sendmail start-up script on a Red Hat system accepts five arguments:

stop terminates the current Sendmail daemon process.

start starts a new Sendmail daemon if one is not currently running.

restart terminates the current Sendmail daemon and starts a new one. An alter-
nate name for the same command is reload.

Running Sendmail at Start-Up 59

H
ow

 T
hi

ng
s

W
or

k

PART 1

condrestart checks first to see if Sendmail is running. If one is running, it termi-
nates the current Sendmail daemon and starts a new one. If Sendmail is not currently
running, it starts Sendmail.

status displays the process ID of the current Sendmail daemon.

Listing 3.4 is an example of restarting the Sendmail daemon on a Red Hat system.

Listing 3.4 Restarting Sendmail with the Start-Up Script

[root]# /etc/rc.d/init.d/sendmail restart

Shutting down sendmail: [OK]

Starting sendmail: [OK]

NOTE If you’re running Red Hat 6.0 or higher, an alternative to specifying the
full path name of the sendmail start-up script is to enter service sendmail restart.
On other versions of Red Hat, use the full pathname.

The primary limitation of the start-up scripts is that they all start the Sendmail daemon
with only the -bd and the -q options. This is correct more than 99 percent of the time. But
there are a few occasions when additional command-line arguments are needed. If the
occasion is a test, it is simple enough to run Sendmail from the command line. If you need
additional command-line arguments for every boot, the only option is to edit the start-up
scripts or create your own start-up script to include the arguments you need. See Appen-
dix B, “The sendmail Command,” for a complete listing and description of the many
command-line arguments that are available for the sendmail command.

Controlling Sendmail with Signals

Not every Linux system has a script that can be used to start, stop, and restart Sendmail.
But on all systems, Sendmail can be controlled through signals. The Sendmail process
handles three different signals. Well, four, if you count the fact that SIGTERM aborts
Sendmail just as it does most other processes—but there are three signals that have a spe-
cial meaning to Sendmail. These three signals are:

SIGHUP The SIGHUP signal causes the Sendmail daemon to restart and reread its
configuration file. The most common use of SIGHUP is to force Sendmail to reload
its configuration after the configuration file has been updated. SIGHUP can even be
used to terminate the current copy of Sendmail and run a new one after the Sendmail
program has been updated because SIGHUP causes a true restart, not just a reread
of the configuration file.

Chapter 3 Running Sendmail60

SIGINT The SIGINT signal causes Sendmail to do a graceful shutdown. When
Sendmail receives SIGINT, it removes the lock files if it is currently processing the
queue, it switches back to the user ID that it started under to create a clean log entry,
and then it exits without errors. Like most processes, Sendmail can be terminated by
the kill signal, SIGTERM. However, SIGINT is a cleaner way to shut down Sendmail
because, unlike SIGTERM, SIGINT will not leave unresolved log entries or unused
lock files lying around.

SIGUSR1 Use the SIGUSR1 signal to cause Sendmail to write out its current status
via syslogd. Details of Sendmail logging are covered in Chapter 12, “Testing Send-
mail Security.” For now, it is sufficient to understand that SIGUSR1 causes Sendmail
to display information about the open file descriptors, information about its host
connection cache, and output from the debug_dumpstate ruleset, if one is defined in
your configuration. None of this output is of particular interest to a system
administrator.

Listing 3.5 shows an example of passing a signal to Sendmail. In the example, the signal
is SIGHUP but the same technique can be used to send any of the signals to Sendmail.

Listing 3.5 Restarting Sendmail with SIGHUP

[root]# ps -ax | grep sendmail

 542 ? S 0:00 sendmail: accepting connections

[root]# kill -HUP 542

[root]# ps -ax | grep sendmail

 773 ? S 0:00 sendmail: accepting connections

Listing 3.5 illustrates the effect of the SIGHUP signal by showing that the process ID of
Sendmail changes after Sendmail is sent the signal. Clearly, a process must be terminated
and restarted to change process IDs. The kill command used in this example is explained
in the next section.

The kill Command

The kill command is used to send a signal to a running process. As the name implies, by
default it sends the kill signal (SIGTERM). To use it to send a different signal, specify the
signal on the command line. For example, specify -INT to send the SIGINT signal. The
PID is usually provided on the kill command line to ensure that the signal is sent to the
correct process.

As usual, there is more than one way to do something on a Linux system. You can learn
the PID of Sendmail using the ps command:

 [root]# ps -ax | grep sendmail

 542 ? S 0:00 sendmail: accepting connections

Installing Sendmail 61

H
ow

 T
hi

ng
s

W
or

k

PART 1

You can also learn the PID by displaying the sendmail.pid file:

[root]# head -1 /var/run/sendmail.pid

542

Combining the last command with kill, you can send a signal directly to Sendmail. For
example, to restart Sendmail you could enter the following command:

kill –HUP ‘head -1 /var/run/sendmail.pid’

The head -1 /var/run/sendmail.pid command that is enclosed in single quotes is pro-
cessed by the shell first. On our sample Linux system, the first line of the sendmail.pid
file contains the PID 542. That is combined with the shell’s kill command and then is
processed as kill -HUP 542.

Signals, boot scripts, and everything else in this section has assumed that you have Send-
mail already installed in your system. In the next section, we look at how to install Sendmail
if you don’t already have it or if you want to upgrade to the latest release.

Installing Sendmail
Sendmail is delivered with every major Linux distribution, and it is normally installed as
part of the initial Linux installation. If it is not installed at that time, it can easily be added
later using one of the package-management systems available for Linux.

To simplify the task of adding and deleting software on a running server, most Linux ven-
dors have developed package-management systems. Slackware installs software from
traditional tar files, but Debian and Red Hat have developed full-blown package-
management systems. Debian and systems such as Corel that are based on Debian use the
dpkg system. Most other Linux distributions use the Red Hat Package Manager (RPM).
RPM is the most widely used package manager and the one this book covers in greatest
detail. But before getting into RPM, let’s take a quick look at the Debian package
manager.

Installing Sendmail with dpkg

Locating a binary package in the correct format is the first step in installing a new soft-
ware package with any package manager. Debian packages are found at www.debian
.org/distrib/packages. These packages are intended for installation on the current
Debian distribution but will usually work on any Debian-based release, such as Corel
Linux.

Chapter 3 Running Sendmail62

After locating the upgrade package, use the dpkg command to remove the old software.
Remove the currently installed Sendmail package with the following command:

[root]# dpkg -r sendmail

Next, use the dpkg command to install the new Debian package. For example, to install
Sendmail 8.9.3 you would enter the following:

[root]# dpkg -i sendmail-wide_8.9.3+3.2W-20.deb

NOTE As of this writing, 8.9.3 is the most recent version of Sendmail available
as a Debian package.

These dpkg examples are simple and clean. As we’ll see in the discussion of RPM, package
installations are not always this simple.

Locating RPM Software

To install Sendmail with RPM, you need to locate an updated Sendmail RPM package.
If you failed to install Sendmail during the initial Linux installation and you just want to
correct that oversight, you’ll find the Sendmail RPM on the Linux CD-ROM. If you want
to upgrade an existing installation, you need to search for the latest RPM packages.

www.sendmail.org provides the source code distribution of Sendmail, but RPM packages
are not available from www.sendmail.org. To find RPM packages, go to your Linux ven-
dor and to www.rpmfind.net.

Searching a Vendor Web Site

Because e-mail service is so important, all of the major Linux vendors make an effort to
update their version of Sendmail when a critical bug is fixed or a major new feature is
added. So a good place to start looking for updates is at your vendor’s Web site.

Figure 3.4 shows the Red Hat Web site. Just like the Debian site, it contains a search page
that lets you search for a binary package. In Figure 3.4, we ask Red Hat to list all of the
available Sendmail RPM packages.

The search produces several matches. At this writing, the latest version of Sendmail avail-
able as an RPM is 8.11.0, which is the version of Sendmail used in the rest of this chapter.
The packages returned by a search can be downloaded simply by clicking the name of the
package and selecting an appropriate mirror server.

Searching the vendor site will probably provide the RPM package you need. However, I
prefer a wider search that checks all of the sources of RPM packages to ensure that I don’t
miss the newest updates.

Installing Sendmail 63

H
ow

 T
hi

ng
s

W
or

k

PART 1

Figure 3.4 The Red Hat RPM search engine

Using rpmfind.net to Locate Sendmail Software

Vendors are not the only ones who make RPM packages available on the Net. To search
a wide variety of RPM sources, go to www.rpmfind.net. Figure 3.5 shows the
www.rpmfind.net Web site, which lists several Sendmail RPM packages.

The Web page in Figure 3.5 is the RPM repository database indexed alphabetically by
name. The database is also indexed by distribution, by vendor, and by time of creation,
if those things are helpful for your particular search. In this case, we are looking for Send-
mail, so we just jump to “s” in the alphabetic listing.

Our sample Linux system is running Sendmail 8.9.3. Figure 3.5 shows that there are sev-
eral newer Sendmail RPM packages available, with the newest being Sendmail 8.11.0-1.
This particular Sendmail update contains three RPM packages:

� sendmail-cf-8.11.0-1 contains the Sendmail configuration files, including the cf
directory used extensively in this text.

� sendmail-doc-8.11.0-1 contains the Sendmail documentation.
� sendmail-8.11.0-1 is the heart of the system, including the Sendmail program.

Chapter 3 Running Sendmail64

Figure 3.5 The rpmfind Web site

Following the links from the page shown in Figure 3.5 will lead you to detailed informa-
tion about each package and a link from which the package can be downloaded. All three
of the packages should be downloaded. These are the RPM packages that you’ll install
later in this chapter.

WARNING Installing an RPM from an unknown source could compromise
your system’s security. Only use RPMs from sources you trust, such as the Linux
vendor.

Using Anonymous FTP to Download an RPM

RPM packages are also available via anonymous FTP. I prefer the Web because I can
search through many packages stored at a wide variety of locations, but if you know
where the package you want is located, FTP can be faster. The same packages shown in
Figure 3.5 can be retrieved via anonymous FTP using the procedure shown in Listing 3.6.

Installing Sendmail 65

H
ow

 T
hi

ng
s

W
or

k

PART 1

Listing 3.6 Downloading the Sendmail RPM File

[craig]$ ftp rpmfind.net

Connected to rpmfind.net.

220 rpmfind.net FTP server ready.

User (rpmfind.net:(craig)): anonymous

331 Anonymous login ok, use your complete e-mail address as password.

Password:

230 Anonymous access granted, restrictions apply.

ftp> cd linux/contrib/libc6/i386

250 CWD command successful.

ftp> bin

200 Type set to I.

ftp> mget sendmail*8.11.0-1*

200 Type set to I.

mget sendmail-8.11.0-1.i386.rpm? y

200 PORT command successful.

150 Opening BINARY connection for sendmail-8.11.0-1.i386.rpm (259698 bytes)

226 Transfer complete.

ftp: 259698 bytes received in 2.63Seconds 98.74Kbytes/sec.

mget sendmail-cf-8.11.0-1.i386.rpm? y

200 PORT command successful.

150 Opening BINARY connection for sendmail-cf-8.11.0-1.i386.rpm

 (221066 bytes)

226 Transfer complete.

ftp: 221066 bytes received in 1.76Seconds 125.61Kbytes/sec.

mget sendmail-doc-8.11.0-1.i386.rpm? y

200 PORT command successful.

150 Opening BINARY connection for sendmail-doc-8.11.0-1.i386.rpm
 (482213 bytes)

226 Transfer complete.

ftp: 482213 bytes received in 4.56Seconds 105.75Kbytes/sec.

ftp> quit

221 Goodbye.

In this example, user input is shown in bold. The example has been edited to better fit on
a book page, but is essentially what you would see if you performed this download.

In Listing 3.6 we log on to rpmfind.net with FTP. In this particular case, the files we
want are in the linux/contrib/libc6/i386 directory. The FTP mget command is used
to retrieve all three files relating to Sendmail 8.11. Quick and easy—but only if you know
where the files are located and exactly what RPM files you’re looking for.

Chapter 3 Running Sendmail66

Installing Sendmail with RPM

Once the package is located, it can be installed using the rpm command. The rpm com-
mand is similar to the Debian dpkg command. It allows you to check the status of
installed packages, remove outdated packages, and install updates.

Use the rpm command with the -q option or the --query option to check what packages
are already installed in the system.

[craig]$ rpm --query sendmail

sendmail-8.9.3-10

This example queries rpm for the string sendmail. The response shows that Sendmail ver-
sion 8.9.3 is installed on our sample system. At the time of this writing, the latest RPM
version of Sendmail available from www.rpmfind.net and www.redhat.com is 8.11, so we
decide to upgrade the sample system.

Before installing a new version of an RPM package, you can remove the old one by run-
ning rpm with the --erase option. (See the section “Cleaning Up After RPM” later in this
chapter for an example of this.) Removing the old Sendmail RPM package is probably a
good idea if you plan to compile and install the Sendmail program from the source code
distribution. But if you plan to install a new RPM version of Sendmail, removing the old
package is unnecessary. Use the -U option with the rpm command, as shown in Listing 3.7,
to update an existing RPM installation with a newer package.

Listing 3.7 Updating Sendmail with RPM

[root]# rpm -U sendmail-doc-8.11.0-1.i386.rpm

[root]# rpm -U sendmail-cf-8.11.0-1.i386.rpm

[root]# rpm -U sendmail-8.11.0-1.i386.rpm

error: failed dependencies:

 openssl is needed by sendmail-8.11.0-1

 libsfio is needed by sendmail-8.11.0-1

 libcrypto.so.0 is needed by sendmail-8.11.0-1

 libsasl.so.7 is needed by sendmail-8.11.0-1

 libsfio.so is needed by sendmail-8.11.0-1

 libssl.so.0 is needed by sendmail-8.11.0-1

The Sendmail 8.11 package is composed of three components: the documents, the con-
figuration files, and Sendmail itself. In Listing 3.7 the documents and configuration file
components install without a hitch. The third component, however, fails to install. RPM
informs us that several pieces of software required by Sendmail 8.11 are not available on
this sample system. RPM calls required software dependencies. Sometimes other software
depends on the package you’re installing or removing, and sometimes the software you’re
installing depends on other software.

Installing Sendmail 67

H
ow

 T
hi

ng
s

W
or

k

PART 1

This is the worst-case scenario. We had hoped everything would be easy sailing. Now we
need to track down all of the packages needed by Sendmail 8.11, install those packages,
and then attempt to install sendmail-8.11.0-1.i386.rpm all over again. This bit of
unpleasantness is a blessing in disguise. If we installed Sendmail 8.11 from source code
and did not know that openssl and libsfio are required, some of the features of Send-
mail would not work as advertised. It could take a long time tracking down the underly-
ing problem. RPM makes sure that we know about the problem right from the start. We
could force RPM to install sendmail-8.11.0-1.i386.rpm without the dependencies by
adding the --nodeps argument to the rpm command line. But that’s just asking for trouble.
The best thing to do is track down and install the required packages.

A search of www.rpmfind.net informs us that we need three different RPM packages to
fix the six dependencies: openssl-0.9.5a-1.i386.rpm, libsfio-1999-1.i386.rpm, and
cyrus-sasl-1.5.11-2.i386.rpm. The first two packages, openssl and libsfio, are
pretty obvious because RPM lists them as the first two dependencies needed by
sendmail-8.11.0-1.i386.rpm. An examination of the list of files provided by each pack-
age shows that they provide every dependency except libsasl.so.7. A search for
libsasl.so.7 tells us that it is found in cyrus-sasl-1.5.11-2.i386.rpm. We download
the three packages and install them as shown in Listing 3.8.

Listing 3.8 Fixing Dependency Problems for Sendmail 8.11

[root]# rpm -i openssl-0.9.5a-1.i386.rpm

error: file /usr/man/man1/passwd.1 from install of openssl-0.9.5a-1

 conflicts with file from package passwd-0.58-1

[root]# rpm -i --replacefiles openssl-0.9.5a-1.i386.rpm

[root]# rpm -i libsfio-1999-1.i386.rpm

[root]# rpm -i cyrus-sasl-1.5.11-2.i386.rpm

[root]# rpm -U sendmail-8.11.0-1.i386.rpm

[root]# rpm -q sendmail

sendmail-8.11.0-1

Even this installation didn’t go completely perfectly. The openssl-0.9.5a-1.i386.rpm
package creates a new passwd man page. The problem is, it doesn’t own the old page.
That page was put on the system by the passwd-0.58-1.i386.rpm package. RPM won’t
let a new package change a file that belongs to another package unless you tell it to. In
this case, we want the new passwd documentation so we use the --replacefiles
argument with the rpm command to replace the old passwd documentation with the
new documentation.

Chapter 3 Running Sendmail68

All of the other installations run smoothly. Once the dependencies are resolved,
sendmail-8.11.0-1.i386.rpm installs without complaint. A quick query to RPM shows
that the new package is in place.

Next, restart Sendmail to make sure that the newly installed daemon is running, and run
a quick test to make sure the new daemon is alive and servicing the SMTP port. Listing
3.9 shows these two commands.

Listing 3.9 Restarting and Testing Sendmail

[root]# /etc/rc.d/init.d/sendmail restart

Shutting down sendmail: [OK]

Starting sendmail: [OK]

[root]# telnet localhost 25

Trying 127.0.0.1...

Connected to localhost.

Escape character is '^]'.

220 wren.foobirds.org ESMTP Sendmail 8.11.0/8.11.0;

 Sun, 13 Aug 2000 18:00:03 -0400

quit

221 2.0.0 wren.foobirds.org closing connection

Connection closed by foreign host.

As Listing 3.9 shows, Sendmail 8.11 is installed and running. Despite all of the problems
encountered in this installation, Sendmail is upgraded and running after fewer than a
dozen commands. Linux package managers have done much to simplify upgrades.

NOTE I have never had a problem with dependencies upgrading Sendmail
before version 8.11. This just turned out to be a lucky break. Normally, things go
so smoothly when preparing examples for Linux books that problems have to be
described without actual examples. This time we were lucky enough to have a
real problem. You might never see dependency problems when installing Send-
mail yourself, but it is good to know how they are resolved.

X Tools for Installing Sendmail

In the previous section, we used the command-line version of rpm. It is easy to use, easy
to explain, and it runs on most Linux systems—even those that don’t have X Windows
running. But if you are using X Windows, there are some graphical tools for running the
Red Hat Package Manager. Several systems use a tool named glint. Systems with the
KDE desktop environment use a tool named kpackage, and systems with the GNOME

Installing Sendmail 69

H
ow

 T
hi

ng
s

W
or

k

PART 1

desktop environment use a tool called gnorpm. Figure 3.6 shows gnorpm running on a Red
Hat 6 system.

Figure 3.6 Installing Sendmail with gnorpm

Understanding gnorpm is easy once you understand the rpm command. The icons near the
top of the window clearly parallel the -U (upgrade), -q (query), -V (verify), and -e (unin-
stall) command-line options. Simply highlight the package you’re interested in and select
the action you want to take. Figure 3.6 shows the test system after Sendmail was
upgraded.

Even without GUI tools, it is simpler to upgrade an existing RPM package with a new one
than it is to delete the package and replace it with software you compile yourself, for a
couple of reasons:

� First, using the rpm command is easier than compiling software.
� Second, the features of rpm, such as pointing out dependencies and verifying the

integrity of the software, are unavailable if you don’t use rpm.

But the latest software is not always available as a binary package. The Debian example
in this chapter illustrates that. Sometimes you must compile your own version of Send-
mail from the source code to get the latest release. Compiling Sendmail is the next topic
of this chapter.

Cleaning Up After RPM

We need to digress for a moment from the basics of upgrading with RPM. If you have
RPM and your current Sendmail was installed via RPM, you should upgrade with RPM.

Chapter 3 Running Sendmail70

Take advantage of the tools your Linux system offers. However, if you are forced to
upgrade with source code a system that was originally installed via RPM, you should
clean out the RPM installation before upgrading.

The next section describes downloading and compiling the latest Sendmail source code.
Before installing a new version of Sendmail that you have downloaded and compiled,
remove the old RPM version with the --erase option, as in this example:

[root]# rpm --erase --nodeps sendmail-cf-8.9.3-1

[root]# rpm --erase --nodeps sendmail-8.9.3-1

The --nodeps option is added to this command line to force rpm to erase the Sendmail
software, even though other packages are dependent on it. Attempting to erase Sendmail
without using the --nodeps option displays an error message stating that other software
depends on Sendmail, and it is not removed, as shown below.

[root]# rpm --erase sendmail

removing these packages would break dependencies:

 sendmail is needed by sendmail-cf-8.9.3-1

Failing to remove the Sendmail RPM package before installing a non-RPM version, such
as a version that you compile yourself, means that the system will still think the old RPM
version is installed. An rpm --query will continue to report the old Sendmail version
number. If the -V option is used to verify the Sendmail RPM package, it may report false
and misleading errors. Here is an example of what can happen when the components of
Sendmail are changed or upgraded without using RPM and then are verified by the rpm
command:

[craig]$ rpm -V sendmail

S.5....Tc /etc/aliases

missing /etc/rc.d/rc2.d/S80sendmail

S.5....T /var/log/sendmail.st

The -V option prints out a line for each file in the package that fails verification. Values
are printed at the beginning of the line to indicate which tests were failed. Each letter or
number indicates a failure and each dot indicates a test that was passed. The possible val-
ues are as follows:

S indicates that the file has the wrong file size.

M indicates that the file is assigned the wrong file permissions or file type.

5 indicates that the file has an incorrect MD5 checksum.

D indicates that the file is located on the wrong device.

Downloading and Compiling Sendmail 71

H
ow

 T
hi

ng
s

W
or

k

PART 1

L indicates that the file is improperly a symbolic link.

U indicates that the file has the wrong user ID (UID) assigned.

G indicates that the file has the wrong group ID (GID) assigned.

T indicates that the file has the wrong file creation time.

C indicates that the file is a configuration file that is expected to change.

In the previous example, two files have the wrong checksum and the wrong creation date,
and they are the wrong size. These are all things you would expect because these are not
the original files. They are files that were installed over the original files. The file that is
missing is the S80sendmail script we deleted in Listing 3.3. All of the other files associated
with the Sendmail RPM check out fine. But even these three errors might set off alarm
bells with the system’s computer security officer. For this reason, clean out the RPM
installation before installing Sendmail from source code as described in the following section.

Downloading and Compiling Sendmail
Even if your Linux system comes with its own version of Sendmail, obtaining the latest
Sendmail source code distribution provides useful documentation, tools, and sample con-
figuration files. Additionally, there are times when you need a security fix or update and
the latest version of Sendmail has not yet been posted as an RPM or other binary distribution.

The latest Sendmail distribution is available via anonymous FTP from ftp.sendmail.org,
where it is stored in the pub/sendmail directory. When you change to that directory, an
informational message is displayed that tells you about the latest version of Sendmail.
New releases are constantly being created. The following examples are based on Sendmail
V8.11.0.

NOTE Remember that things will change for future releases, so always review
the readme files and installation documents that come with new software before
beginning an installation.

To compile the Sendmail program, download the compressed tar file as a binary file and
then uncompress and extract it with the tar command, as shown in Listing 3.10.

Listing 3.10 Downloading the Sendmail Source Code

[craig]$ ftp ftp.sendmail.org

Connected to ftp.sendmail.org.

Chapter 3 Running Sendmail72

220 pub2.pa.vix.com FTP server ready.

Name (ftp.sendmail.org:craig): anonymous

331 Guest login ok, send your e-mail address as password.

Password:

230 Guest login ok, access restrictions apply.

Remote system type is UNIX.

Using binary mode to transfer files.

ftp> cd pub/sendmail

ftp> get sendmail.8.11.0.tar.gz

local: sendmail.8.11.0.tar.gz remote: sendmail.8.11.0.tar.gz

200 PORT command successful.

150 Opening BINARY mode data connection for sendmail.8.11.0.tar.gz

 (1307858 bytes).

226 Transfer complete.

1307858 bytes received in 26 secs (50 Kbytes/sec)

ftp> quit

221-You have transferred 1307858 bytes in 1 files.

221-Thank you for using the FTP service on pub2.pa.vix.com.

221 Goodbye.

[craig]$ cd /usr/local/src

[craig]$ tar -zxvf /home/craig/sendmail.8.11.0.tar.gz

Next, change to the sendmail-8.11.0 directory created by the tar file, and use the Build
script to compile the new Sendmail program, as shown in Listing 3.11.

Listing 3.11 Compiling Sendmail with the Build Command

[craig]$ cd sendmail-8.11.0

[craig]$./Build

Making all in:

/usr/local/src/sendmail-8.11.0/libsmutil

Configuration: pfx=, os=Linux, rel=2.2.10, rbase=2, rroot=2.2,
 arch=i586, sfx=, variant=optimized

Using M4=/usr/bin/m4

Creating ../obj.Linux.2.2.10.i586/libsmutil using ../devtools/OS/Linux

Making dependencies in ../obj.Linux.2.2.10.i586/libsmutil

make[1]: Entering directory

 `/usr/local/src/sendmail-8.11.0/obj.Linux.2.2.10.i586/libsmutil'

cc -M -I. -I../../sendmail -I../../include -DNEWDB

 -DNOT_SENDMAIL debug.c

errstring.c lockfile.c safefile.c snprintf.c strl.c >> Makefile

make[1]: Leaving directory

 `/usr/local/src/sendmail-8.11.0/obj.Linux.2.2.10.i586/libsmutil'

Downloading and Compiling Sendmail 73

H
ow

 T
hi

ng
s

W
or

k

PART 1

Making in ../obj.Linux.2.2.10.i586/libsmutil

make[1]: Entering directory

 `/usr/local/src/sendmail-8.11.0/obj.Linux.2.2.10.i586/libsmutil'

cc -O -I. -I../../sendmail -I../../include -DNEWDB

 -DNOT_SENDMAIL -c debug.c -o debug.o

cc -O -I. -I../../sendmail -I../../include -DNEWDB

 -DNOT_SENDMAIL -c errstring.c -o errstring.o

... Many, many, many lines deleted...

cc -O -I. -I../../sendmail -I../../include -DNEWDB

 -DNOT_SENDMAIL -c vacation.c -o vacation.o

cc -o vacation vacation.o ../libsmdb/libsmdb.a

 ../libsmutil/libsmutil.a -ldb -lresolv -lcrypt -lnsl -ldl

groff -Tascii -man vacation.1 > vacation.0 ||

 cp vacation.0.dist vacation.0

make[1]: Leaving directory

 `/usr/local/src/sendmail-8.11.0/obj.Linux.2.2.10.i586/vacation'

Build detects the architecture of the system and builds the correct Makefile for your sys-
tem. It then compiles Sendmail using the newly created Makefile.

According to the documentation, running Build is all you need to do on most systems to
compile Sendmail. It certainly works on Caldera Linux systems, as this example illus-
trates. However, the installation notes warn of several possible problems that can occur
with some Linux systems, which are described in the next section, “Known Problems.”

Once Sendmail compiles, it is installed by using the Build command with the install
option (see Listing 3.12).

Listing 3.12 Installing the New Sendmail Binaries

./Build install

Making all in:

/usr/local/src/sendmail-8.11.0/libsmutil

Configuration: pfx=, os=Linux, rel=2.2.10, rbase=2, rroot=2.2,

 arch=i586, sfx=, variant=optimized

Making in ../obj.Linux.2.2.10.i586/libsmutil

make[1]: Entering directory

 `/usr/local/src/sendmail-8.11.0/obj.Linux.2.2.10.i586/libsmutil'

... Many, many, many lines deleted...

Making in ../obj.Linux.2.2.10.i586/vacation

make[1]: Entering directory

 `/usr/local/src/sendmail-8.11.0/obj.Linux.2.2.10.i586/vacation'

install -c -o bin -g bin -m 555 vacation /usr/bin

Chapter 3 Running Sendmail74

install -c -o bin -g bin -m 444 vacation.0 /usr/man/man1/vacation.1

make[1]: Leaving directory

 `/usr/local/src/sendmail-8.11.0/obj.Linux.2.2.10.i586/vacation'

The Build command installs the man pages in the /usr/man directory and the executables
in /usr/sbin and /usr/bin. It installs the help file (sendmail.hf) and the status file
(sendmail.st) in /etc/mail.

Known Problems

The Sendmail documentation lists some problems that are known to affect compilation
on Linux systems. The problems fall into several categories ranging from compiler prob-
lems to kernel problems.

Two problems relate to GNU tools that are commonly used on Linux systems. One is an
incompatibility detected between GDBM and Sendmail 8.8. Later versions of Sendmail
improved the heuristic to detect GDBM so that the Sendmail code can adapt to GDBM.
The Sendmail release notes suggest using Berkeley DB instead of GDBM.

The other GNU problem is with the gcc compiler. Old versions of gcc, versions 2.4 and
2.5, cannot be used to compile Sendmail with the compiler optimization (-O) option set.
This was fixed when version 2.6 was released. The Caldera system used to generate the
example in Listing 3.10 uses the Experimental GNU Compiler Suite version 2.91, which
is a follow-on to gcc.

Several problems are described that existed with very old kernels (pre–version 1.0), very
old versions of libc (pre–version 4.7), and a very old version of the BIND domain name
software (version 4.9.3). No one should currently be running any of this old software.

The Sendmail documentation also reports problems that relate to having previously com-
piled BIND on your system. The symptoms of this problem are unresolved references dur-
ing the link phase of the Sendmail compile. If you have compiled BIND from source code
on your system and BIND wrote header files in /usr/local/lib and /usr/local/
include, these files may cause problems when Sendmail is compiled. The documentation
suggests adding -lresolv to LIBS in the Sendmail Makefile to avoid this problem.

Finally, the documentation mentions problems with Linux kernel 2.2.0. This is the most
worrisome of the problems reported because the documentation does not provide a
workaround for this problem. I have never personally seen this problem, but if I did, I
would upgrade the Linux kernel to the highest patch.

Frankly, none of the problems described in the Sendmail installation notes has ever
struck any Linux system that I have worked with. A far more common occurrence is

Downloading and Compiling Sendmail 75

H
ow

 T
hi

ng
s

W
or

k

PART 1

for something to change in the new distribution that makes your old configuration obso-
lete. We look at that challenge next.

Configuration Compatibility

New versions of Sendmail can change things that make the old configuration incompat-
ible with the new Sendmail program. Watch for these changes and adjust the configura-
tion when they arise.

The /etc/mail directory is a new default location used by Sendmail version 8.11. The
Build install command placed the help file and the status file in this new directory, but
the help file and the status file locations are also defined in the Sendmail configuration
file. If the files are not in the locations your mail server configuration expects, you can do
one of two things:

� Simply move the files to the locations that you desire.
� Change the Sendmail configuration to point to /etc/mail for these files. This is the

default location expected by Sendmail 8.11, so using these locations actually means
removing the define macros that point to the “non-standard” locations for these
files. Using the default locations means that you will have a simpler configuration
file. See Chapter 5, “Understanding a Vendor’s Configuration,” for more informa-
tion about the define macros used to specify file locations.

Regardless of what you do, the physical location of the files and the location of the files
defined in the configuration must agree.

Sendmail 8.11 has also changed the location of the Sendmail configuration file
(sendmail.cf). Traditionally, the file was located in the /etc directory, and that is where
it is found on most Linux systems. Sendmail 8.11 uses the new /etc/mail directory for
the sendmail.cf file. Attempting to run the newly compiled Sendmail binary on the sam-
ple system will fail, because Caldera keeps the sendmail.cf file in the /etc directory and
Sendmail 8.11 is looking for it in the /etc/mail directory. A simple test shows this:

[root]# sendmail -v -t

/etc/mail/sendmail.cf: line 0: cannot open: No such file or directory

This needs to be fixed, and again you can either move the file or change the configuration.
To change the configuration, provide the sendmail command with the correct path to the
configuration file by using the -C command-line option—for example, sendmail -C/
etc/sendmail.cf. The Sendmail start-up script must also be edited to insert this
command-line option so that the correct configuration file is used every time the system
reboots. Frankly, this is more trouble than it is worth. Just move the sendmail.cf file to
/etc/mail. It is simpler and better because other newly installed mail tools might be look-
ing for the sendmail.cf file at the new default location.

Chapter 3 Running Sendmail76

One other thing that should be checked before declaring the installation complete is the
sendmail.cf file. New versions of Sendmail may add new configuration syntax that
makes the older configuration files incompatible with the new release. The Sendmail pro-
gram checks the version (V) command inside the sendmail.cf file to indicate the level of
the configuration syntax. The easiest way to check compatibility is to use the sendmail
command to send a piece of test mail:

[root]# sendmail -v -t -C/etc/sendmail.cf

Warning: .cf file is out of date: sendmail 8.11.0 supports

 version 9, .cf file is version 8

^D

No recipient addresses found in header

Running sendmail with the -v option tells the program to provide verbose messages,
which is just what you want when you’re testing. The -t option tells Sendmail that the
mail will be typed in at the console. In this case, I immediately terminate the session with
a Ctrl+D (which is what the ̂ D illustrates), because I don’t want to send mail, I just want
to see the warning message. The new Sendmail program complains about the version level
of the configuration file. In this particular case, mail would not be delivered successfully
because too much has changed between Sendmail 8.9 and 8.11. This is not always the
case. Sometimes you can force mail through an old configuration. But you shouldn’t.

This example shows that this configuration is not compatible with the new release. To
solve this incompatibility, you need to rebuild your configuration. Understanding basic
Sendmail configuration and building your own custom configuration is the topic of Part 2 of
this book.

In Sum
Sendmail runs in two different modes to handle outbound and inbound mail. Sendmail is
started in real time to handle individual pieces of outbound mail, but runs as a daemon
to collect inbound mail. There are several tools that help you control which systems run
the Sendmail daemon as part of their start-up.

Before the Sendmail program can be run, it must be properly installed. Sendmail can be
installed using a Linux package manager or compiled from source. Despite the complex-
ity of Sendmail, it is installed in the same manner as all other Linux packages, and the
same tools are used to control the Sendmail start-up process as are used with any other
Linux start-up process. Installing and running Sendmail are two tasks that don’t have any

In Sum 77

H
ow

 T
hi

ng
s

W
or

k

PART 1

special complexity. If you know how to install and run Linux processes, you know how
to install and run Sendmail on a Linux system.

Once installed, Sendmail must be configured. Configuring Sendmail is the topic of Part 2,
which starts with Chapter 4, “Creating a Basic Sendmail Configuration.”

L
inux L

ibrary
 P

art 2
 E

ssen
tial C

o
n

fig
u

ratio
n

Part 2

Essential Configuration

Featuring:

� Where the Sendmail m4 directories and files are located and what
they do

� Understanding the basic m4 macro language

� How to build sendmail.cf with m4

� What the generic-linux.mc file contains and what it does

� Understanding the Linux OSTYPE file

� Understanding the generic DOMAIN file and how to modify it

� Analyzing and improving the Red Hat configuration

� How to add database support to your Sendmail program and its
configuration

� The role of the local-host-names file and the relay-domains file

� Uses for the aliases database, the user database, and the genericstable

� The syntax and structure of the access database

� Uses for the virtusertable and the mailertable

4
Creating a Basic

Sendmail

Configuration

At the conclusion of the last chapter, we compiled Sendmail 8.11 from the source
code distribution. Much to our dismay, we discovered that the new Sendmail program
would not run even after the sendmail.cf configuration file was moved to the /etc/mail
directory where the new Sendmail expected to find it. Sendmail 8.11 complained that the
sendmail.cf file provided with the Linux distribution was an older version that was not
compatible with the new software release. The solution to this problem is to build a new
sendmail.cf file that is compatible with the new software, and in this chapter that is just
what we do.

Building a new Sendmail configuration, even a very basic one, is a multi-step process. The
sendmail.cf configuration file is built from m4 macros. To build your own configuration,
you must

� Locate the correct m4 macro libraries and files
� Have a basic understanding of the m4 macro language
� Select an appropriate macro configuration file
� Modify the file as necessary
� Process your newly created macro configuration file through the m4 macro processor

Chapter 4 Creating a Basic Sendmail Configuration82

This chapter covers all of these steps while building a very basic configuration file that
solves the incompatibility problem encountered when we upgraded to Sendmail 8.11
using the source code distribution. Remember that in Chapter 3, “Running Sendmail,”
we installed Sendmail under Linux in two different ways. Before we compiled and
installed Sendmail from source code, we installed it using RPM. A few problems emerged
during the RPM installation, but once the installation completed successfully everything
was ready to run. There was no compatibility problem, and thus no reason to build
a simple configuration to solve a compatibility problem.

However, even if you use RPM to install Sendmail, the topics covered in this chapter will
be useful to you. Building this simple configuration provides an introduction to m4 and
provides the basis for understanding more complex configurations. We build on this
simple configuration in later chapters to create a more robust, customized configuration
suitable for a production e-mail server. This foundation is useful for all Sendmail admin-
istrators, whether or not you use RPM. Let’s begin by locating the m4 macro language
source files provided with the Sendmail distribution.

The cf Directory Structure

m4 is a general-purpose macro processor. It has a wide variety of uses and is not specifi-
cally intended for Sendmail configuration. m4 macro definitions have been built by the
people who maintain Sendmail in order to allow us to create a Sendmail configuration
with m4.

The Sendmail distribution contains the m4 source files needed to build the sendmail.cf
file. These source files are found in the cf directory located under the top directory cre-
ated by the Sendmail distribution tar file. The top directory created by the tar file always
has a name based on the Sendmail distribution’s version number. The format of this direc-
tory name is sendmail-version, where version is the version number. Thus the tar file
for Sendmail 8.11.0 creates a top directory named sendmail-8.11.0, and the configura-
tion files for that release are found in sendmail-8.11.0/cf. All this, of course, is relative
to the directory in which you restore the tar file. In Chapter 3, we restored the tar file in
/usr/local/src, so the complete path to the configuration files on our sample system
is /usr/local/src/sendmail-8.11.0/cf. A listing of that directory shows 10 entries.

[craig]$ ls /usr/local/src/sendmail-8.11.0/cf

README cf domain feature hack m4 mailer ostype sh siteconfig

The cf directory contains a README file and nine subdirectories. The README file provides
useful documentation on the m4 language and how that language is used to build a
sendmail.cf file. Always check this file for the latest changes and the newest features.

83

Es
se

nt
ia

l
Co

nf
ig

ur
at

io
n

PART 2

As you’ll see later, the names of most of the subdirectories (domain, feature, hack,
mailer, ostype, and siteconfig) are clearly identifiable as the names of m4 macro com-
mands used to build a Sendmail configuration. Only the cf, m4, and sh directories do not
share names with m4 macros. All of the directories, however, are worth exploring.

Little-Used Directories

Three of the directories (hack, sh, and siteconfig) in the cf directory have very little use
for most configurations. For two of these directories, this lack of use directly relates to the
lack of utility of the macro commands that they represent.

The cf/hack directory holds m4 source files built by the local system administrator to
solve temporary Sendmail configuration problems. Temporary code fixes are called
hacks, thus the name for this directory and the command that uses it. The HACK command

The sendmail-cf RPM Files

In this chapter, the cf directory and its subdirectories are described as part of the
Sendmail source code distribution. These same files, however, are available as part
of an RPM installation. In Chapter 3, we installed the RPM version of the cf directory.
It was the RPM package identified as sendmail-cf-8.11.0-1.i386.rpm. It contains
all of the files that are described in this chapter. The only difference is the location of
the files. To find out where the files are stored, run an rpm query and ask for a file list-
ing as follows:

[craig]$ rpm -q -l sendmail-cf

On our sample Red Hat system, this command shows that the cf directory is named
/usr/lib/sendmail-cf. A listing of /usr/lib/sendmail-cf shows the following:

[craig]$ ls /usr/lib/sendmail-cf

README cf domain feature hack m4 mailer ostype sh
siteconfig

Thus, if you’re using an RPM installation, /usr/lib/sendmail-cf is equivalent to cf
in these discussions. The same README file and the same nine subdirectories appear
in /usr/lib/sendmail-cf on an RPM installation as appear in cf on a source code
installation. Everything covered in this chapter applies regardless of how you in-
stalled Sendmail 8.11.

The cf Directory Structure

Chapter 4 Creating a Basic Sendmail Configuration84

is almost never used, and thus the hack directory is almost never used. An ls of the hack
directory shows that it contains just one file.

[craig]$ ls hack

cssubdomain.m4

The one file contained in the hack directory is an old fix that was used for a few months
at Berkeley to handle a domain name transition. The file is there only as an example. It
could not be used by anyone but Berkeley and it is no longer of any use to them. Even the
domain name transition handled by this hack could now be handled more easily with the
database features built into the current Sendmail. The hack directory and HACK command
are still there, but there is simply no good reason to use them.

The cf/siteconfig directory contains files that define the UUCP connectivity for the
mail server. The files list the locally connected UUCP sites using a specific sendmail m4
syntax. The siteconfig directory contains four sample files.

[craig]$ ls siteconfig

uucp.cogsci.m4 uucp.old.arpa.m4 uucp.ucbarpa.m4 uucp.ucbvax.m4

The siteconfig directory and the SITECONFIG command are still maintained for back-
ward compatibility. However, this directory is obsolete and should no longer be used to
define the UUCP connectivity for a UUCP mail server. Use the Sendmail databases
described in Chapter 6, “Using Sendmail Databases,” if you need to define UUCP
connectivity.

The last little-used directory does not even map to an m4 macro command. It is the cf/
sh directory and it contains only one file.

[craig]$ ls -l sh

total 2

-rw-r--r-- 1 craig users 1128 Feb 7 1999 makeinfo.sh

Even the name of this file is different. All of the files we have seen so far are m4 macro
source files. As such, they all end with the .m4 extension. This file, however, ends with the
.sh extension, indicating that it is a shell script. The permission bits show that, even
though it is a shell script, it is not executable. So it is probably not being used. Still, I’m
curious. So I changed the permissions and ran the script.

[root]# chmod 744 makeinfo.sh

[root]# ./makeinfo.sh

85

Es
se

nt
ia

l
Co

nf
ig

ur
at

io
n

PART 2

built by root@ibis.foobirds.org on Thu Aug 17 09:36:03 EDT 2000

in /usr/local/src/sendmail-8.11.0/cf/sh

using as configuration include directory

define(`__HOST__', ibis.foobirds.org)dnl

The script produces three lines of comments that could be used to identify who built the
sendmail.cf file, when they built it, and in what directory. The third line includes the
name of the configuration directory when this is actually run by m4. The last line of output
assigns a value to a variable. Of course, you don’t really run this script. As I said, I was
just curious. The script is used by the m4 process when it builds the sendmail.cf file. You
never use this script directly, and you never use this directory to store any of your own
configuration files.

The domain Directory

The cf/domain directory is one of the directories where you are most likely to store your
own configuration files. The purpose of the domain directory is to hold m4 source files that
define configuration values that are specific to your domain or network. The configura-
tion file you create for your environment is then used in the macro configuration file via
the DOMAIN command. Because the intent is for you to create your own file, the six files
shown when you ls the domain directory are all just examples.

[craig]$ ls domain

Berkeley.EDU.m4 EECS.Berkeley.EDU.m4 berkeley-only.m4

CS.Berkeley.EDU.m4 S2K.Berkeley.EDU.m4 generic.m4

When you create your own domain configuration file, start by copying the sample file
generic.m4 to a name that is meaningful for your domain or network. For example, if
your domain is foobirds.org you might copy generic.m4 to foobirds.m4. Then edit the
new file to set the values needed for your environment.

Creating your own domain file is an advanced configuration topic covered in later chap-
ters. Basic configurations do not require a custom domain file.

The cf Subdirectory

Most of the work creating a basic configuration takes place in the cf/cf directory. This
is the working directory of Sendmail configuration. It contains all of the macro configu-
ration files, and it is where you will put your own macro configuration file when you
build a custom configuration. Listing 4.1 shows that the cf/cf directory contains more
than 40 files.

The cf Diredtory Structure

Chapter 4 Creating a Basic Sendmail Configuration86

Listing 4.1 Contents of the cf/cf Subdirectory

[craig]$ cd /usr/local/src/sendmail-8.11.0/cf

[craig]$ ls cf

Build generic-solaris2.cf

Makefile generic-solaris2.mc

chez.cs.mc generic-sunos4.1.cf

clientproto.mc generic-sunos4.1.mc

cs-hpux10.mc generic-ultrix4.cf

cs-hpux9.mc generic-ultrix4.mc

cs-osf1.mc huginn.cs.mc

cs-solaris2.mc knecht.mc

cs-sunos4.1.mc mail.cs.mc

cs-ultrix4.mc mail.eecs.mc

cyrusproto.mc mailspool.cs.mc

generic-bsd4.4.cf python.cs.mc

generic-bsd4.4.mc s2k-osf1.mc

generic-hpux10.cf s2k-ultrix4.mc

generic-hpux10.mc tcpproto.mc

generic-hpux9.cf test.cf

generic-hpux9.mc test.mc

generic-linux.cf ucbarpa.mc

generic-linux.mc ucbvax.mc

generic-nextstep3.3.mc uucpproto.mc

generic-osf1.cf vangogh.cs.mc

generic-osf1.mc

Most of these files—more than 30 of them—are sample macro control files. You can iden-
tify a macro control file by the .mc extension. Some are examples meant as educational
tools. But most are prototypes or generic files meant to be used as the basis of your own
configuration. Particularly interesting are the generic files designed for use with different
operating systems. Generic files for Solaris, HPUX, BSD, Linux, and several other oper-
ating systems are included. For a Linux system administrator, the generic-linux.mc file
is the one that garners the most attention.

Several of the files are identified by the .cf extension. These files are the result of pro-
cessing macro configuration files through m4 and are already in the proper format to be
used as the sendmail.cf file. It is unlikely, however, that you will use one of these files
directly. Unless the generic macro configuration file is exactly to your liking, the Sendmail
configuration file produced from that .mc file will not be what you want. For example,
the problem we want to solve is the fact that the /etc/sendmail.cf file on our sample
system is not compatible with Sendmail 8.11. Using the generic-linux.cf file as the

87

Es
se

nt
ia

l
Co

nf
ig

ur
at

io
n

PART 2

sendmail.cf file might solve this problem, but as the test in Listing 4.2 shows, it doesn’t
work for our sample system.

Listing 4.2 Testing the generic-linux.cf File

[root]# sendmail -v -t -C /etc/sendmail.cf

Warning: .cf file is out of date: sendmail 8.11.0 supports version 9,

 .cf file is version 8

No recipient addresses found in header

^D

[root]# sendmail -v -t -C ./generic-linux.cf

./generic-linux.cf: line 66: fileclass: cannot open

 '/etc/mail/local-host-names'

: No such file or directory

The first sendmail test illustrates the problem we have with the old sendmail.cf file. It
is version 8, and Sendmail 8.11 wants a version 9 configuration file. The second test uses
the -C command-line argument to specify the generic-linux.cf file as the Sendmail
configuration file. That test also fails. This time, the configuration is looking for a file
named /etc/mail/local-host-names, which does not exist. We can fix the problem by
creating the desired file or by simplifying the configuration so that it doesn’t need that file.
In this chapter we use the latter approach. (We don’t cover the local-host-names file
until the next chapter.)

The cf/cf Build Script

New Sendmail configurations are generally built inside the cf/cf directory. Two of the
files in this directory are there to aid the build process. These are the Build shell script and
the Makefile it uses. Listing 4.3 shows a Sendmail configuration file being constructed
with the Build script.

Listing 4.3 Using the cf/cf/Build Script

[root]# ./Build test.cf

Using M4=/usr/bin/m4

rm -f test.cf

/usr/bin/m4 ../m4/cf.m4 test.mc > test.cf ||

 (rm -f test.cf && exit 1)

chmod 444 test.cf

The Build script is easy to use. Provide the name of the output file you want to create as
an argument on the Build command line. The script replaces the .cf extension of the out-
put file with the extension .mc and uses the macro configuration file with that name to

The cf Directory Structure

Chapter 4 Creating a Basic Sendmail Configuration88

create the output file. Thus, putting test.cf on the Build command line means that
test.mc will be used to create test.cf.

Despite the simplicity of the Build command, I never use it to build a Sendmail configu-
ration and you probably won’t either. The reason I don’t use it is that the m4 command
line used to build a Sendmail configuration is also very simple. For the average Sendmail
administrator, the Build script doesn’t offer any significant advantages. The real reason
the script exists in this directory is to make it simple for the people who maintain Send-
mail to build several .cf files with one command. This helps the source code maintainers
because, as we have seen, the Sendmail configuration files need to be rebuilt every time
Sendmail is upgraded to keep the version number of the configuration file compatible
with the version number expected by the new Sendmail system. Build has four special
keyword arguments that construct multiple configuration files with one command:

generic The generic keyword builds the .cf files for the eight generic macro con-
figuration files. These are the only .cf files that normally come with the Sendmail
distribution.

berkeley The berkeley keyword builds the 16 different configuration files that
were used at Berkeley. Because the Berkeley configurations are just used as examples, the
.cf files for these configurations are not normally built.

other The other keyword builds any configurations listed in the $OTHER variable of
the Makefile. In Sendmail 8.11, there is only one configuration listed in this variable
and it is not delivered as a .cf file.

all The all keyword builds all of the configurations defined in the $GENERIC,
$BERKELEY, and $OTHER variables in the Makefile.

If you need to build multiple configurations, it is possible to edit the Makefile, changing
the $OTHER variable so that it contains the names of all of your configurations, and to then
use Build other to create all of your configurations at one time. It’s possible, but
unlikely. Most Sendmail administrators do not have enough different configurations to
bother with this. We won’t mention Build again. In the rest of the book, the m4 command
is used directly to build the Sendmail configuration file.

The cf/cf directory and possibly the cf/domain directory are the only two directories to
which you are likely to add configuration files. The four remaining directories are all used
to build a configuration, but you use the files that are already there. It is unlikely you will
add or change files in those directories.

The ostype Directory

Every macro configuration file must contain an OSTYPE command to process a macro
source file from the cf/ostype directory. The files in this directory define operating

The cf Directory Structure 89

Es
se

nt
ia

l
Co

nf
ig

ur
at

io
n

PART 2

system–specific characteristics for the Sendmail configuration. Listing 4.4 shows the con-
tents of the ostype directory.

Listing 4.4 The cf/ostype Directory

[craig]$ ls ostype

aix2.m4 bsdi2.0.m4 irix5.m4 ptx2.m4 sunos4.1.m4

aix3.m4 darwin.m4 irix6.m4 qnx.m4 svr4.m4

aix4.m4 dgux.m4 isc4.1.m4 riscos4.5.m4 ultrix4.m4

altos.m4 domainos.m4 linux.m4 sco-uw-2.1.m4 unixware7.m4

amdahl-uts.m4 dynix3.2.m4 maxion.m4 sco3.2.m4 unknown.m4

aux.m4 gnu.m4 mklinux.m4 sinix.m4 uxpds.m4

bsd4.3.m4 hpux10.m4 nextstep.m4 solaris2.m4

bsd4.4.m4 hpux11.m4 openbsd.m4 solaris2.ml.m4

bsdi.m4 hpux9.m4 osf1.m4 solaris2.pre5.m4

bsdi1.0.m4 irix4.m4 powerux.m4 sunos3.5.m4

The directory contains configuration files for more than 40 different operating systems.
Solaris, BSD, Linux—they are all here and easily identified by name. In fact, there are
many more operating system definitions in the ostype directory than there are generic
macro configuration files in the /cf/cf directory. One thing that I find slightly surprising
is that there is no redhat.6.2.m4 or slackware.7.0.m4 file. Different Linux distributions
are at least as different as AIX 3 is from AIX 4, yet different Linux vendors don’t create
OSTYPE files. But it doesn’t matter. You can start with the standard Linux OSTYPE and do
all of your customization in the macro configuration file you build in the cf/cf directory.

The mailer Directory

In addition to an OSTYPE command, every useable server configuration must have at least
one MAILER command. MAILER commands process source files from the cf/mailer direc-
tory. Each file in the mailer directory contains the definition of a set of mailers. Listing 4.5
shows the mailer definition files delivered with Sendmail 8.11.

Listing 4.5 The Contents of the cf/mailer Directory

[craig]$ ls mailer

cyrus.m4 local.m4 phquery.m4 procmail.m4 smtp.m4 uucp.m4

fax.m4 mail11.m4 pop.m4 qpage.m4 usenet.m4

The directory contains definitions for 11 different sets of mailers, all of which are
described in this text. In this chapter, we use only the two most basic sets of mailers:
local.m4 for local mail delivery and smtp.m4 for SMTP mail delivery.

Chapter 4 Creating a Basic Sendmail Configuration90

The feature Directory

The feature directory contains the m4 source code files that implement various Sendmail
features. Listing 4.6 shows that there are more than 40 features available.

Listing 4.6 The feature Directory

[craig]$ ls feature

accept_unqualified_senders.m4 no_default_msa.m4

accept_unresolvable_domains.m4 nocanonify.m4

access_db.m4 nodns.m4

allmasquerade.m4 notsticky.m4

always_add_domain.m4 nouucp.m4

bestmx_is_local.m4 nullclient.m4

bitdomain.m4 promiscuous_relay.m4

blacklist_recipients.m4 rbl.m4

delay_checks.m4 redirect.m4

dnsbl.m4 relay_based_on_MX.m4

domaintable.m4 relay_entire_domain.m4

generics_entire_domain.m4 relay_hosts_only.m4

genericstable.m4 relay_local_from.m4

ldap_routing.m4 relay_mail_from.m4

limited_masquerade.m4 smrsh.m4

local_lmtp.m4 stickyhost.m4

local_procmail.m4 use_ct_file.m4

loose_relay_check.m4 use_cw_file.m4

mailertable.m4 uucpdomain.m4

masquerade_entire_domain.m4 virtuser_entire_domain.m4

masquerade_envelope.m4 virtusertable.m4

Describing these features and how they are used is one of the major tasks of this book.

The m4 Directory

The last subdirectory in the cf directory is the m4 directory. This is the directory that con-
tains the m4 macro definitions and the sendmail.cf skeleton code needed to build a
sendmail.cf configuration file. Remember that m4 is not a language designed to build
Sendmail configurations. It is a general-purpose macro language. The commands you use
to build a Sendmail configuration are macros defined by the Sendmail developers. This is
the directory that contains the definitions of those macro commands. The cf/m4 directory
contains only four files.

[craig]$ ls m4

cf.m4 cfhead.m4 proto.m4 version.m4

91

Es
se

nt
ia

l
Co

nf
ig

ur
at

io
n

PART 2

Two of these files are very small. The version.m4 file just defines one sendmail.cf vari-
able—the Z variable. The Z variable is assigned the Sendmail version number, which in
our examples is 8.11.0. Because this value changes with each Sendmail release, it is
defined in a separate file for easy maintenance.

NOTE The Sendmail version number is not the same thing as the sendmail.cf
version number. In these examples the Sendmail version number is 8.11.0, but
the sendmail.cf version number is 9. The fact that both the release number and the
configuration file number are called version numbers can be confusing. Further-
more, neither one of these has anything to do with the VERSIONID macro, which
is just used to store configuration control information to help you to track the
changes you make to your m4 macro configuration file. No wonder system admin-
istrators find Sendmail confusing!

The other very small file is cf.m4. This is an important file because it is the file specified
on the m4 command line to incorporate the library of Sendmail m4 macro commands into
the m4 process. The cf.m4 file does not contain the macro definitions. Instead it includes
by reference the file that does contain those macro definitions.

The m4 macros used to configure Sendmail are defined in the file cfhead.m4. This file
includes lots of stuff, but the most important is the definition of many of the commands
used to build a configuration.

The last file, proto.m4, is the largest. It contains raw sendmail.cf data exactly as it
appears in the sendmail.cf file. The proto.m4 file is the source of most of the content
found in the sendmail.cf file.

The commands defined in the cf/m4 directory and how they are used to build a configu-
ration are the topics of the remainder of this chapter. Let’s take a look at the m4 macro
language used for Sendmail configuration.

The m4 Macro Language
The Sendmail program reads its configuration from the sendmail.cf file. The
sendmail.cf file is a few hundred lines long, and every line is written in a terse syntax
that is easy for Sendmail to parse but difficult for a human to read and write. As the sys-
tem administrator, your job is to create the sendmail.cf file. Luckily, you do that not
with hundreds of lines of arcane code but with a few lines of macro code.

The m4 Macro Language

Chapter 4 Creating a Basic Sendmail Configuration92

The sendmail.cf file is created from a macro configuration (.mc) file that usually con-
tains fewer than 20 lines of m4 commands. The m4 commands that you will use to build
a basic Sendmail configuration are listed in Table 4.1.

The commands shown in Table 4.1 are the most commonly used m4 macro commands. All
of the commands shown in uppercase are macro commands defined in the cfhead.m4 file.
The commands shown in lowercase are built-in m4 commands. The subset of commands
shown in Table 4.1 is all you need to build a basic configuration. As such, they all deserve
a more thorough explanation.

Controlling m4 Output

The m4 program is a stream-oriented macro processor. It views the data it handles as a
stream of text characters. It collects input data from various files, expands macros embed-
ded in those files, and directs the output stream of characters to another file. Two of the
commands in Table 4.1 are used to control the stream of output characters: divert and dnl.

Table 4.1 Common m4 Commands

Command Usage

define Defines a value for a configuration variable.

divert Directs the output of the m4 process.

dnl Deletes all characters up to, and including, the next newline
character.

DOMAIN Selects a file containing attributes for your specific domain.

FEATURE Identifies an optional Sendmail feature to be included in the
configuration.

MAILER Identifies a set of mailers to be included in the sendmail.cf file.

OSTYPE Selects a file containing operating system–specific attributes.

undefine Clears the value set for a configuration variable.

VERSIONID Defines version control information for the configuration.

93

Es
se

nt
ia

l
Co

nf
ig

ur
at

io
n

PART 2

The divert command directs the output stream to different targets. As of Sendmail 8.11,
there are 11 different targets for the data stream. The 11 possible divert values are listed
in Table 4.2.

Most of the values that can be specified with divert are used only by the Sendmail
developers. They are used, in essence, as buffers to hold data for specific parts of
the sendmail.cf file. The data is collected in these buffers and then moved to the
sendmail.cf file in the final stage of processing. It is possible to use any of these values
in a configuration, but unlikely and unnecessary because commands exist to send data to
the correct buffers without resorting to divert commands. For any reasonable configu-
ration, the divert command is used with only two different settings:

� divert is set to -1 to discard the output. Thus divert(-1) is found at the start of a
block of text that is not to be written to the sendmail.cf file. While the block of text
could be anything that’s not intended for the output file, it is usually the copyright
statement that is found at the beginning of many of the sample configuration files.
The divert(-1) command at the start of the copyright means that the copyright is
treated as a large comment.

Table 4.2 Possible Values for the divert Command

Value Meaning

-1 Discard this output.

0 Send this data through normal processing.

1 Use this data for hostname resolution.

2 Add this data to ruleset 3.

3 Add this data to ruleset 0.

4 Add this data to the UUCP-specific sections of ruleset 0.

5 Use this data to define domain names this server will relay.

6 Add this data to the Local Info section of the sendmail.cf file.

7 Save this data as a mailer definition.

8 Use this data to define a spammers blacklist.

9 Add this data to ruleset 1 or 2.

The m4 Macro Language

Chapter 4 Creating a Basic Sendmail Configuration94

� divert is set to 0 to direct the stream to the output file—e.g., sendmail.cf. If the
divert(-1) command is used at the start of a large comment, divert(0) is used at
the end of the comment to redirect the stream to the output file.

The dnl command is also used to control the output stream. The dnl command accepts
no arguments. Its two basic functions are determined by its position on the command line:

� If the dnl command occurs at the end of a line, after another m4 command, it is used
to clean up unwanted blank lines from the output file. For example, dnl on the line
OSTYPE(linux)dnl ensures that any extraneous output generated after the linux
OSTYPE macro is expanded doesn’t get written to the sendmail.cf file.

� If the dnl command occurs at the beginning of the line, the line is treated as a com-
ment. For example, the line dnlNext define the domain name is a comment. If the
sample line did not begin with dnl, m4 would interpret “define” and “domain” as m4
commands. Messy! Always start each comment line with dnl, unless it is a large
comment bracketed by divert commands.

The divert and dnl commands direct m4 output but they do not define or generate the
output data. The other m4 commands are used to generate the actual configuration file.

The Basic Commands

In broad terms, there are two types of files used to build an m4 configuration. One of these
is the macro configuration file, which is traditionally identified by the .mc file extension.
The macro configuration file is the input file for the m4 command, and its name appears
on the m4 command line. The other files are m4 source files that are referenced by the
macro configuration file. Traditionally, m4 source files are given the file extension .m4.
Almost all m4 macro commands from Table 4.1 can appear in either type of file, although
three of the commands are generally found only in the macro configuration file:

OSTYPE The OSTYPE macro is required, and it is always found in the macro config-
uration file. The OSTYPE macro command loads an m4 source file that defines oper-
ating system–specific information. File and directory paths, mailer pathnames, and
system-specific mailer arguments are the kind of information generally found in an
OSTYPE file. The Sendmail source distribution provides more than 40 predefined
operating system macro files, and you can create your own for a specific Linux dis-
tribution if you like. (We discuss this option when we evaluate the vendor-supplied
macro configuration files in the next chapter.) The only argument passed to the
OSTYPE command is the name of the m4 source file that contains the operating sys-
tem–specific information. Here is the command that processes the linux.m4 OSTYPE
source file:

OSTYPE(linux)

95

Es
se

nt
ia

l
Co

nf
ig

ur
at

io
n

PART 2

DOMAIN The DOMAIN macro loads a file that contains information specific to your
domain or network. The DOMAIN source file is a perfect place for commands that
affect hostnames and domain names, and that define values, such as mail relay
names, that are specific to your network. Because the information is specific to your
domain, you must create your own DOMAIN source file. The Sendmail source code dis-
tribution provides a sample DOMAIN source file, named generic.m4, that you can use
as a starting point for creating your own configuration. Assume you created a
DOMAIN source file that you called foobirds.m4. The following command, placed in
the macro control file, uses foobirds.m4 to help in building the sendmail.cf file:

DOMAIN(foobirds)

The DOMAIN command is optional. When it is used, it normally appears only in the
macro configuration file.

MAILER The MAILER macros identify the various sets of mailer definitions that
should be included in the sendmail.cf file. A useable configuration must have at
least one MAILER command; almost every Linux configuration has the following two:

MAILER(local) The MAILER(local) macro command adds the local mailer
and the prog mailer to the configuration. The local and prog mailers are essen-
tial, so any useable configuration will have at least this MAILER command.

MAILER(smtp) The MAILER(smtp) macro adds mailers for SMTP, Extended
SMTP, eight-bit SMTP, directed delivery SMTP, and relayed mail. Every Linux
system that sends SMTP mail, whether directly or through a mail server, has this
MAILER command.

In addition to these two important sets of mailers, there are nine other sets of mailers
available with the MAILER command. Most of them are of very little interest to the
average system administrator, but for the sake of completeness they are all covered
in Appendix A, “m4 Macro Command Reference.”

OSTYPE, DOMAIN, and MAILER are generally found only in the macro configuration file. The
other four commands in Table 4.1 are found in both macro configuration and macro
source files:

VERSIONID The VERSIONID macro defines version control information. This macro
is optional, but is found in most m4 files. The command has no required format for
the argument. Use any version control information you desire. The basic format of
the VERSIONID macro is:

VERSIONID(`vvvveeeerrrrssssiiiioooonnnn----ccccoooonnnnttttrrrroooollll----ddddaaaattttaaaa''''))))

The m4 Macro Language

Chapter 4 Creating a Basic Sendmail Configuration96

WARNING A quoted string in the argument field of any m4 macro must begin
with ` and end with ’’’’. This is important. If other quotes marks are used, you will
have errors in your configuration.

FEATURE The FEATURE macro identifies an optional Sendmail feature for inclusion
in the sendmail.cf file. A single m4 file can contain several FEATURE commands. The
format of the FEATURE macro is:

FEATURE(`ffffeeeeaaaattttuuuurrrreeee----nnnnaaaammmmeeee’’’’[, `ppppaaaarrrraaaammmmeeeetttteeeerrrr’’’’[, `ppppaaaarrrraaaammmmeeeetttteeeerrrr’’’’]...])

The feature-name identifies the requested feature. There are more than 40 Sendmail
features available, all of which are listed in Appendix A. Some of these features can
be configured with optional parameters. Many features, and the optional parame-
ters used to configure those features, are used in examples in this book. Next to the
define command, the FEATURE command is the most heavily used command in the
m4 configuration.

define The define command is used to set the value of a configuration variable
for the sendmail.cf file. As you’ll see in Chapter 7, “The sendmail.cf File,” this
file contains hundreds of variables called macros, classes, and options. The define
command identifies the variable by name and sets the value for the variable using
this format:

define(`variable-name’’’’,,,, `̀̀̀value’’’’))))

There are hundreds of variable names, most of which you will never use. The impor-
tant ones are covered in examples in the text. A full list is provided in Appendix A.

undefine The undefine command is the opposite of the define command. It
returns the value of a variable to the system default. Thus, the only argument pro-
vided to the undefine command is the variable name:

undefine(`variable-name’’’’))))

At first glance, the undefine command may seem odd. Why would you define a vari-
able value only to undefine it? The answer is, you didn’t define it in the first place—
someone else did. Configurations are built by bringing together several m4 source
files that already exist. An existing file may have several values you want for your
configuration, and a few you don’t want. The undefine command lets you use what
you want from the m4 source file while resetting the values you don’t want.

The basic configuration commands appear in an m4 configuration file in the following
order:

� VERSIONID, when used, is the first macro in the file.
� OSTYPE is defined before the other essential macros.

97

Es
se

nt
ia

l
Co

nf
ig

ur
at

io
n

PART 2

� DOMAIN, when used, comes next.
� define commands that affect a FEATURE macro that will be specified in the macro

configuration file must come before that FEATURE macro.
� FEATURE macros come next.
� define commands that specify variable settings for the configuration, other than

those that affect a previously identified FEATURE, come after the FEATURE macros.
� MAILER macros are the last basic commands in the file.

As you’ll see later, there are several more commands that can be used in the m4 configu-
ration files. These commands add complexity to the structure, but the basic structure is
as described above.

The nine commands covered so far are used to build most configurations. The syntax and
the purpose of the commands have been described, but until you see the commands in the
context of a configuration file, it is difficult to imagine exactly how they are used.

A Sample Macro Configuration File

The Sendmail distribution comes with a large number of sample macro configuration
files. One that is sure to draw the attention of a Linux system administrator is the file
generic-linux.mc. Listing 4.7 shows the contents of this file:

Listing 4.7 The generic-linux.mc File

divert(-1)

#

Copyright (c) 1998, 1999 Sendmail, Inc. and its suppliers.

All rights reserved.

Copyright (c) 1983 Eric P. Allman. All rights reserved.

Copyright (c) 1988, 1993

The Regents of the University of California. All rights reserved.

#

By using this file, you agree to the terms and conditions set

forth in the LICENSE file which can be found at the top level of

the sendmail distribution.

#

#

#

This is a generic configuration file for Linux.

It has support for local and SMTP mail only. If you want to

customize it, copy it to a name appropriate for your environment

The m4 Macro Language

Chapter 4 Creating a Basic Sendmail Configuration98

and do the modifications there.

#

divert(0)dnl

VERSIONID(`$Id: generic-linux.mc,v 8.1 1999/09/24 22:48:05 gshapiro

 Exp $')

OSTYPE(linux)dnl

DOMAIN(generic)dnl

MAILER(local)dnl

MAILER(smtp)dnl

The sample file starts with a divert(-1) command that discards what follows. Because
the following text will not appear in the output file, it is only provided as a comment or
informational message. In this case, the discarded text includes a copyright notice and
some general information about the file and how it should be used. The block of text ends
with a divert(0)dnl line that redirects the output to the output file, which in effect turns
m4 processing back on. In the future, when we display the contents of a macro control file
we will show only the active commands and ignore the block of text at the start of the file
for the sake of clearer and shorter listings. However, you should know that most sample
files start with a similar block of text.

An optional VERSIONID macro is the first macro command in the generic-linux.mc file.
The version control information is intended for the people who maintain this sample file.
You can safely ignore it. When you create your own configuration files, you should use
version control information that is meaningful to you or to the tools you use to maintain
the file.

The sample OSTYPE command tells m4 to process the file ../ostype/linux.m4 for oper-
ating system attributes. No surprise here. Using Linux operating system attributes is just
what you would expect in a file named generic-linux.mc. The macro configuration file
must have one OSTYPE command, and it must occur before most of the other configura-
tion commands in the file.

The DOMAIN command in Listing 4.7 processes the file ../domain/generic.m4. The con-
figuration settings in generic.m4 are samples of the type of commands you might include
in your own DOMAIN m4 source file. The DOMAIN command line is included in the generic-
linux.mc file primarily as an example of how the command is used in a macro configu-
ration file.

The generic-linux.mc file ends with two MAILER commands. These are the same two
MAILER commands that were described in the preceding section. Almost all Linux Send-
mail configurations have these two lines. If additional mailers, such as the UUCP mailers,
are added to the configuration, they are added after these two MAILER statements.

99

Es
se

nt
ia

l
Co

nf
ig

ur
at

io
n

PART 2

Let’s follow the advice at the beginning of the generic-linux.mc file to build our own
simple configuration file.

Building a Simple m4 Configuration File

The problem we want to solve is very straightforward. We have installed Sendmail 8.11
on the sample system and we want a basic configuration that will work with that release.
We aren’t concerned yet with building a full-featured Sendmail configuration. We just
want to get the system running. Let’s start with the generic-linux.mc file.

Begin by changing to the cf/cf directory and copying the generic-linux.mc file to
test.mc. Make sure the file permission for test.mc is 644 so that you can edit the file:

[root]# cd /usr/local/src/sendmail-8.11.0/cf/cf

[root]# cp generic-linux.mc test.mc

[root]# chmod 644 test.mc

Now edit the file to create the new configuration. Our goal is to create the simplest pos-
sible configuration in order to get the system running. To do that, remove the
DOMAIN(generic) line from the test.mc macro configuration file; it is primarily included
as an example and has not been customized for our domain. While editing the file, don’t
forget to update the VERSIONID macro to reflect the fact that this is a new configuration
file. The following tail command shows the macros in the file after the edits:

[root]# tail -5 test.mc

divert(0)dnl

VERSIONID(`test.mc, v1.0')

OSTYPE(linux)dnl

MAILER(local)dnl

MAILER(smtp)dnl

The new test.mc file is even simpler than the generic-linux.mc file.

The m4 Command Line

The new test.mc configuration file cannot be used by Sendmail directly. The test.mc file
is an input file for the m4 command. The next step in creating the new Sendmail config-
uration is to process the test.mc file through m4 as shown in Listing 4.8.

Listing 4.8 Running m4

[root]# m4 ../m4/cf.m4 test.mc > test.cf

The m4 Macro Language

Chapter 4 Creating a Basic Sendmail Configuration100

The example shows the m4 command format used to build a sendmail.cf file. The path-
name ../m4/cf.m4 is the path to the m4 source tree required to build a sendmail.cf file.
This must be specified on the m4 command line if it is not included in the macro config-
uration file with an include command. Notice that the pathname is a relative pathname
starting with ../. Older versions of m4 actually required a relative pathname. Changing
to the cf/cf directory was not just a convenience; it was a necessary part of running m4
with the correct source tree path. This is no longer necessary on Linux systems. The GNU
m4 program used with Linux can accept an absolute pathname for this argument, which
means that the macro configuration file can be stored anywhere on the system. Red Hat
takes advantage of this fact when installing Sendmail via RPM. RPM places a copy of the
Red Hat macro configuration file in /etc/mail and includes an absolute pathname to
cf.m4 inside the macro configuration file.

The second command-line argument is the name of the new macro configuration file,
test.mc. m4 reads the source files ../m4/cf.m4 and test.mc, and it outputs the
file test.cf. The file output by the m4 command is in the correct format for a
sendmail.cf file.

Testing the Configuration File Compatibility

The test.cf file is in the correct format to become the sendmail.cf file, but before mov-
ing it to /etc/mail/sendmail.cf, you should make sure it works. A quick test will tell
you, as shown in Listing 4.9.

Listing 4.9 Testing Compatibility

[root]# sendmail -v -t -C /etc/sendmail.cf

Warning: .cf file is out of date: sendmail 8.11.0 supports

 version 9, .cf file is version 8

^D

No recipient addresses found in header

[root]# sendmail -v -t -C ./test.cf

^D

No recipient addresses found in header

As Listing 4.9 shows, the new test.cf configuration file resolves the compatibility prob-
lem that appears when we upgraded Sendmail by compiling new source code. The test
doesn’t prove anything else, and I won’t pretend this simple configuration is the best pos-
sible configuration, but it meets the goal we set of getting Sendmail up and running.

Installing the New Configuration

Once you decide to use the new configuration file, move it to the location where Sendmail
expects to find its configuration file. The name of the configuration file for Sendmail 8.11

101

Es
se

nt
ia

l
Co

nf
ig

ur
at

io
n

PART 2

defaults to /etc/mail/sendmail.cf. On most Linux systems, the configuration file is
/etc/sendmail.cf. Put the new file in the appropriate location for your system. In this
example, we compiled Sendmail 8.11 from source code with the default setting, so we
need to move test.cf to /etc/mail/sendmail.cf, which we do in Listing 4.10.

Listing 4.10 Putting a New Configuration File in Place

[root]# mv /etc/mail/sendmail.cf /etc/mail/sendmail.cf.hold

mv: /etc/mail/sendmail.cf: No such file or directory

[root]# cp test.cf /etc/mail/sendmail.cf

[root]# sendmail -v -t

To: craig@wren.foobirds.org

From: craig

Subject: Test

Please ignore this test.

^D

craig@wren.foobirds.org... Connecting to wren.foobirds.org. via esmtp...

220 wren.foobirds.org ESMTP Sendmail 8.11.0/8.11.0;

 Tue, 29 Aug 2000 20:42:44 -0

400

>>> EHLO ibis.foobirds.org

250-wren.foobirds.org Hello root@almond.nuts.com [172.16.12.1],

 pleased to meet you

>>> MAIL From:<craig@ibis.foobirds.org> SIZE=78

250 2.1.0 <craig@ibis.foobirds.org>... Sender ok

>>> RCPT To:<craig@wren.foobirds.org>

250 2.1.5 <craig@wren.foobirds.org>... Recipient ok

>>> DATA

354 Enter mail, end with "." on a line by itself

>>> .

250 2.0.0 e7U0fRg00818 Message accepted for delivery

craig@wren.foobirds.org... Sent (e7U0fRg00818 Message

 accepted for delivery)

Closing connection to wren.foobirds.org.

>>> QUIT

221 2.0.0 wren.foobirds.org closing connection

The first step is to move the current sendmail.cf file to a backup file, called
sendmail.cf.hold in Listing 4.10. In this case, the move is unsuccessful because we just
installed Sendmail from source files and there was no /etc/mail/sendmail.cf file. Still,
I always run mv first just to make sure I don’t overwrite a file that I later want to recover.

The m4 Macro Language

Chapter 4 Creating a Basic Sendmail Configuration102

Next, we copy the test.cf file to /etc/mail/sendmail.cf and run a test to make sure
everything is working. This time we don’t need to use the -C argument with the sendmail
command because the Sendmail configuration file is in the correct location. Also, this
time we run a complete test and actually send a piece of mail. The mail is delivered cor-
rectly and is properly formatted.

We have a complete, working Sendmail 8.11 system. Of course, we’re not going to leave
it at this—we wouldn’t have much of a book if we did. In the following chapters we will
add to this basic configuration to create a more advanced custom configuration. To create
an advanced configuration, we will use additional m4 configuration commands.

More m4 Commands

This is a chapter about basic configuration. But as you might imagine, the basic com-
mands covered in this chapter are not the whole story. Several other m4 commands must
be understood just to read all of the sample macro configuration files that come with the
Sendmail distribution. Table 4.3 identifies and describes the other commands found in the
sample files. The one command listed in lowercase is a built-in m4 command. All of the other
commands, which are listed in uppercase, are macros the Sendmail development team
created for Sendmail configuration.

Table 4.3 More m4 Commands

Command Purpose

EXPOSED_USER Overrides masquerading for specific users.

HACK Processes a file that contains temporary fixes.

include Incorporates an external m4 file into this file by reference.

LOCAL_CONFIG Marks the start of a section that contains sendmail.cf
commands.

LOCAL_RULE_n Marks the start of a section that contains rewrite rules. The
n, which must be 0, 1, 2, or 3, identifies the ruleset that the
rewrite rules are added to.

LOCAL_RULESETS Marks the start of a ruleset to be added to the
configuration.

MASQUERADE_AS Defines a domain name that is used to rewrite the host part
of sender addresses.

103

Es
se

nt
ia

l
Co

nf
ig

ur
at

io
n

PART 2

The first and most important thing to realize about the commands in Table 4.3 is that
there are some you will never use. Just because a command shows up in a sample file, it
doesn’t mean that it is the correct command for you or even a recommended command.
Some of the sample files that come with Sendmail are very old. Some of the commands
used in these files are obsolete and can be ignored. The last three commands in Table 4.3
are good examples. SITE, SITECONFIG, and UUCPSMTP are obsolete techniques for config-
uring the system to handle UUCP mail. These functions have been replaced by the data-
bases described in Chapter 6.

Another command you can safely ignore is HACK. As the name implies, it is intended to
process a file that contains a hack to fix a mail problem. All normal mail problems can
be addressed through the normal configuration. A hack is supposed to be something tem-
porary, a fix that needs to be addressed in the configuration but that you know will not
be required in the near future. The idea is that the fix can be put in a separate file in the
cf/hack directory and then discarded when no longer needed. The problem with hacks
is that they tend to develop a life of their own. The duration of a problem is rarely known.
A hack that seems temporary soon becomes permanent. Generally it is better to perma-
nently fix all problems in the “regular” configuration instead of creating a hack. A “per-
manent” fix can be removed as easily as a hack when it is no longer needed.

Use the include command to simplify the m4 command line. In Listing 4.8, the m4 com-
mand line begins with the argument ../m4/cf.m4 to ensure that the macro definitions
and header files in the cf/m4 directory are available to the m4 process. This argument must
be added to the command line every time m4 is run. It is possible to include the cf.m4 file
inside the macro configuration file so that it doesn’t have to be specified on the command
line. If the following line is added to the beginning of the test.mc file:

include ‘../usr/local/src/sendmail-8.11.0/cf/m4/cf.m4’

MODIFY_MAILER_FLAGS Defines mailer flags used to override the current mailer
flag settings.

SITE Identifies the names of UUCP sites connected to the
server.

SITECONFIG Points to the file that contains the SITE commands for the
UUCP mail server.

UUCPSMTP Maps a UUCP hostname to an Internet hostname.

Table 4.3 More m4 Commands (continued)

Command Purpose

The m4 Macro Language

Chapter 4 Creating a Basic Sendmail Configuration104

the test.mc file can be processed with the following m4 command:

[root]# m4 test.mc > test2.cf

Readers who use include commands in other languages generally think the include
command can be used to separate a complex configuration into several files and then
bring those files together for processing. While that is true for m4 in general, it is not true
for Sendmail configuration. All macro configuration files are short files that do not ben-
efit from being segmented. The only time you’ll see include used in the files provided
with the Sendmail distribution is when cf.m4 itself includes the large and complex
cfhead.m4 file. And the only time you will use include is when you want to include the
cf.m4 file into your macro configuration file to simplify the m4 command line.

The LOCAL_CONFIG, LOCAL_RULESET, and LOCAL_RULE_n commands allow you to put raw
sendmail.cf configuration commands directly in the m4 source file. These commands,
and other related commands, mean that everything that can be done in the sendmail.cf
file can be done in the m4 macro source files. (sendmail.cf configuration commands are
discussed in Chapter 7.) We use the LOCAL_CONFIG, LOCAL_RULESET, and LOCAL_RULE_n
commands several times in this text to define complex sendmail.cf configurations.

The MODIFY_MAILER_FLAGS command is used to override the flags set for a mailer. Mailer
flags are described in Chapter 7, “The sendmail.cf File,” and a listing of all of the
mailer flags is found in Appendix C, “Sendmail Variables, Options, and Flags.” The
MODIFY_MAILER_FLAGS command has two arguments: the name of the mailer and the flag
to be modified. The flag is preceded by a + if it is to be added to the existing set of flags
or by a - if an existing flag is to be removed.

The MASQUERADE_AS and EXPOSED_USER commands both deal with masquerading. Fre-
quently, an organization wants all of its outbound mail to appear as if it came from one
source. This is done to create clean and consistent e-mail addresses, and to hide the names
of internal systems that should not be directly receiving mail. Masquerading is the name
for this type of mail rewriting. MASQUERADE_AS defines the hostname that is used as the
hostname part for all outbound mail. If MASQUERADE_AS(‘foobirds.org’) is set in the
configuration, mail from craig@wren.foobirds.org goes out as mail from
craig@foobirds.org.

EXPOSED_USER addresses a problem created by masquerading. Assume that mail from
root@wren.foobirds.org and root@ibis.foobirds.org is passed through the server
with the MASQUERADE_AS(‘foobirds.org’) setting. If both addresses are rewritten to
root@foobirds.org, you have a problem. There is no way for the recipient to know
exactly where the message really originated, and the remote user could not reply to the
correct address. Usernames, like root, that are found on every system should not be

105

Es
se

nt
ia

l
Co

nf
ig

ur
at

io
n

PART 2

masqueraded. The

EXPOSED_USER

 command is used to define the usernames that should
not be masqueraded.

Masquerading is covered extensively in Chapter 9, “Special

m4

 Configurations.” There
are several more

m4

 commands that relate to masquerading, all of which will be covered
in that chapter.

The commands in Table 4.1 and Table 4.3 are just the tip of the

m4

 iceberg. Many more
commands are covered in Part 2 of the text as examples of advanced configurations, and
all of the

m4

 commands are covered in Appendix A. This chapter does not provide exhaus-
tive coverage of the

m4

 language. It is an introduction to

m4

 that helps you understand the

m4

 commands contained in the sample files. Understanding these basic commands should
help you read the macro configuration file provided by your vendor, which is a topic we
tackle in Chapter 5, “Understanding a Vendor’s Configuration.”

In Sum

Sendmail reads its configuration from the

sendmail.cf

 file. However, this file is not
directly configured by the Sendmail administrator. Instead the file is constructed indi-
rectly from

m4

 macros.

The Sendmail distribution provides the

m4

 source files necessary to build a Sendmail con-
figuration. The

m4

 source files are contained in the nine subdirectories of the

cf

 directory.
For most configurations, eight of the nine subdirectories can be ignored because they are
either unused or they contain source files that are never modified by the system adminis-
trator. The only subdirectory that the administrator needs to work with for most config-
urations is the

cf/cf

 directory.

The

cf/cf

 directory contains the macro configuration files. The Sendmail administrator
creates a macro configuration file that selects the source files that provide the features
necessary for the Sendmail configuration. Most macro configuration files are not built
from scratch. The Sendmail distribution provides about 20 different sample macro con-
figuration files. You select a macro configuration file that matches your needs and only
make small adjustments if they are necessary.

The macro configuration file is then processed through

m4

 to produce the

sendmail.cf

file. But even this step may not be necessary if you don’t need to change the sample macro
configuration file for your configuration. Several Sendmail configuration files built from
sample macro configuration files are included in the

cf/cf

 directory.

To select and modify the correct macro configuration file, you must have a basic under-
standing of the

m4

 Sendmail macro configuration language. Use the tables in this chapter
and the list of configuration commands in Appendix A to help you read and modify the

In Sum

Chapter 4 Creating a Basic Sendmail Configuration106

macro configuration file. Don’t bother memorizing the details of the Sendmail configu-
ration language; you won’t build new configurations often enough to make that skill
worthwhile. Instead, learn the basic commands in Table 4.1 and look up the details in a
reference like Appendix A.

A configuration can be built by starting with a sample file and modifying it for your con-
figuration, as was done in this chapter. But an even more common way to configure Send-
mail is to use the macro configuration file provided with your Linux distribution. In the
next chapter, we examine the default mail server configuration that comes with Red Hat
Linux.

5
Understanding a

Vendor’s

Configuration

Legend has it that Sendmail configuration is one of the most difficult tasks a system
administrator will ever face. Like most legends, this one is only partly true. For the vast
majority of Linux systems, the administrator’s role in Sendmail configuration is so simple
it is almost trivial. The reason is plain: Someone else has already done the difficult parts
of the configuration for you. In the Linux world, that someone is the vendor who created
your Linux distribution.

Of course, this is a book for professional system administrators. If you’re reading this
book, you don’t need help mastering a trivial task. So in this chapter we analyze the con-
figuration that the vendor provides you. We look in detail at a basic configuration that
comes with the Sendmail source code distribution and at the configuration included in the
RPM for the Red Hat Linux distribution. We look at the decisions made by the develop-
ers of these configurations and at the effect that those decisions have on the systems we
manage. We will use the insight we gain here to enhance our own custom configuration.
Let’s begin by looking at the problems we have had with the source code installation and
at the generic-linux.m4 configuration that comes with the Sendmail distribution.

Chapter 5 Understanding a Vendor’s Configuration108

The Generic Linux Configuration
The challenge in Chapter 4, “Creating a Basic Sendmail Configuration,” was to find or
create a sendmail.cf file that is compatible with Sendmail 8.11. Because the Sendmail 8.11
distribution comes with a file named generic-linux.cf that is already in the proper
format to be used as a sendmail.cf file, the first thing we tried was to use the
generic-linux.cf file without modification. The result was this error:

[root]# sendmail -v -t -C./generic-linux.cf

./generic-linux.cf: line 66: fileclass:

 cannot open '/etc/mail/local-host-names'

: No such file or directory

The generic.linux.mc file that created the generic-linux.cf file has only five signifi-
cant command lines:

Listing 5.1 The Commands Contained in generic-linux.mc

[craig]$ tail -5 generic-linux.mc

VERSIONID(`$Id: generic-linux.mc,v 8.1 1999/09/24 22:48:05 gshapiro Exp $')

OSTYPE(linux)dnl

DOMAIN(generic)dnl

MAILER(local)dnl

MAILER(smtp)dnl

We know that the VERSIONID macro has no effect other than holding user-defined version
control information. We also know that the OSTYPE macro and the two MAILER macros
are required for a functioning system. This leads us to guess that removing the optional
DOMAIN macro is the best place to start attacking the problem. Therefore, in Chapter 4 we
created a simple m4 macro configuration file that did not contain the DOMAIN macro and
used it to produce a sendmail.cf file compatible with Sendmail 8.11. It worked, and we
got Sendmail up and running.

Sometimes a quick solution based on an educated guess is all that you have time for. But
when you get some free time you are drawn back to the problem to find out why that
guess worked and to figure out if there is a better long-term solution to the problem. We
need to know more about the macro source files called by the generic-linux.mc file in
order to:

� find out why the simple change worked for our problem
� see if there is a better way to solve our problem
� find out what features were lost by our quick and dirty solution
� learn more about configuring Sendmail

The Generic Linux Configuration 109

Es
se

nt
ia

l
Co

nf
ig

ur
at

io
n

PART 2

The first source file called by the generic-linux.mc file is, predictably enough, the
linux.m4 OSTYPE file. The contents of the linux.m4 file must be analyzed to fully under-
stand the generic Linux Sendmail configuration.

The Linux OSTYPE File

The OSTYPE file contains operating system–specific configuration values. The biggest con-
figuration variation between the different operating systems that run Sendmail is the loca-
tion of files. Variables that define pathnames are commonly stored in the OSTYPE file.
Since this file is specific to the Linux operating system and this book is about running
Sendmail on Linux, let’s take a close look at the Linux OSTYPE file.

The command OSTYPE(linux) loads a file named linux.m4 from the ostype directory.
Listing 5.2 shows the contents of this OSTYPE file:

Listing 5.2 The linux.m4 OSTYPE File

[craig]$ cat ../ostype/linux.m4

divert(-1)

#

Copyright (c) 1998, 1999 Sendmail, Inc. and its suppliers.

All rights reserved.

Copyright (c) 1983 Eric P. Allman. All rights reserved.

Copyright (c) 1988, 1993

The Regents of the University of California. All rights reserved.

#

By using this file, you agree to the terms and conditions set

forth in the LICENSE file which can be found at the top level of

the sendmail distribution.

#

#

divert(0)

VERSIONID(`$Id: linux.m4,v 8.11.16.1 2000/05/09 18:48:58 gshapiro

 Exp $')

define(`confEBINDIR', `/usr/sbin')

ifdef(`PROCMAIL_MAILER_PATH',,

 define(`PROCMAIL_MAILER_PATH', `/usr/bin/procmail'))

FEATURE(local_procmail)

The file begins with a copyright notice. The copyright notice is bracketed by a divert(-1)
statement and a divert(0) statement, so it is treated as a comment and can be safely
ignored. The VERSIONID macro can also be ignored.

Chapter 5 Understanding a Vendor’s Configuration110

NOTE In the rest of this chapter, to reduce the size of the listings, the copyright
statements that start the files are not printed, but you should be aware that they
are there.

The first real configuration command in the file is a define statement that assigns a value
to the confEBINDIR parameter. This parameter stores the path of the directory that holds
certain executable binary files. The Sendmail 8.11 default for confEBINDIR is /usr/
libexec. This define changes the setting to /usr/sbin. Both of these directories exist on
Linux systems, but the /usr/sbin directory is the one that is more commonly used to hold
system binary files, and in this case it is the correct setting. The confEBINDIR path is used
to locate the smrsh mailer, which is frequently used as the prog mailer on Linux systems.
(The prog mailer, which is used to send mail files to programs, uses an unrestricted shell
by default. Chapter 12, “Sendmail Security,” describes the advantages of using the smrsh
mailer.) A couple of quick ls commands on our sample Linux system show that the cor-
rect value for confEBINDIR is /usr/sbin:

[craig]$ ls /usr/libexec/smrsh

ls: /usr/libexec/smrsh: No such file or directory

[craig]$ ls /usr/sbin/smrsh

/usr/sbin/smrsh

The second configuration command is also a define. This one is a little more complex.
This define is contained inside an ifdef. The ifdef has nothing to do with configuring
Sendmail. It is a built-in m4 conditional command that checks whether or not a variable
has already been set to a value. The ifdef command has three fields:

� the name of the variable that is being tested
� the action to take if the variable has been set
� the action to take if the variable has not been set

In Listing 5.2, the ifdef tests the variable PROCMAIL_MAILER_PATH. If the variable has
already been defined, nothing is done. We know this by the fact that the second field of
the ifdef is empty—notice the two commas right in a row (,,). If the variable has not yet
been set, the define contained in the third field of the ifdef is executed. This is exactly
what happens on our sample system, because we did not assign any value to PROCMAIL_
MAILER_PATH in the macro configuration file.

The define assigns the variable PROCMAIL_MAILER_PATH the path value /usr/bin/
procmail. This overrides the Sendmail default for PROCMAIL_MAILER_PATH, which is

The Generic Linux Configuration 111

Es
se

nt
ia

l
Co

nf
ig

ur
at

io
n

PART 2

/usr/local/bin/procmail. A quick ls shows that the new value is correct for our sample
system:

[craig]$ ls -l /usr/bin/procmail

-rwxr-xr-x 1 root root 68276 Aug 10 1999 /usr/bin/procmail

As Listing 5.2 shows, the last line in linux.m4 is a FEATURE macro. The feature that this
macro adds to the configuration is local_procmail, which specifies that procmail will
be used as the local mailer. As you’ll see in Chapter 11, “Stopping Spam,” procmail is
a very powerful mailer. The fact that Linux uses procmail as the local mailer is a plus.
The local_procmail feature accepts up to three optional arguments:

� The path to the mailer. This defaults to the path value assigned to PROCMAIL_
MAILER_PATH, which in Listing 5.2 is /usr/bin/procmail. The same effect could
have been obtained with the following FEATURE command:

FEATURE(`local_procmail’, `/usr/bin/procmail’)

� The command line for executing the mailer. The default is procmail -Y -a $h -d
$u, where $h is replaced by the detail value if the user+detail addressing syntax is
used, and $u is replaced by the username from the recipient address. $h and $u are
the Sendmail variables that hold the remote hostname and the remote user’s address
in a standard delivery triple. In this case, however, procmail is being used as a local
mailer, so there is no remote hostname and the $h variable is used to hold the detail
value. (See Appendix C, “Sendmail Variables, Options, and Flags,” for a full listing
of the Sendmail variables.)

� The flags for this mailer. The default is SPfhn9. (See Appendix C, “Sendmail Vari-
ables, Options, and Flags,” for a full listing of mailer flags.)

Don’t ifdef

I have a philosophical objection to having an ifdef inside the OSTYPE file. I under-
stand why it had to be done: it was done to create an OSTYPE file that would work for
all versions of Linux. However, that is my basic objection. If different Linux distribu-
tions require different OSTYPE settings, the developers of those distributions should
create an OSTYPE file for their distribution that contains the correct setting. After all,
that is what the OSTYPE file is for. There is no reason why there shouldn’t be an
ostype/redhat.m4 file, and an ostype/suse.m4 file, and an ostype/slackware.m4
file, and a file for any other distribution you can imagine. You’d think that distribution
developers would want to put their names in the ostype directory, but the fact is that
not a single Linux distribution developer has added an OSTYPE file to the ostype di-
rectory of the Sendmail source code distribution.

Chapter 5 Understanding a Vendor’s Configuration112

NOTE With the local_procmail feature, procmail is being used as the local
mailer. The command-line arguments and the mailer flags affected are those set
by LOCAL_MAILER_FLAGS and LOCAL_MAILER_ARGS, not those set by PROCMAIL_
MAILER_FLAGS and PROCMAIL_MAILER_ARGS, which are used by the MAILER
(procmail) command—this despite the fact that local_procmail uses the path
from PROCMAIL_MAILER_PATH instead of the path from LOCAL_MAILER_PATH. Oh
well, no one said Sendmail was easy to understand.

The linux.m4 OSTYPE file defines the directory path for the smrsh program, the path for
procmail, and a feature that uses procmail as the local mailer. Clearly, the OSTYPE file
is a good place to look for file pathnames and mailer options. None of the settings in
linux.m4 relate to the problem we saw when we tried to use the generic-linux.cf file
on our sample system, but everything in the linux.m4 file is worth understanding because
all of these settings affect the configuration of a Linux system.

The second m4 source file loaded by generic-linux.mc, as shown in Listing 5.1, is the
generic.m4 file from the domain directory. Let’s look at that file in detail.

The Generic DOMAIN File

The DOMAIN command is optional. It loads the m4 source file that you create to configure
values specific to your domain or network. You don’t have to create a DOMAIN source file,
but it is highly recommended that you do if you have any domain-specific processing.

Host and username processing, domain name masquerading, mail relaying, and anti-
spam features are the types of information normally found in a DOMAIN source file.
Listing 5.3 shows the generic.m4 DOMAIN file used by the generic-linux.mc macro con-
figuration file.

Listing 5.3 The Configuration Commands in domain/generic.m4

[craig]$ tail -6 generic.m4

VERSIONID(`$Id: generic.m4,v 8.15 1999/04/04 00:51:09 ca Exp $')

define(`confFORWARD_PATH', `$z/.forward.$w+$h:$z/.forward+$h:$z/
.forward.$w:$z/.

forward')dnl

define(`confMAX_HEADERS_LENGTH', `32768')dnl

FEATURE(`redirect')dnl

FEATURE(`use_cw_file')dnl

EXPOSED_USER(`root')

The Generic Linux Configuration 113

Es
se

nt
ia

l
Co

nf
ig

ur
at

io
n

PART 2

The generic.m4 file contains six m4 commands after the copyright notice. The first is
a VERSIONID macro that can be ignored. The first significant command is a define
command.

Defining the .forward Path

The first define command assigns a value to the confFORWARD_PATH variable. This vari-
able holds a colon-separated list of the paths that Sendmail searches when looking for a
.forward file. (Chapter 2, “Understanding E-Mail Architecture,” explains the purpose of
the .forward file.)

The default value of confFORWARD_PATH is $z/.forward.$w:$z/.forward, where $z is
the recipient’s home directory and $w is a valid name for this host. (See Appendix C for
a full list of the Sendmail variables, including $z and $w.) Thus if the recipient’s home
directory is /home/jill and the hostname is gull, the path list is interpreted as /home/
jill/.forward.gull:/home/jill/.forward.

The first define in Listing 5.3 increases the complexity of the .forward path list. It
retains the two paths from the default search list and inserts in front of them the value $z/
.forward.$w+$h:$z/.forward+$h. The $z and $w variables serve the same purpose as
before. The $h variable contains the detail value when the user+detail addressing syntax
is used and procmail is used as the local mailer. We know that procmail is being used as
the local mailer because we saw the local_procmail feature in the linux.m4 OSTYPE file.
Given this specific configuration, local mail on a host named egret addressed to
craig+sybex would prepend the following .forward search path to the standard path: /
home/craig/.forward.egret+sybex:/home/craig/.forward+sybex.

The +detail Syntax

The +detail syntax is an adaptation of the mailbox syntax used in the Cyrus mailers.
The Cyrus mailers allow mail to be addressed to a specific mailbox. In a Cyrus ad-
dress, the detail is a mailbox name. Thus mail addressed to rebecca+inbox is placed
in a mailbox named inbox owned by the user rebecca.

The problem with this is that neither Sendmail nor Linux uses a mailbox architecture.
Sendmail writes mail to a single spool file for each user, and Linux user mail agents
read mail from a single spool file for each user. Thus, mail bound for user rebecca
is written to and read from the file /var/spool/mail/rebecca. Mailboxes exist on
Linux systems, but they exist because the user mail agent reads the mail from the sin-
gle spool file and then routes it to different mailboxes based on some filtering rules
defined inside the user mail agent.

Chapter 5 Understanding a Vendor’s Configuration114

Defining the confFORWARD_PATH variable seems more like a command that should happen
in the OSTYPE source file than in the DOMAIN source file. It defines a file path, which is
something that commonly happens in the OSTYPE file, and this specific path is directly
related to using procmail as the local mailer, which is also defined in the OSTYPE file. This
just goes to show you that you really cannot tell where something will be defined in a
Sendmail configuration. The only way to know the complete configuration is to look at
all of the files.

The definition of the .forward search path is the most complex define in the generic.m4
file. The second define is much easier to understand. It sets the maximum number of
bytes allowed for all headers. By default no limit is set. In the generic.m4 file shown in
Listing 5.3, the maximum length is set to 32,768 bytes (32KB). That is more than enough
for any reasonable set of headers. Headers longer than that might indicate a mail problem
or some form of mail abuse. So perhaps this limit is being set to detect mail problems or
abuse. But most likely this value is being set in the generic.m4 file to provide another
example of define command syntax.

The two define commands that open the generic.m4 DOMAIN file are followed by two
FEATURE commands that add optional capabilities to the Sendmail configuration.

Adding Support for the .REDIRECT Pseudo-Domain

The FEATURE(redirect) macro adds support for the .REDIRECT pseudo-domain. A
pseudo-domain is a domain-style extension added to an e-mail address by Sendmail to
define special handling for the address. The .REDIRECT pseudo-domain works together
with the aliases database to handle mail for people who no longer read mail at your site
but who still get mail sent to an old address.

After enabling this feature, add aliases for each obsolete mailing address in the form:

old-address new-address.REDIRECT

The +detail syntax is rarely used in the addresses entered by users. It requires an odd
form of addressing that most users don’t like, and it solves a problem that user mail
agents have already solved to the satisfaction of most users. If used at all, the +detail
syntax is used internally to sendmail or procmail in the same way the pseudo-do-
mains are used to help the mail programs route the mail. (Not sure what a pseudo-
domain is? Don’t worry—you’ll see one in a second.)

The Generic Linux Configuration 115

Es
se

nt
ia

l
Co

nf
ig

ur
at

io
n

PART 2

For example, assume that Jay Henson is no longer a valid e-mail user in your domain. His
old username, jay, should no longer accept mail. His new mailing address is
HensonJ@industry.com. Enter the following alias in the /etc/aliases file:

jay HensonJ@industry.com.REDIRECT

Now when mail is addressed to the jay account, the following error is returned to the
sender telling them to try a new address for the recipient:

551 User not local; please try <HensonJ@industry.com>

This is a useful feature for any site that is small enough, or organized enough, to keep
track of the e-mail address of employees who have moved on to new jobs. It is a courtesy
to the ex-employee and, better yet, it cuts down on the number of requests the postmaster
receives asking for the ex-employee’s new e-mail address.

The second FEATURE command also specifies a useful feature.

Adding Support for Local Host Aliases

The FEATURE(use_cw_file) command loads the class w variable from a file. The name of
the file is defined with the confCW_FILE variable. Unless modified with the confCW_FILE
variable, the default file used to load class w is /etc/mail/local-host-names.

Class w holds a list of valid hostnames for which the local computer will accept mail. Nor-
mally, if a system running Sendmail receives mail addressed to another hostname, it
assumes the mail belongs to that host and forwards the mail to that host if the local host
is configured as a relay, or discards the mail if it is not configured as a relay. If your system
should accept mail that is addressed to another host, the name of the other host should
be added to class w. Class w contains a list of acceptable hostnames even if neither the use_
cw_feature nor the local-host-names file is used. Anything you put in the local-
host-names file is added to those names when the use_cw_file feature is used. Listing 5.4
shows the default contents of class w on a computer named ibis.foobirds.org.

Listing 5.4 Examining Class w

[root]# sendmail -bt

ADDRESS TEST MODE (ruleset 3 NOT automatically invoked)

Enter <ruleset> <address>

> $=w

[172.16.12.1]

ibis.foobirds.org

ibis

localhost

[127.0.0.1]

> ^D

Chapter 5 Understanding a Vendor’s Configuration116

Chapter 10, “Testing Sendmail,” describes Sendmail test mode in detail. For now, it is
sufficient to understand that the -bt option puts Sendmail into test mode and that you
can ask Sendmail to display the contents of a variable when it is running in test mode. In
this case, we ask for the contents of the class w variable ($=w). ibis is not configured with
the use_cw_file feature. The contents of the class w variable on ibis are the default val-
ues set by the system. By default, class w includes the IP address of the local system and
the local computer’s full domain name and unqualified domain name. It also includes the
special name localhost and the special address, 127.0.0.1, that is assigned to that name.

The default values are adequate for most Sendmail systems. Most systems that run Send-
mail do so to provide mail for the users that log onto that system. Only a subset of the sys-
tems running Sendmail are configured to provide mail services for other computers. If you
run Sendmail on a desktop system, you probably don’t need the use_cw_file feature, but
when you run Sendmail as a server for a group of computers, you will probably use this
feature.

The primary use for the local-host-names file is to hold the names of computers that use
the local system as their MX server. This means that the MX server needs to know the
names of the systems for which it is providing mail exchange services. You can’t just pick
a remote system as an MX server. Prior agreement between the server administrator and
the client administrator is needed to ensure that mail won’t be rejected by the server.

Eureka!

FEATURE(use_cw_file) is clearly the cause of the problem we had using the
generic-linux.cf configuration file. The error message “cannot open ‘/etc/mail/
local-host-names’: No such file or directory” makes this crystal clear. Recall that one
of the first problems we encountered with the Sendmail 8.11 upgrade was that the
sendmail.cf file was in the wrong directory. The Linux sample system kept the
Sendmail configuration files in the /etc directory and 8.11 wants those files in /etc/
mail. Considering the fact that Sendmail 8.11 introduced the /etc/mail directory,
the problem could simply be that the local-host-names file is located in the wrong
directory. But it goes beyond that. A quick check of the /etc directory shows that
there is no file named local-host-names:

[craig]$ ls /etc/local-host-names

ls: /etc/local-host-names: No such file or directory

The Generic Linux Configuration 117

Es
se

nt
ia

l
Co

nf
ig

ur
at

io
n

PART 2

Protecting the root Account from Masquerading

Masquerading, which is covered in Chapter 9, “Special m4 Configurations,” hides the real
hostname in outbound mail and replaces it with the hostname you wish to advertise to the
outside world. The name that replaces the real hostname is usually the name of the mail
server, or the domain name if a single server handles mail for an entire domain. Refer

Prior to Sendmail 8.11, the file that added hostnames to class w was called
sendmail.cw. As shown below, copying the /etc/sendmail.cw file that already ex-
isted on the sample system to /etc/mail/local-host-names solves the problem
created by the Sendmail 8.11 upgrade:

[root]# sendmail -v -t -Cgeneric-linux.cf

generic-linux.cf: line 66: fileclass: cannot open '/etc/mail/
local-host-names':

No such file or directory

[root]# cp /etc/sendmail.cw /etc/mail/local-host-names

[root]# sendmail -v -t -Cgeneric-linux.cf

To: craig@wren.foobirds.org

From: root

Subject: Discard this test

^D

This simple problem is the kind of thing that drives experienced system administra-
tors crazy. The filename local-host-names may be more logical than the name
sendmail.cw, but since when did logic have anything to do with Sendmail configu-
ration! Once you have learned that class w values are stored in sendmail.cw, you
don’t really want to learn that they are now stored in local-host-names. It would be
much simpler if things just stayed the same. But things are always changing and you
need to be prepared for it.

All I can do is recommend that you carefully read the release notes that come with ev-
ery new Sendmail source code distribution. Even when you do, things will escape
your attention and problems will appear. However, applying the knowledge this book
gives you about Sendmail should make it much easier for you to handle these problems.

Chapter 5 Understanding a Vendor’s Configuration118

back to Listing 5.3. The last line in the generic.m4 file is the EXPOSED_USER macro. The
EXPOSED_USER macro adds usernames to class E. The users listed in class E are not mas-
queraded, even when masquerading is enabled.

Some usernames, such as root, occur on many systems and are therefore not unique
across a domain. For those usernames, converting the host portion of the address makes
it difficult to sort out where the message really came from and makes replies impossible.
For example, assume that mail from root@wren.foobirds.org and
root@ibis.foobirds.org is passed through a server that converts both addresses to
root@foobirds.org. There is no way for the recipient to know exactly where the message
really originated, and the remote user could not reply to the correct address. The
EXPOSED_USER command in Listing 5.3 prevents that from happening by ensuring that
root is not masqueraded.

The primary reason this macro is included in the generic.m4 DOMAIN source file is to serve
as a warning to the experienced Sendmail administrator that something has changed.
Experienced Sendmail administrators may think that root is already part of class E,
because prior to Sendmail 8.10 root was the default value for class E. In Sendmail 8.11,
there are no default values in class E. The EXPOSED_USER(root) command must be added
to the configuration if you want to protect root from masquerading. Of course, this com-
mand has no real effect in the generic configuration because this configuration does not
include any commands to enable masquerading. But the message is clear. If you want to
protect the root user from masquerading, include the EXPOSED_USER command in your
configuration.

This command illustrates the main purpose of the generic.m4 file—it is intended as a
training tool. The file is designed to show you the type of commands you should include
in your own DOMAIN source file. The generic.m4 file is really just an example. The DOMAIN
source file should be specific to your environment. If you use one, you’re expected to cre-
ate it yourself.

This concludes the DOMAIN file, but it does not conclude the generic-linux.mc macro
control file shown in Listing 5.1. There are still two more macros in that file left to
explain. The last two source files invoked by the generic-linux.mc macro configuration
file are MAILER source files. As the “Eureka!” sidebar explains, we know those files didn’t
cause the problem we had using the generic-linux.cf file, but because they are an essen-
tial part of every Linux configuration, let’s take a look at what they do.

The Essential Mailers

The two MAILER commands in the generic-linux.mc file are found in most Sendmail
configurations. These commands identify the sets of mailers included in the Sendmail
configuration.

The Generic Linux Configuration 119

Es
se

nt
ia

l
Co

nf
ig

ur
at

io
n

PART 2

The MAILER(local) macro includes the local mailer that is used to deliver local mail
between users of the system and the prog mailer that is used to send mail files to programs
running on the system. Even though these mailers will be added by default, the
MAILER(local) macro is traditionally included in the configuration. In part this tradition
arises from the fact that most configurations are built from a sample configuration file,
and all of the generic macro configuration files include the MAILER(local) macro. It takes
more effort to remove the macro than it does to leave it in, and it costs nothing to leave
it in the configuration. In fact, it provides the slight benefit of making the configuration
more “self-documenting.”

The MAILER(smtp) macro includes all of the mailers needed to send SMTP mail over a
TCP/IP network. The mailers included in this set are:

smtp This mailer can handle only traditional seven-bit ASCII SMTP mail. It is out-
moded because most modern mail networks handle a variety of data types.

esmtp This mailer supports Extended SMTP (ESMTP). It understands the ESMTP
protocol extensions and it can deal with the complex message bodies and enhanced
data types of MIME mail. This is the default mailer used for SMTP mail.

smtp8 This mailer sends eight-bit data to the remote server, even if the remote
server does not indicate that it can support eight-bit data. Normally, a server that
supports eight-bit data also supports ESMTP and thus can advertise its support for
eight-bit data in the response to the EHLO command. (See Chapter 1, “Internet Mail
Protocols,” for a description of the SMTP protocol and the EHLO command.) It is
possible, however, to have a connection to a remote server that can support eight-bit
data but does not support ESMTP. In that rare circumstance, this mailer is available
for use.

dsmtp This mailer allows the destination system to retrieve mail queued on the
server. Normally, the source system sends mail to the destination in what might be
called a “push” model, where the source pushes mail out to the destination. On
demand SMTP allows the destination to “pull” mail down from the mail server
when it is ready to receive the mail. This mailer implements the ETRN command
that permits on-demand delivery. (See Chapter 1 for a description of the ETRN pro-
tocol command.)

relay This mailer is used when SMTP mail must be relayed through another mail
server. Several different mail relay hosts can be defined.

Every server that is connected to or communicates with the Internet uses the
MAILER(smtp) set of mailers, and most systems on isolated networks use these mailers
because they use TCP/IP on their enterprise network. Despite the fact that the vast major-
ity of Sendmail systems require these mailers, installing them is not the default. To sup-
port SMTP mail, you must add the MAILER(smtp) macro to your configuration.

Chapter 5 Understanding a Vendor’s Configuration120

In addition to these two important sets of mailers, there are nine other sets of mailers
available with the MAILER command, all of which are covered in Appendix A, “m4 Macro
Command Reference.” Most of them are of very little interest for an average Linux con-
figuration. The two sets of mailers included in the generic-linux.mc configuration are
the only ones that most administrators ever use.

Tweaking the Mailer Configurations

Let’s diverge for a moment from the discussion of the generic-linux.mc configuration
file to talk about mailer configuration. You’re strongly encouraged to create your own
DOMAIN source file in the domain directory. You might even be bold enough to create an
OSTYPE file for your Linux distribution in the ostype directory. But MAILER source files
are different. The mailers loaded by the MAILER macros are defined in the mailer direc-
tory. You will never directly edit a file in that directory or add your own files to that directory.
To modify the settings of a specific mailer, use the configuration variables created for this
purpose. Table 5.1 lists the variables used to tune the local and prog mailers and all of
the mailers included in the set of SMTP mailers.

Table 5.1 Mailer Configuration Variables

Variable Purpose

DSMTP_MAILER_ARGS dsmtp mailer arguments.

ESMTP_MAILER_ARGS esmtp mailer arguments.

LOCAL_MAILER_ARGS Arguments for local mail delivery.

LOCAL_MAILER_CHARSET Character set for local 8-bit MIME mail.

LOCAL_MAILER_DSN_
DIAGNOSTIC_CODE

Delivery status notification code used for local mail.

LOCAL_MAILER_EOL End-of-line character for local mail.

LOCAL_MAILER_FLAGS Local mailer flags added to
“lsDFMAw5:/|@q”.

LOCAL_MAILER_MAX Maximum size of local mail.

LOCAL_MAILER_MAXMSG Maximum number of messages delivered with a single
connection.

The Generic Linux Configuration 121

Es
se

nt
ia

l
Co

nf
ig

ur
at

io
n

PART 2

It is very unlikely that you will need to change a mailer setting. But if you do, use the
appropriate variable. Don’t directly edit the MAILER source files. For example, if you want
to limit the size of messages handled by the SMTP mailers to 2,000,000 bytes, you could
add the following define to your configuration:

define(`SMTP_MAILER_MAX’, `2000000’)

Variable definitions, like those shown in Table 5.1, are available for all mailers. See the
“OSTYPE” section of Appendix A for a complete list of these variables.

LOCAL_MAILER_PATH Local mail delivery program.

LOCAL_SHELL_ARGS Arguments for prog mail.

LOCAL_SHELL_DIR Directory in which the shell should run.

LOCAL_SHELL_FLAGS Flags added to lsDFM for the shell mailer.

LOCAL_SHELL_PATH Shell used to deliver piped e-mail.

RELAY_MAILER_ARGS Relay mailer arguments.

RELAY_MAILER_FLAGS Flags added to “mDFMuX” for the relay mailer.

RELAY_MAIL_MAXMSG Maximum number of messages for the relay mailer
delivered by a single connection.

SMTP8_MAILER_ARGS smtp8 mailer arguments.

SMTP_MAILER_ARGS smtp mailer arguments.

SMTP_MAILER_CHARSET Character set for SMTP 8-bit MIME mail.

SMTP_MAILER_FLAGS Flags added to “mDFMuX” for all SMTP mailers.

SMTP_MAILER_MAX Maximum size of messages for all SMTP mailers.

SMTP_MAIL_MAXMSG Maximum number of SMTP messages delivered by a
single connection.

Table 5.1 Mailer Configuration Variables (continued)

Variable Purpose

Chapter 5 Understanding a Vendor’s Configuration122

NOTE Appendix A lists these variables in the discussion of the OSTYPE file
because that is where mailer and path information is supposed to be stored. How-
ever, most Sendmail administrators don’t want to take it upon themselves to cre-
ate their own OSTYPE file. Most administrators add commands like these directly
to the macro configuration file.

The linux.m4 OSTYPE file shown in Listing 5.2 tweaked the mailer path setting for
PROCMAIL_MAILER_PATH. That is the only mailer setting touched by the generic-
linux.mc configuration, and it is indicative of how rarely mailer settings need to be
changed.

The analysis of the generic-linux.mc has shown us several things. We have discovered
the interrelationships of the various m4 source files and we have learned the purpose and
syntax of several different configuration commands. Also, we discovered that the
generic-linux.cf file delivered with the Sendmail 8.11 source code distribution works
fine for our sample Linux system once the various files required by Sendmail are placed
in the correct directories under the correct names.

Next we analyze the Sendmail configuration that was installed as part of the RPM pack-
age on our sample Red Hat system. That configuration worked fine from the start. The
analysis of the Red Hat configuration is not to debug a problem: it is to learn about the
configuration provided by the vendor and to see what we can do to improve it.

The Red Hat Configuration
In Chapter 3, “Running Sendmail,” Sendmail 8.11 was installed on a sample Red Hat sys-
tem using the rpm command. Three RPM packages were installed in this way: the docu-
mentation, the configuration files, and the Sendmail program. The Sendmail
configuration file examined in this section is the file that was installed as part of
sendmail-cf-8.11.0-1.i386.rpm.

The RPM package creates a directory structure in /usr/lib/sendmail-cf that is very
similar to the cf directory structure from the Sendmail source code distribution. An ls of
/usr/lib/sendmail-cf shows the following directories:

[craig]$ ls /usr/lib/sendmail-cf

README cf domain feature hack m4 mailer ostype sh siteconfig

This directory contains the same cf, m4, ostype, feature, mailer, and domain sub-
directories we saw in Chapter 4, and they perform the same functions. The macro control

The Red Hat Configuration 123

Es
se

nt
ia

l
Co

nf
ig

ur
at

io
n

PART 2

file for the Red Hat configuration is found in the /usr/lib/sendmail-cf/cf subdirec-
tory. It is pretty easy to locate. Among the numerous generic files is one file simply named
redhat.mc. This is the file we are looking for. Change to /usr/lib/sendmail-cf/cf and
cat that file.

[craig]$ cd /usr/lib/sendmail-cf/cf

[craig]$ cat redhat.mc

divert(-1)

dnl This is the macro config file used to generate the

dnl /etc/ sendmail.cf file. If you modify the file you will have to

dnl regenerate the /etc/sendmail.cf by running this macro config

dnl through the m4 preprocessor:

dnl

dnl m4 /etc/sendmail.mc > /etc/sendmail.cf

dnl

dnl You will need to have the sendmail-cf package installed for this
to work.

include(`/usr/lib/sendmail-cf/m4/cf.m4')

VERSIONID(`linux setup for Red Hat Linux')dnl

OSTYPE(`linux')

define(`confDEF_USER_ID',``8:12'')dnl

undefine(`UUCP_RELAY')dnl

undefine(`BITNET_RELAY')dnl

define(`confAUTO_REBUILD')dnl

define(`confTO_CONNECT', `1m')dnl

define(`confTRY_NULL_MX_LIST',true)dnl

define(`confDONT_PROBE_INTERFACES',true)dnl

define(`PROCMAIL_MAILER_PATH',`/usr/bin/procmail')dnl

define(`ALIAS_FILE',`/etc/aliases')dnl

define(`UUCP_MAILER_MAX', `2000000')dnl

define(`confUSERDB_SPEC', `/etc/mail/userdb.db')dnl

dnl define(`confPRIVACY_FLAGS', `authwarnings,novrfy,noexpn')dnl

dnl define(`confTO_QUEUEWARN', `4h')dnl

dnl define(`confTO_QUEUERETURN', `5d')dnl

Chapter 5 Understanding a Vendor’s Configuration124

dnl define(`confQUEUE_LA', `12')dnl

dnl define(`confREFUSE_LA', `18')dnl

FEATURE(`smrsh',`/usr/sbin/smrsh')dnl

FEATURE(`mailertable',`hash -o /etc/mail/mailertable')dnl

FEATURE(`virtusertable',`hash -o /etc/mail/virtusertable')dnl

FEATURE(redirect)dnl

FEATURE(always_add_domain)dnl

FEATURE(use_cw_file)dnl

FEATURE(local_procmail)dnl

FEATURE(`access_db')dnl

FEATURE(`blacklist_recipients')dnl

dnl We strongly recommend to comment this one out if you want to
dnl protect yourself from spam. However, the laptop and users on
dnl computers that do not have 24x7 DNS do need this.

FEATURE(`accept_unresolvable_domains')dnl

dnl FEATURE(`relay_based_on_MX')dnl

MAILER(smtp)dnl

MAILER(procmail)dnl

Wow! This is one of the largest macro configuration files I have ever seen! The first thing
we need to do is cut this monster down to size and attack it piecemeal. One thing we can
do is eliminate the comments. Every line that begins with dnl is a comment that can be
ignored for this exercise. Use grep to weed out every line that begins with dnl. Listing 5.5
shows the result.

Listing 5.5 The Active Commands in the Red Hat Macro Control File

[craig]$ grep -v '^dnl' redhat.mc

divert(-1)

include(`../m4/cf.m4')

VERSIONID(`linux setup for Red Hat Linux')dnl

OSTYPE(`linux')

define(`confDEF_USER_ID',``8:12'')dnl

undefine(`UUCP_RELAY')dnl

undefine(`BITNET_RELAY')dnl

define(`confAUTO_REBUILD')dnl

define(`confTO_CONNECT', `1m')dnl

define(`confTRY_NULL_MX_LIST',true)dnl

The Red Hat Configuration 125

Es
se

nt
ia

l
Co

nf
ig

ur
at

io
n

PART 2

define(`confDONT_PROBE_INTERFACES',true)dnl

define(`PROCMAIL_MAILER_PATH',`/usr/bin/procmail')dnl

define(`ALIAS_FILE',`/etc/aliases')dnl
define(`STATUS_FILE', `/var/log/sendmail.st')dnl

define(`UUCP_MAILER_MAX', `2000000')dnl

define(`confUSERDB_SPEC', `/etc/mail/userdb.db')dnl

FEATURE(`smrsh',`/usr/sbin/smrsh')dnl

FEATURE(`mailertable',`hash -o /etc/mail/mailertable')dnl

FEATURE(`virtusertable',`hash -o /etc/mail/virtusertable')dnl

FEATURE(redirect)dnl

FEATURE(always_add_domain)dnl

FEATURE(use_cw_file)dnl

FEATURE(local_procmail)dnl

FEATURE(`access_db')dnl

FEATURE(`blacklist_recipients')dnl

FEATURE(`accept_unresolvable_domains')dnl

MAILER(smtp)dnl

MAILER(procmail)dnl

Okay, it is still surprisingly large, but it is not as bad as it looks. We have already covered
many of the lines in this file and don’t need to cover them again. divert and include were
covered in Chapter 4. We know what the VERSIONID macro does and can ignore it. The
OSTYPE(`linux’) macro is the same one covered earlier in this chapter, and during that
discussion of the linux.m4 file we covered PROCMAIL_MAILER_PATH and FEATURE(local_
procmail). We also covered FEATURE(redirect), FEATURE(use_cw_file), and
MAILER(smtp) during the discussion of the generic-linux.mc configuration. So we’ve
made a good start. Still, there are lots of commands to discuss.

Understanding the Defines and Undefines

The first new command in this configuration is a define command that overrides the
default setting of confDEF_USER_ID, which is the variable that holds the user ID and
group ID used by Sendmail. By default confDEF_USER_ID is set to 1:1, which on a Red
Hat system is user bin and group bin. In the redhat.mc configuration file this is changed
to 8:12, which is user mail and group mail. Having a specific user ID and group ID for
Sendmail is a good idea. The bin user can be used for a wide variety of programs. Cre-
ating a specific mail user and group makes it easier to track actions back to Sendmail and
to control the access Sendmail is given to the rest of the system.

The next two lines are undefine commands that clear the names of the relay servers from
the UUCP_RELAY and the BITNET_RELAY variables. Clearing these variables means that all
UUCP sites must be directly connected and that the .BITNET pseudo-domain will not

Chapter 5 Understanding a Vendor’s Configuration126

work on this system. (BITNET is an outdated mail network that is no longer used.) How-
ever, in this specific configuration there aren’t any server names to clear from UUCP_RELAY
or BITNET_RELAY. By default, UUCP_RELAY and BITNET_RELAY are empty, so there are no
default values to clear. We know the commands that have been executed so far in the
macro configuration file and in the linux.m4 file, and none of those have set any relay
server names. Therefore these two commands are unnecessary for this configuration.

Next comes a series of nine define commands. We know that PROCMAIL_MAILER_PATH
specifies the path to the procmail program. The other eight define variables, however,
are new. They are:

confAUTO_REBUILD This boolean tells Sendmail whether or not it should automat-
ically rebuild the aliases database. It defaults to false, meaning that the aliases
database must be manually rebuilt as described in Chapter 6, “Using Sendmail Data-
bases.” If set to true, Sendmail checks to see if the aliases source file is newer than
the aliases.pag, aliases.dir, and aliases.db database files. If it is, Sendmail
automatically rebuilds the database. This capability can be exploited in a denial of
service attack. A fix was added to address this vulnerability prior to Sendmail ver-
sion 8.10, but the Sendmail developers have deprecated this option and strongly rec-
ommend that you not use it.

confTO_CONNECT This parameter defines the amount of time Sendmail will wait for
the TCP connection to complete. By default, Sendmail sets no time limit and counts
on the TCP/IP parameters configured in the kernel to handle this time out. The Red
Hat configuration shown in Listing 5.5 sets this timeout to one minute (1m), which
seems like plenty of time to wait for a network connection to complete.

confTRY_NULL_MX_LIST This boolean tells Sendmail whether or not it should
attempt to deliver mail directly to hosts that list this server as their best mail
exchange server. The Red Hat configuration sets this to true, so the server will
attempt to deliver mail to its own MX clients. By default, this is set to false, which
causes mail outbound for an MX client to be flagged as a configuration error. The
default is correct for most configurations. As Chapter 2 explained, the MX server
collects mail for its clients and either waits for the client to pull down the mail with
a protocol such as POP or routes the mail to the correct destination using one of the
Sendmail databases. It doesn’t, however, forward mail on to a client using the same
address that originally delivered the mail to the server. However, as we saw in the
discussion of class w earlier in this chapter, the MX server only knows who its clients
are if it is properly configured. If it receives mail that MX records say it should accept

The Red Hat Configuration 127

Es
se

nt
ia

l
Co

nf
ig

ur
at

io
n

PART 2

but that class w says it should not accept, it has a configuration error. The Red Hat
configuration forgives this configuration error and attempts to deliver the mail
directly to the client.

confDONT_PROBE_INTERFACES This boolean tells Sendmail whether or not it should
add the names and addresses of all of the network interfaces to class w. The default
is false, which means that Sendmail does probe all network interfaces and auto-
matically adds the names and addresses of those interfaces to class w. With the
default setting, a second interface installed in the server is automatically detected and
considered an acceptable e-mail address. The Red Hat configuration sets this to
true, which means that only the names and addresses associated with the primary
network interface are added to class w. If another interface is installed in the Red Hat
system, it must be manually added to class w before it will be considered an accept-
able e-mail address.

ALIAS_FILE This parameter defines the path of the aliases file. The default path
is /etc/mail/aliases. The Red Hat configuration sets this to /etc/aliases, which
was the default prior to Sendmail 8.11 and is the most common location for the
aliases file on Linux systems.

STATUS_FILE This parameter defines the path to the statistics file. The default
is /etc/mail/statistics. This default is new as of Sendmail 8.11, which changes
the name of the file from the previous default of sendmail.st to statistics. The
Red Hat configuration maintains the traditional name and places the file in the
Linux /var/log directory.

UUCP_MAILER_MAX This parameter defines the maximum acceptable size of a UUCP
mail message. The default is 100,000 bytes. The Red Hat configuration sets this to
2,000,000 bytes.

confUSERDB_SPEC This parameter defines the path to the user database and deter-
mines whether or not the database is used. By default no path to the user database
is defined. When no path is defined, the user database is not used in processing mail
addresses. The Red Hat configuration declares that the path to the user database is
/etc/mail/userdb.db. This means that Sendmail will check for the existence of that
file and will use it to process addresses after the aliases database is applied to the
address and before the user’s .forward file is applied. The user database is covered
in detail in Chapter 6.

Chapter 5 Understanding a Vendor’s Configuration128

Understanding the Features

The redhat.mc macro configuration file shown in Listing 5.5 also includes 10 FEATURE
commands. We have already discussed the redirect, use_cw_file, and local_procmail
features, but there are seven new features that we haven’t seen before. These are:

smrsh The smrsh feature tells Sendmail to use smrsh instead of /bin/sh as the pro-
gram for the prog mailer. This is a highly recommended feature. The SendMail
Restricted Shell (smrsh) limits what can be run via the prog mailer, which is an
important improvement to Sendmail security.

The argument associated with the smrsh feature is the pathname of the smrsh pro-
gram. The default is to look for a program named smrsh in the directory defined by
the confEBINDIR variable. In the redhat.mc file, the path of the smrsh program is
explicitly set to /usr/sbin/smrsh. As we saw earlier, the smrsh directory path is set
to /usr/sbin with the confEBINDIR variable in the linux.m4 OSTYPE file. Because of
that, an explicit path was not really required for the redhat.mc configuration and is
probably only used to make the configuration self-documenting.

mailertable This feature tells Sendmail to use the mailertable database to route
specific domain names to specific mailers. The argument for the mailertable fea-
ture defines the database type and the path to the database. The default database
type is hash and the default path is /etc/mail/mailertable. The redhat.mc con-
figuration explicitly identifies the database type as hash and the path as /etc/
mail/mailertable. Since these are the defaults, the argument provided with the
mailertable feature is not really required for the redhat.mc configuration and is
probably only used to make the configuration self-documenting. Chapter 6 covers
the mailertable database in detail.

virtusertable This feature tells Sendmail to use the virtusertable database to
map domain names and hostnames to specific e-mail addresses. This database is an
extended alias database that accepts incoming mail that has a domain name or host-
name found in class w or class {VirtHost} and routes that mail as directed by the
virtusertable database. Chapter 6 describes how this database is used.

The argument for the virtusertable feature defines the database type and the path
to the database. The default database type is hash and the default path is /etc/mail/
virtusertable. The argument provided with the virtusertable feature in the
redhat.mc configuration is not really required because it reiterates the defaults. It is
probably only used to make the configuration self-documenting.

The Red Hat Configuration 129

Es
se

nt
ia

l
Co

nf
ig

ur
at

io
n

PART 2

always_add_domain This feature tells Sendmail to add the domain name to locally
delivered mail. By default, a username is sufficient for local delivery. A quick test
illustrates the effect always_add_domain has on a local address:

[root]# sendmail -bt -Cgeneric-linux.cf

ADDRESS TEST MODE (ruleset 3 NOT automatically invoked)

Enter <ruleset> <address>

> /tryflags HS

> /try local craig

Trying header sender address craig for mailer local

canonify input: craig

Canonify2 input: craig

Canonify2 returns: craig

canonify returns: craig

1 input: craig

1 returns: craig

HdrFromL input: craig

AddDomain input: craig

AddDomain returns: craig

MasqHdr input: craig

MasqHdr returns: craig

HdrFromL returns: craig

final input: craig

final returns: craig

Rcode = 0, addr = craig

> ^D

[root]# sendmail -bt -Credhat.cf

ADDRESS TEST MODE (ruleset 3 NOT automatically invoked)

Enter <ruleset> <address>

> /tryflags HS

> /try local craig

Trying header sender address craig for mailer local

Chapter 5 Understanding a Vendor’s Configuration130

canonify input: craig

Canonify2 input: craig

Canonify2 returns: craig

canonify returns: craig

1 input: craig

1 returns: craig

HdrFromL input: craig

AddDomain input: craig

AddDomain returns: craig < @ *LOCAL* >

MasqHdr input: craig < @ *LOCAL* >

MasqHdr returns: craig < @ wren . foobirds . org . >

HdrFromL returns: craig < @ wren . foobirds . org . >

final input: craig < @ wren . foobirds . org . >

final returns: craig @ wren . foobirds . org

Rcode = 0, addr = craig@wren.foobirds.org

> ^D

We run two tests using Sendmail in -bt mode. In both cases we ask Sendmail to pro-
cess a header/sender address, and we give it the address craig to process through the
local mailer. The first test uses the generic-linux.cf configuration, which does
not use the always_add_domain feature. The address goes in as craig and comes out
as craig. In the second test we use the redhat.cf configuration, which uses the
always_add_domain feature. In the second test, craig is converted to
craig@wren.foobirds.org. The effect of always_add_domain is clearly shown.

This is a good feature to use. The address shown, even on local mail, is valid every-
where. This helps avoid confusion among your users, and confused users are some-
thing you want to avoid!

access_db This feature tells Sendmail to use the access database to decide what
hosts, domains, and networks are acceptable sources of e-mail. An optional argu-
ment that defines the database type and path can be used with the access_db fea-
ture. The default database type is hash and the default path is /etc/mail/access.
The access database is described in Chapter 6. Its use in fighting spam is covered in
Chapter 11.

blacklist_recipients This feature allows the access database to be used to
block mail to specific recipients. Normally, the access database is used to control
mail from undesirable sources. With this feature, the access database also can be

Modifying the Red Hat Configuration 131

Es
se

nt
ia

l
Co

nf
ig

ur
at

io
n

PART 2

used to control mail bound for certain destinations. The blacklist_recipients
feature is covered in detail in Chapter 11.

accept_unresolvable_domains This feature tells Sendmail to accept mail from a
source even if the domain name of the source cannot be resolved by DNS. By default,
Sendmail takes the hostname in the MAIL FROM: header and asks DNS to map that
name back to an address before it will accept incoming mail. This option overrides
that default behavior.

Allowing mail from unresolvable domains is a potential security problem, but this
feature is often necessary for systems that do not have full-time DNS service. Such
systems are laptops that might be disconnected from the network or systems sitting
behind a firewall that are not given full DNS access. The Red Hat configuration
includes this feature because Red Hat must create a configuration that will work
with the widest range of systems. If you have full-time DNS service for your net-
work—and you should—you should remove this feature from your configuration.

Following this batch of FEATURE commands are two MAILER commands. The first is
the MAILER(smtp) command that we have already discussed. The second is the
MAILER(procmail) command. Looking at this command, you might think it has some-
thing to do with the local_procmail parameter described earlier. It doesn’t. local_
procmail means that the mailer named local will use the program procmail.
MAILER(procmail) means that a mailer named procmail that uses the procmail program
will be added to the configuration. These two are unrelated. The mailer installed by
MAILER(procmail) is used only if you configure entries in the mailertable to use it.

That’s it—a big complex configuration that includes important capabilities, such as
smrsh, and not so important capabilities, like MAILER(procmail). As we saw in Chap-
ter 4, this configuration works fine and delivers mail for our Red Hat system. But it is
only a start. As the discussion of the accept_unresolvable_domains feature and the
comments inside the redhat.mc file make clear, we are expected to create our own con-
figuration that suits our needs. In the next section we do just that. Starting with the
redhat.mc file, we create our own Red Hat configuration.

Modifying the Red Hat Configuration
There are lots of good things in the redhat.mc configuration, a couple of undesirable
things, and a few redundancies. Since we are going to rewrite the configuration, I think
we should also reorganize it to move some things out of the macro configuration file into
macro source files where those items are a better fit. As a result, we will edit the
redhat.mc file, create a new OSTYPE file, and create a new DOMAIN file. To do this we first

Chapter 5 Understanding a Vendor’s Configuration132

copy redhat.mc to redhat811.mc, ostype/linux.m4 to ostype/redhat7.0.m4, and
domain/generic.m4 to domain/foobirds.m4.

Next we edit the files. First I edited the macro configuration file, redhat811.mc, changing
the DOMAIN command to load foobirds.m4 instead of generic.m4. Then I moved the
confDEF_USER_ID parameter to the new OSTYPE file because I consider the user ID and
group ID setting specific to Red Hat Linux. Next I deleted the two undefines because
they serve no purpose. I also deleted confAUTO_REBUILD because it is a deprecated option.

I considered moving confTO_CONNECT to the OSTYPE file because it is designed to override
the default TCP timeout settings used by the Linux operating system. Instead, I decided
to delete it because I have not had any TCP timeout problems and don’t anticipate any.
Likewise I considered moving confTRY_NULL_MX_LIST to the DOMAIN file because this
option is clearly related to how domain MX records are handled. But I decided to delete
the option instead because it causes Sendmail to handle MX records in a non-standard
way. Unless I must break a standard to get things running, I don’t want to.

I deleted the confDONT_PROBE_INTERFACES option because I want Sendmail to include all
of the server’s interfaces as part of class w. The confDONT_PROBE_INTERFACES option is
primarily useful on laptop systems where PCMCIA interfaces may be added or removed
from a running system. Since I’m not running my server on a laptop, I don’t want this
option. For the same reason, I deleted the accept_unresolvable_domains feature from
the configuration, which is primarily used on laptops. I have good DNS service and there-
fore should not use that feature.

Some lines required no decision. PROCMAIL_MAILER_PATH and local_procmail are
already in the OSTYPE file, and redirect and use_cw_file are already in the DOMAIN file.
However, the confMAX_HEADERS_LENGTH option that came from the generic.m4 file
seemed unnecessary to me, so I deleted it from the new DOMAIN file. I also deleted the
ifdef conditional from the OSTYPE file to set PROCMAIL_MAILER_PATH unconditionally.

I moved ALIAS_FILE, STATUS_FILE, and smrsh to the OSTYPE file because file locations
and mailer options are usually stored there. I deleted the UUCP_MAILER_MAX setting
because the configuration does not define any UUCP mailers. I moved confUSERDB_SPEC,
always_add_domain, access_db, and blacklist_recipients to the new DOMAIN file
because I decided to put all domain, masquerading, and anti-spam configuration in that
file. The remaining configuration commands I left in the macro configuration file. Con-
fused? Take a look at Table 5.2. It lists every line from the original redhat.mc configu-
ration file and tells what we did with it.

Modifying the Red Hat Configuration 133

Es
se

nt
ia

l
Co

nf
ig

ur
at

io
n

PART 2

Table 5.2 Rewriting the Red Hat Configuration File

Command Disposition

OSTYPE Kept in the macro configuration file.

confDEF_USER_ID Moved to the OSTYPE file.

UUCP_RELAY Deleted.

BITNET_RELAY Deleted.

confAUTO_REBUILD Deleted.

confTO_CONNECT Deleted.

confTRY_NULL_MX_LIST Deleted.

confDONT_PROBE_INTERFACES Deleted.

PROCMAIL_MAILER_PATH Located in the OSTYPE file.

ALIAS_FILE Moved to the OSTYPE file.

STATUS_FILE Moved to the OSTYPE file.

UUCP_MAILER_MAX Deleted.

confUSERDB_SPEC Moved to the DOMAIN file.

smrsh Moved to the OSTYPE file.

mailertable Kept in the macro configuration file.

virtusertable Kept in the macro configuration file.

redirect Located in the DOMAIN file.

always_add_domain Moved to the DOMAIN file.

use_cw_file Located in the DOMAIN file.

local_procmail Located in the OSTYPE file.

access_db Moved to the DOMAIN file.

Chapter 5 Understanding a Vendor’s Configuration134

Listing 5.6 shows the contents of all three files for the new configuration. Examining the
listing will make it clear what went where.

Listing 5.6 Custom DOMAIN, OSTYPE, and Macro Control Files

[root]# cat redhat811.mc

VERSIONID(`Red Hat Linux Configuration for Sendmail 8.11')dnl

OSTYPE(`redhat7.0')

DOMAIN(`foobirds')

FEATURE(`mailertable',`hash -o /etc/mail/mailertable')dnl

FEATURE(`virtusertable',`hash -o /etc/mail/virtusertable')dnl

MAILER(smtp)dnl

MAILER(procmail)dnl

[root]# cat ../ostype/redhat7.0.m4

VERSIONID(`Red Hat Linux release 7.0’)dnl

define(`confDEF_USER_ID',``8:12'')dnl

define(`ALIAS_FILE’,`/etc/aliases')dnl
define(`STATUS_FILE', `/var/log/sendmail.st')dnl

define(`confEBINDIR', `/usr/sbin')

FEATURE(`smrsh')dnl

define(`PROCMAIL_MAILER_PATH', `/usr/bin/procmail'))

FEATURE(local_procmail)

[root]# cat ../domain/foobirds.m4

VERSIONID(`Setting for the foobirds.org domain')dnl

define(`confFORWARD_PATH',
`$z/.forward.$w+$h:$z/.forward+$h:$z/.forward.$w:$z/.

forward')dnl

define(`confUSERDB_SPEC', `/etc/mail/userdb.db')dnl

FEATURE(always_add_domain)dnl

FEATURE(`access_db')dnl

blacklist_recipients Moved to the DOMAIN file.

accept_unresolvable_domains Deleted.

MAILER(smtp) Kept in the macro configuration file.

MAILER(procmail) Kept in the macro configuration file.

Table 5.2 Rewriting the Red Hat Configuration File (continued)

Command Disposition

In Sum 135

Es
se

nt
ia

l
Co

nf
ig

ur
at

io
n

PART 2

FEATURE(`blacklist_recipients')dnl

FEATURE(`redirect')dnl

FEATURE(`use_cw_file')dnl

EXPOSED_USER(`root')

The redhat811.mc macro control file has been reduced to a more readable seven lines. The
OSTYPE command was edited to call the new redhat7.0.m4 OSTYPE source file and
the DOMAIN command was added to call the new foobirds.m4 DOMAIN source file. These
three files combine all of the desirable features that we saw in the generic-linux.mc con-
figuration and in the redhat.mc configuration.

In Sum
A Sendmail configuration is not built from scratch. Start from one of the sample files that
is provided as part of the Sendmail source code distribution or start with the configura-
tion file that comes from your distribution vendor. Read and understand the vendor’s
configuration before modifying it to create your own. Don’t assume the vendor’s config-
uration is right for you. A vendor often must make compromises to create a configuration
that runs on a wide variety of systems. Focus the configuration you create on those capa-
bilities that you actually need.

Starting from a sample configuration can simplify the creation of your configuration, but
the sample configurations carry their own level of complexity. Some, like generic-
linux.mc, are reasonably simple, but may not provide the features you need. Others, like
redhat.mc, are more complex than necessary. The way to attack the complexity of the
sample configuration files is one line at a time. Even a very large macro configuration file
probably has fewer than 30 lines. Using a reference, such as this book, get a general idea
of what each line does. Discard those lines that are clearly unnecessary for your config-
uration. Then research the others in more detail to select those that you want to keep.

The analysis of the configurations in this chapter have shown that Sendmail relies heavily
on database files to route mail, convert addresses, and control spam. In the next chapter,
we look at the databases used by Sendmail and describe how you can use those databases
to configure your system.

6
Using Sendmail

Databases

Mention Sendmail configuration to a group of Linux administrators. The first thing
that most of them will think of is a large sendmail.cf file filled with terse configuration
commands that are difficult to read. Some think of an m4 macro control file built from a
complex configuration language that has hundreds of options. A very few think of data-
base files. Yet database files play an important role in Sendmail configuration—a bigger
role for the average system administrator than either the sendmail.cf or the macro con-
figuration files.

The reason that the databases play such a big role for the average administrator is not that
the databases are more important than the other files; they’re not. The reason is that many
administrators use the sendmail.cf provided by the Linux distribution vendor and never
change it. Or they build a custom configuration when they install Sendmail and never change
that. They then use the Sendmail databases for day-to-day configuration changes and to
control the way in which Sendmail processes mail.

Sendmail uses several databases. In this chapter you’ll learn about all of them. I use the
term “databases” loosely. Some of the files described here are flat files; others are true
databases. Regardless of their structure, all of these files are used to control the operation
of Sendmail. Understanding the role of the databases and using them to your advantage

Chapter 6 Using Sendmail Databases138

are essential parts of becoming an effective Sendmail administrator. Let’s begin by under-
standing how database support is incorporated in Sendmail and specified in the Sendmail
configuration.

Adding Database Support
The aliases database is the only database included in every configuration. If you want
to use any other database, you need to add that database to your Sendmail configuration.
There are two levels of configuration required for database support:

� First, the Sendmail program must be compiled with database support. Several com-
piler options are available to select the database support appropriate for your server.

� Second, the Sendmail configuration must be built with database support. Various
features and defines are available to include database support in your server’s
configuration.

Understanding the various database compiler options, how they are set, and how you can
tell which ones are set for your server is essential. These options tell you what database
types are supported by your system and should be checked before you attempt to imple-
ment any new database feature. The database compiler options are covered next.

Database Compiler Options

If you have experience with compiling Sendmail, you may be tempted to look for the data-
base compiler options in the Makefile in the Sendmail distribution’s source code direc-
tory. You may even remember, or have read, that the database compiler options are set
in the Makefile with the DBMDEF= directive—e.g., DBMDEF= -DNEWDB -DNIS. But all that
has changed. Now, compiler options are set in the files located in the devtools directory
of the Sendmail source code distribution. See Chapter 3, “Running Sendmail,” for details
about the devtools directory.

The default database compiler options are normally changed in an operating system–spe-
cific file in the devtools/OS directory or in a file you create specially for your server in the
devtools/Site directory. The command that is used in those files to select support for
different database types is confMAPDEF. The default devtools/OS/Linux file does not
contain a confMAPDEF command because the default database types determined by the
build process are generally correct for Linux. Create your own file in devtools/Site
only if you want to define optional database types. The function of the confMAPDEF com-
mand parallels that of the old DBMDEF= Makefile variable, and it accepts the same values,
which are shown in Table 6.1.

Adding Database Support 139

Es
se

nt
ia

l
Co

nf
ig

ur
at

io
n

PART 2

The Table shows a large number of database options, many more than you will ever use.
No system uses all of these database types. They are included as options to support a wide
range of operating systems. For example, three options, AUTO_NETINFO_ALIASES, AUTO_
NETINFO_HOSTS, and NETINFO, support a database specific to the NeXT operating system,
and another, MAP_NSD, is specific to Irix. Two options, OLD_NEWDB and YPCOMPAT, are
described as outdated. Clearly, a Linux system administrator can ignore many of these

Table 6.1 Available confMAPDEF Database Options

Option Usage

AUTO_NIS_ALIASES Searches the NIS server for aliases.

AUTO_NETINFO_ALIASES Searches the netinfo server for aliases.

AUTO_NETINFO_HOSTS Searches the netinfo server for host addresses.

HESIOD Adds support for Hesiod databases.

LDAPMAP Adds support for LDAP databases.

MAP_NSD Adds support for Irix NSD databases.

MAP_REGEX Allows database searches using regular expressions.

NDBM Adds support for Unix ndbm databases.

NETINFO Adds support for NeXT netinfo databases.

NEWDB Adds support for the hash and btree databases.

NIS Adds support for Sun NIS databases.

NISPLUS Adds support for Sun NIS+ databases.

OLD_NEWDB Adds support for an outdated form of the db databases.

PH_MAP Adds support for a CCSO phonebook database.

UDB_DEFAULT_SPEC Specifies the default path used for the user database.

USERDB Adds support for the user database.

YPCOMPAT Adds support for an outdated SunOS version of NIS.

Chapter 6 Using Sendmail Databases140

options. All of the options are there if you ever need them; it is just unlikely that you ever
will. The options that are most useful to a Linux administrator are:

NEWDB This option adds the basic database support used on Linux systems. It pro-
vides both hash and btree databases. This one option provides all you need to build
and access most local Sendmail databases.

MAP_REGEX This option adds a new feature to Sendmail that permits databases to
be searched with regular expressions. Anyone who has used regular expressions with
grep knows that they are much more powerful than simple wildcard characters. This
added power is useful when you need to create complex rules to block spammers.

USERDB This option adds support for the user database, which can be used to pro-
cess e-mail addresses on both inbound and outbound e-mail. A related option is UDB_
DEFAULT_SPEC, which defines the default path to the user database. The path can
also be set with the confUSERDB_SPEC define in the Sendmail configuration, as we
saw in the redhat.mc file in Chapter 5, “Understanding a Vendor’s Configuration.”
I prefer setting the path value in the configuration instead of compiling it into Send-
mail because it is more easily changed when it is set in the configuration. However,
some path value must be explicitly defined before Sendmail can use the user database.

NIS This option provides access to Network Information System (NIS) databases.
These are administrative databases, such as /etc/mail/aliases and /etc/hosts,
stored on the NIS server. The related database options NISPLUS and YPCOMPAT are
rarely used on Linux systems. NIS+, which is an upgraded version of NIS, is not
often used in Linux environments; YPCOMPAT creates compatibility with a version of
NIS that has not been produced in several years. YPCOMPAT permits use of the old
“plus syntax,” in which a + is placed at the end of a local administrative database to
tell the system to first search the local database and then search the database on the
NIS server. Thus, with YPCOMPAT and a + at the end of the /etc/mail/aliases data-
base, Sendmail first checks the local aliases database and then checks the one on
the NIS server. Sounds like a good idea, but it is completely unnecessary. The
AUTO_NIS_ALIASES option does exactly the same thing. It tells Sendmail to check the
local aliases database first and then check the NIS server, and it does it without the
outdated plus syntax. (Details of setting up an NIS server on a Linux system are cov-
ered in the Linux DNS Server Administration book of this series.)

To force Sendmail to use these four database options, you could either edit the devtools/
OS/linux.m4 file or create a file in the devtools/Site directory that contained the fol-
lowing line:

define(`confDEFMAP’, `-DNEWDB -DNIS -DMAP_REGEX -DUSERDB’)

Adding Database Support 141

Es
se

nt
ia

l
Co

nf
ig

ur
at

io
n

PART 2

Once the line is inserted in the file of your choice, recompile Sendmail to put the options
into effect. (See Chapter 3 for instructions on compiling Sendmail.)

However, before going to all this trouble, check which options your Sendmail program
is already using. The default database option settings vary based on the database libraries
detected by the Sendmail source distribution’s build routine. On a Linux system, the
default is usually -DNEWDB. But build does a good job of detecting the capabilities of your
system, so your Sendmail program could include additional options. Listing 6.1 shows
the options compiled into the Sendmail program delivered with the sendmail-
8.11.0.i386.rpm RPM file.

Listing 6.1 Checking the sendmail Compile Options

[root]# sendmail -bt -d0.4

Version 8.11.0

 Compiled with: MAP_REGEX LOG MATCHGECOS MIME7TO8 MIME8TO7 NAMED_BIND

 NETINET NETUNIX NEWDB NIS QUEUE SASL SCANF SFIO SMTP

 STARTTLS USERDB

canonical name: wren.foobirds.org

 a.k.a.: wren

 UUCP nodename: wren.foobirds.org

 a.k.a.: wren

 a.k.a.: [172.16.12.3]

============ SYSTEM IDENTITY (after readcf) ============

 (short domain name) $w = wren

 (canonical domain name) $j = wren.foobirds.org

 (subdomain name) $m = foobirds.org

 (node name) $k = wren.foobirds.org

==

ADDRESS TEST MODE (ruleset 3 NOT automatically invoked)

Enter <ruleset> <address>

> ^D

Listing 6.1 shows Sendmail being run in -bt test mode. Sendmail is also being passed the
debug value -d0.4. This debug value causes Sendmail to display several lines of informa-
tion before accepting input. We don’t really have any input for Sendmail to process; we
just want to see the display so we enter Ctrl+D to exit.

The first line displayed by the Sendmail program tells us this is Sendmail 8.11.0. The sec-
ond line is the one we’re interested in. It lists all of the options that Sendmail was compiled
with. Four of these, MAP_REGEX, NEWDB, NIS, and USERDB, are related to databases, and

Chapter 6 Using Sendmail Databases142

they are the four options we want. This display makes it clear that there is no need for us
to recompile Sendmail to set database options. If your system doesn’t have the options
you want, make sure you have all of the necessary database libraries before setting the
compiler options and recompiling Sendmail.

Listing 6.1 shows that the Sendmail delivered with the Red Hat RPM is ready to run all
of the databases we could want, assuming support for the databases is included in the
Sendmail configuration. The configuration options used to add support for Sendmail
databases is the next topic.

Configuration Options

As noted at the beginning of this section, the aliases database is the only database that
is available to Sendmail by default. All of the other databases described in this chapter
must be added to the Sendmail configuration before they can be used. The following
defines and features are used to configure support for the optional databases, as well as
some important files:

define(`confUSERDB_SPEC’, `path’) The confUSERDB_SPEC option tells Send-
mail to apply the user database to local addresses after the aliases database is
applied and before the .forward file is applied. The path argument given with this
option is the full pathname of the database. There is no default for the path unless
Sendmail is compiled with UDB_DEFAULT_SPEC. Setting the path with the
confUSERDB_SPEC option is much simpler and more flexible than using UDB_
DEFAULT_SPEC. The following define command enables the user database and tells
Sendmail that it can be found in /etc/mail/userdb.db.

define(`confUSERDB_SPEC’, `/etc/mail/userdb.db’)

define(`confCR_FILE’[, `path’]) The confCR_FILE option tells Sendmail to
add the list of hosts permitted to relay mail from the specified file to the class R
variable. The full pathname of the file can be provided as an argument to the option.
If the pathname is not provided, it defaults to /etc/mail/relay-domains for
Sendmail 8.11.

FEATURE(`use_ct_file’[, `path’]) The use_ct_file feature tells Sendmail to
add trusted usernames from the file to the class variable t. The full pathname of the
file is an optional argument. If the pathname is not provided, Sendmail 8.11 defaults
to /etc/mail/trusted-users.

FEATURE(`use_cw_file’[, `path’]) The use_cw_file tells Sendmail to add
hostname aliases from the file to the class variable w. The full pathname of the file is
an optional argument. If the pathname is not provided, Sendmail 8.11 uses /etc/
mail/local-host-names as the default.

143

Es
se

nt
ia

l
Co

nf
ig

ur
at

io
n

PART 2

FEATURE(`access_db’[, `specification’]) The access_db feature tells Send-
mail to use the access database to control mail relaying and mail delivery based on
the source of the mail. An optional database specification can be provided to
define the database type and the full pathname of the database. By default, the data-
base type is hash and the database path is /etc/mail/access.

FEATURE(`mailertable’[, `specification’]) The mailertable feature tells
Sendmail to use the mailer table to map the domain name in a delivery address to a
specific mailer and host for delivery. An optional database specification can be pro-
vided to define the database type and the full pathname of the database. By default,
the database type is hash and the database path is /etc/mail/mailertable.

FEATURE(`virtusertable’[, `specification’]) The virtusertable feature
tells Sendmail to use the virtusertable database to map the recipient address in
incoming e-mail to a different recipient address. This function is similar to the one
performed by the aliases database, except that the virtusertable aliases domain
names, not just usernames. An optional database specification can be provided to
define the database type and the full pathname of the database. By default, the data-
base type is hash and the database path is /etc/mail/virtusertable.

FEATURE(`genericstable’[, `specification’]) The genericstable feature
tells Sendmail to use the genericstable database to map the sender address on out-
bound mail to a different sender address. An optional database specification can be
provided to define the database type and the full pathname of the database. By
default, the database type is hash and the database path is /etc/mail/genericstable.

FEATURE(`domaintable’[, `specification’]) The domaintable feature tells
Sendmail to use the domain table to map one domain name to another. An optional
database specification can be provided to define the database type and the full path-
name of the database. By default, the database type is hash and the database path is
/etc/mail/domaintable.

FEATURE(`uucpdomain’[, `specification’]) The uucpdomain feature tells
Sendmail to use the uucpdomain database to map UUCP site names to Internet
domain names. An optional database specification can be provided to define the
database type and the full pathname of the database. By default, the database type
is hash and the database path is /etc/mail/uucpdomain.

FEATURE(`bitdomain’[, `specification’]) The bitdomain feature tells Send-
mail to use the bitdomain database to map BITNET hostnames to Internet domain
names. (BITNET is an outdated IBM network that you won’t use.) An optional data-
base specification can be provided to define the database type and the full pathname
of the database. By default, the database type is hash and the database path is /etc/
mail/bitdomain.

Adding Database Support

Chapter 6 Using Sendmail Databases144

There are more databases available for Sendmail than you will ever use. A couple are of
little or no value to Linux sites—the bitdomain database converts addresses for a net-
work that no Linux site uses and the uucpdomain database converts UUCP “bang”
addresses, the old host!user e-mail addresses, that almost no one uses anymore. Other
available databases have overlapping functions that might mean you don’t need to use
both of them at your site. The redhat.mc configuration delivered with the RPM contains
fewer than half of the defines and features listed above, and that configuration probably
has more database capabilities than you will really need. To help you evaluate which
databases you do need, we’ll examine all of them in more detail.

The Cr, Cw, and Ct Files
The first three databases we cover are not, in the strict sense of the word, databases. They
are disk files used to load sendmail.cf class variables. The “cr” and “cw” files perform
important roles in configuring Sendmail, but changes in the security atmosphere of the
network mean that the “ct” file no longer has a useful role.

The file that loads the t class variable is often called the “ct” file because the traditional
name of this file was /etc/sendmail.ct. In Sendmail 8.11 the default name of this file is
/etc/mail/trusted-users, but the function of the file remains the same. It is used to add
usernames to the list of users that are trusted to send mail under another user’s name. By
default, class t contains the usernames daemon, root, and uucp.

You will never use the /etc/mail/trusted-users file, and there are some good reasons
why you won’t. First, it is a bad idea to let people send out mail under other people’s
names. So in general, you don’t want to expand the list of trusted users. Second, if you
decide you absolutely must add usernames to the trusted user list, you won’t add enough
names to justify putting them in a separate file. For example, assume you want to add the
username “mail” to the trusted user list. You could edit the macro configuration file to
add the FEATURE(use_ct_file) command, rebuild the sendmail.cf file, and create a
trusted-users file containing the single word mail. But why would you? You could just
as easily edit the macro configuration file to add the define(`confTRUSTED_USERS’,
`mail’) command, rebuild the sendmail.cf file, and be done with it. Not only is this
second approach slightly easier, it is safer because there is one fewer file created and thus
one fewer file where the permissions could be set incorrectly.

WARNING Despite this example, neither confTRUSTED_USERS nor use_ct_
file is recommended because you shouldn’t add any users to the trusted user
list. Trusting users is a bad idea in this age of spammers and security crackers.

The Cr, Cw, and Ct Files 145

Es
se

nt
ia

l
Co

nf
ig

ur
at

io
n

PART 2

Unlike the “ct” file, which is never used, the “cr” file is always used. The “cr” file is really
named the relay-domains file. Sendmail always uses the data it finds in the relay-
domains file. The purpose and structure of that file is the next topic.

The relay-domains File

When mail arrives at a Sendmail server, it is either accepted, rejected, or relayed. If it is
addressed to the server itself, by any name that the server accepts as its own, the mail is
accepted for local delivery, meaning that the mail is either placed in the mailbox of a local
user or routed as directed by one of the Sendmail databases. If the mail is not addressed
to the server itself, the mail is either rejected or relayed. Mail is relayed by re-sending it to the
delivery address. Prior to Sendmail 8.9, all mail addressed to another host that was
received by a Sendmail server was relayed. Now, no mail is relayed unless you explicitly
tell Sendmail to relay it. This change was a big headache for many system administrators
who were using a Sendmail server to relay outbound mail for their PCs. But the change
was necessary. Spammers were exploiting the relaying feature of Sendmail to hide the true
source of spam. Now all administrators must pay the price of spam, and that price is the
extra work necessary to create an explicit relay configuration.

One way to explicitly enable relaying is to list the names of hosts allowed to relay mail
in the /etc/mail/relay-domains file. Sendmail copies anything written in that file to the
class variable R. Any host listed in class variable R is allowed to relay mail. Listing 6.2
shows the contents of a simple relay-domains file.

Listing 6.2 Using the relay-domains File

[root]# cat /etc/mail/relay-domains

ibis.foobirds.org

[root]# ps -ax | grep sendmail

 542 ? S 0:00 sendmail: accepting connections

[root]# kill -HUP 542

[root]# sendmail -bt

ADDRESS TEST MODE (ruleset 3 NOT automatically invoked)

Enter <ruleset> <address>

> $=R

ibis.foobirds.org

> ^D

A SIGHUP signal is passed to the Sendmail process to ensure that it reads the hostnames
from relay-domains into class R. The test in Listing 6.2 shows that class R was success-
fully modified.

Chapter 6 Using Sendmail Databases146

NOTE The hosts listed in relay-domains and in class R are the sources of
relayed mail; they are not the destinations. Class w, covered in the next section,
contains destination hostnames. Class R contains source hostnames.

Listing 6.2 adds only one domain name to class R. It is possible to add a limited number
of domains to class R from inside the Sendmail configuration by using the RELAY_DOMAIN
macro. For example, the following command placed inside the Sendmail configuration
file would have the same effect as the relay-domains file shown in Listing 6.2:

RELAY_DOMAIN(`ibis.foobirds.org’)

However, using the relay-domains file is simpler than using the RELAY_DOMAIN macro.
The RELAY_DOMAIN command requires modifying the Sendmail macro configuration and
rerunning m4 to build the new sendmail.cf file. Using the relay-domains file does not.
By default, Sendmail checks for a file named /etc/mail/relay-domains and adds the
names it finds there to class R. No modifications to the configuration are required. You
would need to place a command in the macro configuration only if you wanted to change
the default filename of the relay-domains file. There are two ways this can be done:

define(`confCR_FILE’[, `path’]) This define command sets the path to the
file loaded into class R. It defaults to /etc/mail/relay-domains, which means that
even if you have not explicitly set any value for this file in your configuration, Send-
mail uses a file with that name to load class R. The confCR_FILE option is only
needed if you want to change the default filename. For example, the following com-
mand causes Sendmail to load class R from a file named /etc/relay-hosts:

define(`confCR_FILE’, `/etc/relay-hosts’)

RELAY_DOMAIN_FILE(`path’) This macro can be used to specify the path to the file
that loads class R. For example, the following command loads class R from a file
named /etc/relay-for:

RELAY_DOMAIN_FILE(`/etc/relay-for’)

There are three commands relating to setting relay values for class R, RELAY_DOMAIN,
RELAY_DOMAIN_FILE, and confCR_FILE. But you don’t need to use any of them. Just create
a file named /etc/mail/relay-domains and put the names of the hosts for which your
server should relay mail in that file. That’s all there is to it.

The “cr” file is a default feature of the Sendmail configuration. Nothing needs to be done
to the Sendmail configuration to add it. On the other hand, the “cw” file, which is dis-
cussed next, must be specifically added to the configuration even though its role is as
important as that of the “cr” file.

The Cr, Cw, and Ct Files 147

Es
se

nt
ia

l
Co

nf
ig

ur
at

io
n

PART 2

The local-host-names File

In Chapter 5, both the generic Linux configuration and the Red Hat configuration
contain the FEATURE(use_cw_file) command. That feature reads the /etc/mail/
local-host-names file and adds the hostnames listed there to the hostnames and
addresses defined in class w. Listing 5.4 in Chapter 5 shows that, by default, class w
contains the special name localhost, the special address 127.0.0.1, and the system’s
IP addresses, full domain names, and unqualified hostnames. Anything you put in
local-host-names is added to these default values.

The system checks class w to decide whether or not it should accept inbound mail for local
delivery. The Sendmail server only accepts mail for local delivery that is addressed to the
server. Yet many systems might use the Sendmail server as a mailbox server to collect and
hold their mail. If the mail that the server should collect and hold is literally addressed to
another system, the name of that system needs to be added to class w. Once added to class
w, the other system’s hostname is treated by Sendmail as if it were a hostname alias for the
server. Mail addressed to systems listed in class w is accepted as if it were mail addressed
to the server. An example will make this clear.

Assume that robin.foobirds.org is a PC that uses the server wren.foobirds.org as a
mailbox to collect and hold mail. An MX record is placed in the DNS server that directs
robin’s mail to wren. Listing 6.3 shows what happens when logan on bear.mammals.org
sends mail to jill on robin before class w is updated.

Listing 6.3 A Failed Test of Class w

[craig@ibis]$ sendmail -v -t

To: jill@robin.foobirds.org

From: logan

Subject: Class w test

^D

jill@robin.foobirds.org... Connecting to wren.foobirds.org.

 via esmtp...

220 wren.foobirds.org ESMTP Sendmail 8.11.0/8.11.0;

 Thu, 21 Sep 2000 16:27:59 -0400

>>> EHLO bear.mammals.org

250-wren.foobirds.org Hello root@bear.mammals.org [172.16.12.1],

 pleased to meet you

>>> MAIL From:<logan@bear.mammals.org> SIZE=62

250 2.1.0 <logan@bear.mammals.org>... Sender ok

>>> RCPT To:<jill@robin.foobirds.org>

550 5.7.1 <jill@robin.foobirds.org>... Relaying denied

Chapter 6 Using Sendmail Databases148

>>> RSET

250 2.0.0 Reset state

/home/logan/dead.letter... Saved message in /home/logan/dead.letter

Closing connection to wren.foobirds.org.

>>> QUIT

221 2.0.0 wren.foobirds.org closing connection

Other than deleting several lines from the EHLO response to save a few trees, the test in
Listing 6.3 appears exactly as it happened. Sendmail was invoked with -v and -t so that
I could type the test in from the keyboard and receive verbose responses. The first four
lines, which are shown in bold, are what I typed in. The remainder is the response from
the remote e-mail server. As the To: line clearly shows, the mail was addressed to
jill@robin.foobirds.org. The first line displayed by Sendmail says that it is connecting
to wren.foobirds.org via the esmtp mailer. Mail addressed to robin.foobirds.org is
being sent to wren.foobirds.org, which means that wren must be the preferred mail
exchange server for robin. Great, except that apparently nobody told the administrator
of wren! The 550 response line, shown in bold italics, is an error message saying that wren
will not relay mail from bear to robin. Well, we didn’t want it to relay mail, but we did
want it to accept mail for robin, which it clearly won’t do. What is wrong is that the name
robin.foobirds.org is not a valid alias for wren.foobirds.org, so wren will not accept
mail for robin.

To correct this, robin must be added to class w. There are two ways this can be done. One
way is to add the value directly to class w in the Sendmail configuration using the LOCAL_
DOMAIN macro command, as in this example:

LOCAL_DOMAIN(`robin.foobirds.org’)

This works well if there are only a few hosts to add. It is straightforward and everything
is contained in the Sendmail configuration file.

The other way to add hostnames to class w is to put them in the local-host-names file.
Putting the hostname aliases in the local-host-names file is better whenever there are
several names to add or the list of names changes over time. In the case of both the
generic-linux.mc and redhat.mc configurations, using the local-host-names file is
also simpler because the FEATURE(use_cw_file) command is already in the configura-
tion. Thus there is no need to add a LOCAL_DOMAIN command or to rebuild the
sendmail.cf file. Listing 6.4 shows the local-host-names file with two entries for robin
and it shows a SIGHUP signal being sent to Sendmail to make sure Sendmail loads the
new values.

149

Es
se

nt
ia

l
Co

nf
ig

ur
at

io
n

PART 2

Listing 6.4 Entries in the local-host-names File

[root]# cat local-host-names

local-host-names - include all aliases for your machine here.

#

robin.foobirds.org

robin

[root]# ps -ax | grep sendmail

 542 ? S 0:00 sendmail: accepting connections

[root]# kill -HUP 542

[root]# sendmail -bt

ADDRESS TEST MODE (ruleset 3 NOT automatically invoked)

Enter <ruleset> <address>

> $=w

robin.foobirds.org

wren.foobirds.org

[172.16.12.3]

wren

localhost

robin

> ^D

Now wren will accept mail for robin, although it won’t necessarily know what to do with
it. If Jill will be downloading her mail from a mailbox on wren, you must create a valid
user account for Jill to allow Sendmail to create the necessary spool directory to hold her
mail and to allow her to download the mail via POP or IMAP. If Jill’s mail is supposed
to be forwarded to another system, mail routing instructions need to be given to Sendmail
through the aliases database or another appropriate database. Clearly, while adding
hostnames to class w is essential, it is only a first step. A possible next step is to configure
the aliases database.

The aliases Database
Once mail is accepted by the Sendmail server for local delivery, Sendmail must decide
how to deliver the mail. It must determine whether the user identified in the recipient
address is a local user with a local mailbox, or a user alias whose mail must be forwarded
on to the real recipient. The primary database used to make this determination is the
aliases database.

The aliases Database

Chapter 6 Using Sendmail Databases150

Sendmail aliases perform important functions that are an essential part of creating a mail
server. Mail aliases do the following:

Specify nicknames for individual users. Nicknames can be used to direct mail
addressed to special names, such as postmaster or root, to the real users that do
those jobs. Aliases can simplify creation of a standard e-mail address structure for a
domain because mail aliases have a more flexible structure than login usernames.

Forward mail to other hosts. Sendmail aliases automatically forward mail to the
host address included as part of the recipient address.

Define mailing lists. An alias with multiple recipients is a mailing list.

Mail aliases are defined in the aliases file. The location of the aliases file is set by the
ALIAS_FILE define in the Sendmail configuration. The redhat.mc configuration file in
Chapter 5 uses ALIAS_FILE to set the location of the aliases file to /etc/aliases. By
default, Sendmail 8.11 locates the file in the /etc/mail directory (/etc/mail/aliases).
Regardless of where it is located, the basic format of entries in the aliases file is:

alias: recipient

The alias is the username from the e-mail address, and recipient is the name to which
the mail should be delivered. The recipient field can contain a username, another alias,
or a full e-mail address containing both a username and a hostname. Additionally, there
can be multiple recipients for a single alias to create a mailing list. The aliases file deliv-
ered with a Red Hat system, with a few additions to illustrates the full range of uses for
aliases, is shown in Listing 6.5.

Listing 6.5 The Basic Red Hat aliases Database

#

@(#)aliases 8.2 (Berkeley) 3/5/94

#

Aliases in this file will NOT be expanded in the header from

Mail, but WILL be visible over networks or from /bin/mail.

#

>>>>>>>>>> The program "newaliases" must be run after

>> NOTE >> this file is updated for any changes to

>>>>>>>>>> show through to sendmail.

#

Basic system aliases -- these MUST be present.

MAILER-DAEMON: postmaster

postmaster: root

151

Es
se

nt
ia

l
Co

nf
ig

ur
at

io
n

PART 2

General redirections for pseudo accounts.

bin: root

daemon: root

games: root

ingres: root

nobody: root

system: root

toor: root

uucp: root

Well-known aliases.

manager: root

dumper: root

operator: root

webmaster: root

trap decode to catch security attacks

decode: root

Person who should get root's mail

root: staff

System administrator mailing list

staff: kathy, craig, david@parrot, sara@hawk, becky@parrot

owner-staff: staff-request

staff-request: craig

User aliases

jill: jill@egret.foobirds.org

norman.edwards: norm

edwardsn: norm

norm: norm@hawk.foobirds.org

rebecca.hunt: becky@parrot

andy.wright: andy

sara.henson: sara

kathy.McCafferty: kathy

kathleen.McCafferty: kathy

The Red Hat aliases file opens with several comment lines, which begin with a pound
sign (#). Ignore the information about which mail programs display aliases in the headers
of mail messages; it is not really significant. The comment that is significant is the one that
tells you to run newaliases every time you update this file. Sendmail does not read the

The aliases Database

Chapter 6 Using Sendmail Databases152

aliases file directly. Instead, it reads a database file produced from this file by the
newaliases command.

NOTE newaliases is not really a program; it is a link to Sendmail. The aliases
database can also be built by running sendmail with the -bi argument—e.g.,
sendmail -bi.

The next 15 lines in Listing 6.5 define aliases for special names. All of these, except the
webmaster alias that I added, come pre-configured in the Red Hat aliases file. The first
two, MAILER-DAEMON and postmaster, are aliases that people expect to find on any system
running Sendmail. Most of the others are aliases assigned to the daemon usernames that
are found in the /etc/passwd file. No one can actually log on using the daemon user-
names, so any mail that might be directed to these pseudo accounts is forwarded to a real
user account. In the example, this mail is forwarded to the root user account.

Of course you don’t really want people logging onto the root account just to read mail,
so the aliases file also has an alias for root. In the example, I edited the root entry to
forward all mail addressed to root to staff, which is another alias. Notice how often
aliases point to other aliases. Doing so is very useful because it allows you to update one
alias instead of many when the real user account that the mail is delivered to changes.

The staff alias is a mailing list. A mailing list is simply an alias with multiple recipients.
In the example, several people are responsible for maintaining this mail server. Messages
addressed to root are delivered to all of these people through the staff mailing list.

Two special aliases are associated with the mailing list. The owner-staff alias is a special
alias used by Sendmail for error messages relating to the staff mailing list. The format
that Sendmail requires for this special alias is owner-list, where list is the name of the
mailing list. The other special alias, staff-request, is not required by Sendmail but it is
expected by remote users. By convention, manual mailing list maintenance requests, such
as being added to or deleted from a list, are sent to the alias list-request, where list
is the name of the mailing list.

The last nine lines are user aliases I added to the file. These lines direct mail received at
the mail server to the computers where the users read their mail. The first alias directs the
mail this server receives for Jill. (Refer back to Listing 6.3.) Remember that when we dis-
cussed class w, it was pointed out that simply adding a hostname to class w does not mean
that the server will be able to handle the mail for a specific user on that remote host. The
user needs either an account on the server or an alias in the aliases database. This alias
means that it is not necessary to create a user account for Jill on the mail server because
her mail is forwarded to egret.foobirds.org. It is egret’s job to see that Jill gets her mail.

153

Es
se

nt
ia

l
Co

nf
ig

ur
at

io
n

PART 2

Aliases can be in a variety of formats to handle the various ways that e-mail is addressed
to a user. The next three lines, which forward mail to norm@hawk.foobirds.org, all illus-
trate this. Mail addressed to norman.edwards or to edwardsn is mapped to the alias norm,
and the alias norm forwards the mail to norm@hawk.foobirds.org. Thus the server will
accept mail addressed in any of three different formats and make sure it gets to the correct
recipient on the remote system hawk.foobirds.org.

The last five lines all have the same alias format: first name, dot, last name. This format
is a popular one for e-mail addressing. When combined with an MX record in DNS that
says that this server is the mail exchanger for the entire domain, it creates the simplified
mail-addressing schemes used at many organizations. Assume the MX record for the
domain foobirds.org points to this server. Mail addressed to Rebecca.Hunt@foobirds
.org would actually be delivered to becky@parrot.foobirds.org. Notice that e-mail
addresses are not case sensitive.

The aliases database is used on every system to specify how mail is forwarded. The
aliases database handles mail forwarding for the entire system. It is also possible for
individual users to define personal forwarding for their own mail in the .forward file.
While the .forward file is not strictly a database, its close relationship to systemwide
aliases make this a good time to take a quick look at the .forward file.

Defining Personal Mail Aliases

As some of the lines in the aliases file in Listing 6.5 illustrate, one of the main functions
of the aliases file is to forward mail to other accounts or other computers. The aliases
file, because it impacts the entire system, must be maintained by the system administrator.
Thus, if a user wants to set up forwarding for their account through the aliases file, they
need to ask the system administrator for help. The .forward file, which can be created in
any user’s home directory, defines mail forwarding for an individual user and is com-
pletely under the control of the user. Often, the .forward file is the most convenient place
to set up forwarding.

It is possible to use the .forward file to do something that can be done in the aliases file.
For example, if Norman Edwards had an account on a system but didn’t really want to
read his mail on that system, he could create the following .forward file:

norm@hawk.foobirds.org

The function of this entry is very similar to the norm alias line in Listing 6.5. It forwards
all mail received in this user’s account on the local system to the norm account at
hawk.foobirds.org.

The aliases Database

Chapter 6 Using Sendmail Databases154

However, simple forwarding is not the primary use for the .forward file. A much more
common use for this file is to invoke special mail processing before mail is delivered to
your personal mail account. Chapter 11, “Stopping Spam,” illustrates this when
procmail and mail filtering are discussed.

The aliases database and the .forward file are the default files used to process user
addresses. Sendmail will use both of these files if it finds them. There is no need to define
them inside the Sendmail configuration; they are used by default. There is also an optional
database that can be used to process users’ addresses. It is the user database, and it is our
next topic.

The User Database
The user database is available to Sendmail only if Sendmail is compiled with the USERDB
compiler flag and the path to the user database is defined inside the Sendmail configura-
tion using the confUSERDB_SPEC option. Listing 6.1 shows that the Sendmail delivered
with the Red Hat RPM has the USERDB compiler flag set, and in Chapter 5 we saw that
the redhat.mc file contained the following define command:

define(`confUSERDB_SPEC’, `/etc/mail/userdb.db’)

From these things, we know that we can use the user database on our sample Red Hat sys-
tem. If your system doesn’t meet both of these conditions, you can’t use this database until
you update the configuration.

Sendmail applies the user database to inbound mail after the aliases database and before
the .forward file. But unlike the aliases and .forward files, the user database can also
be applied to outbound mail to transform the sender address and, in effect, create a
reverse alias. Listing 6.6 shows a realistic user database file based on the last four lines of
the aliases database in Listing 6.5.

Listing 6.6 A Sample User Database File

[root]# cd /etc/mail

[root]# cat userdb

andy.wright:maildrop andy

andy:mailname andy.wright@foobirds.org

sara.henson:maildrop sara

sara:mailname sara.henson@foobirds.org

kathy.McCafferty:maildrop kathy

kathleen.McCafferty:maildrop kathy

kathy:mailname katheleen.mccafferty@foobirds.org

[root]# makemap btree userdb.db < userdb

The User Database 155

Es
se

nt
ia

l
Co

nf
ig

ur
at

io
n

PART 2

In Listing 6.6, we change to the /etc/mail directory and display the contents of the user
database file we have created. We arbitrarily named this file userdb. Like the aliases
file, the user database file must be converted to a true database before it can be used by
Sendmail. Use the makemap command to build the database. The makemap program reads
the standard input and writes out the specified database of the type selected. The makemap
command is fully described later in this chapter. In Listing 6.6, the command has two
arguments: the database type and the name of the database to be written. The user data-
base must be of the btree type, and the name of the user database must be the one defined
inside the Sendmail configuration.

The entries in the user database look something like the entries in the aliases database
except for the addition of a keyword, either maildrop or mailname. The entries that use
the keyword maildrop are almost exactly like entries in the aliases database. The value
before the colon (:) is the user alias and the value after the keyword maildrop is the recip-
ient address. The first entry in the sample userdb file:

andy.wright:maildrop andy

performs exactly the same function as this line from the aliases database:

andy.wright: andy

Both of these take mail addressed to andy.wright and deliver it to the user account andy.
The similarity between entries in the aliases database and maildrop entries in the user
database are so strong that the following lines from the aliases file shown in Listing 6.5:

staff: kathy, craig, david@parrot.foobirds.org, sara@hawk.foobirds.org

owner-staff: staff-request

staff-request: craig

can be rewritten in the user database as follows:

staff:maildrop kathy,craig,david@parrot.foobirds.org,sara@hawk.foobirds.org

owner-staff:maildrop craig

staff-request:maildrop craig

This shows that just like an alias database entry, a maildrop entry can accept multiple
delivery addresses, which in effect creates a mailing list. The only difference in these three
entries, other than the addition of the keyword maildrop, is that maildrop entries cannot
point to aliases. The recipient address in a maildrop entry must be a real address—thus
the change that maps owner-staff to the real address craig instead of the alias staff-
request.

Chapter 6 Using Sendmail Databases156

NOTE The fact is that none of the maildrop lines shown in Listing 6.6 is needed
if this system has the aliases file shown in Listing 6.5. That aliases file would
have already done the mapping of inbound addresses before the user database
was even called. The maildrop lines are shown in Listing 6.6 as examples. If you
decide to use maildrop entries, don’t duplicate entries already in the aliases
database. Some administrators prefer using maildrop entries over aliases
when they also want to take advantage of the mailname entries so that everything
can be done in one file.

The mailname entries provide a feature that is not available in the aliases database. The
mailname entries rewrite outbound addresses. The value before the colon (:) is the local
username. The value following the keyword mailname is the sender address that should
be used on mail originating from the user. Thus the line

andy:mailname andy.wright@foobirds.org

converts the sender address on all mail from the user andy to

andy.wright@foobirds.org.

Converting outbound addresses is a very important function because it balances the way
addresses are treated. Remote users send mail to the address andy.wright@foobirds
.org. The MX record for foobirds.org directs the mail to a server—say, wren
.foobirds.org. wren maps andy.wright through the aliases database and delivers the
mail to andy. Without the mailname entry and the user database, when andy replies
to the mail his address goes out as andy@wren.foobirds.org. Not very neat! With the
mailname entry shown above, his mail goes out with the address
andy.wright@foobirds.org, which is just what the remote user expects. Nice!

However, the user database is not the only way to rewrite outbound addresses, as we will
see later. The decision to use the user database is primarily a matter of taste based on the
database that you like best and find most understandable. While using the user database
is largely a matter of choice, using the access database is often a matter of necessity, par-
ticularly in a world full of spammers.

The access Database
The access database is a powerful configuration tool for mail relay servers. It provides
much finer control over the relay process than is provided by the relay-domains file.
Unlike the relay-domains file, the access database is not a default part of the Sendmail

157

Es
se

nt
ia

l
Co

nf
ig

ur
at

io
n

PART 2

configuration. If you want to use the access database, you must add the access_db fea-
ture to your configuration. The generic-linux.mc configuration did not include support
for the access database, but the redhat.mc configuration did with the following command:

FEATURE(`access_db’)dnl

This command uses the default database type hash and the default pathname /etc/mail/
access.db. You could change these values by providing an optional argument field to the
command, as in this example:

FEATURE(`access_db’, `btree /var/mail/access’)

However, I recommend against changing these defaults. The hash type is supported on all
Linux systems and all administrators expect to find the access database in /etc/mail.
Changing these values doesn’t gain you anything and it can cause confusion. Add the
access_db feature to your configuration, but use the default arguments.

Use the access database to accept or reject mail based on the source or destination of the
mail. Each line in the database contains two fields: the address field and the action field.
The address field is the key to the database and the action field is the value returned from
the database that specifies the action that Sendmail should take in regard to mail to or
from the specified address.

The Address Field

The address field can define a user, an individual e-mail address, a source IP address, a
network address, or the name of a domain. The address field can begin with an optional
tag to tell Sendmail to limit checks for that address field to certain conditions. Three
optional tag keywords are available:

To: The action is taken only when mail is being sent to the specified address.

From: The action is taken only when mail is received from the specified address.

Connect: The action is taken only when the specified address is the address of the
system at the remote end of the SMTP connection.

The tag field is not required. It provides finer control over e-mail access, but fine control
is not always needed. In many cases, you want broader control over relaying, not finer
control, because you don’t want to accept mail from a bad source and you don’t want to
send them mail, either. If no tag field is included, the default is to treat the address as the
source of the mail. Thus, by default, the action is taken only if the mail comes from the
specified address. Add the following blacklist_recipient feature to the Sendmail con-
figuration:

FEATURE(`blacklist_recipients’)

The access Database

Chapter 6 Using Sendmail Databases158

to make Sendmail apply the rules defined in the access database to both source and des-
tination addresses.

The address in the address field can define an individual, a host, a domain, or a network:
� An individual is defined using either a full e-mail address in the form

user@host.domain or a username in the form username@.
� A host is identified by its hostname or its IP address.
� A domain is identified by a domain name.
� A network is identified by the network portion of an IP address.

Listing 6.7 illustrates the various possible address fields. The listing is a contrived
example that includes each tag type and each address type.

Listing 6.7 Address Formats for the access Database

spammer@bigisp.com REJECT

makemoneyfast@ REJECT

wespamu.com REJECT

172.18 REJECT

[172.20.12.6] REJECT

From:weselljunk.com REJECT

To:bigmoney@foolsgetrich.com REJECT

Connect:wepushporn.com REJECT

The first two lines in this access database define two individual users. These lines tell
Sendmail to reject any mail from the e-mail address spammer@bigisp.com and any mail
from a user named makemoneyfast. The third line defines an entire domain. It rejects
mail from any host in the domain wespamu.com. The fourth line defines an entire net-
work. It rejects mail from any computer whose IP address begins with network number
172.18. The fifth line defines a specific computer with the address 172.20.12.6. The
square brackets surrounding the individual address mean that this IP address is literally
in the e-mail address because it doesn’t resolve to a hostname or is flagged by Sendmail
as “might be forged.”

NOTE Addresses that don’t map to hostnames are rejected by default, so nor-
mally there would be no need to have an entry that rejects [172.20.12.6] in the
access database. But as noted above, Listing 6.7 is a contrived example meant to
show different address formats.

159

Es
se

nt
ia

l
Co

nf
ig

ur
at

io
n

PART 2

The last three entries have optional tag fields. Mail from the domain

weselljunk.com

 is
rejected but users are allowed to send mail to that domain. Mail is accepted from the user

bigmoney@foolsgetrich.com

 but local users are not allowed to reply to that address.
Any connection to the domain

wepushporn.com

 is rejected.

All of the examples in Listing 6.7 tell Sendmail to reject the mail. Rejecting the mail is only
one of the actions available through the

access

 database.

The Action Field

The second field in each entry in the

access

 database is a keyword that tells Sendmail
what action to take. Table 6.2 lists the valid keywords and the actions they cause.

NOTE

The actions in Table 6.2 are described as affecting mail “from or to” an
address. This is only true if the

blacklist_recipients

 feature is used. If that fea-
ture is not used, the actions only affect mail coming from a source address unless

the address is modified by an optional tag.

Table 6.2

access

 Database Actions

Keyword Action

DISCARD

Drops any message from or to the specified address.

OK

Absolutely accepts messages from or to the specified
address.

REJECT

Issues an error message and drops any mail from or to
the specified address.

RELAY

Relays mail coming from the specified address.

[

ERROR:

[

dsn

:

]]

code

text

Returns the specified RFC 821 response

code

 and the

text

 to the source of the mail. Optionally, the string

ERROR:

 or

ERROR:

and an

 RFC 1893 DSN

code can
be used

.

The

access

 Database

Chapter 6 Using Sendmail Databases160

The access database shown in Listing 6.8 illustrates how the various action field values
are used.

Listing 6.8 Specifying Different Actions in the access Database

wespamu.com REJECT

172.18 DISCARD

weselljunk.com 550 Junk mail is not accepted

wepushporn.com ERROR:5.7.1:550 Relaying denied to spammers

friendly.org OK

129.6 RELAY

The REJECT command causes Sendmail to return a standard error message to the source
and then discard the mail. The DISCARD command drops the mail without sending any
message back to the source. Most anti-spam authorities discourage silently discarding
mail because they feel it does not discourage the spammer. For all the spammer knows,
you received the mail, so they just keep sending more junk.

The action taken for weselljunk.com and wepushporn.com is similar to the action taken
when a REJECT action command is specified, except that in these two cases you define the
error messages sent. In both cases, mail from these domains is rejected and an error mes-
sage is returned to the sender. In the case of weselljunk.com, the error message returned
to the sender is “550 Junk mail is not accepted.” In the case of wepushporn.com, the error
message returned to the sender is “550 5.7.1 Relaying denied to spammers.” This error mes-
sage includes delivery status notification code 5.7.1. If you use a DSN code in your error
message, use a valid DSN code from RFC 1893 that is compatible with the RFC 821 error
code and the message you send. The action field for this error message starts with the key-
word ERROR:. If you use this keyword with a DSN code, you must use the format
ERROR:dsn:code, where dsn is a valid DSN code and code is a valid RFC 821 code. This
format is used as an example. It is not required. You could have just as easily specified this
error with the following entry:

wepushporn.com 550 5.7.1 Relaying denied to spammers

The OK command in Listing 6.8 causes Sendmail to accept mail from friendly.org
regardless of other conditions. For example, if mail arrives from a hostname that includes
the friendly.org domain and cannot be resolved by DNS, Sendmail accepts that mail
even though the accept_unresolvable_domains feature has not been enabled. To allow
this you must, of course, fully trust friendly.org.

The RELAY command causes Sendmail to relay mail for network 129.6 even if basic relay-
ing is not enabled on the system. Like the OK command, using the RELAY command means
that you fully trust every host on network 129.6.

161

Es
se

nt
ia

l
Co

nf
ig

ur
at

io
n

PART 2

TIP If you don’t have anything else in your database, you probably want an
entry like the one for network 129.6 for your own network. As discussed above,
Sendmail blocks all mail relaying, even mail from your clients. Use the access
database and an entry like 129.6 RELAY to enable relaying for every host attached
to your local network.

Once you build your access list, it must be converted into a database before Sendmail can
use it. Use the makemap command to do the job, as shown below.

makemap hash /etc/mail/access.db < /etc/mail/access.txt

This command reads the entries in a text file named /etc/mail/access and uses them to
build a hash type database in the file named /etc/mail/access.db.

The local-host-names and relay-domains files and the aliases and access databases
are probably the most important databases that were configured in the redhat.mc con-
figuration file. But they are not the only databases configured there. Two others,
virtusertable and mailertable, are configured in redhat.mc. Of these, virtusertable is
the most useful.

The virtusertable
The virtusertable is a database that routes mail for virtual mail domains. A virtual mail
domain is similar to a virtual host in the Apache Web server. In the same way that a Web
server can be configured to serve Web pages for host computers that do not physically
exist, the Sendmail server can be configured to provide mail service for mail domains that
do not have any existence beyond the Sendmail server itself. Creating a virtual mail
domain allows you to advertise a meaningful domain name to the outside world without
having to create all of the services necessary to support a full domain.

Defining a Virtual Domain

Each entry in the virtusertable has two fields: a virtual domain and a delivery address.
The first field contains the virtual domain name found in the e-mail address. The second
field contains the address to which the mail is really delivered. The virtual domain name
contained in the first field can be a complete address in the form of user@domain or it can
be a partial address in the form @domain. When the @domain format is used, mail to any
user in the specified domain is routed to the mail address contained in the second field.
Some sample virtusertable entries are shown in Listing 6.9.

The virtusertable

Chapter 6 Using Sendmail Databases162

Listing 6.9 Sample Virtual Domains

sales@bridal-gowns.com jill

info@patient-rights.org sara@hawk.foobirds.org

@imaginary.com david@lion.mammals.org

These three sample entries show basic virtual domains and delivery addresses. Mail
addressed to sales@bridal-gowns.com is really delivered to the jill account on the
Sendmail server. (Looks like Jill is in the business of selling bridal gowns.) Requests e-
mailed to info@patient-rights.org are forwarded to sara@hawk.foobirds.org. Mail
sent to any username in the imaginary.com domain is forwarded to david@lion
.mammals.org.

Sendmail must be configured to accept mail addressed to the virtual domains. In Listing
6.9, Sendmail must either accept bridal-gowns.com, patient-rights.org, and
imaginary.com as aliases for the local host or recognize them as virtual domains. You
know from the discussion of the local-host-names file earlier in this chapter that Send-
mail accepts any name contained in class w as an alias for the local host. From that earlier
discussion, you know how to add the three virtual domains to class w. But it is not nec-
essary to turn a virtual domain into a hostname alias to get the virtusertable working.
An alternative is to tell Sendmail that the virtual domain is a virtual domain by storing the
domain name in the {VirtHost} class.

Domain names can be added to the {VirtHost} class one at a time using the VIRTUSER_
DOMAIN macro inside the Sendmail configuration. For example, the three domains from
Listing 6.9 could be added with the following three macros:

VIRTUSER_DOMAIN(`bridal-gowns.com’)

VIRTUSER_DOMAIN(`patient-rights.org’)

VIRTUSER_DOMAIN(`imaginary.com’)

Once these lines are inserted in the macro configuration file, rerun m4 to build the new
sendmail.cf file and reload Sendmail to load the new configuration. This technique is
complex and not very flexible, so the VIRTUSER_DOMAIN macro is only suitable if you have
few virtual domains and they do not change often.

An alternate way to load the {VirtHost} class is from a file. Use the VIRTUSER_DOMAIN_
FILE macro to specify the path to the file that contains the list of virtual domains. For
example, the following command tells Sendmail to copy /etc/mail/virtual-domains to
class {VirtHost}:

VIRTUSER_DOMAIN_FILE(`/etc/mail/virtual-domains’)

163

Es
se

nt
ia

l
Co

nf
ig

ur
at

io
n

PART 2

After adding the VIRTUSER_DOMAIN_FILE command to the macro configuration file, rerun
m4 to build the new sendmail.cf file. Then add the virtual domains from Listing 6.9 to
the new virtual-domains file, one domain per line, as shown below:

[craig]$ cat /etc/mail/virtual-domains

bridal-gowns.com

patient-rights.org

imaginary.com

Whenever new virtual domains are added to the file, send Sendmail the SIGHUP signal
to make sure it reads the new values and loads them into class {VirtHost}.

TIP Both the VIRTUSER_DOMAIN and VIRTUSER_DOMAIN_FILE macros require
changing and rebuilding the sample configuration. Because we already had the
local-host-names file in our configuration, it would be easier to add the virtual
domains to that file. It works just as well because Sendmail checks both class w
and class {VirtHost} when processing virtual domains.

Defining virtusertable Delivery Addresses

The delivery address in all three sample entries in Listing 6.9 is a simple e-mail address.
It doesn’t have to be. The second field can contain a dynamic address that uses values
from the input address or an error message that Sendmail returns to the sender. Listing 6.10
shows a larger virtusertable with a variety of values in the delivery address field.

Listing 6.10 A Sample virtusertable

sales@bridal-gowns.com jill

info@patient-rights.org sara@hawk.foobirds.org

@imaginary.com david@lion.mammals.org

sales@outofbusiness.com error:nouser User address is not valid

sales@weRbroke.com error:5.1.5 Destination address invalid

@other.org %1@local.org

+*@thatplace.com %2@newplace.com

The first three entries have already been explained. Mail is accepted with a virtual domain
address and routed to a real e-mail address. The e-mail address in the second field must

The virtusertable

Chapter 6 Using Sendmail Databases164

be a real address; it cannot be another virtual domain address. For example, the following
virtusertable entries would not work as you might think:

sales@bridal-gowns.com sales@imaginary.com

@imaginary.com david@lion.mammals.org

This cannot be used to forward mail addressed to sales@bridal-gowns.com to
david@lion.mammals.com. Unlike aliases that can point to other aliases, virtual domains
cannot point to other virtual domains.

The next two lines in Listing 6.10 illustrate the use of error messages. Mail addressed to
sales@outofbusiness.com is not delivered. Instead, an error message that says “User
address is not valid” is returned to the sender. Mail sent to sales@weRbroke.com returns
the error message “Destination address invalid” to the sender.

Error messages must start with the keyword error, which is the name of a special mailer
that is built into Sendmail. Separated by a colon from the keyword error is an error con-
dition, specified either as a keyword or as a DSN code. The DSN code can be any valid
code defined in RFC 1893. The error condition keyword must be a keyword recognized
by the error mailer. A list of valid error condition keywords is found in Chapter 8,
“Understanding Rewrite Rules,” in the discussion of the error mailer.

TIP Use DSN codes. They are an Internet standard and are well defined in the
RFC. The error condition keywords are internal to Sendmail and subject to change
in future releases.

The last two lines in Listing 6.10 provide examples of how values from the input address
can be used in the outbound address. The @other.org entry provides the classic example.
The username part of the input address is passed in the %1 variable, so that %1 in the out-
bound address is replaced by the username from the input address. Using the
virtusertable shown in Listing 6.10, mail addressed to pat@other.org would be deliv-
ered to pat@local.org and mail sent to doris@other.org would be forwarded to
doris@local.org.

This is a powerful feature. Obviously, it can be used to ease the transition when you
change domain names, but that is a rare occurrence. More importantly, this feature can
be used when the products you sell are not clearly associated with your official domain
name. Assume you have an online mall that sells party products. The real name of your
domain is stuffycorporation.com, but you also own the domains funstuff.com and

165

Es
se

nt
ia

l
Co

nf
ig

ur
at

io
n

PART 2

happythings.com. The following two lines in the virtusertable would route mail to the
correct employee regardless of the domain to which it was addressed:

@funstuff.com %1@stuffycorporation.com

@happythings.com %1@stuffycorporation.com

The last line in Listing 6.10 shows that the detail value in the +detail syntax can be
passed to the outbound address as %2. Mail sent to sales+info@thatplace.com would be
delivered to info@newplace.com and mail to sales+orders@thatplace.com would be deliv-
ered to orders@newplace.com. Notice that the use of +detail syntax must be indicated
in the first field of the virtusertable entry by placing +* before the @ in the virtual
domain address. Users find e-mail addresses complex enough without using the +detail
syntax. For this reason, the syntax is rarely used unless you have a program that auto-
matically generates this syntax for the user. It is covered here for the sake of completeness,
but you will probably not use it in your configuration.

Before the virtusertable can be used by Sendmail, it must be turned into a hash data-
base using makemap. Listing 6.11 shows a successful build and test of the virtusertable
database.

Listing 6.11 Building and Testing the virtusertable

[root]# cat local-host-names

local-host-names - include all aliases for your machine here.

#

robin.foobirds.org

robin

bridal-gowns.com

patient-rights.org

imaginary.com

outofbusiness.com

weRbroke.com

other.org

thatplace.com

[root]# cat virtusertable

sales@bridal-gowns.com jill

info@patient-rights.org sara@hawk.foobirds.org

@imaginary.com david@lion.mammals.org

sales@outofbusiness.com error:nouser User address is not valid

sales@weRbroke.com error:5.1.5 Destination address invalid

@other.org %1@local.org

+*@thatplace.com %2@newplace.com

The virtusertable

Chapter 6 Using Sendmail Databases166

[root]# makemap hash virtusertable < virtusertable

[root]# sendmail -bv sales@bridal-gowns.com

sales@bridal-gowns.com... deliverable: mailer local, user jill

The virtusertable database is built with the makemap command and then tested using
sendmail with the -bv argument. The -bv argument causes the sendmail command to
process the address entered on the command line as a delivery address. The test shows
that the address sales@bridal-gown.com will be delivered via the local mailer to the
user account jill. This is just what we expected based on the first line of the
virtusertable file.

In Listing 6.11 we examine the contents of the local-host-names file and the
virtusertable source file. The local-host-names file shows that all of the virtual
domains have been added to class w. If the virtual domains are not added to class w or class
{VirtHost}, the sendmail -bv test produces the following result:

[root]# sendmail -bv sales@bridal-gowns.com

sales@bridal-gowns.com... deliverable: mailer esmtp,

 host bridal-gowns.com, user sales@bridal-gowns.com

This test shows that Sendmail believes that bridal-gowns.com is an external domain that
can be reached through the esmtp mail. If we defined the virtual domain in the local-
host-names file and forgot to provide the mapping in the virtusertable, either by not
including it in the file or not running makemap, sendmail -bv produces the following
result:

[root]# sendmail -bv info@patient-rights.org

info@patient-rights.org... deliverable: mailer local, user info

Here the virtual domain is accepted, but the address is not mapped to the external host
as we wished. A simple sendmail -bv test can tell you if the virtusertable is working
and can indicate what’s wrong if it isn’t.

There are many good reasons to use the virtusertable, particularly if you run an ISP
that provides service to a large number of customers or you run an e-business site. It is
easy to see why Red Hat includes this in their default Sendmail configuration. The last
database included in the redhat.mc file, the mailertable, is more rarely used.

The mailertable
The mailertable is rarely needed. It maps domain names to the internal mailer that
should handle mail bound for that domain. The reason that this database is rarely needed
is that Sendmail usually routes mail to the correct mailer without any help from you. You

167

Es
se

nt
ia

l
Co

nf
ig

ur
at

io
n

PART 2

only need this table to handle exceptional circumstances. An exceptional case might be a
remote server that cannot handle standard mail. For example: From the discussion of the
MAILER(smtp) command in Chapter 5, you know that Sendmail sends out SMTP mail
using the esmtp mailer and that there are several other mailers available to handle SMTP
mail in special ways. One of these is the smtp8 mailer that is designed to send eight-bit
MIME data to outdated mail servers that support MIME but cannot understand
Extended SMTP. If the domain cluelesscollege.edu used such a mail server, you could
put the following entry in the mailertable to handle the mail:

.cluelesscollege.edu smtp8:oldserver.cluelesscollege.edu

A mailertable entry contains two fields. The first field is the key. It contains the host
portion of the delivery address. It can contain either the full name of the host—e.g.,
emma.cluelesscollege.edu—or just the domain name. To specify a domain name, start
the name with a dot, as in the example above. If a domain name is used, it matches every
host in the domain.

The second field in the entry is the value returned for the key. It normally contains the
name of the mailer that should handle the mail and the name of the server to which the
mail should be sent. Optionally, a username can be specified with the server address in the
form user@server. Additionally, the mailer that is specified can be the internal error
mailer. If the error mailer is used, the value following the mailer name is an error message
instead of a server name. Here is an example of each of these alternative entries:

.cluelesscollege.edu smtp8:oldserver.cluelesscollege.edu

booby.foobirds.org esmtp:postmaster@wren.foobirds.org

dodo.foobirds.org error:nohost This host is extinct

Normally, mail passing through the mailertable is sent to the user to which it is
addressed. For example, mail to jane@emma.cluelesscollege.edu is sent through the
smtp8 mailer to the server oldserver.cluelesscollege.edu addressed to the user
jane@emma.cluelesscollege.edu. Adding a username to the second field, however,
changes this normal behavior and causes Sendmail to route the mail to an individual
instead of a mail server. For example, mail sent to any user at booby.foobirds.org
is sent instead to postmaster@wren.foobirds.org. There, presumably, the mail is han-
dled manually. Finally, mail handled by the mailertable does not have to be delivered
at all. Instead, an error message can be returned to the sender. Any mail sent to
dodo.foobirds.org returns the error message “This host is extinct” to the sender. The
error message is constructed exactly as it is for the virtusertable, using either the
Sendmail error condition keywords or the DSN error codes.

The mailertable

Chapter 6 Using Sendmail Databases168

Returning error messages is not the only thing that can be done with the mailertable
that replicates a feature of the virtusertable. It is possible to use the mailertable to
route mail for a virtual domain. For example, the following entry routes mail addressed
to anyone in the bridal-gowns.com virtual domain to the user account jill:

.bridal-gowns.com local:jill

The advantage of using the mailertable for virtual domains is that, if you are already
using the mailertable for some other purpose, you can do everything in one configura-
tion file. The disadvantage is that you cannot specify individual users in the virtual
domain, only domain names, and you don’t get the cool features of the virtusertable,
such as the ability to capture and reuse usernames with the %1 variable. Personally, I pre-
fer virtusertable.

One other interesting thing you can do with the mailertable is to use it to route all of
the mail on a client system to a central mail server. Suppose you had a Red Hat Linux cli-
ent system that you wanted to configure to send all of its mail to mailserver.foobirds
.org for processing. You could create a custom macro configuration on the client with a
define command that sets SMART_HOST to mailserver.foobirds.org, or you could
simply create a mailertable with a single entry:

 esmtp:mailserver.foobirds.org

SMART_HOST is a variable in the macro configuration file that can be set to the name of a
mail server that handles all outbound mail for the client. The mailertable entry does
essentially the same thing. The dot (.) in the first field matches all domain names. This
means that all non-local mail will be sent through the esmtp mailer to mailserver
.foobirds.org for delivery. This is exactly what we want for our imaginary client, and
it is exactly what the SMART_HOST define would have given us. But this is simpler.

Once a mailertable source file is built, it must be processed through makemap. By default,
Sendmail expects the mailertable database to be in hash database format.

The likelihood that you will need to deal with a server that cannot handle standard Inter-
net mail is remote. Time has already solved most of the incompatibilities that made
the mailertable and the wide variety of mailers necessary. The other uses of the
mailertable can be performed by other databases. So why is the mailertable database
included in the default redhat.mc configuration? It is there to provide access to the
procmail mailer. The redhat.mc file contains the command MAILER(procmail). This
command has nothing to do with the FEATURE(local_procmail) command. The
local_procmail feature causes Sendmail to use procmail as the local mailer. The
MAILER(procmail) macro makes procmail available for mail other than local mail, but

169

Es
se

nt
ia

l
Co

nf
ig

ur
at

io
n

PART 2

it does not add any rewrite rules to use procmail. To make use of the procmail mailer for
non-local mail, you need to add it to the mailertable, as in this example:

.fishorfowl.org procmail:fishorfowl.org

This example sends mail for the domain fishorfowl.org through procmail. The pri-
mary reason for using procmail is that it offers powerful tools for filtering mail. (The fil-
tering features of procmail are covered in Chapter 11.) In the case of the sample entry
shown above, we must assume that mail bound for fishorfowl.org requires special
filtering.

Of the databases defined in the default Red Hat configuration, mailertable is the one
you are least likely to use. Unless you need procmail to filter outgoing mail or you must
send mail to a server that can’t handle standard mail, you won’t create any entries in this
database.

Despite the large number of databases configured in redhat.mc, there are four more data-
bases not included in that configuration. Of these four databases, only genericstable
gets much use.

The genericstable
The genericstable database rewrites sender addresses. A genericstable entry is com-
posed of two fields: the original sender address, which acts as the key, and the rewritten
sender address, which is the value returned for the key. Like other databases, the
genericstable source file must be processed through makemap to build a hash database
before Sendmail can use it. Listing 6.12 shows a reasonable genericstable source file.

Listing 6.12 Mapping Sender Addresses with genericstable

andy andy.wright@foobirds.org

sara sara.henson@foobirds.org

kathy katheleen.mccafferty@foobirds.org

Given the genericstable shown in Listing 6.12, mail sent from the user account andy is
sent out with a sender address of andy.wright@foobirds.org. If you remember the dis-
cussion of the user database earlier in the chapter, this probably sounds familiar. Entries
in the genericstable perform exactly the same function as the mailname entries in the
user database—both types of entries rewrite sender addresses.

The genericstable

Chapter 6 Using Sendmail Databases170

The genericstable database has one small feature not found in the user database. It can
accept +detail syntax in the original address and pass the detail part of the address as
variable %1 to the output address, in the following manner:

sales+*@insects.org %1@sales.insects.org

Of course, the +detail syntax is only important if you actually use it, and it is rarely used.

If a domain name is included in the first field of a genericstable entry, that domain name
must be defined in class G. Values can be stored in class G using the GENERICS_DOMAIN macro
or they can be loaded into class G from the file identified by the GENERICS_DOMAIN_FILE.
For example, the following command stores the domain name insects.org in class G:

GENERICS_DOMAIN(`insects.org’)

While the next command loads class G from a file named /etc/mail/generics-domains:

GENERICS_DOMAIN_FILE(`/etc/mail/generics-domains’)

The domain names in class G normally require an exact match. Using the GENERICS_
DOMAIN(`insects.org’) macro shown above, user@insects.org would match the
requirements set by class G but user@fly.insects.org would not match, even though
fly.insects.org is part of the insects.org domain. To get Sendmail to match all hosts
and subdomains within a domain defined in class G, use FEATURE(`generics_entire_
domain’).

The similarities between the user database and the genericstable mean that you can use
either one of these databases to rewrite sender addresses. The syntax of genericstable
entries is a little simpler because genericstable does not use keywords like mailname.
But the genericstable only handles sender addresses. Recipient addresses must be han-
dled in a separate database, either /etc/aliases or the user database. Some administra-
tors like the simplicity of the genericstable database; others prefer the user database so
they can have everything in one file. It is primarily a matter of taste. Both files work in the
same way.

I generally prefer to use aliases for recipient addresses and the genericstable for
sender addresses because that’s what I’m used to. I have several configurations already set
up this way. However, the redhat.mc file does not have genericstable support in the
configuration. To use genericstable with that configuration, I must add the
FEATURE(`genericstable’) command to the macro configuration and rerun m4 to build
a new sendmail.cf file. In the case of the redhat.mc configuration, it is probably just eas-
ier to use the user database.

Little-Used Databases 171

Es
se

nt
ia

l
Co

nf
ig

ur
at

io
n

PART 2

The genericstable is the only database that I use that Red Hat did not include in the
configuration. The other three databases that Red Hat did not configure are very
seldom used.

Little-Used Databases
The three remaining databases have very little use in current configurations because they deal
with outdated networks, outmoded syntax, or rare situations. These three databases are:

domaintable The domaintable is intended to ease the transition from an old
domain name to a new domain name by translating the old name to the new name
on all mail. You are rarely in the situation where you must change domain names,
but if you are this database can help. The old domain name is the key and the new
domain name is the value returned for the key. For example, assume we changed
the domain name for the sales division from sales.business.com to marketing
.business.com. We could put the following line in the domaintable to handle the
address mapping:

sales.business.com marketing.business.com

The domaintable source file must be converted to a hash type database with
makemap before Sendmail can use it. Also, support for the domaintable must be
added to the configuration with the FEATURE(`domaintable’) command before
Sendmail will even attempt to use the file.

uucpdomain The uucpdomain database converts e-mail addresses from the .UUCP
pseudo-domain into old-fashioned UUCP bang addresses. The key to the database is
the hostname from the .UUCP pseudo-domain. The value returned for the key is the
bang address. It is very unlikely that you will use this database. Most sites no longer
use UUCP for mail, and those that do don’t use bang addresses. Bang addresses are
almost never used anymore because current UUCP mailers handle e-mail addresses
that look just like Internet addresses.

bitdomain BITNET is an IBM-mainframe-to-IBM-mainframe network that was
created at a time when IBM did not offer TCP/IP protocols for their mainframes. The
bitdomain database converts BITNET hostnames to legal Internet hostnames. BIT-
NET is outdated. You will not use it at your site.

Well, that’s finally it: almost a dozen different files and databases, more databases than
you will ever want or use. And most of them are built using the makemap command.

Chapter 6 Using Sendmail Databases172

The makemap Command
The makemap command is included with Sendmail as a tool to help you build databases.
Of all the true databases discussed in this chapter, only one, the aliases database—
which is built by the newaliases command—is not built by the makemap command.

The makemap command reads the standard input and writes out a database according to
the instructions you provide on the command line. The command line accepts three argu-
ments: the command options, the database type, and the name of the output database file.

The name of the file is obvious. It must match the name of the database that is configured
in Sendmail. One minor point: It is not necessary to include the filename extension, either in
the Sendmail configuration or on the makemap command line. If you don’t provide a file-
name extension, makemap will apply the correct extension to the filename based on the
database type. Since Sendmail knows the database type from its configuration, it will
search for a file with the correct extension. For example, we used this command to build
the virtusertable:

[root]# makemap hash virtusertable < virtusertable

A simple reading of this command might imply that we read and wrote a file named
virtusertable. In fact, we read a file named virtusertable and wrote a file
named virtusertable.db, because makemap adds the correct.db extension to the
output filename for hash type databases.

The type field of the makemap command can accept many different database types to sup-
port the wide variety of different databases used on different computers. On Linux sys-
tems, however, the database type will be either hash or btree, the two database types
provided by the NEWDB compiler option. The type selected must match the database type
defined for the specific database in the Sendmail configuration. All of the databases built
by makemap, except for the user database, default to hash type databases in the Sendmail
configuration. The user database defaults to btree.

In this chapter, none of the makemap examples included command line options because
they are not generally required. Table 6.3 lists all available makemap command line
options.

173

Es
se

nt
ia

l
Co

nf
ig

ur
at

io
n

PART 2

The –d option forces makemap to accept duplicate keys. Normally, duplicate keys produce
an error. Don’t use duplicate keys. The key is the value looked up in the database. Dupli-
cates can cause unpredictable results and they are not supported in most types of
databases.

Also, don’t add null characters to the end of keys. This was necessary for some systems,
like the old SunOS system, but it is not necessary for Linux. You don’t need the –N option
on a Linux system.

Normally, e-mail addresses are case-insensitive. Craig.Hunt@foobirds.org is the same
as craig.hunt@foobirds.org. makemap eliminates case by converting everything to low-
ercase characters. The –f option overrides the standard behavior and forces makemap to
maintain case. Because e-mail addresses are supposed to be case insensitive, maintaining
case is probably not a good idea.

The –o and –r options are related. Normally, makemap reads the source file and replaces
the old database with an entirely new file. The –o option tells makemap to save the old
database and add the entries from the source file to it. Adding entries to the database
increases the possibility of duplicate keys. The –r option tells makemap that if an entry
from the source file duplicates a key already in the database, it should replace the data-
base entry with the new entry. The –r option only make sense when the –o option is used.

The –v option produces verbose output. It lets you watch the progress of the makemap
command. Listing 6.13 shows the result of the –v option.

Table 6.3 makemap Command Line Options

Option Purpose

–d Permit duplicate keys in the database.

–f Allow uppercase characters in the database keys.

–N Append a null character to the end of each key.

–o Append the new entries to an existing database.

–r Overwrite duplicate keys.

–v Run in verbose mode.

The makeup Command

Chapter 6 Using Sendmail Databases174

Listing 6.13 Using –v with the makemap Command

[root]# makemap -v hash virtusertable < virtusertable

key=`info@patient-rights.org', val=`sara@hawk.foobirds.org'

key=`@imaginary.com', val=`david@lion.mammals.org'

key=`sales@outofbusiness.com', val=`error:nouser User address is not valid'

key=`sales@weRbroke.com', val=`error:5.1.5 Destination address invalid'

key=`@other.org', val=`%1@local.org'

key=`+*@thatplace.com', val=`%2@newplace.com'

makemap is an important tool needed to build most Sendmail databases. It is simple to use,
but you need to understand how it is used and remember to use it every time a database
is modified. Whenever you edit a database source file, rerun makemap and then run a
simple test to make sure Sendmail is properly using the new database.

In Sum
At most sites, the Sendmail macro configuration file and the sendmail.cf file are built
just once. The bulk of the configuration, and particularly the bulk of the ongoing config-
uration maintenance, takes place in the Sendmail databases. The Sendmail databases are
a powerful tool for bypassing the complexity of the Sendmail configuration files. There
is no need to add a RELAY_DOMAIN macro and rebuild the Sendmail configuration when a
line added to the relay-domains file does the same job. There is no need to set SMART_
HOST and rebuild the Sendmail configuration when a single line in the mailertable will
do the same thing. The databases simplify Sendmail configuration.

Unfortunately, like everything else about Sendmail, the databases themselves have too
much complexity. There are too many ways to do the same thing. The user database rep-
licates functions done by /etc/aliases and the genericstable. The mailertable can be
made to do the same thing as the virtusertable. Entries in class w can have the same
effect as entries in class {VirtHost} and there are a couple of different ways to get entries
into both of these classes. In order to troubleshoot configurations created by others, you
need to understand the role of every database and you need to understand the fact that
these overlapping functions exist. But in your own configuration, you need to eliminate
this overlap by focusing on a subset of databases and by using those databases for specific
purposes. Here are a few suggestions, in no particular order, to help you choose the cor-
rect database for the job.

� Define all of your server’s hostname aliases in the local-host-names file.
� Use the aliases database to process recipient addresses. It is available on every sys-

tem and is already configured.

In Sum 175

Es
se

nt
ia

l
Co

nf
ig

ur
at

io
n

PART 2

� Use either the genericstable or the user database to process sender addresses, but
do not use both. If you use the user database, don’t use maildrop commands to rep-
licate recipient names already covered by the aliases database.

� Use the access database to control mail delivery and relaying. It provides finer con-
trol than the relay-domains file. Only use relay-domains where it is adequate to
the task, such as on small departmental systems that don’t need the full range of ser-
vices provided by the access database.

� Use the virtusertable only if you truly need to support virtual domains. This data-
base probably only applies to e-business sites and ISPs.

� Use the mailertable only if you use procmail for non-local mail. Most other uses
of the mailertable are less than optimal solutions for real problems. For example,
upgrading the external system to accept Extended SMTP is a better solution than
using the mailertable to force mail through smtp8.

� Solve DNS transition problems with proper DNS configuration. Avoid using
domaintable as anything other than a short-term fix.

� Don’t use the trusted-users file, the bitdomain database, or the uucpdomain
database.

The Sendmail databases are the final topic in Part 2, “Essential Configuration,” and they
are the most frequently used tools of basic configuration. The next chapter, “The
sendmail.cf File,” begins Part 3, “Advanced Configuration.” Considering the complex-
ity we have already seen, and the advanced nature of the skills needed to master this com-
plexity, it might be hard to believe things could get more advanced. But they can. In the
next part of this book, we drill deeper into the configuration and look at ways we can cus-
tomize Sendmail at this deep level.

L
inux L

ibrary
 P

art 3
 A

d
van

ced
 C

o
n

fig
u

ratio
n

Part 3

Advanced Configuration

Featuring:

� The structure of the sendmail.cf file and the commands used to build it

� How values are set for sendmail.cf variables and classes

� How databases and mailers are defined in sendmail.cf

� Editing and testing sendmail.cf

� Special rulesets and when they are invoked

� All of the rulesets used by Sendmail and what they do

� Pattern matching in rewrite rules

� Transforming e-mail addresses with rewrite rules

� What address masquerading is and when it is used

� Rewriting the user portion of addresses

� Creating your own rewrite rules

� Building a relay client configuration

7
The sendmail.cf File

You use the m4 commands covered in the previous part of this book to create the
Sendmail configuration. The file you build to hold those commands is the macro config-
uration file. However, Sendmail does not use the macro configuration file that you create.
That file must be processed by m4 to build Sendmail’s runtime configuration. The file that
defines the Sendmail runtime configuration is sendmail.cf.

The sendmail.cf file is a large complex file divided into seven different sections. All
Linux sendmail.cf files have the same structure, because they are all created from the m4
macros that come in the Sendmail distribution. The section labels from the sendmail.cf
files provide an overview of the structure and the functions of this file. The sections are:

Local Info This section defines the configuration information specific to the local host.

Options This section sets the options that define the Sendmail environment.

Message Precedence This section defines the Sendmail message precedence values.

Trusted Users This section defines the users who are allowed to change the sender
address when they are sending mail.

Format of Headers This section defines the headers that Sendmail inserts into mail.

Rewriting Rules This section holds the commands that rewrite e-mail addresses
from user mail programs into the form required by the mail delivery programs.

Mailer Definitions This section defines the programs used to deliver the mail. The
rewrite rules used by the mailers are also defined in this section.

Chapter 7 The sendmail.cf File180

Each section is examined in detail in this chapter. It is unlikely that you will directly mod-
ify the sendmail.cf file except for the smallest of changes. Changing the macro config-
uration and rebuilding a new sendmail.cf is the preferred technique for making
configuration changes. Yet understanding the structure of the sendmail.cf file, and the
syntax and purpose of the configuration commands it contains, is an essential skill for
every Sendmail administrator. Understanding the sendmail.cf file helps you better
understand the purpose of the macro configuration commands and lets you observe their
impact on the underlying configuration. More importantly, the Sendmail test tools run
with the sendmail.cf configuration file. To effectively monitor a test, you need to under-
stand the test output, which is often based on the structure of the sendmail.cf file.

Our analysis of the sendmail.cf file begins at the beginning with the first section, Local
Info, and moves section by section through the entire file. The Local Info section contains
the widest variety of configuration statements, and it is the part of the sendmail.cf file
that is most often modified by system administrators.

The Local Info Section
The first section in the sendmail.cf file contains information that is specific to the local
host: information such as the hostname, the names of any mail relay hosts, and the mail
domain name. It also contains information specific to your copy of Sendmail, such as the
name that Sendmail uses to identify itself when it returns error messages, and the version
number of the Sendmail distribution you’re running. Additionally, the Local Info section
contains the definitions of the optional databases used by Sendmail. This collection of
diverse information is gathered together at the beginning of the sendmail.cf file to make
it easier to locate in case manual editing is required.

The Local Info section of the sendmail.cf file generated for Sendmail 8.11 from the
redhat.mc file is shown in Listing 7.1. It has been edited to reduce the number of
unneeded lines. It should be largely identical to the Local Info section on your Linux sys-
tem, but it won’t be exactly the same. Don’t worry about the differences; they are all
related to comments and the number of blank lines. The commands are unchanged.

Listing 7.1 The Full Local Info Section

##################

local info

##################

Cwlocalhost

file containing names of hosts for which we receive email

The Local Info Section 181

A
dv

an
ce

d
Co

nf
ig

ur
at

io
n

PART 3

Fw/etc/mail/local-host-names

my official domain name

#Dj$w.Foo.COM

CP.

"Smart" relay host (may be null)

DS

operators that cannot be in local usernames

CO @ % !

a class with just a dot (for identifying canonical names)

C..

a class with just a left bracket (for identifying domain literals)

C[[

access_db acceptance class

C{Accept}OK RELAY

Hosts that will permit relaying ($=R)

FR-o /etc/mail/relay-domains

arithmetic map

Karith arith

possible values for tls_connect in access map

C{tls}VERIFY ENCR

who I send unqualified names to (null means deliver locally)

DR

who gets all local email traffic

DH

dequoting map

Kdequote dequote

class E: names that should be exposed as from this host, even

 if we masquerade

class L: names that should be delivered locally

class M: domains that should be converted to $M

class N: domains that should not be converted to $M

#CL root

who I masquerade as (null for no masquerading) (see also $=M)

DM

my name for error messages

DnMAILER-DAEMON

Mailer table (overriding domains)

Kmailertable hash -o /etc/mail/mailertable

Chapter 7 The sendmail.cf File182

Virtual user table (maps incoming users)

Kvirtuser hash -o /etc/mail/virtusertable

CPREDIRECT

Access list database (for spam stomping)

Kaccess hash /etc/mail/access

Configuration version number

DZ8.11.0

Blank lines are ignored. Lines that begin with # are comments. Comments are invaluable
aids to understanding the arcane sendmail.cf file. Lines that begin with an uppercase
character are configuration commands. Listing 7.1 contains the commands D, C, F, and K.

The local information is defined by D commands that define macro variables, C com-
mands that define class variables, F commands that load class values from files, and K
commands that define databases of information. The sendmail.cf command syntax is
very terse. The commands are only one character long and many variables also have one-
character names. Add to this the fact that the value assigned to the variable is crammed
right next to the variable name and you have configuration commands that are terse and
hard to read. Let’s take a closer look at the D, C, F, and K commands so that we can deci-
pher what is happening in the Local Info section.

The Define Macro Command

The define macro command (D) defines a variable and assigns a value to it. Once the vari-
able is defined, the stored value is used by other sendmail.cf commands and directly by
Sendmail itself. Variables provide the flexibility that permits the same basic sendmail.cf
configurations to run on many different systems, simply by modifying a few system-
specific macro variables.

Traditional variable names are a single ASCII character, with user-created macro vari-
ables using uppercase letters as names and Sendmail internal macros using lowercase let-
ters and special characters as names. These rules have changed. Now Sendmail predefines
the meaning of several variables with uppercase names, and in Sendmail version 8 vari-
able names are not restricted to a single character. Long variable names are enclosed in
curly braces—e.g., {VirtHost} is a valid variable name. However, a quick check of the
sendmail.cf delivered with the Red Hat RPM shows that not a single long variable name
was used with a define macro command. Listing 7.2 shows a grep that displays every D
command contained in the entire sendmail.cf file.

The Local Info Section 183

A
dv

an
ce

d
Co

nf
ig

ur
at

io
n

PART 3

Listing 7.2 The Define Macro Commands Found in sendmail.cf

[craig]$ grep '^D' /etc/sendmail.cf

DS

DR

DH

DM

DnMAILER-DAEMON

DZ8.11.0

Listing 7.2 shows some interesting things. First, most of the macro variables are not set.
The first three D commands set values for the S, R, and H variables. Each of these variables
identifies an external mail relay server.

� The S variable stores the name of the relay host defined by the SMART_HOST variable
in the m4 macro configuration. The SMART_HOST relay is a central mail server that
handles all outgoing mail.

� The R variable holds the name of a relay host that handles local mail. The LOCAL_
RELAY define command in the m4 macro configuration sets the value for R. When R
is set, the local computer does not handle its own local mail. Mail addressed from
local user craig to local user kathy is not handle by the local mailer; it is relayed
through the server specified by the R variable.

� The H variable stores the mail server name defined by the MAIL_HUB command in the
m4 macro configuration. The MAIL_HUB server handles all local mail in which the
recipient address includes the name of the local host. Therefore, while mail
addressed to kathy might be handled by the LOCAL_RELAY, mail from any user logged
into chicken.foobirds.org that was addressed to kathy@chicken.foobirds.org
would be relayed through the MAIL_HUB server.

It is easy to see why these variables are not set on our sample system. These external relays
are used only when the local system does not handle its own e-mail—for example, in a cli-
ent configuration. So far we have been creating server configurations.

The fourth variable that is not set is M. It has nothing to do with relaying. The M variable
holds the masquerade value. We will play with variable M later in this chapter and hear
much more about masquerading in Chapter 9, “Special m4 Configurations.”

Only two of the variables in Listing 7.2 have a value assigned to them. The n variable
holds the sender name that Sendmail uses to send generated error messages. This value
can be set in the macro configuration with the confMAILER_NAME option. But if it is
not set, it defaults to MAILER-DAEMON, which is exactly what happened in our sample
configuration.

Chapter 7 The sendmail.cf File184

The Z variable is set to 8.11.0 in Listing 7.2. By default, Z is set to the Sendmail version
number. The default can be overridden in the macro configuration file by setting a value
with the confCF_VERSION option, but it rarely is. About the only time anyone ever
changes the Z variable is when they manually update the sendmail.cf file and they want
to signal the update to others. People who edit the sendmail.cf file directly will place
detailed comments right next to the changes they make, modify the Z variable, and place
comments explaining the change near the Z variable declaration. For example, assuming
you edited the sendmail.cf file to set a value for M, in addition to placing comments next
to the DM command you might make the following modifications to notify others of the
change:

Configuration version number

DZ8.11.0/20001004

Notes on locally made configuration changes

20001004 - set the M macro variable to foobirds.org.

Change made by Craig Hunt x4096.

Again, changes like this are rarely made. Most system administrators maintain the Send-
mail configuration through the macro configuration file, not through directly editing the
sendmail.cf file. The macro configuration file provides a hook into your revision control
system with the VERSIONID macro, making it unnecessary to modify confCF_VERSION to
set Z when the macro configuration file is used.

The last two D commands clearly show the run-together nature of sendmail.cf configu-
ration commands. Look at the command

DnMAILER-DAEMON

D is the command. n is the name of the macro variable. And MAILER-DAEMON is the value
being assigned to the variable. The uninitiated find these run-together commands hard to
read. When macro variables reference other macro variables, they become even more dif-
ficult to read.

To use the value stored in a variable, reference it as $x, where x is the variable name. Vari-
able references can be used in pattern matching—for example, to test if the username in
the sender address was equal to $n. They can also be used to assign values to other
variables.

NOTE Macro variables are normally expanded when the sendmail.cf file is
read. A special syntax, $&x, is used to expand macro variables when they are ref-
erenced. The $&x syntax is used only with certain internal variables that change
at runtime.

The Local Info Section 185

A
dv

an
ce

d
Co

nf
ig

ur
at

io
n

PART 3

None of the define macro commands shown in Listing 7.2 use other macro variables to
assign values. In fact, the only D command in the sendmail.cf file on our sample Red Hat
system that does use another variable is commented out, as the following grep command
shows:

[craig]$ grep '^#D' /etc/sendmail.cf

#Dj$w.Foo.COM

If this code were not commented out, it would define the value for macro variable j. It
defines j as containing the value of variable w ($w), plus the literal string .Foo.COM. w con-
tains your host’s unqualified hostname. j is supposed to contain the fully qualified
domain name of your host—i.e., hostname plus domain name. Clearly, if you need to
define a value for j, you must remove the # that turns this line into a comment and change
.Foo.COM into your real domain name. Luckily you never need to manually set j on a
Linux system. Running under Linux, Sendmail can automatically determine the correct
value for j. This line is included in the configuration only as an aid to administrators of
some outdated systems that required manual configuration.

Like j, the values of most internal macro variables are not set in the sendmail.cf file;
they are assigned internally by Sendmail. Appendix C, “Sendmail Variables, Options, and
Flags,” provides a complete listing of all of the predefined variables used by Sendmail.

Using a variable to set a variable is not the only variation of the D command syntax that
we didn’t see in the sendmail.cf file from our sample Red Hat system. The D command
also has a conditional syntax that our sample file did not contain.

Using Conditionals

One variation of the D command syntax that deserves special comment is the conditional
format. A D command with the conditional syntax is shown below:

Dqg?x ($x)$.

The D is the define macro command; the q is the variable being defined; and the $g says
to assign q the value found in g. The $?x ($x)$. is the conditional statement The $?x is
a conditional test. It checks whether or not x has a value set. If x has been set, the value
defined by ($x) is assigned to q. The $. ends the conditional.

Given this, the assignment of q is interpreted as follows:
� q is assigned the value of g;
� if x is set, q is also assigned a literal blank, a literal left parenthesis, the value of x,

and a literal right parenthesis.

Chapter 7 The sendmail.cf File186

So if g contains kathy@foobirds.org and x contains Kathleen McCafferty, q will contain

kathy@foobirds.org (Kathleen McCafferty)

But if g contains sara@hawk.foobirds.org and x is empty, q will contain only

sara@hawk.foobirds.org.

$? is the test—the “if” of the conditional. $. is the “endif.” The conditional also has
“else,” which is $|. The full syntax of the conditional is

$?xxxx value1 $$$$|||| value2 $.

which is interpreted as

if ($?) x is set;

use value1;

else ($|);

use value2;

end if ($.).

This same conditional syntax can be used in other sendmail.cf configuration com-
mands. We didn’t see it in the D commands from our sample system, but we will see it later
in the configuration file when we look at the H command.

All of the D commands shown in Listing 7.2 are found in the Local Info section of the
sendmail.cf file. Another command that is almost exclusively used in the Local Info sec-
tion is the C command.

The Define Class Command

A C command defines a Sendmail class. A class is an array of values. Classes are used for
anything with multiple values that are handled in the same way, such as multiple names
for the local host or a list of domain names for which mail will be relayed. The C com-
mand can define the values for a class variable on a single line or on multiple lines. For
example, the following line:

C{Accept}OK RELAY

performs the same function as these two lines:

C{Accept}OK

C{Accept}RELAY

The syntax of the C command is similar to that of the D command. The first character is
the command C. It is followed by the name of the class variable, which in turn is followed

The Local Info Section 187

A
dv

an
ce

d
Co

nf
ig

ur
at

io
n

PART 3

by the value being assigned to the variable. If multiple values are assigned on a single line,
they are separated by white space.

Like the Sendmail variables assigned by the D command, class variables traditionally had
single character names, with user-created classes using uppercase letters for names and
Sendmail internal classes using lowercase letters for names. Now, classes can use long
names by enclosing the name inside curly braces—e.g., {Accept}. Listing 7.3 uses a grep
command to show all of the C commands contained in the sendmail.cf file delivered
with the Red Hat RPM:

Listing 7.3 The Define Class Commands Found in sendmail.cf

[craig]$ grep '^C' /etc/sendmail.cf

Cwlocalhost

CP.

CO @ % !

C..

C[[

C{Accept}OK RELAY

C{tls}VERIFY ENCR

CPREDIRECT

C{src}E F H U

The first C command in Listing 7.3 adds the value localhost to class w. From the discus-
sion of the local-host-names file in the previous chapter, you know that class w holds all
of the computer’s hostname aliases. In that chapter we used sendmail –bt to view the
contents of class w, so you also know that class w contains much more than just the word
localhost. Unlike a D command, which overwrites the contents of a variable to set the
variable to a specific value, C commands are additive. This C command doesn’t replace
everything in class w with the word localhost; it adds the word localhost to whatever
else is there.

The class variable P is a good example of the additive nature of C commands. The second
C command in Listing 7.3 stores the value . (dot) in class variable P. Later, in the second-
to-last line of Listing 7.3, another C command stores the value REDIRECT in the same class
variable P. After the latter command, P contains both a . (dot) and the word REDIRECT,
as this sendmail –bt test shows:

[root]# sendmail -bt

ADDRESS TEST MODE (ruleset 3 NOT automatically invoked)

Enter <ruleset> <address>

> $=P

Chapter 7 The sendmail.cf File188

.

REDIRECT

> ^D

P holds the list of pseudo-domains. As explained earlier, pseudo-domains are not real
domains found in the DNS; they are values used to request special processing from Send-
mail. The dot is always defined as part of this class. The value REDIRECT is added because
the redhat.mc file that built this sendmail.cf file contained the FEATURE(redirect)
command. The CPREDIRECT command in this sendmail.cf file clearly demonstrates the
direct impact that the macro configuration you build has on the Sendmail configuration.

The third C command assigns the values @, %, and ! to the class variable O. Class O holds
tokens that are used to divide the parts of an e-mail address. These three values are char-
acters that cannot be used in local usernames, because they have special meanings in e-
mail addresses. Everyone is familiar with the role that @ plays in an address. Those who
are familiar with UUCP known that ! is used in traditional UUCP bang addressing. And
the % character is used in old systems as a way to forward an e-mail address to a remote
system for processing. These are default values set by Sendmail that do not need to be
modified.

The next two C commands, C.. and C[[, are unique for two reasons. First, they demon-
strate that variables can be given names that are special characters. Here we are assigning
values to the class variable . and to the class variable [. Secondly, and more surprisingly,
the commands assign these variables a value that exactly matches the name of the vari-
able. Thus variable . is assigned the value . and variable [is assigned the value [.
Strange! We know from the discussion of the D command that variables can be used in
pattern matching. Class variables are only used in pattern matching. So why create a variable
for . and [when a pattern match could just as easily compare against the literal value?
There are reasons.

Special symbols are used when referring to classes in a pattern. Above, we saw that the
value in an individual variable is referred to as $x, where x is the variable name. The $=
symbol matches any value in a class, and the $~ symbol matches any value not in a class.
Thus $=P means any value in class P and $~[means anything that is not in class [.

One reason to define classes named . and [is that classes are expandable. The characters
. and [have special meaning in addresses. The . character separates the parts of a domain
name. The [character encloses raw IP addresses that are being used in place of hostnames
in e-mail addresses. Classes allow Sendmail to compare a value against a list of values,
instead of against a single value. This means that if the range of possible characters that
can be used to separate domain names ever increases or the range of characters used to

The Local Info Section 189

A
dv

an
ce

d
Co

nf
ig

ur
at

io
n

PART 3

enclose special addresses ever changes, values could be added to the . and [classes to han-
dle these changes without changing the entire sendmail.cf file.

The second advantage of a class over a literal is that the $~ syntax allows Sendmail to
check for a “not equal” condition. A grep of the sample sendmail.cf in Listing 7.4
shows that, at least in the case of the [class, this capability is important.

Listing 7.4 Checking How Classes Are Used

[craig]$ grep '\$\=\.' /etc/sendmail.cf

[craig]$ grep '\$\=\[' /etc/sendmail.cf

[craig]$ grep '\$\~\.' /etc/sendmail.cf

[craig]$ grep '\$\~\[' /etc/sendmail.cf

R< $~[: $* > $* $>MailerToTriple < $1 : $2 > $3 check -- resolved?

R$* <$~[: $* > $* $>MailerToTriple < $2 : $3 > $4 check -- resolved?

R< $~[: $* > $* $>MailerToTriple < $1 : $2 > $3 "." found?

Listing 7.4 shows some interesting things. When used in the configuration, class variable
. must be referenced as either $=. or $~., and class variable [must be referenced as either
$=[or $~[. Using grep to search for these values shows how these class variables are used.
First off, class . is not used at all, and there are no tests using $=[to see if a value exists
in the [class variable. However, $~[is used to select addresses that do not start with a
[. This is not the time to discuss the exact details of the pattern matching. Pattern match-
ing is covered in detail in Chapter 8. The thing to understand here is that even inexplicable
commands such as C[[might have a valid use.

NOTE Remember that your system might be different. These same class
names may be used for other purposes on your system. This only shows how
they are used in our example sendmail.cf. Carefully read the comments in your
sendmail.cf file for guidance as to how classes and variables are used in your
configuration.

The next two lines in Listing 7.3 are:

C{Accept}OK RELAY

C{tls}VERIFY ENCR

These two C commands both use long class variable names, {Accept} and {tls}, and
both define keywords used to configure some aspect of Sendmail. You recognize the OK
and RELAY keywords from the discussion of the access database in Chapter 6, “Using
Sendmail Databases.” You’ll see the VERIFY and ENCR keywords in the discussion of
STARTTLS in Chapter 12, “Sendmail Security.”

Chapter 7 The sendmail.cf File190

The last line in Listing 7.3 is C{src}E F H U. It does essentially the same thing as the two
commands just described above. It defines a long class variable name, {src}, and it
assigns a list of values to that class that are used in the Sendmail syntax. In this case, the
values are tags internally assigned by Sendmail to addresses to aid it in processing the var-
ious types of addresses that can be found in the Sendmail databases. What is unique about
this C command is that it occurs outside of the Local Info section. All of the other C com-
mands are found in Local Info. This illustrates the fact that, while most variables are
declared in the Local Info section, they can be declared anywhere in the sendmail.cf file
as long as they are declared before they are used. This C command occurs immediately
before the ruleset that uses it. On the other hand, all active F commands in our sample
sendmail.cf file are located in the Local Info section.

Loading a Class Variable from a File

The F command loads values into a class variable from a file. The Local Info section from
the sample sendmail.cf file contains only two F commands, which are shown in Listing 7.5.

Listing 7.5 Commands that Load Class Variables from a File

[root]# grep '^F' /etc/sendmail.cf

Fw/etc/mail/local-host-names

FR-o /etc/mail/relay-domains

The first F command is the simplest form of the command syntax—the F command fol-
lowed by the variable name, in this case w, and the pathname of the file that is to be loaded
into the variable, which in this case is /etc/mail/local-host-names. This simple form
of the F command is the most commonly used, but it is not the only format. The F com-
mand syntax accepts an optional switch value before the pathname of the file and an
optional scanf pattern after the file pathname.

By default, Sendmail reads data from the file using the scanf pattern %s, which means it
reads the first white space–delimited string from each line in the file. A different scanf
pattern can be provided on the F command line if Sendmail is compiled with the SCANF
compiler option. We saw from the sendmail -bt -d0.4 command in Listing 6.1 in Chap-
ter 6 that the copy of Sendmail delivered with the Red Hat RPM does use the SCANF com-
piler option. Therefore, we could enter a command in the following format if we needed to:

Fw/etc/mail/local-host-names %.25s

This command reads data from local-host-names into class w but it reads no more than
25 characters from a string even if a whitespace character has not been encountered. Why
would you do this? You wouldn’t. This is just an example of the possible syntax. I never
use a scanf pattern with the F command, and neither should you. You should not expect

The Local Info Section 191

A
dv

an
ce

d
Co

nf
ig

ur
at

io
n

PART 3

Sendmail to clean up a file as it is reading it. You should present Sendmail with files that
are already clean and properly formatted. Doing otherwise confuses the other system
administrators who might be called in to maintain your system and introduces the pos-
sibility that you will create a bad scanf pattern that can be exploited by an intruder in a
buffer-overflow attack.

NOTE scanf is a C language library routine. C programming and the details of
scanf are beyond the scope of this book. For more information, see The C Pro-
gramming Language by Brian Kernighan and Dennis Ritchie (Prentice Hall, 1988).

The second F command in Listing 7.5 loads class R from the file /etc/mail/relay-
domains. As you’ll recall from Chapter 6, class R holds the names of domains for which
Sendmail will relay mail and the relay-domains file is the traditional way to load values
into class R. The interesting thing about this F command is that the –o switch is used
before the pathname. The –o switch tells Sendmail that the relay-domains file is
optional. Notice that the local-host-names file used in the first F command does not
have the –o switch, and therefore is mandatory. That’s why we got the error “cannot open
‘/etc/mail/local-host-names’” in Listing 4.2 of Chapter 4 (“Creating a Basic Sendmail
Configuration”) when we tried to use the generic-linux.cf configuration file without
a local-host-names file, but we got no complaint at all about the fact that we didn’t have a
relay-domains file. The –o switch is very useful because it creates a more forgiving con-
figuration that works in a wide variety of situations.

While the –o switch is the only switch available with the F command, the K command, our
next topic, has several possible switch values. The K command is the most complex com-
mand used in the Local Info section. It needs to be. Unlike the F command that works
with simple flat files, the K command deals with true database files.

The Keyed File Command

The last of the four commands from the Local Info section is the K command, which
defines a Sendmail database’s characteristics for the sendmail.cf file. The K command
has the most complex syntax of any command in the Local Info section. The basic format
of a K command is:

K name type switches path

The various pieces of the command are separated by white space, although the white
space between K and name is optional and rarely used. K, of course, is the command. name
is the name used inside sendmail.cf to reference this database. The name can be any text
string you want, but the name should be something logical, such as the external filename
of the database.

Chapter 7 The sendmail.cf File192

The K Command Type Argument

type is the database type. Several database types were discussed in Chapter 6 in relation-
ship to which compiler options add support for which database types. The long list of
database types discussed in Chapter 6, however, is only part of the story. Sendmail has
several internal database types. Table 7.1 lists all of the valid type values.

Table 7.1 Valid K Command Type Values

Type Description

arith An internal routine for doing arithmetic.

btree A type added by the NEWDB compiler option.

bestmx An internal routine that retrieves the MX record for a host.

dbm A type added by the NDBM compiler option.

dequote An internal routine that removes quotation marks.

dns An internal routine that retrieves the address record for a host name.

hash A type added by the NEWDB compiler option.

hesiod A database located on a hesiod server.

host An internal table for hostnames.

implicit The type used for the aliases database file.

ldap A database located on an LDAP server.

netinfo A database located on a NeXT netinfo server.

nis A database located on an NIS server.

nisplus A database located on an NIS+ server.

null An internal routine that returns “Not found” for all lookups.

ph A database located on a CCSO Nameserver.

program Passes the query to an external program.

The Local Info Section 193

A
dv

an
ce

d
Co

nf
ig

ur
at

io
n

PART 3

On a Linux system, many of these database types are not used. The internal types are
always available, but are set up by Sendmail when they are needed and thus require no
intervention by you. btree and hash are the only two types you are likely to use for the
external databases that you create yourself. But even in that case, you will declare the
database using a FEATURE macro in the macro configuration file; you won’t create your
own K commands in the sendmail.cf file. As noted in Chapter 6, all of the databases cre-
ated by FEATURE commands default to hash type.

The K Command Switches

The switches that optionally follow type on the K command line specify optional pro-
cessing. Table 7.2 lists the valid switches.

regex An internal routine that handles regular expressions.

sequence Defines a search list to search multiple databases.

switch References an entry in the nsswitch.conf file or the host.conf file to
create a database sequence.

text A text file database.

user The type used for the /etc/passwd file.

Table 7.2 Valid K Command Switches

Switch Description

–A Accepts values from duplicate keys.

–a Appends the specified string to the values returned by the lookup.

–f Preserves uppercase.

–k Identifies the column used as the key in a flat file lookup.

–m Verifies the key but doesn’t return a value.

–N Indicates that the keys in the database always end with a null byte.

Table 7.1 Valid K Command Type Values (continued)

Type Description

Chapter 7 The sendmail.cf File194

Some of these switches mirror options defined when the database is built. These are:

–A This option makes sense only for a database that has duplicate keys, which
means the database must be built with the makemap –d option. Recall the staff mail-
ing list from Listing 6.5 in Chapter 6. The alias staff pointed to five recipient
addresses. Assume that that mailing list was replicated as a group of five entries in
some odd database that allowed duplicate keys:

staff kathy

staff craig

staff david@parrot

staff sara@hawk

staff becky@parrot

If the K command that declared this odd database inside the sendmail.cf file did not
have the –A switch, a query for staff would return kathy. But if the –A switch was
used, Sendmail would access all of the duplicate keys and append all of the values
returned for those keys. Thus, a query for staff would return kathy, craig,
david@parrot, sara@hawk, and becky@parrot, which exactly matches the original
mailing list. Of course, you wouldn’t actually do this, because the aliases database
already handles mailing lists and does a better job of it. This is just an example.

–f This option preserves uppercase characters. It directly relates to the –f option
used with makemap that preserves uppercase characters when the database is built.
Normally, all characters are converted to lowercase characters. E-mail addresses are

–O Indicates that the keys in the database never end with a null byte.

–o Specifies that the database is optional, so no error is produced if the file is
not found.

–q Preserves quotes in the keys, which are normally removed.

–s Replaces spaces with the specified character.

–v Identifies the column used as the value in a flat file lookup.

–z Specifies the character used to delimit columns for flat file lookups.

Table 7.2 Valid K Command Switches (continued)

Switch Description

The Local Info Section 195

A
dv

an
ce

d
Co

nf
ig

ur
at

io
n

PART 3

supposed to be case insensitive. Avoid introducing case-sensitivity into a process that
is defined as case insensitive. Don’t use –f.

–N This option tells Sendmail that the database keys end with a null character. If
the makemap command used to build the database used –N, which inserts a null char-
acter at the end of each key, the database can be read using the –N switch on the K
command line. The inverse of this is the –O switch that tells Sendmail that the keys
do not end with null characters. If neither the –N nor the –O switches are used, Send-
mail will successfully match keys whether or not the keys end in a null character.
Using either –N or –O reduces the robustness of Sendmail. –N or –O might slightly
increase the performance of database lookups, but they do so at the cost of reliability.

Two switches handle embedded spaces. Spaces are not allowed inside standard RFC 822
e-mail addresses. If spaces are included, they must be enclosed in quotes or replaced with
characters that are allowed. The –q switch retains the quotes, which are normally
removed unless they are “escaped” by a backslash character. The –s switch converts
spaces to another character. For example, –s- converts spaces to dashes. The –s switch
is only used with dequote, because dequote is the internal routine that removes the quote
marks that surround embedded spaces.

Three switches are used to treat traditional flat files as if they were databases. –k identifies
the column of text that should be used as the key, –v identifies the column of text that
should be used as the value returned for the key, and –z identifies the character that is
used to separate columns in the flat file. By default, white space separates columns. The
/etc/passwd file is a classic flat file that is not delimited by white spaces. Each column
in /etc/passwd is separated by a colon (:). Imagine using the passwd file as a database
to retrieve the home directory based on the login username. Here is the passwd entry for
craig on our sample system:

[craig]$ grep '^craig' /etc/passwd

craig:x:500:500:Craig Hunt:/home/craig:/bin/bash

The first column contains the username, and the sixth column contains the home direc-
tory. The –k and –v switches count columns from zero. So the first column is 0 and the
sixth column is 5. The following K command defines a database that uses /etc/passwd to
convert a username to a home directory path:

Khomedir text -z: -k0 -v5 /etc/passwd

Here K is the command. homedir is the internal name used for this database, and text is
the database type. –z: –k0 –v5 are the switches, and /etc/passwd is the path. Given this
declaration, a rewrite rule later in the sendmail.cf file could pass the key value craig to
the homedir database and receive /home/craig as a response. Would you actually do

Chapter 7 The sendmail.cf File196

this? Probably not. Sendmail already knows the home directory associated with a local
username without any help from you. (It is the values stored in variable $z.) Just because
Sendmail provides a configuration option doesn’t mean you will ever need to use it.

Most switches fall into the category of configuration options that you will never use. The
–m switch verifies that a key exists but does not return the value for the key. This is rarely
used because a successful lookup in a normal database both validates the key and returns
the value for the key. The –a switch appends a fixed string to the value returned for a
lookup. For example, –a.foobirds.org adds the string .foobirds.org to every response
from the database. This switch is rarely used, because if every value in a database needs
to have a specific value appended, it can very easily be done when the database is origi-
nally built without any manual modification of the sendmail.cf file.

The most commonly used, and most important, switch is –o. –o tells Sendmail that a data-
base is optional. With this switch, a K command can be included in sendmail.cf in antic-
ipation of the need for a database without requiring that the database be present. Without
the –o switch, Sendmail will fail on the first command that attempts to access the database
if the database file cannot be found. Using –o makes Sendmail more forgiving and more
robust.

We have covered most of the K command syntax: the database name, the database type,
and the switches. The last field in the K command is the path. This is simply the pathname
of the database, generally written without the filename extension. (The K command adds
the correct extension—for example, .db—to the pathname based on the database type.)
The path value is only required if the database is external to Sendmail. As the list of data-
base types made clear, several of the databases declared by K commands are internal to
Sendmail. When an internal database is used, no path is needed. Some sample K com-
mands from the sendmail.cf file will make the structure of the command clear.

Realistic K Commands

 The sample configuration contains five K commands, all of which are shown in Listing 7.6.

Listing 7.6 The K Commands Found in sendmail.cf

[craig]$ grep '^K' /etc/sendmail.cf

Karith arith

Kdequote dequote

Kmailertable hash -o /etc/mail/mailertable

Kvirtuser hash -o /etc/mail/virtusertable

Kaccess hash /etc/mail/access

Let’s work our way through Listing 7.6 from the bottom up. The last K command declares
a database named access. The database is the standard hash type. The file that contains

The Local Info Section 197

A
dv

an
ce

d
Co

nf
ig

ur
at

io
n

PART 3

the database is /etc/mail/access. All of this information—the internal name, the data-
base type, and the file that holds the database—defined by the K command is the direct
result of the FEATURE(`access_db’) command from our sample macro configuration
file. The access database, which is used to control mail relaying and delivery, is covered
in Chapter 6.

The previous two K commands define the virtuser and mailertable databases that
result from the following commands found in the sample macro configuration file:

FEATURE(`mailertable’, `hash –o /etc/mail/mailertable’)

FEATURE(`virtusertable’, `hash –o /etc/mail/virtusertable’)

Both are hash type databases, and both use the –o switch, which means that Sendmail will
run even if these files are not found. Notice that the K command for the access database
did not use the –o switch. If the file /etc/mail/access.db is not found, Sendmail will fail
if a command attempts to use the access database. Even if you don’t have any entries for
the access database, create an empty /etc/mail/access.db file in order to make Send-
mail more robust, as in this example:

[root]# touch /etc/mail/access

[root]# makemap hash /etc/mail/access < /etc/mail/access

The mailertable, the virtusertable, and the access database are all covered in Chap-
ter 6. The other two databases, however, were not covered in that chapter. Both the arith
and dequote databases are pseudo-databases. That means that they are not real data-
bases. Instead they are internal Sendmail routines that are accessed by rewrite rules as if
they were databases. The dequote map, which has already been discussed, is used to
remove quotation marks from addresses. The arith map is used to do arithmetic func-
tions for STARTTLS security. STARTTLS is covered in Chapter 12.

The four commands, D, C, F, and K, illustrate everything that is done in the Local Info sec-
tion of the sendmail.cf file. The Local Info section is the most important section of the
file from the standpoint of a system administrator trying to directly configure
sendmail.cf, because it defines the configuration information that varies from system to
system. We have covered every command in the Local Info section of our sample system,
but before moving on to the Options section, we should cover the only configuration
command that occurs before the Local Info section—the version level command.

The Version Level Command

The version level command (V) defines the version of the sendmail.cf file. This should
not be confused with the Z variable that identifies the Sendmail source code release num-
ber or the m4 VERSIONID macro that defines revision control information for the macro

Chapter 7 The sendmail.cf File198

source files. The V command tells Sendmail the level of syntax and commands required to
support the configuration. If the Sendmail program cannot support the requested com-
mands and syntax, it complains about the commands it does not understand and displays
the following version level error message:

[root]# sendmail -v -t

/etc/sendmail.cf: line 83: readcf: map arith: class arith
not available

/etc/sendmail.cf: line 211: DaemonPortOptions parameter

 "Name=MTA" unknown

/etc/sendmail.cf: line 212: DaemonPortOptions parameter

 "Name=MSA" unknown

/etc/sendmail.cf: line 212: DaemonPortOptions parameter "M=E" unknown

Warning: .cf version level (9) exceeds sendmail version 8.9.3

 functionality (8)

On the other hand, if the Sendmail program is newer than the configuration, the program
can support more features than the configuration uses. In that case, Sendmail displays the
error we first saw in Chapter 3, “Running Sendmail.”

[root]# sendmail -v -t -C /etc/sendmail.cf

Warning: .cf file is out of date: sendmail 8.11.0 supports version 9,

 .cf file is version 8

No recipient addresses found in header

^D

The version level command is a key component of warning Sendmail about potential
incompatibility.

You don’t change the V command in the sendmail.cf file. And unlike most other things
in the sendmail.cf file, you do not control the setting of the V command using an m4
macro in the macro control file. The V command is inserted into the sendmail.cf file
when it is first built by m4. Listing 7.7 shows the commands that occur before the Local
Info section, including the V command.

The Options Section 199

A
dv

an
ce

d
Co

nf
ig

ur
at

io
n

PART 3

Listing 7.7 The V Command from the Sample sendmail.cf

level 9 config file format

V9/Berkeley

override file safeties - setting this option compromises security,

addressing the actual file configuration problem is preferred

need to set this before any file actions are encountered in

 the cf file

#O DontBlameSendmail=safe

default LDAP map specification

need to set this now before any LDAP maps are defined

#O LDAPDefaultSpec=-h localhost

The format of the V command is Vlevel/vendor. The level number on the V command
line indicates the version level of the configuration syntax. V9 is the version supported by
Sendmail 8.11.0. The vendor part of the V command identifies whether any vendor-
specific syntax is supported. The default vendor value for the Sendmail distribution is
Berkeley, which is the vendor value used for Linux.

Everything after the V command and before the Local Info section is a comment, as indi-
cated by the fact that the lines start with a # character. However, two of these lines are
commented-out option commands:

#O DontBlameSendmail=safe

#O LDAPDefaultSpec=-h localhost

The first one disables Sendmail’s file security, which is obviously a bad idea. It is used only
when absolutely required to read a given file. The second one defines the default LDAP
map specification, which is only used if LDAP is used. As the O command indicates, both
of these are options, and they are the only options that are located outside of the Options
section of our sample sendmail.cf file. They occur before the Local Info section because
they must be declared before they are used, and if they are used at all it is by file and data-
base references that occur in the Local Info section of the file. All other options are found
in the Options section.

The Options Section
The Sendmail program uses option values to define the Sendmail environment. There are
nearly 100 options, all of which are listed in Appendix C. A few samples from the
sendmail.cf file are shown in Listing 7.8 to illustrate what options do.

Chapter 7 The sendmail.cf File200

Listing 7.8 Sample Option Commands from sendmail.cf

location of alias file

O AliasFile=/etc/aliases

Forward file search path

O ForwardPath=$z/.forward.$w:$z/.forward

timeouts (many of these)

O Timeout.queuereturn=5d

O Timeout.queuewarn=4h

These options all have something to do with Sendmail functions that have already been
discussed. The first O command sets the location of the aliases file to /etc/aliases. The
second option defines the location of the .forward file. Notice the $z and $w included in
this option. These are Sendmail variables in action. Given the fact that you already know
that the .forward file is in the user’s home directory, you can guess that the value of the
$z variable is the user’s home directory. The $w variable contains the computer’s host-
name, indicating that it is possible to use the computer’s hostname as a filename extension
on a .forward file.

NOTE A variable and a class variable can exist with the same name, and still be
two different things. A variable is used to provide a value, as in Listing 7.8 where
$w provides a hostname, and a class is used to test a value. $w is not the same as
$=w. $=w holds all of the names by which the local host is known. $w holds only the
primary hostname of the local host and thus returns only a single value.

The last two options in the example relate to processing the queue of undelivered mail. The
first of these options tells Sendmail that if a piece of mail stays in the queue for five days
(5d), it should be returned to the sender as undeliverable. The second of these options tells
Sendmail to send the user a warning message if a piece of mail has been undeliverable for
four hours (4h).

This section requires no direct modifications. All of the options can be set through the m4
macro configuration file. The four values shown in Listing 7.8 could be set with these m4
commands:

define(`ALIAS_FILE’, `/etc/aliases’)

define(`confFORWARD_PATH’, `$z/.forward.$w:$z/.forward’)

define(`confTO_QUEUERETURN’, `5d’)

define(`confTO_QUEUEWARN’, `4h’)

The options in the sendmail.cf file that comes with your Linux system are correctly
defined for that system. I have never directly edited the Options section of a Linux

The Message Precedence Section 201

A
dv

an
ce

d
Co

nf
ig

ur
at

io
n

PART 3

sendmail.cf file. In fact, the last time I edited an Options section was years ago, before
the development of the m4 macros. It was sometimes necessary back then to move a
sendmail.cf from one operating system to another. In those cases, it was necessary to
edit the options to fit the new environment. That is not necessary now, because the m4
macros build a sendmail.cf customized for the target operating system. The Message
Precedence section that follows the Options section also requires no modifications.

The Message Precedence Section
Message Precedence is used to assign priority to messages entering the queue. By default,
mail is considered “first-class mail” and is given a precedence of 0. The higher the prece-
dence number, the greater the precedence of the message. But don’t get excited. Increasing
priority is essentially meaningless. About the only useful thing you can do is select a neg-
ative precedence number, which indicates low-priority mail. Because error messages are
not generated for mail with a negative precedence number, low priorities are useful for
mass mailings. The precedence values from the sample sendmail.cf are shown in Listing 7.9.

Listing 7.9 Standard Message Precedence Values

###########################

Message precedences

###########################

Pfirst-class=0

Pspecial-delivery=100

Plist=-30

Pbulk=-60

Pjunk=-100

The P command defines precedence. The format of the command is:

Pname====number

where P is the command. name is the text name used to request the precedence and number
is the numeric precedence value associated with the text name.

To request a precedence, mail must include a Precedence header that specifies the name
associated with the desired precedence. For example, to request a precedence of -30, add
the following header to the mail message:

Precedence: list

Precedence values are rarely used, and to be of any use at all, the remote user must know
the precedence names. The five precedence values included in the sendmail.cf file are the
standard names that are known to all other mail systems. If you add a new precedence

Chapter 7 The sendmail.cf File202

value, most remote users will never know the name associated with the precedence and
thus will not use it. The precedence values that come with your Linux system are more
than you’ll ever need.

The Trusted Users Section
Trusted users are allowed to change the sender address when sending mail. The T com-
mand defines trusted users. It syntax is:

T=user

where T is the command and user is a valid username from the /etc/passwd file.

The trusted users defined in the sendmail.cf file that comes with your Linux system are
root, uucp, and daemon. The entire Trusted Users section is shown in Listing 7.10.

Listing 7.10 The sendmail.cf Trusted Users Section

#####################

Trusted users

#####################

this is equivalent to setting class "t"

#Ft/etc/mail/trusted-users

Troot

Tdaemon

Tuucp

The T command is not the only way to define trusted users. Any user listed in class t is a
trusted user. As described in Chapter 6, usernames can be added to class t with the
confTRUSTED_USERS parameter or the use_ct_file feature in the m4 macro configura-
tion. If use_ct_file is specified, trusted users are read from the /etc/mail/trusted-
users file. In this configuration, the use_ct_file feature was not used. If it had been
used, the F command located before the T commands in Listing 7.10 would not be com-
mented out.

NOTE Do not modify the Trusted Users list. Allowing users to send mail using
another user’s name is a potential security problem.

The Format of Headers Section 203

A
dv

an
ce

d
Co

nf
ig

ur
at

io
n

PART 3

The Format of Headers Section
The Format of Headers section defines the headers that Sendmail inserts into mail. Head-
ers are defined by the H command. The header definitions from the sendmail.cf file are
shown in Listing 7.11.

Listing 7.11 Header Formats in sendmail.cf

#########################

Format of headers

#########################

H?P?Return-Path: <$g>

HReceived: $?sfrom $s $.$?_($?s$|from $.$_)
 $.$?{auth_type}(authenticated$?{auth_ssf} (${auth_ssf} bits)$.)

 $.by $j ($v/$Z)$?r with r. id i?{tls_version}(using

 ${tls_version} with cipher ${cipher} (${cipher_bits} bits)

 verified ${verify})$.$?u for $u; $|; $.$b

H?D?Resent-Date: $a

H?D?Date: $a

H?F?Resent-From: $?x$x <$g>$|g.

H?F?From: $?x$x <$g>$|g.

H?x?Full-Name: $x

HPosted-Date: $a

H?l?Received-Date: $b

H?M?Resent-Message-Id: <$t.$i@$j>

H?M?Message-Id: <$t.$i@$j>

Each header line begins with the H command, which is optionally followed by header flags
enclosed in question marks. The header flags control whether or not the header is inserted
into mail bound for a specific mailer. If no flags are specified, the header is used for all
mailers. If a flag is specified, the header is used only for a mailer that has the same flag
set in the mailer’s definition. (Mailer definitions are covered later in this chapter.) Header
flags only control header insertion. If a header is received in the input, it is passed to the
output, regardless of the flag settings.

Each line also contains a header name, a colon, and a header template. These fields define
the structure of the actual header. Macros in the header template are expanded before the
header is inserted in a message. The first header in Listing 7.11 contains $g, which tells
Sendmail to use the value stored in the g macro. The g macro holds the sender’s e-mail
address. Assume that the sender is David. After the macro expansion, the header might
contain:

Return-Path: <david@wren.foobirds.com>

Chapter 7 The sendmail.cf File204

The headers in Listing 7.11 provide examples of using the conditional syntax in header
templates. The conditional syntax is an if/else construct where $? is the “if,” $| is the
“else,” and $. is the “endif.” This is exactly the same conditional syntax that was
described for the D command, and it is used in the same way. An example from
Listing 7.11 is:

H?F?Resent-From: $?x$x <$g>$|g.

H is the command. ?F? is a flag value. Resent-From: is the header name, and $?x$x
<$g>$|g. is the template, which uses conditional syntax. This conditional template
says that if ($?) macro x exists, use $x <$g> as the header template, else ($|) use $g as
the template. Macro x contains the full name of the sender. Thus, if it exists, the header is

Resent-From: David Craig <david@wren.foobirds.org>

If x doesn’t exist, the header is

Resent-From: david@wren.foobirds.org

The headers provided in the Linux sendmail.cf file are sufficient for a basic installation.
You’ll see additional header declarations in Chapter 11, “Stopping Spam,” for mail fil-
tering, but the basic declarations shown in Listing 7.11 will be found on all systems.

All five sections discussed so far—Local Info, Options, Message Precedence, Trusted
Users and Format of Headers—define configuration values used by Sendmail. These sec-
tions are essentially passive, telling Sendmail things such as the structure of headers or the
locations of files. These sections have not defined the actions that Sendmail should take.
That changes with the next section. The Rewrite Rules section contains the instructions
that Sendmail uses to process mail.

The Rewriting Rules Section
The Rewriting Rules section defines the rules used to parse e-mail addresses from user
mail programs and rewrite them into the form required by the mail delivery programs.
Rewrite rules match the input address against a pattern and, if a match is found, rewrite
the address in a new format using the rules defined in the command. The format of a
rewrite rule is:

Rpattern template

where R is the command. pattern selects the address to be modified and template
rewrites the address.

The Mailer Definitions Section 205

A
dv

an
ce

d
Co

nf
ig

ur
at

io
n

PART 3

Rewrite rules divide e-mail addresses into tokens for processing. Tokens are strings of
characters delimited by operators defined in the OperatorChars option, and the opera-
tors themselves. The left-hand side of a rewrite rule contains a pattern defined by macro
variables and literal values and by special symbols. The tokens from the input address are
matched against the pattern. If the address matches the pattern, the address is rewritten
using the template defined in the right-hand side of the rewrite rule. The template is also
defined with literals, macro values, and special symbols.

A rewrite rule may process the same address several times because, after being rewritten,
the address is again compared against the pattern. If it still matches, it is rewritten again.
The cycle of pattern matching and rewriting continues until the address no longer
matches the pattern. Then no further processing is done by this rewrite rule, and the
address is passed to the next rule in line.

Individual rewrite rules are grouped together in rulesets so that related rewrite rules can
be referenced by a single name or number. The S command marks the beginning of a
ruleset and identifies it with a name and optionally a number. Therefore, the command
Sfinal=4 marks the beginning of the ruleset known as either final or 4, and SLocal_
check_mail marks the beginning of the Local_check_mail ruleset.

NOTE Prior to Sendmail 8.11, many rulesets were known only by numbers and
did not have associated names.

Rewrite rules are the heart of the sendmail.cf file and they make up the bulk of the com-
mand lines in the configuration file. The sample sendmail.cf we have been examining in
this chapter contains more than 425 rewrite rules. The number of rules, the complexity
of the syntax, and the importance of rewrite rules all demand that rewrite rules receive
detailed coverage. For that reason, the entire following chapter is dedicated to rewrite
rules.

Not all rewrite rules are found in the Rewrite Rules section. Several rulesets are associated
with specific mailers defined in the Mailer Definitions section.

The Mailer Definitions Section
The Mailer Definitions section defines the instructions used by Sendmail to invoke the
mail delivery programs. Mailer definitions begin with the mailer command (M). Searching
through the Mailer Definitions section of the sample sendmail.cf configuration file for
lines that begin with M produces the mailer definitions list shown in Listing 7.12.

Chapter 7 The sendmail.cf File206

Listing 7.12 The Mailers defined in sendmail.cf

Mesmtp, P=[IPC], F=mDFMuXa, S=EnvFromSMTP/HdrFromSMTP,

 R=EnvToSMTP, E=\r\n, L=990,

 T=DNS/RFC822/SMTP,

 A=TCP $h

Msmtp8, P=[IPC], F=mDFMuX8, S=EnvFromSMTP/HdrFromSMTP,

 R=EnvToSMTP, E=\r\n, L=990,

 T=DNS/RFC822/SMTP,

 A=TCP $h

Mdsmtp, P=[IPC], F=mDFMuXa%, S=EnvFromSMTP/HdrFromSMTP,

 R=EnvToSMTP, E=\r\n, L=990,

 T=DNS/RFC822/SMTP,

 A=TCP $h

Mrelay, P=[IPC], F=mDFMuXa8, S=EnvFromSMTP/HdrFromSMTP,

 R=MasqSMTP, E=\r\n, L=2040,

 T=DNS/RFC822/SMTP,

 A=TCP $h

Mlocal, P=/usr/bin/procmail, F=lsDFMAw5:/|@qSPfhn9,

 S=EnvFromL/HdrFromL, R=EnvToL/HdrToL,

 T=DNS/RFC822/X-Unix,

 A=procmail -Y -a $h -d $u

Mprog, P=/usr/sbin/smrsh, F=lsDFMoqeu9, S=EnvFromL/HdrFromL,

 R=EnvToL/HdrToL, D=$z:/,

 T=X-Unix/X-Unix/X-Unix,

 A=smrsh -c $u

Mprocmail, P=/usr/bin/procmail, F=DFMSPhnu9,

 S=EnvFromSMTP/HdrFromSMTP,

 R=EnvToSMTP/HdrFromSMTP,

 T=DNS/RFC822/X-Unix,

 A=procmail -Y -m $h $f $u

The sendmail.cf file created by the redhat.mc macro configuration contains eight
mailer definitions. The first five mailer commands define mailers for TCP/IP mail deliv-
ery. The first one, designed to deliver traditional seven-bit ASCII SMTP mail, is called
smtp. The next mailer definition is for Extended SMTP mail and is called esmtp. (It is the
default mailer used for Internet mail.) The smtp8 mailer definition handles unencoded
eight-bit SMTP data bound for remote servers that can’t handle Extended SMTP. The
dsmtp mailer is used when the recipient server initiates the mail connection and down-
loads mail with the ETRN command. Finally, relay is a mailer that relays TCP/IP mail
through an external mail relay host. All of these mailers were covered in Chapter 5,
“Understanding a Vendor’s Configuration,” in relationship to the MAILER(smtp) macro

The Mailer Definitions Section 207

A
dv

an
ce

d
Co

nf
ig

ur
at

io
n

PART 3

configuration command that inserts this set of mailers into the sendmail.cf file. This set
of mailers is required by every system that sends mail over a TCP/IP network, such as the
Internet.

Two other mailer definitions in the list are required by Sendmail, and thus found in all
configurations. The first of these defines a mailer for local mail delivery. This mailer must
always be called local. The second definition specifies a mailer, which is always called
prog, for delivering mail to programs. Sendmail expects to find both of these mailers in
the configuration and requires that they be given the names local and prog. All other
mailers can be named anything the system administrator wishes. However, in practice,
that is not the case. Because the sendmail.cf files on all Linux systems are built from the
same m4 macros, they all use the same mailer names. The m4 macro that adds prog and
local to the configuration is MAILER(local). This sample configuration uses smrsh as
the prog mailer and procmail as the local mailer because of the FEATURE(`smrsh’,
`/usr/sbin/smrsh’) and the FEATURE(local_procmail) commands in the m4 configu-
ration that created this sendmail.cf file.

The last definition is for procmail. This procmail mailer has nothing to do with the use
of procmail as the local mailer. This definition invokes procmail with the –m command-
line argument, which allows procmail to be used for mail filtering. procmail mail filter-
ing features are covered in Chapter 11.

The M Command

The M command defines the mail delivery programs used by Sendmail. The syntax of the
command is:

Mname, field====value, field=value, ...

name is an arbitrary name used internally by Sendmail to refer to the mailer. With the
exception of the prog and local mailer names required by Sendmail, the name doesn’t
matter as long as it is used consistently within the sendmail.cf file to refer to this mailer.
For example, the mailer used to deliver SMTP mail within the local domain could be
called smtp on a Linux system, and ether on some other system. The function of both
mailers is the same, only the names are different. The basic mailer names are the same
from system to system only because they come from the same m4 macros. Customized
mailers created inside the sendmail.cf file by adventurous Sendmail administrators can
be named anything.

The mailer name is followed by a comma-separated list of field=value pairs that define
the characteristics of the mailer. Table 7.3 shows the single character field identifiers, a
text name for the field, and a description of the value associated with the field. No mailer
requires all of these fields.

Chapter 7

 The

sendmail.cf

 File

208

The Path (

P

) field contains either the path to the mail delivery program, the literal string

[IPC]

, or the literal string

[TCP]

. Mailer definitions that specify

P=[IPC]

 or

P=[TCP]

 use
Sendmail to deliver the mail. (

P=[TCP]

 is not commonly used.) The path to a mail delivery
program varies from system to system depending on where the systems store the
programs.

The Flags (

F

) field contains the Sendmail flags used for this mailer. These are the mailer
flags referenced above in the “Format of Headers” section, but mailer flags do more than
just control header insertion. There are a large number of flags. All of them and their
functions are described in Appendix C.

The Sender (

S

) and the Recipient (

R

) fields identify the rulesets used to rewrite the sender
and recipient addresses for this mailer. Each ruleset is identified by its name or number.

Table 7.3

Mailer Definition Fields

Field Name Value

P

Path The full pathname of the mailer program.

F

Flags The

sendmail

 flags used by this mailer.

S

Sender The rulesets that process sender addresses for this mailer.

R

Recipient The rulesets that process recipient addresses for this mailer.

A

Argv This mailer’s command line.

E

End-of-line The end-of-line string for this mailer.

M

Maxsize The maximum message length supported by this mailer.

L

Linelimit The maximum line length supported by this mailer.

D

Directory The

prog

 mailer’s execution directory.

U

Userid The user and group ID used to run the mailer.

N

Nice The

nice

 value used to run mailer.

C

Charset The default Content-type for 8-bit MIME characters.

T

Type The MIME error types this mailer supports.

The Mailer Definitions Section 209

A
dv

an
ce

d
Co

nf
ig

ur
at

io
n

PART 3

Understanding the role of the S and R rulesets is important when troubleshooting the
Sendmail configuration because these rulesets add the variety that is necessary to handle
addresses differently for different mailers.

The Argv (A) field defines the mailer command line. It is the argument vector passed to the
mailer. It contains, along with the executable command and the command-line argu-
ments, macro expansions that provide the recipient username ($u), the recipient host-
name ($h), and the sender’s from address ($f). These macros are expanded before the
argument vector is passed to the mailer.

Maxsize (M) defines, in bytes, the longest message that this mailer will handle, while Line-
limit (L) defines, in bytes, the maximum length of a line that can be contained in a message
handled by this mailer. The End-of-line (E) field defines the characters used to mark the
end of a line. A newline is the default.

The Directory (D) field specifies the working directory for the prog mailer. More than one
directory can be specified for the directory field by separating the directory paths with
colons. The prog mailer definition in Listing 7.12 uses the recipient’s home directory,
which is the value returned by the $z. If that directory is not available, it then uses the root
(/) directory.

You can specify the user and the group ID used to execute the mailer with the Userid (U)
field. For example U=mail:mail says that the mailer should be run under the user ID mail
and the group ID mail. If no value is specified for the Userid field, the value defined by
the DefaultUser option is used. Note that none of the mailers in Listing 7.12 used the
Userid field.

Nice (N) changes the nice value for the execution of the mailer. This allows you to change
the scheduling priority of the mailer. This is rarely used. If you’re interested, see the nice
man page for appropriate values.

The last two fields are used for MIME mail. Charset (C) defines the character set used in
the Content-type header when an eight-bit message is converted to MIME. If Charset is
not defined, the value defined in the DefaultCharset option is used. If that option is not
defined, unknown-8bit is used as the default value.

The Type (T) field defines the type information used in MIME error messages. MIME type
information defines the mailer transfer agent type, the mail address type, and the error
code type. The default is dns/rfc822/smtp.

Chapter 7 The sendmail.cf File210

Analyzing a Sample M Command

Examining one of the mailer entries from Listing 7.12 explains the structure of all of the
mailer definitions. The entry for the smtp mailer from Listing 7.12 is:

Msmtp, P=[IPC], F=mDFMuX, S=EnvFromSMTP/HdrFromSMTP,

 R=EnvToSMTP, E=\r\n, L=990,

 T=DNS/RFC822/SMTP,

 A=TCP $h

Let’s examine each field in this definition:

M Beginning a line with an M indicates that the command is a mailer definition.

smtp Immediately following the M is the name of the mailer, which in this case
is smtp.

P=[IPC] The P argument defines the path to the program used for this mailer. In
this case it is [IPC], which means this mail is delivered by Sendmail. Other mailer
definitions, such as local, have the full path of some external program in this field.

F=mDFMuX The F argument defines the Sendmail flags for this mailer. Other than
knowing that these are mailer flags, the meaning of each individual mailer flag is of
little interest, because the flags are correctly set by the m4 macro that builds the
mailer entry. In this case, m says that this mailer can send to multiple recipients at
once; DFM says that Date, From, and Message-ID headers are needed; u says that
uppercase should be preserved in hostnames and usernames; and X says that message
lines beginning with a dot have an extra dot prepended.

S=EnvFromSMTP/HdrFromSMTP The S argument defines the rulesets that process
sender addresses. The ruleset names can be different for every mailer, allowing dif-
ferent mailers to process e-mail addresses differently. In this case, the sender address
in the mail “envelope” is processed through ruleset EnvFromSMTP, and the sender
address in the message is processed through ruleset HdrFromSMTP. These rulesets are
also addressable as 11 and 31 respectively. So it is possible that you’ll see S for the
smtp mailer defined as S=11/31 on some systems.

R=EnvToSMTP The R argument defines the ruleset used to process recipient
addresses for this mailer. Every mailer can have a different R value to allow each
mailer to handle recipient addresses differently. Like the S field described above, the
R field can have two rulesets, one for the envelope header and one for the mail
header, separated by a slash. In this case, one ruleset (EnvToSMTP) is applied to all
recipient addresses for the smtp mailer. EnvToSMTP is also known as ruleset 21, so
this could have been written as R=21.

E=\r\n The E argument defines how individual lines in a message are terminated.
In this case, lines are terminated with a carriage return and a line feed.

Editing the sendmail.cf File 211

A
dv

an
ce

d
Co

nf
ig

ur
at

io
n

PART 3

L=990 The L argument defines the maximum line length for this mailer. In this case, the
mailer can handle messages that contain individual lines up to 990 bytes long.

T=DNS/RFC822/SMTP The T argument defines the MIME types for messages han-
dled by this mailer. In this case, the mailer uses DNS for hostnames, RFC822 for e-
mail addresses, and SMTP for error codes.

A=TCP $h The A argument defines the command used to execute the mailer. In this
case, the argument refers to an internal Sendmail process. In other cases—the local
mailer is a good example—the A argument is clearly a command line.

NOTE One of the confusing little idiosyncrasies of Sendmail is that the path to
Sendmail’s internal mail delivery can be either TCP or IPC. For this version of
Sendmail, TCP was used in the A argument. On your version it might be IPC.

It is good to know how mailer definitions are structured, but the basic mailer definitions
built from the m4 macros contain all the mailers you’ll need to run Sendmail in a TCP/IP
network environment. You shouldn’t need to modify any mailer definitions for an aver-
age configuration. In fact, nothing in the sendmail.cf files needs direct modifications for
an average configuration. But this section of the book doesn’t limit itself to average con-
figurations, so in the next section we directly edit the sendmail.cf file and use test tools
to observe the impact of the change.

Editing the sendmail.cf File
It’s important to realize how rarely the sendmail.cf file needs to be modified on a typical
Linux system. The configuration file that comes with your Linux system will work. Gen-
erally, you modify the Sendmail configuration not because you need to, but because you
want to. You modify the configuration to improve the way things operate, not to get them
to operate, and when you do modify it, you change the m4 macro configuration—not
sendmail.cf. Despite this, in this section we edit the sendmail.cf file to change the way
that Sendmail works.

TIP Before you make any change to sendmail.cf—even a minor one—copy
sendmail.cf to a work file such as test.cf and edit the work file. Never
edit sendmail.cf without having a backup copy.

Assume our Linux system is named parrot.foobirds.org. Using the default configura-
tion, the From address on outbound e-mail is user@parrot.foobirds.org. This is a valid

Chapter 7 The sendmail.cf File212

address, but it’s not exactly what you want. You want to hide the hostname in outbound
e-mail by using the address user@foobirds.org. Sendmail calls hiding the real hostname
“masquerading.” Chapter 9, “Special m4 Configurations,” provides much more coverage
on masquerading, but for now all we need to know is that we want to masquerade as
foobirds.org.

To create the new configuration, you need to understand the purpose of the macro vari-
able M, found in the Local Info section of the sendmail.cf file. The comment for the D
command that sets M says “who I masquerade as.” Checking Listing 7.1, you find that no
value is assigned to macro M, which means that masquerading is not being used. To
replace the name of the local host in outbound mail with the name of the domain, set M
to the domain name, as shown below.

who I masquerade as (null for no masquerading)

DMfoobirds.org

Given this value for M, parrot rewrites the sender addresses on outbound mail to
user@foobirds.org.

After setting a value for the M macro in the test.cf file, run a test to see if it works. Run-
ning Sendmail with the test configuration does not affect the Sendmail daemon that was
started by the boot script. A separate instantiation of Sendmail is used for the test.

Testing Your New Configuration
To test the new configuration, run the sendmail command with the -bt option. Sendmail
displays a welcome message and waits for you to enter a test. The details of testing Send-
mail and of the –bt syntax are covered in Chapter 10, “Testing Sendmail.” For now, all
you need to know is that we want to see if the header sender address is properly rewritten
to masquerade the hostname as the domain name when we send outbound SMTP mail.
The /tryflags test command lets us request header sender address processing and the
/try command lets us process the sender address for the smtp mailer. First, test the exist-
ing configuration to see how the address is processed by the default configuration:

[root]# sendmail -bt

ADDRESS TEST MODE (ruleset 3 NOT automatically invoked)

Enter <ruleset> <address>

> /tryflags HS

> /try smtp craig

Trying header sender address craig for mailer smtp

Testing Your New Configuration 213

A
dv

an
ce

d
Co

nf
ig

ur
at

io
n

PART 3

canonify input: craig

Canonify2 input: craig

Canonify2 returns: craig

canonify returns: craig

1 input: craig

1 returns: craig

HdrFromSMTP input: craig

PseudoToReal input: craig

PseudoToReal returns: craig

MasqSMTP input: craig

MasqSMTP returns: craig < @ *LOCAL* >

MasqHdr input: craig < @ *LOCAL* >

MasqHdr returns: craig < @ parrot . foobirds . org . >

HdrFromSMTP returns: craig < @ parrot . foobirds . org . >

final input: craig < @ parrot . foobirds . org . >

final returns: craig @ parrot . foobirds . org

Rcode = 0, addr = craig@parrot.foobirds.org

> ^D

NOTE These tests were run with Sendmail 8.11. The output from older versions
of Sendmail, which used ruleset numbers instead of names, will look slightly
different.

The address returned by ruleset final, which is always the last ruleset to process an
address, shows us the address that will be used on outbound mail after all of the rulesets
have processed the address. With the default configuration, the input address craig is
converted to craig@parrot.foobirds.org.

NOTE Ruleset final is also known as ruleset 4.

Chapter 7 The sendmail.cf File214

Next, run the sendmail command with the -C option to use the newly created test.cf
configuration file. The –C option permits you to specify the Sendmail configuration file on
the command line.

sendmail -bt -Ctest.cf

ADDRESS TEST MODE (ruleset 3 NOT automatically invoked)

Enter <ruleset> <address>

> /tryflags HS

> /try smtp craig

Trying header sender address craig for mailer smtp

canonify input: craig

Canonify2 input: craig

Canonify2 returns: craig

canonify returns: craig

1 input: craig

1 returns: craig

HdrFromSMTP input: craig

PseudoToReal input: craig

PseudoToReal returns: craig

MasqSMTP input: craig

MasqSMTP returns: craig < @ *LOCAL* >

MasqHdr input: craig < @ *LOCAL* >

MasqHdr returns: craig < @ foobirds . org . >

HdrFromSMTP returns: craig < @ foobirds . org . >

final input: craig < @ foobirds . org . >

final returns: craig @ foobirds . org

Rcode = 0, addr = craig@foobirds.org

> ^D

This test tells you that the value entered in the M macro is used to rewrite the sender
address in the message header. You know this because the only change made to the
sendmail.cf file was to set a value for M, and now the address returned from ruleset
final is craig@foobirds.org. This is just what you wanted.

Don’t make changes directly to the sendmail.cf file if you can avoid it. If you’re called
upon to help someone configure Sendmail on a system that doesn’t already have the m4
source file installed, it may be easier to directly edit the sendmail.cf file, but only if the
change is very small. If you really want to make major Sendmail configuration changes,
use m4 to build your configuration.

A Command Summary 215

A
dv

an
ce

d
Co

nf
ig

ur
at

io
n

PART 3

A Command Summary
Sendmail reads the sendmail.cf file every time it starts up. For that reason, the syntax of
the commands in the sendmail.cf file is designed to be easily parsed by a machine, but
not necessarily easy for a human to read. Table 7.4 summarizes all of the sendmail.cf
commands.

Table 7.4 The sendmail.cf Commands

Command Syntax Meaning

Version Level Vlevel[/vendor] Specify the version level.

Define Macro Dxvalue Set macro x to value.

Define Class Ccword1[word2]... Set class c to word1 word2...

Load Class Fcfile Load class c from file.

Set Option O option=value Set option to value.

Trusted Users Tuser Add user to the trusted users.

Set Precedence Pname=number Set name to precedence number.

Define Mailer Mname, field=value, ... Define mailer name with the
parameters set by field and
value.

Define Header H[?mflag?]name:format Define a header format.

Set Ruleset Sname=number Start a ruleset assigning it a
name and number.

Define Rule Rpattern template Rewrite addresses that match
pattern to template format.

Key File Kname type [argument] Define database name.

Chapter 7 The sendmail.cf File216

This table, and this chapter, can help you read and understand the sendmail.cf file. But
when it comes to creating that file, you’ll build it with the m4 macro commands covered
earlier in this book.

Tell Me Again Why I Use m4 Macros

A persistent question raised by most Sendmail administrators is, “Why not just edit
sendmail.cf directly?” After all, is

define(`ALIAS_FILE’, `/etc/aliases’)

really any simpler than

O AliasFile=/etc/aliases

The answer is no, individual m4 Sendmail macros are not any simpler to read or write
than individual sendmail.cf commands once you understand the meaning and syn-
tax of the sendmail.cf commands. However, m4 macro configuration files are cer-
tainly much shorter and easier to read than the sendmail.cf file, and individual m4
commands often do much more than individual sendmail.cf commands. m4 makes
it possible to actual write a configuration from scratch. But you might not need to.
Perhaps a sample sendmail.cf configuration provided by the Sendmail developers
or your Linux vendor would work for you with only a few small changes. In that case,
why do I repeatedly insist that you build your configuration with m4?

The reason is “because that’s the way it’s done.” Everyone expects the Sendmail
configuration to be defined in the m4 macro configuration file. That is where your col-
leagues will look for changes when they debug your system. Putting the configura-
tion directly in the sendmail.cf file just makes a confusing system more confusing
to those who must debug it. Worse yet is putting some changes in the macro config-
uration and some in sendmail.cf. That approach is doomed to failure. Stick with m4.
It might not be simple, but it is better than the alternative and it is the way Sendmail
configuration is done.

In Sum 217

A
dv

an
ce

d
Co

nf
ig

ur
at

io
n

PART 3

In Sum
The sendmail.cf file is read by Sendmail every time it starts. sendmail.cf is the config-
uration file that provides Sendmail with:

� information about the local system
� options that define the Sendmail environment
� the format of standard mail headers
� definitions of the available mailers
� instructions on how to prepare a message for a specific mailer

The sendmail.cf file is large and complex. But it is always divided into the same seven
parts. Understanding the role of each part of the file can help you locate a problem when
you are forced to analyze a sendmail.cf file.

The commands that make up the sendmail.cf file have a terse and arcane syntax. How-
ever, there are only 12 different commands and the purpose of most commands is easy to
grasp. Additionally, the fixed structure of every command means that the first character
on the command line is always the command. This makes it easy to use a tool like grep
to examine all of the C commands or D commands in a sendmail.cf file if you suspect that
a variable is improperly set.

Obsessing over the meaning of every option, variable, and flag is a waste of time. Reduce
the complexity of the sendmail.cf file by focusing on it at a global level. Use your knowl-
edge of the meaning of the different sections of the sendmail.cf file and of the purpose
of the different commands to focus down on a problem area. Then use the appendixes of
this book as a reference for the specific options, flags, and variables. Attempting to learn
all of the details ahead of time wastes time developing a skill you may never need.

The bulk of the sendmail.cf file is composed of R commands. R commands are the topic
of our next chapter.

8
Understanding

Rewrite Rules

Sendmail is essentially a mail router. It receives mail, analyzes the delivery address
of that mail to determine how the mail should be delivered, formats the mail for delivery
by the selected mailer, and hands the mail off to the delivery system, which in some cases
is Sendmail itself. At the heart of most of these functions are rewrite rules. Rewrite rules
analyze the delivery address, select the correct mailer, and format mail for delivery. About
the only things they don’t do is collect inbound mail or transport outbound mail. Mas-
tering Sendmail requires mastering rewrite rules. This chapter will give you all the infor-
mation you need to read, understand, and—when absolutely necessary—write rewrite
rules.

The rules are organized into groups of related rules called rulesets that can be called like
subroutines by sendmail.cf commands. Certain rulesets are used by Sendmail to process
specific types of addresses. Before getting into the details of rewrite rule syntax, let’s look
at rulesets to gain a global view of how rewrite rules are organized and used.

 Basic Rulesets
Grouping rewrite rules into rulesets allows related rules to be referenced by a single name
or a number. The S command marks the beginning of a ruleset and identifies it with a

Chapter 8 Understanding Rewrite Rules220

name, a number, or both. Every rewrite rule following an S command is part of that
ruleset until another S command is encountered that marks the start of another ruleset.

Rulesets can be thought of as subroutines, or functions, designed to process e-mail
addresses. They are called from mailer definitions, from individual rewrite rules, from
header definitions, or directly by the Sendmail process. Six rulesets are called directly by
Sendmail for normal address processing:

� Ruleset canonify, also known as ruleset 3, is called first to prepare all addresses for
processing by the other rulesets.

� Ruleset parse, also known as ruleset 0, is applied to the mail delivery address to con-
vert it to the (mailer, host, user) triple, which contains the name of the mailer that
will deliver the mail, the recipient hostname, and the recipient username. Ruleset
parse contains the rewrite rules that select which mailer will deliver the message.

� Ruleset sender, also known as ruleset 1, is applied to all sender addresses.
� Ruleset recipient, also known as ruleset 2, is applied to all recipient addresses.
� Ruleset final, also known as ruleset 4, is called last to convert all addresses from

internal address formats into external address formats.
� Ruleset localaddr, also known as ruleset 5, is applied to local addresses after alias

processing is completed.

NOTE Most sendmail.cf files do not contain all of these rulesets.

There are three basic types of addresses: delivery addresses, sender addresses, and recip-
ient addresses. A recipient address and a delivery address sound like the same thing, but
there is a difference. Think of a mailing list. There can be many recipients for a piece of
mail, but mail is delivered to only one person at a time. The recipient address of the one
person to which the current piece of mail is being delivered is the delivery address. Dif-
ferent rulesets are used to process the different types of addresses.

Figure 8.1 shows the rulesets that handle each address type. The S and R symbols in Fig-
ure 8.1 represent rulesets that have names, just like all normal rulesets, but the S and R
ruleset names are defined in the S and R fields of the mailer definition, as described in
Chapter 7, “The sendmail.cf File.” Each mailer specifies its own S and R rulesets to pro-
cess sender and recipient addresses just before the message is delivered.

Basic Rulesets 221

A
dv

an
ce

d
Co

nf
ig

ur
at

on

PART 3

Figure 8.1 Addresses processed by Sendmail rulesets

The rulesets shown in Figure 8.1 and described in the list above are automatically called
by Sendmail, but that doesn’t mean they necessarily exist in your configuration. Two
good examples of this are ruleset 1 (sender) and ruleset 2 (recipient). By default, these
rulesets are empty and thus are not even defined in the sendmail.cf file for Sendmail 8.11.
(We’ll see in Chapter 9, “Special m4 Configurations,” that you can define your own
rewrite rules for rulesets 1 and 2, if needed.) The fact that these rulesets are not defined
in the sendmail.cf file does not cause Sendmail any problems. It simply calls them and
goes on to the next ruleset when they are not found.

More Rulesets

The six rulesets described so far are only those called directly by Sendmail. There are
many more rulesets defined in the sendmail.cf file. For example, the sendmail.cf file
created by the redhat.mc macro configuration has 47 named rulesets. Those other
rulesets provide additional address processing. They include those rulesets identified as S
and R in Figure 8.1 and those called from inside the sendmail.cf file by individual
rewrite rules or H commands. Rulesets are called using the $>name syntax, where name is
the name or number that identifies the called ruleset. We’ll see more of the $>name syntax
later when we discuss rewrite rules.

Table 8.1 lists many of the rulesets you’ll find in the Rewriting Rules section of your
sendmail.cf file. It identifies each ruleset by name, and when applicable by number, and
provides a short description of the purpose of the ruleset. The rulesets are listed in the
order in which they occur in the Rewriting Rules section.

Input
sender
address

Rewritten
sender
address

3
canonify

1
sender S 4

final

Delivery
address

Mail
delivery

triple

3
canonify

0
parse

Input
recipient
address

Rewritten
sender
address

3
canonify

2
recipient R 4

final

Chapter 8

Understanding Rewrite Rules

222

Table 8.1 shows only part of the rulesets found in the Rewriting Rules section. There are
several other rulesets that are subroutines of these rulesets or are called by these rulesets
to complete their tasks.

Table 8.1

Rulesets from the Rewriting Rules Section

Name Number Purpose

canonify

3 Puts addresses in a standard internal format.

final

4 Converts addresses to external formats.

parse

0 Selects the mailer for a delivery address.

localaddr

5 Processes local addresses.

Mailertable

90 Matches domain names against the

mailertable

.

MasqHdr

93 Masquerades header names.

MasqEnv

94 Masquerades envelope names.

LookUpDomain

 Finds domain names in the

access

 database.

LookUpAddress

 Finds hostnames in the

access

 database.

ParseRecipient

 Converts recipient addresses to the proper address
format for relaying.

check_relay

 Checks relaying for the anti-spam features.

check_mail

 Checks sender addresses for the anti-spam features.

check_rcpt

 Checks recipient addresses for the anti-spam
features.

trust_auth

 Tests whether or not the

AUTH

 parameter should be
trusted.

tls_client

 Verifies the TLS connection to a client.

tls_server

 Verifies the TLS connection to a server.

Basic Rulesets 223

A
dv

an
ce

d
Co

nf
ig

ur
at

on

PART 3

� canonify has a subsection named Canonify2, also known as ruleset 96, that is used
to obtain canonical hostnames from DNS.

� parse has two subsections named Parse0 and Parse1, and a subroutine named
ParseLocal (or ruleset 98) that it calls to handle local addresses.

� Mailertable calls MailerToTriple, which is also known as ruleset 95, to help con-
vert mailertable entries to mail delivery triples, and it uses CanonLocal to put local
names from the mailertable into a standard format.

� ParseRecipient uses CanonAddr to put addresses into the standard format, which
CanonAddr does by simply calling Parse0 and canonify.

� The bulk of the work of check_relay, check_mail, and check_rcpt is handled by
subsections respectively named Basic_check_relay, Basic_check_mail, and
Basic_check_rcpt. In turn, Basic_check_rcpt calls RelayAuth to check client
authentication when that is required. SearchList is another routine called by
check_mail and check_rcpt to process an internal syntax used by these anti-spam
features. Recall the {src} class mentioned in Chapter 7; SearchList is where it
is used.

� tls_client and tls_server call tls_connection to get the connection
verified. tls_connection in turn uses max to determine if the appropriate number
of cipher bits were used. Transport layer security is discussed in Chapter 12,
“Sendmail Security.”

Rulesets within rulesets and rulesets calling rulesets segment the complex task of process-
ing e-mail. This makes the task of processing mail manageable for Sendmail, but it creates
a large number of rulesets that in turn create confusion for the system administrator try-
ing to understand what these rulesets do. My advice is: “Don’t worry about it.” A general
idea of what these rulesets do is all that is required for Sendmail mastery. You don’t mod-
ify the basic rulesets of Sendmail, even to create an advanced custom configuration.
Instead, Sendmail provides several empty rulesets as hooks for your modifications:

� sender (ruleset 1) is available for custom processing of sender addresses. See the
LOCAL_RULE discussion in Chapter 9.

� recipient (ruleset 2) is available for custom processing of recipient addresses. See
the LOCAL_RULE discussion in Chapter 9.

� Local_localaddr is available for custom processing of local addresses before they
are processed by localaddr (ruleset 5).

� Local_check_relay is available to customize anti-spam relaying rules. It is called
before check_relay. See the discussion of anti-spam rules in Chapter 11, “Stop-
ping Spam.”

Chapter 8 Understanding Rewrite Rules224

� Local_check_mail is available for custom anti-spam processing of the MAIL
FROM: address. It is called before check_mail. See the discussion of anti-spam rules
in Chapter 11.

� Local_check_rcpt is available for custom anti-spam processing of the RCPT TO:
address. It is called before check_rcpt. See the discussion of anti-spam rules in
Chapter 11.

� Local_trust_auth is available to customize the trust_auth ruleset. See the AUTH
material in Chapter 12.

These rulesets provide more avenues for customizing Sendmail than you will ever use for
any one configuration, even for the most advanced custom configuration. All of these
hooks can be accessed through the m4 macro configuration, so even when custom rewrite
rules are required, there is no need to directly edit the sendmail.cf file.

Mailer Rulesets

Despite the large number of rulesets found in the Rewriting Rules section, it is not the
only place in the sendmail.cf file where rulesets are found. The Mailer Definitions sec-
tion includes the rulesets that are added by the various mailers. The macro configuration
that built our sample sendmail.cf file had three sets of mailers:

MAILER(local)

MAILER(smtp)

MAILER(procmail)

These MAILER commands added the rulesets listed in Table 8.2 to the Mailer Declarations
section of the sendmail.cf file. The rulesets are listed in Table 8.2 in the order in which
they occur in the Mailer Declarations section. Each ruleset is identified by name and num-
ber. The table provides a short description of each ruleset.

Table 8.2 Rulesets Found in the Mailer Declarations Section

Name Number Description

MasqSMTP 61 Handles rewriting tasks common to sender and envelope
masquerading.

PseudoToReal 51 Converts pseudo-domains to real domains.

EnvFromSMTP 11 Rewrites the envelope sender address.

EnvToSMTP 21 Rewrites the envelope recipient address.

Basic Rulesets 225

A
dv

an
ce

d
Co

nf
ig

ur
at

on

PART 3

Most of these rulesets deal with rewriting sender and recipient addresses in the envelope
and the header. That’s to be expected. After all, the S and R parameters of the mailer com-
mand (M) identify the rulesets used to rewrite sender addresses and recipient addresses for
a specific mailer. It is only natural that these rulesets are included in the Mailer Defini-
tions section of the sendmail.cf file.

Listing 8.1 shows two of these rulesets: EnvToL and HdrFromL. Each ruleset starts with an
S command, and ends when the next S command is encountered. Therefore, the EnvToL
ruleset contains only one rewrite rule, while the HdrFromL ruleset contains four rules.

Listing 8.1 Two Simple Rulesets

#

Envelope recipient rewriting

#

SEnvToL=20

R$+ < @ $* > $: $1 strip host part

#

Header sender rewriting

#

SHdrFromL=30

R<@> $n errors to mailer-daemon

R@ <@ $*> $n temporarily bypass Sun bogosity

R$+ $: $>AddDomain $1 add local domain if needed

R$* $: $>MasqHdr $1 do masquerading

HdrFromSMTP 31 Rewrites the header sender address.

MasqRelay 71 Handles masquerading for the relay mailer.

EnvFromL 10 Rewrites the envelope sender for the local mailer.

EnvToL 20 Rewrites the envelope recipient for the local mailer.

HdrFromL 30 Rewrites the header sender for the local mailer.

HdrToL 40 Rewrites the header recipient for the local mailer.

AddDomain 50 Adds the local domain for the always_add_domain
feature.

Table 8.2 Rulesets Found in the Mailer Declarations Section (continued)

Name Number Description

Chapter 8 Understanding Rewrite Rules226

Every active line in a ruleset is an R command. The syntax of R commands is complex and
difficult to read. Explaining the function and syntax of R commands consumes the rest of
this chapter.

Rewrite Rules
Rulesets are composed of individual rewrite rules that parse e-mail addresses from user
mail programs and rewrite them into the form required by the mail delivery programs.
Each rewrite rule is defined by an R command. The syntax of the R command that was
introduced in Chapter 7 is:

Rpattern template comment

The fields in an R command are separated by tab characters. The comment field is ignored
by the system, but good comments are vital to understanding what’s going on. The
pattern and template fields are the heart of this command.

Pattern Matching

Rewrite rules match the input address against the pattern, and if a match is found, rewrite
the address in a new format using the rules defined in the template. A rewrite rule may
process the same address several times because, after being rewritten, the address is again
compared against the pattern. If it still matches, it is rewritten again. The cycle of pattern
matching and rewriting continues until the address no longer matches the pattern.

The pattern is defined using variables, classes, literals, and special symbols. The variables,
classes, and literals provide the values against which the input is compared, and the sym-
bols define the rules used in matching the pattern. Table 8.3 shows the symbols used for
pattern matching.

Table 8.3 Pattern-Matching Symbols

Symbol Meaning

$@ Match exactly zero tokens.

$* Match zero or more tokens.

$- Match exactly one token.

$+ Match one or more tokens.

$x Match all tokens in macro variable x.

Rewrite Rules 227

A
dv

an
ce

d
Co

nf
ig

ur
at

on

PART 3

All of the symbols match some number of tokens. A token is a string of characters delim-
ited by an operator. The operators are the right (() and left ()) parentheses, right (<) and
left (>) angle brackets, comma (,), semicolon (;), backslash (\), quotation mark (“), car-
riage return (CR), and line feed (LF), plus any characters defined by the OperatorChars
option. A grep of the sendmail.cf file for OperatorChars shows the additional operator
characters are ., :, %, @, !, ^, /, [,], and +.

 [craig]$ grep 'OperatorChars' /etc/sendmail.cf

O OperatorChars=.:%@!^/[]+

Operators also count as tokens when an address is parsed. Assume the following address:

sara@hawk.foobirds.org

This e-mail address contains seven tokens: sara, @, hawk, ., foobirds, ., and org. Three
of these tokens, two . (dots) and an @, are operators. The other four tokens are strings.
This address would match the symbol $+ because it contains more than one token, but it
would not match the symbol $- because it does not contain exactly one token.

The symbols in Table 8.3 are particularly useful when paired with literal values and vari-
ables to create more complex patterns—for example:

$- @ $- .foobirds.org

The sample address sara@hawk.foobirds.org matches the pattern because:
� It has exactly one token before the literal @ that matches the requirement of the $-

symbol.
� It has an @ that matches the pattern’s literal @.
� It has exactly one token after the literal @ and before the literal .foobirds.org that

matches the requirement of the second $- symbol.
� It has the string .foobirds.org that matches the pattern’s literal .foobirds.org.

sara@hawk.foobirds.org matches this pattern, but many other addresses do not. For
example, sara.henson@hawk.foobirds.org does not match because it has three tokens,
sara, ., and henson, before the literal @. Therefore, it fails to meet the requirement of

$=x Match any token in class variable x.

$~x Match any token not in class variable x.

Table 8.3 Pattern-Matching Symbols (continued)

Symbol Meaning

Chapter 8 Understanding Rewrite Rules228

exactly one token specified by the first $- symbol. mandy@sooty.terns.foobirds.org
fails to match the pattern because it has three tokens (sooty, ., and terns) after the literal
@ and before the literal .foobirds.org.

Literals are such an important part of pattern matching that Sendmail inserts literal val-
ues, such as the angle brackets < and >, into addresses to make them easier to parse. List-
ing 8.2 shows this.

Listing 8.2 Internal Use of Literal Values

[root]# sendmail -bt

ADDRESS TEST MODE (ruleset 3 NOT automatically invoked)

Enter <ruleset> <address>

> 3 craig.hunt@ibis.foobirds.org

canonify input: craig . hunt @ ibis . foobirds . org

Canonify2 input: craig . hunt < @ ibis . foobirds . org >

Canonify2 returns: craig . hunt < @ ibis . foobirds . org . >

canonify returns: craig . hunt < @ ibis . foobirds . org . >

> ^D

Listing 8.2 shows that Sendmail adds literal values to an address when the address is con-
verted to the working format that Sendmail uses internally. The canonify ruleset adds
angle brackets surrounding the domain name portion of the address. canonify calls
Canonify2 to request the canonical form of the hostname from DNS. In this case,
ibis.foobirds.org is the canonical name of the host, so all Canonify2 does is return the
same name fully qualified to the root. (That’s why the hostname has a dot appended.) The
three tokens, <, >, and ., added by Sendmail are used internally to simplify address pars-
ing. Before the mail is sent, these three tokens will be removed by the final ruleset.

NOTE In DNS, the dot at the end of a name is the root domain. Sendmail uses
it internally to indicate that a name has been successfully processed by DNS.

About 75 percent of the rewrite rules in the sendmail.cf file make use of the inserted
tokens by using angle brackets as part of the pattern field. The single rule from ruleset
EnvToL in Listing 8.1 demonstrate this. That rule contains this pattern:

$+ < @ $* >

This pattern says to match any address that has one or more tokens ($+) before the literal
value < @ and zero or more tokens after that literal value and before the literal value >.
The craig.hunt<@ibis.foobirds.org.> address matches this pattern. It has three

Rewrite Rules 229

A
dv

an
ce

d
Co

nf
ig

ur
at

on

PART 3

tokens (craig, ., and hunt) before the literal <@ and six tokens (ibis, ., foobirds, ., org,
and .) between the literals <@ and >.

Literals are an important part of patterns but they lack the flexibility needed to create a
general purpose configuration that can work on any system. That’s where variables come
in. In our first example we used the pattern:

$- @ $- .foobirds.org

The problem with this pattern is that it only works with addresses that have the domain
name foobirds.org. The literal .foobirds.org works fine at our site, but isn’t much
help if we send this configuration to our friends at mammals.org. What we actually
wanted to check was whether or not the address had the local domain name. The local
domain name is stored by Sendmail in the m variable, so we can use $m in the pattern to
match the local domain name. The following pattern is equivalent to the pattern above
except that it works on any system:

$- @ $- .$m

Here we look for addresses that have exactly one token ($-), a literal @, exactly one token
($-), a literal ., and the value return from variable m.

Class variables can also be used in pattern matching. In fact, pattern matching is the only
place where class values are useful. The symbols $= and $~ are designed to test whether
or not a value from the input address is a member of the class. We can demonstrate this
with the simple, although contrived, ruleset. Add the ruleset shown below to the test.cf
file we created in Chapter 4:

SClassTest

R$+ @ $=w $@ Found it

R$+ @ $~w $@ Not in class w

R$* $: Wrong format

The S command starts the ruleset and names it ClassTest. It contains three R commands.
ClassTest expects addresses in the format user@host. The pattern in the first rule
matches one or more tokens ($+) before a literal @ and any value in class w ($=w). The pat-
tern in the second rule matches one or more tokens ($+) before a literal @ and any value
that is not in class w ($~w). The pattern in the last line catches everything that falls through
to complain that the address didn’t contain a literal @. The templates on these rules are
contrived examples that will display a message when Sendmail is run in test mode, as it
is in Listing 8.3.

Chapter 8 Understanding Rewrite Rules230

Listing 8.3 Testing for Class Values

[root]# cat >> test.cf

SClassTest

R$+ @ $=w $@ Found it

R$+ @ $~w $@ Not in class w

R$* $: Wrong format

[root]# sendmail -bt -Ctest.cf

ADDRESS TEST MODE (ruleset 3 NOT automatically invoked)

Enter <ruleset> <address>

> $=w

robin.foobirds.org

other.org

wren.foobirds.org

[172.16.12.3]

patient-rights.org

outofbusiness.com

wren

localhost

weRbroke.com

robin

thatplace.com

imaginary.com

> ClassTest christopher@robin

ClassTest input: christopher @ robin

ClassTest returns: Found it

> ClassTest sara@hawk

ClassTest input: sara @ hawk

ClassTest returns: Not in class w

> ClassTest craig

ClassTest input: craig

ClassTest returns: Wrong format

> ^D

In Listing 8.3, a cat command is used to append the ClassTest ruleset to the test.cf
configuration file. Then the sendmail command is run with the –bt option and the mod-
ified test.cf configuration. The contents of class w are displayed. The values displayed
for class w vary from system to system. If you run this test on your own system, use values
from your system’s class w.

In Listing 8.3, three tests of the ClassTest ruleset are run. First, we send ClassTest the
address christopher@robin. The ruleset returns the value “Found it.” A quick glance at

Rewrite Rules 231

A
dv

an
ce

d
Co

nf
ig

ur
at

on

PART 3

the contents of class w shows that robin is indeed in the list. Next we send ClassTest the
address sara@hawk, which returns “Not in class w.” Again, a glance at the content of class
w shows that hawk is not in the class. Finally, testing the address craig returns “Wrong
format” because the address is not in the format user@host. Using symbols, variables,
classes, and literals, patterns can be constructed to match any type of e-mail address.

The patterns used in the ClassTest ruleset are realistic, but the templates are contrived.
An address goes into a rule and an address comes out. Clearly, the strings Found it, Not
in class w, and Wrong format are not legitimate addresses. In the next section we look
at how real templates are constructed and how they operate.

Transforming the Address

The template field, from the right-hand side of the rewrite rule, defines the format used
for rewriting the address. It is defined with the same things used to define the pattern: lit-
erals, variables, and special symbols. Literals in the transformation are written into the
new address exactly as shown. Variables are expanded and then written. The symbols
perform special functions. Each symbol that can be used in a template and its purpose are
shown in Table 8.4.

Conditional Syntax

Before we leave the topic of pattern matching, the use of conditional syntax in rewrite
rules deserves a mention. The “if” ($?) “else” ($|) syntax can legally be used in re-
write rules. In reality the $? symbol is never used in a rewrite rule. The pattern match-
ing of a rewrite rule, by its very nature, is already a conditional. Adding an “if” to an
existing conditional test would just increase the complexity of an already complex
syntax. The “else” symbol ($|) is sometimes used, but it is used as more of an “or”
symbol—e.g., this $| that could be read as “this or that.”

Avoid using the conditional syntax in rewrite rules. Every rule starts with a condi-
tional test. It is better to use two rules, each of which does one thing, than to try to
combine multiple tests in a single rule.

Chapter 8 Understanding Rewrite Rules232

Indefinite Tokens

When an address matches a pattern, the strings from the address that match the symbols
are assigned to indefinite tokens. The matching strings are called indefinite tokens
because they may contain more than one token value. The indefinite tokens are identified
numerically according to the relative position in the pattern of the symbol that the string
matched. In other words, the indefinite token produced by the match of the first symbol
is called $1, the match of the second symbol is called $2, the third is $3, and so on. The
$n symbol in Table 8.4 represents the use of an indefinite token in the template and the
n stands for the number of the indefinite token. An indefinite token is expanded and then
written to the new address. Indefinite token substitution is essential for flexible address
rewriting. Without it, values could not be easily moved from the input address to the
rewritten address. The example in Listing 8.4 demonstrates this.

Listing 8.4 Testing Indefinite Token Substitution

[root]# cat >> test.cf

STokenTest

R$+ ! $+ $2 @ $1 . $m convert host!user to user@host.domain

[root]# sendmail -bt -Ctest.cf

ADDRESS TEST MODE (ruleset 3 NOT automatically invoked)

Enter <ruleset> <address>

> $m

Table 8.4 Template Symbols

Symbol Purpose

$n Insert the value from indefinite token n.

$: Terminate this rewrite rule.

$@ Terminate the entire ruleset.

$>name Call the ruleset identified as name.

$[hostname$] Convert hostname to DNS canonical form.

$(database-spec$) Get the value from a database.

Rewrite Rules 233

A
dv

an
ce

d
Co

nf
ig

ur
at

on

PART 3

foobirds.org

> TokenTest plover!karen.ramsey

TokenTest input: plover ! karen . ramsey

TokenTest returns: karen . ramsey @ plover . foobirds . org

> ^D

Again we start with the test.cf file created in Chapter 4. To that we add a new ruleset
we call TokenTest, which contains only one rewrite rule. Then we run the sendmail com-
mand with –bt and –Ctest.cf to test the new configuration.

When the address plover!karen.ramsey matched the pattern $+!$+, two indefinite
tokens were created. The first is identified as $1 and contains the single token plover that
matched the first $+ symbol. The second indefinite token is $2 and contains the three
tokens, karen, ., and ramsey, that matched the second $+ symbol. The indefinite tokens
created by the pattern matching are then referenced by name ($1 and $2) in the template
portion of the R command to rewrite the address.

The template contains the indefinite token $2, a literal @, indefinite token $1, a literal dot
(.), and the variable value $m. After the pattern matching, $2 contains karen.ramsey and
$1 contains plover. From an earlier discussion of the m variable, you known that it con-
tains the name of the domain of which the local system is part. Listing 8.4 shows that $m
returns foobirds.org on the sample system. In Listing 8.4, the input address
plover!karen.ramsey is rewritten as karen.ramsey@plover.foobirds.org.

Figure 8.2 illustrates this specific address rewrite. It shows the tokens derived from the
input address, and how those tokens are matched against the pattern. It also shows the
indefinite tokens produced by the pattern matching, and how the indefinite tokens, and
other values from the transformation, are used to produce the rewritten address.

Chapter 8 Understanding Rewrite Rules234

Figure 8.2 Rewriting an address

Recursion and Flow Control

After rewriting, the address is again compared to the pattern. The address in Figure 8.2
fails to match the pattern the second time through because it no longer contains the literal
!. Sometimes, however, the recursive nature of rewrite rules is used to create iterative pro-
cessing. Listing 8.5 shows this with a simple ruleset designed to remove nested angle
brackets.

Listing 8.5 The Recursive Nature of Rewrite Rules

[root]# cat >> test.cf

SRemoveAngles

R$* < $* > $1 $2

[root]# sendmail -bt -Ctest.cf

ADDRESS TEST MODE (ruleset 3 NOT automatically invoked)

Enter <ruleset> <address>

> RemoveAngles craig<<<@wren>>>

RemoveAngles input: craig < < < @ wren > > >

RemoveAngles returns: craig @ wren

> ^D

Indefinite
token plover Karen Ramsey

Input
address !plover Karen Ramsey

Pattern !$+ $*

Template @$2 $1 . $m

Rewritten
address @Karen Ramsey plover . foobirds.org

Variable
expansion foobirds.org

Rewrite Rules 235

A
dv

an
ce

d
Co

nf
ig

ur
at

on

PART 3

In Listing 8.5, we create a ruleset named RemoveAngles that contains only one rule. The
pattern in the rule matches any number of tokens ($*) before a literal < and any number
of tokens ($*) between the literals < and >. The template in the rule rewrites the indefinite
tokens without the literal angle brackets.

The sendmail –bt test in Listing 8.5 shows that the rule works; it removes all of the angle
brackets from the address craig<<<@wren>>>. Don’t assume, however, that it removes all
of the angle brackets in one pass. The first time the address matches the pattern it is
rewritten as craig<<@wren>>. The rewritten address is again compared to the pattern and
it again matches. This time it is rewritten as craig<@wren>, which again matches the pat-
tern. Finally, it is rewritten as craig@wren, which doesn’t have the angle brackets
required to match the pattern.

Once the pattern no longer matches, no further processing is done by this rewrite rule and
the address is passed to the next rule in line. The RemoveAngles ruleset from Listing 8.5
contains no other rules so processing stops, but most rulesets have more than one rule.
Rules in a ruleset are processed sequentially, although a few symbols can be used to mod-
ify this flow.

The recursion built into rewrite rules creates the possibility for infinite loops. The $@ and
the $: template symbols are used to control processing and to prevent loops. If the tem-
plate begins with the $@ symbol, the entire ruleset is terminated and the remainder of the
template is the value returned by the ruleset. Use $@ to exit a ruleset at a specific rule.

In Listing 8.3, the $@ symbol was used to control the flow inside the ClassTest ruleset.
The template in each rule in that ruleset starts with the $@ symbol, so if a pattern match
is found, the template is applied and the ruleset exits. Suppose the $@ was not used on the
first rule in that ruleset. In that case, the test of the address christopher@robin would
have produced the response “Wrong format” instead of the response “Found it” that we
expected. Here’s why. The address christopher@robin matches the pattern of the first
rule, which is $*@$=w. Therefore, the address is rewritten to Found it. If the $@ symbol
is not used, the address Found it is again compared to the pattern $*@$=w in the first rule.
It doesn’t match. The address is then processed by the next rules in line. Found it does
not match the pattern of the second rule, which is $*@$~w. The address Found it is there-
fore passed on to the third rule in line. This time it does match the pattern $*, which essen-
tially matches anything that hasn’t been caught by the first two rules. The third rule
rewrites the address Found it into the address Wrong format—not, of course, what we
wanted. To get the result we want, every rule in ruleset ClassTest requires a flow control
symbol, even the third rule.

When a template begins with the $: symbol, the individual rule is executed only once. In
the ClassTest ruleset from Listing 8.3, that is exactly what we want to do with the third

Chapter 8 Understanding Rewrite Rules236

rule. At first glance, one might think that flow control is not required for that rule because
it is the last rule in the ruleset and thus the ruleset will end after that rule executes. On
closer examination the problem is clear: the third rule will never finish executing because
it is an infinite loop. The $* pattern matches zero or more tokens, meaning it will match
anything, even the string Wrong format. Thus, the pattern will match the output of the
rule. Because the rule recursively processes its own output against the pattern $*, which
matches anything, a loop will ensue. Sendmail detects loops and complains when one is
found, as shown in Listing 8.6.

Listing 8.6 Results of a Tight Loop in the Sendmail Configuration

[root]# sendmail -bt -Ctest.cf

ADDRESS TEST MODE (ruleset 3 NOT automatically invoked)

Enter <ruleset> <address>

> =SClassTest

R$* @ $=w $@ Found it

R$* @ $~w $@ Not in class w

R$* Wrong format

> ClassTest craig

ClassTest input: craig

Infinite loop in ruleset ClassTest, rule 3

ClassTest returns: Wrong format

> ^D

In Listing 8.6, sendmail is again run with the –bt argument. The =S command, described
in Chapter 10 with other test commands, is used to display the contents of the ruleset
ClassTest. In this example, the template in the third rule of the ruleset does not start with
$:. In this case, when ClassTest is run with an input address of craig, an infinite loop
ensues. Sendmail displays an error message stating that an infinite loop was encountered
and exactly where the loop occurred.

Loops do not need to be as tight as the one shown in Listing 8.6. A loop can involve mul-
tiple rulesets because a ruleset can be called by a rule using the $>name syntax. When the
called ruleset finishes processing, it returns a rewritten address to the calling rule. The
returned e-mail address is then compared again to the pattern in the calling rule. If it still
matches, the ruleset is called again. Use $: and $@ to prevent loops whenever they can
occur.

Rewrite Rules 237

A
dv

an
ce

d
Co

nf
ig

ur
at

on

PART 3

The $>name symbol calls ruleset name and passes the address defined by the remainder of
the template to that ruleset for processing. For example, both rules in the ruleset named
CallRulesets, shown below, call other rulesets:

SCallRulesets

R$* @ $- $: $> canonify $1 @ $2

R$* $: $> final $1

The template in the first rule calls ruleset canonify ($>canonify), and passes it the con-
tents of $1, a literal @, and the contents of $2. The template starts with the $: symbol, so
the first rule executes only once when the pattern matches. The template in the second
rule calls ruleset final ($>final) and passes it the contents of $1. (Because the pattern in
the second ruleset includes only one symbol, $1 contains the entire input address.) The
second rule will also only execute once because its template starts with $:. Listing 8.7
shows the CallRulesets ruleset in action.

Listing 8.7 Calling Another Ruleset from a Rule

[root]# sendmail -bt -Ctest.cf

ADDRESS TEST MODE (ruleset 3 NOT automatically invoked)

Enter <ruleset> <address>

> CallRulesets julie@redbreast

CallRulesets input: julie @ redbreast

canonify input: julie @ redbreast

Canonify2 input: julie < @ redbreast >

Canonify2 returns: julie < @ robin . foobirds . org . >

canonify returns: julie < @ robin . foobirds . org . >

final input: julie < @ robin . foobirds . org . >

final returns: julie @ robin . foobirds . org

CallRulesets returns: julie @ robin . foobirds . org

> ^D

In Listing 8.7, CallRulesets is passed the address julie@redbreast, which matches the
$*@$- pattern of the first rule in the ruleset. That rule calls ruleset canonify and passes
it the three tokens julie, @, and redbreast. canonify “focuses” the address by placing
angle brackets around the host portion and, in turn, it calls ruleset Canonify2. Canonify2
converts the address to julie<@robin.foobirds.org.>, which is the value that canonify
returns to CallRulesets. The second rule in CallRulesets is then executed. The value
julie<@robin.foobirds.org.> matches the $* pattern in the rule, so ruleset final is
called and passed the address value. final “defocuses” the address and returns the value
julie@robin.foobirds.org, which becomes the value returned by CallRuleset.

Chapter 8 Understanding Rewrite Rules238

NOTE The words “focus” and “defocus” are used to describe the internal
Sendmail processes that mark portions of the address for processing. Generally,
this involves enclosing address components in angle brackets.

Transforming Addresses with External Information

In Listing 8.7, CallRuleset simply matches the patterns and calls other rulesets to do all
of the rewriting. It is also possible to use an external server, such as DNS, or an external
database to convert an input address. The Canonify2 ruleset converts a hostname to the
canonical DNS format for that hostname. It does this by querying DNS and using the
information it gets in response to that query.

The $[hostname$] syntax converts a host’s nickname or its IP address to its canonical
name by passing the value hostname to the name server for resolution. Listing 8.8 shows
the $[hostname$] symbol in action.

Listing 8.8 Retrieving a Canonical Name from DNS

[root]# sendmail -bt -Ctest.cf

ADDRESS TEST MODE (ruleset 3 NOT automatically invoked)

Enter <ruleset> <address>

> =SDNSTest

R$* @ $+ $: $1 @ $[$2 $]

> DNSTest julie@redbreast

DNSTest input: julie @ redbreast

DNSTest returns: julie @ robin . foobirds . org .

> DNSTest julie@[172.16.5.2]

DNSTest input: julie @ [172 . 16 . 5 . 2]

DNSTest returns: julie @ robin . foobirds . org .

> ^D

The test.cf configuration file in Listing 8.8 contains a very simple ruleset named
DNSTest, which is displayed by the =SDNSTest command. The ruleset has only one rewrite
rule. The rule matches any address that contains zero or more tokens, a literal @, and one
or more tokens. The template in the rule is:

$: $1 @ $[$2 $]

The $: symbol ensures that the rule runs only once. The $1 symbol and the literal @ guar-
antee that any tokens occurring before the @ in the input address and the @ itself are rep-
licated in the output address. The symbols $[and $] enclose the value passed to DNS,
which is the second indefinite token created by the pattern match. $2 includes all of the
tokens after the literal @ in the input address.

Rewrite Rules 239

A
dv

an
ce

d
Co

nf
ig

ur
at

on

PART 3

In Listing 8.8, the first value passed to the rule is julie@redbreast. After the pattern
match, $1 contains julie and $2 contains redbreast. The DNS query for redbreast
returns robin.foobirds.org because the name server has a CNAME record for redbreast
that indicates that robin is its canonical name.

The second test is even more interesting because it demonstrates that e-mail can be
addressed with an IP address instead of a hostname. That test passes the address
julie@[172.16.5.2] to the DNSTest ruleset. Clearly 172.16.5.2 is not a hostname; it is
an IP address. In this case DNS is asked to return the canonical name for the address. If
DNS has a PTR record for the address, the address can be mapped back to a name. In this
case, it does have the PTR record, so the query for 172.16.5.2 returns the canonical name
robin.foobirds.org.

TIP Not sure about DNS CNAME records and PTR records? See Linux DNS Server
Administration by Craig Hunt (Sybex, 2000), which is also part of the Craig Hunt
Linux Library.

In the same way that a host name or address is used to look up a canonical name in the
name server database, the $(database-spec$) syntax uses a key to retrieve information
from a database. This is a more generalized database retrieval syntax than the one that
returns canonical hostnames, and it is more complex to use. To use an external database
to transform an address in a rewrite rule, include the database in the template part of a
rule with the following syntax:

$(map key [$@argument...] [$:default] $)

map is the name assigned to the database by a K command. Like mailer names, map names
are arbitrary names only used inside of the sendmail.cf file. The map name used in the
rewrite rule template must match the name assigned to the database by the K command.
Because most K commands are the result of the m4 FEATURE commands used to create the
configuration, the map names are the same on most Linux systems. (See Chapter 7 for a
description of the K command syntax.)

key is the value used to index into the database. The value returned from the database for
this key is used to rewrite the input address. If no value is returned, the input address is
changed to the key unless a default value is provided using the $:default syntax.

An argument is a value passed to the database program along with the key. Multiple argu-
ments can be used, but each argument must start with $@. The argument modifies the
value returned to Sendmail. Arguments are referenced inside the database as %n, where n
is a digit that indicates the order in which the argument appears in the string of arguments,
when multiple arguments are used. Argument %0 is the key, %1 is the first argument, %2

Chapter 8 Understanding Rewrite Rules240

is the second argument, and so on. An example will make the use of arguments clear.
Assume the following input address:

rebafro@eagle

Further, assume the following database with the internal Sendmail name of “hubs”:

hawk %1<@mailhub.aol.com>

eagle %1<@mailhub.yahoo.com>

dove %1<@mailhub.excite.com>

Finally, assume the following rewrite rule:

R$+@$- $(hubs $2 $@ $1 $)

The input address rebafro@eagle matches the pattern because it has one or more tokens
(rebafro) before the literal @ and exactly one token (eagle) after it. The pattern match
creates two indefinite tokens. The template calls the database hubs and passes it token $2
as the key. The template also contains $@ $1 that says that token $1, which contains
rebafro, is passed to the database as an argument. The database program uses the key
eagle to retrieve %1@mailhub.yahoo.com, then uses the argument rebafro to replace %1,
and returns rebafro@mailhub.yahoo.com to Sendmail.

Before a database can be used, it must be defined in the configuration. This is done with
the K command. To define the hubs database file used in the example above, we might
enter the following command in the sendmail.cf file:

Khubs hash /etc/mail/hubs

The sample hubs database is shown only to illustrate the syntax used to access a database
from a rewrite rule’s template. In reality, there are already more databases available
for Sendmail than you will ever use without creating any of your own. (See Chapter 6,
“Using Sendmail Databases.”) It is far more likely that you will use one of the databases
that come with Sendmail than that you will create one of your own. Listing 8.9 demon-
strates the database syntax using the standard virtusertable database we created in
Chapter 6.

Listing 8.9 Accessing a Database from a Rewrite Rule

[root]# cat /etc/mail/virtusertable

info@patient-rights.org sara@hawk.foobirds.org

@imaginary.com david@lion.mammals.org

sales@outofbusiness.com error:nouser User address is not valid

sales@weRbroke.com error:5.1.5 Destination address invalid

@other.org %1@local.org

+*@thatplace.com %2@newplace.com

Rewrite Rules 241

A
dv

an
ce

d
Co

nf
ig

ur
at

on

PART 3

[root]# sendmail -bt -Ctest.cf

ADDRESS TEST MODE (ruleset 3 NOT automatically invoked)

Enter <ruleset> <address>

> =SDBTest

R$* @ $+ $: $(virtuser @ $2 $@ $1 $: $1 @ $2 $)

> DBTest fred@imaginary.com

DBTest input: fred @ imaginary . com

DBTest returns: david @ lion . mammals . org

> DBTest jim@other.org

DBTest input: jim @ other . org

DBTest returns: jim @ local . org

> DBTest info@patient-rights.org

DBTest input: info @ patient-rights . org

DBTest returns: info @ patient-rights . org

> ^D

Listing 8.9 opens with a cat command to show the contents of the virtusertable on this
sample system. Then sendmail -bt is run and the =SDBTest command is used to show
that the ruleset named DBTest contains only one rule. The pattern in the rule matches any
address that contains zero or more tokens ($*), a literal @, and one or more tokens ($+).
The pattern is simple; the template is the interesting part. It contains the following
components:

$: Ensures that the rule executes only once.

$(Marks the start of the database specification.

virtuser Is the standard map name for the virtusertable inside the
sendmail.cf file.

@ $2 Is the key used to look up a value in the virtusertable. It is a literal @ fol-
lowed by the value obtained from indefinite token $2. Thus, this template will match
only keys that start with an @ in the database.

$@ $1 Is the %1 argument passed to the database. The value obtained from indefi-
nite token $1 is the value of the argument.

$: $1 @ $2 Is the default value used if no match is found in the database. In this
case, the rule will return $1@$2 if no match is found. If a default was not specified,
the key, which in this case is @$2, would be returned if no match is found in the
database.

$) Marks the end of the database specification.

The tests in Listing 8.9 show the effect the database has on different addresses. The first
test passes DBTest the address fred@imaginary.com, which matches the $*@$+ pattern.
The pattern puts fred in indefinite token $1 and imaginary.com in indefinite token $2.

Chapter 8 Understanding Rewrite Rules242

The template uses a literal @ plus the values from $2 (@imaginary.com) as the key. The
database returns david@lion.mammals.org as the value for that key—just what you
would expect from looking at the cat of virtusertable.

The second test demonstrates the use of arguments. It passes the address jim@other.org
to DBTest and gets jim@local.org in response. The key @other.org matches the value
%1@local.org. The $1 token is the argument, so %1 is rewritten to jim, and the final value
returned by the ruleset is jim@local.org.

The final test illustrates the use of the default value. The third test passes DBTest the
address info@patient-rights.org. A quick look at the cat of virtusertable shows
that info@patient-rights.org is a valid key and that sara@hawk.foobirds.org is the
value assigned to that key. But DBTest does not return the value sara@hawk.foobirds.org.
Here’s why. info@patient-rights.org matches the pattern $*@$+. The template then
uses @$2, which in this case is @patient-rights.org, as the key. @patient-rights.org,
which is missing the string info before the @, is not a key found in this database. When
a key is not found in a database, the template returns either the value defined as the
default or, if no default is defined, the key. In this case, if no default were defined the value
returned would be @patient-rights.org. However, a default was defined as $: $1@$2,
so the value returned is info@patient-rights.org—the original address. Using a default
is particularly important in a database like virtusertable, which uses different key for-
mats. By returning the original address when a match is not found, the address can be
passed on to the next rule in line for more processing. A database like virtusertable,
which uses multiple key formats, is normally searched by a series of related rules that try
all of the key formats. If DBTest contained another rule that used the entire input address
as the key, info@patient-rights.org would return sara@hawk.foobirds.org.

The virtusertable used in the examples takes an input address as a key and returns a
different address as the value, in most cases. However, two of the values in the
virtusertable start with the word error and do not appear to be e-mail addresses. They
aren’t. They are values that can be used in a mailer triple, which is a special type of rewrite
rule template used in ruleset 0 (ruleset parse).

Special Ruleset 0 Rewrite Rules
There is a special rewrite rule syntax that is only used in ruleset 0. Ruleset 0 defines the
triple (mailer, host, user) that specifies the mail delivery program, the recipient host, and
the recipient user. The special template syntax used to do this is:

$# mailer $@ host $: user

Special Ruleset 0 Rewrite Rules 243

A
dv

an
ce

d
Co

nf
ig

ur
at

on

PART 3

mailer is a valid mailer name defined by an M command. host is the hostname of the sys-
tem that will handle this mail, and user is the address of the e-mail recipient. An example
of this syntax taken from the sample sendmail.cf file is:

R$* < @$* > $* $#esmtp $@ $2 $: $1 < @ $2 > $3 user@host.domain

The comment user@host.domain at the end of this rule implies that the pattern will
match addresses of that format. That’s almost true. The addresses have already been
through the canonify ruleset before they reach ruleset 0, so the input address will be
“focused” with angle brackets. For example, the e-mail address kathy<@wren.foobirds
.org> would match the pattern and be processed by this rule. The address matches the
pattern $*<@$*>$* because:

� The address has zero or more tokens (the token kathy) that match the first $*
symbol.

� The address has a literal <@.
� The address has one or more tokens (the five tokens wren.foobirds.org) that match

the requirement of the second $* symbol.
� The address has a literal >.
� The address has zero or more—in this case, zero—tokens that match the require-

ment of the last $* symbol.

This pattern match produces two indefinite tokens. Indefinite token $1 contains kathy
and $2 contains wren.foobirds.org. No other matches occurred, so $3 is empty. These
indefinite tokens are used to rewrite the address into the following triple:

$#esmtp $@ wren.foobirds.org $: kathy<@wren.foobirds.org>

The components of this triple are:

$#esmtp esmtp is the internal name of the mailer that delivers the message.

$@ wren.foobirds.org wren.foobirds.org is the recipient host.

$: kathy<@wren.foobirds.org> kathy<@wren.foobirds.org> is the
recipient user.

The mail delivery triple is just that—three pieces of information needed to deliver the
mail, including the mailer name, the host, and the e-mail address. The mail delivery triple
is created in ruleset 0. Sometimes, however, a template that looks like a mail delivery
triple is used for another purpose. These variations on the mail delivery triple can appear
in any ruleset.

Chapter 8 Understanding Rewrite Rules244

Mailer Triple Variations

There are a few variations on the mailer triple syntax that are also used in the templates
of some rules. Two of these variations use only the “mailer” component.

$#OK Indicates that the input address passed a security test. For example, the
address is permitted to relay mail.

$#discard Indicates that the input address failed some security test and that the
e-mail message should be discarded.

NOTE Neither OK, discard, nor error, which is discussed in a second, are
declared in M commands like real mailers. But the Sendmail documentation refers
to them as “mailers” and so do we.

The $#OK and $#discard mailers are used in spam control and security. You will see more
of them in later chapters. The $#discard mailer silently discards the mail and does not
return an error message to the sender. The $#error mailer is another mailer that handles
undeliverable mail, but unlike $#discard, it does return an error message to the sender.
The template syntax used with the $#error mailer is more complex than the syntax of
either $#OK or $#discard. That syntax is shown below:

$#error $@dsn-code $:message

To properly process an error message, the mailer must be $#error. The $:message field
contains the text of the error message that you wish to send. The $@dsn-code field is
optional. If it is provided, it appears before the message and must contain a valid DSN
error code as defined by RFC 1893 (“Mail System Status Codes”) or a valid Sendmail
keyword. Table 8.5 lists the valid Sendmail error code keywords and their meanings.

Table 8.5 Sendmail Error Code Keywords

Keyword Meaning

config An internal configuration error or routing loop was detected.

nohost The host portion of the sender or recipient address is invalid.

nouser The user portion of the sender or recipient address is invalid.

protocol Network delivery failed.

Special Ruleset 0 Rewrite Rules 245

A
dv

an
ce

d
Co

nf
ig

ur
at

on

PART 3

An error message using an error keyword would look something like the following:

R<@$+> $#error $@nouser $:"user address required"

This works, but it is not the recommended format. In fact, not a single error message in
the sendmail.cf file delivered with Sendmail 8.11.0 uses the keyword format. The pre-
ferred format is to use a DSN code in place of the keyword. The codes are clearly defined
in an Internet standard and are understood by all mailers. DSN codes are composed of
three dot-separated components:

class Provides a broad classification of the status. Three values are defined for
class in the RFC: 2 means success, 4 means temporary failure, and 5 means perma-
nent failure.

subject Classifies the error messages as relating to one of eight categories:

0 (Undefined) The specific category cannot be determined.

1 (Addressing) A problem was encountered with the address.

2 (Mailbox) A problem was encountered with the delivery mailbox.

3 (Mail system) The destination mail delivery system is having a problem.

4 (Network) The network infrastructure is having a problem.

5 (Protocol) A protocol problem was encountered.

6 (Content) The message content caused a translation error.

7 (Security) A security problem was reported.

detail Provides the details of the specific error. The detail value is only mean-
ingful in context of the subject code. For example x.1.1 means a bad destination
user address and x.1.2 means a bad destination host address, while x.2.1 means the
mailbox is disabled and x.2.2 means the mailbox is full. There are far too many
detail codes to list here. See RFC 1893 for a full list.

tempfail A temporary failure was detected.

unavailable A delivery resource is not available.

usage The syntax of the delivery address is bad.

Table 8.5 Sendmail Error Code Keywords (continued)

Keyword Meaning

Chapter 8 Understanding Rewrite Rules246

If the error message shown above were rewritten to use the preferred DSN format, it
would be:

R<@$+> $#error$@5.1.1$:"user address required"

This rule returns the DSN code 5.1.1 and the message “user address required” when the
address matches the pattern. The DSN code has a 5 in the class field, meaning it is a per-
manent failure; a 1 in the subject field, meaning it is an addressing failure; and a 1 in the
detail field, meaning that, given the subject value of 1, it is a bad user address.

Error codes and the error syntax can be confusing. We return to this subject again in later
chapters when we look at advanced configuration options, spam control, and security.

In Sum
The bulk of the work done by Sendmail is done by rewrite rules. Correspondingly, rewrite
rules make up the bulk of the sendmail.cf file. The rewrite rules occur in both the
Rewriting Rules section and the Mailer Definitions section of the sendmail.cf file.

A rewrite rule matches an input address against a pattern composed of literals, variables,
and special symbols. If the address matches the pattern, it is rewritten by the rule using
a template that is also composed of literals, variables, and special symbols.

The syntax and usage of rewrite rules are complex, and very little can be done to filter out
this complexity when rewrite rules are examined in detail. However, it is not always nec-
essary to understand all of the details of an individual rule to know what the rules are
doing.

Related rewrite rules are grouped together into rulesets. The purpose of each ruleset is
described in this chapter. It is not necessary to know the function of every rule in the
Canonify2 ruleset to know that it asks DNS for canonical hostnames. When it is neces-
sary to understand the function of a single rule, the comment provided with the rule may
provide all the understanding you need. Finally, if detailed understanding of a specific
rule is necessary, the description of rewrite rule syntax in this chapter will provide all of
the information you need to decipher the command.

Generally, there is no need to read the individual rules that already exist in the
sendmail.cf file. Understanding the purpose of the rulesets is all you need to understand
the functioning of the configuration. The real purpose of understanding the details of
rewrite rule syntax is to write your own rules. It is rarely necessary for you to do so, but
it is part of advanced configuration, as we will see in Chapter 9 and in some of the later
chapters.

9
Special m4

Configurations

Ten percent of the sendmail.cf options handles ninety percent of the configura-
tions. The average Sendmail server can operate with the configuration provided by the
Linux vendor, with little or no change. But not every server is average. Some systems
require special options to handle special configuration requirements. m4 provides a pleth-
ora of configuration options to satisfy any need. Appendix A, “m4 Macro Command Ref-
erence,” lists them all. This chapter helps you make sense of these options by organizing them
into topics.

This chapter is something of a laundry list because it contains a few largely unrelated top-
ics. I originally planned to title this chapter “Advanced m4 Configurations,” but the truth
is that there is nothing more advanced about these configuration options than there is
about any others. The options used later in this book for spam control and security are
at least as complex as any options discussed in this chapter. The real relationship among
the topics in this chapter is that they are configuration options that are needed only in spe-
cial circumstances. You’ll probably discover that you don’t need to use most of them, but
you’ll want to know something about all of them. In this chapter, you’ll learn the advan-
tages and the disadvantages of these options to better decide which ones are right for you.

One common thread that links many of the topics in this chapter is that they relate to the
special needs of your enterprise. m4 configuration commands that are specific to your net-
work or domain logically are placed in the DOMAIN file. This chapter makes extensive use
of the DOMAIN file.

Chapter 9 Special m4 Configurations248

Using the DOMAIN File
At the conclusion of Chapter 5, “Understanding a Vendor’s Configuration,” the
redhat.mc file was rewritten to take advantage of the structure inherent in the Sendmail
m4 configuration directory. In Listing 5.6, the large redhat.mc file was divided into three
files: a macro control file named redhat811.mc, an OSTYPE file named redhat7.0.m4, and
a DOMAIN file named foobirds.m4. Traditionally, the macro control file selects configu-
ration components, the OSTYPE file configures operating system–specific values, and the
DOMAIN file holds all configuration options that are specific to your network or domain.
In the first few sections of this chapter, we stick to the traditional use of these files by mak-
ing our changes to the foobirds.m4 file, which is shown in Listing 9.1.

Listing 9.1 A Sample DOMAIN File

[root]# cat ../domain/foobirds.m4

VERSIONID(`Settings for the foobirds.org domain')dnl

define(`confFORWARD_PATH',

 `$z/.forward.$w+$h:$z/.forward+$h:$z/.forward.$w:$z/.

forward')dnl

define(`confUSERDB_SPEC', `/etc/mail/userdb.db')dnl

FEATURE(always_add_domain)dnl

FEATURE(`access_db')dnl

FEATURE(`blacklist_recipients')dnl

FEATURE(`redirect')dnl

FEATURE(`use_cw_file')dnl

EXPOSED_USER(`root')

[root]# m4 ../m4/cf.m4 redhat811.mc > plain.cf

[root]# cp ../domain/foobirds.m4 ../domain/old-foobirds.m4

All of the commands in this file are explained in Chapter 5, and for the most part these
existing commands don’t have anything to do with the topics covered in this chapter. We
process redhat811.mc, which is the macro control file that uses this DOMAIN file, through
m4 to create plain.cf. That will be the baseline sendmail.cf file against which we can
compare our changes. At the end of Listing 9.1, the original DOMAIN file is copied to old-
foobirds.m4. That provides a backup file in case we don’t like the changes we make in
the next few sections, and an original against which we can compare the changes. These
originals will be an important part of the test that helps us determine the impact of each
additional configuration command.

Address Masquerading 249

A
dv

an
ce

d
Co

nf
ig

ur
at

io
n

PART 3

NOTE Most system administrators follow the lead of the vendors and put the
entire Sendmail configuration in the macro control file. This has the advantages
and disadvantages inherent in having all of the configuration commands in one
file. We use the DOMAIN file in this chapter primarily to illustrate its traditional role
and to show that the vendor’s way of doing things is not the only way. Choose the
configuration format that you like best. They both work.

The laundry list of topics covered in this chapter needs to start somewhere. Let’s start
with address masquerading. Of all the special configuration options discussed in this
chapter, it is the one I use most often.

Address Masquerading
We played with address masquerading in Chapter 7, “The sendmail.cf File,” by storing
a value in the sendmail.cf variable M. The value in M replaced the hostname portion of the
sender address in all outbound mail. In Sendmail parlance, the address is “masqueraded.”

Addresses are masqueraded to hide the real name of the host that was the source of the
mail. This is done when the real hostname should not be advertised to the outside world.
The reasons you might not want to advertise real hostnames vary:

� Perhaps the source host does not collect its own inbound mail.
� Perhaps the firewall does not permit inbound mail to the source host.
� Perhaps your organization uses a standard address format across all hosts.
� Perhaps your security group does not want the names of internal hosts advertised to

the outside world.

All of these are legitimate reasons for masquerading addresses. Of course, when you
decide to use masquerading, you don’t configure it by editing the sendmail.cf file to set
the M variable. Instead, use the m4 configuration commands designed for masquerading.

Enabling Masquerading

Use the MASQUERADE_AS macro to enable masquerading. For example, to enable masquer-
ading as foobirds.org, put the following command in the macro configuration:

MASQUERADE_AS(`foobirds.org’)

The name provided in the MASQUERADE_AS command should be a valid, canonical DNS
name. Often, it is a domain name, instead of a hostname, when masquerading is being
used to create a simplified, standard addressing format for the entire enterprise.

Chapter 9 Special m4 Configurations250

The effect of the MASQUERADE_AS command shown above is the same as setting the
sendmail.cf M variable to foobirds.org. In fact, the only thing that MASQUERADE_AS does
is set a value for M. Listing 9.2 demonstrates this fact.

Listing 9.2 The Impact of MASQUERADE_AS on sendmail.cf

[root]# diff ../domain/old-foobirds.m4 ../domain/foobirds.m4

8a9

> MASQUERADE_AS(`foobirds.org')dnl

[root]# m4 ../m4/cf.m4 redhat811.mc > masquerade.cf

[root]# diff plain.cf masquerade.cf

128c128

< DM

> DMfoobirds.org

In Listing 9.2, the first diff command shows that the only difference between the two
DOMAIN files is that the new file has a MASQUERADE_AS command that is not found in old-
foobirds.m4. The new file is processed through m4 to build Sendmail configurations. The
plain.cf configuration file was created in Listing 9.1. Listing 9.2 creates the configura-
tion file named masquerade.cf. The second diff compares the contents of these two
files. Where the plain.cf file stores no value in M, the masquerade.cf file stores
foobirds.org in M. This is the only difference between these configurations and is the
only change that the MASQUERADE_AS command makes.

From the testing we did in Chapter 7, we know that storing a value in M causes Sendmail
to rewrite the host portion of header sender addresses to the value found in M. There are
some limitations. The value in M is used to rewrite the address only if the input address has
no host part or the host part from the input address is found in class w. Additionally, mas-
querading is only applied to the header sender address. The sendmail –bt tests in Listing 9.3
demonstrates these effects.

Listing 9.3 Testing the Default MASQUERADE_AS Settings

[root]# sendmail -bt -Cmasquerade.cf

ADDRESS TEST MODE (ruleset 3 NOT automatically invoked)

Enter <ruleset> <address>

> $=w

wren.foobirds.org

[172.16.12.3]

wren

localhost

> /tryflags HS

Address Masquerading 251

A
dv

an
ce

d
Co

nf
ig

ur
at

io
n

PART 3

> /try esmtp craig@wren.foobirds.org

Trying header sender address craig@wren.foobirds.org for mailer esmtp

canonify input: craig @ wren . foobirds . org

... Many lines deleted ...

final returns: craig @ foobirds . org

Rcode = 0, addr = craig@foobirds.org

> /try esmtp craig@hawk.foobirds.org

Trying header sender address craig@hawk.foobirds.org for mailer esmtp

canonify input: craig @ hawk . foobirds . org

... Many lines deleted ...

final returns: craig @ hawk . foobirds . org

Rcode = 0, addr = craig@hawk.foobirds.org

> /tryflags ES

> /try esmtp craig@wren.foobirds.org

Trying envelope sender address craig@wren.foobirds.org for mailer esmtp

canonify input: craig @ wren . foobirds . org

... Many lines deleted ...

final returns: craig @ wren . foobirds . org

Rcode = 0, addr = craig@wren.foobirds.org

> ^D

Listing 9.3 is heavily edited to keep it to a reasonable length, but the key elements that
show the default masquerade settings are there. First, we display the contents of class w
to show that it contains only four values; these are the only four names that will be mas-
queraded. Then we use the /tryflags command to request processing for the header
sender (HS) address. The first test uses the /try command to process the address
craig@wren.foobirds.org for the esmtp mailer. The address is rewritten to
craig@foobirds.org, showing that this configuration masquerades wren.foobirds.org
as foobirds.org in the header sender address. Next, we process
craig@hawk.foobirds.org as the header sender address for the esmtp mail. This time the
address is not masqueraded. The reason is that hawk.foobirds.org is not a value in class
w. Finally, the address craig@wren.foobirds.org is processed again. But this time, the
/tryflags are set to request envelope sender (ES) processing. Even though the address is
in class w, it is not masqueraded because it is an envelope address.

Masquerade Options

The default settings of masquerading only header sender addresses and only for host-
names identified in class w are usually adequate. In general, the purpose of masquerading
addresses is to provide the correct reply address to the remote user. The user normally sees
only the header addresses; the envelope addresses are used in the SMTP protocol
exchanges. Thus, header sender masquerading is usually sufficient.

Chapter 9 Special m4 Configurations252

If header sender address masquerading isn’t sufficient for your configuration, there are
two features available to extend masquerading to other types of addresses. These are:

FEATURE(masquerade-envelope) This feature causes Sendmail to masquerade
envelope sender addresses. If this feature had been set, the third test in Listing 9.2
would have resulted in wren.foobirds.org being masqueraded as foobirds.org in
the envelope sender address. This feature is useful if masquerading is being done to
satisfy the security people. They like to be thorough!

FEATURE(allmasquerade) This feature causes Sendmail to masquerade recipient
addresses. Generally, this is not a good idea. Masquerading is intended for hiding
source addresses on outbound mail. Changing the address on inbound mail does not
make much sense, as the user of a local system already knows the real name of that
system. Additionally, adding a masqueraded hostname to an inbound address can
cause the mail to bypass the alias process. Don’t use the allmasquerade feature.

As mentioned above, the second limitation of the default masquerade settings is that only
hosts identified in class w are masqueraded. This default makes sense, because the server
masquerading the mail is often the server that will accept inbound mail. A server accepts
mail for local delivery only for hosts in class w. Limiting masquerading to systems in class
w creates a balance between how inbound mail and outbound mail are handled. But this
only makes sense when the system masquerading the mail also collects the mail for every
system that it masquerades. That is not always the case. A mail relay server may relay out-
bound mail and yet have no role in collecting inbound mail. There are some m4 macros
and features that allow you to create a more flexible configuration.

Class M holds a list of hostnames that should be masqueraded. The values stored in class
M are added to those in class w for masquerading. Values in class M are not, however, equiv-
alent to values in class w because hostnames listed in class M are not aliases for the local
host. Class M is used only for masquerading. The local system will not accept mail
addressed to hosts in class M as local mail. Class M provides a finer level of control by per-
mitting masquerading without granting any other type of access.

The limited_masquerade feature further refines your control over masquerading. By
default, values in both class w and class M are masqueraded. To limit masquerading to only
those values defined in class M, use the limited_masquerade feature. When masquerading
is enabled, masquerading local host aliases is the logical thing to do, but class w can hold
more than just local host aliases. In Chapter 6, “Using Sendmail Databases,” we added
virtual domain names to class w. You may not want to masquerade virtual domain names
in outbound mail because you want external customers to believe that the virtual domains
are real domains. In Listing 6.11, we created a virtual domain named bridal-gowns.com
and stored it in class w. Outbound mail from bridal-gowns.com is masqueraded as mail

Address Masquerading 253

A
dv

an
ce

d
Co

nf
ig

ur
at

io
n

PART 3

from foobirds.org if MASQUERADE_AS(`foobirds.org’) is used with the default set-
tings. But if FEATURE(`limited_masquerade’) is also used, the mail goes out as mail
from bridal-gowns.com, unless you explicitly add bridal-gowns.com to class M.

Use MASQUERADE_DOMAIN to add individual values to class M. For example, to add
hawk.foobirds.org to class M, add the following m4 macro to the macro configura-
tion file:

MASQUERADE_DOMAIN(`hawk.foobirds.org’)

The MASQUERADE_DOMAIN macro is most useful when only a few values need to be added
to class M and when those few values change very infrequently. Use the MASQUERADE_
DOMAIN_FILE macro to load class M from a file when you have more than a few domain
names that you wish to masquerade. Assume that you wanted to load class M from a file
named /etc/mail/masquerade-domain-names. You could add the following m4 macro to
the macro configuration file:

MASQUERADE_DOMAIN_FILE(`/etc/mail/masquerade-domain-names’)

As the macro name MASQUERADE_DOMAIN implies, the values stored in class M do not have
to be hostnames; they can be full domain names. But by default, the hostname portion of
the input address must exactly match a value in class w or class M to be rewritten to the
masquerade value. Thus, if class M contains terns.foobirds.org, the input address
kirstan@terns.foobirds.org is rewritten but the address
kirstan@sooty.terns.foobirds.org is not rewritten. This means that hosts in a
domain are not masqueraded even if the name of the domain is found in class w or class
M. Use FEATURE(`masquerade_entire_domain’) to change this default behavior so that
every component of a domain defined in class w or class M is masqueraded. If masquerade_
entire_domain is specified and class M contains terns.foobirds.org, the input address
kirstan@terns.foobirds.org is rewritten and so is the address
kirstan@sooty.terns.foobirds.org. Listing 9.4 illustrates the effect that these various
options have on masquerading.

Listing 9.4 Testing Special Masquerade Options

[root]# diff ../domain/old-foobirds.m4 ../domain/foobirds.m4

8a9,12

> MASQUERADE_AS(`foobirds.org')dnl

> MASQUERADE_DOMAIN(`foobirds.org')dnl

> FEATURE(`limited_masquerade')dnl

> FEATURE(`masquerade_entire_domain')dnl

[root]# m4 ../m4/cf.m4 redhat811.mc > masquerade.cf

[root]# sendmail -bt -Cmasquerade.cf

Chapter 9 Special m4 Configurations254

ADDRESS TEST MODE (ruleset 3 NOT automatically invoked)

Enter <ruleset> <address>

> $=w

wren.foobirds.org

[172.16.12.3]

patient-rights.org

outofbusiness.com

wren

localhost

imaginary.com

> /tryflags HS

> /try esmtp fred@imaginary.com

canonify input: fred @ imaginary . com

... Many lines deleted ...

final returns: fred @ imaginary . com

Rcode = 75, addr = fred@imaginary.com

> $=M

foobirds.org

> /try esmtp sara@hawk.foobirds.org

Trying header sender address sara@hawk.foobirds.org for mailer esmtp

canonify input: sara @ hawk . foobirds . org

... Many lines deleted ...

final returns: sara @ foobirds . org

Rcode = 0, addr = sara@foobirds.org

> ^D

Listing 9.4 opens with a diff command that shows the four m4 macros added to the
foobirds.m4 configuration file. The four macros tell Sendmail to:

� Masquerade the host portion of outgoing addresses as foobirds.org.
� Store the value foobirds.org in class M.
� Only masquerade addresses if the host portion of the address matches the value in

class M.
� Treat the value in class M as a domain and masquerade any hostname within that

domain.

The new test.mc file is processed through m4 to create a Sendmail configuration file
named masquerade.cf. The sendmail command is run with the –bt option to enter test
mode and with the –C option to load the new masquerade.cf configuration file. In test
mode, the contents of class w is displayed, the /tryflags are set to HS to request header
sender address processing, and the address fred@imaginary.com is processed for the
esmtp mailer. (imaginary.com is one of the virtual domains we created in Chapter 6.) The

Address Masquerading 255

A
dv

an
ce

d
Co

nf
ig

ur
at

io
n

PART 3

address is not masqueraded, even though the host portion of the address is contained in
class w and masquerading is enabled. This test shows the effect of the limited_
masquerade feature, which limits masquerading to values stored in class M and ignores
values defined in class w.

Next, the contents of class M are displayed. It contains foobirds.org, which is the value
we stored in class M with the MASQUERADE_DOMAIN macro. The address
sara@hawk.foobirds.org is processed as a header sender address for the esmtp mailer.
This time the address is masqueraded as sara@foobirds.org. We know that this is not
because hawk.foobirds.org is in class w—it’s not, and even if it was, class w is not being
masqueraded. Additionally, hawk.foobirds.org is not in class M. The only value in class
M is foobirds.org. The reason that hawk.foobirds.org is masqueraded is that this host
is part of the foobirds.org domain and the masquerade_entire_domain option has been
selected. Masquerading all of the hosts within a domain is very useful, particularly when
a single mail server handles the mail for an entire domain.

Sometimes, of course, you want to masquerade most of the hosts in a domain, but not
every host. In those cases, it is often simplest to use the masquerade_entire_domain fea-
ture to include the bulk of the domain’s systems and then use the MASQUERADE_EXCEPTION
macro to exclude the individual hosts that you don’t want to masquerade. The configu-
ration shown in Listing 9.4 masquerades every host in the foobirds.org domain.
Assume that you wanted to masquerade every host except www.foobirds.org. You could
add the following macro to the configuration shown in Listing 9.4 to accomplish this:

MASQUERADE_EXCEPTION(`www.foobirds.org’)

Another exception to masquerading is created for special usernames. Class E contains the
list of usernames that override masquerading. When the user portion of the input address
contains a value found in class E, the host portion of the address is not masqueraded—
even if the host portion of the address is listed in class w or class M. The usernames in class
E are those names that are not unique among the systems being masqueraded. For example,
every system has a root user and many have a postmaster account. If mail from
root@wren.foobirds.org is masqueraded as mail from root@foobirds.org and mail
from root@ibis.foobirds.org is also masqueraded as root@foobirds.org, there is no
way for the mail server to determine the correct host when the recipient replies to
root@foobirds.org. Placing the username root in class E prevents this problem. Use the
EXPOSED_USER macro to add values to class E. The original old-foobirds.m4 file already
had an EXPOSED_USER macro for root because it was derived from the redhat.mc file,
which had this macro. The following two lines add both root and postmaster to class E:

EXPOSED_USER(root)

EXPOSED_USER(postmaster)

Chapter 9 Special m4 Configurations256

The EXPOSED_USER macro is not the only way to handle duplicate usernames. The macro
works well for names like root, which have a special meaning and are found on all Linux
systems, but it may not be the solution you want when the duplicated names are the logon
names of real users. Instead of skipping masquerading for every user who has a duplicated
name, you may want to replace the username portion of the outbound address. Rewriting
usernames is our next topic.

Masquerading Usernames

Transforming the user portion of an outbound address requires a database. Unlike hosts
that can be masqueraded as a single value, each username requires a unique value. The
user database and the genericstable, both described in Chapter 6, can be used to rewrite
usernames. The user database, usually named /etc/mail/userdb.db, handles both
inbound and outbound addresses—duplicating functions performed by the aliases data-
base and the genericstable. The user database does not work very well with masquer-
ading. For that reason, it is not covered here. See Chapter 6 for details of the user
database. The genericstable, on the other hand, is an excellent corollary to masquer-
ading. The genericstable handles the user portion of the outbound address while mas-
querading handles the host portion.

The input address passed to the genericstable for processing must either have no host
portion or a host portion that matches a value in class G. Use the GENERICS_DOMAIN macro
to add individual values in class G. Class G performs the same function for the
genericstable as class M does for masquerading. To configure the genericstable to be
compatible with masquerading, class G should contain the same values as class M.

If you plan to add more than a few values to class G, load class G from a file using the
GENERICS_DOMAIN_FILE macro. Use the same file for class G that you use for class M if you
want to make the genericstable compatible with masquerading. For example, you
might have the following two macros in your configuration if you wanted to masquerade
usernames on exactly the same systems that you masquerade hostnames:

MASQUERADE_DOMAIN_FILE(`/etc/mail/masquerade-domain-names’)

GENERICS_DOMAIN_FILE(`/etc/mail/masquerade-domain-names’)

Also like values in class M, values in class G require an exact match. Use the generics_
entire_domain feature to override this default behavior. The generics_entire domain
feature acts exactly like the masquerade_entire_domain feature described in the previous
section. When generics_entire_domain is used, the values in class G are treated as
domain names and any host within those domains is considered a match for class G. List-
ing 9.5 shows the effect of the genericstable on output addresses.

Address Masquerading 257

A
dv

an
ce

d
Co

nf
ig

ur
at

io
n

PART 3

Listing 9.5 Using genericstable to Masquerade Usernames

[root]# cat /etc/mail/generic-names

craig craig.hunt

kathy kathy.mccafferty

sara sara.henson

david david.craig

becky rebecca.fro

[root]# makemap hash genericstable < generic-names

[root]# diff ../domain/old-foobirds.m4 ../domain/foobirds.m4

8a9,12

> MASQUERADE_AS(`foobirds.org')dnl

> MASQUERADE_DOMAIN(`foobirds.org')dnl

> FEATURE(`limited_masquerade')dnl

> FEATURE(`masquerade_entire_domain')dnl

9a14,16

> FEATURE(`genericstable')dnl

> GENERICS_DOMAIN(`foobirds.org')dnl

> FEATURE(`generics_entire_domain')dnl

[root]# m4 ../m4/cf.m4 redhat811.mc > generics.cf

[root]# sendmail -bt -Cgenerics.cf

ADDRESS TEST MODE (ruleset 3 NOT automatically invoked)

Enter <ruleset> <address>

> /tryflags HS

> /try esmtp kathy@hawk.foobirds.org

Trying header sender address kathy@hawk.foobirds.org for mailer esmtp

canonify input: kathy @ hawk . foobirds . org

... Many lines deleted ...

final returns: kathy . mccafferty @ foobirds . org

Rcode = 0, addr = kathy.mccafferty@foobirds.org

> /try esmtp sara@patient-rights.org

Trying header sender address sara@patient-rights.org for mailer esmtp

canonify input: sara @ patient-rights . org

... Many lines deleted ...

final returns: sara @ patient-rights . org

Rcode = 75, addr = sara@patient-rights.org

> ^D

Listing 9.5 shows the contents of the genericstable. It also shows the m4 macros added
to the configuration for masquerading and for the genericstable. The genericstable
feature adds support for the genericstable to the Sendmail configuration. The
GENERICS_DOMAIN macro and the generics_entire_domain feature parallel the

Chapter 9 Special m4 Configurations258

MASQUERADE_DOMAIN macro and the masquerade_entire_domain feature, allowing the
genericstable to work with masquerading.

The two sendmail –bt tests show the impact that these configuration choices have on
output addresses. In both tests, we are processing header sender addresses for the esmtp
mailer. The first input address is kathy@hawk.foobirds.org. It is rewritten to
kathy.mccafferty@foobirds.org. Masquerading rewrote the host portion of the
address and the genericstable rewrote the user portion. The address was rewritten
because hawk.foobirds.org is a host in the domain foobirds.org, which is identified in
both class M and class G.

The second address is sara@patient-rights.org. sara is a valid key in the
genericstable, and patient-rights.org is a value found in class w. However, in this
case the address is not rewritten because the configuration tells Sendmail to rewrite only
addresses that are part of the domain identified in class M and class G.

The example in Listing 9.5 is very realistic. Many sites rewrite usernames to full names,
and they usually do it while masquerading the hostname of the address. This provides the
simple first.last@domain addressing that many organizations prefer. And it does it
without interfering with virtual domains.

Masquerading hostnames and usernames both involve rewriting input addresses. An even
more direct, though much more rarely used, method for rewriting addresses is to create
your own rewrite rules. That is our next topic.

Writing Local Rules
It is not necessary to directly edit the sendmail.cf file to add “raw” sendmail.cf con-
figuration commands to the file. Sendmail provides several m4 macros for inserting text
directly into sendmail.cf.

The LOCAL_CONFIG macro marks the beginning of text inserted into sendmail.cf at the
end of the Local Info section. LOCAL_CONFIG allows you to define variables, classes, or
databases. Because all of the standard variables, classes, and databases are created or
modified by m4 commands, the LOCAL_CONFIG command is needed only to create private
variables, classes, or databases. Listing 9.5 shows a comment, a D command, a second
comment, and a K command that are to be added to the end of the Local Info section of
the sendmail.cf file.

Writing Local Rules 259

A
dv

an
ce

d
Co

nf
ig

ur
at

io
n

PART 3

Listing 9.6 A LOCAL_CONFIG Example

LOCAL_CONFIG

Store a host name in variable A

DAns.foobirds.org

Define a special NIS database

Knishosts nis -m hosts.byname

Listing 9.6 assumes that A is a private variable and that nishosts is a private database.
The LOCAL_CONFIG example in Listing 9.6 is contrived, but it shows the format used by
all of the macros covered in this section. Each macro is a keyword that marks the start of
a variable-length block of text. The block of text ends when the next m4 macro is encoun-
tered. The variation between the macros covered in this section is that each one inserts the
text into a different part of the sendmail.cf file.

The MAILER_DEFINITIONS macro is used to define a mailer and add it to the Mailer Def-
initions section of the sendmail.cf file. The mailer is defined using the M command
described in Chapter 7. If any special rulesets are required by the new mailer, they are also
defined in the text that follows the MAILER_DEFINITIONS macro.

Rewrite rules, and even entire rulesets, can be added to the Rewriting Rules section of the
sendmail.cf file. Use the LOCAL_RULESETS macro to add an entire ruleset. The first line
following the LOCAL_RULESETS macro is a sendmail.cf S command that defines the name
of the new ruleset. This is followed by the rewrite rules that make up the ruleset. Most
often LOCAL_RULESETS are used for spam filtering or security. We cover the LOCAL_
RULESETS macro in Chapter 11, “Stopping Spam.”

To add individual rules to rulesets 0, 1, 2, or 3, use the LOCAL_RULE_n macro. The n in the
name of this macro is the number of the ruleset to which the rules should be added.
Listing 9.7 shows rules being added to ruleset 1, which is also called the sender ruleset.

Listing 9.7 Creating and Testing Additions to Ruleset 1

[root]# diff ../domain/old-foobirds.m4 ../domain/foobirds.m4

8a9

> MASQUERADE_AS(`foobirds.org')dnl

9a11,13

> FEATURE(`genericstable')dnl

> LOCAL_RULE_1

> R$- < @ $=w . > $: $(generics $1 $: $1 $) < @ $2 .>

[root]# m4 ../m4/cf.m4 redhat811.mc > local-rule1.cf

[root]# sendmail -bt -C local-rule1.cf

ADDRESS TEST MODE (ruleset 3 NOT automatically invoked)

Chapter 9 Special m4 Configurations260

Enter <ruleset> <address>

> =S1

R$- < @ $=w . > $: $(genericstable $1 $: $1 $) < @ $2 . >

> $=G

> $=w

wren.foobirds.org

[172.16.12.3]

wren

localhost

[127.0.0.1]

> /tryflags HS

> /try esmtp craig@wren

Trying header sender address craig@wren for mailer esmtp

canonify input: craig @ wren

Canonify2 input: craig < @ wren >

Canonify2 returns: craig < @ wren . foobirds . org . >

canonify returns: craig < @ wren . foobirds . org . >

sender input: craig < @ wren . foobirds . org . >

sender returns: craig . hunt < @ wren . foobirds . org . >

... Many lines deleted ...

final returns: craig . hunt @ foobirds . org

Rcode = 0, addr = craig.hunt@foobirds.org

> ^D

NOTE As noted in Chapter 8, “Understanding Rewrite Rules,” ruleset 1 is
applied to all sender addresses after ruleset 3 (canonify). Yet ruleset 1 is, by
default, empty. It is only used if you add rules to the ruleset using the LOCAL_
RULE_1 macro.

In Listing 9.7, the diff command shows that this version of the foobirds.m4 file has both
masquerading and the genericstable enabled with default values, meaning that
addresses matching class w and class M will be masqueraded and addresses matching class
G will be processed by the genericstable. By default, the values in class w are not pro-
cessed by the genericstable. Assume that you want to process addresses that match
class w through the genericstable using your own rewrite rules. We accomplish this in
Listing 9.7 by adding a single rule to ruleset 1.

The sendmail –bt test first shows that ruleset 1 contains only the rule that we added. The
$=G command shows that class G is empty, and the $=w command shows the five values
in class w. The address craig@wren is then processed as a header sender address for the

Configuring a Relay Client 261

A
dv

an
ce

d
Co

nf
ig

ur
at

io
n

PART 3

esmtp mail. Despite the fact that wren is not in class G, the user portion of the address is
rewritten using the genericstable because craig@wren matches the pattern in our new
rewrite rule.

LOCAL_RULE_n allows you to specify whether the rules you enter are added to ruleset 0,
1, 2, or 3. The LOCAL_NET_CONFIG macro adds your rewrite rules to ruleset 0, specifically
to the Parse1 ruleset used by ruleset 0. Rules added by the LOCAL_NET_CONFIG macro
have a very specific purpose—they are used to select mail for delivery through local net-
work services before the mail is sent to a relay server. For example, assume that you want
to send all of your mail through a relay server except for mail to your local domain. You
could add the following to your configuration:

LOCAL_NET_CONFIG

R$+ < @ $* $m . > $#esmtp $@ $2.$m. $: $1 < @ $2.$m. >

The template of this rule is a standard mailer triple that takes addresses that match the
pattern, formats them, and hands them to the esmtp mailer for delivery. The pattern
matches addresses that have one or more tokens ($+), a literal <@, zero or more tokens
($*), the value found in variable m, and a literal .>. The m variable holds the local domain
name. If m equals foobirds.org, the address craig<@foobirds.org.> matches the pat-
tern and is sent to esmtp for delivery, but the address marylee<@library.org.> does not
match and falls through to the next rule. If the SMART_HOST relay is defined, the next rule
sends this mail to that relay for delivery. Thus, the LOCAL_NET_CONFIG macro gives you
a means of short-circuiting SMART_HOST relay processing for some addresses.

The LOCAL_NET_CONFIG macro is used only when your local system is a client of a mail
relay server. The m4 macros that you use to configure your system as a relay client are our
next topic.

Configuring a Relay Client
Linux systems support all of the features of Sendmail. Even a desktop Linux system is usu-
ally configured as a Sendmail server that directly collects and directly delivers mail for the
system’s users. In special cases, this standard configuration might not be what you want;
you may want to route all mail through an external server. For example, if the desktop
system is behind a firewall that blocks all incoming and outgoing mail except through an
approved server, you may need to configure your Linux system to use that server for all
mail. The nullclient feature creates this type of configuration. Listing 9.8 shows a complete
nullclient configuration and the effect this configuration has on the sendmail.cf file.

Chapter 9 Special m4 Configurations262

Listing 9.8 A Sample nullclient Configuration

[root]$ cat client-only.mc

OSTYPE(linux)

FEATURE(`nullclient', `wren.foobirds.org')

[root]# m4 ../m4/cf.m4 client-only.mc > client-only.cf

[root]# grep 'wren' client-only.cf

DSwren.foobirds.org

DHwren.foobirds.org

DMwren.foobirds.org

In this case, we don’t use a DOMAIN file. Instead, we replace the entire configuration with
the client-only.mc macro configuration file that contains only two lines. Unlike all of the
other macro control files we have created in this book, client-only.mc does not even
contain a MAILER command. The two lines in the file are a required OSTYPE command to
specify that we’re running Linux and the FEATURE command that creates the nullclient
configuration. The nullclient feature requires an argument to identify the external
server. In Listing 9.8, the remote server is identified as wren.foobirds.org.

When the small client-only.mc file is processed through m4 to produce the client-
only.cf file, you might be surprised to find that this configuration file is no smaller than
any other sendmail.cf file. The nullclient feature does not produce a radically differ-
ent configuration. What it does is store the value from the argument field in the S, H, and
M variables. S, H, and M direct how mail is processed in the nullclient configuration.

You’re familiar with the M variable from the discussion of masquerading. The argument
associated with the nullclient feature is used as the masquerade value so that all mail
sent from the client is masqueraded as if it came from the external server.

The S variable holds the name of the SMART_HOST relay. The SMART_HOST is the server used
for all outbound mail. The H variable holds the name of the MAIL_HUB server that collects
all inbound mail, even mail addressed from one local user to another local user. The role
of the MAIL_HUB is particularly surprising because local mail is not actually handled
locally: the mail is sent to the MAIL_HUB. If H is set to a value, ruleset localaddr (ruleset 5)
sends the mail to the host identified by variable H even if the mail is addressed to a local user.

WARNING The nullclient configuration creates the possibility of mail rout-
ing loops. If an alias or .forward file on the MAIL_HUB forwards mail back to the
client, the client might send the mail right back to the MAIL_HUB, kicking off a mail
loop. Don’t forward mail from a MAIL_HUB to its clients. It is safest for the clients
to download mail using a separate tool, such as IMAP.

Configuring a Relay Client 263

A
dv

an
ce

d
Co

nf
ig

ur
at

io
n

PART 3

The nullclient feature is a simple way to create a client-only Sendmail configuration.
But like many simple solutions, it lacks flexibility. With nullclient, SMART_HOST and
MAIL_HUB are set to the same value. That might not be what you want. You may not even
want to use both a SMART_HOST and a MAIL_HUB. Two define commands can be used to
build the client configuration the way you want it.

define(SMART_HOST, mailer:server) The SMART_HOST option allows you to
identify the external server that should be used for outbound mail from the client.
The optional mailer value can be used to specify the mailer used to relay mail to the
external server. Sensibly enough, the relay mailer is used to relay mail to the exter-
nal server if no mailer value is provided with the SMART_HOST option. The value pro-
vided to the SMART_HOST option is stored in variable S exactly as it is entered—i.e.,
mailer:server or just server.

define(MAIL_HUB, mailer:server) The MAIL_HUB option identifies the external
server that the client uses for inbound mail. Again, an optional mailer can be spec-
ified, and if it isn’t, the relay mailer is used to relay the mail to the server. The value
specified for MAIL_HUB is written to variable H exactly as entered.

NOTE In addition to added flexibility, an advantage of using SMART_HOST and
MAIL_HUB as opposed to nullclient is that you can select the mailer you want to
use. If you use the mailer:server format with nullclient, the mailer:server
value is written to S, H, and M, creating an invalid masquerade value.

When MAIL_HUB is used, mail for all local users is sent to the MAIL_HUB. This might not be
what you want. For example, you might not want to send mail addressed to root to the
MAIL_HUB for delivery. Use the LOCAL_USER macro to identify local users whose mail
should be delivered locally even when a MAIL_HUB is defined. As an example, the following
command prevents mail addressed to root from being sent to the MAIL_HUB for delivery:

LOCAL_USER(root)

The LOCAL_USER macro adds values to class L. There is no macro that loads class L from
a file. If you want to load class L from a file, you must use a sendmail.cf F command to
do so. Assume that you have a file named /etc/mail/local-user that contains a list of
users whose mail should not be sent to the MAIL_HUB. You could add the following to your
macro configuration to load the file into class L:

LOCAL_CONFIG

FL/etc/mail/local-users

Conversely, there may be users whose mail should be sent to the MAIL_HUB even though
those users are not really local users. The idea of “apparently local” users requires some

Chapter 9 Special m4 Configurations264

explanation. When Sendmail is asked to deliver mail to an address that contains a user
part but no host part, it assumes the address is the name of a local user. It verifies this
through the aliasing process by checking whether or not the name is a local login name
or a valid alias. If it is not either one of these things, the name is not considered local and
is rejected. The name appeared to be local but it wasn’t—it was an apparently local name.
It is possible to configure Sendmail to send mail addressed to apparently local users to a
relay server. Use the LUSER_RELAY macro to define the server if you want to do this. The
following command would forward all apparently local users to the server
wren.foobirds.org for processing:

LUSER_RELAY(wren.foobirds.org)

An LUSER_RELAY is most useful in an organization where every user has a unique user-
name. When that is the case, mail can be addressed to the unique username of any user
in the entire organization without adding the host part of the address. The Sendmail client
detects that the address is apparently local, and sends the mail to the LUSER_RELAY. The
relay server must then know how to deliver the mail to the correct user.

One other macro that you will occasionally see discussed for local mail relay is the LOCAL_
RELAY macro. You should ignore it. This is a deprecated macro that has been superseded
by the MAIL_HUB macro. LOCAL_RELAY should not be used in your configuration.

Finally, there are special relay servers for non-SMTP mail. These are:

define(UUCP_RELAY, mailer:server) The server is the name of the system that
handles UUCP mail for all UUCP sites that are not directly connected to the local
host. The mailer defaults to relay. It is very common to send UUCP mail from the
client to the server using SMTP, which is the protocol used by the relay mailer. The
server then forwards the mail on through UUCP. The argument provided to the
UUCP_RELAY option is stored in the sendmail.cf variable Y.

define(FAX_RELAY, mailer:server) The FAX_RELAY option identifies the server
used to deliver mail addressed to the pseudo-domain .FAX, which is obviously an
external fax server. With this option set, users can address mail to a fax machine by
using the syntax expected by the external fax server and the .FAX domain. server is
the name of the external fax server and mailer is the mailer used to reach that server.
mailer defaults to relay. The argument of the FAX_RELAY option is stored in the
sendmail.cf variable F.

define(DECNET_RELAY, mailer:server) The DECNET_RELAY option identifies the
mail gateway to a DECNET network. DECNET is an outdated network that was
used by Digital Equipment corporation mini-computers. The argument of the
DECNET_RELAY option is stored in the sendmail.cf variable C.

In Sum 265

A
dv

an
ce

d
Co

nf
ig

ur
at

io
n

PART 3

define(BITNET_RELAY, mailer:server) The BITNET_RELAY option identifies a
mail gateway to the BITNET network. BITNET is an outdated network that con-
nected IBM mainframes in the days before IBM provided TCP/IP software. The
argument of the BITNET_RELAY option is stored in the sendmail.cf variable B.

The three options LOCAL_RELAY, DECNET_RELAY, and BITNET_RELAY are never used
because the commands or the networks they apply to are outdated. The UUCP_RELAY and
the FAX_RELAY options are rarely used, because it is difficult to find anyone today who has
only a fax machine or a UUCP connection and cannot receive SMTP mail from the Inter-
net. The LUSER_RELAY is rarely used. There is little demand for it because users expect to
add the @host part to e-mail addresses, and thus do not demand anything else. The con-
figuration of a relay client comes down to just the SMART_HOST and MAIL_HUB options.
Despite all of the possible options, client-side relay configuration is fairly simple. At most,
one value is set for an outbound server and one is set for an inbound server.

The server side of relaying is much more complex than the client side. The client simply
points to the server that will handle the mail. The server must decide if it wants to handle
the mail and how to deliver the mail once it accepts it. Configuring a system as a relay
server has become an issue of security and spam control. We will cover the server side of
relaying in Chapter 11.

In Sum
This chapter concludes Part 3, “Advanced Configuration,” with a look at some of the
special m4 configurations that can be used to customize Sendmail for your environment.
Most of the configurations we looked at in this chapter fit well as part of the DOMAIN file
because they relate to something that is special about your domain or your network.

We started by taking a look at address masquerading, which is the Sendmail feature that
rewrites the host part of the sender address to a standard value for all outbound mail.
Masquerading is simple to enable with the MASQUERADE_AS macro, but then there are eight
different masquerading options available for your configuration. As you have seen
before, Sendmail takes a simple idea and makes it complex by providing an array of
choices. Don’t get me wrong. Choice is great. It is what makes Sendmail so powerful and
flexible, but it does add complexity. Attack the complexity by starting with the simple
MASQUERADE_AS configuration. Run a series of tests to see if it gives you what you need.
Then, using this book as a reference, add the features you think you want, testing as you
go, until you get what you really need.

Masquerading the username portion of an e-mail address is generally related to host
address masquerading. There are a couple of different ways this can be done, but the

Chapter 9 Special m4 Configurations266

genericstable is a good choice. The genericstable also has a range of configuration
options, but selecting the correct options is easy once the masquerade configuration has
been finalized. You want to masquerade the user portion of the address when you mas-
querade the host portion. Once you have created the masquerading configuration, simply
replicate that configuration for the genericstable.

Masquerading and databases are one way to rewrite addresses, but they are not the only
way. Addresses can also be directly rewritten using custom rewrite rules. m4 provides sev-
eral macros for inserting rewrite rules and their supporting configuration variables into
the sendmail.cf file. There is no way to really reduce the complexity of rewrite rules. Do
not attempt to write your own rules unless you understand what you are doing.

In addition to the various techniques for rewriting addresses, which usually apply to serv-
ers that are handling their own mail, we looked at the m4 configuration options that are
used to create a mail relay client. m4 provides ten different relay options. Of these, only
two are commonly used. SMART_HOST identifies the server that handles the client’s out-
bound mail, and MAIL_HUB identifies the server that handles the client’s inbound mail.
Understand this, and you have mastered 99 percent of relay client configuration.

In this section, we have examined the inner workings of the sendmail.cf file, the details
of rewrite rule syntax, and special m4 options that rewrite addresses and create relay cli-
ents. To help us understand these complex topics and to help us select the correct options,
we tested the configurations and observed the effects of the configuration commands. In
the next chapter, we will look in detail at the Sendmail test features to better understand
what we have been doing during these tests and to better understand how to apply these
test tools to other problems. Chapter 10, “Testing Sendmail,” opens Part 4, “Maintaining
a Healthy Server,” which covers the ongoing tasks of troubleshooting, spam control, and
security.

