
P A R T I
Introducing Unix

� Chapter 1: History and Background of Unix

� Chapter 2: Which Unix?

� Chapter 3: Some Basic Unix Concepts

2817c01.qxd 11/13/00 11:27 AM Page 1

CO
PYRIG

HTED
 M

ATERIA
L

2817c01.qxd 11/13/00 11:27 AM Page 2

C H A P T E R
O N E

History and Background
of Unix

� What Is Unix?

� Creation and History of Unix

� The Unix Philosophy

� Summary

1

2817c01.qxd 11/13/00 11:27 AM Page 3

4

Welcome to Mastering Unix! As we explained in the introduction, we’ve writ-
ten this book with a variety of users in mind. You might be an old hand at using
Unix systems and you’ve picked this book up (heavy, isn’t it?) to serve as a refer-
ence guide. You could be an intermediate user of Unix or Unix-based operating
systems who’s looking for that extra information that will take you to the next
skill level. You may be someone who knows enough about Unix to get around
your shell Internet account, reading mail and news, but not doing much else. You
might even be completely new to Unix and its derivatives, and have picked this
book up out of idle curiosity. No matter who you are, you’ll find something of use
in this book. Both of us have been using Unix or Unix-based operating systems
for over a decade now, and we learn something new about this magnificent beast
almost every day.

If you’re reading this book because you’ve been told, or have decided, that you
need to learn how to use a Unix system, odds are that you already know at least a
little bit about Unix. If you picked up this book because of its striking cover or
size, or because you’ve heard the term Unix and you’re wondering what it’s all
about, it’s possible that you might not have any idea whatsoever what Unix actu-
ally is—and how it’s different from the other operating systems you’re probably
familiar with.

One position that we hold strongly is that computer users should know the
background of the software they are using. In many cases, all that’s really neces-
sary is a bit of basic history; everyone seems to know that Microsoft Windows is
the brainchild of the Microsoft Corporation. Microsoft is in the news so frequently
that even people who don’t use computers know about Windows. The Macintosh
is slightly less well-known, but it has a reputation of being user-friendly, easy to
learn, and the challenger to Microsoft and the personal computer (PC).

So, you might ask, what’s the point of knowing all that? Well, there are several
points. If you know that Microsoft is responsible for your operating system, your
integrated office suite, and your Internet Web browser, you have some idea of
where that software came from. There’s a company you can point to. With Unix,
it’s a little different—and with all the operating systems that have grown out of
the original Unix, it’s even more different.

To give you an understanding of Unix and where it fits into the world of com-
puting, we’ve decided to start the book with Part I: “Introducing Unix.” This part
of the book contains information about Unix: the history of the operating system,

Chapter 1 • History and Background of Unix

2817c01.qxd 11/13/00 11:27 AM Page 4

5

the various Unix variants, an introduction to the concept of Free Software, and
some basic Unix concepts that you should know before reading further.

In this chapter, we provide a brief introduction to what Unix is and explain a
little bit about its development, history, and philosophy. Chapter 2: “Which
Unix?” introduces the wide variety of Unix variants now available and covers in
more detail the three variants we’ve selected for this book: Linux, FreeBSD, and
Sun Solaris. In addition, we will present a brief history of the Free Software
movement, which affects Unix users in a significant manner. Finally, we give the
opportunity to start building your Unix skills in Chapter 3: “Some Basic Unix
Concepts.” We’ve designed this part of the book to help you to understand why
Unix is what it is and how that affects the concepts, skills, and programs that we
describe in the rest of the book.

What Is Unix?
In the simplest terms, Unix is an operating system. An operating system is the soft-
ware that runs behind the scenes and allows the user to operate the machine’s
hardware, start and stop programs, and set the parameters under which the com-
puter operates. Modern operating systems also do a lot of other things, such as
controlling network connections, but in the strictest sense, these can be thought of
as extra capabilities. The most basic requirement of an operating system is that it
permits the user to operate the computer.

Anyone who has used a computer in the past 10 or 15 years has used an operat-
ing system. The most common personal operating systems in use today are
Microsoft’s Windows family (Windows 95 and Windows 98) and Apple’s MacOS.
These systems were developed for use with the new generations of low-cost, per-
sonal-use computers that became available in the 1980s. As these desktop com-
puters became more powerful and more popular, these personal operating
systems saw a commensurate increase in popularity.

However, the popularity of personal operating systems such as Apple’s and
Microsoft’s is only part of the operating-system story. Well before these systems
existed, academics and computing professionals were using a variety of operat-
ing systems. Most of these are now extinct, but a few—especially Unix—survived
and continued to evolve.

What Is Unix?

2817c01.qxd 11/13/00 11:27 AM Page 5

6

What we now know as Unix is actually an entire family of operating systems.
From IBM’s AIX, Xerox’s Xenix, and Hewlett Packard’s HP-UX to the publicly
licensed Linux and FreeBSD, versions of Unix are produced by a variety of com-
panies and organizations. All of these versions have slight differences, but it is
what they have in common that makes them important.

All Versions of Unix Are Multiuser
Unix was originally designed to be used on large mainframe computers with
many users. Consequently, Unix has support for user accounts and varying levels
of file security, allowing users to keep their files private from one another. Even if
you install a Unix-based operating system on a standalone computer and you are
the only person who will ever use the computer, you will still create at least two
accounts: the root account and a personal user account. Many administrators set
up accounts for nonexistent people so that they can test configurations or pro-
grams under different account settings.

All Versions of Unix Are Multitasking
Unix systems can perform many tasks at once. Unix does this by means of time
slicing (also called true multitasking), which means that each running process gets
to use the computer for a specific period of time. This behavior is in contrast to
task switching, which is the “multitasking” system used by personal operating
systems. Task switching means that each running process gets to use the com-
puter until it has completed a particular task; it’s not really multitasking in the
true sense of the term, so we’ve put quotation marks around it. When we talk
about multitasking in this book, we are talking about time slicing, the true form
of multitasking.

All Versions of Unix Can Use the Same Commands
It doesn’t matter what kind of Unix-based operating system you’re using,
whether it’s Linux, FreeBSD, Solaris, or some commercial Unix. When using a
Unix-derived operating system, users can issue commands to the system by
means of a command shell. The command shell is separate from the operating sys-
tem; in fact, the shell acts as a translator between the commands you enter with
the keyboard and the operating system itself. A multitude of shells is available to
the Unix user. These shells can be run on any version of Unix, so that the same

Chapter 1 • History and Background of Unix

2817c01.qxd 11/13/00 11:27 AM Page 6

7

commands will work on any machine using that shell. We’ve devoted an entire
part of this book to the bash shell, which is one of the most commonly used com-
mand shells.

What Does This Mean to the End User?
To the user, then, all versions of Unix look pretty much alike. With only some
minor differences, a user will use one given Unix machine in the exact same way
as she would use any other Unix machine. The display might be a bit different,
and the exact syntax of commands might be altered (if a command shell different
from her regular shell is installed), but she can still perform her regular tasks with
the same commands. The differences between the various Unices (the plural of
Unix) come into play when you reach the level of programmers and system
administrators. These are the people to whom the nuts and bolts of different sys-
tems become critically important.

If you are wondering whether it’s better to use Unix A or Unix B, or if you’re
caught in the Linux vs. FreeBSD dilemma, don’t worry. Pick one and get to know
it. When you’re comfortable with that one, you might want to explore another.
However, you will never find that learning one particular Unix makes all other
Unices incomprehensible; Unix just doesn’t work that way.

When non-Unix people hear Unix people talking about command languages,
shell environments, and so on, they often get the idea that Unix is an obscure and
old-fashioned operating system that makes computing difficult by requiring the
user to memorize complicated command syntaxes. Although it is true that Unix
can be operated entirely from a command-line interface, it may come as a sur-
prise to some of these folks to learn that Unix has a windowing system that is
both older and more sophisticated than the ones that form the basis of the per-
sonal operating systems. Hundreds of graphical applications, including word
processors, spreadsheets, image manipulation software, and others, can be run on
Unix machines. With the continuing development of applications for Unix plat-
forms and the transfer of popular Windows-based programs to Unix, the popu-
larity (and ease-of-use) of this powerful operating system is bound to blossom.

So what is Unix? Unix is a powerful multiuser, multitasking family of operating
systems. Unix is mature technology, having its genesis in the late 1960s, but it is
thoroughly modern—it runs on just about any computing hardware you can
think of.

What Is Unix?

2817c01.qxd 11/13/00 11:27 AM Page 7

8

Creation and History of Unix
Once upon a time, every computer came with its own operating system and cost
thousands of dollars. The idea that an operating system could be independent of
the hardware had not been developed. How is that different from today? Today,
the computer you buy at Best Buy has an operating system preinstalled, but you
can change that operating system if you want. For example, the Windows operat-
ing system is not integrated into the hardware of your new Compaq.

In the very earliest days of computing, of course, there were no operating sys-
tems. Computing was done by human operators on bare machines. This meant that
for every computing task that needed to be done, the computer would have to be
configured for that specific task. This was a very cumbersome way to do comput-
ing tasks, and computer scientists were always looking for ways that the machine
itself could take over more of the work of processing data.

As hardware got more powerful, and the computers’ internal switches were fur-
ther automated, programmers began writing programs that could reconfigure the
machine on the fly. Each computer manufacturer would write operating programs
that were specific to the particular hardware they’d designed. This was more or
less the state of affairs until the late 1970s and early 1980s, when the popular per-
sonal operating systems were first conceived and developed. Apple, for example,
wrote its operating systems specifically for the hardware they’d designed, while
Microsoft developed its system specifically for Intel’s processors.

The Story of C
Meanwhile, others were looking for ways to use operating-system software to get
the same behaviors from different types of hardware, so that a new operating sys-
tem didn’t need to be written for each new computer. In 1965, two computer scien-
tists at Bell Labs, now known as Lucent Technologies, wrote the first incarnation of
Unix, which ran on a Digital Equipment Corporation (DEC) PDP-7. When they
acquired a PDP-11/20, the scientists (Dennis Ritchie and Ken Thompson) decided
to port Unix to the new computer. (To port a piece of software is to rewrite it for a
different platform.) The experience they gained in this exercise resulted in Ritchie’s
conception and design of the C programming language, still one of the most useful
programming languages for Unix users.

Chapter 1 • History and Background of Unix

2817c01.qxd 11/13/00 11:27 AM Page 8

9

The idea behind C was to create a programming language suitable for creating
an operating system. Once C was usable, programmers could then create compil-
ers for the various hardware devices; the compilers would translate C instructions
into the machine’s native command language, no matter what that language was.
C turned out to be very successful, because it filled a need that everyone had. In
fact, it was so successful that in 1973, Ritchie and Thompson completely rewrote
Unix in C.

In the meantime, Bell Labs’ parent company, AT&T, had been declared a mono-
poly by the United States Federal Trade Commission. As a result of this declara-
tion, AT&T was subject to certain restrictions on its behavior. Partly because of
these new requirements, Bell Labs began making Unix available to universities,
free of charge. This was quite popular, and Unix became widely used in the acad-
emic environment. It subsequently began to propagate into the private sector
when students began to graduate or leave school, taking their knowledge and
affection for Unix with them.

The Rise of Unix Derivations
In 1978, AT&T announced that they would begin charging everyone, including
academic institutions, for the Unix source code. In response, computer scientists
at the University of California at Berkeley announced that they would create their
own Unix-like system, to be called BSD (Berkeley Software Distribution) Unix.
BSD was released under a very permissive license and has gone on to form the
basis of many other Unix variants.

In 1987, around the same time that version 4.3 of BSD was being released,
AT&T and Sun Microsystems agreed to cooperate on a plan to reintegrate the
AT&T and BSD versions of Unix. Other vendors who had created their own
Unices in the intervening years, such as IBM and Hewlett Packard, felt threatened
by this plan and formed an organization called the Open Software Foundation.
Although OSF-1, the Foundation’s 1991 version of Unix, was never a major hit,
parts of it managed to find their way into other distributions.

The Internet and Unix
In the mid to late 1980s, other events were occurring that would affect the growth
and development of Unix. The Internet began to establish a real presence in uni-
versities and research labs. This rapid access to information and colleagues made

Creation and History of Unix

2817c01.qxd 11/13/00 11:27 AM Page 9

10

possible a new type of software development. In previous years, programmers
and developers worked in laboratories together. The physical proximity of other
team members and the computers fueled innovation and hard work; this method
of development was typified by MIT’s Research Lab, home of many of the inven-
tions we take for granted today.

However, the Internet changed everything. Programmers were no longer
required to be in the same building or city. With instant communication via e-
mail and the ability to share code files with negligible cost, programmers soon
realized that they could work on software projects with colleagues thousands of
miles away or on different continents. The result of this realization was that Unix
variants began appearing that were free for the downloading. Anyone with a yen
to hone their programming skills could work on these distributions and con-
tribute their work back to the project.

These free Unices had the effect of reenergizing enthusiasm for Unix on college
campuses, because students could download them for free and install them on
their personal computers. The result was that computer science students now had
the same programming environment in their dorm rooms or apartments as they
used in their classes—no more fighting for time on a mainframe computer or
waiting in line for a computer in the campus-research laboratory. The additional
time has meant that college students are now as involved in the Unix community
as those who are professional Unix administrators or programmers.

Unix Today
All the developments of the last 40 years have brought us to the vibrant Unix
community of today. Linux and FreeBSD, two free Unices, are very popular on
college campuses, and Linux is beginning to make inroads into business and the
popular consciousness. CNN’s online news site, http://www.cnn.com, even runs
regular columns on Linux in their Technology section.

Although nowhere near as popular as Microsoft’s operating systems, Linux
and FreeBSD are beginning to establish a toehold in the personal-computer
market, as consumers are beginning to learn that they can have a full-power,
industrial-strength operating system at low cost. Businesses are beginning to take
advantage of Linux and FreeBSD to save money on small servers for their inter-
nal use.

Chapter 1 • History and Background of Unix

2817c01.qxd 11/13/00 11:27 AM Page 10

11

Meanwhile, Unix and Unix-derived operating systems are the de facto standard
for large servers. AIX, HP-UX, and Sun’s Solaris are extremely popular for serv-
ing large Internet sites and databases. We’ve heard several reports from system
administrators at large corporations who use a Unix-derived operating system on
their Web and e-mail servers to provide reliability and lengthy up-times, even if
the majority of the company’s computers are managed with Windows NT so that
Windows software programs can be used.

The Unix Philosophy
We’ve covered the history of Unix, but is that what makes Unix special? Not com-
pletely. From the very beginning, a number of assumptions have been built into
the design of Unix. Over time, these ideas have proven themselves as valid and
have taken on the quality of an entire philosophy. Some of the main ideas of this
Unix philosophy are explained below; you’d probably get quite a few suggestions
for other main components of the concept, were you to ask around, but these
seem to be the core of everyone’s idea of Unix.

Keep things small: Each component of the system should be as small and
simple as possible. Each component may not be especially powerful by
itself, but small components can be combined into powerful and flexible
complex objects. Small programs are easy to understand and maintain,
and simple programs can often be adapted to unforeseen uses. Small mod-
ules can be used to affect the kernel’s behavior, so that only one action or
setting is controlled by each module.

Everything is configurable: The behavior of any particular program or
command can be configured in as many different ways as imaginable.
Users can configure their individual accounts as they like, while adminis-
trators can configure general system settings or regular routines to save
time and effort. If you find a Unix program that isn’t configurable, it’s an
anomaly.

Everything is consistent: Every aspect of a Unix system is represented as
a file. Text documents, executable programs, system features, hardware
devices, and just about anything else you can think of are represented by
the system as a file. A set of consistent ways of dealing with system features

The Unix Philosophy

2817c01.qxd 11/13/00 11:27 AM Page 11

12

has been developed based on this idea. We explain this concept in more
detail in Chapter 3: “Some Basic Unix Concepts.”

Captive user interfaces are avoided: The more popular personal operat-
ing systems, such as MacOS and Windows, are based on the assumption
that the user of a program is always a human. This ignores the fact that the
user of a program might be another program. In those operating systems,
the user interface is therefore captive to the human user; if you don’t click
the button in a dialog box, the operating system patiently waits until you
do. This can take hours or days. Unix avoids this problem wherever possi-
ble by allowing programs to function in noninteractive modes. These
modes allow programs to be chained together to perform complex tasks
without any intervention from the user.

Automation is possible: Many aspects of the Unix interface allow for
automation. The Unix shells, in addition to being simple command inter-
preters, are also program interpreters. Anything that can be done from the
keyboard can also be done from within a program. This means that you
can write scripts that will call certain programs automatically at a given
time or system state. Most system administrators automate routine tasks,
such as backups, to avoid having to do such jobs by hand. Unix is power-
ful enough to handle most of its administration tasks by itself, with the
only human intervention required being a check of the results.

Summary
Unix is an operating system with a long and rich history, as computer history
goes. Since Unix’s roots are found in mainframe computers, the operating system
includes support for multiple users, wise allocation of system resources through
multitasking, configurability and flexibility for user and administrator prefer-
ences, and the ability to use the same commands regardless of the Unix variant
being used.

The underlying Unix philosophy keeps the operating system flexible. Unix is
small and modular, effectively organized, responsive to user needs yet able to run
multiple automatic processes, and consistent in its operation and output. With
Unix, you can perform simple tasks or complicated programming operations.
Whatever you choose to do with a Unix computer, Unix will be able to keep up.

Chapter 1 • History and Background of Unix

2817c01.qxd 11/13/00 11:27 AM Page 12

