

Chapter

1

Declarations and
Access Control

SUN CERTIFIED PROGRAMMER FOR JAVA 2
PLATFORM EXAM OBJECTIVES COVERED IN
THIS CHAPTER:

�

Write code that declares, constructs, and initializes

arrays of any base type using any of the permitted

forms both for declaration and for initialization.

�

Declare classes, inner classes, methods, instance

variables, static variables, and automatic (method

local) variables, making appropriate use of all per-

mitted modifiers (such as

public, final, static,

abstract,

and so forth). State the significance of

each of these modifiers, both singly and in combi-

nation, and state the effect of package relation-

ships on declared items qualified by these

modifiers.

�

For a given class, determine if a default constructor

will be created and, if so, state the prototype of

that constructor.

�

State the legal return types for any method, given

the declarations of all related methods in this or

parent classes.

CO
PYRIG

HTED
 M

ATERIA
L

T

he common theme of these four objectives is decla-
ration. Declaration tells the compiler that an entity exists and also
provides the name and nature of the entity. Since everything you
create has to be declared, you must know how to declare correctly
and be able to make appropriate use of all the declaration tools avail-
able to you. This objective recognizes the importance of declarations
by requiring you to know everything about Java declarations.

�

Write code that declares, constructs, and
initializes arrays of any base type using
any of the permitted forms both for dec-
laration and for initialization.

T

his objective addresses your understanding of all aspects of
arrays. Arrays are the simplest possible data collection and are sup-
ported by all modern programming languages. However, Java’s
arrays are different from those in other languages, especially C and
C++, because they are actually exotic objects. This objective recog-
nizes the importance of being able to make use of all the functionality
of arrays. You will be expected to know how to declare, construct,
and initialize arrays.

Critical Information

You will need to know about the following aspects of arrays:

�

Declaration

�

Construction

�

Initialization

Chapter 1 �

Declarations and Access Control

3

These three steps are the first stages of an array’s life cycle. The exam
expects you to be familiar with all aspects of array declaration, con-
struction, and initialization.

Array Declaration

Java supports two formats for array declaration. The first format is
the classical C/C++ syntax, in which the element type comes first, fol-
lowed by the variable name, followed by square brackets. This syntax
is illustrated in line 1 as follows. The second format begins with the
element type, which is followed by the square brackets and then by
the variable name; the second format is illustrated in line 2 as follows.

1. int intarr[];

2. int[] intarr;

Array elements may be any of the following:

�

Primitives (as shown previously)

�

Object references

�

References to other arrays

Declaration of arrays of primitives is illustrated in the preceding code.
The following code shows the two ways to declare an array of object
references:

1. String myStrings[];

2. String[] myStrings;

When an array’s elements are references to other arrays, we have a
special case of an array of object references. However, the declaration
syntax is different from the syntax shown previously. The effect is like
a multidimensional array, as shown in the following code. In line 3,
the two declaration formats are combined, resulting in a declaration
that is legal but difficult to read.

1. float[][][][] matrixOfFloats;

2. float matrixOfFloats[][][][];

3. float[][][] matrixOfFloats[];

Java 2 Exam Notes

4

Array Construction

Array declaration is like declaration of any other object reference
variable. The declaration only tells the compiler about the type of
the variable. No runtime object is created until

new

 is invoked. Note
that the declaration does not specify the number of elements in the
array; the number of elements is supplied at runtime, as shown in
the following examples:

 1. long longarr[];

 2. longarr = new long[10];

 3. String[] myStrings;

 4. myStrings = new String[22];

 5. double[][] matrixOfDoubles;

 6. matrixOfDoubles = new double[1152][900];

 7. int[][] matrixOfInts;

 8. matrixOfInts = new int[500][];

 9. matrixOfInts[0] = new int[33];

10. matrixOfInts[1] = new int[44];

Line 6 illustrates the most common way to construct the equivalent of
a two-dimensional array. The

matrixOfDoubles

 array looks like a
2-D array and can be treated as such. In reality it is an array of 1152
arrays of doubles. Each of those arrays of doubles has 900 elements.
Line 8 constructs an array of 500 arrays of ints; those 500 arrays of
ints are not yet allocated, and each of them may have a different
length, as shown in lines 9 and 10.

Array Element Initialization

When an array is allocated, all of its elements are initialized. The ini-
tialization value depends on the type of array element, as shown in
Table 1.1. The values are easy to remember because the numeric types
are initialized to zero, and non-numeric types are initialized to values
that are similar to zero. Also, these are the same values that are used
for construction-time default initialization of an object’s fields. The
default for

char

 is Unicode zero, which is the null character.

Chapter 1 �

Declarations and Access Control

5

Declaration, Construction, and Initialization in a

Single Statement

An array can be declared, constructed, and initialized in a single state-
ment, as illustrated below:

double[] ds = {1.2, 2.3, 3.4, 4.5, Math.PI, Math.E};

With this syntax, the invocation of

new

 and the size of the array are
implicit. The array elements are initialized to the values given
between the brackets, rather than their default initialization values.

Exam Essentials

Know how to declare and construct arrays.

The declaration
includes one empty pair of square brackets for each dimension of the
array. The square brackets can appear before or after the array name.
Arrays are constructed with the keyword

new

.

T A B L E 1 . 1 :

Array Element Initialization Values

Element Type Initial Value

byte

0

short

0

int

0

long

0

char

'\u0000'

float

0.0f

double

0.0d

boolean

false

Object Reference null

Java 2 Exam Notes

6

Know the default initialization values for all possible types.

The
initialization values are zero for numeric type arrays,

false

 for bool-
ean arrays, and

null

 for object reference type arrays.

Know how to declare, construct, and initialize in a single statement.

This notation uses initialization values in curly brackets; for example,

int[] intarr = {1, 2, 3};

.

Key Terms and Concepts

Array declaration

The square brackets in the declaration can
appear before or after the variable name.

Default initialization values

An array’s elements are initialized to
zero for numeric types and to values that resemble zero for non-
numeric types, as shown in Table 1.1.

Sample Questions

1.

Which of the following are legal array declarations?

A.

int[] z[];

B.

String[][] z[];

C.

char[] z

;

D.

char z[];

E.

float[5] z;

Answer:

All the declarations are legal except E. You cannot
specify an array’s size in its declaration.

2.

What are the default initialization values for an array of type

char

?

Answer:

'\u0000' (the null character). Table 1.1 lists initializa-
tion values for arrays of all primitive types.

Chapter 1 �

Declarations and Access Control

7

3.

What are the default initialization values for an array of type

boolean

?

Answer:

false.

Table 1.1 lists initialization values for arrays of
all primitive types.

4.

Which of the following are legal ways to declare, construct, and
initialize an array in a single line?

A.

char[3] cs = {‘a’, ‘b’, ‘c’};

B.

char[] cs = [‘a’, ‘b’, ‘c’];

C.

char[] cs = {‘a’, ‘b’, ‘c’, ‘d’};

D.

char cs[] = {‘a’, ‘b’, ‘c’, ‘d’};

Answer:

C and D are both legal. A is illegal because the array size
is stated explicitly. B is illegal because it uses square brackets
where curly brackets are required.

�

Declare classes, inner classes, methods,
instance variables, static variables, and
automatic (method local) variables, making
appropriate use of all permitted modifiers
(such as

public, final, static, abstract,

 and
so forth). State the significance of each of
these modifiers, both singly and in combi-
nation, and state the effect of package
relationships on declared items qualified
by these modifiers.

T

his objective covers a lot of subject matter (and paper!). The
big idea is modifiers. This section reviews Java’s modifiers, including
access modifiers, which relate to the phrase in the objective that men-
tions “the effect of package relationships.”

Java 2 Exam Notes

8

It is possible to write Java programs that make little or no use of
modifiers. However, appropriate use of modifiers—especially
access modifiers—is essential for creating classes that are secure,
object-oriented, and maintainable. This objective recognizes the
importance of a working knowledge of Java’s identifiers.

Critical Information

A modifier is a Java keyword that affects the behavior of the feature
it precedes. (A feature of a class is the class itself, or a method, vari-
able, or inner class of the class.) Java’s modifiers are listed as follows:

� private

� protected

� public

� final

� abstract

� static

� synchronized

� transient

� native

� volatile

The first three of these modifiers (private, protected, and public)
are known as access modifiers. The remaining modifiers do not fall
into any clear-cut categories. (Another modifier, strictfp, is a new
addition to Java 2. It is discussed briefly in Chapter 4, “Language
Fundamentals,” but does not appear on the exam.)

The Access Modifiers

There are four possible access modes for Java features: public,
protected, default, and private. Three of these modes (public, pro-
tected, and private) correspond to access modifiers. The fourth mode
(default) is the default and has no corresponding keyword modifier;
a feature is default if it is not marked with private, protected, or

Chapter 1 � Declarations and Access Control 9

public. Access modifiers generally dictate which classes, and not
which instances, have access to features. You may use one access
modifier at most to modify a feature. Automatic variables (that is,
variables defined within the scope of a method or code block) may not
take access modifiers.

The most restrictive access modifier is private. Only methods, data,
and inner classes may be private; private classes are not permitted. A
private method may only be called within the class that defines the
method. A private variable may only be read and written within the
class that defines the variable. A private inner class may only be
accessed by the containing class; subclasses of the containing class
may not access a private inner class. The granularity of private access
is the class level, not the instance level: if a class has a private feature,
then an instance of the class may access that private feature of any
instance of the class.

“Default” is the default mode in the absence of a private,
protected, or public modifier. This mode has no corresponding
Java keyword. Classes, methods, and data may be default. A default
class may be accessed by any class within its class’s package. A default
method of a class may be called from anywhere within the class’s
package. A default variable of a class may be read and written from
anywhere within the class’s package. A default inner class may be
accessed by a subclass of the containing class, provided the containing
class and the subclass are in the same package.

The protected access mode grants access permission to all members of
the owning class’s package, just as default access does. Moreover,
additional access is granted if the class that owns a protected feature
has a subclass in a different package. In this case an instance of the
subclass may access protected data and call protected methods inher-
ited from the parent instance. A protected inner class may be accessed
by any subclass of the containing class, even if the subclass is in a dif-
ferent package from the containing class.

Java 2 Exam Notes10

The most accessible access modifier is public. A public class may be
accessed by any class. A public method may be called by any class
(provided the calling class may access the class that owns the method
in question). A public variable may be read and written by any class
(provided the reading/writing class may access the class that owns the
variable in question). A public inner class, like a protected inner class,
may be accessed by any subclass of the containing class; moreover,
public inner classes are a bit more available for manipulation via
Java’s reflection mechanism. The exact details are beyond the scope
of the exam.

Table 1.2 summarizes Java’s four access modes.

Table 1.3 shows which access modes are available to which feature
types.

T A B L E 1 . 2 : Java’s Access Modes

Access

Mode Java Keyword Methods and Fields Inner Classes

Private private Accessible only by
owning class

Accessible only
by owning class

Default (no keyword) Accessible by all
classes in package
of owning class

Accessible by
same-package
subclasses of
enclosing class

Protected protected Accessible by all
classes in package
of owning class and
by subclasses of
owning class

Accessible by all
subclasses of
enclosing class

Public public Universal access Accessible by all
subclasses of
enclosing class,
plus some
reflection

Chapter 1 � Declarations and Access Control 11

Access and Packages

A package defines a namespace for classes: Every class within a pack-
age must have a unique name. Packages are hierarchical: A package
may contain other packages. Package naming uses a period (.) to
separate the components of a package hierarchy name. Thus, for
example, the java package contains an awt subpackage, which in
turn contains a subpackage called event. The fully qualified name
of this last package is java.awt.event. Within this package is a
class called AdjustmentEvent, whose fully qualified name is
java.awt.event. AdjustmentEvent. No other class named
AdjustmentEvent may exist in the java.awt.event package; how-
ever, it is legal for a class named AdjustmentEvent to exist in any
other package.

One way to create a Java class that resides inside a package is to put
a package declaration at the beginning of your source file. (Further
details on package creation are not required knowledge for the Pro-
grammer’s Exam and are beyond the scope of this book.) If you do
not explicitly use a package declaration, a package might be implic-
itly created for you. At runtime, the Java environment creates a
“default package” that contains all classes in the current working
directory that do not explicitly belong to other packages.

Figure 1.1 shows a superclass, Parent, which is part of the packageA
package. The Parent superclass has two subclasses. One subclass,
childA, is also in the packageA package. The other subclass, childB,
is in a different package, called packageB.

T A B L E 1 . 3 : Features and Access Modes

Access Mode Classes Methods Class Variables Inner Classes

Private NO YES YES YES

Default YES YES YES YES

Protected NO YES YES YES

Public YES YES YES YES

Java 2 Exam Notes12

F I G U R E 1 . 1 : Package and subclass relationships

The childB subclass has access to all features of the Parent superclass
that are public or protected. The childA subclass also has access to
the public and protected features of Parent. In addition, since childA
and Parent are in the same package, childA has access to all default
features of Parent; this access would be the same if childA were not
a subclass of Parent.

Default Access in Interfaces

In a class definition, the default access mode for a method is, of
course, “default.” This is not the case for a method in an interface. All
interface methods are inherently public, so the default access mode
for a method in an interface is public. Thus the following two inter-
face versions are functionally identical:

Interface Inter { // no access modifier

 double getWeight(Animal theAnimal);

}

Interface Inter { // explicitly public

 public double getWeight(Animal theAnimal);

}

You are not allowed to apply any access modifier other than public
to a method in an interface. The following interface generates a com-
piler error.

packageA
packageB

class ChildB
class ChildA

class Parent

Chapter 1 � Declarations and Access Control 13

Interface BadAccess {

 protected double x(); // Compiler error

}

Access Examples

This section presents several examples of the use of access modifiers.
All the examples refer to a simple class called packageA.Parent,
which is listed below:

1. package packageA;

2.

3. public class Parent {

4. private int iPrivate;

5. int iDefault;

6. protected int iProtected;

7. public int iPublic;

8. }

The class definitions that follow illustrate each of the four Java access
modes. All the code compiles; lines that illustrate illegal access
attempts have been commented out.

The first example illustrates the private access mode. Since only the
Parent class may access a private feature of the Parent class, our
example is an expansion of Parent.

 1. package packageA;

 2.

 3. public class Parent {

 4. private int iPrivate;

 5. int iDefault;

 6. protected int iProtected;

 7. public int iPublic;

 8.

Java 2 Exam Notes14

 9. void xxx() {

10. iPrivate = 10; // My own

11. Parent other = new Parent();

12. other.iPrivate = 20; // Someone else’s

13. }

14. }

Line 10 is an obvious use of the private access mode. The current
instance of the Parent class is modifying its own version of iPrivate.
Line 12 is less obvious: the current instance is modifying the iPrivate
of a different instance of Parent. This example illustrates the princi-
ple that access modifiers grant access to classes, and not to instances.

The next example illustrates the default access mode, which grants
access permission to all classes in the same package as the class that
owns the default feature. Here we will create a second class in the
packageA package.

 1. package packageA;

 2.

 3. public class InSamePackage {

 4. void makeItSo() {

 5. Parent parent = new Parent();

 6. // parent.iPrivate = 10;

 7. parent.iDefault = 20;

 8. parent.iProtected = 30;

 9. parent.iPublic = 40;

10. }

11. }

Line 6 has to be commented out, because the attempted access to
iPrivate in another class would not be allowed. Line 7 is legal
because iDefault is a default variable in a class in the current pack-
age. Line 8 is legal because iProtected is a protected variable in a

Chapter 1 � Declarations and Access Control 15

class in the current package. Line 9 is legal because iPublic is a pub-
lic variable.

The next example illustrates the protected access mode, which grants
access permission to all classes in the same package as the class that owns
the protected feature, as well as to subclasses of the class that owns the
feature. Here we will create a class in a second package, called packageB.

 1. package packageB;

 2.

 3. public class InDifferentPackage

 4. extends packageA.Parent {

 5. void aMethod() {

 6. packageA.Parent parent =
 new packageA.Parent();

 7. // parent.iPrivate = 10;

 8. // parent.iDefault = 20;

 9. // parent.iProtected = 30;

10. iProtected = 40;

11. parent.iPublic = 50;

12. }

13. }

Lines 7 and 8 have to be commented out for reasons that were illus-
trated in the previous examples. It may be surprising that line 9 does
not compile and also must be commented out. The iProtected vari-
able is protected; an instance of a subclass in a different package (such
as the current instance of packageB.InDifferentPackage here) does
not have access to the iProtected of every instance of packageA
.Parent. Rather, an instance of the subclass may access the one
instance of iProtected that the subclass instance inherits by virtue of
extending Parent. The current instance of InDifferentPackage may
access its own iProtected, as in line 10. Of course, line 11 compiles
because it represents access to a public feature.

Java 2 Exam Notes16

The last example in this section illustrates access and inner classes.
Consider the following superclass:

 1. package packageX;

 2.

 3. public class Parent {

 4. protected class Prot { public Prot() {} }

 5. }

The superclass has a subclass in a different package:

 6. package packageY;

 7. import packageX.*;

 8.

 9. public class Child extends Parent {

10. void xxx() {

11. Prot p = new Prot();

12. }

13. }

The Prot inner class is protected, so it is accessible from a subclass
(Child in packageY) of the enclosing class (Parent in packageX), even
though the parent and child classes reside in different packages. If the
inner class were private or default, line 11 would not compile.

The Miscellaneous Modifiers

The remainder of this section examines the Java modifiers that have
nothing to do with access. They are considerably simpler than the access
modifiers. We will review each of the following keywords in turn:

� final

� abstract

� static

� native

� transient

Chapter 1 � Declarations and Access Control 17

� synchronized

� volatile

final

The final keyword conveys the sense that a feature may not be
altered. Classes, methods, and variables may be final. A final class
may not be subclassed, and a final method may not be overridden.

A final variable, once initialized, may not be written. The declaration
and initialization of a final variable may appear in the same statement
or in different statements. If they appear in different statements, those
statements are not required to be consecutive, as illustrated in the fol-
lowing code sample:

final int j; // Declare j

final int k = 10; // Intervening statement

j = 20; // Initialize Java

The final keyword, unlike the access modifiers, can be applied to the
automatic variables and arguments of a method. A final automatic
variable may not be written after it is initialized. A final argument
may not be written at all. The following code sample illustrates final
data in a method:

void aMethod(int x, final double z) {

 final char c = ‘c’;

 // etc.

}

abstract

The abstract keyword conveys the sense that a feature is somehow
incomplete and cannot be used until further information is provided.
Classes and methods may be final.

When you declare a method to be abstract, the class that contains the
method has no definition for that method. Instead, the method defi-
nition is deferred to one or more subclasses. After the method name

Java 2 Exam Notes18

and parenthetical argument list, an abstract method has only a semi-
colon, where a non-abstract method provides the method body
enclosed in curly brackets. Subclasses provide the body of an abstract
method.

An abstract class may not be instantiated. A class must be declared
abstract if any of the following conditions apply:

� The class contains one or more abstract methods.

� The class does not provide an implementation for each of the
abstract methods of its superclass.

� The class declares that it implements an interface, and the class does
not provide an implementation for each method of the interface.

The following code illustrates abstract classes.

 1. abstract class Parent {

 2. abstract void x(int a);

 3. }

 4.

 5. class ChildA extends Parent {

 6. void x(int a) {

 7. System.out.println(“a = ” + a);

 8. }

 9. }

10.

11. class ChildB extends Parent {

12. void x(int a) {

13. System.out.println(“I did it my way” + a);

14. }

15. }

16.

17. abstract class ChildC extends Parent { }

The class Parent must be declared abstract on line 1, because it con-
tains an abstract method. The classes ChildA and ChildB do not have
to be abstract, since they provide implementations for the parent
class’s abstract method. Class ChildC on line 17 does have to be

Chapter 1 � Declarations and Access Control 19

abstract, since it does not provide an implementation for its par-
ent’s abstract method.

static

Data and methods may be declared static. Static features belong to
the class in which they are declared, rather than belonging to individ-
ual instances of that class.

A class’s static variable is allocated and initialized when the owning
class is loaded. A class’s static variable may be referenced via a refer-
ence to any instance of the owning class, or via the name of the class
itself. For example, suppose class C has a static variable v. If Cref1
and Cref2 are references to instances of class C, then the static vari-
able can be referenced as C.v, Cref1.v, or Cref2.v.

A method that is declared static must observe the following restrictions:

� The static method may only access those variables of its owning
class that are declared static; the class’s nonstatic variables may
not be accessed.

� The static method may only call those methods of its owning class
that are declared static; the class’s nonstatic methods may not be
called.

� The static method has no this reference.

� The static method may not be overridden.

It is legal for a class to contain static code that does not exist within
a method body. Such code is known as static initializer code; it is exe-
cuted when the owning class is loaded, after static variables are allo-
cated and initialized. Static initializer code has no this reference. The
code listed below illustrates a static initializer:

1. public class StaticDemo {

2. static int i=5;

3.

4. static { i++; }

5.

6. public static void main(String[] args) {

Java 2 Exam Notes20

7. System.out.println(“i = “ + i);

8. }

9. }

When the application is started, the StaticDemo class is loaded. Dur-
ing the class loading process, the static variable i is allocated and ini-
tialized to 5. Later in the class loading process, i is incremented to 6.
When the main() method executes, it prints out “i = 6”.

synchronized

The synchronized modifier applies only to code. The modifier
requires a thread to acquire a lock before executing the code. This
topic is covered in Chapter 7, “Threads.”

transient, native, volatile

The keywords transient, native, and volatile modify features in
ways that are beyond the scope of the Programmer’s Exam. They are
covered briefly here, because the exam only requires you to be aware
of their syntax.

The transient modifier applies only to class variables. During seri-
alization, an object’s transient variables are not serialized.

A native method calls code in a library specific to the underlying hard-
ware. A native method is like an abstract method in the sense that the
implementation exists somewhere other than the class in which the
method is declared. The following code illustrates the syntax of a
native method; note the semicolon in the place where an ordinary
method would have a method body enclosed in curly brackets:

native int callnat(char c, String s);

The volatile modifier applies only to class variables. Volatile data is pro-
tected from certain kinds of corruption under multithreaded conditions.

Chapter 1 � Declarations and Access Control 21

Exam Essentials

Understand the four access modes and the corresponding key-
words. You should know the significance of public, default, pro-
tected, and private access when applied to data, methods, and inner
classes.

Understand how Java classes are organized into packages, so that you
can understand the default and protected modes. A package is a
namespace containing classes. You should know how the default and
protected modes grant access to classes within the same package.

Know the effect of declaring a final class, variable, or method. A
final class cannot be subclassed; a final variable cannot be modified
after initialization; a final method cannot be overridden.

Know the effect of declaring an abstract class or method. An
abstract class cannot be instantiated; an abstract method’s definition
is deferred to a subclass.

Understand the effect of declaring a static variable or method.
Static variables belong to the class; static methods have no this
pointer and may only access static variables and methods of their
class.

Know how to reference a static variable or method. A static fea-
ture may be referenced through the class name or through a reference
to any instance of the class.

Be able to recognize static initializer code. Static initializer code
appears in curly brackets with no method declaration. Such code is
executed once, when the class is loaded.

Key Terms and Concepts

Abstract class An abstract class may not be instantiated.

Abstract method An abstract method contains no body, deferring
definition to non-abstract subclasses.

Java 2 Exam Notes22

Default class A class with default access may be accessed by any
class in the same package as the default class.

Default inner class A default inner class may be accessed from the
enclosing class and from subclasses of the enclosing class that reside
in the same package as the enclosing class.

Default method A method with default access may be called by any
class in the same package as the class that owns the default method.

Default variable A variable with default access may be read and
written by any class in the same package as the class that owns the
default variable.

Final class A final class may not be subclassed.

Final method A final method may not be overridden.

Final variable A final variable, once initialized, may not be modified.

Private inner class A private inner class may only be accessed from
the enclosing class.

Private method A private method may only be called by an instance
of the class that owns the method.

Private variable A private variable may only be accessed by an
instance of the class that owns the variable.

Protected inner class A protected inner class may be accessed by the
enclosing class and by any subclass of the enclosing class.

Protected variable and protected method Protected access expands
on default access by allowing any subclass to read and write protected
data and to call protected methods, even if the subclass is in a differ-
ent package from its superclass.

Public class, protected variable, and protected method Public
access makes a feature accessible to all classes without restriction.

Public inner class A public inner class has the same access as a pro-
tected inner class and can be more manipulated by reflection.

Static initializer Static initializer code executes during class-load
time, after static variables are allocated and initialized.

Chapter 1 � Declarations and Access Control 23

Static method A static method may only access the static variables
and methods of its class.

Static variable Static data belongs to its class, rather than to any
instance of the class. Static variables are allocated and initialized at
class-load time.

Sample Questions

1. Which of the following are access modifiers?

A. abstract

B. final

C. private

D. protected

E. public

F. static

G. synchronized

Answer: C, D, and E. The other modifiers are not access modi-
fiers. The fourth access mode, “default,” has no corresponding
modifier keyword.

2. If class ClassY has private method z(), can an instance of ClassY
call the z() method of a different instance of ClassY?

Answer: Yes. A private feature may be accessed by any instance
of the class that owns the feature.

3. Which access mode is more restricting: default or protected?

Answer: Default. Protected access is default plus some subclass
access.

Java 2 Exam Notes24

4. Can a static method write a nonstatic variable of the class that
owns the static method?

Answer: No. A static method can only access the static data and
methods of its class.

5. Can a non-abstract class contain an abstract method?

Answer: No. A class that contains any abstract methods must
itself be declared abstract.

6. Which of the following statements are true?

A. A final method may be overridden.

B. A final method may not be overridden.

C. A final class may be subclassed.

D. A final class may not be subclassed.

Answer: B and D. Final methods may not be overridden, and
final classes may not be subclassed.

�For a given class, determine if a default
constructor will be created and, if so,
state the prototype of that constructor.

This objective requires you to know about Java’s behind-the-
scenes constructor behavior. This objective is important because most
classes have to be instantiated to be useful, and instantiation means
invoking a constructor.

Critical Information

A default constructor is a constructor with an empty argument list.
For example, the default constructor for a class named MyClass
would have the following format:

MyClass() { ... }

Chapter 1 � Declarations and Access Control 25

Every class must have at least one constructor. If you create a class
that has no explicit constructors, then a default constructor is auto-
matically generated by the compiler. In this case, the access mode of
the constructor depends on the access mode of the class. If the class is
public, the automatically generated constructor is also public. If the
class is not public, the automatically generated constructor has
default access. (Access is slightly different for inner classes, but this
level of detail is not covered on the exam.)

Exam Essentials

Know that the compiler generates a default constructor when a class
has no explicit constructors. When a class has constructor code,
no default constructor is generated.

Know the access mode of the generated constructor. Public for
public classes; default for classes with any other access mode.

Key Term and Concept

Default constructor A constructor with an empty argument list.

Sample Questions

1. What is the prototype for the automatically generated constructor
of the following class?

public class Kat extends Mammal { }

Answer: public Kat(). Automatically generated constructors
always have empty argument lists. For a public class such as this
one, the automatically generated constructor is public.

Java 2 Exam Notes26

2. Does the compiler automatically generate a constructor for the fol-
lowing class?

Class Kat extends Mammal {

 Float weight;

 Kat(float f) { weight = f; }

}

Answer: No. The class has an explicit constructor, so the com-
piler does not automatically generate a default constructor.

�State the legal return types for any
method, given the declarations of all
related methods in this or parent classes.

This objective concerns certain aspects of overloading and over-
riding. These are essential concepts in object-oriented programming,
and the exam recognizes their importance in this objective and in the
objectives covered in Chapter 6 (“Overloading, Overriding, Runtime
Type, and Object Orientation”).

You will be expected to know Java’s rules for method overloading
and overriding. The rule for access of overridden methods has already
been discussed (in the section of this chapter that covers the long
objective that begins “Declare classes...”). Here we will review the
other factors that relate to overloading and overriding.

Critical Information

Overloading is reuse of a method name within a class. Overriding is
reuse of a method name in a subclass.

To determine the legality of an attempt to overload or override a
method, consider three things:

� The method’s name

Chapter 1 � Declarations and Access Control 27

� The method’s argument list

� The method’s return type

Method Overloading

Overloaded methods share a common name but have different argu-
ment lists. Overloaded methods may have the same or different return
types. Thus, within a single class the following methods may appear
and are examples of legal overloading:

1. void aaa(int i, double d) { ... }

2. private String aaa(long z) { ... }

3. String aaa(long z, double d) { ... }

These three methods have the same name and different argument
lists. The access modes and return types are irrelevant.

If a class contains the three methods shown previously, then it would
be illegal to add the following method into that class:

4. double aaa(long z, double d) { ... }

The new method has the same name and argument list as the method
on line 3, so it is illegal even though it has a different return type.

Method Overriding

When a method is overridden, the version in the subclass must match
the name, argument list, and return type of the version in the super-
class. Compilation fails if the subclass version has the same name and
argument list as the superclass version but has a different return type.

Compilation succeeds if the subclass version has the same name as the
superclass version but has a different argument list, whether or not
the return type is different. However, this is not really method over-
riding; it is overloading of the method inherited from the superclass.

Java 2 Exam Notes28

Exam Essentials

Know the legal return types for overloaded and overridden methods.
There are no restrictions for an overloaded method; an overriding
method must have the same return type as the overridden version.

Key Terms and Concepts

Overloading Reuse of a method name within a class. The methods
must have different argument lists and/or return types.

Overriding Reuse of a method name in a subclass. The subclass ver-
sion must have the same name, argument list, and return type as the
superclass version.

Sample Questions

1. If two methods in a single class have the same name and different
argument lists, can they have different return types?

Answer: Yes. As long as the argument lists are different, the
overloading is legal.

2. Is it legal for two methods in a single class to have the same name
and the same argument list, but different return types?

Answer: No. Two methods in a class may not have the same
name and argument list.

3. When is it legal for a method to have the same name and argument
list as a method in the superclass?

Answer: If the two methods have the same return type, then we
have an example of legal overriding. If the return types are dif-
ferent, the code will not compile.

