
Part 1
VBA Macros and the
Visual Basic Editor

In This Part

Chapter 1: Developing a Simple VBA Application 3

Chapter 2: Creating VBA Macros . 29

Chapter 3: Quick Tour of the IDE . 53

Chapter 4: VBA Programming Concepts 79

2871c01.qxd 3/19/01 9:20 AM Page 1

CO
PYRIG

HTED
 M

ATERIA
L

2871c01.qxd 3/19/01 9:20 AM Page 2

Chapter 1

Developing a Simple
VBA Application

2871c01.qxd 3/19/01 9:20 AM Page 3

I n this chapter, you will learn how to create a simple VBA appli-
cation through a series of tutorials. You will learn how to employ
visual tools to create the graphical user interface, and write code

to execute simple commands. You will also explore the basics of the
Visual Basic environment by using its features to create practical
code that you can reuse for repetitive tasks.

If you consider yourself an intermediate user of AutoCAD VBA
and have already written some successful VBA code, you may want to
skip this chapter—or even just skim over the entire Part I, depending
on your experience. The material covered in Chapter 4,“VBA Pro-
gramming Concepts,” will always be useful to you as a reference.

This chapter covers the following topics:

• Advantages of using VBA with AutoCAD

• The AutoCAD VBA environment

• Developing your first application

2871c01.qxd 3/19/01 9:20 AM Page 4

Advantages of Using VBA with
AutoCAD
Visual Basic for Applications (VBA) is a programming environment created by
Microsoft that is built into applications to automate operations. It provides tools that
you can drag and drop to build a graphical user interface (GUI), and a programming
language that you can use to interact with AutoCAD objects. Using VBA with Auto-
CAD allows you to customize your AutoCAD application in seemingly unlimited ways.
In this book, you’ll see how simple it is to automate repetitive tasks. With the time
saved, you’ll be free to concentrate on applying your artistic talents and engineering
skills to make your drawings more intricate.

Once you start writing VBA code, you’ll quickly realize just how easy it is to access
objects from the AutoCAD and VBA object libraries. You’ll soon be able to call on the
power of these objects while gaining a deeper insight into AutoCAD’s features. As you
start to see the benefits that VBA macros and applications can provide, you’ll want to
spend your extra time customizing even more tasks. Before you know it, you’ll have a
whole library of reusable macros and applications at your fingertips!

A macro is a group of code statements, usually not very long or complicated, that is useful in automating
a repetitive task. In your work at the computer, most likely you’ve used them already without realizing it.

An application is a program that has been created to perform a specific task. This can be something very
simple, such as prompting the user for their name and password, or something very substantial and
complex such as AutoCAD itself.

Another not-so-obvious advantage of learning AutoCAD VBA is that your skills
are transferable to a growing number of other applications that have VBA capability.
These applications include all those in the Microsoft Office family of applications, such
as Access, Word, and Excel, in addition to Microsoft Visual Basic itself and about two
hundred other licensees.

VBA interfaces with applications by communicating and controlling objects
through the application’s object libraries, rather than by having any special connection
to the application’s inner workings. All you need to know are the names of the objects
involved, and you can access their functionality with VBA code. You’ll find the object
names meaningful and easy to remember, such as ThisDrawing (an object in Auto-
CAD), ThisDocument (an object in Word), and ThisWorkbook (an object in Excel). As
you enter the names of objects in your code, the editing features of VBA’s Integrated

ADVANTAGES OF USING VBA WITH AUTOCAD 5

2871c01.qxd 3/19/01 9:20 AM Page 5

Development Environment (IDE) offer you drop-down lists of elements particular to
the type of object you’ve entered. You’ll see how this works in Chapter 2.

You can use a macro to automate just about anything, but it is probably most produc-
tive to start with the tasks you have to do time and time again. Why not think about those
boring, uninspiring jobs you hate doing the most, and start with them! These are probably
tasks that are time consuming and error prone, so implementing them in macros or appli-
cations will not only increase your productivity but lift your spirits by removing some of
the tedious tasks that make you yawn just by thinking about them. (Such as adding all the
required bits and pieces of information for starting a new drawing; or perhaps you’ve
found that you regularly draw the same items over and over again.)

After you’ve successfully developed VBA code that works in the ways you want it
to, it’s guaranteed to perform correctly and reliably each time you run it. Now there’s an
incentive to learn VBA! So let’s begin by examining the interface where you will write
your code—the Visual Basic Editor.

The AutoCAD VBA Environment
The Visual Basic Editor is the integrated environment in which you develop all your
VBA code. As you can see from Figure 1.1, the IDE has its own graphical user interface.
Its windows provide all the tools required for creating, editing, debugging, and running
your macros and applications. With this much functionality, the IDE is almost a stand-
alone application, except that it can only be opened from the AutoCAD window and
does not remain open after AutoCAD has been closed.

The term VBA Editor is often used synonymously with the IDE even though the IDE provides more than
just editing features.

The VBA IDE can be opened from the AutoCAD window in a variety of ways:

• Type vbaide next to the command prompt in the command line.

• Choose Tools ➜ Macro ➜ Visual Basic Editor.

• Use the key-combination (shortcut) Alt+F11.

In the examples throughout this book, I’ve used menu commands in instructions.
Most commands can also be accessed through a toolbar button or a key-combination, so
occasionally I give an alternative access method as a reminder that there are other ways to
invoke commands. The access method you use is up to your personal preference.

CHAPTER ONE • DEVELOPING A SIMPLE VBA APPLICATION6

2871c01.qxd 3/19/01 9:20 AM Page 6

Figure 1.1 AutoCAD’s VBA environment

Chapter 3 takes you on a guided tour of the IDE and discusses some of its features
in more detail.

Creating UserForm Modules
A module is just a container for VBA code, and a UserForm module is a window (or dia-
log box) that can be considered a powerful extension to the AutoCAD GUI. You decide
what controls to place on your UserForm in order to perform the tasks required by
your application. You can place labels and text boxes in which users can enter the infor-
mation that your program needs in order to run. You can use option buttons and check
boxes to give users the chance to select the items they require. In fact, just about any
control you’ve seen in the applications running under Windows is available for use in
the VBA IDE.

Adding a UserForm Module to Your Application
To add a UserForm module to your application:

1. Start AutoCAD and choose Tools ➜ Macro ➜ Visual Basic Editor. The VBA
IDE opens.

2. Choose Insert ➜ UserForm. UserForm1 appears, containing a title bar with a
Close button, as shown in Figure 1.2.

Project Explorer
window

Standard toolbar
Menu bar
Title bar

Properties
window

Code window

THE AUTOCAD VBA ENVIRONMENT 7

2871c01.qxd 3/19/01 9:20 AM Page 7

Figure 1.2 A brand-new UserForm

A UserForm is the only module that can be viewed from the IDE in two different ways:

• Graphically, by choosing View ➜ Object to open up the UserForm window
(see Figure 1.2).

• With code, by choosing View ➜ Code to open up the Code window as
shown here:

Opening the Code window displays the event procedure that will run if the User-
Form is clicked. There are many events to choose from, but double-clicking any control
automatically displays the primary event that you’ll most likely want to respond to.
You’ll see how to access the other events later in this chapter, in the section “Coding
Event Procedures.”

Puttering Around in the Toolbox
VBA provides a set of common controls in a Toolbox window (see Figure 1.3). You can
simply drag and drop individual controls onto a UserForm to develop GUI features for
your application.

CHAPTER ONE • DEVELOPING A SIMPLE VBA APPLICATION8

2871c01.qxd 3/19/01 9:20 AM Page 8

Figure 1.3 Controls in the standard Toolbox

If the Toolbox isn’t on display, select the Toolbox command from the View menu
or click the Toolbox icon (shown in the margin) at the end of the Standard toolbar.
Both of these actions will be available for selection only when a UserForm has been
added to a project and it is being viewed in its graphical form rather than as a Code
window. To view a UserForm graphically, simply choose View ➜ Object.

These controls are all available for you to drag and drop onto your UserForm,
making AutoCAD VBA a powerful visual programming system that’s extremely effi-
cient at quickly developing the GUI for a project—you can virtually design your whole
GUI using only the mouse!

You will recognize most of the controls in the Toolbox because you have already
experienced using them in other applications. Following are brief descriptions of what
each control does:

Select Objects The Select Objects control is used to resize and move a control
after it has been drawn on a UserForm. If you’ve double-clicked another control to
insert multiple instances of it on the UserForm without returning to the Toolbox,
you can click the Select Objects control to stop.

Label The Label control displays text that you’ve assigned to its Caption property at
design time or in code. A Label control is often used to display information or indicate
to a user what data should be entered into a TextBox control. The text displayed by the
Label control is strictly read-only and cannot be changed by the user during run time.

TextBox The TextBox control allows users to input textual information during
run time. It is common practice to assign the empty string (””) to this control’s
Text property to initialize it or to clear out any data that’s no longer required.

Select Objects

TextBox

ListBox

OptionButton

Frame

TabStrip

ScrollBar

CheckBox

ComboBox

Label

Image

CommandButton

MultiPage

SpinButton

ToggleButton

THE AUTOCAD VBA ENVIRONMENT 9

2871c01.qxd 3/19/01 9:20 AM Page 9

ComboBox The ComboBox control combines the functionality of the TextBox
control with that of the ListBox control to provide the user with the option of enter-
ing text into the TextBox, or clicking the down-arrow button and selecting an item
from a drop-down list. When an item is selected from the list, it is automatically dis-
played in the text box at the top of the ComboBox. You can set the Style property of
this control in order to restrict the user to selecting an item from the ListBox. This
eliminates the need to test whether the user has entered a valid value.

ListBox The ListBox control enables the user to select one or more items from a list.
If there are too many items to be displayed at once, a scroll bar will automatically
appear. Even so, this control generally takes up more space than a ComboBox control,
which needs only the same amount of space on the UserForm as a TextBox control.

CheckBox The CheckBox control enables the user to “check” (select) zero or
more boxes from a group of CheckBoxes. This control is often used to indicate
whether items are true or false, or to answer yes or no to questions. CheckBoxes are
similar in function to OptionButtons, except that they allow more than one item to
be selected at the same time.

OptionButton OptionButton controls are used in groups of options to allow
selection of one option from the group. When only one group of OptionButtons is
required, it can be placed directly onto the UserForm. When there is more than
one group, Frame controls (described just below) are used to separate groups, to
enable one OptionButton per group to be selected. You determine the Option-
Button that will be the default selection. If the user selects another OptionButton
from the same group, the old one is automatically deselected.

ToggleButton The ToggleButton control toggles between on or off, true or false,
and yes or no. When clicked, its appearance changes to match its value; it toggles
between a raised button appearance (off) to a pushed-in appearance (on). The Pic-
ture property of this control allows you to display a selection of options to the user
in a graphical way.

Frame The Frame control allows a UserForm to be divided into areas where you
can group other controls, such as OptionButtons and CheckBoxes. The Frame
control and the controls inside it then behave collectively as a single entity. When
you move the Frame, all the controls inside it move, too; when you disable the
Frame, all its controls become disabled. Frames are typically used to create groups
of OptionButtons on a UserForm, so that an option from each group can be
selected rather than just a single option.

CHAPTER ONE • DEVELOPING A SIMPLE VBA APPLICATION10

2871c01.qxd 3/19/01 9:20 AM Page 10

CommandButton The CommandButton control is used when you want some-
thing to happen as soon as the button is clicked. It is often used in dialog boxes
with the caption “OK” for users to click when they’ve finished reading the message
displayed to them. This control is useful for running macros by calling the macro
in response to the control being clicked.

TabStrip The TabStrip control contains several pages, each displaying an identi-
cal set of controls. Adding a control to any page of the TabStrip control makes it
appear on all pages. This control is used to enable viewing of several sets of data
containing the same kind of information, one set per page. You provide the code to
update the information in the controls according to the tab selected by the user.
For example, you could display the name, address, and telephone number of your
clients, one client per page.

MultiPage The MultiPage control is similar to the TabStrip control in that it has
several pages that can be accessed by clicking their tabs. Each page from the Multi-
Page control has its own individual set of controls to enable the display of different
kinds of information on each page, although the information would typically be
related in some way. For example, you could display the name and address of a client
on the first page, and information about the client’s orders on other pages. In such
a scheme, you would need to create a MultiPage control for each client.

ScrollBar The ScrollBar control allows you to place a scroll bar on a UserForm.
The scroll bar can be either vertical or horizontal depending on its width and
height. This control provides scrolling for controls that do not have scroll bars
added automatically. Appropriate values are set for the control’s Min and Max
properties to define the limits for the Value property of the ScrollBar. The control’s
Value property will be set to a value dependent on the position of the slider bar in
relation to each end of the scroll bar.

SpinButton The SpinButton control functions similarly to a ScrollBar control but
doesn’t have a slider bar. Up- or down-arrow buttons are displayed for the user to click
in order to increment or decrement the number assigned to the control’s Value prop-
erty. The Value is typically displayed in another control, such as a TextBox or a Label.

Image The Image control is used to display graphics stored in the major graphi-
cal formats, such as bitmaps (.bmp), GIFs (.gif), JPEGs (.jpg), metafiles (.wmf),
and icons (.ico). The image can be cropped, sized, or zoomed as required to fit the
control’s size. Image controls can be used as fancy command buttons or as toolbar
buttons and can even display simple animations.

THE AUTOCAD VBA ENVIRONMENT 11

2871c01.qxd 3/19/01 9:20 AM Page 11

You can place as many instances of each control as you like onto the same User-
Form. Visual Basic gives each instance a default name based on the name of the class it
belongs to, appended to a sequential number—this enables each object to be uniquely
identified. Visual Basic also assigns the properties of the control’s position and dimen-
sions on the UserForm based on where you’ve placed it and what size you’ve made it.
All other properties are assigned a default setting.

Placing a Toolbox Control in a UserForm
This tutorial shows you how to drag and drop a TextBox control from the Toolbox onto a
UserForm. The same technique is used to place any of the other controls onto a UserForm.

1. Click the TextBox icon (shown here) in the Toolbox and, without pressing the
mouse button, move the mouse cursor over the UserForm.

After you click the TextBox icon, the Toolbar button changes its appearance to
look pressed in, as shown here:

And the mouse cursor changes, too, as it moves over the boundary of the User-
Form. It becomes a cross alongside the TextBox control’s icon.

2. Move the mouse cursor to the position where you want one of the corners of
your text box to be, and press the left mouse button. While holding the mouse
button down, move the cursor around and watch a rectangle with dashed lines
follow the cursor, with one corner anchored at the position you’ve just selected.
This rectangle indicates the size and position for the new text box that will be
created when you release the mouse button.

CHAPTER ONE • DEVELOPING A SIMPLE VBA APPLICATION12

2871c01.qxd 3/19/01 9:20 AM Page 12

3. Still holding down the mouse button, move the cursor to the corner diagonal
to the initial (anchored) one and release the mouse button. The new text box
object replaces the dashed rectangle on the screen:

This becomes the new active control, as indicated by the handles and thick
border that now appear around the rectangle. These can be used to make fur-
ther adjustments to the size and position of the text box.

Changing the Dimensions and Position of a Toolbox Control
Click any control on a UserForm to make it the active control. Once active, the control is enclosed by a thick border
with eight handles placed around it. You can click and drag these handles to change the position and dimensions of
the control, as follows:

• If you move the cursor directly over the thick border but not on top of a handle, the cursor changes to a cross
with two double-headed arrows (shown here) to allow you to reposition the whole control without changing
its size. Simply click and hold down the mouse button and drag the control to its new position.

• If you move the cursor directly over any handle, the cursor changes to a double-headed arrow (shown here).
This allows you to drag and drop the handle to change the size of the control while maintaining its position.

THE AUTOCAD VBA ENVIRONMENT 13

2871c01.qxd 3/19/01 9:20 AM Page 13

Now that you have an understanding of how to place components on your GUI,
it’s time to use these skills to develop your first simple application—I’m sure you’re
revved up ready to go.

Developing Your First Application
For your first application, we’ll work with the Metric-Imperial Converter application,
which converts metric measurements to imperial, and vice versa. This application uses
two text boxes as shown in Figure 1.4. The interface allows the user to enter imperial
measurements in yards into the first text box, then converts the measurement to met-
ric and displays the results in the second text box. Alternatively, the user can enter
metric measurements in meters into the second text box, and the application converts
the value to imperial and displays it in the first text box.

Figure 1.4 GUI for the Metric-Imperial Converter
application before any properties have been updated

One command button is needed for the user to click in order to tell the application
that the measurement has been entered. The second command button allows the user
to stop the application.

Creating the GUI
Creating the GUI for the Metric-Imperial Converter application can be achieved using
a single UserForm. Exercise 1.1 takes you through the steps required.

CHAPTER ONE • DEVELOPING A SIMPLE VBA APPLICATION14

2871c01.qxd 3/19/01 9:20 AM Page 14

EXERCISE 1.1: METRIC-IMPERIAL CONVERTER APPLICATION

1. Choose Tools ➜ Macro ➜ Visual Basic Editor to open the IDE.

2. Choose Insert ➜ UserForm to create a UserForm. The graphical representa-
tion of the UserForm is displayed, along with the Toolbox.

3. Drag and drop a TextBox control from the Toolbox onto the UserForm and place
it near the top right. In Figure 1.4, the two empty boxes are TextBox controls.

The Name property of this text box is assigned as TextBox1 by default. The
Name property of a control is the first item listed in the control’s Properties
window, which you’ll see in the upcoming section “Setting Captions in the
Properties Window.” Default names all start with the type of control followed
by a number to denote its place in the sequence of controls of the same type.
So the next text box you add will be named TextBox2.

4. Drag and drop a Label control (shown here) and place it to the left of the
TextBox control.

The Name property of this Label control is Label1 by default, which is also the
initial value assigned to its Caption property. The Label1 control is used to
label the TextBox so that the user knows what its contents represent and can
enter appropriate values.

5. Drag and drop a second label and position it to the right of the TextBox con-
trol. The Name property of this Label control is Label2 by default.

6. Drag and drop a second text box with two accompanying labels, and place
them immediately below the first text box and labels. The default Name prop-
erties of these controls are TextBox2, Label3, and Label4.

7. Drag and drop a command button (shown here) from the Toolbox onto the
UserForm, placing it below the second text box. The default Name and Cap-
tion properties of this command button are both CommandButton1.

DEVELOPING YOUR FIRST APPLICATION 15

2871c01.qxd 3/19/01 9:20 AM Page 15

8. Drag and drop a second command button and place it directly below the first.
The Name and Caption properties of this command button are—you guessed
it—CommandButton2.

9. Now that all the controls required by the GUI have been added to the User-
Form, adjust the UserForm’s dimensions by dragging and dropping its borders
until it is a snug fit for all the controls you’ve placed inside it. The layout of
controls should look similar to the one shown earlier in Figure 1.4.

How Default Settings Are Initiated
A lot of the default object settings, such as the color of the title bar and background, are retrieved from the display
scheme set in the Microsoft Windows environment of the PC on which the application is running. In the examples
throughout this book, the Windows Standard display scheme is used. If your PC is set to a different scheme, your GUI
will have a similar appearance to some of the other Windows applications that run on your PC. Some default settings
such as those specifying position and dimensions are determined as you drag and drop controls onto UserForms.

You can find out the display scheme setting for your PC by clicking the Display icon in Control Panel and selecting the
Appearance tab in the Display Properties dialog box—the current setting is displayed in the Scheme list box, as
shown here:

CHAPTER ONE • DEVELOPING A SIMPLE VBA APPLICATION16

2871c01.qxd 3/19/01 9:20 AM Page 16

Setting Captions in the Properties Window
The following tutorial shows you how to set the Caption property of UserForm1 in the
Metric-Imperial Converter application:

1. If the Properties window is not already on display, choose View ➜ Properties
Window.

2. The Properties window appears, with property names listed in the left column
and their settings listed in the right column. Select the appropriate tab to list
the properties in this window alphabetically, as shown in Figure 1.5, or cate-
gorically, as shown in Figure 1.6. The list of properties belongs to the object
named in the list box at the top (the active object), which is followed by the
class the object belongs to.

Figure 1.5 Properties window Alphabetic tab

Figure 1.6 Properties window Categorized tab

DEVELOPING YOUR FIRST APPLICATION 17

2871c01.qxd 3/19/01 9:20 AM Page 17

3. If the object named at the top of the Properties window is not already User-
Form1, click the down-arrow button at the right end of the Object box and
select UserForm1 from the drop-down list.

This drop-down list contains all the objects associated with the active UserForm.
When UserForm1 is selected, all the properties listed in the window now belong
to UserForm1. The graphical representation of UserForm1 becomes the active
object and appears with a thick border and eight sizing handles.

4. Scroll the list of properties until the Caption property becomes visible in the left
column and select it by double-clicking it. Both the Caption property and the set-
ting “UserForm1”are highlighted, and the insertion point (I-beam mouse pointer)
blinks at the end of the highlighted text in the settings column on the right.

5. Type Metric-Imperial Converter. This replaces the highlighted setting for the
Caption property, and the text in the title bar of UserForm1 is updated as you
enter each keystroke.

Although the Name and Caption properties start off with the same default setting, they are still two dis-
tinct properties, so the Name property still remains set to UserForm1 even after you change the Caption.

6. Repeat steps 2 through 5 to change the Caption properties of the labels and
command buttons to those shown in Table 1.1.

Table 1.1 Controls and Their Caption Properties

CONTROL CAPTION

Label1 Imperial Units

Label2 Yards

Label3 Metric Units

Label4 Meters

CommandButton1 Convert

CommandButton2 Close

The Properties window can be opened by selecting any graphical object and choosing View ➜ Proper-
ties Window, or by right-clicking and selecting Properties from the shortcut menu, or by pressing the F4
function key.

CHAPTER ONE • DEVELOPING A SIMPLE VBA APPLICATION18

2871c01.qxd 3/19/01 9:20 AM Page 18

The VBA Code Window
The Code window is where you enter the code that will interact with the user or manip-
ulate AutoCAD objects. When you start a new AutoCAD project, a drawing object is
automatically created and made the active document. You can refer to this object in
code by its Name property, ThisDrawing. When you open the IDE and look in the
Project Explorer window, the ThisDrawing object will be the only object listed (shown
previously in Figure 1.1).

Every object listed in the Project Explorer window has its own Code window. One
way to open the Code window for a particular object is to double-click it from the
Project Explorer window. Here is the Code window for ThisDrawing:

Displaying the Code Window
When double-clicked in the Project Explorer window, all the modules except UserForms
will immediately display the Code window. When a UserForm is double-clicked, its
graphical representation is displayed in the UserForm window. You must then double-
click anywhere inside this UserForm window to display its Code window.

Every Code window has a drop-down list box of objects on the left, and a drop-
down list box of procedures on the right. The Object list contains all the objects and
controls attached to that module. In the example shown here, all the controls placed on
UserForm1 are displayed.

DEVELOPING YOUR FIRST APPLICATION 19

2871c01.qxd 3/19/01 9:20 AM Page 19

You can tell which UserForm the Code window belongs to by looking at the Cap-
tion on the title bar. Notice in the preceding example that there’s an object named
UserForm in the drop-down list. Because a UserForm has its own Code window, there
is no need to append a distinguishing number after UserForm when you’re referring to
it in code in its own Code window. The Procedure list box on the right contains a list of
all the procedures (including event procedures) associated with the object named in
the Object box, as shown here:

Coding Event Procedures
The following tutorial shows how to write the code to stop an application in response
to the user’s clicking the Close button:

1. If the Code window is displayed, choose View ➜ Object to display the graphical
representation of UserForm1. Double-click CommandButton2. The Code win-
dow appears, containing the skeleton code for the CommandButton2_Click
event procedure, with the I-beam cursor blinking in the blank line.

2. As shown in Figure 1.7, type

Unload Me

Figure 1.7 The Code Window showing the
CommandButton2_Click event procedure

CHAPTER ONE • DEVELOPING A SIMPLE VBA APPLICATION20

2871c01.qxd 3/19/01 9:20 AM Page 20

Now you’re ready to start coding the response you want given to the user who’s
entering data into one of the text boxes. When the Metric-Imperial Converter applica-
tion is run for the first time, both text boxes will be empty. The user enters a measure-
ment into one text box and clicks CommandButton1 to convert the measurement and
display the result in the other text box. When CommandButton1 is clicked, the applica-
tion checks which text box contains the measurement so that it knows which conver-
sion is required. If the user requires another, subsequent conversion and enters another
measurement into a text box, the application must clear the other text box of data so
that the correct conversion is used. The following steps show you how these actions
are coded:

1. Open the Code window and select TextBox1 from the Object list.

2. Select KeyDown from the Procedure list, as shown in Figure 1.8.

Figure 1.8 Drop-down list of procedures (events)
available for the TextBox class of object

3. In the skeleton TextBox1_KeyDown event procedure, where the Entry cursor is
blinking, type

TextBox2.Text = “”

4. Select TextBox2 from the Object list, and select KeyDown from the Procedure list.

5. In the skeleton TextBox2_KeyDown event procedure, type

TextBox1.Text = “”

6. Select CommandButton1 from the Object list, and the skeleton (first and last
lines) of its Click event procedure will appear.

DEVELOPING YOUR FIRST APPLICATION 21

2871c01.qxd 3/19/01 9:20 AM Page 21

7. Type the following code inside the skeleton:

If TextBox1.Text = “” Then
TextBox1.Text = TextBox2.Text * 1.0936

Else
TextBox2.Text = TextBox1.Text * 0.9144

End If

That’s all the coding necessary for this conversion application! Listing 1.1 provides
a numbered listing of all the code, followed by an Analysis section that describes what
each statement actually does. This application is available for use on the CD-ROM as
Listing 1.1. You’ll need to follow the instructions in the “Loading VBA Project Files”
section in Chapter 2.

In the listings throughout the book, the numbers preceding each line of code are not part of the actual
code. They are provided to help you follow the discussions in the Analysis sections.

LISTING 1.1: METRIC-IMPERIAL CONVERSION MACRO

1 Private Sub CommandButton1_Click()
2 If TextBox1.Text = “” Then
3 TextBox1.Text = TextBox2.Text * 1.0936
4 Else
5 TextBox2.Text = TextBox1.Text * 0.9144
6 End If
7 End Sub
8
9 Private Sub CommandButton2_Click()
10 End
11 End Sub
12
13 Private Sub TextBox1_KeyDown(↵

ByVal KeyCode As MSForms.ReturnInteger, ↵
ByVal Shift As Integer)

14 TextBox2.Text = “”
15 End Sub
16
17 Private Sub TextBox2_KeyDown(↵

ByVal KeyCode As MSForms.ReturnInteger, ↵
ByVal Shift As Integer)

18 TextBox1.Text = “”
19 End Sub

CHAPTER ONE • DEVELOPING A SIMPLE VBA APPLICATION22

2871c01.qxd 3/19/01 9:20 AM Page 22

ANALYSIS

You’ll find the code shown in Listing 1.1 quite straightforward. This Analysis sec-
tion has been included to take you through it line by line.

• Line 1 is the opening statement and declares the CommandButton1_Click
event procedure. The code in this event procedure will be executed when the
user clicks the Convert command button. This statement, along with the End
Sub statement in Line 7, is provided as a skeleton procedure by the IDE.

• Line 2 checks to see if the Text property of TextBox1 is empty, meaning that
the user has entered meters into TextBox2; if so, the program executes the
statement at Line 3. If TextBox1 isn’t empty, it contains yards, and the state-
ment in Line 5 is executed. The section “Using Conditions to Control Code
Execution” in Chapter 4 gives more information on If statements.

• Line 3 converts the meters entered into TextBox2 to yards and assigns the
results to the Text property of TextBox1. The value of the Text property is
displayed in the text box.

If conditions and Then…Else…End If… conditional structures can be thought of as two separate
parts—the If code block and the Else code block.

• Line 4 starts the Else part of the If statement. Execution jumps to this point if
the condition in the If statement (Line 2) is False. Line 4 also serves as an end
marker for the statements in the If code block when the condition is True, in
which case execution jumps to the End If statement at Line 6.

• Line 5 converts the yards entered into TextBox1 into meters and displays the
results in TextBox2.

• Line 6 signifies the end of the If statement. Execution jumps to this point
from the Else statement (Line 4) if the condition in Line 2 is True.

• Line 7 is the End Sub statement, which marks the end of the Command-
Button1_Click event procedure.

• Line 8 is a blank line inserted to make it easier to see where one event proce-
dure ends and another starts.

• Line 9 starts the CommandButton2_Click event procedure. This is the com-
mand button that has its Caption property set to Close (see step 6 of “Setting
Captions in the Properties Window”).

DEVELOPING YOUR FIRST APPLICATION 23

2871c01.qxd 3/19/01 9:20 AM Page 23

• Line 10 contains the End statement that stops executing your application by
closing any open files and freeing any memory used by your application dur-
ing run time.

• Line 13 is the opening statement for the TextBox1_KeyDown event procedure.
Unlike the Click event procedures found in lines 1 and 9, the KeyDown event
procedure gets passed the integer value representing the ASCII code for the
character just entered. This is useful if you want to validate the character input,
which is handled in the section “Validating Input” in Chapter 9.

• Line 14 assigns an empty string to the Text property of TextBox2. The empty
string is denoted by two double quote characters (“”). If a new conversion is
starting, it doesn’t make sense to have any values from the last conversion still
displayed in the other text box.

• Line 18 clears the Text property of TextBox1 inside the TextBox2_KeyDown
event procedure.

Running Your Application
To run your Metric-Imperial Converter application:

1. Ensure that UserForm1’s window is open and selected.

2. Choose the Run ➜ Sub/UserForm menu command.

3. Test that your application is working by entering a value into one of the text
boxes and clicking the Convert button. Verify that the results are what you
expect. Repeat this verification for the other text box.

4. You may want to line up the controls on your UserForm to improve its appear-
ance, as in Figure 1.9.

Figure 1.9 The finished version of the Metric-Imperial
Converter application’s GUI with the captions set

CHAPTER ONE • DEVELOPING A SIMPLE VBA APPLICATION24

2871c01.qxd 3/19/01 9:20 AM Page 24

Saving Your Application
The IDE has one Save command on the File menu. The exact wording of this com-
mand depends on whether you have previously saved your project. Figure 1.10 shows
the Save option on the File menu before the project has been saved to a file. Figure 1.11
shows how it appears afterward—with the full pathname of the project file.

Figure 1.10 The File menu option for saving a
VBA project that has never before been saved

Figure 1.11 The File menu option for saving a
VBA project that’s been saved previously

To save your Metric-Imperial Converter project for the first time:

1. Choose File ➜ Save Global1. The Save As dialog box shown in Figure 1.12
appears. The controls in this dialog box will be familiar to you; they are much
the same as those found in the Save As dialog boxes of other applications,
including AutoCAD itself.

DEVELOPING YOUR FIRST APPLICATION 25

2871c01.qxd 3/19/01 9:20 AM Page 25

Figure 1.12 The Save As dialog box, ready to save your
project to the .DVB file of your choice

2. Use the controls to create a new directory and click Save. Everything associated
with the current Project will be saved in a single file with the extension .dvb.

3. Open the File menu. The Save command will now be followed by the full path
of the .DVB file in which you’ve just saved your project.

Returning to AutoCAD
There are two menu commands that you can use to display the AutoCAD window, but
they serve different purposes:

• Choose File ➜ Close and Return to AutoCAD, or use the shortcut Alt+Q. This
command unloads the IDE completely before returning to AutoCAD.

• Click the View AutoCAD button.

at the left of the Toolbar. This hides but does not close the IDE window and
makes it accessible from the Taskbar. As you know from other Windows appli-
cations, you can much more quickly display a window that’s already open by
clicking its icon on the Taskbar rather than loading it in again from scratch.

CHAPTER ONE • DEVELOPING A SIMPLE VBA APPLICATION26

2871c01.qxd 3/19/01 9:20 AM Page 26

Summary
After working through this chapter, you’ll know how to

• Develop a simple VBA application.

• Open the VBA IDE.

• Drag and drop controls from the Toolbox onto a UserForm.

• Assign new values to Caption properties in the Properties window.

• Code event procedures to respond to the user’s actions.

• Run your application.

• Save your application.

• Return to the AutoCAD window from the IDE.

DEVELOPING YOUR FIRST APPLICATION 27

2871c01.qxd 3/19/01 9:20 AM Page 27

2871c01.qxd 3/19/01 9:20 AM Page 28

