
Database Basics and
Structured Query

Language

PART i

2974c01.qxd 8/13/01 7:38 AM Page 1

CO
PYRIG

HTED
 M

ATERIA
L

2974c01.qxd 8/13/01 7:38 AM Page 2

Adapted from Mastering™ Database Programming with
Visual Basic® 6 by Evangelos Petroutsos

ISBN 0-7821-2598-1 896 pages $39.99

Chapter 1
database Access:

Architectures and
Technologies

T he first chapter in a typical computer book is an intro-
duction to the book’s topic. So, this chapter should be
an introduction to databases, but it isn’t. Databases are

the broadest and most diverse area of computer programming.
Before I can give you very much detail on what a database is,
how to design one, and then how to program it, I must explain
some of the key concepts in this field and the numerous
acronyms that are used heavily in this book.

In my attempt to explain all the data access–related technolo-
gies at the beginning of the book, I may have oversimplified
things. This chapter is for readers who are not comfortable with
the various acronyms like OLE DB, ADO, terms like n-tiers, and
so on. If you know the difference between OLE DB and ADO,
you can skip this chapter and jump to the next chapter, where I
discuss the structure of databases.

2974c01.qxd 8/13/01 7:38 AM Page 3

Databases and Database
Management Systems

A database is a complex object for storing structured information, which is
organized and stored in a way that allows its quick and efficient retrieval.
We put a lot of effort into designing a database so that we can retrieve the
data easily. The information is broken into tables, and each table stores dif-
ferent entities (one table stores customer information, another table stores
product information, and so on). We break the information into smaller
chunks, so that we can manage it easily (divide and conquer). We can
design rules to protect the database against user actions and ask the DBMS
to enforce these rules (for example, reject customers without a name).
These rules apply to all the items stored in the customers table; the same
rules don’t apply to the products table and the orders table, of course.

In addition to tables, we define relationships between tables. Relation-
ships allow users to combine information from multiple tables. Let’s say you
store customer information in one table and sales information in another
table. By establishing a relationship between the two tables, you can quickly
retrieve the invoices issued to a specific customer. Without such a relation-
ship, you would have to scan the entire invoice table to isolate the desired
invoices. This view of a database, made up of tables related to one another,
is a conceptual view of the database. And the database that relies on rela-
tionships between tables is called relational.

The actual structure of the database on the disk is quite different. In
fact, you have no idea how data is stored in the database (and you should
be thankful for this). The information is physically stored into and recalled
from the database by a special program known as a database management
system (DBMS). DBMSs are among the most complicated applications,
and a modern DBMS can instantly locate a record in a table with several
million records. While the DBMS maintains all the information in the
database, applications can access this information through statements
made in Structured Query Language (SQL), a language for specifying high-
level operations. These operations are called queries, and there are two
types of queries: selection queries, which extract information from the
database, and action queries, which update the database. How the DBMS
maintains, updates, and retrieves this information is something the appli-
cation doesn’t have to deal with.

Chapter One4

2974c01.qxd 8/13/01 7:38 AM Page 4

Specifically, a DBMS provides the following functions:

8 A DBMS allows applications to define the structure of a database
with SQL statements. The subset of SQL statements that define
or edit this structure is called Data Definition Language (DDL).
All DBMSs use a visual interface to define the structure of a data-
base with simple point-and-click operations, but these tools trans-
late the actions of the user into the appropriate DDL statements.
SQL Server, for example, allows you to create databases with a
visual tool, the Enterprise Manager, but it also generates the
equivalent DDL statements and stores them into a special file,
called a script.

8 A DBMS allows applications to manipulate the information
stored in the database with SQL statements. The subset of SQL
statements that manipulates this information is called Data
Manipulation Language (DML). The basic data-manipulation
actions are the insertion of new records, modification and dele-
tion of existing ones, and record retrieval.

8 A DBMS protects the integrity of the database by enforcing cer-
tain rules, which are incorporated into the design of the database.
You can specify default values, prohibit certain fields from being
empty, forbid the deletion of records that are linked to other
records, and so on. For example, you can tell the DBMS not to
remove a customer if the customer is linked to one or more
invoices. If you could remove the customer, that customer’s
invoices would be “orphaned.” In addition, the DBMS is respon-
sible for the security of the database (it protects the database
from access by unauthorized users).

NOTE
The terms “records” and “fields” are not used in the context of relational data-
bases. We now talk about “rows” and “columns.” I’m using the old-fashioned
terms because most readers who are new to relational databases are probably
more familiar with records and fields. If you have programmed older ISAM data-
bases, or even random-access files, you’re probably more familiar with records
and fields. I will drop the older terms shortly.

SQL Server is a database management system and not a database. An
SQL Server database is a database maintained by SQL Server. SQL is a
universal language for manipulating databases and is supported by all

Database Access: Architectures and Technologies 5

P
ar

t
i

2974c01.qxd 8/13/01 7:38 AM Page 5

DBMSs—we’ll examine it in detail in Chapter 3, “Structured Query Lan-
guage.” SQL retrieves selected records from the database and returns them
to the client. The set of records returned by an SQL statement is called a
cursor. If another user changes some records in the database, those
changes will not be reflected in the existing cursors. We need a more com-
plicated mechanism that will synchronize the data in the database and the
client computer, and this mechanism is ActiveX Data Objects (ADO). We’ll
get to ADO soon, but first let’s discuss Microsoft’s view of data access.
We’ll look at the big picture first, and then at the individual components.

Windows DNA
The one term you’ll be hearing and reading about most frequently in associ-
ation with Windows 2000 is DNA. DNA stands for Distributed interNet-
Architecture, and it’s a methodology for building distributed applications.
A methodology is a set of rules, or suggestions, and not a blueprint for
developing applications; it’s a recommendation on how to build distributed
applications. Because this recommendation comes from Microsoft, you can
consider it a very clear hint of the shape of things to come. Follow these
recommendations and your applications will not be outdated soon.

A distributed application is one made up of multiple components that
run on different machines. These machines can be interconnected through
a local area network (LAN)—or a few machines on a LAN and a few more
machines on the Internet. To make things even more interesting, throw
into the mix a second LAN, located a few thousand miles away. So, in
effect, DNA is about building applications for the Internet. If you want to
understand how all the pieces fit together, why Microsoft is introducing
new access technologies, and why it chooses weird acronyms to describe
them, you should start with the big picture.

The big picture starts with the realization that not all information is
stored in databases. When most of us are talking about data, we think of
databases, rows, and columns—well-structured data that can be easily
retrieved. But not all information can be stored in databases. A lot of infor-
mation is stored in e-mail folders, text documents, spreadsheets, even
audio and video files. The ultimate data-access technology is one that can
access any information, from anywhere, whether it be a database, an elec-
tronic mailbox, a text file, even a handheld device. Ideally, we should be
able to access information in a uniform way, no matter where this informa-
tion resides. And we should also be able to access it from anywhere, mean-
ing the Internet.

Chapter One6

2974c01.qxd 8/13/01 7:38 AM Page 6

Universal Data Access
Microsoft uses the term Universal Data Access to describe this idea. The
premise of Universal Data Access is to allow applications to efficiently
access data where it resides, through a common set of tools. There’s
nothing new about accessing diverse sources of information today, but
how is it done? In most cases, we replicate the information. Quite often,
we transform the information as we replicate it. The problem with this
approach is that we end up with multiple copies of the same information
(a highly expensive and wasteful practice).

At a high level, Universal Data Access can be visualized as shown in
Figure 1.1. Data providers, or data stores, store information, and their job
is to expose the data through data services. Data consumers receive and
process the data. Finally, business components provide common services
that extend the native functionality of the data providers.

FIGURE 1.1: Universal Data Access

A data provider can be a database management system like SQL Server,
but it doesn’t necessarily need to be. Eventually, every object that stores
data will become a data provider.

ADO 2.5, which is currently distributed with Windows 2000, supports
a few special objects for accessing semi-structured data. Semi-structured
data is the data you retrieve from sources other than database rows, such
as folders and their files, e-mail folders, and so on.

For the purposes of this book, data providers are DBMSs. The data con-
sumer is an application that uses the data. This application is usually called
a client application, because it is being served by the data provider. The
client application makes requests to the DBMS, and the DBMS carries out
the requests. The data consumer need not be a typical client application

Internet

Data consumers
(User services)

Business services Data provider
(Data services)

VB client
application

browser

Web
Server

Scripts

OLE DB

SQL
Server Oracle …

Ax components

Database Access: Architectures and Technologies 7

P
ar

t
i

2974c01.qxd 8/13/01 7:38 AM Page 7

with a visible interface. In this book, however, you’ll learn how to build
client applications that interact with the user. Finally, the service compo-
nents are programs that read the data from the data source in their native
format and transform it into a format that’s more suitable for the client
application. Universal Data Access requires four basic service components,
which are:

Cursor Service The UDA cursor is a structure for storing the
information returned by the data source. The cursor is like a table,
made up of rows and columns. The cursor service provides an effi-
cient, client-side cache with local scrolling, filtering, and sorting
capabilities. The cursor is usually moved to the client (that is, the
address space where the client application is running), and the
client application should be able to scroll, filter, and sort the rows
of the cursor without requesting a new cursor from the DBMS.
Figure 1.2 shows a client application for browsing and editing cus-
tomer data. A cursor with all customers (or selected ones) is main-
tained on the client. The scrollbar at the bottom of the Form,
which is a Visual Basic control, allows the user to move through
the rows of the cursor. The fields of the current row in the cursor
are displayed on the Form and can be edited.

NOTE
For readers who are already familiar with SQL Server, I must point out that the
cursors you create with T-SQL statements are different than UDA cursors. The
SQL Server cursor contains raw information (the rows extracted from the data-
base with the SQL statement). The UDA cursor contains not only data, but the
functionality to manipulate the data. This functionality is implemented mostly
with methods for sorting and filtering the rows, navigational methods, and so on.

Synchronization Service This service updates the database
with the data in the local cursor. This service must be able to
update the database instantly, as the user edits the data in the
cursor, or in batch mode. As you will see later in the book, there
are two major types of cursors: those that reside on the server
and those that reside on the client. The rows of a client-side
cursor are moved to the client and can’t be synchronized to the
database at all times. It is possible for another user to edit the
same rows in the database while the client application is pro-
cessing those rows in the client-side cursor.

Chapter One8

2974c01.qxd 8/13/01 7:38 AM Page 8

FIGURE 1.2: The cursor service is encapsulated into the control at the bottom of
the Form.

Shape Service This service allows the construction of hierar-
chically organized data. A plain cursor is made up of rows
extracted from the database. The data may have come from one
or more tables, but it appears as another table to the client; in
other words, it has a flat structure. A hierarchical, or shaped, cur-
sor contains information about the structure of the data. A hier-
archically organized structure in Access is shown in Figure 1.3.
The outer table contains customer information. Each customer
has several invoices. Clicking the plus sign in front of the cus-
tomer’s name opens a list of the invoices issued to that customer.
Finally, each order has one or more detail lines, viewed by clicking
the plus sign in front of an invoice’s number.

Database Access: Architectures and Technologies 9

P
ar

t
i

2974c01.qxd 8/13/01 7:38 AM Page 9

FIGURE 1.3: Viewing the records of a hierarchical structure with Access

Remote Data Service This service moves data from one com-
ponent to another in a multitier environment. You’ll understand
what this service does when you read about tiers, later in this
chapter. For example, in a web page that queries a database (a
page that searches for books with title keywords, author names,
and so on), the user enters the search criteria on the page, which
is displayed in the browser. This information must be moved to
the web server, then to the database. Obviously, you can’t
assume that the browser maintains a connection to the database.
When it needs to query the database, it must call the appropriate
program on the web server, passing the user-supplied keywords
as arguments. A special program on the web server will intercept
the values passed by the web page, and it will contact the data-
base and extract the desired rows. The result of the query, which
is a cursor, must be moved back to the client. Moving informa-
tion from one process to another is called marshalling, and this is
where the remote data service comes in, translating the data
before passing it to another component. In later chapters you’ll
see how to use remote data services to write web pages bound to
the fields of a remote database.

More services may be added in the future. Throughout this book, we’ll
discuss how these services enable you to write client-server applications.
The cursor service, for example, is implemented in the Recordset object,
which is a structure for storing selected records. You can use the Record-
set object’s properties and methods to navigate through records and

Chapter One10

2974c01.qxd 8/13/01 7:38 AM Page 10

manipulate them. To navigate through the recordset, for example, you
use the MoveNext method:

RS.MoveNext

RS is a Recordset object variable that represents the cursor on the client.
To change the Address field of the current record in the cursor, you

use a statement like the following one:
RS.Fields(“Address”) = “10001 Palm Ave”

The cursor service is responsible for scrolling and updating the local
cursor (the copy of the data maintained on the client). Depending on
how you’ve set up the Recordset object, you can commit the changes
immediately to the database, or you can commit all edited records at a
later point. To commit the changes to the database, you can call either
the Update method (to commit the current record) or the UpdateBatch
method (to commit all the edited records in batch mode). Updating the
database takes place through the synchronization server. The component
services are totally transparent to you, and you can access them through
the ADO objects (the Recordset object being one of them).

To summarize, Universal Data Access is a platform for developing dis-
tributed database applications that can access a diverse variety of data
sources across an intranet or the Internet. You can think of Universal
Data Access as the opposite of a universal database that can hold all
types of information and requires that users actually move the informa-
tion from its original source into the universal database. Let’s see how
this platform is implemented.

ADO and OLE DB
The two cornerstones of Universal Data Access are ActiveX Data Objects
(ADO) and OLE for Databases (OLE DB). OLE DB is a layer that sits on
top of the database. ADO sits on top of OLE DB and offers a simplified
view of the database. Because each database exposes its functionality
with its own set of application programming interface (API) functions, to
access each database through its native interface, you’d have to learn the
specifics of the database (low-level, technical details). Porting the appli-
cation to another database would be a major undertaking. To write appli-
cations that talk to two different databases at once (SQL Server and
Oracle, for instance), you’d have learn two different APIs and discover
the peculiarities of each database, unless you use OLE DB and ADO.

Database Access: Architectures and Technologies 11

P
ar

t
i

2974c01.qxd 8/13/01 7:38 AM Page 11

OLE DB offers a unified view of different data providers. Each data-
base has its own set of OLE DB service providers, which provide a uni-
form view of the database. ADO hides the peculiarities of each database
and gives developers a simple conceptual view of the underlying data-
base. The difference between ADO and OLE DB is that OLE DB gives you
more control over the data-access process, because it’s a low-level inter-
face. As far as Visual Basic is concerned, OLE DB uses pointers and other
C++ argument-passing mechanisms, so it’s substantially more difficult to
use than ADO. Actually, most C++ programmers also use ADO to access
databases because it offers a simpler, high-level view of the database.

Figure 1.4 shows how your application can access various databases.
The most efficient method is to get there directly through OLE DB. This
also happens to be the most difficult route, and it’s not what VB program-
mers do. The next most efficient method is to go through ADO, which
makes the OLE DB layer transparent to the application. You can also get
to the database through Open DataBase Connectivity (ODBC), which is
similar to OLE DB, but it’s an older technology. If you can program ODBC,
then you can program OLE DB, and there’s no reason to use ODBC dri-
vers. Many of you are already familiar with Data Access Objects (DAO)
and Remote Data Objects (RDO). These are older technologies for access-
ing databases through ODBC. In a way, they are equivalent to ADO. These
components, however, will not be updated in the future, and you should
use them only if you’re supporting database applications that already use
DAO or RDO.

FIGURE 1.4: How client applications communicate with databases

ODBC

DAO
RDO

Client Application

OLE DB

ADO

Data Store
SQL Server, Oracle, Access

Chapter One12

2974c01.qxd 8/13/01 7:38 AM Page 12

There was a time when DAO was the only way for VB programmers to
program databases, and as a result too many DAO-based applications are
in use today (and will remain in use for a while). In fact, most VB books
on the market still focus on DAO in discussing Visual Basic’s data-access
capabilities. However, it’s an outdated technology, and you should not
base any new project on DAO. I wouldn’t be surprised if the ADO data
control takes the place of the DAO data control in the toolbox of the next
version of Visual Basic.

The ADO Objects
Let’s switch our attention to the ADO objects. You’ll find all the informa-
tion you need about ADO in the following chapters, so this is a very brief
overview to show you how the ADO object model reflects the basic opera-
tions we perform on databases. A client application performs the following:

8 Establishes a connection to the database

8 Executes commands against the database

8 Retrieves information from the database

ADO’s basic objects correspond to these operations, and they are
appropriately named Connection, Command, and Recordset. The Connec-
tion object represents a connection to the database. To specify the data-
base you want to connect to, set the Connection object’s properties and
then call the Open method to actually establish the connection. With the
visual database tools, you don’t even have to set any properties. You
specify the database you want to connect to with point-and-click opera-
tions, and VB will prepare the appropriate Connection object for you.

Connection objects are expensive in terms of resources, and establish-
ing a new connection is one of the most resource-intensive operations.
It’s crucial, therefore, to create a single Connection object in your applica-
tion and use it for all the operations you want to perform against the data-
base. If you need to connect to multiple databases, however, you must
create one Connection object for each database. (This statement isn’t uni-
versally true. There are situations, as in web applications, where you can’t
afford to maintain a Connection object for each viewer. As far as client
applications are concerned, however, the rule is to establish a connection
and maintain it during the course of the application.)

Once you’ve established a connection to the database, you can execute
commands against it. A command can be an SQL statement or the name

Database Access: Architectures and Technologies 13

P
ar

t
i

2974c01.qxd 8/13/01 7:38 AM Page 13

of a stored procedure. Stored procedures are applications written in Transact-
SQL (T-SQL, the programming language of SQL Server) and are usually
called with arguments. To execute an SQL statement or a stored procedure,
you must set up a Command object and then call its Execute method to
execute the command. The Command object contains the SQL statement
or the name of the stored procedure as well as the required arguments. If
the command retrieves information from the database, the results are
stored in a Recordset object, and you can access them from within your
application through the methods and properties of the Recordset object.

Now that you’ve seen how an application communicates with the data-
base, we’ll turn our attention to the formerly ubiquitous client-server
architecture. This architecture is different than DNA, but you need a solid
understanding of client-server architecture before you adopt more compli-
cated architectures for your applications. If you’re developing database
applications to run on a LAN, client-server architecture is adequate.

Client-Server Architecture
Client-server architecture is based on a simple premise: Different comput-
ers perform different tasks, and each computer can be optimized for a
particular task. It makes sense, therefore, to separate the DBMS from the
client application. In a networked environment, the DBMS resides on a
single machine. However, many applications access the database, and all
clients make requests from the same database. The program that accepts
and services these requests is the DBMS, and the machine on which the
DBMS is running is the database server. The client applications do not
know how the data is stored in the database, nor do they care.

In client-server architecture, the application is broken into two distinct
components, which work together for a common goal. These components
are called tiers, and each tier implements a different functionality. The
client-server model involves two tiers. As you will see later in this chapter,
you can—and often should—build applications with more than two tiers.

Client-server became very popular because much of the processing is
done on the client computer, which can be an inexpensive desktop com-
puter. The more powerful the client is, the more processing it can do.
Two clients may receive the same data from the client—sales by territory,
for instance. One computer can do simple calculations, such as averages,
while another, more powerful, client might combine the data with a map-
ping application to present complicated charts.

Chapter One14

2974c01.qxd 8/13/01 7:38 AM Page 14

The Two-Tier Model
The first tier of a client-server application is the client tier, or presentation
tier, which runs on the client. This tier contains code that presents data
and interacts with the user, and it is usually a VB application. You can
also build client tiers that run in a browser—these are web pages that con-
tain controls, which are similar to the basic VB controls and allow the
user to interact with the database. Figure 1.5 shows a simple client appli-
cation for browsing and editing customers. This is a VB Form with TextBox
controls that display the current customer’s fields. Figure 1.6 shows a web
page that does the same. It contains Text controls, which are bound to the
customer fields in the database. The VB client application relies on the
cursor service, while the web page relies on the remote data service.

FIGURE 1.5: A VB client application for viewing and editing customers

The client application requests data from the database and displays it
on one or more VB Forms. Once the data is on the client computer, your
application can process it and present it in many different ways. The
client computer is quite capable of manipulating the data locally, and the
server is not involved in the process. If the user edits the fields, the appli-
cation can update the database as well. The communication between the
client and the server takes place through ADO, which makes it really sim-
ple to extract data from and update the database.

Database Access: Architectures and Technologies 15

P
ar

t
i

2974c01.qxd 8/13/01 7:38 AM Page 15

FIGURE 1.6: A web page for viewing and editing customers

The second tier is the database server, or DBMS. This tier manipulates
a very complex object, the database, and offers a simplified view of the
database through OLE DB and ADO. Clients can make complicated
requests like “Show me the names of the customers who have placed
orders in excess of $100,000 in the last three months,” or “Show me the
best-selling products in the state of California.” The DBMS receives many
requests of this type from the clients, and it must service them all. Obvi-
ously, the DBMS can’t afford to process the data before passing it to the
client. One client might map the data on a graph, another client might
display the same data on a ListBox control, and so on. The server’s job is
to extract the required data from the tables and furnish them to the
client in the form of a cursor. It simply transmits a cursor to the client
and lets the client process the information. The more powerful the client,
the more it can do with the data. (As you will see later in this chapter,
in the discussion of stored procedures, certain operations that are
performed frequently, or require the transmission of a very large number
of rows to the client, can be carried out by the server.)

By splitting the workload between clients and servers, we allow each
application to do what it can do best. The DBMS runs on one of the
fastest machines on the network. The clients don’t have to be as power-
ful. In fact, there are two types of clients: thin and fat clients.

Chapter One16

2974c01.qxd 8/13/01 7:38 AM Page 16

Thin and Fat Clients
Thin clients are less-powerful computers that do very little processing on
their own. A browser is a thin client: Its presentation capabilities are
determined by the current version of HTML. The benefits of thin clients
are their cost (any computer that runs Internet Explorer or Netscape
Navigator is good enough) and their connectivity (they can access the
database server from anywhere). Another very important—and often over-
looked—feature of thin clients is that their presentation capabilities don’t
vary. A client application that runs within a browser will run on virtually
all computers. Thin clients are easy to maintain too, a fact that can lower
the cost of deployment of the application.

A fat client is a desktop computer with rich presentation features.
Because client applications that run on fat clients are far more flexible
and powerful, they require more expensive computers to run, and their
interfaces can’t be standardized. You can make them as elaborate as the
available hardware permits.

The Three-Tier Model
The two-tier model is a very efficient architecture for database applica-
tions, but not always the best choice. Most programmers develop two-tier
applications that run on small local area networks. The most complete
form of a database application, however, is one that involves three tiers.

In two-tier or client-server architecture, the client talks directly to the
database server. Every application that connects to SQL Server or Oracle,
and retrieves some information, like customer names or product prices, is
a client-server application. The role of the database server is to access
and update the data. Everything else is left to the client. In other words,
the client is responsible for presenting the data to the user, parsing user
input, preparing the appropriate requests for the database server, and
finally implementing the so-called business rules. A business rule is a pro-
cedure specific to a corporation. Your corporation, for example, may have
rules for establishing the credit line of its customers. These rules must be
translated into VB code, which will be executed on the client. It is also
possible to write procedures that will be executed on the server, but you
can’t move all the processing back to the server.

Business rules change often, as they reflect business practices. New
rules are introduced, and existing ones are revised, which means that the
code that implements them is subject to frequent changes. If you imple-
ment business rules on the client, you must distribute new executables to

Database Access: Architectures and Technologies 17

P
ar

t
i

2974c01.qxd 8/13/01 7:38 AM Page 17

the workstations and make sure all users on the network are using the
latest version of the client software (that is, your applications). If busi-
ness rules are implemented on the server, you don’t have the problem of
redistributing the application, but you place an additional burden on the
server, tying it up with calculations that it’s not optimized for or that
could be performed on another machine.

This leads naturally to the introduction of a third tier, the middle tier.
The middle tier is an object that sits between the client application and
the server. It’s a Class (or multiple Classes) that exposes several methods
and isolates the client from the server. If many clients need to calculate
insurance premiums, you can implement the calculations in the middle
tier. Client applications can call the methods of the objects that reside on
the middle tier and get the results. The client application need not know
how premiums are calculated or whether the calculations involve any
database access. All they need to know is the name of one or more meth-
ods of the objects that run on the middle tier.

The main advantage of the middle tier is that it isolates the client from
the server. The client no longer accesses the database. Instead, it calls the
methods exposed by the objects in the middle tier. A client application
will eventually add a new customer to the database. Even this simple
operation requires some validation. Is there a customer with the same
key already in the database? Did the user fail to supply values for the
required fields (we can’t add a customer without a name, for example)?
Adding orders to a database requires even more complicated validation.
Do we have enough items of each product in stock to fill the order? And
what do we do if we can only fill part of the order?

A well-structured application implements these operations in the mid-
dle tier. The client application doesn’t have to know how each customer
is stored in the database if it can call the AddCustomer() method passing
the values of the fields (customer name, address, phone numbers, and so
on) as arguments. The middle tier will actually insert the new informa-
tion to the database and return a True value if all went well, or an error
message is an error occurred.

Likewise, the client application can pass all the information of the
invoice to the middle-tier component and let it handle the insertion of
the new invoice. This action involves many tables. We may have to
update the stock, the customer’s balance, possibly a list of best-selling
products, and so on. The middle-tier component will take care of these
operations for the client. As a result, the development of the client appli-
cation is greatly simplified. The client will call the NewInvoice member

Chapter One18

2974c01.qxd 8/13/01 7:38 AM Page 18

passing the ID of the customer that placed the order, the products and
quantities ordered, and (optionally) the discount. Or you may leave it up
to the middle tier to calculate the discount based on the total amount, or
the items ordered.

The NewInvoice method must update multiple tables in a transaction.
In other words, it must make sure that all the tables were updated, or none
of them. If the program updates the customer’s balance, but fails to update
the stock of the items ordered (or it updates the stock of a few items only),
then the database will be left in an inconsistent state. The program should
make sure that either all actions succeed, or they all fail. You can execute
transactions from within your VB code, but it’s a good idea to pass the
responsibility of the transaction to a middle-tier component.

As a side effect, the middle tier forces you to design your application
before you actually start coding. If you choose to implement business
rules as a middle tier, you must analyze the requirements of the applica-
tion, implement and debug the middle-tier components, and then start
coding the client application. While this is “extra credit” if you’re only
learning how to program databases with VB, or you write small applica-
tions to be used by a workgroup in your company, it’s more of a necessity
if you’re working as a member of a programming team. By designing and
implementing the middle tier, you are in effect designing the client appli-
cation itself, and the work you do in the middle tier will pay off when you
start coding the client application.

The middle tier can also save you a good deal of work when you decide
to move the application to the Web. Sooner or later, you’ll be asked to
develop a site for your company. If the middle tier is already in place, you
can use its components with a web application. Let me describe a sample
component. A client application needs a function to retrieve books based
on title keywords and/or author name(s). If you specify which of the
search arguments are title keywords and which ones are author names,
the operation is quite simple. As I’m sure you know, all electronic book-
stores on the Web provide a box where you can enter any keyword and
then search the database. The database server must use the keywords
intelligently to retrieve the titles you’re interested in. If you think about
this operation, you’ll realize that it’s not trivial. Building the appropriate
SQL statement to retrieve the desired titles is fairly complicated. More-
over, you may have to revise the search algorithm as the database grows.

The same functionality is required from within both a client applica-
tion that runs on the desktop and a client application that runs on the
Internet (a web page). If you implement a SearchTitles() function for the

Database Access: Architectures and Technologies 19

P
ar

t
i

2974c01.qxd 8/13/01 7:38 AM Page 19

client application, then you must implement the same function in VBScript
and use it with your web application. If you decide to change implementa-
tion of the function, you must recompile the desktop application, redistrib-
ute it, and then change the scripts of the web application accordingly.
Sooner or later the same arguments will retrieve different titles on different
machines.

If you implement the SearchTitles() function as a middle-tier compo-
nent, the same functionality will be available to all clients, whether they
run on the desktop or the Web. You may wish to extend the search to
multiple databases. Even in this extreme case, you will have to revise the
code in a single place, the middle tier, and all the clients will be able to
search both databases with the existing code. As long as you don’t add
any new arguments to the SearchTitles() function, the client will keep
calling the same old function and be up to date.

It is actually possible to write client applications that never connect to
the database and are not even aware that they’re clients to a database
server. If all the actions against the database take place through the mid-
dle tier, then the client’s code will be regular VB code and it could not
contain any database structures. As you can understand, it’s not feasible
to expect that you can write a “database application without a database,”
but the middle tier can handle many of the complicated tasks of access-
ing the database and greatly simplify the coding of the client application.

The Layers of a Three-Tier Application
The three-tier model breaks the components of the application into three
categories, or layers, described below. Figure 1.7 shows a diagram of a
three-tier application.

FIGURE 1.7: A three-tier application

Internet

Data consumers
(User services)

Business services Data provider
(Data services)

VB client
application

browser

Web
Server

Scripts

OLE DB

SQL
Server Oracle …

Ax components

Chapter One20

2974c01.qxd 8/13/01 7:38 AM Page 20

Presentation layer This program runs on the client and
interacts with the user, primarily presenting information to the
user. You will usually develop applications for the presentation
layer (unless you’re on the business services team), and these
applications are frequently called user services. By the way, user
services are not trivial. They can include advanced data-bound
controls and, in many cases, custom data-bound controls. Data-
bound controls are bound to a field in the database and change
value to reflect the field’s current value, as the user navigates
through the recordset. When a data-bound control is edited,
the new value is committed automatically to the database
(unless the control is not editable).

Application layer Also known as the business layer, this layer
contains the logic of the application. It simplifies the client’s
access to the database by isolating the user services from the
database. In addition, you can insert business rules here that
have nothing to do with the presentation logic. This layer is
designed before you start coding the client application. The
components of the application or business layer are frequently
called business services.

Data layer This layer is the database server, which services
requests made by the clients. The requests are usually queries,
like “Return all titles published by Sybex in 1999” or “Show the
total of all orders placed in the first quarter of 2000 in California.”
Other requests may update the database by inserting new cus-
tomers, orders, and so on. The database server must update the
database and at the same time protect its integrity (for example,
it will refuse to delete a customer if there are invoices issued to
that specific customer).

Three-Tier Applications on the Web
The best example of a three-tier application is a web application. Web
applications are highly scalable, and two tiers of the application may run
on the same computer (the client tier runs on a separate machine, obvi-
ously). Even though you may never write applications for the Web, you
should understand how web applications interact with viewers.

Figure 1.8 shows a web application that runs in a browser and con-
tacts a web server and a database server to interact with the user. The
first tier—the presentation layer—is the browser, which interacts with the

Database Access: Architectures and Technologies 21

P
ar

t
i

2974c01.qxd 8/13/01 7:38 AM Page 21

user through HTML documents (web pages). A web page may contain
controls where the user can enter information and submit it to the server.
The web page, therefore, is the equivalent of a VB Form. Where your VB
application can read the controls’ values the moment they’re entered, the
values of the controls on a web page must be passed to the server before
they can be processed. (It is possible to do some processing on the client,
but client-side scripting is beyond the scope of this book).

FIGURE 1.8: A web application is a typical example of a three-tier application.

All requests are channeled by the browser to the web server. Internet
Information Server (IIS) is Microsoft’s web server and requires Windows NT
or Windows 2000, Server Edition. Most of the examples in this book will
work with the Personal Web Server, which comes with Windows 98. IIS is
the middle tier (the application layer). The web server’s role is to generate
HTML documents and send them to the client. If the web server needs to
access a database, it must contact a DBMS through an ActiveX component.
The programs on the web server are active server pages, written in VBScript.

The DBMS, finally, is the data layer of the application.
Notice that the tiers of a web application need not reside and execute

on different machines. The DBMS may be running on the same machine
as the web server. For testing purposes, you can run all three tiers on the
same computer, but when you deploy the application, you will install the
client application on multiple workstations. The web server and the DBMS

Internet ASP pages

HTML page
Database server

ActiveX
components

Database

Client

Chapter One22

2974c01.qxd 8/13/01 7:38 AM Page 22

are frequently installed on the same machine, but they run as two separate
processes. Even though they’re on the same computer, the DBMS will
authenticate the web server and will not allow it to view information or
invoke procedures unless it has the appropriate privileges. As the site grows,
you may have to use multiple databases and/or multiple web servers.

ACCESS AND CLIENT-SERVER APPLICATIONS

Many of you readers are probably wondering whether you can
develop client-server applications with Access. Access is not a data-
base server. When you contact Access and open a table, the entire
table is uploaded to the client computer’s memory. (If the table is
large, it’s uploaded in segments, but the processing takes place on
the client.) If five users on the network are all accessing the same infor-
mation, then five copies of the same table(s) are onhe clients, plus the
original. To describe Access applications, the term file-based data-
base is used, but I prefer the (older) term desktop database. To use
an Access database, you must have Access or compatible software,
such as Excel or a Visual Basic application, installed on the client.

One of the most important differences between Access and SQLServer
is how they handle concurrency. SQL Server maintains a single copy
of the data. Because all clients must go through the DBMS, SQLServer
knows when a record is being edited and prevents other users from
deleting it or even reading it. Access must compare the changes made
on the client to the original and then decide whether other users can
access a row. If a user opens a table and selects a row to edit, no other
user can edit the same row. This is a nice feature, unless the user gets
an important call or goes out to lunch. Then the row will remain locked
indefinitely. As the number of users grows, the overhead is over-
whelming, and it’s time to upsize the database to SQL Server.

Access 2000 can be used for developing client-server applications,
but this feature of Access relies on SQL Server technology. Microsoft
has released the Microsoft Data Engine (MSDE) component, which
is a client-server data engine. MSDE is fully compatible with SQL
Server; it’s actually based on the same data engine as SQL Server,
but it’s designed for small workgroups. You can use MSDE to develop
client-server applications with Access 2000 (or VB, for that matter)
that can “see” SQL Server databases. These applications are fully
compatible with SQL Server and will work with SQL Server if you
change the connection information.

Database Access: Architectures and Technologies 23

P
ar

t
i

2974c01.qxd 8/13/01 7:38 AM Page 23

SQL Server
Quite a few of you are familiar with Access, and you may have even devel-
oped database applications with it. As I mentioned earlier, however, Access
is a desktop database. It can’t be scaled up, and it can’t accommodate
many simultaneous users. To develop real database applications, you
should move to SQL Server, which is Microsoft’s DBMS. It’s highly scal-
able and you can use it to develop applications for everything from small
networks to thousands of users.

Until recently, Microsoft was pushing Access databases with Visual
Basic. Now VB6 comes with all the drivers and tools you need to access
SQL Server databases, and the next version of VB will probably rely heav-
ily on SQL Server. So, this is an excellent time to move up to SQL Server.
The current version of SQL Server (version 7) runs under Windows 98
and can be easily deployed in a small network. Even if you have no prior
experience with SQL Server, I urge you to install the Evaluation Edition
of SQL Server on your computer and use the same machine for develop-
ment and as a database server.

NOTE
Nearly all of this book’s examples will work on a stand-alone computer running
Windows 98, but I recommend using Windows NT or Windows 2000.

There are two ways to use SQL Server: as a powerful substitute for Access
or as a powerful DBMS (which is what SQL Server is). You can write an
application that works with Access, then change its connection to the same
database on SQL Server, and the application will work. I know some pro-
grammers who upsized their Access database to SQL Server and then
changed their DAO-based VB code to work with SQL Server. By the way,
converting an application based on DAO to work with ADO is not trivial,
but if you write applications based on ADO, you can manipulate Access and
SQL Server databases with nearly the same code.

SQL Server has a few unique features that you can’t ignore. To begin
with, it has its own programming language, T-SQL. T-SQL is an extension
of SQL and it’s so powerful that it can do just about everything you can
do with VB. T-SQL has no user interface, but it supports many data-
manipulation functions (similar to the functions of VB) and flow-control
statements. It can also access the tables of a database through SQL. In
essence, T-SQL combines the power of SQL with the structure of more

Chapter One24

2974c01.qxd 8/13/01 7:38 AM Page 24

traditional programming languages. If you don’t care about a user interface,
you can use T-SQL to implement all of the operations you’d normally code
in VB. The advantage of T-SQL is that it’s executed on the server and can
manipulate tables locally. To do the same with VB, you’d have to move infor-
mation from the server to the client and process it there. Stored procedures
are faster than the equivalent VB code and they standardize client applica-
tions, since all clients will call the same procedure to carry out a task.

In effect, it’s quite acceptable to implement business rules as stored
procedures. Chapters 4 and 5 discuss how to take advantage of stored
procedures from within your VB code. I think stored procedures are one
of the best reasons to switch from Access databases to SQL Server. A
good VB programmer implements the basic operations of the application
as functions and calls them from within the application. Practically, you
can’t implement every data-access operation as a stored procedure, and I
urge you to do this. Stored procedures become part of the database and
can be used by multiple applications, not just the client application.

WRITE BETTER CLIENT APPLICATIONS WITH STORED
PROCEDURES

If you implement the NewInvoice stored procedure to add new
invoices to a database, then you can call this stored procedure from
within any VB application that needs to add invoices to the data-
base. If you implement the same operation as a method of a middle-
tier component, then you can call this method from within any appli-
cation—including the Office applications. Because middle-tier com-
ponents are implemented as Classes, they can be called by any
COM-enabled application. In simple terms, this means that every
programming language that supports the CreateObject() function
can call the methods of the middle-tier component. You will see
how to create a script to add orders to the database. If you distrib-
ute the application, users don’t have to go through the visible inter-
face of the application to add new invoices. They can write a short
script to automate the process.

SQL Server also uses triggers. A trigger is a special stored procedure that
is executed when certain actions takes place. For example, you can write a
procedure to keep track of who has deleted a record and when. Triggers are
added to individual tables and can be invoked by three different actions:
insertions, deletions, and updates. We’ll discuss stored procedures and

Database Access: Architectures and Technologies 25

P
ar

t
i

2974c01.qxd 8/13/01 7:38 AM Page 25

triggers in Chapter 4, and you’ll see how you can simplify your VB code by
implementing certain operations as stored procedures.

SQL Server Tools
Many of you may not be familiar with SQL Server, so this introduces you
to its basic tools. If you don’t have access to SQL Server on your company’s
network, you can install the desktop version on a local machine and use it
as a development platform as well. The following section describes how to
install SQL Server and related tools on your computer. If you haven’t pur-
chased SQL Server yet, you can use the Evaluation Edition on the compan-
ion CD, but it will expire three months after installation. For more
information on ordering SQL Server 7, visit the Microsoft website at
www.microsoft.com/sql.

NOTE
Although SQLServer 2000 is now available, SQLServer 7 is still used more often
and so is referenced throughout this book. If you’re using SQL Server 2000, you
may find new or optimized features not mentioned here, but the functionality
of the examples should be the same.

Installation
Installing SQL Server is fairly straightforward. Of the available installa-
tion options, select the Desktop version. To keep it simple, install SQL
Server on the same machine you will use to develop your applications in
the course of reading this book. This is a client-server configuration, as
SQL Server is a separate program that must be running in order to service
client requests. Whether it’s running on the same or a different machine,
it makes no difference to your application.

If you plan to install and configure SQL Server on a local area network,
please consult the product documentation. This is the job of the data-
base’s administrator (DBA), who is responsible for maintaining the data-
base as well. SQL Server is nothing like Access, and you really need a
DBA to take care of the day-to-day operations.

SQL Server 7 runs under both Windows 95/98 and Windows
NT/2000. So, you can really learn how to develop database applications
with Visual Basic and SQL Server with a typical desktop system. The
Server version of SQL Server that runs under Windows 2000 supports

Chapter One26

2974c01.qxd 8/13/01 7:38 AM Page 26

additional features, of course, like full-text search support, replication,
and more, but these features are not discussed in this book. You can also
install the Microsoft English Query, a component that allows you to query
the database with English-language statements like “How many orders
were placed in the 1999?” or “Show the titles of all books written by T. S.
Eliot.” The English Query is not a ready-to-use utility, but an environ-
ment that must be customized for each database. It’s an advanced topic
and has very little to do with database programming, so it’s not covered
in this book. However, it’s a very interesting program, and you should
probably take a look at the sample application after you have mastered
SQL and database programming.

Once SQL Server has been installed, a new command is added to the
Programs menu: SQL Server 7. This command leads to another menu with
a few options, including Microsoft SQL Server 7, which leads to a submenu
listing SQL Server’s tools. The most important tools, which are also rele-
vant to this book’s contents, are presented briefly in the following sections.

SQL Server Service Manager
This tool allows you to start and stop SQL Server. To start SQL Server,
select Start ➢ Programs ➢ SQL Server 7.0 ➢ Microsoft SQL Server 7.0
➢ Service Manager, which opens a window where you can start and stop
SQL Server. Select the MSSQLServer service in the services box and then
click Start. If you’d rather have SQL Server autostart every time you turn
on your computer, check the option “Auto-start Service when OS starts.”

When SQL Server is running, a small icon with a green arrow is added
to the system tray. If you attempt to connect to SQL Server from within a
client application while SQL Server is not running, you will get an error
message to the effect that there’s a problem with your network. At this
point you must stop the application, start SQL Server through the Service
Manager, and then restart the VB application.

Enterprise Manager
The Enterprise Manager, shown in Figure 1.9, is a visual tool that allows
you to view and edit all the objects of SQL Server. This is where you cre-
ate new databases, edit tables, create stored procedures, and so on. You
can also open a table and edit it, but the corresponding tools are not
nearly as user-friendly as the ones that come with Access. SQL Server
databases shouldn’t be manipulated directly. Only the DBA should open
tables and examine or edit their contents.

Database Access: Architectures and Technologies 27

P
ar

t
i

2974c01.qxd 8/13/01 7:38 AM Page 27

Visual Basic includes several visual database tools (discussed in Chap-
ter 6) that allow you to view the structure of your databases, create and
edit tables, create and debug stored procedures, and more. Much of what
you can do with Enterprise Manager can be done with the visual data-
base tools, except for adding new users, setting user rights, and similar
operations. Again, these tasks are the responsibility of the DBA. You will
see how to set up a user’s profile so that the specific user can execute
stored procedures only and other simple tasks in a later chapter. This
topic is discussed in Chapter 4, “Transact-SQL.”

Expand the folder with the name of the server (TOSHIBA in Figure 1.9)
in the left pane, and you will see five folders.

FIGURE 1.9: The SQL Server Enterprise Manager window

Databases
This folder contains a subfolder for each database. If you select a data-
base here, you will see a list of objects, described below, that are specific
to that database.

Diagrams A diagram is a picture of the database’s structure,
similar to the one shown in Figure 1.10. You can manipulate
the very structure of the database from within this window,
which shows how the various tables relate to each other. You
can add new relationships, set their properties, add constraints
for the various fields (for example, specify that certain fields
must be positive), enforce referential integrity, and so on. Don’t

Chapter One28

2974c01.qxd 8/13/01 7:38 AM Page 28

worry if you are not familiar with these terms; they are dis-
cussed in detail in the first few chapters of the book.

To create a new database diagram, right-click the right window
and select New diagram from the shortcut menu. A Wizard will
prompt you to select the tables to include in the diagram, and
then it will generate the diagram by extracting the information
it needs from the database itself. You will find more informa-
tion on creating tables and diagrams in Chapter 2.

Tables A table consists of rows and columns where we store
information. Databases have many tables and each table has a
specific structure. You can edit the columns of each table
through the Design window, shown in Figure 1.11. To open the
Design window of a table, right-click the table’s name and
select Design from shortcut menu.

FIGURE 1.10: A database diagram shows the structure of its tables and the
relationships between them.

FIGURE 1.11: The Design window of the titles table

Database Access: Architectures and Technologies 29

P
ar

t
i

2974c01.qxd 8/13/01 7:38 AM Page 29

Views A view is a section of a table, or a combination of mul-
tiple tables, and contains specific information needed by a
client. If the Customers table contains salary information, you
probably don’t want every application to retrieve this informa-
tion. You can define a view on the table that contains all the
columns except for the salary-related ones. As far as the client
application is concerned, the view is just another table. SQL
Server’s views are based on SQL statements and they’re equiva-
lent to Access queries.

Most views are editable (a view that contains totals, for exam-
ple, can’t be edited). To open a view, select Views in the left
pane of the Enterprise Manager, then right-click the desired
view’s name in the right pane and select Return All Rows from
the shortcut menu. The view’s rows will appear on a grid, where
you can edit their fields (if the view is updateable). To refresh
the view, click the button with the exclamation mark in the
window’s toolbar.

Stored Procedures A stored procedure is the equivalent of a
VB function, only stored procedures are written in T-SQL and
they’re executed on the server. In this folder, you see the list of
stored procedures attached to the database and their defini-
tions. You can create new ones as well, but you can’t debug
them. To edit and debug your stored procedures, use either the
Query Analyzer (discussed in the next section) or the T-SQL
Debugger, a tool that comes with VB. Actually, the Stored Pro-
cedure Properties window, which will appear if you double-click
a procedure’s name, contains the definition of the procedure
and a button named Check Syntax. If you click this button, the
Enterprise Manager will verify the syntax of the stored proce-
dure’s definition. It points out the first mistake in the T-SQL
code, so it doesn’t really qualify as a debugging tool.

Users In this folder, you can review the users authorized to
view and/or edit the selected database and add new users. By
default, each database has two users: the owner of the database
(user dbo) and a user with seriously limited privileges (user
guest). To view the rights of a user, double-click their name. On
that user’s Properties dialog box, you can assign one or more
roles to the selected user (instead of setting properties for indi-
vidual users, you create roles and then assign these roles to the

Chapter One30

2974c01.qxd 8/13/01 7:38 AM Page 30

users). If you click Permissions, you will see the user’s permis-
sions for every object in the database, as shown in Figure 1.12.
It’s a good idea to create a user called application (or something
similar) and use this ID to connect to the database from within
your application. This user will impersonate your application,
and you can give this user all the rights your application needs.

FIGURE 1.12: Setting user permissions for the various objects of a database

Roles When you select the Roles item in the right pane, you
will see a list with the existing roles. A role is nothing more
than a user profile. If multiple users must have common privi-
leges, create a new role, set permissions to this role, and then
use it to specify the permissions of individual users.

Rules SQL Server allows you to specify rules for the values of
individual fields of a table. These rules are called CHECK con-
straints and they are specified from within the Database Dia-
gram window. There’s no reason to use this window to specify
rules, but it’s included for compatibility reasons.

Defaults Here you can define the default values for any field.
The default values are used when no value is supplied by the
user, or the application, for the specific field. It is simpler to
specify defaults during the design of the table, than to provide

Database Access: Architectures and Technologies 31

P
ar

t
i

2974c01.qxd 8/13/01 7:38 AM Page 31

the code that checks the user-supplied value and supplies a
default value if the user hasn’t entered a value for a field.

User-Defined Data Types This is where the user-defined
data types (UDTs) are specified. SQL Server doesn’t allow the
creation of arbitrary data structures like Visual Basic does. A
UDT is based on one of the existing data types, but you can
specify a length (for character and binary types) and, option-
ally, a default value. For example, you can create a UDT, name it
ZCODE, and set its type to CHAR and length to five. This is a
shorthand notation, rather than a custom data type. UDTs are
useful when you allow developers to create their own tables.
You can create data types like FNAME, LNAME, and so on, to
make sure that all fields that store names, in all tables, have the
same length. When you change the definition of a UDT, the
table(s) change accordingly without any action on your part.

Data Transformation Services (DTS)
This folder contains the utilities for importing data into SQL Server and
exporting data out of SQL Server. The DTS component of SQL Server
allows you to import/export data and at the same time transform it. In
Chapter 2, you will see how to use the DTS component to upsize the Bib-
lio sample database, which comes with both Access and Visual Basic.

Management
This folder contains the tools for managing databases. The most impor-
tant tool is the Backup tool, which allows you to back up a database and
schedule backup jobs. These tools are also meant for the DBA, and we are
not going to use them in this book.

Security
Here’s where the DBA creates new logins and assigns roles to users. We
are not going to use these tools in this book.

Support Services
This is where you configure two of SQL Server’s support services: the Dis-
tributed Transaction Coordinator and SQL Server Mail. The Distributed
Transaction Coordinator is a tool for managing transactions that span

Chapter One32

2974c01.qxd 8/13/01 7:38 AM Page 32

across multiple servers. We will discuss transactions in detail beginning
in Chapter 4, but we won’t get into transactions across multiple servers.

The SQL Server Mail service allows you to create mail messages from
within SQL Server. These messages can be scheduled to be created and
transmitted automatically and are used to notify the database administra-
tor about the success or failure of a task. You can attach log files and
exception files to the message.

The Query Analyzer
If there’s one tool you must learn well, this is it. The Query Analyzer is where
you can execute SQL statements, batches, and stored procedures against a
database. To start the Query Analyzer, select Start ➢ Programs ➢ SQL
Server 7.0 ➢ Microsoft SQL Server 7.0 ➢ Query Analyzer. The Query
Analyzer uses an MDI interface, and you can open multiple windows, in
which you can execute different SQL statements or stored procedures.

If you enter an SQL statement in the Query Analyzer window and click
Execute (the button with the green arrow on the toolbar), the window
will split into two panes; the result of the query will appear in the lower
pane—the Results pane—as shown in Figure 1.13. The statement will be
executed against the database selected in the DB box at the top of the
window, so make sure you’ve selected the appropriate database before
you execute an SQL statement for the first time. You can save the current
statement to a text file with the File ➢ Save As command and open it
later with the File ➢ Open command.

In addition to SQL statements, you can execute batches written in
T-SQL. A batch is a collection of SQL and T-SQL statements. For example,
you can enter multiple SQL statements and separate them with a GO
statement. Each time a GO statement is reached, the Query Analyzer exe-
cutes all the statements from the beginning of the file, or the previous GO
statement. All the results will appear in the Results pane.

NOTE
SQL statements and batches are stored in text files with the extension .SQL.
All of the SQL statements and stored procedures presented in this book can be
found in a separate SQL file, each under the corresponding chapter’s folder on
the companion CD-ROM.

Database Access: Architectures and Technologies 33

P
ar

t
i

2974c01.qxd 8/13/01 7:38 AM Page 33

FIGURE 1.13: Executing SQL statements with the Query Analyzer

By default, the Query Analyzer displays the row output produced by
SQL Server: the results and any messages indicating the success or fail-
ure of the operation. Most people prefer the Grid view, which is shown in
Figure 1.14. To activate this view, select Results in Grid from the Query
menu. The advantage of this view is that you can change the width of the
columns. The grid on the Results Grid tab contains the results of the
query, and the messages returned by SQL Server are displayed on the
Messages tab.

Chapter One34

2974c01.qxd 8/13/01 7:38 AM Page 34

FIGURE 1.14: The Query Analyzer’s Grid view

Summary
This chapter was a very broad indeed. It touched a lot of topics, and it
probably raised quite a few questions. The following chapters elaborate
on all the topics discussed here. Starting with the next chapter, you’ll
learn how to design databases and how to manipulate them with SQL.
Then, you’ll see how to use ADO to write database applications that are
almost independent of the DBMS you use. Nearly all of this book’s appli-
cation will work equally well with SQL Server and Access databases.

Database Access: Architectures and Technologies 35

P
ar

t
i

2974c01.qxd 8/13/01 7:38 AM Page 35

2974c01.qxd 8/13/01 7:38 AM Page 36

