
Adapted from Mastering™ XML, Premium Edition, by
Chuck White, Liam Quin, and Linda Burman

ISBN 0-7821-2847-5 1,155 pages $49.99

Chapter 1

T he eXtensible Markup Language (XML) is a text- and
data-formatting language that, like HTML, has a tag-
based syntax. At first glance, in fact, it looks a lot like

HTML, but it’s capable of doing much more: Not only can you
prescribe text styles, but the power of XML comes from its
capability to define data types for cross-platform communica-
tion. Furthermore, XML’s extensibility enables you to create
your own tags for developing applications for specific needs.

The basis of XML is the XML document. In its most essen-
tial form, it is a text file with the .xml extension that contains
text, data, and the XML tags. XML does no data processing,
however; for that, you need to employ an XML processor, or
parser. Parsers are compiled applications developed in any num-
ber of programming languages, such as C or Java. Parsers come
in many flavors, and sometimes are embedded in other applica-
tions, such as Internet Explorer 5 (IE 5) and above. But first,
you need to learn how to create a basic XML document.

The simplest XML documents can be created using a text
editor and just a few short lines of code. The most complex

Creating XML Documents

4033ch01.qxd 9/11/01 9:18 AM Page 3

CO
PYRIG

HTED
 M

ATERIA
L

XML documents, however, could not possibly be developed without the
help of powerful software. In fact, many XML documents are extracted
from a database or through other processes.

This doesn’t, however, preclude your understanding the intricacies of
XML. The contrary is probably true, because the more that is hidden from
you, the harder it is to understand what is happening under the hood.

This chapter explores how to build an XML document. First, we’ll
begin with a simple XML document. Next, we’ll take you through the
basic syntax of XML. Then, we’ll break an XML document into its com-
ponents. We’ll look briefly at namespaces, and then we’ll help you under-
stand how to choose which rule-based system to use—document type
definitions (DTDs) or schemas. Finally, we’ll build another simple XML
document, with enough added complexity to get you ready for the rest of
the book.

Creating an XML Document
Writing your first XML document is so easy, we’re going to dive right in
and write one. We’re even going to write a simple style sheet to get you to
see it in a Web browser.

NOTE
You’ll need IE 5 or above or Netscape 6 or above to view this example.

This basic XML document contains one element, called Basic.
This is really the essence of XML: the ability to define your own meaning
and structure to a document. So open your favorite text editor and type
the contents of Listing 1.1, beginning with <?xml version=”1.0”?>.

Listing 1.1: A Basic XML Document
<?xml version=”1.0”?>
<?xml-stylesheet type=”text/xsl” href=”Basic.xsl”?>
<Basic>Hello World</Basic>

Next, save the file as HelloWorld.xml. If you are using Notepad in
Windows, in the Save As dialog box be sure to select All Files from the
Save As Type drop-down list. If you don’t, Notepad will save the file with

Chapter One4

4033ch01.qxd 9/11/01 9:18 AM Page 4

a .txt extension, and you may not be able to open the document in an
XML processor. You can also wrap the filename in quotes as an alterna-
tive. If you are on a Macintosh, be sure to save the file with an .xml
extension. Most Macintosh programs default to saving files without an
extension of any kind, so you will need to account for this.

Next, let’s develop a simple style sheet so we can view the file in a
browser. This isn’t necessary, because XML parsers, including the one
that comes with IE 5, will parse the document and reveal its structure.
But we want to give you something here that looks familiar, and most
people have by now seen a simple Web page.

The next step then is to create our simple style sheet. Type the con-
tents of Listing 1.2, beginning with <?xml version=”1.0” ?>.

Listing 1.2: A Basic XSL(T) Document
<?xml version=”1.0” ?>
<xsl:stylesheet version=”1.0”

xmlns:xsl=”http://www.w3.org/1999/XSL
➥ /Transform”>
<!— xmlns:xsl=”http://www.w3.org/TR/WD-xsl” for
most versions of Internet Explorer 5 —>

<xsl:template match=”/”>
<html>

<head>
<title>A Basic Stylesheet
</title>

</head>
<body>

<xsl:value-of select=”/”/>
</body>

</html>
</xsl:template>

</xsl:stylesheet>

Next, save this file as Basic.xsl in the same directory or folder as
HelloWorld.xml. The browser will need to be able to access it in order to
view HelloWorld.xml.

If you have Netscape 6, you can choose Open File from the File menu
and navigate to the directory in which you saved HelloWorld.xml. Open
the file in Netscape, and the screen shown in Figure 1.1 should appear on
your desktop.

Creating XML Documents 5

P
ar

t
i

4033ch01.qxd 9/11/01 9:18 AM Page 5

FIGURE 1.1: The file Basic.xml as rendered by Netscape 6

NOTE
You don’t need to build a style sheet in Netscape. Netscape will render the doc-
ument using built-in style sheets based on Cascading Style Sheets (CSS), which
is a style sheet language used by some Web browsers.

If you have IE 5, choose File ➢ Open to navigate to HelloWorld.xml.
You may need to swap the portion of the XSL code that reads
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform” for the com-
mented code that reads xmlns:xsl=”http://www.w3.org/TR/WD-xsl”
and resave Basic.xsl if IE 5 doesn’t seem to render anything. Just
replace one with the other doing a copy and paste. There’s no need to
change the code between the <!—— and ——> comment tags. (See the
“Miscellaneous Statements” section later in this chapter for more infor-
mation about using comments.) If you found that step necessary, refresh
your browser after resaving Basic.xsl. The page should now display,
looking like the screen in Figure 1.2.

Chapter One6

4033ch01.qxd 9/11/01 9:18 AM Page 6

FIGURE 1.2: The file HelloWorld.xml as rendered by Internet Explorer 5

Two Kinds of “Legal” XML
XML parsers read two types of XML documents that can, if not marked
up properly, generate errors: well-formed and valid. A well-formed docu-
ment is syntactically correct but isn’t necessarily valid against a DTD. A
valid document has been validated against a DTD.

Well-Formed XML Documents
A well-formed XML document satisfies the production rules described in
the XML specification, which is defined at www.w3.org/TR/REC-xml and
in Appendix A of this book. These rules are discussed in this chapter. An
XML parser will always generate errors if it encounters an XML docu-
ment that is not well formed and will never make any adjustments to try
to compensate for the offending document. This is very different from an
HTML browser, which will generally allow for syntax mistakes in HTML
code and render a document as best it can.

A well-formed document consists of character data and markup. The
markup separates the content (character data) of a document from its
start tags, end tags, empty element tags, entity references, character refer-
ences, comments, CDATA section delimiters, document type declarations,

Creating XML Documents 7

P
ar

t
i

4033ch01.qxd 9/11/01 9:18 AM Page 7

and processing instructions. You’ll learn what each of these are as this
chapter progresses.

Valid XML Documents
A valid document is validated against a document type definition (DTD),
which is a set of rules that you as a developer can create to describe the
semantics of an XML document’s markup. Semantics tell a computer
what meaning to give to the markup. Browsers know the purpose behind
an HTML element such as <H1> because the browser is somehow made
aware of the meaning. (HTML itself is described using an SGML DTD,
and XHTML, an XML-conformant version of HTML, is described using
an XML DTD.) An XML parser that isn’t a validating parser will not
check the document against the rules in a DTD and will not generate any
errors if the document doesn’t conform to the DTD, as long as the docu-
ment is at least well formed. A validating parser will examine the XML
document to see if it matches the rules as declared by the DTD with
which it is associated. If the document doesn’t match the rules perfectly,
it isn’t a conforming document, and the parser will generate an error,
even if the document is otherwise a well-formed document.

Understanding General Syntax
The general syntax of an XML document is dictated by a set of rules
defined by a document created by the W3C (World Wide Web Consor-
tium). This document is called the XML 1.0 Specification, and it consists
of a grammar-based set of production rules that are based on a formal
notation called the Extended Backus-Naur Form (EBNF), which is used
to formalize the syntax of a computer language, in addition to explicit
rules that extend beyond the EBNF production rules and which must
also be adhered to. EBNF is designed to be read by a machine, so at first
glance it can be quite a mysterious-looking beast, but it’s actually no
worse than getting through a DTD. It just looks different from what you
might be used to seeing.

We’ve eliminated EBNF entirely from the mix in this chapter and
spelled out the grammatical rules of XML entirely in plain English (or, if
you’re reading a translated version of this book, in your own language). If
you want to see the actual EBNF-based specifications, take a look at
Appendix A. We also provide a guide to EBNF in Appendix A to make
interpreting its syntax easier.

Chapter One8

4033ch01.qxd 9/11/01 9:18 AM Page 8

The Basic Rules
You need to understand a few basic rules of syntax before diving into
the rest of the structure of XML documents. These rules are absolute.
When we say, for example, that you need to put quotes around attribute
values, we don’t mean sometimes, or with the possible exception of
another event, but always. This is one of XML’s strengths. Getting used
to this depends on your background. If you come from a SQL back-
ground, you’ll find XML rather intuitive. If your background is HTML,
the constraints may initially frustrate you. Eventually, though, you’ll
find that just as a database constraint is your best friend, so are the
constraints in XML, and you’ll learn to love them.

Case Sensitivity in XML
XML is case sensitive. This is the first rule we’ll cover, and it bears repeat-
ing: XML is case sensitive. If a rule in a DTD defines an element called
foo, you can’t call it FOO when you use that element in your document. In
addition, the element’s start tag must exactly match the end tag:
<foo></foo>, not <foo></FOO>. Any variation from that rule will gener-
ate an error.

A real-world example: XHTML, which is the newest version of HTML
and which conforms to an XML DTD, requires, by definition, that all its
elements be lowercase. There was not a small amount of wrangling over
this, but the W3C group that authored the specification needed to make
a decision one way or the other. If they had gone the other direction, a
large group of folks who prefer lowercase would have put up substantial
resistance. Either way, the W3C group in charge of XHTML was going to
make people unhappy. They could also have defined both lower- and
uppercase rules, but that would have made the DTD twice as big and
would have made extending the spec more unwieldy.

Start and End Tags
All start tags must have end tags. End tags, without exception, must
always follow start tags in XML. An end tag can appear immediately after
the name of the element if the element doesn’t contain content, but it
must appear. The following elements have both start and end tags:

<Basic>Hello World</Basic>

<Basic/>

<Basic></Basic>

Creating XML Documents 9

P
ar

t
i

4033ch01.qxd 9/11/01 9:18 AM Page 9

As you can see, you can create an empty element tag in two ways. By
convention, most developers use the first empty element example
(<Basic/>). Many developers also prefer to add a space between the tag
name and the / character, which keeps it consistent with XHTML.

Start Tag Consistency
The start tag that begins a document instance must end it. This is the same
thing as saying that all XML documents must contain a root element
(also referred to as the document element in the Document Object
Model, or DOM, which is a set of interfaces that allow you to manage an
XML document programmatically). The root element is always the first
element in a document instance, and a root element must contain all
other elements, if any exist. The following, then, will generate an error:

<Basic/>

<Next></Next>

The following is correct:
<Basic>

<Next></Next>

</Basic>

NOTE
The root element is not the same as the root of the document, sometimes
referred to as a root node in applications such as XSLT. The root of the docu-
ment begins with the first character an XML processor encounters when pars-
ing an XML document and ends at the last character.

Proper Nesting of Elements
Elements must be properly nested. Elements can’t stand alone in a docu-
ment (unless there is only one element, the root element). All of them
need to be contained within a hierarchy of elements that begins with the
root element.

The easiest way to understand this concept is to simply get into one
valuable habit when marking up an XML document: When you create a
start tag for an element, immediately create the end tag. Another ele-
ment can exist within an element, but each element’s start tag must
have a corresponding end tag before another element’s start tag begins.

Chapter One10

4033ch01.qxd 9/11/01 9:18 AM Page 10

Think of plastic storage containers in your kitchen. If you have a lot of
them, you probably store some of them together, one inside another.
The largest one contains the next largest one, and that one contains the
next largest size, and so on. XML doesn’t care how big your element is,
but like with the storage containers in your kitchen, you can’t place part
of one element inside one element and another part inside another ele-
ment. If you have three elements total in your XML document, the root
element must contain the other two:

<Basic>

<Next type=”the next one”>

<onemore>some content</onemore>

</Next>

</Basic>

This markup would be wrong if the elements weren’t nested properly.
The following will generate an error:

<Basic>

<onemore>

<Next type=”the next one”>some content

</onemore>

</Next>

</Basic>

The preceding code contains an example of an element with another
element as content and an element with character data as content. You
could also have an empty element mixed in:

<Basic>

<onemore>

<Next type=”the next one”>some content

and some more</onemore>

</Next>

</Basic>

We included the extra space in the
 element in deference to
HTML browsers, which can have trouble with an empty
 element
without the space (
) but can handle it otherwise.

Creating XML Documents 11

P
ar

t
i

4033ch01.qxd 9/11/01 9:18 AM Page 11

Reserved Markup Characters
The open angle bracket (<) and ampersand (&) are reserved for markup.
Element tags must begin with the < character, and entities and character
references in a document instance must begin with the & character, which
means that if you use either of these characters for any other purpose,
you’ll generate an error. When an XML parser encounters the < character,
it assumes an element or other markup statement is about to start. If it
doesn’t find the characters it is expecting next, an XML name followed
directly by a right angle bracket (>), or a comment or processing instruc-
tion, it generates an error. Similarly, when an XML parser encounters an
& character, it assumes it has encountered an entity. There are five prede-
fined entities in XML:

< Generates the < character in character data.

> Generates the > character in character data.

& Generates the & character in character data.

' Generates the ‘ character in character data.

" Generates the “ character in character data.
If the characters following the & character don’t consist of characters

that help to build one of the preceding list of entities, the parser will
assume the entity was defined in the DTD or is a character reference. If
the parser doesn’t find that definition or the proper character reference,
it will generate an error.

Character references are similar in appearance to entity references,
but, depending on encoding, they don’t need to be declared and they
refer to specific characters (such as accented letters) using a special num-
bering system called Unicode. You can find a chart of character references
in Chapter 4, “Understanding and Creating Entities.”

Using predefined entities in place of the <, >, &, ‘, and “ characters is
called escaping a character. This just means you are guaranteeing their
safety so that you actually do end up with the characters you’re hoping
for. Notice the greater-than character (>). Always escape this character
even if you’re pretty sure there is no less-than character (<).

Examine the following lines of code to see if you can identify the legal
and illegal uses of the < and & characters. We’ll identify the correct
answers by referencing the code’s line numbers in the paragraphs that
follow.

Chapter One12

4033ch01.qxd 9/11/01 9:18 AM Page 12

1. <!ENTITY rights “©”>

2. <fragment>&rights;2001 Chuck White</fragment>

3. <&fragment>foo</&fragment>

4. <fragment>foo & foo</fragment>

5. <fragment>1 < 2 </fragment>

6. <fragment>&replacement; &more</fragment>

7. <fragment>&replacement; &more;</fragment>

8. <fragment>

The <> operator must be escaped

</fragment>

9. <fragment>

I was hoping I could create this “null” element:

</></fragment>

10. <fragment>

Maybe it will work if I add a space:

< /></fragment>

11. <fragment>

I was hoping I could create

this “null” element: <![CDATA[</>]]>

</fragment>

Line 1 correctly uses an entity reference declaration in a DTD document.
The declaration says, “Replace the entity rights with the copyright sym-
bol (the © character reference).”

Line 2 correctly uses the declared entity within the document
instance. If output to text using an XSLT transformation, the result
would look like this: 2001 Chuck White.

Line 3 is incorrect. It will generate an XML parser error that says
something like “A name was started with an invalid character.”

Line 4 is also incorrect, because you can’t use the & character as part
of element content when it’s not following the rules we’ve described here.
You’ll get an error message similar to “White space is not allowed at this
location.”

You’ll receive the same message if you try to parse Line 5. That’s
because the parser expects the < character to be a start tag.

Creating XML Documents 13

P
ar

t
i

4033ch01.qxd 9/11/01 9:18 AM Page 13

Line 6 would have been legal if both ENTITY declarations were made
in the DTD, but the author left off the semicolon at the end of the second
entity, which would generate an error.

Line 7 is correct. It’s a corrected version of Line 6 (assuming there is a
corresponding ENTITY declaration).

Lines 8, 9, and 10 will not work either, because they are all incorrect
uses of the start tag character.

Line 11 corrects Line 9 by using a CDATA section to escape the charac-
ters into raw text so that the parser does not attempt to interpret them as
markup.

XML Declaration Priority
If you are using an XML declaration, it must come first. The XML declara-
tion simply declares that a document is an XML document and describes
its version. It is optional, but if you use it (and by convention you should
unless you’re working with a document fragment for inclusion in another
XML document), it must, unequivocally, be the first statement in an XML
document:

<?xml version=”1.0”?>

The XML declaration is part of the document prolog, as you will dis-
cover later, and not part of the document instance (the main body of the
document that holds the data you’re working with). It has no bearing on
the ordering or nesting of elements and is, in fact, not an element itself.
Therefore, it is not subject to the rule that dictates that a root element
must contain all other elements. This is not an exception to any rules; it
is part of the rules. Because an XML declaration does not qualify as an
element, it is not subject to the rules to which elements must adhere. It is
also not a processing instruction, although it looks like one. A processing
instruction hands off instructions to another application. An XML decla-
ration doesn’t do that.

Quotation Marks for Attribute Values
Attribute values must be enclosed in quotation marks. In HTML, attribute
values don’t have to be in quotes for a browser to render a document. Not
so for XML. Leave off the quotes, and an XML parser is required to gener-
ate an error. Whether you use single or double quotes is up to you, but be
consistent at each end of the attribute value. It’s okay to nest one type of
quote, such as single quotes, inside another set of a different type of

Chapter One14

4033ch01.qxd 9/11/01 9:18 AM Page 14

quotes, such as double quotes. The following are examples of attribute
values in each kind of quotes:

<foo myatt=”1.0”>

<foo myatt=’1.0’>

Characters, Markup, and Tags
To create an XML document, you should also have an understanding of
markup and character data. Each of these can be categorized as one of
the following:

8 Part of a name token

8 A white space character

8 A member of a literal string

8 Markup
These are explained in the following sections.

XML Names and Name Tokens
XML names are important because so many parts of an XML document
are bound by the rules associated with them. An XML name describes
the rules that declare how an XML name can be defined. A name token is
any mix of name characters. XML names consist of name tokens, but
there are some restrictions, as noted in the following rules. There is a dis-
tinction between name tokens and XML names. Name tokens aren’t used
only in XML names. They can also be used to identify the data type of an
attribute and to define the syntax for enumerated values in attributes
(values that are declared as the only acceptable values by a DTD). The
rules are as follows:

8 An XML name may begin with an underscore or a letter.

8 XML names can contain letters, digits, periods, hyphens, under-
scores, and colons.

8 XML names can contain combining characters (a letter with a
mark attached to it, such as the combination of an accent mark
that appears directly over a letter), and extending characters
(which aren’t letters but rather alphabetic symbols that some lan-
guages use and that act like letters in many ways). Extending
characters are not an English language phenomenon.

Creating XML Documents 15

P
ar

t
i

4033ch01.qxd 9/11/01 9:18 AM Page 15

8 XML names cannot contain any punctuation marks other than
periods, colons, or hyphens.

8 XML names cannot contain white space.

8 XML names cannot begin with a number (or more correctly
expressed, a digit), but can contain digits (yes to <element5>, no
<5element> o).

8 Name tokens adhere to the same rules as XML names, except
that they can begin with a number.

8 Both XML names and name tokens are case sensitive.
Examine the following lines of code to see if you can identify the legal

and illegal uses of XML names. We’ll identify the correct answers by ref-
erencing the code’s line numbers in the paragraphs that follow.

1. <fragment></fragment>

2. <fragment5></fragment5>

3. <5fragment5></5fragment5>

4. <fivefragment5></fivefragment5>

5. <five,fragment5></five,fragment5>

6. <five;fragment5></five;fragment5>

7. <five_fragment5></five_fragment5>

8. <five_fragment5:frag5></five_fragment5:frag5>

9. <!fragment></!fragment>

10. <[fragment]></![fragment]>

11. <xmlFoo/>

Lines 1 and 2 are correct.
Line 3 will generate an error that states an element began with an

invalid character.
Line 4 is correct.
Lines 5 and 6 contain invalid characters.
Line 7 fixes Lines 5 and 6 by using a legal underscore character.
Line 8 will generate an error that says something like “ Reference to

undeclared namespace prefix: five_fragment5.” Namespaces are cov-
ered at the end of this chapter.

Line 9 will generate an error that complains that a declaration has an
invalid name.

Chapter One16

4033ch01.qxd 9/11/01 9:18 AM Page 16

Line 10 will generate an error that complains that an element began
with an invalid character.

Line 11 is incorrect, because it starts with xml, which cannot start
XML names; however, it will not generate an error.

White Space Characters
White space has different meanings in different applications, whether it
be print media, code development, or HTML. The term white space here
designates such characters as line feeds, tabs, carriage returns, and non-
breaking spaces outside XML markup, which are always preserved. For
example, when the following fragment of code is output into text via an
XSLT transform, the space is preserved (unless steps are taken to over-
ride the default XSLT mechanism):

<?xml version=”1.0”?>

<fragment>foo foo

foo</fragment>

The preceding fragment, when transformed into text, looks like this:
foo foo

foo

You’ll get the same kind of result if you place the white space in an
attribute value. So the following is perfectly acceptable, and when output,
the spaces will be preserved:

<fragment x=”1 2 5 “/>

However (and you’ll see the logic here), if you add a space to the frag-
ment element, you’ll have a mess on your hands. The parser will expect
an equal sign after ment:

<frag ment x=”1 2 5 “/>

You can probably see why just by examining the code. When a white
space appears within an element, that element name ends. Thus, the fol-
lowing works fine:

<fragment ></fragment>

Creating XML Documents 17

P
ar

t
i

4033ch01.qxd 9/11/01 9:18 AM Page 17

That’s because as soon as the XML parser encounters the white space
in the XML element name, it is satisfied that, in this case, the name is
fragment, and it moves on to the next order of business.

Having said all that, if you were to load the above text into an HTML
browser, the browser would “normalize” the text so that the spaces dis-
appear to the point where there is no more than one space between
words, and no line breaks (unless you include markup to quash this
behavior). So if you are used to HTML’s treatment of white space, be
aware that XML acts differently.

Literal Strings
Literal strings are quoted strings that don’t contain other quoted strings.
They manage the content of internal entities, attribute values, and exter-
nal identifiers. There are three kinds of literal strings:

8 Literal strings that define entity values. These can consist of any
character except the % and & characters, unless they are starting
an entity reference within the literal string (in other words, the lit-
eral string that defines your entity reference can itself contain an
entity reference). So “Today & Tomorrow” is okay as part of
your literal string entity reference, but “Today & Tomorrow”will
generate an error.

8 Literal strings that define attribute values, such as the following:
<fragment x=”1”/>.

8 System literals that define URIs (Uniform Resource Identifiers),
such as those found in entity definitions: <!ENTITY foofrag
SYSTEM “foo.txt”>.

Examine the following lines of code to see if you can identify the legal
and illegal uses of string literals. We’ll identify the correct answers by ref-
erencing the code’s line numbers in the paragraphs that follow.

1. <fragment x=”y”>”<markup/>”</fragment>

2. <fragment x=”1+2, ‘x/3’=1, ‘5”/>

3. <!ENTITY foofrag SYSTEM “foo”>

4. <!ENTITY foofrag SYSTEM “foo.txt”>

5. <!ENTITY foofrag “foo”>

Chapter One18

4033ch01.qxd 9/11/01 9:18 AM Page 18

6. <fragment >”Excellent,” said Holmes, “That’s why she
cried, ‘Liar!’”</fragment>

Line 1 is fine. It consists of a simple string literal used as content
within an element.

Line 2 may look like a lot of funny business is going on, but it’s really
okay. All the quotes within the double quotes are single quotes. The only
bad thing that can really happen is when a non-XML parser encounters
such a beast and is expecting a terminated string. But the XML parser
itself doesn’t care about such things. It only cares that literal strings be
encapsulated within a pair of double quotes.

Line 3 is a mini-brain teaser. Technically, it is okay, but because it’s a
system literal, the parser will expect to be able to locate the named URI.

Assuming the entity is a text file, Line 4 is a much better bet. It could
also be that the author of the DTD meant the entity to merely be the
string, foo, in which case Line 5 is the correct syntax.

Line 6 is a good example of why it’s important to be able to include single
quotes within double quotes. This is an acceptable use of string literals.

Markup
Markup is notation that provides information to an XML parser on how
to parse, or read, an XML document; which parts of a document to skip;
and which parts of a document to hand off to another application. Based
on that information, a parser, as part of its parsing routine, looks to see
if the document is well formed. If a DTD is associated with the docu-
ment, the parser will, if it is a validating parser (in other words, if it actu-
ally possesses the ability to test for it), test the document to see if it is
valid. If the document fails either a well-formedness test or a validity
test, the parser will return an error.

The kind of markup you encounter depends on the type of nodes, or
components, of an XML document you encounter. The markup for a pro-
cessing instruction is different from the markup for an element, an entity,
or a comment.

As mentioned at the beginning of the chapter, the following characters
or group of characters all form markup: start tags, end tags, empty ele-
ment tags, entity references, character references, comments, CDATA sec-
tion delimiters, document type declarations, and processing instructions.

Creating XML Documents 19

P
ar

t
i

4033ch01.qxd 9/11/01 9:18 AM Page 19

The Components of an XML
Document

XML doesn’t require two documents in order to accomplish something.
But starting off this way does force you into thinking the way you will
need to in the long term when managing XML development.

XML documents consist of two or more main document entities: the
document prolog, the document instance, and, optionally, any processing
instructions you might have. The prolog is like an introductory notation
that gives instructions to a processor about how to handle the main part
of the document, which is the document instance. Processing instruc-
tions can appear arbitrarily within either the document prolog or the doc-
ument instance—it’s up to you. They are for sending instructions to
another processing application beyond the realm of the XML parser.

The Document Prolog
All XML documents start with a prolog, even if there is nothing in the
prolog. Generally, there is something, because a prolog contributes
mightily to a processing environment’s capabilities and removes default
processing routines that may not be wanted. A document prolog consists
of the following, in the order shown:

1. An optional XML declaration

2. Zero or more miscellaneous statements

3. An optional document type declaration

4. Zero or more miscellaneous statements
The order of these is important. If you stray from the order specified,

your XML parser will generate an error message.

NOTE
XML parsers are not allowed by the specification to “fix” errors in your code. All
they are allowed to do is generate a message that reports the error to you.

Chapter One20

4033ch01.qxd 9/11/01 9:18 AM Page 20

The XML Declaration
The XML declaration is the first thing you usually will see in an XML
document (the only exception is if there is nothing in the prolog). It con-
sists of a left angle bracket, followed by a question mark character, and,
with no spaces, the following three characters: xml. The simplest XML
declaration looks like this:

<?xml version=”1.0”?>

The declaration consists of, in the order shown, the following:

1. This specific string <?xml

2. A required statement defining the version of XML used by
the document instance

3. An optional declaration defining the encoding

4. An optional declaration describing whether the XML docu-
ment is a standalone document

5. An optional white space character

6. The string value, ?>
Here is an example of a complete XML declaration:
<?xml version=”1.0” encoding=”UTF-8”

standalone=”yes”?>

Many people mistake some of the statements in an XML declaration
for attributes, and some XML editing applications even describe them as
such in their graphical user interfaces (GUIs), but they’re not attributes.
An XML declaration, like the rest of the document prolog, has its own
rules of syntax, quite separate from the document rules that govern a
document instance. In addition, many people mistake XML declarations
for a processing instruction.

XML Version Declaration There is only one version of XML: 1.0.
When creating an XML version declaration, you can use single or double
quotes (as long as the opening and closing quotes are either both single or
both double), and you can include a white space character on either side
or both sides of the = operator. The following is a legal XML declaration:

<?xml version = ‘1.0’ ?>

Naturally, there may be versions of XML in the future. So by conven-
tion, almost everyone now includes the version information in their XML

Creating XML Documents 21

P
ar

t
i

4033ch01.qxd 9/11/01 9:18 AM Page 21

declaration so they won’t need to worry about backward-compatibility
issues.

Encoding Declaration This is especially useful for dealing with non-
Western languages. Generally, if you are an English speaker, your operat-
ing system uses a 7-bit ASCII encoding, which is a subset of UTF-8 (a
Unicode encoding), which in turn is the default encoding scheme in XML
parsers.

Standalone Declaration The standalone declaration indicates
whether the document has any links that make it a complete document.
You can use single or double quotes (as long as the opening and closing
quotes are either both single or both double).

The following is an XML prolog with an encoding declaration and a
standalone declaration. The order is important. And remember, even
though they look like attribute value pairs, these declarations are not
attribute value pairs and need to be in the order shown:

<?xml version = “1.0”

encoding=”UTF-8” standalone=”yes” ?>

Miscellaneous Statements
Miscellaneous statements can include comments, which are notations
describing the purpose of one or more aspects of the document and
which are completely ignored by the parser because they are designed
strictly for human consumption. They can also include white space and
processing instructions.

Comments are simple to create in XML. They always start with the
<!—— characters and end with the ——> characters. The parser always
ignores everything in between. The following is an example of a comment:

<!—— this is a comment. Anything can go here ——>

The following comment is also acceptable, even though it contains
characters that would generate errors in other circumstances:

<!—— <1 & anything else : ; ——>

Document Type Declaration
The document type declaration declares which document type definition
(DTD) is associated with the document instance. If the DTD is embedded
within the document as a whole, its declarative statements follow. If the

Chapter One22

4033ch01.qxd 9/11/01 9:18 AM Page 22

DTD is linked, the declaration contains link information that tells the
XML parser where to find the DTD.

Let’s take a look at both embedded and linked document type declara-
tions. Listing 1.3 shows an embedded document type declaration, and
Listing 1.4 shows a linked document type definition.

Listing 1.3: Embedded Document Type Declaration
<?xml version = “1.0”
encoding=”UTF-8” standalone=”yes” ?>
<!DOCTYPE fragment
[<!ELEMENT fragment (#PCDATA)>
<!ENTITY foofrag “said Holmes, “>
]>
<fragment >”Excellent,” &foofrag;
“That’s why she cried, ‘Liar!’”</fragment>

Listing 1.4: Linked Document Type Definition
<?xml version = “1.0”
encoding=”UTF-8” standalone=”yes” ?>
<!DOCTYPE fragment SYSTEM “fragment.dtd”>
<fragment >”Excellent,” &foofrag;
“That’s why she cried, ‘Liar!’”</fragment>

If you don’t specify an absolute URI in Listing 1.4, your parser will
need some other way of locating the DTD. Generally this means it exists
in the same directory or a named directory relative to the root of the XML
document.

The Document Instance
The document instance is the main part of an XML document that fol-
lows the prolog. It contains the content of the XML document, or the
data. The name instance may be familiar to those of you with program-
ming backgrounds who understand class hierarchies. The document is an
instance of the class defined by a DTD. If there is no DTD, the instance
consists of an undefined class. If you don’t have a programming back-
ground, think of a DTD as a set of rules. The document instance contains
data described as a set that follows the rules set out in the DTD, which
may or may not be embedded in the document. The document instance
can be broken into a number of subcomponents, or entities. The entire
root element is one such entity. Entities can be broken down further so

Creating XML Documents 23

P
ar

t
i

4033ch01.qxd 9/11/01 9:18 AM Page 23

that individual elements and groups of elements can be considered
entities, which you can, if you want, separate out of the document and
link to the document instance using ENTITY declarations in your DTD.

Elements
Elements consist of three character-level components: the start tag, the
end tag, and the content, if there is any. The names of elements must fol-
low the production rules of XML names. Not all elements have content,
and there is no rule that says they must.

More details of element construction can be found in Chapter 2,
“Understanding and Creating Elements.”

Start Tags Start tags begin with a <. This is called a left angle bracket.
They must be followed by an XML name.

XML Names After creating the start tag, you name your element using
an XML name. As we mentioned earlier, XML names may begin with an
underscore, a letter, or a colon. They can contain letters, digits, periods,
hyphens, underscores, colons, combining characters (a letter with a mark
attached to it, such as an accent mark or a macron), and extending char-
acters (which aren’t letters but rather alphabetic symbols that some lan-
guages use and that act like letters in many ways).

XML names can never begin with numbers, periods, or hyphens.

WARNING
If you use a colon in an XML element—as in <foo:Element/>—most XML
developers will immediately assume you are working with XML namespaces.
General convention, but not the XML standard, demands that you reserve the
colon for use with namespaces. And the standard itself is specific about what
the intent of the colon is (namespace). Of course, the rebel in you may want to
go against the grain of conventional thinking and use colons for purposes other
than namespaces, but you’ll run into enough resistance that you may decide
to take up another cause. Most parsers will not validate a document that uses
a colon in an XML name without a declared namespace.

End Tags End tags (also called closing tags) begin with a </ and end
with a > . Their names must correspond exactly to the names of the
beginning tags of the element description. If a start tag begins and an
end tag with a different name of any kind follows, even if only the case is

Chapter One24

4033ch01.qxd 9/11/01 9:18 AM Page 24

different, no element exists, and the XML parser will generate an error.
This is okay:

<Basic>Hello World!<anElement/></Basic>

The fragment <anElement/> is not an end tag and so does not violate
the rule. It is a complete element tag set (it’s an empty element with a
start and closing tag). You can include a full element tag set within
another element before closing an element tag. The full element tag set is
said to be nested and is considered part of the element’s content. The fol-
lowing will generate an error:

<Basic>Hello World!</basic>

Element Content The content is whatever lies between the start tag
and the end tag. The following example is that of an element with content:

<foo:anotherEmpty>Data here</foo:anotherEmpty>

So is this:
<foo:anotherEmpty>Data here

<foo:empty/>

</foo:anotherEmpty>

Empty Elements An element does not have to have content. If you’ve
seen an HTML <hr> element, you have seen an empty element at work.
Translated to XML, the <hr> element would look like this: <hr/>. Even
better would be the following, especially if you’re worried about browser
compatibility issues: <hr />.

If there is no content, the element is said to be an empty element. The
following is an example of an empty element:

<empty/>

<foo:anotherEmpty></foo:anotherEmpty>

There is nothing wrong with writing out the entire start and end tag
set of an empty element, although it does go against current convention
somewhat, which tends to favor empty elements written as a single tag
set rather than as a pair:

<foo:empty><foo:empty/>

The Root Element The document instance consists of the root element.
Every other element must be contained within a root element. Basic.xml
consisted of one element, which happened to be the root element. If we

Creating XML Documents 25

P
ar

t
i

4033ch01.qxd 9/11/01 9:18 AM Page 25

add another element, that element must be contained within the root
element:

<Basic>Hello World

<child>This is a child element</child>

</Basic>

In the preceding document fragment, the code highlighted in bold text
consists of a child of the root element and the child’s contents. The
child element and its contents form the child of the root element.

When an XML processor encounters an element, it knows nothing
about its semantics, which means it doesn’t understand the purpose of the
element. It doesn’t care if you place a baby picture, or simply another ele-
ment, within the child element to define it. You need to provide a way to
give meaning to each element you create. Throughout this book you’ll dis-
cover hundreds of ways to do this, which is one reason XML is so glorious.

Is It a Tag, or Is It an Element? Now that you’ve seen start and end
tags and defined element content, it’s useful to understand what a tag
isn’t. The following is not a tag:

<tagreference>This is not a tag</tagreference>

The preceding line of code represents an element, not a tag. A tag is a
specific instance of markup that helps define an element. The preceding
line consists of a start tag containing a generic identifier (<tagrefer-
ence>), followed by some element content (This is not a tag), fol-
lowed by an end tag (</tagreference>). Because we’ve determined it’s
not a tag, take another look at the preceding line of code and think about
what it is. The combination of all the markup (the start tag and the end
tag) and the element’s content is the element. Think of a tag as a markup
instance. Think of an element as the whole of all the parts—the tag, zero
or more attributes, plus any content (if any content) in the element.

Building a Tree You can keep adding to the document instance until an
entire tree of elements forms. XML trees consist of elements and element
content, like a flow chart in descending order that begins with a parent ele-
ment, which is the topmost element. The parent element in turn contains
child elements. Child elements are so called because they are next in line on
the descendant tree. These children may themselves have children, and so
on. The tree is built from this hierarchical pattern. Some XML implementa-
tions, such as XSLT, consist of trees that consist of more than elements

Chapter One26

4033ch01.qxd 9/11/01 9:18 AM Page 26

and element content, which means that attributes and namespaces can be
part of the tree. The DOM (which, as we explained earlier, is a set of
interfaces for accessing XML trees programmatically) is another
example of an implementation that uses a more granular approach to
this definition of a tree.

For the purposes of Listing 1.5, however, let’s keep the concept of a tree
as simple as we can and limit it to elements and their content. Listing 1.6
later in this chapter shows a longer document that consists of several child
elements that themselves consist of siblings.

Listing 1.5: Children and Siblings Create a Tree
<?xml version=”1.0”?>
<Basic>Hello World

<child type=”siblingOfChildElement”>
This is a child element</child>

<child
type=”siblingOfChildElement”>
This is another child element</child>

<child type=”siblingOfChildElement”>
<grandChild>
This is a grandchild of the root element

<greatGrandChild>This is a great
grandchild of the root element
</greatGrandChild>

</grandChild>
</child>

</Basic>

You can see we’ve discarded one part of our prolog—the XSL style
sheet processing instruction. That way we can open the document in IE 5
and see the tree. By clicking the + and - symbols on the browser docu-
ment window in IE 5, we can collapse and expand the tree. This is not a
functionality of XML. This is done by a combination of CSS and Dynamic
HTML within the scope of a default rendering object inherent to all
instances of IE 5. By creating your own style sheet, you override this
default mechanism in IE 5.

Figure 1.3 shows a truncated, but still well formed, version of this file
before the tree is expanded. Figure 1.4 shows the same file with the tree
expanded when the user clicks the + symbol. It uses empty elements to
represent the child elements. You can see how XML’s containerlike

Creating XML Documents 27

P
ar

t
i

4033ch01.qxd 9/11/01 9:18 AM Page 27

methodology works and how the different elements branch off to make a
tree-like structure.

FIGURE 1.3: The tree collapsed in Internet Explorer 5

FIGURE 1.4 The tree expanded in Internet Explorer 5

Chapter One28

4033ch01.qxd 9/11/01 9:18 AM Page 28

Accessing the Document Tree In the world of object-oriented pro-
gramming, everything in an XML document is a node. Start tags, end
tags, empty element tags, entity references, character references, com-
ments, CDATA section delimiters, document type declarations, and pro-
cessing instructions are all nodes, as is any one contiguous string of
character data. Even the document itself is a node, which contains all the
other nodes.

We won’t go too in-depth here about all this, because plenty of space
in this book is devoted to some XML-related programming concepts. It’s
worth pointing out, though, that a document tree can be accessed pro-
grammatically in one of two ways: through an event-based system or by
the process of indexing the tree into memory and accessing the hierarchy.
An event-based process, such as SAX, considers each node instance an
event.

You can also navigate the tree of an XML document programmatically
using the DOM. Each object of the hierarchy is indexed in memory and
accessed by an object-oriented program, such as Java, or through
JavaScript or another scripting language.

Is It Well Formed? Examine the following lines of code to see if you
can identify which of these elements are well formed and which aren’t.
We’ll identify the correct answers by referencing the code’s line numbers
in the paragraphs that follow.

1. <fragment ><foo/>”Excellent,” said Holmes. “That’s why
she cried, ‘Liar!’”</fragment>

2. <fragment foo=”foo1” >
<foo></foo><foo/>
</fragment>

3. <fragment><fragchild></fragment>

4. <fragment><fragchild/></fragment>

5. <fragment><fragchild<frag>/></fragment>

6. <fragment><fragchild/>frag></fragment>

7. <fragment><fragchild/>frag></fragment>

8. <fragment><fragchild/>frag<</fragment>

9. <fragment><fragchild/>

<!— comment —>frag

</fragment>

10. <fragment><fragchild/><STOP!/></fragment>

Creating XML Documents 29

P
ar

t
i

4033ch01.qxd 9/11/01 9:18 AM Page 29

11. <fragment><fragchild/><STOP?/></fragment>

Line 1 is okay. You can include character data with other elements in
element content if you want, as long as you’re not validating against a
DTD that prohibits this.

Line 2 is also well formed. It contains two empty elements within a
parent container.

Line 3 would be okay if the author had closed the fragchild element.
Line 4 is how Line 3 should look.
Line 5 is wrong. It contains a start tag before the end of the XML

name. A parser will complain about an invalid XML name.
You might get away with Line 6, but you should always escape > char-

acters, just to be safe.
Line 7 is better.
Line 8 is guaranteed to generate an error, because the < character will

always be interpreted as a start tag by an XML processor.
Line 9 is well formed. It contains an element with content and a

comment.
Lines 10 and 11 are not well formed. They each contain an invalid

character in the element’s name.

Attributes
Attributes are like modifiers. They describe certain properties of ele-
ments. They consist of attribute value pairs—the name of the attribute,
followed by an equal sign, followed by the value of the attribute. The
attribute must have a value:

<fragment foo=”foo1” >

<foo/>”Excellent,” said Holmes.

“That’s why she cried, ‘Liar!’”

</fragment>

Chapter 3, “Understanding and Creating Attributes,” explores
attribute notation in detail.

Examine the following lines of code to see if you can identify which of
these attributes are well formed and which aren’t. We’ll identify the correct
answers by referencing the code’s line numbers in the subsequent list.

1. <foo myatt=”Pete’s Place”>

2. <foo myatt=”Pete’s’ Place”>

Chapter One30

4033ch01.qxd 9/11/01 9:18 AM Page 30

3. <foo test=”’false’”>

4. <foo myatt=’false”>

5. <foo myatt=false>

6. <foo myatt=’false’>

7. <foo myatt=”false”>

8. <AttachExpression

Expression=”<A HREF=orderView3.asp?Order_ID=
➥ [[Order_ID]]>{{Order_ID}}”/>

9. <FormatDate Format=”%b %d, %Y”/>

Line 1 won’t generate an error as long as the attribute type defined in
an associated DTD is not a tokenized type even though there is a single
quote nested within the double quotes. You should, however, use an
apostrophe entity to represent the apostrophe (') here to avoid
confusing the parser.

Line 2 is acceptable (though probably not the author’s intent) and is
an example of how a typo could actually be interpreted by the parser as a
value.

Line 3 is also correct and demonstrates how nesting a string within a
value can prove useful when trying to differentiate between a string value
and some predefined data typed-value test.

Line 4 is a fairly obvious; we opened the attribute value with a single
quote but closed with a double quote, so the statement will generate an
error.

Line 5 is also easy because we left off the quotes, so an error will be
generated.

Line 6 is fine, because we started with a single quote and ended with a
single quote.

Line 7 is also fine, because we started with a double quote and ended
with a double quote.

Line 8 also works, despite the heavy use of special characters, since
none of them violate the rules that govern the use of attribute value types.
This last one was tricky. You’ll learn more about attribute value types in
Chapter 3, but this is a good example of how you can combine XML with
programming techniques to handle parameter passing.

Line 9 is well formed. The characters within the attribute values are
CDATA, which allows for a wide range of values.

Creating XML Documents 31

P
ar

t
i

4033ch01.qxd 9/11/01 9:19 AM Page 31

CDATA Sections
A CDATA section is an especially wonderful little markup unit that
programmers will turn to often as their salvation for dealing with oper-
ators that conflict with XML rules. CDATA sections contain nothing
but character data, no matter what their contents look like. They can
contain the < and the & literal values. This means if you use them in a
CDATA section, you don’t need to escape them. A CDATA section has
the funkiest syntax in all of XML, but it’s worth the trouble.

If you’re a JavaScript or Java developer, you can place all your
JavaScript in a CDATA section, as is, without worrying about escaping
the < and the & characters. The syntax for CDATA sections looks like this:

<![CDATA[content here]]>

A typical example, using Java, might look something like this:
<?xml version = “1.0”

encoding=”UTF-8” standalone=”yes” ?>

<fragment>

<![CDATA[

(while i <= 8)

sum += i++;

)]]>

</fragment>

Using CDATA sections provides clear advantages, and it’s a good idea
to use them whenever there’s even a threat of a character that might be
construed as XML markup by a processor.

Processing Instructions
Processing instructions consist of the following, in the exact order of
their appearance in this list:

1. The string <?

2. The name of the processing instruction target, which can be
any XML name unless the string is XML in either uppercase
or lowercase (which would confuse the parser)

3. Optional white space characters

Chapter One32

4033ch01.qxd 9/11/01 9:19 AM Page 32

4. Any additional, and optional, characters (this is fairly open-
ended because you might be passing parameter lists off to an
external processor, although you can’t use ?>, because the
processor will think you’re closing the instruction statement)

Remember that an XML declaration is not a processing instruction.
An example of processing instructions is our reference to a style sheet
processor at the beginning of this chapter. It bears repeating here:

<?xml-stylesheet type=”text/xsl” href=”basic.xsl”?>

You can use processing instructions for a variety of reasons, most of
which have to do with extending the reach of the XML parser that is con-
trolling the XML document you are working with. One simple example is
for letting Web spiders know whether or not you want a page indexed:

<?robots index=”no” follow=”yes”?>

An XML processor itself does not do anything with instructions other
than hand them to other processors.

Comments
Comments, like processing instructions, can appear in either the prolog
or the document instance. Comments can’t be read by machines—they
are for people, so anything contained within a comment will not be
parsed, including elements.

Comments are a good way to debug code. Debugging, or finding out
what is wrong with your code, can be an art in any computer language,
and comments have long been a way to isolate potential problem code
chunks.

You need to keep a few rules in mind when using comments. If you’ve
used them in HTML, they’ll seem intuitive. If not, they’re still rather simple:

8 Comments begin with the string <!—— and must always close with
this string: ——>.

8 The parser ignores everything between the <!—— and ——>.

8 Nothing can precede an XML declaration in an XML document,
and comments are no exception.

8 As in HTML, comments cannot be nested within a tag that
defines an element name. The following will generate an error:
<tag <!—— this is not a well-formed comment ——>.

Creating XML Documents 33

P
ar

t
i

4033ch01.qxd 9/11/01 9:19 AM Page 33

8 Once you’ve started a comment, you can’t use the —— characters
together until you’ve decided to close your comment. Addition-
ally, this means there is no such thing as a comment within a
comment.

Introduction to Namespaces
If you build an XML document and define an element named sound,
what happens if it needs to interact with another document that contains
an element named sound, but has a meaning that is different from the
same element in your document? You have a collision of elements. You
need to find a means of dealing with the different ways elements work
together when they have the same names. After all, you can’t run around
the world trying to make sure nobody uses your element name with a dif-
ferent meaning.

The answer is namespaces. You can create an attribute, either global
or local in scope, that uniquely identifies your element through a URI. A
URI is not the same as a URL (Uniform Resource Locator). A URI is a
string that identifies a Web resource. It doesn’t necessarily point to any-
thing, even though it can.

NOTE
If you’re a regular reader of the XML-Dev list, you’ll know that there is a vocal
contingent that would say, “Namespaces are not the answer!” However, name-
spaces are a part of XML today and have taken on considerable significance.

By identifying a namespace, you can create elements that are unique
to that namespace and thus will be sure to have the meaning you
intended.

Namespaces are created via an attribute that describes the namespace
within which an element’s definition resides. When a namespace is
declared, a prefix is associated with each element bound to that name-
space. The namespace is itself bound to a URI. A processing application
that understands the set of rules for that namespace can then be used to
process the data according to the rules set forth within the scope of that
particular namespace. Let’s look at a hypothetical example to explain
how a namespace works.

Chapter One34

4033ch01.qxd 9/11/01 9:19 AM Page 34

A Hypothetical Namespace Application
Let’s say you want to create a special set of elements that describe some
specific functions of your company, a financial institution. To keep this
simple, let’s further say that there is only one element, called bankrupt.
Well, bankrupt can mean different things to different people. There’s out-
of-money bankrupt. There’s also morally bankrupt. But even within the
scope of financial bankruptcy, there’s a significant difference between the
kind of bankruptcy most people experience and the kind a big company
experiences. Further, some institutions may have their own specific defini-
tions of bankruptcy, at least in the eyes of determining creditworthiness.

Therefore, your IT department has decided to take the bold step of
defining its own internal vocabulary and binding it to a namespace. To
do this, you’ve made your URI as unique as you think it can be (to
avoid colliding with other similar vocabularies) by using your com-
pany’s domain name as the binding entity. So, assuming your company
is named Top Company, your URI for the application’s namespace
might be http://www.topcompany.com/bankrupt/2001. This URI
does not necessarily point to anything. It merely acts as an identifier.
Next, you need to be sure that your XML parser can understand that
namespace. Unfortunately, since the namespace is created by your
company, you’ll probably need to build the processor yourself, because
your XML parser can’t understand the elements defined by that name-
space.

So what does a namespace look like? First, you need to declare the
namespace itself. This is accomplished by attaching an xmlns attribute to
the element or elements bound to the namespace:

<?xml version=”1.0”?>

<bk:bankrupt

xmlns:bk = “http://www.topcompany.com/bankrupt/2001”

>

From that point on, you can use the namespace and its bound element
any way you want within the scope of the definitions you choose. It doesn’t
matter that there is no physical presence of your rules on the site listed in
the declared namespace attribute. What does matter is that the processor
used to parse those elements understands what those elements mean.
Therefore, someone has to build the processor.

XSL and XSLT are two common namespace-driven XML lingoes.
Unfortunately, XSL and XSLT stumbled out of the gate a bit when

Creating XML Documents 35

P
ar

t
i

4033ch01.qxd 9/11/01 9:19 AM Page 35

Microsoft hurried out an XSL processor that used a namespace that was
bound to an early, pre-standard version of the language. When the language
became standardized, the namespace URI changed (it had to, because its
rules changed, and the new rules would have been in conflict with the old
if the namespace was the same). This caused considerable hair pulling, but
it was a classic example of namespace use and the importance of under-
standing its use.

Namespaces can be scoped across more than one element, of course,
and even across entire documents.

WHAT’S A NAMESPACE?

An XML namespace is a way of “qualifying” a set of elements and
attributes. It’s a way of mixing elements from multiple DTDs, or mul-
tiple sets of names, in a single document, and of saying which ele-
ments and attributes came from which set of names.

XML namespaces are used for three main reasons: intermixing
vocabularies, intermixing document fragments, and establishing
reserved names.

You use a namespace declaration to associate a URI reference with
one or more XML elements, as a prefix to disambiguate them from
each other. Then if two elements have the same name but different
URI prefixes, they are considered to be different.

For example, consider this document fragment:
<myElement

xmlns:foo=”http://www.mydomain.com/foo.xsd”
xmlns:fooFo=”http://www.mydomain.com/fooFo.xsd”

>
<p>This is a p element that denotes a paragraph</p>
<foo:p>This is a “foo:p” element.
The “foo:p” element has a completely different pur-
pose than the “p” element.
</foo:p>
<fooFo:p>And this element has yet another completely
different purpose than either the “p” element or the
“foo” element.</fooFo:p>

We may need different definitions for what amounts to the same
element name, p. So we append a prefix to each pelement carrying
a different meaning than the original, define what that prefix means
by referencing it to a schema (which carries all the rules associated
with that prefix), then append that same prefix when using it in the

continued .

Chapter One36

4033ch01.qxd 9/11/01 9:19 AM Page 36

document instance. So, according to a fictional foo schema refer-
enced by the first namespace declaration in bold, the foo:p ele-
ment does not represent a paragraph, but, perhaps, a proposal. It
all depends on what the schema’s intent is. You hope it’s a well-
defined schema.

You’ll also see namespaces used in major XML vocabularies, like
XSLT. The key in that case is that the processor must have instruc-
tions on how to handle the namespace. The URIs being pointed to
don’t necessarily exist in some physical space, like a URL does. A
URI is an identifier, identifying for a processor which vocabulary is
being used and which version of that vocabulary is being used. A
processor either understands this vocabulary or it doesn’t. If it
doesn’t, the element remains essentially meaningless.

Choosing between a DTD and a
Schema

Up to this point we’ve focused our attention on creating XML documents
based on DTDs. However, a significant portion of this book is devoted to
another validation scheme for XML documents: schemas. Schemas, like
DTDs, define the structure and semantics of an XML document, but in a
more verbose way, using XML to define the rules and allowing for a richer
set of data types to do so.

Schemas are an important enough development in XML that we’ve
devoted two chapters to the topic. The first, Chapter 7, “An Introduction
to Schemas,” is a basic introduction. The second, Chapter 8, “Writing
XML Schemas,” delves more comprehensively into how to create them.

Many in the XML community believe that the DTD will not survive as a
rules mechanism. Although this is extremely unlikely, especially consider-
ing that the core standards used to develop the schema vocabularies them-
selves are written using DTDs, it does point to their increasing value. This
value stems largely from the rich data typing they provide, which means
their elements can be more easily mapped against existing databases.

A schema definition is created by following a set of rules defined by
the W3C that specifies how schemas should be set up. Schemas are
defined within the framework of XML. An XML file is created that

Creating XML Documents 37

P
ar

t
i

4033ch01.qxd 9/11/01 9:19 AM Page 37

describes exactly how to define all the elements in a document instance
that conforms to a specific schema. This is similar to the function of
DTDs. The main differences are that DTDs have a special syntax that
looks different from the kind of syntax used in document instances and
that DTDs have limited data typing capabilities.

A portion of a schema is shown in Listing 1.6. This schema has been
truncated (all but one element definition has been taken out) for space
purposes. By looking at the elements, you can probably figure out what is
going on to some degree. The sequence and purpose of each element is
defined in the schema document. When validated against a processor
that validates against schemas, the XML document instance is matched
to the definitions created in the schema. The XML document instance
doesn’t need to be a file. It can be a streaming instance passed from one
server to another server as a message (which, in XML, is still considered a
document). There are no specific rules about the physical nature of the
XML document instance when using schemas. The only thing that mat-
ters is whether the document instance is valid against that schema.

Listing 1.6: Using a Schema to Define an Element
<schema xmlns=”http://www.w3.org/2000/10/XMLSchema”>

<element name=”lillybook”>
<annotation>

<documentation>documentation
</documentation>

</annotation>
<complexType>

<sequence>
<element ref=”Title”/>
<element ref=”Author”/>
<element ref=”Abstract”/>
<element ref=”Chapter”/>

</sequence>
<attribute name=”ref”
type=”string” use=”required”/>
<attribute name=”id” type=”string”
use=”required”/>

</complexType>
</element>

<!— additional schema elements here —>
</schema>

Chapter One38

4033ch01.qxd 9/11/01 9:19 AM Page 38

Deciding whether to choose DTD or schema validation for your XML
development depends on a number of factors (and remember, you are not
required to use). Ask yourself a few questions:

8 Who’s using the XML document? If it’s for a massive audience,
a DTD is usually the answer. If it’s a more specific group, and you
have confidence that the applications available to your target can
process schema-based XML, choose schemas.

8 Are you extracting data from a database? Most database vendors
are leaning heavily toward schemas because of their data typing
capabilities. This means that you can define integers, and even
dates, in your schemas, thereby binding your elements to stronger
data types that more closely resemble the real data in your database.

8 Are you exchanging information with partners? If you are,
schemas may be a good answer for managing the dialogue
between two or more organizations.

If you’re interested in immediately pursuing the advantages schemas
offer, read through Chapter 7, “An Introduction to Schemas,” for a more
comprehensive look at how they work.

Building a Complete XML
Document

This chapter has carefully reviewed each component of an XML document.
Now, it’s time to put your newfound knowledge to the test by examining a
complete document. The document in Listing 1.7 demonstrates how easy it
is to make a simple XML document with a minimal amount of effort (and a
minimal DTD). Your XML documents in production environments are sure
to be considerably more complex. As you continue with this book, your
ability to create and work with such documents will grow.

Listing 1.7: A Complete XML Document
<?xml version=”1.0” encoding=”UTF-8”?>

<!DOCTYPE lillybook SYSTEM “lillybookv3.dtd”>
<lillybook id=”FreedomsDream”
xmlns:xlink=”http://www.w3.org/1999/xlink”>

<Title>Freedom’s Dream</Title>

Creating XML Documents 39

P
ar

t
i

4033ch01.qxd 9/11/01 9:19 AM Page 39

<Author>
<FirstName>Chuck</FirstName>
<LastName>White</LastName>

</Author>
<Abstract copyright=”2001, Chuck White”>

<Paragraph>Descriptive narration for
interactive short story “Freedom’s Dream”
</Paragraph>

</Abstract>
<Chapter>

<ChapterTitle>One</ChapterTitle>
<score source=”chapter_1Score”/>

<Section classification=”multimedia”
level=”one”>
<SectionTitle>PartOne</SectionTitle>

<Paragraph>Had it been a dream, Antron Crimea’s memory
of the clenched fist piercing the sky of a tumultuous, thun-
dering crowd would have been bearable solitude. As it was
though, the reality brought him to another place, to a dis-
tance only something like a dream could take him.</Paragraph>

<Paragraph>”The crowd forgot everything,” is how
Antron described the situation to his psychiatrist,
<characterLink id=”chesapeake” xlink:title=”Chesapeake Alert”
xlink:href=”Chesapeake.xml”
xlink:label=”ChesapeakeAlert”>Chesapeake
Alert</characterLink>. Antron remembered the rhythm, the
pulse, everything. After all this time the energy of the
crowd still seemed to reverberate through his
head.</Paragraph>

<Paragraph>Chesapeake Alert was nothing but a large
bulbous mass of jelly-like flesh; a brain plopped down on an
empty, expensive slice of carpet. And though he had no legit-
imate locomotive capabilities of his own, he was aware of the
movements of a billion others.</Paragraph>

<Paragraph>Antron’s hundred legs crawled around what
was left of the carpet in the kind of pace unknown to you or
me. His earlier confusion had long ago been dissolved by the
righteous events of what he had seen during the course of
events Billy Freedom had ignited</Paragraph>

<Paragraph>”Sometimes betrayal is a necessity,” said
Chesapeake. “Startling. And expensive. It must be weighed
carefully.”</Paragraph>

</Section>

Chapter One40

4033ch01.qxd 9/11/01 9:19 AM Page 40

</Chapter>
</lillybook>

You can download the DTD for Listing 1.7 at www.tumeric.net/
projects/books/complete/support/ch01_toc.asp. The file is named
lillybookv3.dtd. At this point in your XML development, you should
focus most on the structure of the document. Notice the way each element
is nested within another and that there is one root element.

The document begins with an XML declaration. There is no processing
instruction for this document, but if we wanted to develop a style sheet or
transformation for it, we would want to add a processing instruction to
handle it. Next comes the DTD, which is external. After that, the docu-
ment instance is parsed, beginning with the root element, lillybook.

You will also notice a number of other important attributes about the
document, such as the consistent case use among elements and the fact
that all the attribute values appear in quotes without any exceptions.

TIP
If you are creating a common type of document, such as an online book, you
should really look to see if someone else has already created a publicly avail-
able DTD before setting out to create your own like we have here.

As you examine Listing 1.7, try to take everything you’ve learned into
account and see if you can identify some of our main points about how
to create XML documents. As you progress throughout the book, any
mysteries remaining about Listing 1.7 will gradually clear. Let yourself
explore the basic syntax. There are many more mysteries ready to be
disclosed to you as the next several chapters unfold.

Summary
In this chapter we introduced some of the basic concepts and constructs
of XML documents. You now have an understanding of all the syntax
requirements you’ll need to create your first XML document.

In the next chapter, we’ll explore how to create elements, which are
one of the core entities in all XML documents.

Creating XML Documents 41

P
ar

t
i

4033ch01.qxd 9/11/01 9:19 AM Page 41

4033ch01.qxd 9/11/01 9:19 AM Page 42

